1

สัญญาที่ RTA4780004

รายงานฉบับสมบูรณ์

โครงการส่งเสริมกลุ่มวิจัย (เมธีวิจัยอาวุโส) พอลิเมอร์สีเขียวเพื่อการพัฒนาที่ยั่งยืนเหมาะสมกับการใช้งาน

โดย

ศาสตราจารย์ ดร. สุดา เกียรติกำจรวงศ์

สัญญาที่ RTA4780004

รายงานวิจัยฉบับสมบูรณ์

โครงการส่งเสริมกลุ่มวิจัย (เมธีวิจัยอาวุโส) พอลิเมอร์สีเขียวเพื่อการพัฒนาที่ยั่งยืนเหมาะสมกับการใช้งาน

ศาสตราจารย์ ดร. สุดา เกียรติกำจรวงศ์ ภาควิชาวิทยาศาสตร์ทางภาพถ่ายและเทคโนโลยีทางการพิมพ์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

	หน้า
รายงานเสนอต่อ สำนักงานกองทุนสนับสนุนการวิจัย	4
Abstract (ภาษาอังกฤษ)	5
บทคัดย่อ (ภาษาไทย)	25
Executive Summary (ภาษาอังกฤษ)	45
เนื้อหางานวิจัย (ภาษาไทย)	61
รายนามกลุ่มวิจัย	67
ผลงานวิชาการ	81
บทความวิจัยที่ได้รับการพิมพ์เผยแพร่	81
บทความวิจัยที่นำเสนอในที่ประชุมวิชาการ	87
หนังสือ	93
อนุสิทธิบัตร	93

์สัญญาที่ RTA4780004

รายงานเสนอต่อ สำนักงานกองทุนสนับสนุนการวิจัย. ประเภททุนส่งเสริมกลุ่มวิจัย (เมธีวิจัยอาวุโส)

ชื่อโครงการ โครงการส่งเสริมกลุ่มวิจัย หรือ โครงการเมธีวิจัยอาวุโส

ชื่อเรื่อง พอลิเมอร์สีเขียวเพื่อการพัฒนาที่ยั่งยืนเหมาะสมกับการใช้งาน

ชื่อผู้รับทุน ศาสตราจารย์ ดร. สุดา เกียรติกำจรวงศ์

ระยะเวลา 15 สิงหาคม 2547 - 15 สิงหาคม 2550

วัตถุประสงค์ของโครงการ

- 1. สร้างกลุ่มนักวิจัยทำงานวิจัยร่วมกันในสาขาวิจัยที่ใกล้เคียงกันและสัมพันธ์กัน
- 2. สร้างเครือข่ายกลุ่มวิจัยและงานวิจัยไปยังมหาวิทยาลัยในต่างจังหวัดและ สถาบันวิจัยแห่งชาติในกระทรวงอื่น ๆ
- 3. เพื่อพัฒนาศาสตร์และองค์ความรู้ใหม่เพื่อการเรียนการสอน และการวิจัยใน ระดับปริญญาศึกษา บัณฑิตศึกษา และหลังปริญญาเอก
- 4. เพื่อพัฒนาเทคโนโลยีใหม่ที่เหมาะสมกับการใช้งานในระดับชุมชนและ อุตสาหกรรมในประเทศ
- 5. สร้างนักวิจัยใหม่ภายในมหาวิทยาลัยและมหาวิทยาลัยในภูมิภาคภาคใต้

ขอบเขตความร่วมมือของคณาจารย์ที่ร่วมโครงการ

กลุ่มวิจัยนี้ได้ดำเนินงานวิจัยขั้นพื้นฐานและขั้นประยุกต์ด้านเคมี เคมีประยุกต์ วิศวกรรมเคมี เทคโนโลยีชีวภาพ วัสดุพอลิเมอร์เพื่อด้านสิ่งแวดล้อม

คณาจารย์ที่เข้าร่วมโครงการประกอบด้วยคณาจารย์จากภาควิชาต่างๆ และรายนามผู้ช่วยวิจัยดัง ตารางต่าง ๆ ที่แนบมา

Abstract (ภาษาอังกฤษและภาษาไทย)

โครงการส่งเสริมกลุ่มวิจัยนี้ประกอบด้วยโครงการวิจัยย่อยจำนวน 6 โครงการดังต่อไปนี้ ซึ่งได้ผล งานที่สามารถสรุปเนื้อหาของบทความวิจัยแต่ละบทความดังนี้

- โครงการย่อยที่ 1 Utilization of Synthetic Polymers in Environmental Treatment การใช้พอลิเมอร์สังเคราะห์ในการบำบัดทางสิ่งแวดล้อม
- โครงการย่อยที่ 2 Influence of Additives on Acrylamide Superabsorbent Polymer

 Performance

อิทธิพลของสารเติมแต่งต่อสมรรถภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลาไมด์

โครงการย่อยที่ 3 A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of Silane in Latex

> วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจาก กระบวนการโซล-เจลของไซเลนในน้ำยาง)

- โครงการย่อยที่ 4 Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends
 เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน
- โครงการย่อยที่ 5 Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative

 ใบโอฟาวลิงของพื้นผิวไคโทซานที่มีประจุและฟิล์มประกอบแบบบางของไคโทซานและอนุพันธ์ที่มีประจุ
- โครงการย่อยที่ 6 Characterization of Silk Fabric Print Quality by Ink jet Ink การตรวจสอบสมบัติการพิมพ์ผ้าไหมด้วยหมึกพิมพ์อิงก์เจ็ต

English Abstract

โครงการย่อยที่ 1

Utilization of Synthetic Polymers in Environmental Treatment

การใช้พอลิเมอร์สังเคราะห์ในการบำบัดทางสิ่งแวดล้อม

โครงการนี้มีบทความ 4 บทความ ที่ดำเนินการแล้วดังนี้คือ

Synthesis and Characterization of Cassava Starch Graft Poly(acrylic acid) and Poly[(acrylic acid)-co-Acrylamide] and Polymer Flocculants for Wastewater Treatment

Starch-g-poly(acrylic acid) and poly[(acrylic acid)-co-acrylamide] synthesized via chemically crosslinking polymerization were then each mixed with inorganic coagulants of aluminium sulfate hydrate [Al₂(SO₄)₃18H₂O], calcium hydroxide [Ca(OH)₂], and ferric sulfate [Fe₂(SO₄)₃] in a proper ratio to form complex polymeric flocculants (CPFs). All CPFs exhibited low water absorbency than those of the uncomplexed superabsorbent copolymers. The color reduction by the CPFs was tested with both synthetic wastewater and selected wastewater samples from textile industries. The synthetic wastewater was prepared from a direct dye in a concentration of 50 mg dm⁻³ at pH 7. The CPFs of poly [(acrylic acid)-co-acrylamide] with calcium hydroxide at a ratio of 1:2 is the most effective CPF for the wastewater color reduction. The CPF concentration of 500 mg dm⁻³ could reduce the color of the synthetic wastewater containing the direct dye solution by 95.4% and that of the industrial wastewater by 76%. Starch-g-poly(acrylic acid)/Ca(OH)₂ CPF can reduce the synthetic direct dye and the industrial wastewater by 74% and 18%, respectively. Chemical oxygen demand, residual metal ion concentrations, pHs, and turbidity of the wastewater were also investigated and the potential use of the complex polymer flocculants for textile wastewater treatment was indicated.

Key words: swelling; radical polymerization; polysaccharides; metal-polymer complexes; hydrogels

Synthesis and Properties of Solvent Absorptive Methyl Methacrylate-Divinylbenzene Copolymer Beads

Methyl methacrylate-divinylbenzene copolymer beads were synthesized by radical suspension polymerization. The effects of the divinylbenzene concentration and the composition of the toluene/heptane diluent were studied with regard to the polymer bead formation, surface morphology, solvent swelling ratio, and absorption kinetics. The crosslinking density and diluent composition were responsible for solvent swelling. The interaction between the polymer and the diluents is attributed to phase separation, which controls the formation of a network-type or pore-type polymer, or a combination. For the optimum bead swelling in toluene, a combined morphology of more flexible polymer networks and a small amount of pores is essential for the desired absorption-desorption behavior. Dynamic swelling behavior of the polymer beads was elucidated. The mechanism of toluene transport into the beads became more a relaxation control.

Key words: solvent, absorption-desorption; diluent; bead swelling; transport

Removal of Congo red and Direct Blue 71 by Acrylamide/Acrylic acid-Based Aluminium Flocculants

Polymeric flocculants of aluminium hydroxide-poly[acrylamide-co-(acrylic acid)], AHAMAA, were synthesized by solution polymerization. The direct dye removal efficiency with a variety of poly[AM-co-AA] and AHAMAA was investigated. It was found that the efficiency of Congo red removal by AHAMAA is better than that of poly[AM-co-AA] synthesized by 4×10^{-3} , 2.3×10^{-4} , 1.6×10^{-4} and 12×10^{-4} mol of the acrylic acid, crosslinking agent, initiator, and co-initiator, respectively. The dye adsorption of AHAMAA is caused by the interaction between the aluminium cation in AHAMAA and the sulphonate anion of Congo red or direct blue 71. In a buffered dye solution system, the adsorption of both dyes decreased in all pH solutions. The AHAMAA can remove Congo red which obeys the Freundlich adsorption isotherm, whereas poly[AM-co-AA] can adsorb Congo red by the diffusion of dye molecules into its hydrogel pores. All the synthesized AHAMAAs can remove direct blue 71 and obey the Freundlich isotherm whereas poly[AM-co-AA] cannot.

Keywords: congo red; direct blue 71; aluminium flocculant; anionic polyacrylamide hydrogel; Freundlich isotherm

Synthesis and Characterization of Acrylamide-based Aluminium Flocculants for Wastewater Treatment

Polymeric flocculants of aluminium hydroxide-poly[acrylamide-co-(acrylic acid)] AHAMAA were synthesized by solution polymerization, initiated by ammonium persulfate—N,N,N',N'-tetramethylethylenediamine initiator couple using aluminium hydroxide as a coagulant in the presence of acrylamide and acrylic acid as a comonomer pair with N,N'-methylenebisacrylamide as a crosslinking agent. The water absorbency, the rheological properties and the residual aluminium ion concentration in AHAMAA were investigated. The residual acrylamide monomer concentration in the polymer was determined. The water absorbency of poly[AM-co-AA] was always higher than that of AHAMAA. The water absorbency was found to be related to the storage modulus of the polymers. The storage modulus of AHAMAA was higher than that of poly[AM-co-AA] in good agreement with its lower absorbency. The residual aluminium concentration of AHAMAA was in the range of 0.09–0.2 ppm while the residual acrylamide monomer was found in a range of 42.7–67.8 ppm (0.07 –0.10%). Poly[Am-co-AA] and AHAMAA were tested for turbidity reduction of kaolin suspension which gave satisfactory results.

Key Words: acrylamide; acrylic acid; aluminium flocculants; turbidity reduction.

โครงการย่อยที่ 2

Influence of Additives on Acrylamide Superabsorbent Polymer Performance

อิทธิพลของสารเติมแต่งต่อสมรรถภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลาไมด์

โครงการนี้มีบทความ 4 บทความที่ดำเนินการแล้วดังนี้คือ

Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents

Biodegradable superabsorbent polymers were synthesized by graft copolymerization of acrylamide (AM)/itaconic acid (IA) onto cassava starch via a redox initiator system of ammonium persulfate (APS) and *N,N,N',N'*-tetramethylethylenediamine (TEMED), in the presence of *N,N'*-methylenebisacrylamide (N–MBA) crosslinking agent, sodium bicarbonate foaming agent, a triblock copolymer

of polyoxyethylene/polyoxypropylene/polyoxyethylene as a foam stabilizer. The acrylamide-to-itaconic acid ratio, the starch-to-monomer, and concentrations of the crosslinking agent and initiator, on the water absorption of the superabsorbent polymers were investigated. The swelling of starch-g-PAM was 39 g g⁻¹ while the starch-g-P(AM-co-IA) with the IA content of 0.02–0.15% mole gave the water swelling value in the range of 70–390 g g⁻¹. By-products of the reaction were removed by water extraction. The starch grafted composites were characterized by FTIR and SEM. Thermal gravimetric analysis was also used for determining the percentage of grafting ratio. Biodegradation of the starch grafted copolymer was carried out using a-amylase. After the α -amylase hydrolysis, the amount of reducing sugar was quantified by DNS method. The hydrolyzed solution gave a negative test with iodine solution and a positive test by Benedict's solution, an indication of the existence of glucose units.

Keywords: cassava starch; acrylamide; biodegradable; superabsorbent polymer; enzymatic degradation

Synthesis and Swelling Properties of Poly[acrylamide-co-(crotonic acid)] Superabsorbents

Superabsorbent polymers of acrylamide (AAm)/crotonic acid (CA) were synthesized by foamed polymerization in an aqueous solution of AAm with CA as a comonomer, initiated by an initiator couple of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine. A crosslinking agent N,N'-methylenebisacrylamide, a foaming agent sodium bicarbonate, and a foam stabilizer, a triblock copolymer of polyoxyethylene/polyoxypropylene/polyoxyethylene, were used in the polymerization. The influences of the relative contents of CA, crosslinking agent, and initiator, on the swelling properties of the superabsorbent polymer systems were examined. The superabsorbent polymer synthesized with an AAm/CA ratio of 98:2 by mole, 0.5 wt. % of N,N'-methylenebisacrylamide and 1 wt. % of ammonium persulfate at 250 rpm and 50 °C for 30 min of polymerization time produced the highest water absorption of 211 ± 9 times its dried weight and could absorb water up to 162 ± 4 g g⁻¹ of the dry copolymer within 10 min. The electrochemical reaction for acrylamide–crotonic acid polymerization was investigated by cyclic voltammetry. The anodic current indicated that acrylamide acting as an electron donor whereas crotonic acid

performed as an electron acceptor, then providing the cathodic current. The diffusion of water into the superabsorbent polymer was non-Fickian (case II and anomalous). Acrylamide–crotonic acid superabsorbents containing various crosslinker concentrations had a water swelling in the range of 79–289 g g⁻¹. The diffusion coefficients varied between 6.9 x10⁻⁹ and 5.1 x 10⁻⁸ cm² s⁻¹. Adsorption of the basic dye by the superabsorbent was a monolayer evaluated by the Langmuir isotherm. The superabsorbents can thus be used to adsorb cationic dyes in textile industry.

Keywords: copolymerization; crosslinking; cyclic voltammetry; superabsorbent polymer; poly[acrylamide-co-(crotonic acid)]

Syntheses of acrylamide – itaconic acid superabsorbent polymers and superabsorbent polymer/mica nanocomposites

Superabsorbent polymer and its nanocomposite of acrylamide (AM)/itaconic acid (IA) were synthesized by solution polymerization in an aqueous solution of AM with IA comonomer and mica used as an inorganic additive. The reaction was initiated by a redox initiator couple of ammonium persulfate and N, N, N', N'- tetramethylethylenediamine in the presence of N, N'-methylenebisacrylamide crosslinker. The influences of IA concentration, mica content, and crosslinker concentration on the water absorption and physical properties of the superabsorbent polymer and its nanocomposite were examined. Water absorbency of the synthesized copolymers in artificial urine was also investigated. Gel strength of the superabsorbent copolymers and their nanocomposites was tested with a load of 0.28 or 0.70 psi in deionized water. The transmission electron micrographs showed that the polymer chains were intercalated into the silicate layers in the mica and created more network junctions in the matrix polymer as further confirmed by X-ray diffraction. The water absorbency and the artificial urine absorbency of the composite at the AM- to-IA ratio of 95:5 and 5 wt% mica were 748±5 g g⁻¹ and 76±2 g g⁻¹, respectively, while the neat copolymer could give only 640±7 and 72±2 g g⁻¹ g g⁻¹ in water and in artificial urine, respectively. It was suggested by the absorbency under load and viscoelastic behavior that the swollen gel of such nanocomposites exhibited the mechanical rigidity. The 5 wt% mica addition could effectively reinforce the gel strength and enhanced thermal stability of the synthesized superabsorbent nanocomposites without sacrificing water absorption capacity.

Keywords: superabsorbent polymer; superabsorbent polymer

Syntheses of Acrylamide-co-itaconic acid/Silica Superabsorbent Polymer Composites

A series of superabsorbent polymers was synthesized by solution polymerization using a short polymerizing time for acrylamide (AM) and itaconic acid (IA) monomer via a redox initiator system of 1.0 %wt ammonium persulfate and 0.20 cm³ of N,N,N',N'-tetramethylethylenediamine, the crosslinking agent of 0.5%wt N,N'methylenebisacrylamide, were carried out with a stirring speed of 250 rpm at the temperature 45°C for 30 min. Silica was used as an inorganic filler in the polymerization process to increase strength of the copolymer. The synthesized copolymers were dewatered and precipitated by an excess amount of methanol and dried at 50°C in a vacuum oven for 24 h. The acrylamide-to-itaconic acid ratio, silica types, and silica concentration on the water absorption and absorption kinetics behavior of the polymers were investigated. In addition, the water absorbency of the synthesized copolymer and their polymer composites at various loads (0.28 and 0.70 psi) was investigated. The highest water absorbency of the synthesized copolymer was 233±8 times its dry weight at the AM-to-IA ratio of 97:3, and absorbed water up to 149±2 times its dry weight within 15 min. The highest absorbency under load of the copolymer was 13.2 and 12.1 times its dry weight with 2.0%wt silica at the loads of 0.28 and 0.70 psi, respectively. The surface morphologies of the copolymer revealed by SEM technique indicated the porous structure in the synthesized copolymer. The copolymer thermograms and the sintering test revealed that silica incorporating superabsorbent composites had a higher glass transition temperature. Mechanical mixing of the superabsorbent copolymer with the silica powder, a cheaper way to prepare a superabsorbent polymer composite was investigated to observe their water absorption.

Keywords: superbabsorbent polymer composite, silica, acrylamide, itaconic acid

โครงการย่อยที่ 3

A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of Silane in Latex

วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจากกระบวนการโซล-เจลของ ไซเลนในน้ำยาง

โครงการนี้มีบทความ 4 บทความที่ดำเนินการแล้วดังนี้คือ

Effects of Redox Initiator on Graft Copolymerization of Methyl Methacrylate onto Natural Rubber

Effects of cumene hydroperoxide (CHPO)/ tetraethylenepentamine (TEPA), tert-butyl hydroperoxide (TBHPO)/TEPA, and potassium persulfate (K₂S₂O₈/ sodium thiosulfate (Na₂S₂O₃) redox initiator on methyl methacrylate (MMA) grafted natural rubber by emulsion polymerization were investigated. The optimum reaction condition for each redox initiator on the grafting of natural rubber was studied. The grafted poly(methyl methacrylate) (PMMA) stays on the surface of rubber particles. CHPO dissolves very well in the oil phase and TBHPO dissolves moderately in the oil phase, and K₂S₂O₈/Na₂S₂O₃ initiation is water-soluble. Each can interact with TEPA in the aqueous phase. CHPO was found to give a higher grafting efficiency. To promote a greater grafting efficiency and yield a lower homopolymer content of PMMA, vinyl neo-decanoate (VneoD) was added. Percentages of grafting of MMA on natural rubber latex initiated by CHPO/TEPA, TBHPO/TEPA, and K₂S₂O₈/ K₂S₂O₃ of 84.4, 74.5, and 61.1, respectively, were in good agreement with percentages of PMMA in the aqueous phase as 7.2, 12.0, and 17.9 by CHPO, TBHPO, and K₂S₂O₈. VneoD produces allylic radicals on polyisoprene chains, favoring the grafting reaction with other vinyl monomers. CHPO/TEPA is thus a better redox system for grafting of MMA monomer on natural rubber latex.

Key words: rubber; graft copolymers; emulsion polymerization

Silica-reinforced natural rubber prepared by the sol-gel process of ethoxysilanes in rubber latex

Silica-reinforced natural rubber (NR) composite was prepared by using tetraethoxysilane (TEOS) as a precursor to generate silica particles inside the rubber. The silica was generated *in situ* by the sol-gel process of TEOS that was mixed directly into commercial-graded NR latex having 60% dry rubber content and 0.7% ammonia. The conversions of TEOS to silica inside the rubber were ranging from 90-97%. The silica particles dispersed evenly without extensive aggregation with sizes of about 500 nm and lower, as determined by scanning electron microscopy (SEM). An experimental design methodology, namely 'two-level factorial design', was used to evaluate the influence of the amounts of TEOS, ammonia, and gelation time on the tensile modulus, tensile strength and tear strength of the vulcanizates. The mechanical properties were significantly affected by the amount of TEOS added into the latex. Ammonia in the amount of 0.7% (w/w) present in the commercial latex was found to be sufficient for the conversion reaction of TEOS to silica. Bis-(3-triethoxysilylpropyl) tetrasulfide or TESPT, a coupling agent regularly used in rubber industry, was also added with TEOS to prepare the silica-filled composite. The presence of TESPT resulted in an increase of the mechanical properties and the rate of sulfur cure.

Keywords: rubber; silicas; composites

Sol-gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber

Sol-gel process of alkyltriethoxysilanes that was dispersed in natural rubber latex was utilized in order to generate alkylated silica particles inside the rubber matrix. Three types of alkyltriethoxysilanes were chosen, i.e. vinyltriethoxysilane (VTOS), ethyltriethoxysilane (ETOS), and *i*-butyltriethoxysilane (BTOS), since they differed in the type of one substituent group. Together with tetraethoxysilane (TEOS), a typical precursor for silica formation, all silanes were studied for their conversion to silica and subsequent reinforcement capabilities in sulfur-vulcanized rubber. The *in situ* generated silicas were fine and well dispersed in the rubber matrix, as analyzed by SEM and TEM. Solid-state ²⁹Si-NMR technique was used to confirm the presence of alkyl substituents on the silica particles buried inside the rubber matrix. Tensile and tear properties of the *in situ* silica-filled NR vulcanizates were higher than those of vulcanizate prepared by conventional-mixed method. Furthermore, the use of VTOS in combination with TEOS (5, 10 and 20 mol% VTOS) resulted in an increase of mechanical properties over those of the vulcanizate mixed with only TEOS. It is possible that the vinyl group from

VTOS participates in the sulfur vulcanization process. Cure characteristic and swelling behavior in toluene of the composites were also investigated.

Keywords: nanocomposite, reinforcement, rubber, silica

Effects of methyl methacrylate grafting and *in situ* silica particle formation on the morphology and mechanical properties of natural rubber composite films

The effects of methyl methacrylate (MMA) grafting and in-situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80 °C. The resultant products were characterized by FT-IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol-gel process which was induced during film drying at 80 °C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root-mean-square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and tear strength of the composite film.

Keywords: natural rubber latex; methyl methacrylate; in situ silica; sol-gel process

โครงการย่อยที่ 4

Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends

เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน

โครงการนี้ได้บทความ 5 บทความดังนี้

Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system

Thermoplastic vulcanizates (TPVs) based on NR/HDPE blends with various types of blend compatibilizers were prepared. It was found that TPVs with phenolic resin (i.e., SP-1045 and HRJ-10518) compatibilizers showed higher tensile strength, elongation at break and tendency to recover from prolonged extension than those of the TPV without a compatibilizer. This may be attributed to Chroman ring structures from the reaction of NR and phenolic molecules. The TPVs with modified phenolic resins (PhSP-PE and PhHRJ-PE) showed higher tensile strength and elongation at break than those of the TPVs with un-modified phenolic rein and without a compatibilizer. A reaction took place through trace quantities of un-saturation in the HDPE molecules and methylol groups in the phenolic molecules. Also, the remaining methylol groups in the phenolic molecules were capable of reacting with NR molecules and produced a linkage between NR and HDPE molecules. Therefore, it was found that the TPV with PhHRJ-PE gave the highest tensile strength and elongation at break. Increasing the content of the NR gave an increased trend of elongation at break but decreasing trends in permanent set (expressed as tension set), tensile strength and hardness. Various vulcanization systems were also used to prepare the TPV, with a mixed curing system showing the highest shear stress and tensile strength, whilst the sulphur curing system gave the lowest values, and the peroxide curing system exhibited intermediate values.

Keywords: Natural rubber (NR); thermoplastic vulcanizate (TPV); high-density polyethylene; compatibilizers

Thermoplastic elastomer based on high-density polyethylene/natural rubber blends: rheological, thermal, and morphological properties

Thermoplastic elastomer (TPE) comprising air-dried sheet or natural rubber (ADS or NR) and high-density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizers (HRJ-10518 or SP-1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ-10518 or dimethyl phenolic resin in SP-1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ-10518 or SP-1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co-continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ-10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of paraffinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low-tension set.

Key Words: thermoplastic elastomer; rheological properties; thermal properties; air-dried sheet; natural rubber; high-density polyethylene

Thermoplastic elastomer based on epoxidized natural rubber and high-density polyethylene blends: Effect of blend compatibilizers on mechanical and morphological properties.

Epoxidized natural rubber (ENR) with a level of epoxide groups 20 mole % epoxide was prepared via performic epoxidation method. It was then used to blend with HDPE at various blend ratios. Three types of blend compatibilizers were prepared. These include graft copolymer of HDPE and maleic anhydride (i.e., HDPE-g-MA) and two types of phenolic modified HDPE (i.e., PhSP-PE and PhHRJ-PE). It was found that the blend with compatibilizers exhibited superior tensile strength, hardness and set properties than that of the blend without compatibilizers. The ENR and HDPE

interaction via the link of compatibilizer molecules was the polar functional groups of compatibilizer with oxirane groups in the ENR molecules. Also another end of compatibilizer molecules (i.e., HDPE segments) is compatibilizing with the HDPE molecules in the blend components. The blend with compatibilizers also showed smaller phase morphology than that of the blend without compatibilizer. Among three types of the blend compatibilizer, the HDPE-g-MA provided the blend with the highest strength and hardness properties but the lowest set properties.

Key words: epoxidized natural rubber (NR); thermoplastic elastomer; highdensity polyethylene; compatibilizers; phenolic resin; maleic anhydride

Influences of blend proportions and curing systems on dynamic, mechanical, and morphological properties of dynamically cured ENR/HDPE Blends

Thermoplastic elastomers based on dynamically cured ENR/HDPE blends were prepared. Influence of the process oil, blend proportion and curing systems were investigated. It was found that the oil-extended TPVs exhibited better elastomeric properties and the ease of injection process. Increasing proportion of ENR caused increasing elastic response in dynamic properties and elastomeric properties in terms of elongation at break, tension set properties and tanδ. It was also found that the TPV with phenolic curing system exhibited the superior mechanical properties and smallest vulcanized rubber domains. However, the TPV with conventional peroxide co-agent cured system showed superior strength properties but poor elastomeric properties.

Key words: epoxidized natural rubber (NR); thermoplastic vulcanizate (TPV); high-density polyethylene; peroxide; phenolic resin; sulfur

Influences of blend compatibilizers on dynamic, mechanical, and morphological properties of dynamically cured maleated natural rubber and high-density polyethylene blends

Influences of the types and loading amounts of blend compatibilizers on properties of maleated natural rubber/high-density polyethylene thermoplastic vulcanizates (MNR/HDPE TPVs) were investigated. It was found that the TPV with three types of compatibilizer exhibited superior mechanical and dynamic properties than that of the TPV without the compatibilizers. Furthermore, the phenolic modified polyethylene compatibilizers (i.e., PhSP-PE and PhHRJ-PE) showed a better

compatibilizing effect than that of HDPE-g-MA. Comparing among the three types of compatibilizer, the TPVs with PhHRJ-PE exhibited the best mechanical and dynamic properties, and the smallest dispersed vulcanized rubber domains in the HDPE matrix. Five loading amounts of the PhHRJ-PE were then studied. The PhHRJ-PE at a loading amount of 5 wt % of HDPE exhibited the best overall properties. The TPVs with lower and higher loading amounts of PhHRJ-PE other than 5 wt % exhibited inferior mechanical, dynamic and morphological properties.

Key words: Maleated natural rubber (MNR); thermoplastic vulcanizate (TPV); high-density polyethylene; phenolic modified polyethylene; graft copolymer, maleic anhydride

โครงการย่อยที่ 5

Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative

ไบโอฟาวลิงของพื้นผิวไคโทซานที่มีประจุและฟิล์มประกอบแบบบางของไคโทซานและ อนุพันธ์ที่มีประจุ

โครงการนี้มีบทความ 3 บทความที่ดำเนินการแล้วดังนี้คือ

Surface-charged chitosan: Preparation and protein adsorption

Positive and negative charges were introduced to chitosan surfaces via methylation using methyl iodide (MeI) and reductive alkylation using 5-formyl-2-furan sulfonic acid (FFSA). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and zeta potential measurement confirmed the presence of the desired functional groups on the surface-modified chitosan films. The chitosan films having negative charges of N-sulfofurfuryl groups on their surface (SFC films) exhibited selective protein adsorption against both negatively charged proteins (albumin and fibrinogen) and positively charged proteins (ribonuclease, lysozyme). Its adsorption can be explained in terms of electrostatic attraction and repulsion. In contrast, the adsorption behavior

of chitosan films having positive charges of quaternary ammonium groups on their surface (QAC films) was anomalous. The quantity of the adsorbed protein tended to increase as a function of the swelling ratio of the QAC film regardless of the charge characteristics of the protein.

Key words: chitosan; surface charge; quaternary ammonium group; sulfonated group; protein adsorption

Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan

Charged derivatives of chitosan, *N*-sulfofurfuryl chitosan (SFC) and *N*-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride (HTACC) were prepared by reductive alkylation of amino groups of chitosan (CHI) using 5-formyl-2-furansulfonic acid, sodium salt (FFSA) as a reagent and ring opening of glycidyltrimethylammonium chloride (GTMAC) by amino groups of chitosan, respectively. The chemical structures of the charged derivatives were verified by ¹H NMR and FTIR analyses. Multilayer assembly of SFC, HTACC, CHI and the selected oppositely charged polyelectrolytes was monitored by a quartz crystal microbalance (QCM). Stratification of the multilayer film fabricated on plasma-treated poly(ethylene terephthalate) (treated PET) substrate was demonstrated by water contact angle data. The coverage of the assembled films was characterized by AFM and ATR-FTIR analyses. The bioactivity of the deposited multilayer film on the treated PET substrate was tested against selected proteins having a distinctive size and charge. This research strongly suggests that both SFC and HTACC are potential candidates for altering the surface bioactivity of materials.

Keywords: chitosan; charged derivative; layer-by-layer adsorption; multilayer film; polyelectrolyte; protein adsorption

Enhancing Antibacterial Activity of Chitosan Surface by Heterogeneous Quaternization

This research aims to increase the antibacterial activity of chitosan surface by introducing quaternary ammonium groups via a heterogeneous two-step process: reductive alkylation using selected aldehydes followed by methylation with methyl iodide. The quaternization of amino groups should simultaneously generate positive

charge and hydrophobicity, the two parameters that are believed to affect the antibacterial activity, to chitosan surface. Attenuated total reflectance-Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, water contact angle and zeta potential measurements confirmed the success of surface quaternization. As determined by a measurement of optical density (OD₆₀₀), scanning electron microscopy (SEM), and viable cell counting, the antibacterial activity of the surface-modified chitosan against *Staphylococcus aureus* (gram positive bacteria) and *Escherichia coli* (gram negative bacteria) were superior to that of the virgin chitosan. The additional positive charge and hydrophobicity introduced to the chitosan after surface quaternization apparently make the quaternary ammonium-containing chitosan surface a more favorable substrate for interacting with the negatively-charged membrane of the bacteria even in a neutral pH range.

Keywords: chitosan, antibacterial activity, quaternary ammonium group, hydrophobicity, surface modification

โครงการย่อยที่ 6

Characterization of Silk Fabric Print Quality by Ink Jet Ink การตรวจสอบสมบัติการพิมพ์ผ้าไหมด้วยหมึกพิมพ์อิงก์เจ็ต

โครงการนี้มีบทความ 6 บทความที่ดำเนิน การแล้วดังนี้คือ

Comparison of textile print quality between ink jet and screen printings

This research was concerned with an investigation of cotton print qualities that were achieved by ink jet printing and screen printing. The acrylic binder, S-711, with a pigment-to-binder (P/B) ratio of 1:2 (by weight) was used to produce one set of ink jet inks. BR-700 was used in the creation of another set of screen inks. Fume silica was added to the screen ink to increase the viscosity so that the ink would meet the rheology requirements. The viscosity and flow behaviour of both inks were acceptable. Both the ink viscosity and the particle-size distribution were slightly increased during storage at an ambient temperature for two months. The ink jet ink printed fabrics were pretreated with a solution of poly(ethylene oxide) having 2 to 3 million Dalton molecular weight. The printed fabrics from both inks were analysed for colour saturation, colour gamut and their volume, density, tone reproduction, stiffness, air permeability, and crock fastness. The type, concentration and P/B ratio were exactly the same in both inks in the

pigment dispersions. Even though the loaded ink volume on fabrics, by ink jet, was tuned to be approximately the same in optical density as that given by the screen ink, by a multipass mode printing, both printed fabrics gave different colour saturations, colour gamuts and tone reproductions. The colour gamut volume, stiffness, air permeability and crock fastness of the ink jet inks are superior to those of screen inks. The print quality of the ink jet printing on cotton fabric was, thus, better. However, the ink jet ink printed cotton fabric needed to be printed three times to produce the same colour and tone reproduction as that produced by screen printing.

Key words: pigmented ink jet ink, screen ink, print quality, cotton fabric, polyacrylate binder

Properties of Industrial Thai Silks Reeled by Hand and by Machine

Three mulberry silk filaments from the local producers and one imported silk filament were analyzed for various properties. The properties of the silk filaments reeled by hand and by machine were compared. The properties assessed were whiteness and yellowness, fineness or denier, degumming weight loss, moisture content, relative density, birefringence, crystallinity, chemical composition, softening point, burning behavior, tenacity, resistance to sunlight, dye fixation, and resistance to acid, alkaline and bleaching conditions, according to the standard test methods. It was found that the hand reeled silks showed the lower values in whiteness, birefringence, crystallinity and softening point than those of the machine reeled silks. On the other hand, the hand reeled silks showed a higher denier and dye fixation. The local silks were found to have the higher values in denier, degumming weight loss, relative density, crystallinity, dye fixation, and resistance to alkali and bleaching agent than the imported Chinese silk.

Key words: Thai silk, hand reeling, machine reeling, properties

Modulation Transfer Function Measurement for Ink Jet Printed Silk Fabrics

The modulation transfer function (MTF) is a standard method used for estimating the image quality of a component for detail recording in an image forming system and for printing quality of the final products. This study focused on the measurement of MTF of nonprinted and printed silk fabrics and a correlation of the MTF data to sharpness of the printed silk fabric using the in-house formulated ink jet

ink. The MTF of the surface was measured using the sinusoidal test pattern in contact with the fabric using spatial frequencies from 0.375 to 3.0 cycles/mm. The sinusoidal test target was scanned by a microdensitometer in the reflection density mode. These data comprise two frequencies; the high frequency is the characteristic of the fabric while the low frequency is the light scattering of the yarns in contact with the sinusoidal target. The sinusoidal curves at the low frequency were used for further calculation of the MTF values. The result indicated that the measurement of MTF of silk fabrics. This research investigated the relationships of weave style and direction, wicking properties, and the MTF of four different silk fabrics with plain weave (silk A, C, and D) or twill weave (silk B). Dot gain by the Yule–Nielsen model was investigated. The coefficient d calculated by the MTF empirical model was 0.0604 and the coefficient n by the Yule–Nielsen model was 1.636 for silk D which had the lowest d and n coefficients compared with other silk fabrics, indicating good quality in terms of image sharpness.

Key words: Ink Jet Ink; modulation transfer function; dot gain; sinusoidal test target; point spread function; silk fabric

Surface-modified and micro-encapsulated pigmented inks for ink jet printing on textile fabrics

Surface-modified and micro-encapsulated pigment dispersions were formulated into pigmented ink jet inks and their properties were analyzed. The changes in viscosity, and particle size distribution, and ink stability were observed every week for 12 weeks at ambient temperature. All the ink jet ink properties were in the operational range. As for appearance and color, the surface-modified pigmented inks printed on a silk fabric yielded higher optical densities, better tone reproduction, wider color gamut, and a larger gamut volume than the micro-encapsulated pigmented inks. For permanence and usability, the micro-encapsulated pigmented inks gave better fastness; the wear comfort of the printed silk fabric, evaluated by the bending stiffness, indicated a negative effect on the pre-treatment of the fabric. Surface pre-treatment of the textile fabrics affected color, appearance, permanence and usability. Despite almost equal numbers of threads, the fabric bending strength in the weft direction was much stronger than that in the warp direction.

Keywords: Surface-modified pigment dispersion; micro-encapsulation pigment dispersion; silk fabric; ink jet ink; textile

Pretreatment of Silk Fabric Surface with Amino Compounds for Ink Jet Printing

This research studied the pretreatment of silk fabric with amino compounds for ink jet printing. The pretreatment is expected to increase smoothness of the fabric surface. The pre-treating solutions were serine, glycine, aspartic acid, sericin, chitosan, and the commercial pre-treating chemical called Sanfix 555. The non-treated and treated fabrics were printed with the in-house formulated, pigmented inks and later steamed to fix the ink on the fabric surface. It was found that the pretreatments containing the amino compounds improved hydrophilicity of the silk fabric except chitosan. The color gamuts from the sericin, chitosan, and Sanfix 555 pretreatments were wider than those from the amino acid pretreatments. The chroma of the cyan color was improved the most. The fabric after the pretreatment with the sericin showed a significant improvement in the dry crock fastness while the wet crock fastness was improved by serine and glycine. The chitosan slightly improved both dry and wet crock fastness. Wash fastness of the printed fabrics was excellent. The stiffness of the silk fabrics obtained from the chitosan pretreatment was significantly higher than other pretreatments which were similar to the non-treated one. The ink penetration in sericin and chitosan coated layers was shorter than those of amino acids, enhancing ink deposition on the fabric surface. Some mentioned amino compounds from the pretreatments could hold and fix additional inks on the fabric surfaces, resulting in a wider color gamut of the inks.

Key Words: Amino acid; Chitosan; Sericin; Pretreatment; Silk fabric; Ink jet printing

Anionically Surface-Modified Pigment-Based Ink Jet Ink Performance on Silk Fabric

Anionically surface-modified organic pigment dispersions were used to prepare four color ink jet inks. The inks had a pH in the range of 8 – 9 and exhibited Newtonian flow in which the viscosity remained constant at 2.5 mPa s. The surface tension of the inks was approximately 44 mN m⁻¹, and the average particle sizes were approximately 100 nm. Zeta-potential of the inks was in the range of (–42) to (–51) mV.

The inks were stable for 10 months (for the magenta and black) and one year (for the cyan and yellow) as confirmed by SEM and TEM micrographs. The inks prepared were suited for printing with a piezo type ink jet printer. Untreated and treated fabrics were printed with these inks and later steamed to fix the ink on the fabric surface. The anionically surface-modified pigmented ink can interact with the protonated amino group in chitosan pretreatment through which improved ink deposition on the fabric surface was obtained. The color gamuts were wider and the chroma of the cyan color was the most improved followed by magenta color but the color strength of the CMY pigmented inks was bit low. Possible causes and suggestions were given.

Key Words: Anionic functional group, surface-modified pigmented ink, ink jet, chitosan pretreatment, silk fabric

บทคัดย่อภาษาไทย

โครงการย่อยที่ 1

Utilization of Synthetic Polymers in Environmental Treatment

การใช้พอลิเมอร์สังเคราะห์ในการบำบัดทางสิ่งแวดล้อม

Synthesis and Characterization of Cassava Starch Graft Poly(acrylic acid) and Poly[(acrylic acid)-co-Acrylamide] and Polymer Flocculants for Wastewater Treatment

การสังเคราะห์และการตรวจหาลักษณะเฉพาะของแป้งมันสำปะหลังกราฟต์พอลิอะคริลิก แอซิดและ พอลิอะคริลิกแอซิด-*โค*-อะคริลาไมด์และสารก่อการจับกลุ่มพอลิเมอร์สำหรับ การบำบัดน้ำเสีย

สังเคราะห์แป้งมันสำปะหลังกราฟต์พอลิอะคริลิกแอซิดและพอลิอะคริลิกแอซิด-*โค*-อะคริลา ไมด์โดยเชื่อมขวางทางเคมีด้วยปฏิกิริยาพอถิเมอไรเซชัน เมื่อสังเคราะห์ได้พอถิเมอร์แต่ละชนิดแถ้ว นำไปผสมกับสารก่อการจับก้อนอนินทรีย์ (inorganic coagulants) ได้แก่ อะลูมิเนียมซัลเฟตไฮเดรต (aluminium sulfate hydrate; [Al₂(SO₄)₃18H₂O]), แคลเซียมไฮครอกไซค์ (calcium hydroxide; [Ca(OH),]) และเฟอร์ริกซัลเฟต (ferric sulfate; [Fe,(SO,)]) ในอัตราส่วนที่เหมาะสมเพื่อให้เกิดเป็น สารก่อการจับกลุ่มพอลิเมอร์ที่เป็นสารประกอบเชิงซ้อน (Complex polymeric flocculants; CPFs) CPFs ทั้งหมดมีค่าการดูดซึมน้ำน้อยกว่าโคพอลิเมอร์ดูดซึมน้ำมากที่ไม่เป็นสารประกอบเชิงซ้อน ทคสอบการลคสีโคย CPFs ได้กับทั้งน้ำเสียสังเคราะห์และตัวอย่างน้ำเสียที่เลือกมาจากโรงงาน อุตสาหกรรมสิ่งทอ เตรียมน้ำเสียสังเคราะห์จากสีย้อมไคเร็กต์ (direct dye) ความเข้มข้น 50 มิลลิกรัม ต่อลูกบาศก์เคซิเมตร ค่าความเป็นกรค-เบส 7 CPFs ของพอลิอะคริลิกแอซิค-*โค*-อะคริลาไมด์กับ แคลเซียมไฮครอกไซค์ที่อัตราส่วน 1: 2 มีประสิทธิภาพมากที่สุดในการลคสีของน้ำเสีย ความเข้มข้น ของ CPF 500 มิลลิกรัมต่อลูกบาศก์เคซิเมตรสามารถลดสีของน้ำเสียสังเคราะห์ที่มีสารละลายของสี ย้อมใดเร็กต์ได้ถึงร้อยละ 95.4 และลดสีผสมของน้ำเสียจากโรงงานอุตสาหกรรมสิ่งทอได้ร้อยละ 76 CPF ของแป้งมันสำปะหลังกราฟต์พอลิอะคริ ลิกแอซิดกับแคลเซียมไฮครอกไซค์สามารถลดสีของน้ำ เสียสังเคราะห์ที่มีสารละลายของสีย้อมไดเร็กต์อยู่ และลดสีของน้ำเสียจากโรงงานอุตสาหกรรมได้ ร้อยละ 74 และ 18 ตามลำดับ ตรวจสอบความต้องการออกซิเจนทางเคมี (Chemical oxygen demand; COD) ความเข้มข้นของไอออนของโลหะที่เหลือ ความเป็นกรค-เบส และความขุ่นของน้ำเสียได้ ซึ่ง บ่งชี้ถึงศักยภาพของการใช้สารก่อการจับกลุ่มพอลิเมอร์ที่เป็นสารประกอบเชิงซ้อนสำหรับการบำบัด น้ำเสียดีกว่ากลุ่มพอถิเมอร์ดูดน้ำมาก

คำสำคัญ: การบวม; พอลิเมอไรเซชันแบบอนุมูลอิสระ; พอลิแซ็กคาไรด์; สารประกอบ เชิงซ้อนโลหะ-พอลิเมอร์: ไฮโดรเจล

Synthesis and Properties of Solvent Absorptive Methyl Methacrylate-Divinylbenzene Copolymer Beads

การสังเคราะห์และสมบัติของเม็ดดูดซึมตัวทำละลายโคพอลิเมอร์เมทิลเมทาคริเลต-ไดไว นิลเบนซีน

สังเคราะห์เม็ดดูดซึมตัวทำละลายของโคพอลิเมอร์เมทิลเมทาคริเลต-ได ไวนิลเบนซีนได้ จากปฏิกิริยาพอลิเมอไรเซชันแขวนลอยแบบอนุมูลอิสระ (radical suspension polymerization) ศึกษา ผลของความเข้มข้นของไดไวนิลเบนซีนและองค์ประกอบของตัวทำเจือจางทอลูอีน/เฮปเทน โดย พิจารณาการเกิดเป็นเม็ดพอลิเมอร์ (polymer bead formation) สัณฐานวิทยาของพื้นผิว (surface morphology) อัตราการบวมตัวทำละลาย (solvent swelling ratio) และจลน์ศาสตร์การดูดซึม (absorption kinetics) ความหนาแน่นการเชื่อมขวาง (crosslinking density) และองค์ประกอบตัวทำเจือ จางที่สัมพันธ์กับการบวมตัวทำละลาย อันตรกิริยาระหว่างพอลิเมอร์กับตัวทำเจือจางมีผลกับการแยก เฟส (phase separation) ควบคุมการเกิดเป็นพอลิเมอร์ประเภทโครงข่าย (network-type) หรือประเภท รูโพรง (pore-type) หรือการเกิดทั้งสองแบบร่วมกัน สำหรับการบวมของเม็ดพอลิเมอร์ในทอลูอีน สัณฐานวิทยาแบบผสมของพอลิเมอร์ที่มีโครงข่ายที่ยืดหยุ่นและรูโพรงปริมาณน้อยเป็นสิ่งสำคัญ สำหรับพฤติกรรมที่ต้องการในการดูดซึม-การคายตัวทำละลาย ได้ศึกษาพฤติกรรมการบวมแบบ พลวัตของเม็ดพอลิเมอร์ และพบว่ากลไกของการส่งผ่านทอลูอีนเข้าสู่เม็ดเป็นแบบผ่อนคาย (relaxation control) มากกว่าแบบอื่น

คำสำคัญ: ตัวทำละลาย; การดูดซึม-การคาย; ตัวทำเจือจาง; การบวมของเม็ค; การส่งผ่าน

Removal of Congo Red and Direct Blue 71 by Acrylamide/Acrylic Acid-Based Aluminium Flocculants

การกำจัดสีคอนโกเรดและสีไดเร็กต์บลู 71 ด้วยสารก่อการจับกลุ่มอะลูมิเนียมฐานอะคริลาไมด์/อะคริ ลิกแอซิด

ได้สังเคราะห์สารก่อการจับกลุ่มพอถิเมอร์ของอะลูมิเนียมไฮดรอกไซด์-พอถิอะคริลาไมด์-โค-อะคริลิกแอซิด (aluminium hydroxide-poly[acrylamide-co-(acrylic acid)] หรือ AHAMAA) จาก ปฏิกิริยาพอลิเมอไรเซชันแบบสารละลาย ตรวจสอบประสิทธิภาพการกำจัดสีย้อมไดเร็กต์ด้วยพอลิอะ-คริลาไมด์-โค-อะคริลิกแอซิดและ AHAMAA พบว่าประสิทธิภาพการกำจัดสีคอนโกเรดโดย AHAMAA ดีกว่าพอลิอะคริลาไมด์-โค-อะคริลิกแอซิดที่สังเคราะห์เมื่อใช้ปริมาณอะคริลิกแอซิด 4x10⁻³

mol สารเชื่อมขวาง 2.3x10⁻⁴ mol สารเริ่มปฏิกิริยา 1.6x10⁻⁴ mol และสารเริ่มปฏิกิริยาร่วม 12x10⁻⁴ mol การคูดซับสีย้อมของ AHAMAA เกิดจากอันตรกิริยาระหว่างประจุบวกของอะลูมิเนียมใน AHAMAA กับไอออนลบซัลโฟเนตของสีคอนโกเรดหรือสีไดเร็กต์บลู 71 ในสารละลายสีย้อมที่มีบัฟเฟอร์ การคูด ซับสีย้อมทั้งสองลดลงเมื่อสารละลายมีค่าความเป็นกรด-เบสเพิ่มขึ้น AHAMAA มีลักษณะการคูดซับสี คอนโกเรดแบบฟรอยด์ลิชไอโซเทิร์ม (Freundlich isotherm) ขณะที่พอลิอะคริลาไมด์-โค-อะคริลิกแอ ซิด สามารถคูดซับสีคอนโกเรดโดยการแพ่รของโมเลกุลสีย้อมเข้าสู่รูของไฮโดร-เจล ส่วน AHAMAA ทั้งหมดที่สังเคราะห์ได้สามารถคูดซับสีไดเร็กต์บลู 71 เป็นแบบฟรอยด์ลิชไอโซเทิร์ม ขณะที่พอลิอะคริลาไมด์-โค-อะคริลิกแอซิดไม่สามารถคูดซับสีไดเร็กต์บลู 71 เดย

คำสำคัญ: คอน โกเรค; ใคเร็กต์บลู 71; สารก่อการจับกลุ่มอะลูมิเนียม; ใฮ โครเจลพอลิอะคริ ลาไมค์ประจุลบ; ฟรอยค์ลิชไอโซเทิร์ม

Synthesis and Characterization of Acrylamide-based Aluminium Flocculants for Wastewater Treatment

การสังเคราะห์และการตรวจหาลักษณะเฉพาะของสารก่อการจับกลุ่มอะลูมิเนียมฐานอะคริลาไมด์ สำหรับการบำบัดน้ำเสีย

สังเคราะห์สารก่อการจับกลุ่มพอลิเมอร์ของอะลูมิเนียมไฮครอกไซค์-พอลิอะคริลาไมค์-โ*ค*-อะคริลิกแอซิค (aluminium hydroxide-poly[acrylamide-co-(acrylic acid)]; AHAMAA) จากปฏิกิริยา พอลิเมอไรเซชันแบบสารละลาย ใช้แอมโมเนียมเพอร์ซัลเฟต (ammonium persulfate) กับ เอ็น เอ็น. เอ็น',เอ็น',-เททระเมทิลเอทิลีน ใดแอมีน (N,N,N'N'-tetramethylethylenediamine) เป็นสารค่เริ่ม ปฏิกิริยา ใช้อะลูมิเนียมไฮครอกไซค์เป็นสารก่อการจับกลุ่ม (coagulant) เมื่อมีอะคริลาไมค์และ อะคริลิกแอซิดเป็นคู่มอนอเมอร์ และสารเชื่อมขวางที่ใช้คือ เอ็น,เอ็น'-เมทิลีนบิสอะคริลาไมด์ (N,N'-หาค่าการดูดซึมน้ำ (water absorbency) สมบัติทางกระแสวิทยา methylenebisacrylamide) (rheological properties) และความเข้มข้นของอะลูมิเนียมไอออนที่เหลือของ AHAMAA ในน้ำที่แช่ AHAMAA และหาความเข้มข้นของอะคริลาไมด์มอนอเมอร์ที่เหลืออยู่ด้วย ค่าการดูดซึมน้ำของพอ ลิอะคริลาไมด์-*โก*-อะคริลิกแอซิคสูงกว่าค่าของ AHAMAA เสมอ จากการทคลองพบว่า ค่าการดูคซึม น้ำสัมพันธ์กับค่ามอคุลัสสะสม (storage modulus) ของพอลิเมอร์ มอคุลัสสะสมของ AHAMAA มี ้ค่ามากกว่าค่าของพอลิอะคริลาไมด์-*โค*-อะคริลิกแอซิด ซึ่งสอดคล้องกับค่าการคูดซึมน้ำของ AHAMAA ที่มีค่าน้อยกว่า ความเข้มข้นของอะลูมิเนียมไอออนที่เหลือของ AHAMAA อยู่ในช่วง 0.09-0.2 ppm ขณะที่ความเข้มข้นของอะคริลาไมค์มอนอเมอร์ที่เหลืออยู่พบว่าอยู่ในช่วง 42.7-67.8 ppm (ร้อยละ 0.07-0.10) พอลิอะคริลาไมด์-โค-อะคริลิกแอซิดและ AHAMAA สามารถลดความบุ่น ของสารแขวนลอยคาโอลินซึ่งให้ผลเป็นที่น่าพอใจ

คำสำคัญ: อะคริลาไมค์; อะคริลิกแอซิค; สารก่อการจับกลุ่มอะลูมิเนียม; การลดความขุ่น

โครงการย่อยที่ 2

Influence of Additives on Acrylamide Superabsorbent Polymer Performance อิทธิพลของสารเติมแต่งต่อสมรรถภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลาไมด์

Graft Copolymerization, Characterization, and Degradation of Cassava Starch-g-Acrylamide/Itaconic Acid Superabsorbents

กราฟต์โคพอลิเมอไรเซชัน การตรวจหาลักษณะเฉพาะ และการเสื่อมของพอลิเมอร์ดูดซึมน้ำมากของ แป้งมันสำปะหลังกราฟต์อะคริลาไมด์/อิทาโคนิกแอซิด

สังเคราะห์พอลิเมอร์คคซึมน้ำมากที่เสื่อมทางชีวภาพ (biodegradable superabsorbent polymers) โดยกราฟต์โคพอลิเมอไรเซชันของอะคริลาไมด์ (acrylamide: AM) และ อิทาโคนิกแอซิด (itaconic acid: IA) บนสายโซ่ของแป้งมันสำปะหลังด้วยระบบสารเริ่มปฏิกิริยารีดอกซ์ (redox initiator system) ของแอมโมเนียมเพอร์ซัลเฟต (ammonium persulfate; APS) และเอ็น,เอ็น,เอ็น, เอ็น',-เททระเมทิลเอทิลีนใดแอมีน (N,N,N'N'- tetramethylethylenediamine; TEMED) เมื่อมีเอ็น, เอ็น'-เมทิถีนบิสอะคริลาไมค์ (N,N'-methylenebisacrylamide; N-MBA) เป็นสารเชื่อมขวาง โซเคียมใบคาร์บอเนต (sodium bicarbonate) เป็นสารก่อฟอง (foaming agent) ใทรบล็อกโคพอถิ เมอร์ (triblock copolymer) ของพอถืออกซีเอทิลีน/พอถืออกซีพรอพิลีน/พอลิออกซีเอทิลีน (polyoxy ethylene/polyoxypropylene/polyoxyethylene) เป็นสารทำให้ฟองเสถียร (foam stabilizer) อัตรา ส่วน ของอะคริลาไมด์ต่ออะคริลิกแอซิค, อัตราส่วนของแป้งมันสำปะหลังต่อมอนอเมอร์ ความเข้มข้นของ สารเชื่อมขวาง และสารเริ่มปฏิกิริยามีผลต่อการดูดซึมน้ำของพอลิเมอร์ดูดซึมน้ำมาก วัดค่าการบวม ของแป้งมันสำปะหลังกราฟต์พอลิอะคริลาไมค์ได้ 59 กรัมต่อกรัม ขณะที่แป้งกราฟต์พอลิอะคริลา ใมด์- โค-อิทาโคนิกแอซิดที่มีปริมาณโมลของอิทาโคนิกแอซิดร้อยละ 0.02- $0.15\,\,$ มีค่าการบวมน้ำอยู่ ในช่วง 70-390 กรัมต่อกรัม กำจัดผลพลอยได้ของปฏิกิริยาโดยสกัดด้วยน้ำ ตรวจหาลักษณะเฉพาะ ของแป้งมันสำปะหลังกราฟต์คอมพอสิตด้วยเทคนิค FTIR และ SEM หาร้อยละของอัตราส่วนการ กราฟต์ (grafting ratio) ใช้เทคนิกการวิเคราะห์น้ำหนักที่เปลี่ยนไปด้วยความร้อน gravimetric analysis; TGA) หลังการสลายด้วยน้ำ หาปริมาณน้ำตาลรีดิวซิงด้วยวิธี DNS โดยใช้ แอลฟาแอมีเลสย่อยสลายทางชีวภาพของแป้งมันสำปะหลังกราฟต์-*โค*-พอลิเมอร์ สารละลายที่ผ่าน การสถายค้วยน้ำให้ผลลบกับสารละลายไอโอคีน และให้ผลบวกกับน้ำยาเบนเคนิกต์แสดงว่ามีหน่วย ของกลูโคสอยู่

คำลำคัญ: แป้งมันสำปะหลัง; อะคริลาไมค์; การเสื่อมทางชีวภาพ; พอลิเมอร์คูคซึมน้ำมาก; การทำให้แตกสลายด้วยเอนไซม์

Synthesis and Swelling Properties of Poly[acrylamide-co-(crotonic acid)] Superabsorbents

การสังเคราะห์และสมบัติการบวมของตัวดูดซึมน้ำมากพอลิอะคริลาไมด์-โค-โครโทนิกแอซิด

สังเคราะห์พอถิเมอร์ดูดซึมน้ำมากของพอถิอะคริถาไมด์-*โค*-โครโทนิกแอซิดได้ โดยปฏิกิริยา-พอลิเมอไรเซชันแบบโฟม (foamed polymerization) เมื่อมีสารละลายของอะคริลาไมด์กับโครโท นิกแอซิดเป็นคู่มอนอเมอร์ เริ่มปฏิกิริยาด้วยคู่ของสารเริ่มปฏิกิริยาแอมโมเนียมเพอร์ซัลเฟต (ammo persulfate; APS) กับ เอ็น,เอ็น,เอ็น',เอ็น',-เททระเมทิลเอทิลีนไดแอมีน tetramethylethylenediamine; TEMED) สารเชื่อมขวาง เอ็น,เอ็น'-เมทิถีนบิสอะคริถาไมด์ (*N,N*'methylenebisacrylamide; N-MBA) โซเคียมใบคาร์บอเนต (sodium bicarbonate) เป็นสารก่อฟอง (foaming agent) สารทำให้ฟองเสถียร (foam stabilizer) ใช้ไทรบล็อกโคพอลิเมอร์ของพอลิออกซี เอทิลีน/พอลิออกซีพรอพิลีน/พอลิออกซีเอทิลีน (triblock copolymer of polyoxyethylene/poly oxypropylene/polyoxyethylene) ตรวจสอบอิทธิพลของปริมาณสัมพัทธ์ (relative content) ของ โครโทนิกแอซิด, สารเชื่อมขวาง และสารเริ่มปฏิกิริยาต่อสมบัติการบวมของพอลิเมอร์ดูคซึมน้ำมาก พบว่าพอลิเมอร์ดูคซึมน้ำมากที่สังเคราะห์ด้วยอัตราส่วนโดยโมลของอะคริลาไมด์ต่อโครโทนิกแอซิด 98 : 2 และใช้เอ็น,เอ็น '-เมทิลีนบิสอะคริลาไมค์ร้อยละ 0.5 โดยน้ำหนักและแอมโมเนียมเพอร์ซัล-เฟต ร้อยละ 1 โดยน้ำหนัก ที่อัตราการกวน 250 รอบต่อนาที อุณหภูมิ 50 องศาเซลเซียส เวลา เกิดปฏิกิริยาพอลิเมอไรเซชัน 30 นาที ให้ค่าการดูดซึมน้ำมากสุด 211±9 เท่าของน้ำหนักแห้งและ กรัมต่อกรัมของน้ำหนักโคพอลิเมอร์แห้งภายในเวลา 10 สามารถคดซึมน้ำถึง 162±4 ตรวจสอบปฏิกิริยาเคมีไฟฟ้าสำหรับอะคริลาไมค์-โครโทนิกแอซิดพอลิเมอไรเซชัน โคยไซคลิกโวล แทมเมตรี (cyclic voltammetry) พบว่า กระแสแอโนค (anodic current) ชี้ว่า อะคริลาไมด์เป็นตัว ให้อิเล็กตรอน (electron donor) ขณะที่โครโทนิกแอซิดเป็นตัวรับอิเล็กตรอนซึ่งให้กระแสแคโทด (cathodic current) การแพ่รของน้ำเข้าสู่พอลิเมอร์ดูดซึมน้ำมากเป็น non-Fickian กรณี 2 และ ไม่ ตามกฎ (case II and anomalous) พอลิเมอร์ดูดซึมน้ำมากอะคริลาไมด์-โครโทนิกแอซิดที่มีความ เข้มข้นของสารเชื่อมขวางต่างๆ มีค่าการบวมน้ำอยู่ในช่วง 79-289 กรัมต่อกรัม ค่าสัมประสิทธิ์ของ การแพ่รอยู่ระหว่าง 6.9x10⁻⁹ และ 5.1x10⁻⁸ ตารางลูกบากศ์เซนติเมตรต่อวินาที สารดูคซึมน้ำมากก คูดซับสีย้อมเบสิก (basic dye) เป็นแบบโมเลกุลชั้นเดียว (monolayer) ตามแลงเมียร์ไอโซเทิร์ม ดังนั้น สารดูดซึมน้ำมากนี้สามารถดูดซับสีย้อมที่มีประจุบวกในน้ำทิ้ง (Langmuir isotherm) อุตสาหกรรมสิ่งทอได้

คำสำคัญ: โคพอลิเมอไรเซชัน; การเชื่อมขวาง; ไซคลิกโวลแทมเมตรี; พอลิเมอร์ดูคซึมน้ำมาก; พอลิอะคริลาไมด์-โค-โครโทนิกแอซิด Synthesis of Acrylamide-Itaconic Acid Superabsrobent Polymers and Superabsorbent Polymer/Mica nanocomposites

การสังเคราะห์พอลิเมอร์ดูดซึมน้ำมากอะคริลาไมด์-อิทาโคนิกแอซิดและพอลิเมอร์ดูดซึมน้ำมาก/ไมกา นาโนคอมพอสิต

สังเคราะห์พอลิเมอร์ดูดซึมน้ำมากของอะคริลาไมด์ -อิทาโคนิกแอซิดและนาโนคอมพอสิต ของพอลิเมอร์ดูคซึมน้ำมากนี้ ได้จากปฏิกิริยาพอลิเมอไรเซชันในสารละลายที่มีอะคริลาไมด์กับอิทา โคนิกแอซิคเป็นคู่มอนอเมอร์และไมกาใช้เป็นสารเติมแต่ง (additive) ปฏิกิริยาเริ่มด้วยคู่ของสารเริ่ม ปฏิกิริยารีดอกซ์ (redox initiator couple) ของแอมโมเนียมเพอร์ซัลเฟต (ammonium persulfate; APS) และเอ็น,เอ็น,เอ็น',เอ็น',-เททระเมทิลเอทิลีนไดแอมืน (*N,N,N'N'*-tetramethylethylenediamine; TEMED) เมื่อมีเอ็น,เอ็น'-เมทิสินบิสอะคริลาไมด์ (*N,N'*-methylenebisacrylamide, N-MBA) เป็นสารเชื่อมขวาง อิทธิพลของความเข้มข้นของอิทาโคนิกแอซิด, ปริมาณของไมกา และ ความเข้มข้นของสารเชื่อมขวางต่อค่าการดูคซึมน้ำและสมบัติทางกายภาพของพอลิเมอร์ดูคซึมน้ำมาก และนาโนคอมพอสิตของพอลิเมอร์นี้ ตรวจหาค่าการดูคซึมน้ำกลั่น และในปัสสาวะเทียม (artificial urine) ของโคพอลิเมอร์ที่สังเคราะห์ได้ ทดสอบความแข็งแรงของเจล (gel strength) ในโคพอลิ เมอร์คูคซึมน้ำมากและนาโนคอมพอสิตของพอลิเมอร์เหล่านี้ด้วยแรงกดทับ 0.28 หรือ 0.70 psi ใน น้ำปราศจากไอออน (deionized water) ภาพถ่าย TEM แสดงให้เห็นสายโซ่พอลิเมอร์แทรก เข้าสู่ชั้น ของซิลิเกต (intercalate) ในใมกาและสร้างจุดต่อของโครงข่าย (network junctions) ในเมทริกซ์พอ ลิเมอร์ ซึ่งยืนยันด้วยการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction) ค่าการดูดซึมน้ำกลั่นและการดูด ซึมน้ำในปัสสาวะเทียมของคอมพอสิตที่มีอัตราส่วนของอะคริลาไมด์ต่ออิทาโคนิกแอซิคเป็น 95:5 และ ใมการ้อยละ 5 เป็น 748±5 กรัมต่อกรัม และ 76±2 กรัมต่อกรัม ตามลำดับ ขณะที่โคพอลิเมอร์ ให้ค่าการดูดน้ำเพียง 640 \pm 7 กรัมต่อกรัม และ 72 \pm 2 กรัมต่อกรัมในน้ำและปัสสาวะเทียม ตามลำดับ ผลการทดลองนี้แนะนำว่าการดูดซึมน้ำภายใต้แรงกดทับและพฤติกรรมวิสโคอิลาสติก (viscoelastic behavior) ขณะที่เจลของนาโนคอมพอสิตบวมแสดงสภาพแข็งเกร็งเชิงกล (mechanical rigidity) การเติมไมกาปริมาณร้อยละ 5 โดยน้ำหนักสามารถเพิ่มความแข็งแรงของเจลได้อย่างมีประสิทธิภาพ และเพิ่มเสถียรภาพทางความร้อน (thermal stability) ของนาโนคอมพอสิตพอลิเมอร์ดูดซึมน้ำมากที่ สังเคราะห์ได้โดยไม่ลดค่าการคุดซึมน้ำ

คำสำคัญ: พอลิเมอร์คูคซึมน้ำมาก; ใมกา; พอลิเมอร์คอมพอสิตคูคซึมน้ำมาก

Syntheses of Acrylamide-co-Itaconic Acid/Silica Superabsorbent Polymer Composites

การสังเคราะห์อะคริลาไมด์-โก-อิทาโคนิกแอซิด/ซิลิกาพอลิเมอร์คอมพอสิตดูดซึมน้ำมาก

สังเคราะห์ชุดพอลิเมอร์ดูดซึมน้ำมาก โดยปฏิกิริยาพอลิเมอไรเซชันในสารละลาย ใช้เวลาสั้น ในการเกิดปฏิกิริยาที่มีอะคริลาไมด์และอิทาโคนิกแอซิดเป็นมอนอเมอร์ ใช้ระบบเริ่มปฏิกิริยารีดอกซ์ (redox initiation system) ของแอมโมเนียมเพอร์ซัลเฟต (ammonium persulfate; APS) ปริมาณ ร้อยละ 1 โดยน้ำหนัก และเอ็น,เอ็น,เอ็น',เอ็น',-เททระเมทิลเอทิลีนไดแอมีน (*N,N,N'N'*- tetramethylethylenediamine; TEMED) ปริมาณ 0.20 ลูกบากศ์เซนติเมตร เมื่อมีเอ็น,เอ็น'-เมทิลีนบิสอะคริ ิลาไมด์ (*N,N'*-methylenebisacrylamide; N-MBA) ปริมาณร้อยละ 0.5 โดยน้ำหนักเป็นสารเชื่อม ขวาง ด้วยอัตราการกวน 250 รอบต่อนาที ที่อุณหภูมิ 45 องศาเซลเซียส เป็นเวลา 30 นาที ซิลิกาใช้ เป็นตัวเติมอนินทรีย์ (inorganic filler) ในกระบวนการสังเคราะห์พอลิเมอร์ เพื่อเพิ่มความแข็งแรงแก่ ้โคพอลิเมอร์ เอาน้ำออกจากโคพอลิเมอร์ที่สังเคราะห์และตกตะกอนด้วยเมทานอลปริมาณมากเกินพอ ทำให้แห้งที่อุณหภูมิ 50 องศาเซลเซียสในตู้อบสุญญากาศเป็นเวลา 24 ชั่วโมง ศึกษาผลของ อัตราส่วนของอะคริลาไมค์ต่ออิทาโคนิกแอซิค, ประเภทของซิลิกาและความเข้มข้นของซิลิกาต่อค่า การดูคซึมน้ำและพฤติกรรมจลน์ศาสตร์การดูคซึมน้ำของพอลิเมอร์ ยังตรวจสอบความสามารถในการ คูดซึมน้ำของพอลิเมอร์ที่สังเคราะห์ได้และคอมพอสิตพอลิเมอร์ที่แรงกดต่างๆ (0.28 และ 0.70 psi) ความสามารถในการดูดซึมน้ำสูงมากของพอลิเมอร์ที่สังเคราะห์ได้คือ 233±8 เท่าของน้ำหนักแห้ง จากอัตราส่วนของอะคริลาไมด์ต่ออิทาโคนิกแอซิดเป็น 97 : 3 และดูดซึมน้ำได้มากถึง 149±2 เท่า ของน้ำหนักแห้งภายในเวลา 15 นาที ความสามารถในการคูดซึมน้ำมากที่สุดของโคพอลิเมอร์ภายใต้ แรงกดเป็น 13.2 และ 12.1 เท่าของน้ำหนักแห้งเมื่อมีซิลิกาอยู่ร้อยละ 2.0 โดยน้ำหนักที่มีแรงกดทับ 0.28 และ 0.70 psi ตามลำดับ ศึกษาสัณฐานวิทยาพื้นผิวของโคพอลิเมอร์โดยเทคนิค SEM เห็น โครงสร้างที่มีรูในโคพอลิเมอร์ที่สังเคราะห์ได้ จากเทอร์โมแกรม (thermograms) ของโคพอลิเมอร์ และทคสอบเผาพอลิเมอร์คอมพอสิต พบว่าซิลิกาที่อยู่ในพอลิเมอร์คอมพอสิตคูคซึมน้ำมากทำให้พอ ลิเมอร์มีอุณหภูมิสภาพแก้ว (glass transition temperature) สูงกว่า พอลิเมอร์คอมพอสิตดูคซึมน้ำ มากที่ได้จากการผสมโคพอลิเมอร์ดูดซึมน้ำมากกับผงซิลิกาด้วยการเขย่า เป็นวิธีที่มีราคาถูกกว่าและ ให้ค่าการดูคซึมน้ำใกล้เคียงกับค่าที่ได้จากวิธีโคพอลิเมอไรเซชัน

คำสำคัญ: พอลิเมอร์คอมพอสิตคูคซึมน้ำมาก; ซิลิกา; อะคริลาไมค์; อิทาโคนิกแอซิค

โครงการย่อยที่ 3

A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of Silane in Latex

วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจากกระบวนการโซล-เจล ของไซเลนในน้ำยาง

Effects of Redox Initiator on Graft Copolymerization of Methyl Methacrylate onto Natural Rubber

ผลของสารเริ่มปฏิกิริยารีดอกซ์ต่อโคพอลิเมอไรเซชันของเมทิลเมทาคริเลตบนยางธรรมชาติ

ผลของสารเริ่มปฏิกิริยารีดอกซ์คือ คิวมีนไฮโครเพอร์ออกไซด์/เททระเอทิลีนเพนทามีน (cumene hydroperoxide; CHPO)/tetraethylene pentamine; TEPA), เทอร์เชียรี-บิวทิลไฮโคร เพอร์ออกไซด์/TEPA (tert-butyl hydroperoxide; TBHPO/TEPA) และโพแทสเซียมเพอร์ซัลเฟต/ โซเดียมไทโอซัลเฟต (potassium persulfate; K₂S₂O₈/sodium thiosulfate; Na₂S₂O₃) ต่อเมทิลเม ทาคริเลตกราฟต์บนยางธรรมชาติโดยปฏิกิริยาพอลิเมอไรเซชันแบบอิมัลชัน (emulsion polymerize tion) ศึกษาภาวะปฏิกิริยาที่เหมาะสมสำหรับแต่ละสารเริ่มปฏิกิริยารีดอกซ์ของการกราฟต์บนยาง ธรรมชาติ พอลิเมทิลเมทาคริเลตกราฟต์อยู่บนพื้นผิวของอนุภาคยาง CHPO ละลายคีมากในเฟส น้ำมัน และ TBHPO ละลายปานกลางในเฟสน้ำมัน ส่วน K₂S₂O₈/Na₂S₂O₃ ละลายน้ำได้ สารริเริ่ม แต่ละชนิดสามารถทำปฏิกิริยากับ TEPA ในเฟสน้ำ จากการทดลองพบว่า CHPO ให้ประสิทธิภาพ การกราฟต์ที่สูงกว่า เพื่อเพิ่มประสิทธิภาพการกราฟต์ให้มากขึ้นและลดปริมาณของโฮโมพอลิเมอร์ ของพอถิเมทิลเมทาคริเลต (poly(methyl methacrylate); PMMA) ให้ต่ำลงจึงเติมไวนิลนีโอ-เคคาโน เอต (vinyl *neo*-decanoate; VneoD) ร้อยละของการกราฟต์ของ MMA บนน้ำยางธรรมชาติที่เริ่ม ปฏิกิริยาด้วย CHPO/TEPA, TBHPO/TEPA และ $K_2S_2O_8/Na_2S_2O_3$ คือร้อยละ 84.4, 74.5 และ 61.1 ตามลำดับ ซึ่งสอดคล้องกับร้อยละของ PMMA เมื่อใช้ CHPO, TBHPO และ K₂S₂O₈/ $Na_2S_2O_3$ ในเฟสสารละลายน้ำซึ่งได้ร้อยละของ PMMA เป็น 7.2, 12.0 และ 17.9 ตามลำดับ VneoD ผลิตอนุมูลอิสระแอลลิลิก (allylic radicals) บนสายโซ่ของพอลิใอโซพรีน (polyisoprene chain) ซึ่งชอบเกิดปฏิกิริยาการกราฟต์กับไวนิลมอนอเมอร์อื่น ดังนั้น CHPO/TEPA เป็นระบบรื คอกซ์ที่ดีกว่าสำหรับการกราฟต์เมทิลเมทาคริเลตมอนอเมอร์บนน้ำยางธรรมชาติ

คำสำคัญ: ยาง; กราฟต์โคพอลิเมอร์; พอลิเมอ ไรเซชันแบบอิมัลชัน

Silica-Reinforced Natural Rubber Prepared by the Sol-Gel Process of Ethoxysilanes in Rubber Latex

ซิลิกาเสริมแรงยางธรรมชาติเตรียมโดยกระบวนการโซล-เจลของเอทอกซีไซเลนใหน้ำ

ยาง

เตรียมคอมพอสิตของยางธรรมชาติเสริมแรงด้วยซิลิกาได้โดยใช้เททระเอทอกซีไซเลน (tetraethoxysilane; TEOS) เป็นสารตั้งต้นเพื่อกำเนิดอนุภาคซิลิกาภายในยางธรรมชาติ ณ จุดที่เกิด ปฏิกิริยา (in situ) ซิลิกาที่เกิดโดยวิธีนี้ได้ จากกระบวนการโซล-เจลของ TEOS ซึ่งผสมเข้ากับน้ำยางธรรมชาติ (เกรคพาณิชย์) โดยตรงที่มีปริมาณเนื้อยางแห้งร้อยละ 60 และมีแอมโมเนีย (ammonia) ร้อยละ 0.7 การเปลี่ยน TEOS เป็นซิลิกาเกิดขึ้นภายในยางธรรมชาติอยู่ในช่วงร้อยละ 90-97 ตรวจจากภาพถ่าย SEM พบอนุภาคซิลิกากระจายทั่วไปในยางธรรมชาติโดยปราศจากการรวมกลุ่ม (aggregation) ซึ่งมี ขนาดประมาณ 500 นาโนเมตรและต่ำกว่า ศึกษาวิธีการออกแบบการทดลองคือ การออกแบบเชิงตัว ประกอบ 2 ระดับ (two-level factorial design) ใช้หาอิทธิพลของปริมาณของ TEOS, แอมโมเนีย และ เวลาเกิดเจล (gelation time) ต่อ เทนไซล์มอดุลัส (tensile modulus) ความแข็งแรงต่อแรงดึง (tensile strength) และ ความแข็งแรงต่อแรงฉีก (tear strength) ของ วัลคาในเซต (vulcanizate) สมบัติเชิงกล ดังกล่าวได้รับอิทธิพลอย่างมากจากปริมาณของ TEOS ที่เติมลงไปในน้ำยาง ปริมาณแอมโมเนียร้อย ละ 0.7 โดยน้ำหนัก ที่มีอยู่ในน้ำยางเลเท็กซ์ พบว่ามีเพียงพอสำหรับปฏิกิริยาการเปลี่ยน TEOS เป็นซิ ลิกา เติมบิส-(3-ใทรเอทอกซีใซลิลพรอพิล) เททระซัลไฟด์ ((bis-(3-triethoxysilylpropyl) tetrasulfide: TESPT) ซึ่งเป็นสารคู่ควบปกติที่ใช้ในอุสาหกรรมยางลงไปร่วมกับ TEOS เพื่อเตรียมยางคอมพอสิตที่ มีซิลิกาอยู่ภายใน การมี TESPT ทำให้สมบัติเชิงกลและอัตราการบุ่มด้วยซัลเฟอร์ (sulfur cure) เพิ่มขึ้น

คำสำคัญ: ยาง; ซิลิกา; คอมพอสิต

Sol-Gel Process of Alkyltriethoxysilane in Latex for Alkylated Silica Formation in Natural Rubber

กระบวนการโซล-เจลของแอลคิลไทรเอทอกซีไซเลนในน้ำยางธรรมชาติสำหรับการเกิดแอลคิเลเทตซิลิกา ในยางธรรมชาติ

กระบวนการ โซล-เจล (Sol-gel process) ของแอลคิลไทรเอทอกซีไซเลน (Alkyltriethoxy-silane) ซึ่งกระจายอยู่ในน้ำยางธรรมชาติใช้เพื่อกำเนิดแอลคิเลเทตซิลิกา (Alkylated Silica) ในเมท ริกซ์ของยาง เลือกใช้แอลคิลไทรเอทอกซีไซเลนสามประเภทคือ ไวนิลไทรเอทอกซีไซเลน (vinyltri ethoxysilane; VTOS) เอทิลไทรเอทอกซีไซเลน (ethyltriethoxysilane; ETOS) *ไอ*-บิวทิลไทรเอทอกซีไซเลน (*i*-butyltriethoxysilane; BTOS) ซึ่งมีหมู่แทนที่แตกต่างกันหนึ่งหมู่ การใช้เททระเอ

ทอกซีไซเลน (tetraethoxysilane; TEOS) ซึ่งเป็นสารตั้งต้นสำหรับเกิดซิลิการ่วมกับไซเลนทั้งหมด นั้น มีการศึกษาการเปลี่ยนของไซเลนเหล่านี้เป็นซิลิกาและความสามารถในการเสริมแรงในยาง ธรรมชาติที่บุ่มด้วยซัลเฟอร์ ซิลิกาที่เกิด ณ จุดที่เกิดปฏิกิริยาในยางธรรมชาติ (in situ) มีความ ละเอียดและกระจายตัวดีในเมทริกซ์ยางโดยวิเคราะห์ด้วยเทคนิค SEM และ TEM ยืนยันความมีอยู่ ของหมู่แทนที่แอลคิลบนอนุภาคซิลิกาที่ฝังอยู่ภายในเมทริกซ์ยางด้วยเทคนิค Solid-state ²⁹Si-NMR สมบัติความแข็งแรงและทนแรงฉีก (tensile and tear properties) ยางวัลคาในซ์ที่ผสมซิลิกาอยู่ใน มีค่าสูงกว่ายางวัลกาในซ์ที่เตรียมโดยวิธีผสมแบบธรรมดา ยิ่งไปกว่านั้น การใช้ VTOS ร่วมกับ TEOS ที่ร้อยละโดยโมลของ VTOS 5, 10 และ 20 มีผลทำให้สมบัติเชิงกลเพิ่มขึ้นมากกว่ายางวัลคา ในซ์ที่ผสมกับ TEOS เพียงอย่างเดียว เป็นไปได้ว่าหมู่ไวนิลจาก VTOS มีส่วนในกระบวนการบุ่ม ยางด้วยซัลเฟอร์ ได้ตรวจสอบลักษณะเฉพาะการบุ่ม (cure characteristic) และพฤติกรรมการบวม ของยางคอมพอสิตในทอลูอีนด้วย

คำสำคัญ: นาโนคอมพอสิต; การเสริมแรง; ยาง; ซิลิกา

Effects of methyl methacrylate grafting and *in situ* silica particle formation on the morphology and mechanical properties of natural rubber composite films

ผลของการกราฟต์เมทิลเมทาคริเลตและการเกิดซิลิกาภายในต่อสัณฐานวิทยาและสมบัติเชิงกลของ แผ่นฟิลม์ยางธรรมชาติคอมพอสิต

ได้ศึกษาการเกิดอนุภาคซิลิกา ภายในยางธรรมชาติ (NR) กราฟต์เมทิลเมทาคริเลต (Methyl Methacrylate; MMA) โดยใช้ระบบรีคอกซ์ของคิวมีนไฮโดรเพอร์ออกไซด์/เททระเอทิลีนเพนทามีน (cumene hydroperoxide; CHPO)/tetraethylene pentamine; TEPA) ซึ่งเป็นคู่เริ่มปฏิกิริยา หา ประสิทธิภาพการกราฟต์ของยางธรรมชาติกราฟต์ โดยเทคนิกการสกัดด้วยตัวทำละลาย หา ลักษณะเฉพาะของยางธรรมชาติกราฟต์โดยเทคนิก FT-IR และ TEM ซึ่งยืนยันว่าสายโซ่ MMA กราฟต์บนอนุภาคยางธรรมชาติ มีลักษณะเป็นอนุภาคที่มีแกน/เปลือก (core/shell particle) โดยยาง ธรรมชาติเป็นใจกลางของอนุภาคและ PMMA เป็นชั้นเปลือกห้อมล้อมแกนกลางของยางธรรมชาติ น้ำยางธรรมชาติผสมกับ เททระเอทอกซีไซเลน (tetraethoxysilane; TEOS) ซึ่งเป็นสารตั้งต้นของซิลิ กา สารไซเลนเปลี่ยนไปเป็นอนุภาคซิลิกาโดยกระบวนการโซล-เจล (sol-gel process) ซึ่งเกิดขึ้น ระหว่างการแห้งของฟิล์มที่อุณหภูมิสูง จากการทดลองพบว่า อนุภาคซิลิกากระจายตัวได้ดีในเมทริกซ์ ยางที่ไม่ได้กราฟต์ หรืออีกนัยหนึ่ง การรวมกลุ่มของซิลิกาที่ใหญ่ขึ้นพบในเมทริกซ์ยางที่กราฟต์ อิทธิพลของอัตราส่วนโดยน้ำหนักของมอนอเมอร์ MMA บนสัณฐานวิทยาของพื้นผิวคอมพอสิต ตรวจสอบโดย SEM และ TEM พื้นผิวของยางธรรมชาติกราฟต์มีความหยาบ และขรุจระ ซึ่งยืนยัน

ด้วย AFM ซึ่งพบว่า root-mean-square roughness เพิ่มขึ้นด้วยการเพิ่มอัตราส่วนโดยน้ำหนักของ มอนอเมอร์ MMA ในยางธรรมชาติ อนุภาคซิลิกาที่เกิดในเมทริกซ์ยางธรรมชาติเพิ่มค่ามอดุลัส (modulus) และ ความแข็งแรงต่อแรงฉีก (tear strength) ของฟิล์มยางธรรมชาติคอมพอสิตเพียง เล็กน้อย

คำสำคัญ: ยางธรรมชาติ; เมทิลเมทาคริเลต; ซิลิกาที่เกิคภายใน

โครงการย่อยที่ 4

Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน

Dynamic Vulcanization of Natural Rubber/High-Density Polyethylene Blends: Effect of Compatibilization, Blend Ratio and Curing System พลวัตวัลคาในเซชันของพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีนชนิดความหนาแน่นสูง: ผลของการเข้ากันได้, อัตราส่วนการเบลนด์และระบบการบ่ม

เทอร์โมพลาสติกวัลคาในเซต (Thermoplastic vulcanizates; TPVs) จากยางธรรมชาติกับ พอลิเอทิลีนชนิดความหนาแน่นสูง (High-Density Polyethylene; HDPE) โดยใส่สารเข้ากันได้ (compatibilizer) ชนิดต่างๆ จากการทดลองพบว่า TPVs ที่มีสารเข้ากันได้ของเรซินฟีนอล เช่น SP-1045 และ HRJ-10518 ให้ผลด้านความแข็งแรงต่อแรงดึง (tensile strength), การยืด ณ จุดขาด (elongation at break) และแนวโน้มการคืนตัวมากกว่า TPVs ที่ไม่มีสารทำให้สารความยืด ณ เข้า กันได้ คาดว่าเป็นผลของโครงสร้างวงโครแมน (Chroman ring structure) ซึ่งเกิดจากปฏิกิริยาของ ยางธรรมชาติกับ โมเลกุลฟืนอล TPVs กับสารเข้ากันได้ของเรซินฟืนอลดัดแปร (PhSP-PE และ PhHRJ-PE) ความแข็งแรงต่อแรงคึงและการยึค ณ จุคขาดที่สูงกว่า TPVs ที่ไม่มีสารเข้ากันได้ของเร ซินฟินอลดัดแปร ปฏิกิริยาเกิดผ่านพันธะไม่อิ่มตัวปริมาณเล็กน้อยที่มีอยู่ในโมเลกุล HDPE กับหมู่ เมทิลออล (methylol group) ในโมเลกุลฟืนอล หมู่เมทิลออลที่เหลืออยู่ในโมเลกุลฟืนอลสามารถ ้ เกิดปฏิกิริยากับ โมเลกูลยางธรรมชาติ และทำให้เกิดการเชื่อมขวางระหว่างยางธรรมชาติกับ โมเลกูลฟี นอล และพบว่า TPV กับ PhHRJ-PE มีค่าความแข็งแรงต่อแรงดึง และการยืด ณ จุดขาดสูงที่สุด การ เพิ่มปริมาณของยางธรรมชาติ เพิ่มการยืด ณ จุดขาด แต่ลดการแข็งตัวอย่างถาวร (permanent set), ความแข็งแรงต่อแรงคึงและความแข็ง (hardness) ยังใช้ระบบวัลคาในเซชันเตรียม TPV ระบบการ บ่มผสมให้ก่ากวามเค้นเฉือน (shear stress) และกวามแข็งแรงต่อแรงดึงสูงที่สุด ขณะที่ระบบการ บุ่มค้วยซัลเฟอร์ให้ค่าต่ำที่สุด และการบุ่มค้วยเพอร์ออกไซค์ให้ค่าปานกลาง

คำสำคัญ: ยางธรรมชาติ (NR); เทอร์โมพลาสติกวัลคา ในเซต (TPV); พอลิเอทิลีนชนิคความ หนาแน่นสูง; สารเข้ากัน ได้

Thermoplastic Elastomer Based on High-Density Polyethylene/Natural Rubber Blends: Rheological, Thermal, and Morphological Properties

เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีนชนิดควาหนาแน่น สูง: สมบัติกระแสวิทยา, สมบัติทางความร้อน และสัณฐานวิทยา

เตรียมเทอร์โมพลาสติกอิลาสโตเมอร์ (Thermoplastic Elastomer; TPE) ของแผ่นยางแห้ง ตากด้วยอากาศ (air-dried sheet) หรือยางธรรมชาติ (natural rubber; NR) และพอลิเอทิลีนชนิด ความหนาแน่นสูง (high-density polyethylene; HDPE) โดยเทคนิคการผสมแบบง่าย ผสมยาง ธรรมชาติและพอลิเอทิสินชนิดความหนาแน่นสูง กับสารเข้ากันได้ของเรซินฟืนอลแต่ละชนิด ได้แก่ SP-1045 และ HRJ-10518 หรือน้ำยางธรรมชาติ (liquid natural rubber; LNR) ที่อุณหภูมิ 180 องศาเซลเซียส ในเครื่องผสมแบบอินเทอร์นัล (Internal mixer) ทอร์กการผสม (mixing torque) ความเค้นเฉือน (shear stress) และความหนืดเฉือน (shear viscosity) ของพอลิเมอร์ผสมเพิ่มขึ้น ด้วยการเพิ่มปริมาณยางธรรมชาติ ได้ความเบี่ยงเบนจากการผสมมีค่าเป็นบวก (positive deviation blend หรือ PDB) จากพอถิเมอร์ผสมที่มีเรซินไฮครอกซิลเมทิลฟีนอลของ HRJ-10518 หรือ เรซิน ไคเมทิลฟีนอลใน SP-1045 เราไม่สามารถวัดค่า PDB ของพอลิเมอร์ผสมที่ไม่ใส่สารเข้ากันได้ หรือ กับ LNR พอถิเมอร์ผสมที่ได้โดยใช้ HRJ-10518 หรือ SP-1045 เกิดเข้ากันได้ หรือเข้ากันได้ บางส่วน ขณะที่พอลิเมอร์ผสมที่มี LNR ไม่สามารถเข้ากันได้ ในพอลิเมอร์ผสมที่มีสารเข้ากันได้นั้น ยางธรรมชาติกระจายเข้าในเมทริกซ์ของพอถิเอทิลีนชนิคความหนาแน่นสงของพอถิเมอร์ผสม NR/ HDPE ที่อัตราส่วน 20/80, 40/60 และ 50/50 พอลิเอทิลีนชนิคความหนาแน่นสงกระจายตัวใน เมทริกซ์ยางธรรมชาติได้ เมื่ออัตราส่วน NR/HDPE เป็น 80/20 และมีวัฏภาคต่อเนื่องร่วมของพอลิ เมอร์ทั้งสอง เมื่ออัตราส่วน NR/HDPE เป็น 60/40 สามารถขึ้นรูปพอลิเมอร์ผสมนี้ได้ด้วยเครื่องจักร ธรรมดาของพลาสติกแบบฉีด ซึ่งให้ค่าความแข็งแรงต่อแรงดึง (tensile strength) และการยืด ณ จด ขาด (elongation at break) สูงสุด การใส่น้ำมันพาราฟินให้แนวโน้มของการลดลงของแรงดึง แต่ เพิ่มแนวโน้มของการยืด ณ จุดขาด เทอร์โมพลาสติกอิลาสโตเมอร์นี้แสดงธรรมชาติของสารยืดหยุ่นที่ มีจุดตึงตัวต่ำ

คำสำคัญ: เทอร์โมพลาสติกอิลาสโตเมอร์; สมบัติกระแสวิทยา; สมบัติทางความร้อน; ยาง ธรรมชาติ; พอลิเอทิลีนความหนาแน่นสง Thermoplastic Elastomer Based on Epoxidized Natural Rubber and High-Density Polyethylene Blends: Effect of Blend Compatibilizers on Mechanical and Morphological Properties

เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติอิพอกซิไดซ์กับพอลิเอทิลีนความ หนาแน่นสูง: ผลของสารเข้ากันได้ต่อสมบัติเชิงกลและสัณฐานวิทยา

เตรียมยางธรรมชาติอิพอกซิ ไดซ์ที่มีหมู่อิพอกไซด์ร้อยละ 20 โดยโมล ด้วยปฏิกิริยาอิพอกซิ ใดเซชันด้วยสารเพอร์แอซิด นำยางธรรมชาติอิพอกซิ ใดซ์มาผสมกับพอลิเอทิลีนชนิดความหนาแน่น สูงด้วยอัตราส่วนของพอลิเมอร์ผสมต่าง ๆ เตรียมสารเข้ากันได้ 3 ประเภท สำหรับพอลิเมอร์ผสมนี้ คือ กราฟต์โดพอลิเมอร์ของพอลิเอทิลีนชนิดความหนาแน่นสูงกับมาเลอิกแอนไฮ ใดรด์และพอลิเอ ทิลีนชนิดความหนาแน่นสูงดัดแปรด้วยฟีนอล 2 ประเภท คือ PhSP-PE และ PhHRJ-PE พบว่า พอลิเมอร์ผสมสารเข้ากันได้ให้ความแข็งแรงต่อแรงดึง ความแข็ง และสมบัติการตึงตัวมากกว่าพอลิเมอร์ผสมที่ ไม่มีสารเข้ากันได้ ซึ่งเกิดจากปฏิสัมพันธ์ระหว่างขางธรรมชาติอิพอกซิ ใดซ์และพอลิเอทิลีนชนิดความหนาแน่นสูง ด้วยส่วนที่มีขั้วในสารเข้ากันได้กับหมู่ออกซิเลนของขางธรรมชาติอิพอกซิ ใดซ์ พอลิเมอร์ผสมที่มีสารเข้ากันได้แสดงการแยกวัฏภาคของพอลิเมอร์น้อยกว่าพอลิเมอร์ผสมที่ ไม่ มีสารเข้ากันได้ ระหว่างสารเข้ากันได้ทั้ง 3 ประเภท กราฟต์โคพอลิเมอร์ของพอลิเอทิลีนชนิดความหนาแน่นสูงและมาเลอิกแอนไฮไดรด์ ให้พอลิเมอร์ผสมที่มีสมบัติด้านความแข็งแรงและความแข็งสูงสุด แต่สมบัติด้านดึงตัวด่ำสุด

คำสำคัญ: ยางธรรมชาติอิพอกซิ ใคซ์; เทอร์ โมพลาสติกอิลาส โตเมอร์; พอลิเอทิลีนชนิคความ หนาแน่นสูง; สารเข้ากัน; เรซินฟีนอล; มาเลอิกแอน ใฮ ใครค์

Influences of Blend Proportions and Curing Systems on Dynamic, Mechanical, and Morphological Properties of Dynamically Cured ENR/HDPE Blends

อิทธิพลของสัดส่วนพอลิเมอร์ผสมและระบบการปมต่อสมบัติพลวัต, สมบัติเชิงกลและสัณฐานวิทยา ของพอลิเมอร์ ENR/HDPE ที่ปมเชิงพลวัต

เตรียมเทอร์ โมพลาสติกอิลาส โตเมอร์ (Thermoplastic elastomer) จากพอลิเมอร์ผสม ENR/HDPE ที่บ่มเชิงพลวัต อิทธิพลของน้ำมัน สัดส่วนพอลิเมอร์ผสมและระบบการบ่มมีการ ตรวจสอบ จากการทดลองพบว่า เทอร์ โมพลาสติกอิลาส โตเมอร์ที่เพิ่มน้ำมัน (oil-extended TPVs) แสดงสมบัติการยืดหยุ่นดีกว่าและฉีดง่าย การเพิ่มสัดส่วนของ ENR ทำให้การตอบสนองความ ยืดหยุ่น (elastic response) เพิ่มและสมบัติการยืดหยุ่นในด้าน การยืด ณ จุดขาด (elongation at break), ความตึงตัวจากแรงดึง (tension set) และ $\tan\delta$ เพิ่มขึ้น ยังพบว่า TPV ที่เกิดจากระบบการ บ่มด้วยฟืนอล แสดงสมบัติเชิงกลที่ดีกว่าและมีอาณาเขตเล็กกว่าของยางวัลกา ในซ์ (smallest Vulcan

ized rubber domains) อย่างไรก็ตาม TPV กับระบบการบ่มสารร่วมของเพอร์ออกไซด์ธรรมดาให้ สมบัติความแข็งแรงสูงกว่า แต่สมบัติการยืดหยุ่นต่ำกว่า

คำสำคัญ: ยางธรรมชาติอิพอกซิไดซ์; เทอร์โมพลาสติกวัลคาในเซต; พอลิเอทิลีนชนิคความ หนาแน่นสูง; เพอร์ออกไซค์; เรซินฟีนอล; ซัลเฟอร์

Influences of Blend Compatibilizers on Dynamic, Mechanical, and Morphological Properties of Dynamically Cured Maleated Natural Rubber and High-Density Polyethylene Blends

อิทธิพลของสารประกอบที่ทำให้เข้ากันได้ต่อสมบัติพลวัต สมบัติเชิงกล และสัณฐานวิทยาของพอลิ เมอร์ผสมยางธรรมชาติมาเลเอตกับพอลิเอทิลีนชนิดความหนาแน่นสูงที่บ่มเชิงพลวัต

ตรวจสอบอิทธิพลของประเภทและปริมาณของเทอร์โมพลาสติกวัลคาในเซต ที่มีสารเข้ากัน ได้ ต่อสมบัติของยางธรรม ชาติมาเลเอต/พอลิเอทิลีนชนิดหนาแน่นสูง (MNR/HDPE TPVs) พบว่า TPV กับตัวทำให้เข้ากันได้ 3 ประเภทแสดงสมบัติเชิงกลและพลวัตดีกว่า TPV ที่ปราสจากสารเข้ากัน ได้ ยิ่งไปกว่านั้น สารเข้ากันได้พอลิเอทิลีนฟินอลดัดแปร (PhSP-PE และ PhHRJ-PE) แสดงผลการ เข้ากันได้ดีกว่า HDPE-g-MA เมื่อเปรียบเทียบระหว่างสารเข้ากันได้ 3 ประเภท TPV กับ PhHRJ-PE แสดงสมบัติเชิงกลและพลวัตดีที่สุด และมีการกระจายโดเมนยาวัสคาในน้อยที่สุดในเมทริกซ์ HDPE สึกษาปริมาณ PhHRJ-PE 5 ค่า พบว่า PhHRJ-PE ปริมาณร้อยละ 5 โดยน้ำหนักของ HDPE แสดงสมบัติทุกอย่างดีที่สุด TPVs ที่มีปริมาณ PhHRJ-PE สูงกว่าหรือต่ำกว่าร้อยละ 5 โดยน้ำหนักแสดงสมบัติพลวัต สมบัติเชิงกล และสัณฐานวิทยาที่ต่ำกว่า

คำสำคัญ: ยางธรรมชาติมาเลเอต; เทอร์โมพลาสติกวัลคาในเซต; พอลิเอทิลีนชนิคความหนาแน่นสูง; สารทำให้เข้ากัน; พอลิเอทิลีน เรซินฟีนอลคัคแปร; กราฟต์โคพอลิเมอร์; มาเลอิกแอนไฮไครค์

โครงการย่อยที่ 5

Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative

ไบโอฟาวลิงของพื้นผิวไคโทซานที่มีประจุและฟิล์มประกอบแบบบางของไคโทซานและ อนุพันธ์ที่มีประจุ

Surface-Charged Chitosan: Preparation and Protein Adsorption พื้นผิวใกโทชานที่มีประจุบวก: การเตรียมและการดูดซับโปรตีน

เตรียมพื้นผิวใคโทซานให้มีประจุบวกและลบผ่านการเติมหมู่เมทิล (methylation) โดยใช้เม-ทิลไอโอไดด์ (methyl iodide; Mel) และ reductive alkylation ด้วย 5-ฟอร์มิล-2-ฟูแรนซัลโฟนิกแอ ซิด (5-formyl-2-furan sulfonic acid; FFSA) วัด ATR-FTIR, XPS และความต่างสักย์ซีตา ยืนยัน หมู่ฟังก์ชันที่ต้องการบนพื้นผิวฟิล์มไคโทซานดัดแปร ฟิล์มไคโทซานที่มีประจุลบของหมู่เอ็น-ซัลโฟ เฟอร์ฟูริล (N-sulfofurfuryl) บนพื้นผิว เลือกดูดซับโปรตีนได้ทั้งโปรตีนที่มีประจุลบ (อัลบูมินและ ไฟบริโนเจน) และโปรตีนที่มีประจุบวก (ไลโซไซม์) สามารถอธิบายพฤติกรรมการดูดซับในเทอม ของแรงดึงดูดและแรงผลักด้วยไฟฟ้าสถิตที่มีประจุตรงกันข้าม การดูดซับของฟิล์มไคโทซานที่มีประจุบวกของหมู่ควอเทอร์นารีแอมโมเนียมบนพื้นผิว (Quaternary Ammonium Chitosan films, QAC films) มีพฤติกรรมผิดปกติ ปริมาณการดูดซับโปรตีนมีแนวโน้มเพิ่มขึ้น เป็นผลของอัตราส่วนการ บวมของฟิล์ม QAC ไม่เกี่ยวข้องกับประจของโปรตีน

คำลำคัญ: ใคโทซาน; ประจุบนพื้นผิว; หมู่ควอเทอร์นารีแอมโมเนียม; หมู่ซัลโฟเนต; การดูค ซับโปรตีน

Alternating Bioactivity of Multilayer Thin Films Assembled from Charged Derivatives of Chitosan

กัมมันตภาพทางชีวภาพสลับของฟิล์มประกอบแบบบางหลายชั้นจากอนุพันธ์ของไคโทซานที่มีประจุ

เตรียมอนุพันธ์ของไคโทซานที่มีประจุคือ เอ็น-ซัลโฟเฟอร์ฟูริลไคโทซาน (*N*-sulfofurfuryl chitosan; SFC) และเอ็น-[(2-ไฮดรอกซิล-3-ไทรเมทิลแอมโมเนียม)โพรพิล]ไคโทซานคลอไรด์ (N-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride; HTACC) โดย reductive alkylation ของหมู่แอมิโนของไคโทซาน (CHI) ใช้ 5-ฟอร์มิล-2-ฟูแรนซัลโฟนิกแอซิด, เกลือ โซเดียม (FFSA) เป็นสารตั้งต้นและเปิดวงของไกลซิดิลไทรเมทิลแอมโมเนียมคลอไรด์ (GTMAC) โดยหมู่แอมิโนของไคโทซานตามลำดับ หาโครงสร้างทางเคมีของอนุพันธ์ที่มีประจุโดย ¹H NMR และ FTIR ฟิล์มประกอบหลายชั้นของ SFC, HTACC, CHI และพอลิอิเล็กโทรไลต์ที่มีประจุตรง

ข้ามโดย QCM การแบ่งเป็นชั้นๆ ของฟิล์มหลายชั้นที่สร้างขึ้นบนวัสดุรองรับพอลิเอทิลีนเทเรทาเลต ที่ปรับพื้นผิวด้วยแก๊สพลาสมา [plasma-treated poly(ethylene terephthalate); treated PET] ด้วย ค่ามุมสัมผัสของน้ำ ใช้ AFM และ ATR-FTIR ตรวจหาลักษณะเฉพาะของฟิล์มประกอบ ตรวจหา ค่ากัมมันตภาพทางชีวภาพของฟิล์มหลายชั้นบนพอลิเอทิลีนเทเรทาเลตที่ปรับพื้นผิวแล้ว เพื่อเลือก โปรตีนที่มีประจุและขนาดแตกต่าง งานวิจัยนี้เสนอแนะว่าทั้ง SFC และ HTACC มีศักยภาพเป็นสาร มีฤทธิ์ทางชีวภาพที่พื้นผิวของวัสดุที่เลือก

คำลำคัญ: ใคโทซาน; อนุพันธ์ที่มีประจุ; การคูคซับที่ละชั้น; ฟิล์มประกอบหลายชั้น; พอลิอิ เล็กโตร ไลต์; การคูคซับโปรตีน

Enhancing Antibacterial Activity of Chitosan Surface by Heterogeneous Quaternization

การเพิ่มกัมมันตภาพต้านแบคทีเรียของไคโทซานโดยควอเทอร์ในเซชันระบบวิวิธพันธ์

งานวิจัยนี้มีวัตถุประสงค์เพื่อเพิ่มกัมมันตภาพการด้านแบกทีเรียของพื้นผิวใคโทซาน โดยใส่ หมู่กวอเทอร์นารีแอมโมเนียมผ่านกระบวนการวิวิชพันธ์ 2 ขั้นตอนคือ reductive alkylation ใช้แอล ดีไฮด์ตามด้วยเมทิลเลชันด้วยเมทิลไอโอไดด์ ควอเทอร์ในเซชันของหมู่แอมิโนควรกำเนิดประจุบวก และไม่ชอบน้ำของพื้นผิวใคโทซานพร้อม ๆ กัน ซึ่งเป็นปัจจัย 2 ปัจจัย ที่เชื่อว่ามีผลต่อกัมมันตภาพ การด้านแบกทีเรียของพื้นผิวใคโทซาน ATR-FTIR, XPS มุมสัมผัสของน้ำ และความต่างศักย์ซีตา ยืนยันความสำเร็จของควอเทอร์ในเซชันบนพื้นผิว การวัดความทึบแสง (optical density; OD₆₀₀) SEM และการนับเซลล์ที่อยู่รอดได้(viable cell counting) แสดงว่า ใคโทซานดัดแปรพื้นผิวมีกัม มันตภาพด้านแบกทีเรีย Staphylococcus aureus ซึ่งเป็นแบกทีเรียแกรมบวกและ Escherichia coli ซึ่งเป็นแบกทีเรียแกรมลบดีกว่าใคโทซาน การทำให้ใคโทซานมีประจุบวกและ ไม่ชอบน้ำหลังจาก ควอเทอร์ในเซชันพื้นผิว ระบุชัดเจนว่า พื้นผิวใคโทซานที่มีควอเทอร์นารีแอมโมเนียมชอบที่จะเกิด อันตรกิริยากับแบกทีเรียที่มีเมมเบรนเป็นประจุลบ ถึงแม้ว่าพื้นผิวใคโทซานนั้นอยู่ในภาวะความเป็น กรด-เบสที่เป็นกลาง

คำลำคัญ: ใคโทซาน; กับมันตภาพด้านแบคทีเรีย; หมู่ควอเทอร์นารีแอมโมเนียม; ความไม่ ชอบน้ำ; การคัดแปรพื้นผิว

โครงการย่อยที่ 6

Characterization of Silk Fabric Print Quality by Ink jet Ink การตรวจสอบสมบัติการพิมพ์ผ้าไหมด้วยหมึกพิมพ์อิงก์เจ็ต

Comparison of Textile Print Quality between Ink jet and Screen Printings การเปรียบเทียบคุณภาพการพิมพ์สิ่งทอระหว่างการพิมพ์อิงก์เจ็ตและสกรีน

งานวิจัยนี้ศึกษาคุณภาพการพิมพ์ผ้าฝ้ายด้วยการพิมพ์อิงก์เจ็ตและการพิมพ์สกรีน ใช้สารยึด อะคริลิก (S-711) กับอัตราส่วนของสารสีต่อสารยึด (P/B) เป็น 1: 2 โดยน้ำหนัก ผลิตหมึกพิมพ์อิงก์ เจ็ต 1 ชุด ส่วนหมึกพิมพ์สกรีนใช้ BR-700 เป็นสารยึด เติมละอองซิลิกา (fume silica) ลงในหมึกพิมพ์ สกรีน เพื่อเพิ่มความหนืดให้ได้หมึกพิมพ์ที่มีกระแสวิทยาตรงกับที่ต้องการของเครื่องพิมพ์ ความ หนืดและพฤติกรรมการใหลของหมึกพิมพ์ทั้ง 2 ชนิด มีค่าตรงตามมาตรฐาน ความหนืดของหมึก พิมพ์และการกระจายตัวของขนาดอนภาคเพิ่มขึ้นเล็กน้อยระหว่างเก็บที่อณหภมิห้องเป็นเวลา 2 เดือน ปรับพื้นผิวผ้าที่พิมพ์ด้วยหมึกพิมพ์อิงก์เจ็ตโดยใช้สารละลายพอลิเอทิลีนออกไซด์ น้ำหนักโมเลกุล 2-3 ล้าน กรัมต่อ โมล วิเคราะห์ความอิ่มตัวของสี (color saturation), แกมตสี (color gamut) และปริมาตร สี, ความคำ (density), การผลิตน้ำหนักสี (tone reproduction), ความแข็งตึง (stiffness), สภาพให้ อากาศซึมผ่านได้ (air permeability) และ crock fastness ชนิด ความเข้มข้น และอัตราส่วนสารสีต่อ สารยึดในหมึกพิมพ์ทั้ง 2 มีค่าเท่ากันในด้านการกระจายตัวของสารสี ถึงแม้ปริมาตรหมึกพิมพ์บนผ้า โดยอิงก์เจ็ต ได้ปรับสภาพโดยประมาณให้เหมือนกับหมึกพิมพ์สกรีนในด้านความทึบแสง (optical density) ด้วยการพิมพ์หลายๆ ครั้ง แต่ผ้าพิมพ์ทั้งสองมีความอิ่มตัวของสี, แกมุตสี และการผลิต น้ำหนักสีแตกต่างกัน ปริมาตรของแกมตสี, ความแข็งตึง, สภาพให้อากาศซึมผ่านได้ และ crock fastness ของหมึกพิมพ์อิงก์เจ็ตดีกว่าหมึกพิมพ์สกรีน คุณภาพสิ่งพิมพ์จากการพิมพ์อิงก์เจ็ตบนผ้าฝ้าย ดีกว่า อย่างไรก็ตาม ผ้าฝ้ายพิมพ์ด้วยหมึกพิมพ์อิงก์เจ็ตจำเป็นต้องพิมพ์ซ้ำ 3 ครั้งเพื่อผลิตสีและการ ผลิตน้ำหนักสีให้เหมือนกับที่ผลิตได้โดยการพิมพ์สกรีน

คำสำคัญ: หมึกพิมพ์อิงก์เจ็ตสารสี; หมึกพิมพ์สกรีน; คุณภาพสิ่งพิมพ์; ผ้าฝ้าย; สารยึดพอ ลิอะคริเลต

Properties of Industrial Thai Silks Reeled by Hand and by Machine

สมบัติของใหมไทยเชิงอุตสาหกรรมสาวด้วยมือและเครื่องจักร

งานวิจัยนี้ได้ศึกษาสมบัติของเส้นใยจากหนอนไหม 3 ชนิด ที่ผลิตในประเทศไทย และเส้นใย ไหม 1 ชนิดที่นำเข้าจากต่างประเทศ เปรียบเทียบสมบัติของเส้นใยเหล่านี้ที่สาวด้วยมือและสาวด้วย เครื่องจักร ซึ่งทดสอบตามมาตรฐานสากลคือ ความขาวและความเหลือง ขนาดเส้นใยไหม (ดีเนียร์) น้ำหนักที่หายไปจากการลอกกาวไหม ปริมาณความชื้น ความหนาแน่นสัมพัทธ์ การจัดเรียงตัวของโซ่ พอลิเมอร์ในเส้นใยไหม (birefringence) ปริมาณผลึก องค์ประกอบทางเคมี จุดอ่อนตัว พฤติกรรมการ เผาไหม้ ความเหนียวหนืด (tenacity) ความทนแสงแดด การตรึงสีย้อม ความทนกรด ด่าง และภาวะ ฟอกขาว จากการศึกษาได้พบว่า เส้นไหมสาวด้วยมือให้ค่าความขาว การเรียงตัวของโซ่พอลิเมอร์ ปริมาณผลึก และจุดอ่อนตัวกว่าเส้นไหมสาวด้วยเครื่องจักร ในทางตรงข้าม เส้นใยสาวด้วยมือให้ค่า ขนาดเส้นใยและการตรึงสีย้อมดีกว่า เส้นใยในประเทสมีขนาดเส้นใย น้ำหนักที่หายไปจากการลอก กาวไหม ความหนาแน่นสัมพัทธ์ ปริมาณผลึก การตรึงสี และการทนด่างและสารฟอกขาวได้ดีกว่า เส้นใยนำเข้าจากประเทศจีน

คำสำคัญ: ใหมใทย; สาวด้วยมือ; สาวด้วยเครื่องจักร; สมบัติต่าง ๆ

Modulation Transfer Function Measurement for Ink Jet Printed Silk Fabrics การวัดโมดูเลชันทรานเฟอร์ฟังก์ชันของผ้าใหมพิมพ์อิงก์เจ็ต

โมดูเลชันทรานเฟอร์ฟังก์ชัน (Modulation Transfer Function; MTF) เป็นวิธีมาตรฐานใช้ ประเมินกุณภาพของภาพ (image quality) สำหรับรายละเอียดขององค์ประกอบที่บันทึกในระบบการ เกิดภาพและคุณภาพภาพของผลผลิตสุดท้าย งานวิจัยนี้ศึกษาการวัด MTF ของผ้าใหม่ไม่พิมพ์และผ้า ใหมพิมพ์และความสัมพันธ์ของข้อมูล MTF กับความคมชัดของผ้าใหมพิมพ์ด้วยหมึกพิมพ์อังก์ เจ็ตที่ผลิตภายในห้องปฏิบัติการ วัด MTF ของพื้นผิวโดยใช้แบบทดสอบคลื่นรูปไซน์ (sinusoidal test pattern) วางให้สัมผัสกับผ้า ใช้ความถี่เชิงพื้นที่จาก 0.375 ถึง 3.0 รอบต่อนาโนเมตร (spatial frequencies) กราดแผ่นทดสอบคลื่นรูปไซน์ (sinusoidal test target) โดยไมโครเดนซิโทมิเตอร์ (microdensitometer) ในโหมดความดำของการสะท้อนแสง (reflection density) ข้อมูลเหล่านี้ ประกอบด้วย 2 ความถี่คือ ความถี่สูงเป็นลักษณะของผ้า และความถี่ต่ำเป็นการกระเจิงแสงของ เส้นก้าย เส้นโค้งรูปไซน์ที่ความถี่ต่ำใช้คำนวณค่า MTF ผลการทดลองชี้ว่าการวัด MTF ของผ้าด้วยวิธี นี้สามารถได้ฟังก์ชันการกระจายจุด (point spread function) ของผ้าใหม งานวิจัยนี้ตรวจสอบ ความสัมพันธ์ของรูปแบบคลื่นและทิสทาง, wicking property และ MTF ของผ้าใหม 4 ชนิดที่แตกต่าง กันซึ่งด้วยการทอธรรมดา (ลายทอธรรมดา; ผ้าใหม A, C and D) หรือ ลายทอแบบเส้นด้ายคู่ (twill weave) ของผ้าใหม B ตรวจสอบเม็ดสกรีนบวมโดยโมเดลของ Yule-Nielsen ได้ค่าสัมประสิทธิ์ท

เป็น 1.636 สำหรับ ผ้าใหม D มีค่าสัมประสิทธิ์ d และ n ต่ำที่สุดเมื่อเปรียบเทียบกับผ้าใหมชนิดอื่น ชื้ ถึงคุณภาพภาพที่คมชัด

คำสำคัญ: หมึกพิมพ์อิงก์เจ็ต; โมคูเลชันทรานเฟอร์ฟังก์ชัน; เม็คสกรีนบวม; แผ่นทคสอบ คลื่นรูปไซน์; ฟังก์ชันการกระจายจุด; ผ้าไหม

Surface-Modified and Micro-Encapsulated Pigmented inks for Ink Jet Printing on Textile Fabrics

สารสีดัดแปรพื้นผิวและสารสีห่อหุ้มแบบไมโครแคปซูลสำหรับการพิมพ์อิงก์เจ็ตบนผ้าไหม

เตรียมหมึกพิมพ์อิงก์เจ็ตด้วยสารสีดัดแปรพื้นผิวและสารสีห่อหุ้มแบบใมโครแคปซูล ได้ วิเคราะห์สมบัติต่างๆ ของการกระจายขนาดอนุภาค (particle size distribution) การเปลี่ยนแปลงของ ความหนืดเมื่อเก็บ และความเสถียรของหมึกพิมพ์ (ink stability) ทุกสัปดาห์เป็นเวลา 12 สัปดาห์ที่ อุณหภูมิห้อง สมบัติของหมึกพิมพ์อิงก์เจ็ตทั้งหมดอยู่ในช่วงใช้งานได้ (operational range) ในด้าน การปรากฏสี หมึกพิมพ์สารสีดัดแปรพื้นผิวที่พิมพ์บนผ้าใหมให้ความดำ (optical density) สูงกว่า, การผลิตน้ำหนักสี (tone reproduction) ดีกว่า, ขอบเขตสีกว้างกว่า และปริมาตรสีมากกว่าหมึกพิมพ์ จากสารสีห่อหุ้มแบบใมโครแคปซูล ในด้านความคงทนและการใช้งาน หมึกพิมพ์จากสารสีดัดแปร พื้นผิวให้ความทนดีกว่าหมึกพิมพ์สารสีห่อหุ้มแบบไมโครแคปซูล วิเคราะห์ผ้าใหมพิมพ์โดยพิจารณา การสวมใสสบายด้วยค่าความแข็งตึงโค้งงอ (bending stiffness) การทดลองชี้ผลลบเมื่อผ้ามีการปรับ สภาพก่อนพิมพ์ การปรับสภาพพื้นผิวผ้ามีผลบวกกับสี, การปรากฏสี, ความทนทานและการใช้งาน เมื่อจำนวนเส้นด้ายมีค่าเกือบเท่ากันนั้น ความแข็งแรงโค้งงอของผ้าในทิสทางด้ายขวางหรือด้ายพุ่ง (weft direction) มีค่ามากกว่าในทิสทางของด้ายเส้นยืน (warp direction)

คำสำคัญ: การกระจายสารสีแบบคัคแปรพื้นผิว; การกระจายสารสีห่อหุ้มแบบใมโคร แคปซูล; ผ้าใหม; หมึกพิมพ์อิงก์เจ็ต; สิ่งทอ

Pretreatment of Silk Fabric Surface with Amino Compounds for Ink Jet Printing การปรับสภาพพื้นผิวผ้าใหมด้วยสารประกอบแอมิโนสำหรับการพิมพ์อิงก์เจ็ต

งานวิจัยนี้ศึกษาการปรับสภาพพื้นผิวผ้าใหมด้วยสารประกอบแอมิโนสำหรับการพิมพ์อิงก์-เจ็ต การปรับสภาพพื้นผิวเป็นการเพิ่มความเรียบของผิวผ้า ใช้สารละลายปรับสภาพพื้นผิวก่อนการ พิมพ์คือ เซรีน (serine), ใกลซีน (glycine), กรดแอสปาร์ติก (aspartic acid), เซริซีน (sericin), ใคโท ซาน (chitosan) และสารเคมีปรับสภาพพื้นผิวทางการค้าซันฟิกซ์ 555 (Sanfix 555) พิมพ์ผ้าที่ไม่ปรับ และปรับสภาพพื้นผิวด้วยหมึกพิมพ์ที่เตรียมได้จากสารสีปรับสภาพพื้นผิว นำไปอบไอน้ำเพื่อตรึงสี ของหมึกพิมพ์บนผิวผ้า พบว่า การปรับสภาพพื้นผิวด้วยสารประกอบแอมิโน ปรับปรุงความชอบน้ำ (hydrophilicity) ของผ้าใหมยกเว้นใกโทซาน แกมุตสีจากผ้าปรับสภาพพื้นผิวด้วยเซริซีน, ใกโทซาน และซันฟิกซ์ 555 ให้แกมุตสีที่กว้างกว่าสารประกอบแอมิโน สี (chroma) ของสีใชแอน (cyan color) เพิ่มกำแกมุตสีมากที่สุด ผ้าหลังการปรับสภาพพื้นผิวด้วยเซริซีนเพิ่มความทนการขัดถูขณะแห้ง (dry crock fastness) อย่างเห็นได้ชัด ขณะที่เซรินและใกลซีนเพิ่มความทนการขัดถูขณะเปียก (wet crock fastness) ใกโทซานเพิ่มความทนการขัดถูเล็กน้อยทั้งขณะแห้งและเปียก ผ้าที่พิมพ์แล้วมีความทนการ ซัก (wash fastness) ดีเยี่ยม ผ้าใหมที่ปรับสภาพพื้นผิวด้วยใกโทซาน มีความแข็งตึงมากกว่าใช้สารอื่น อย่างเห็นได้ชัด การซึมผ่านของหมึกพิมพ์ลงในชั้นเคลือบเซริซีนและใกโทซานตื้นกว่ากรดแอมิโน ซึ่งทำให้หมึกพิมพ์ตกสะสม (deposition) บนพื้นผิวผ้า หรือกล่าวอีกนัยหนึ่งก็คือ สารประกอบแอมิโนสามารถเก็บและตรึงหมึกพิมพ์ไว้บนพื้นผิวผ้ามากกว่า ซึ่งเป็นผลให้แกมุตสีหมึกพิมพ์กว้างกว่า

คำลำคัญ: กรคแอมิโน; ใคโทซาน; เซริซีน; การปรับสภาพ; ผ้าใหม; การพิมพ์อิงก์เจ็ต

Anionically Surface-Modified Pigment-Based Ink Jet Ink Performance on Silk Fabric

สมรรถนะของหมึกพิมพ์อิงก์เจ็ตประเภทสารสีมีประจุลบที่พื้นผิวบนผ้าใหม

ได้เครียมสารสีให้พื้นผิวมีประจุลบซึ่งกระจายในน้ำได้ดี นำสารสีเหล่านี้มาผลิตหมึกพิมพ์ อิงก์เจ็ตสี่สี หมึกพิมพ์เหล่านี้มีค่าความเป็นกรด-เบส อยู่ในช่วง 8-9 และแสดงลักษณะการไหลนิวโท เนียน ซึ่งมีค่าความหนืดคงที่ที่ 2.5 มิลลิพาสคัล วินาที มีแรงตึงผิวของหมึกพิมพ์ในช่วง 44 มิลลินิวตัน ต่อเมตร อนุภาคเฉลี่ยของหมึกพิมพ์มีค่า 100 นาโนเมตร ค่าซีตาโพเท็นเชียลของหมึกพิมพ์อยู่ในช่วง - 42 ถึง -51 มิลลิโวลต์ หมึกพิมพ์สีม่วงแดงและสีดำมีความเสถียรประมาณ 10 เดือน ส่วนสีน้ำเงินเขียว และสีเหลืองประมาณ 1 ปี ซึ่งยืนยันได้ด้วยขนาดของอนุภาคในภาพ SEM และ TEM หมึกพิมพ์ เหล่านี้เหมาะสำหรับการพิมพ์อิงก์เจ็ตหัวพิมพ์เปียโซ ได้พิมพ์ผ้าไหมที่ไม่ได้ปรับผิวและได้ปรับผิว ด้วยหมึกพิมพ์ชุคนี้ แล้วอบด้วยไอน้ำเพื่อขจัดสีส่วนเกินและตรึงสีหมึกพิมพ์บนผ้าไหม สารีที่มีประจุ ลบบนพื้นผิวมีปฏิสัมพันธ์กับกลุ่มอะมิโนที่ได้รับการโปรโทเนตของไคโทซานเคลือบบนผ้าไหม ให้ สีหมึกพิมพ์เกาะมากกว่า แกมุตสีกว้างกว่า และมีสีสันของสีน้ำเงินเขียวดีกว่า ตามด้วยสีม่วงแดง แต่ ความแรงของสีน้ำเงินเขียว สีม่วงแดง และสีเหลือง ค่อนข้างต่ำ บทความนี้ได้อธิบายสาเหตุและเสนอ คำแนะนำ เพื่อแก้จดอ่อนนี้

คำสำคัญ หมู่ฟังก์ชันมีประจุลบ หมึกพิมพ์สารสีปรับพื้นผิว หมึกพิมพ์อิงก์เจ็ต ใคโทซาน การปรับผิวก่อนพิมพ์ ผ้าใหม

Executive Summary

โครงการย่อยที่ 1

Utilization of Synthetic Polymers in Environmental Treatment การใช้ พอลิเมอร์สังเคราะห์ในการบำบัดทางสิ่งแวดล้อม

Poly(AA-co-AM) and starch-g-poly(AA)were prepared radical copolymerization in water using ammonium peroxide/TEMED initiator with N-MBA crosslinker. The water absorption capacity of the starch-g-poly(AM-co-AA) was higher than that of starch-g-poly(AA), and the CPFs had the lowest water absorption. The metal ion densities obtained by SEM/EDX technique along with water absorbency of the CPFs revealed that a higher amount of metal ion of the inorganic coagulant is necessary for a better color reduction. The complex superabsorbent polymer flocculants with inorganic coagulants of Al₂(SO₄)₃18H₂O, Ca(OH)₂, or Fe₂(SO₄)₃ in various ratios of copolymer to inorganic material exhibited different performances as flocculating agents in terms of color reduction, reduced turbidity, pH, and COD reduction of the synthetic dye and mixed dyes from the textile industry. The dye adsorption was studied with the synthetic aqueous solution of direct dye, Sirius blue K-CFN. It was found that the CPF of poly(AA-co-AM) with Ca(OH)₂ with a 1:2 ratio can reduce Sirius blue K-CFN color by 95 and 76% for the textile industrial wastewater. The adsorptions of the dyes increased with the increasing content of Ca(OH)₂ in the superabsorbent. The percentage COD reduction of the CFP was satisfactory (not less than 67% in A2 reactive dye). Turbidity of the wastewater for A2/500 and A2/1000 was not good but the pH values of these two concentrations were relatively alkaline. As a whole, the performance of the polymer complex flocculating agent of poly(AA-co-AM) and starch-g-poly(AA)/Ca(OH)₂ is good enough for dye wastewater treatment from the textile industry.

Crosslinking radical chain polymerization of MMA and DVB was performed by a suspension technique. The concentration of DVB in the range of 0.25–1.5 wt% was used to produce spherical imbiber beads. A mixture of the good solvent toluene and the poor solvent heptane was used to control the phase separation and pore size in the beads. Polymerization conditions to generate conversion (as yield), bead size distribution, average bead size, crosslinking density, and its corresponding average crosslinking

molecular weight on the swelling ratio, the diffusion coefficient, and the bead density of the polymer were elucidated. The modified Flory and Rehner theory was used for the investigation of Mc and q. The solvent–polymer interaction (χ) controlled the gel-type to porous-type polymer beads from the phase miscibility to phase separation. The prediction by the mathematical equations indicated that an increase in the DVB crosslinking agent concentration rendered the solvent transport control mechanism more by polymer relaxation (Case II) than by the solvent penetration diffusion contributed by the solvent polymer interaction.

Poly[AM-co-AA] and AHAMAA were prepared by radical polymerization in a solution for use in dye removal. The residual aluminium ion concentration of AHAMAA in water in the range of 0.090-2 ppm regardless of the soaking time indicated a high stability of aluminium ion in AHAMAA flocculant. AHAMAA can adsorb Congo red and direct blue 71 as validated by Freundlich isotherm. The efficiency of Congo red removal by AHAMAA is better than poly[AMco-AA] prepared by the fixed concentrations of acrylic acid, crosslinking agent, initiator and co-initiator at $4x10^{-3}$, $2.3x10^{-4}$, $1.6x10^{-4}$, and $12x10^{-4}$ mol, respectively. Both dyes are removed by poly[AM-co-AA] and AHAMAA at pH 5 in both nonbuffered and buffered systems. The dye removal efficiency in the buffered system is lower than that of the non-buffered system due to the complex formation between citric anion and/or boric anion of the former and Al ion of AHAMAA. The ionic strength does not affect Congo red removal by poly[AM-co-AA] but does dye removal by AHAMAA at pH 5 because the high concentrations of the cation and anion in the buffered system of both dyes reduce the electrostatic interaction between AHAMAA and the dye molecules.

Poly[AM-co-AA] and AHAMAA have been successfully prepared by a radical chain polymerization in solution. The FT-IR spectra of Al(OH)₃, poly[AM-co-AA] and AHAMAA indicate the peaks for the Al-O portion and the poly[AM-co-AA] portion. The ²⁷Al-NMR spectra of Al(OH)₃ indicate the monomeric and/or dimeric species for Al in Al(OH)₃ and the octahedral coordination in AHAMAA spectra. Rheological studies demonstrate that both polymers are gels having a higher elastic response than the viscous response. AHAMAA possesses a larger storage modulus due to the additional formation of physically crosslinking points through the chelate formation between the carboxylate anion from acrylic acid in poly[AM-co-AA] and the

aluminium ion. The superabsorbent polymers having more crosslinking junctions impart a higher storage modulus and lower water absorption capacity due to the limitation of network expansion in water. TEMED controls the water absorption of poly[AM-co-(AA)] and AHAMAA at a given APS concentration reaching the highest water absorbency of 888±24 and 294±25 g g⁻¹, respectively. The residual aluminium concentration of AHAMAA in water is in the range of 0.090–2 ppm indicating a high stability of AHAMAA. The percentage residual acrylamide monomer of poly[AM-co-AA] is slightly dependent on the acrylamide concentration. The relative turbidity reduction of kaolin suspension by AHAMAA is far better than poly[AM-co-AA], which is up to 95% reduction in turbidity, was achieved from AHAMAA whereas 82% turbidity reduction was provided by poly[AM-co-AA].

โครงการย่อยที่ 2

Influence of Additives on Acrylamide Superabsorbent Polymer Performance อิทธิพลของสารเติมแต่งต่อสมรรถภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลาไมด์

The biodegradable superabsorbent polymers were prepared by the graft copolymerization between the gelatinized starch and acrylamide/itaconic acid via foamed solution polymerization using APS and TEMED as an oxidation-reduction initiator and cointiator, respectively, while N-MBA as a crosslinking agent. We found that the presence of both acrylamide and itaconic acid is essential for the grafting reaction on the gelatinized cassava starch to obtain high absorbency such as the water absorption of 379 ± 10 g g⁻¹ prepared from the optimum mole ratio of AM-to-IA of 90:10 and the optimum weight ratio of starch to the monomer of 1:2 to give the highest percentage of grafting efficiency and the highest water absorption. A higher amount of the monomers provided the higher grafting opportunity to starch grafting substrate in the other phase. Donor–acceptor was used to explain the ratio of AM to IA. The concentration of the redox initiator APS: TEMED of 1:2 wt% of monomers gave the optimum result to achieve the highest water absorption. Increasing the crosslinking agent concentration in the graft copolymerization enhanced the percentages of grafting efficiency, add-on, and grafting ratio. The optimum condition of the crosslinking agent

N-MBA of 2.0 wt% gave the highest water absorption. Increasing the ionic strength of the salt solutions decreased significantly the water absorption of the graft copolymer. The buffer pH solution with the high ionic strength decreased the water absorption of the graft copolymers. When the anionic superabsorbent polymer was immersed in the high pH buffered solution, the constant water absorption was observed. The IR spectrum of polyacrylamide gives the characteristic absorption peaks of the -COONH₂ at 3443 cm⁻¹ (-NH₂ stretching) and 1655 cm⁻¹ (-C=O stretching). Imidization of the starch-g-P(AM-co-IA) shown at 1710 cm⁻¹ and the higher thermal stability the thermogram were found. The surface morphology of the graft copolymers studied by SEM reveals that graft copolymers having the higher absorbency are more porous. The TGA technique was employed to successfully characterize the weight loss and grafting ratio of the obtained graft copolymers. The starch grafted copolymers can be biodegraded by α-amylase enzyme, which was monitored by measuring the amount of reducing sugar using DNS method. In addition, Benedict's test and iodine test applied after the enzymatic hydrolysis confirmed the degraded product of glucose, which indicates the biodegradation of starch and leaves the acrylamide-itaconic acid portions undegraded.

Poly(AAm-co-CA) hydrogels were prepared by free radical polymerization in aqueous solutions of AAm, CA and the crosslinker NMBA in the presence of gas bubbles. The electrochemical behavior of the redox polymerization understudy verified the electron transfer (electron donor-electron acceptor) between AAm and CA. In the presence of APS and TEMED, the polymerization needed less anodic peak potential and current. After 19.26 min of crosslinking polymerization, reduced ionic mobility due to an increase in the reaction viscosity was found at E_{pc} of 2.4 V and I_{pc} of 3.6 mA. The water absorbency of the synthesized AAm/CA copolymers was higher than that of PAM. The concentration of the redox initiator APS (1 wt. %): TEMED (2 wt. %) gave the optimum result to achieve the highest water absorbency. In the presence of high crosslinking agent concentrations (NMBA), more crosslinks could be formed to give rigid chains that reduce the swelling of the gel. The water absorbency of the crosslinked copolymer was measured by swelling in distilled water. The surface appearance of synthesized copolymers was observed using SEM. The connectedness surfaces in the presence of plenty pores to form a cellular structure containing narrow distributions of pore radii gave high water absorbency. The highest water absorbing

copolymer was synthesized with 2 mol% of crotonic acid, 0.5 wt. % of N-MBA and 1 wt. % of APS which gave a water absorbency of 211 ± 9 times its dry weight in distilled water. The synthesized copolymer could absorb water up to 126 ± 4 g g⁻¹ within 10 min. The rate of swelling decreased with increasing swelling time. The swelling rate became stable or constant within 20 min, with an average swelling rate of 2.8 g g⁻¹ s⁻¹. The superabsorbent polymers of poly[acrylamide-co-(crotonic acid)] exhibited the non-Fickian type diffusion with diffusion coefficients in the range of 10^{-8} – 10^{-9} and exhibited the Langmuir adsorption monolayer adsorbing the dye concentration of 77.52 mg g⁻¹ and the swelling constant of 0.32 mg g⁻¹. The presence of the cationic dye did not affect the extent of water absorption.

Poly(AM-co-IA) copolymers and poly(AM-co-IA)/mica nanocomposites were successfully prepared by solution polymerization. Increasing in the itaconic acid concentration in the copolymer resulted in water absorbency enhancement of the superabsorbent polymers or polymer composites. By adding mica, an inorganic additive component in the polymerization process, it could increase the swollen gel strength. The XRD analysis of the composites indicated that the interlayer spacing of mica was increased, suggesting that the nanocomposites be successfully achieved since the mica could reinforce the polymer composites in the nanometer scale. The FTIR characterization of the poly(AM-co-IA)/mica nanocomposites also gave the characteristic absorption peaks of the -COO from the carboxylic acid group in the IA moiety at 1665-1664 cm⁻¹ and the absorption peaks of Si-OH group in mica at 1016-1011 cm⁻¹ and 473-471cm⁻¹. The optimum water absorbency of the nanocomposites at different IA ratios was obtained at 5 wt% mica, and then slightly decreased with increasing mica content. The tendency of artificial urine absorption was found to slightly decrease with increasing the content of mica in the nanocomposites. However, at the AM/IA of 95/5 with 2% of mica content, the water absorbency in artificial urine of the superabsorbent nanocomposite reached its maximum ($\approx 80 \text{ g g}^{-1}$). More importantly, it was verified by the absorbency under load and viscoelastic behavior, in which the swollen gel of such nanocomposites exhibited the mechanical rigidity. The small amount of mica addition (5 wt %) can effectively reinforce the gel strength of the superabsorbent polymer composite. The thermogravimetric analysis could further support that the synthesized nanocomposites could be realized with enhanced physical property, evidenced from the increment of the thermal stability with

the increasing mica content. Increasing in crosslinker concentration decreased the water absorbency of the nanocomposites. A slight increment of absorbency was observed at 5 wt% mica. The residual amounts of acrylamide monomer in the polymer indicates that the solution polymerization is an acceptable synthesis route to prepare the superabsorbent polymer and superabsorbent polymer nanocomposites since the residual amount of the acrylamide monomer is very minute and the incorporate mica is about 80%.

โครงการย่อยที่ 3

A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of

Silane in Latex

วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจากกระบวนการโซล-เจลของ

ไซเลนในน้ำยาง

The graft polymerization of the MMA monomer onto NR particles was confirmed spectroscopically by spectra and functional groups. The graft copolymerization of MMA onto natural rubber prepared by emulsion polymerization by three different redox initiator systems, CHPO/TEPA, TBHPO/TEPA, and potassium persulfate (K₂S₂O₈/Na₂S₂O₃), were used to initiate the graft copolymerization. The influential factors of the initiator concentration, reaction temperature, monomer concentration, grafting agent (for K₂S₂O₈), and reaction time were investigated to compare the initiation efficiency. The K₂S₂O₈/Na₂S₂O₃ was used with VneoD as a grafting promoter to enhance the grafting of MMA onto the natural rubber latex. The VneoD with an appropriate concentration (20 wt % of MMA) has been anticipated to extract hydrogen atom from polyisoprene to form an allylic-type radical, which is relatively stable and can facilitate the grafting of MMA onto natural rubber. The graft copolymer initiated with CHPO/TEPA gave the highest percentage grafting efficiency and percentage of grafted natural rubber, i.e., the more hydrophobic initiator (CHPO) was more efficient than those of TBHPO and K₂S₂O₈ for grafting a relatively polar monomer onto natural rubber. The K₂S₂O₈/Na₂S₂O₃ initiating system reduces

significantly the amounts of gel fraction and the polymer molecular weights in the sol fraction.

The study of silica has shown that silica can be generated successfully by the sol-gel process of TEOS mixed with commercial concentrated NR latex at 50°C. The *in situ* generated silica particles were homogeneously dispersed inside the rubber matrix as revealed by SEM. The averaged diameter was estimated to be smaller than 500 nm. An experimental design was used to study variables that could affect the mechanical properties of the *in situ* silica-filled vulcanizates. Statistical analysis of the data showed that TEOS content had the most significant effect on the mechanical properties. It was also found that 0.7% ammonia content present in the commercial concentrated latex was sufficient to initiate the sol-gel process of the silane. Therefore no additional ammonia was required to add to the latex with the resultant benefits in costs and time saving in the preparation of NR composite reinforced by *in situ* generated silica. The addition of TESPT, a common silane coupling agent, together with TEOS into the latex reduced both scorch time (t_s2) and optimum cure time (t90) of the vulcanizates. The M300, tear strength, and hardness of the *in situ* silica-NR vulcanizates were increased by the addition of 5 phr TESPT.

NR vulcanizates filled with silica are prepared by using alkyltriethoxysilanes (VTOS, ETOS, and BTOS) and TEOS as precursors to generate the *in situ* silica. Conversion of the silanes to silica in the NR matrix is about 94% for TEOS, but decreases when the alkyl group of the alkyltriethoxysilanes increases in size. The *in situ* generated silica particles are well dispersed in the NR matrix with low degree of aggregation. The size of the *in situ* silica particle in the vulcanizate observed by TEM is smaller than 100 nm, and not depending on the silane types. The tensile modulus, tensile strength, and tear strength of the *in situ* silica filled NR vulcanizates are higher than the vulcanizate mixed with silica powder (Hisil-255). Furthermore, these mechanical properties of the *in situ* silica-filled NR vulcanizates can be increased by increasing the amount of VTOS in the VTOS/TEOS formulation from 5 to 20% of the total silanes.

A composite of NR-g-MMA/SiO₂ was successfully prepared by grafting of MMA, followed by the sol-gel process of TEOS. The IR spectra of the grafted NR composite showed a transmission peak at 1733 and 1147 cm⁻¹ corresponding to the existence of MMA on the natural rubber backbone. The peak at 473 cm⁻¹ was for the Si-

O-Si vibration and the Si-OH stretching at 967 cm⁻¹ confirmed the *in situ* silica generation. The composite exhibited a core/shell structure in which the NR was the core seed and the PMMA was a thin shell layer encompassing the seed. A dispersed distribution of small sized silica particles was found in the ungrafted natural rubber film but, in contrast, aggregation of the silica particles was found in the PMMA grafted NR films. The *in situ* silica particles were located both in the NR core and the MMA grafted NR shell whereas the MMA grafting on NR increased the amounts of silica particles in the composites. Both the grafting of a high amount of MMA and *in situ* silica particles increased the surface roughness, but only PMMA grafted NR had a lower surface tackiness and adhesion. The grafted natural rubber composite films slightly increased the crosslinking density, modulus, tensile strength and elongation at break but at a cost of a reduced tearing strength and swelling in toluene. The rubber composite film can be used for general household gloves because the mechanical properties meet ASTM-D4679, but not for surgical and examination gloves.

โครงการย่อยที่ 4

เทอร์โมพลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน

Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends

Various types of compatibilizer for un-modified and modified blends were used. The un-modified phenolic resins of dimethylol phenolic resin (octylphenol-formaldehyde resin, SP-1045) and phenolic resin with active hydroxymethyl (methylol) groups (HRJ-10518), the modified phenolic resin of PhSPPE, and PhHRJ-PE, and LNR were each incorporated in the TPVs containing 60/40 NR/HDPE ratio. The LNR failed to show any compatibilization effect on the HDPE and NR phases. TPVs with unmodified phenolic resins (i.e., SP-1045 and HRJ- 10518) showed a higher tensile strength and elongation at break, and lower tension set than that of the TPV without a compatibilizer. This may be attributed to a formation of Chroman ring structures from the reaction of NR and phenolic molecules. The PhSP-PE or PhHRJ-PE incorporated TPVs gave a higher tensile strength and elongation at break. This is attributed to the reaction from a trace quantity of un-saturation in the HDPE molecules and methylol groups of the phenolic molecules. Moreover, the remaining methylol groups in the

phenolic molecules are capable of reacting with NR molecules and producing a molecular segment linked between NR and HDPE molecules. Among the compatibilizers used, the TPV with PhHRJ-PE gave the highest magnitude of tensile strength and elongation at break and demonstrated a reasonably high ability to recover its original shape after a prolonged extension. Influence of the blend ratio of NR/HDPE was also investigated. Increasing levels of NR increased elongation at break and tension set but decreased tensile strength and hardness. Decreasing sizes of the vulcanized natural rubber domains dispersed in the HDPE matrix were observed at an increasing level of NR in the TPV. Studies of various vulcanization systems for the TPVs revealed that the TPV with a mixed curing system showed the highest shear stress and tensile strength, whilst the sulphur-curing system gave the lowest values, and the peroxidecuring system exhibited an intermediate value. The mixed curing system of TPVs gave the smallest vulcanized dispersed NR domains while the sulphur-curing system produced the largest NR dispersed domains. The sulphur curing system showed the highest elongation at break and good elastomeric properties (the lowest tension set), attributed to the formation of more flexible C-S and C-C linkages. In the peroxidecuring system, more stable C-C bonds and cross-linking reaction of HDPE molecules were formed.

TPNRs using various NR/HDPE ratios and phenolic compatibilizers were prepared by a simple blend method. The blends without the HRJ-10518, SP-1045, or LNR compatibilizer were incompatible because PDB was not obtained. The blends with compatibilizers that demonstrated PDB were compatible or partially compatible. The melt flow of NR/HDPE blends decreased with increasing NR content; greater shear thinning was found by a power law index. The rubber domains dispersed in the HDPE matrix were found in the NR/HDPE blend ratios of 20/80, 40/60, and 50/50; cocontinuous morphology was found in the NR/HDPE ratio of 60/40. The NR/HDPE blend having HRJ-10518 compatibilizer exhibited higher ultimate tensile strength and EB than that with SP-1045. Incorporation of paraffin oil decreased tensile strength and increased EB. The TPNRs exhibited very high elastomeric properties because they have very low tension set. The degradation temperature of the blends increased with increasing HDPE content and compatibilizers. The TPNRs with HRJ-10518 or SP-1045 at the NR/HDPE blend ratio of 60/40 have potential in some applications such as making automotive bumpers or sportswear.

ENR-20/HDPE blends with various types of blend compatibilizers exhibited superior tensile, hardness and set properties than that of the blend without compatibilizer. This is attributed to interaction between ENR and HDPE molecules via a link of compatibilizer molecules. They contain polar functional groups (i.e., succinic anhydride, succinic acid or phenolic groups) which are possible to react with oxirane groups in the ENR molecules. Also, the HDPE segments in the compatibilizer molecules are prone to compatibilize with the HDPE molecules in the blend components. Among the blend compatibilizers, HDPE-g-MA gave the highest strength properties but the lowest tension set properties. This is a result of crosslink formation of HDPE because of reaction of residual DCP in the system. High strength and rigid material is consequent. The 60/40 ENR-20/HDPE blend exhibited co-continuous phase morphology. Smaller phase sizes were observed in the blend with high level of interaction, such as the blend with HDPE-g-MA. This corresponds to higher hardness and strength properties of this type of material.

Dynamically cured ENR/HDPE TPVs were prepared. Influences of the process oil, blend proportion and curing systems were investigated. We found that the oil extended ENR-30/TPVs exhibited eases in the injection molding process. The final products with better elastomeric properties were observed. Three blend proportions of ENR-30/HDPE at 50/50, 60/40 and 75/25 were later studied. Increasing proportion of ENR increased elastic response in dynamic properties, i.e., storage modulus, complex viscosity, and elastomeric properties in terms of elongation at break, tension set properties and tanδ. Three types of curing systems, namely the peroxide co-agent, the mixed sulfur and peroxide and the phenolic resin curing systems, were used for investigating with a fixed ENR-30/HDPE ratio of 60/40. The TPVs with the phenolic curing system exhibit the superior mechanical, and dynamic properties, and the smallest vulcanized rubber domains. The TPVs with the conventional peroxide co-agent curing system show good mechanical strength properties and poor elastomeric properties. The morphological property of this type of TPV could not be clearly viewed because the crosslinked HDPE matrix was not extracted and obstructed the rubber phase. On the other hand, the TPVs with the mixed sulfur peroxide curing system exhibited the intermediate mechanical dynamic properties with a less amount of the larger vulcanized rubber domains than that of the phenolic resin cured TPVs.

Influences of types of blend compatibilizers on mechanical, dynamic and morphological properties of MNR/HDPE TPVs were studied. The TPV with the

compatibilizers showed the higher mechanical properties in term of tensile strength and elongation at break. The lower tension set properties was also observed, indicating the better elastomeric nature of the material. Moreover, the TPV without the compatibilizers showed the larger vulcanized rubber domains and bigger. Among the three types of blend compatibilizers, the PhHRJ-PE gave the TPVs with the best over all properties because the block copolymer compatibilizers promoted the highest compatibility with the stronger linkages in the molecules and forming the smallest vulcanized rubber domains in the HDPE matrix. Therefore, the PhHRJ-PE was chosen to be a compatibilizer for MNR/HDPE TPVs. Five loading amounts of the compatibilizer were studied. It was found that the content of 5 wt % of HDPE was the proper amount of the compatibilizer used in this type of TPVs. The lower amounts other than 5 wt % of HDPE gave the lower interaction between the phases because the interface surfaces were not fully occupied by the compatibilizer. The excessive amount of the compatibilizers induced the formation of micelles which could possibly act as the weak points during the deformation process and as a lubricant during the flow.

โครงการย่อยที่ 5

Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative

ไบโอฟาวลิงของพื้นผิวไคโทซานที่มีประจุและฟิล์มประกอบแบบบางของไคโทซานและ อนุพันธ์ที่มีประจุ

It has been demonstrated that positive or negative charges can be successfully introduced to the surface of chitosan films using heterogeneous chemical reactions. The extent of surface modification can be tailored by varying the reaction time and reagent concentration. The presence of N-sulfofurfuryl and quaternary ammonium groups has a remarkable impact on how the chitosan film responds to charged proteins in terms of adsorbed quantity and selectivity. It is interesting that the surface-modified chitosan films having similar wettability as judged by the contact angle analysis but distinguishable charge characteristics essentially possess different responses to proteins. The ability to sustain their charges in a broader pH range should make these surface-

charged chitosan films more versatile for applications than the native chitosan films for which the charge is altered as a function of environmental pH.

Charged derivatives of chitosan, *N*-sulfofurfuryl chitosan (SFC) and *N*-[(2-hydroxyl-3-trimethylammonium)propyl] chitosan chloride (HTACC) are capable of forming multilayer films in a fashion similar to chitosan. According to QCM analysis, the average thickness of the bilayer is arranged in the following order: PAH–SFC > CHI–PSS > HTACC–PAA. The multilayer films assembled on treated PET substrates were found to be stratified. As characterized by AFM, the multilayer film can completely cover the substrate. Alternate bioactivity of the deposited multilayer film was realized from the results of protein adsorption studies. It has been demonstrated that the proteins adsorbed onto the assembled film in a multilayer fashion, implying that the diffusion of the proteins within the multilayer structure has occurred. The fact that both HTACC and SFC are soluble over a broader pH range than and possess different bioactivity from chitosan suggests that these two charged derivatives of chitosan can be potential candidates for biomedical-related applications.

Quaternized N-alkyl chitosan films having different alkyl chain length were successfully prepared and all surface-modified chitosan films exhibited higher antibacterial activity against *Staphylococcus aureus* (gram positive bacteria) and *Escherichia coli* (gram negative bacteria) than the virgin chitosan film at pH 7. It was also found that the degree of quaternization has a considerable influence on the antibacterial activity. The additional positive charge and hydrophobicity introduced to the chitosan film after surface quaternization apparently make the quaternary ammonium-containing chitosan film a more favorable substrate for interacting with the negatively-charged membrane of the bacteria, leading to a higher antibacterial activity

โครงการย่อยที่ 6

Characterization of Silk Fabric Print Quality by Ink jet Ink การตรวจสอบสมบัติการพิมพ์ผ้าไหมด้วยหมึกพิมพ์อิงก์เจ็ต

Inkjet inks and screen inks with the same pigment dispersion were prepared and partly evaluated. The acceptable properties for the inkjet ink (pH of 8 to 9, viscosity of 4.6 to 6.3 mPa s, surface tension of 40 to 41mN m⁻¹, pigment particle size of 98 to 200

nm, and binder particle size of 111nm) gives Newtonian flow with good and smooth ink ejection. No agglomeration or significant increases in particle sizes were observed after two months storage. For the screen inks, non-Newtonian behaviour was observed over short and buttery viscosity of 4.2 to 5.3 Pa s. The number of printing passes over the same area and the pretreatment agent controls the colour and print quality provided by the inkjet printing. At least three-pass printing on the pretreated cotton fabric is needed to produce the same levels of colour gamut, colour gamut volume and colour saturation as is usual with screen prints. The pretreatment agent did not significantly affect the stiffness value and air permeability due to the deep penetration into the inter-fibre regions, and deposition into the fabric surface. The stiffness depends on the amount of ink that is deposited on the printed areas. Because of the three-pass printing of the inkjet ink to give required ink density, the bending length and the stiffness of inkjet ink printed on treated cotton fabrics was much lower than those of single-pass screen ink printed fabrics. The screen inks gave lower air permeability and poorer dry crock fastness to the fabric than did the inkjet inks because of the thicker ink film deposition on the fabric surface. Tone reproduction of both inks was as good as that of conventional printing. Inkjet inks can thus be used as an alternative to screen printing if the ink formulations are able to be prepared to give the required printed ink density by one-pass printing. The two different dispersions of pigment were successfully adapted towards incorporation into pigmented textile inks for use on the piezo ink jet printer.

In this study, three Thai silk filaments reeled by hand and by machine were analyzed comparatively for various properties. It was found that the reeling method could affect significantly the silk properties such as whiteness, polypeptide chain orientation or birefringence, crystallinity, heat resistance or softening point, dyeability, and denier or fiber size. The machine reeling increased the silk whiteness, birefringence, crystallinity, and softening point while decreasing the silk denier and dyeability in comparison with the hand reeling.

The ink jet inks were prepared and characterized for printability on four silk fabrics. Investigations of the fabrics interaction among the yarn, weave style and texture, and wicking behavior were carried out. The viscosities of the inks prepared were between 2.14 and 2.34 mPa s, which gave continuous and smooth printed images for all types of fabric. Silk fabrics A, C, and D were the plain weave while silk fabric B was twill weave. The hydrophilic/hydrophobic properties of the fabrics affected the print qualities. Silk fabric D was more hydrophobic than silk fabrics A, B, and C,

respectively. The twill weave silk (silk B) did not give better sharpness than the plain weave even though it had a wider weaving area and the higher wicking value for 2octanol. The MTFs of silk fabrics were measured by the sinusoidal test pattern contact method at 45° beam geometry. Low-pass filtering was used to remove noise and frequency of the weave pattern. The peak of the FFT spectrum followed the sinusoidal test pattern. The FFT peak contained the light scattering of the silk fabric. The low frequency peak was selected for the calculation of the fabrics' MTF. The d values were 0.0604, 0.0712, 0.0738, and 0.0873 for silks D, B, A, and C, respectively. The Yule-Nielsen model was studied for comparison with the MTF technique. The *n* values from the Yule-Nielsen model were 1.636, 1.644, 1.645, and 1.688 for silks D, B, A, and C, respectively. The n values of this model were related to the d values of the MTF. Silk D had the smallest d and n values, i.e., it had relatively good quality in sharpness because the light scattering in this silk fabric was lowest while silk B had relatively small d and n values, next to those of silk D. This indicated that the mechanical dot gain played a vital role in image sharpness despite the optical dot gain. After having considered all relevant parameters of weaving technique and wicking behavior, it might be possible to recommend silks B and D as suitable for printing with the current ink jet ink. The MTF can be used for evaluating textile fabric quality in terms of the light reflection, but the fabric print quality still greatly depends on the physical property of the fabrics. To conclude, to apply the MTF measurement method for evaluating (1) regularity, (2) light scattering, and (3) surface roughness of fabric, more research is needed especially on the anisotropic behavior and the three-dimensional structures of fabrics. Furthermore, ink distribution on fabric and ink-fabric interaction should be analyzed in order to know the reflected light from colorants dyed on fibers at various depths of the fabric. The measurement of reflected light from a fabric, as a three-dimensional object, must be taken into consideration.

This article used two sets of pigment dispersions namely the surface-modified pigments and the micro-encapsulated pigments. The surface-modified pigments contained the sulfonated group whereas the micro-encapsulated pigments had the carboxylic group with an additional polymer shell surrounding the pigments. The pigment dispersions were used to prepare four process pigmented ink jet inks for silk fabric printing. The fabrics treated with a cationic type agent were printed with the inks and compared with non-treated fabrics. Both inks had their own characteristics because of different pigment environments. Both ink jet inks had excellent stability, low

viscosity, and suitable surface tension for the high-resolution piezo-type print head. The surface-modified pigmented ink jet ink gave better color reproduction on both the treated and non-treated fabrics. A smaller color gamut volume of the microencapsulated pigmented ink jet inks was produced in both non-treated and treated fabrics. Color fastness to dry/wet crocking of the fabrics printed with the surface-modified pigmented ink jet inks and micro-encapsulated pigmented ink jet ink was similar but the light fastness of the latter was somewhat better because the halogen groups of the yellow pigment (C.I. PigmentYellow128) were more resistant to light. The micro-encapsulated pigmented inks gave better wash fastness. The wear comfort of the printed fabric as evaluated by stiffness was negative for the pre-treatment, but not for ink film deposition on the fabrics. Despite an almost equal number of threads, the fabric bending strength in the weft direction was much stronger than that in the warp direction.

The pretreatment process is necessary for the textile jet ink printing. The pretreating solutions of the amino compounds (aspartic acid, serine, glycine, sericin, chitosan and Sanfix 555) padded on the bleached silk fabric were confirmed by FTIR-ATR characterization by which the existence of NH₃⁺ group was obtained on the pretreated layer of the fabric surface. The sulfonate group of the pigmented ink can interact with the protonated amino group of the pretreated fabric by a dipole-dipole interaction. The hydrophilicity of the fabrics was improved by amino acid pretreatments. The pretreatments of the amino acid having low viscosity gave a deeper ink penetration. The printed fabrics thus exhibited excellent crock fastness when they were subjected to the crock fastness test. As such the color gamut of the amino acid treated fabrics was broader than that of the non-treated fabric but was narrower than those treated with chitosan, sericin or Sanfix 555. The sericin and chitosan are viscous solutions and yield a short distance of ink penetration. These pre-treating solutions can partly bind or fill the inter-fiber spaces; thus, the inks were mostly deposited on the yarn surfaces, providing a larger color gamut. Sericin pretreatment provided the excellent dry crock fastness, whereas chitosan slightly increased wet and dry crock fastness. Sericin increased the hydrophilicity of fabrics while the hydrophilicity of the fabrics was decreased by chitosan. The stiffness and air permeability of the glycine coated silk fabrics are close to that of the non-treated fabric because these pretreatments did not change the fiber arrangement. The stiffness of the silk fabrics treated with chitosan was significantly higher than other pretreatments because the viscous chitosan solution

gathered the silk fibers together and diminished flexibility of its individual fiber. The air permeability of the chitosan coated silk fabric was the highest because the chitosan solution was not only coated the yarns but also glued each fiber to a bundle of fiber and formed a packed yarn, introducing a wider inter-yarn space for air to pass through. The tendency of stiffness and air permeability of sericin pretreated fabrics yielded the same result as for the chitosan treatment. Wash fastness after printing is excellent because the binder in the ink formulation helped improve the ink fixation on the silk surfaces. Sanfix 555 (commercial pretreatment) provided the similar ink penetration, stiffness and air permeability of the printed fabrics to that of the amino acid. The color gamut from Sanfix 555 pretreatment was similar to those of chitosan and sericin. Unfortunately the crock fastness of the Sanfix 555 pretreated fabrics could not be improved.

A set of four color pigmented ink jet inks was prepared in-house from four color jet ink dispersions which can meet the standard requirement. Surface-modified pigments with sulfonated groups by the manufacturer. The pre-treating solutions of chitosan padded on the bleached silk fabric were studied for improvement in color and gamut volume and wash fastness.

The average particle sizes of the four-color pigmented inks were in the range of 60 – 105 nm. The dispersed particle sizes of the cyan and yellow inks were stable for one year while magenta and black inks had very insignificant amounts (less than 1%) of the oversized particles with a size range at approximately 8-120 µm after 10 months of storage. The freshly prepared inks were judged to be suitable for a piezo type ink jet printer because the inks provided high surface tension with low viscosity governed by the Newtonian flow. The ink could be jetted evenly and smoothly from the printer nozzles. The increase in hydrophilicity of the fabrics by the pretreatment formulation helped improve the ink absorption on the silk surfaces. Chitosan pretreatment enhanced color gamut and wash fastness of the printed fabrics. The sulfonated group or the carboxylate group of the pigmented ink can interact with the protonated amino group of the pretreated fabric by an ionic interaction. On the other hand, it exhibited the low color strength reflected by the K/S values. The black pigmented ink gave the much higher K/S values because of the inherent COOH, and OH functional groups generated during the production process of carbon black. Crock fastness of the untreated fabric and the treated fabrics with low concentration and low MW gave the better results. Wet crock fastness of the fabric was slightly poorer than the dry crock fastness.

เนื้อหางานวิจัย

โครงการส่งเสริมกลุ่มวิจัยนี้ประกอบด้วยโครงการวิจัยย่อยจำนวน 6 โครงการดังต่อไปนี้ ซึ่งสามารถ สรุปเนื้อหาของงานวิจัยแต่ละโครงการย่อยด้วยการทำภาพรวมดังนี้

โครงการย่อยที่ 1 Utilization of Synthetic Polymers in Environmental Treatment การใช้พอลิเมอร์สังเคราะห์ในการบำบัดทางสิ่งแวคล้อม

โครงการย่อยที่ 2 Influence of Additives on Acrylamide Superabsorbent Polymer Performance
อิทธิพลของสารเติมแต่งสมรรถภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลา

โครงการย่อยที่ 3 A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of Silane in Latex

> วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจากกระบวนการโซล-เจ ลของไซเลนในน้ำยาง)

โครงการย่อยที่ 4 Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends
เทอร์ โมพลาสติกอิลาส โตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน

โครงการย่อยที่ 5 Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative

ใบโอฟาวลิงของพื้นผิวใกโทซานที่มีประจุและฟิล์มประกอบแบบบางของ ใกโทซานและอนุพันธ์ที่มีประจุ

โครงการย่อยที่ 6 Characterization of Silk Fabric Print Quality by Ink jet Ink

การตรวจสอบสมบัติการพิมพ์ผ้าใหมด้วยหมึกพิมพ์อิงก์เจ็ต

โครงการวิจัยนี้มีแนวคิดง่ายคือ นำสารจากธรรมชาติที่เรียกว่า พอลิเมอร์สีเขียว คือ สารที่ สามารถเกิดขึ้นได้ง่ายตามธรรมชาติ หมุนเวียนได้โดยวิธีการเพาะปลูก หรือเพาะเลี้ยงทางเกษตรกรรม มาดัดแปรด้วยวิธีทางกายภาพ ทางกล หรือทางเคมี เพื่อปรับปรุง หรือดัดแปรสมบัติต่าง ๆ ที่ดีอยู่เดิม ให้คงไว้ และเสริมสมบัติด้านอื่นจากการดัดแปรด้วยเทคนิคต่างๆ นั้น จะทำให้เกิดสารใหม่ที่มี คุณภาพดีขึ้น กล่าวคือ สามารถคงลักษณะทางธรรมชาติ เช่น ย่อยสลายได้ ไม่เป็นพิษแก่ผู้ใช้และ สิ่งแวดล้อม นอกจากนี้ ยังสามารถนำสาร หรือ พอลิเมอร์ที่ผลิตได้ไปทำให้สิ่งแวดล้อมดีขึ้น โครงการวิจัยย่อยเหล่านี้ สามารถสรุปเนื้อหางานวิจัยได้ดังนี้

โครงการที่ 1 Utilization of Synthetic Polymers in Environmental Treatment (การใช้พอถิเมอร์ สังเคราะห์ในการบำบัดทางสิ่งแวดล้อม)

เป็นการสังเคราะห์พอลิเมอร์ดูคซึมน้ำมากจากอะคริลาไมค์มอนอเมอร์ ซึ่งเป็นฐานของสาร พอลิเมอร์ตระ กูลนี้มาทำปฏิกิริยาทางเคมีกับไวนิลอะคริเลตมอนอเมอร์ชนิคอื่น ๆ ด้วยสารเริ่ม ปฏิกิริยาประเภทออกซิเคชันและรีคักชัน ณ อุณหภูมิไม่สูง และมีระยะเวลาทำปฏิกิริยาสั้น ๆ ประมาณ 30 นาที ขั้นตอนการทำสารให้บริสุทธิ์ใช้สารเคมีราคาถูกและไม่เป็นอันตรายมากนัก ใน โครงการย่อยนี้ได้ศึกษาการทำกราฟต์โคพอลิเมอไรเซชันของแป้งมันสำปะหลังกราฟต์ด้วยกรด อะคริลิกและอะคริลาไมด์ โคยมี่สารก่อการตกตะกอนอนินทรีย์หลายชนิคตามเวเลนซีได้เป็นพอลิเมอร์ตระกูลฟลอกกูเลนต์ ซึ่งใช้ประโยชน์ในการบำบัคน้ำเสียจากโรงงานสิ่งทอ โดยลดความเข้มของ สีลง เช่น สีน้ำเงินของ สีเซเลอุส สีไดเร็กบูล และสีแดงของคอนโกเรด และลดความขุ่นของน้ำทิ้ง เหล่านี้โดยใช้สารขุ่นสังเคราะห์เกโอลิน (โปรดศึกษาเอกสารแนบ Paper ที่ 1, 3 และ 4 และ Proceedings 1) นอกจากนี้โครงการยังได้ตระหนักถึงตัวทำละลายสารอินทรีย์ที่ปนเปื้อนในน้ำ จึงได้ สังเคราะห์บีคดูคซึมและคายตัวทำละลายอินทรีย์จากเมทิลเมทาคริเลต-ไดไวนิลเบนซีน โดยศึกษา กรรมวิธีการเกิดเป็นบีคพอลิเมอร์ขนาดเส้นผ่าสูนย์กลางอยู่ในระดับมิลลิเมตร ยังได้ศึกษาการเพิ่ม ความสามารถในการดูคซึมและคายตัวทำละลายอินทรีย์ต้วยการใส่มอนอเมอร์อะคริเลตที่มีความยาว โซ่พอลิเมอร์มากขึ้น เพื่อให้สอดกล้องกับความยาวโซ่ของตัวทำละลายอินทรีย์หลายประเภท (Paper ที่ 2)

โครงการย่อยที่ 2 Influence of Additives on Acrylamide Superabsorbent Polymer Performance (อิทธิพลของสารเติมแต่งสมรรภาพของพอลิเมอร์ดูดซึมน้ำมากชนิดอะคริลาไมด์)

เป็นการสังเคราะห์พอลิเมอร์ดูคซึมนาช้ำมากด้วยการใช้อะคริลาไมค์มอนอเมอร์เป็นหลัก ของสารที่จะได้ ทำปฏิกิริยาร่วมกับกรดไวนิลที่มีจำนวนของโปรตอนในกรดตั้งแต่ 1 โปรตอน ถึง 2 โปรตอน เพื่อศึกษาอิทธิพลของกรดต่อประสิทธิภาพการดูคซึมน้ำ ซึ่งผลการทดลองคัง Paper ที่ 5 และ 6 นอกจากนี้ได้ใช้สารเติมแต่ง 2 ประเภท คือ ซิลิกา และไมกา เติมในปฏิกิริยา เพื่อให้เสริม กุณลักษณะที่ดีคือ มีความแข็งแรงของไฮโครเจลโดยค่าของมอดุลัสเพิ่มขึ้น พร้องกับค่าการดูคซึมน้ำ ที่ลดลงอย่างไม่นัยสำคัญ โครงการนี้ได้ตระหนักถึงค่าความหนาแน่นของไมกา และควบคุมให้ น้ำหนักของเจลไม่เพิ่มมากเกินภาระของผู้ใช้ ซึ่งอาจเป็นอุปสรรคต่อการนำไปใช้งาน คือมีน้ำหนักมากเกินไป ในส่วนของซิลิกา ซึ่งเป็นสารที่มีการใช้งานอย่างกว้างขวางในไฮโดรเจลนั้นโครงการวิจัยได้เปรียบเทียบกรรมวิธี 2 รูปแบบที่นำซิลิกามาใส่ในปฏิกิริยา เพื่อสังเกตการเกิดกราฟ ดิงของเจลบนซิลิกา และค่าการดูคซึมน้ำ และเปรียบเทียบกับการนำซิลิกามาผสมภายหลังได้พอลิเมอร์เจลแล้ว (ไม่ใส่ซิลิกาก่อนการเกิดปฏิกิริยา) ดังที่ได้แสดงไว้ใน Paperหมายเลขที่ 7 และ 8 และนำเสนอใน Proceedings 2

โครงการย่อยที่ 3 A Novel Method for Producing NR-Silica Composites from Sol-Gel Process of Silane in Latex (วิธีใหม่สำหรับผลิตคอมโพสิตของยางธรรมชาติและซิลิกาจาก กระบวนการโซล-เจลของใชเลนในน้ำยาง)

โครงการนี้เริ่มต้นค้วยการศึกษาประสิทธิ์ภาพของคู่อินิชิเอเตอร์ 3 คู่ ได้แก่ คู่ที่ 1 ได้แก่ cumene hydroperoxide (CHPO)/tetraethylene pentamine (TEPA), คู่ที่ 2 ได้แก่ tert-butyl hydroperoxide (TBHPO)/TEPA, และ คู่ที่ 3 ได้แก่ potassium persulfate ($K_2S_2O_8$)/sodium thiosulfate ($Na_2S_2O_3$) มีผลต่อการเกิดกราฟติงบนโซ่ของยางธรรมชาติในน้ำยางลาเท็กซ์ เพื่อหาคู่อินิชิเอเตอร์ที่ เหมาะสมกับการทำปฏิกิริยากราฟติงต่อ ไป ผลการวิจัยบ่งว่า กราฟต์โคพอลิเมอร์ที่เริ่มปฏิกิริยาด้วย CHPO/TEPA ให้ค่าร้อยละของประสิทธิภาพการกราฟต์และร้อยละของยางที่กราฟต์มากที่สุด มี ผลิตภัณฑ์ที่นำไปใช้งานได้มากที่สุด รายละเอียดนำเสนอใน **Paper ที่ 9** นอกจากนี้ ได้นำหลักการ การปลดปล่อยผงซิลิกาจากการตั้งต้นที่มีธาตุซิลิกาประกอบอยู่ เช่น ethoxysilanes หรือ alkytriethoxysilane เพื่อให้ผงซิลิกาที่เกิดระหว่างการเกิดปฏิกิริยาต่าง ๆ ก่อนการบ่มน้ำยาง มีการ กระจายตัวอย่างสม่ำเสมอ เพื่อทำให้สมบัติต่าง ๆ ดีขึ้น ชนิดของกลุ่มแอลกิลและการผสมไซเลน

หลายชนิคมีผลต่อการปล่อยผงซิลิกา รายละเอียดอยู่ใน Paper ที่ 10 และ 11 จากข้อสรุปในPaperที่ 9 นำยางธรรมชาติกราฟต์ด้วยเมทิลเมทาคริเลตมาผสมเททระเอกซ์ทอกซิไซเลนเพื่อผลิตแผ่นฟิล์มจาก น้ำยางธรรมชาติ ซึ่งผลิตภัณฑ์ที่ได้มีสัณฐานวิทยาแบบแกน/เปลือก และแผ่นฟิล์มมีความขรุขระมาก ขึ้นและมีความเหนียวหนีคลคลง ดังที่ได้กล่าวไว้ในPaperที่ 12 สำหรับยางธรรมชาติฉายรังสีเพียง บางส่วนมาผสมกับแอลคิลไซเลนส์ ผสมและอบตามขั้นตอนปกติ เพื่อผลิตแผ่นยางที่มีความบริสุทธิ์ มาก ซึ่งเหมาะสำหรับวัสดุทางการแพทย์ ดังPaperที่ 13 โครงการย่อยนี้เน้นการผสมสารเสริมแรงซิลิ กาที่เกิดขึ้นในระยะการเกิดปฏิกิริยาและอบแห้ง ด้วยวิธีทางเคมี หรือรังสี และนำเสนอใน Proceedings 3 -12)

โครงการย่อยที่ 4 Thermoplastic Elastomer of Polyethylene and Natural Rubber Blends (เทอร์โม พลาสติกอิลาสโตเมอร์จากพอลิเมอร์ผสมของยางธรรมชาติกับพอลิเอทิลีน)

โครงการวิจัยเน้นการคัดแปรลักษณะทางเคมีของยางธรรมชาติด้วยวิธีทางเคมีเพื่อให้เป็นยาง เทอร์โมพลาสติกด้วยการผสมกับเรซินพอลิเอทิลีน ที่ขึ้นรปได้ด้วยเครื่องจักรและอปกรณ์ทาง พลาสติก การคัดแปรลักษณะของยางธรรมชาติคังกล่าวทำได้โดยการทำรีแอกซ์ที่ฟเบลนคิงโคยใช้ สารช่วยการผสมประเภทฟินอลโดยใช้สตรที่กำหนดขึ้นเอง ผสมในสัคส่วนที่ต่าง ๆ กันและระบบ การบุ่มยางผสมเม็ดพลาสติก 3 ระบบ คือ ระบบซัลเฟอร์ ระบบเพอร์ออกไซด์ และระบบผสมระหว่าง ทั้งสองเพื่อติดตามผลของสารช่วยเข้ากันได้ระหว่างยางธรรมชาติกับพลาสติกพอลิเอทิลีนว่า ระบบใด ดีกว่ากัน**ดัง Paper ที่ 14** ติดตามการเปลี่ยนแปลงทางความร้อนและสัณฐานวิทยา ดัง Paper ที่ 15 นำ ยางธรรมชาติมาดัดแปรโครงสร้างด้วยการทำปฏิกิริยาอิพอกซิเดชันให้เป็นยางอิพอกไซด์แล้วนามา ผสมกับพอลิเอทิลีนซึ่งมีสารเสริมความเข้ากันได้ 3 ประเภท คือ กราฟต์โคพอลิเมอร์ของพอลิเอทิลีน และมาเลอิกแอนไฮไครค์ และพอลิเอทิลีนคัดแปรค้วยสารประกอบฟินอล เพื่อศึกษาประสิทธิภาพ ของสารเสริมความเข้ากันได้ **ดัง Paper ที่ 16** นอกจากนี้ ยังนำยางธรรมชาติมาดัดแปรด้วยมาเลอิก แอนไฮไดรด์และเตรียมสารเสริมความเข้ากันได้ด้วยไดเมทิลลอลฟีนอล และ ไฮดรอกซิเมทิลฟีนอล นำสารเหล่านี้มาผสมกันโดยผสมน้ำมันพาราฟินในเครื่องนวด เพื่อศึกษาประสิทธิภาพของน้ำมันต่อ การขึ้นรูปยางเทอร์โมพลาสติก ดังPaper ที่ 17 ในทำนองเดียวกัน นำยางอิพอกไซค์ผสมน้ำมัน พาราฟินเสริมด้วยสารเสริมความเข้ากันได้ด้วยระบบการบ่มที่กล่าวมาแล้วมาขึ้นรูปและตรวจสอบ สมบัติเชิงใดนามิกส์ เชิงกลและสัณฐานวิทยา ดัง Paper ที่ 18 และนำเสนอใน Proceedings 13-16

โครงการย่อยที่ 5 Biofouling of Surface-Charged Chitosan and Assembled Thin Film of Chitosan and Its Charged Derivative (ใบโอฟาวลิงของพื้นผิวใคโทซานที่มีประจุและฟิล์ม ประกอบแบบบางของใคโทซานและอนุพันธ์ที่มีประจุ)

โครงการนี้เน้นการปรับปรุงพื้นผิวของไคโทซานเป็นหลักให้มีสมบัติดูดซับโปรตีนตาม ประจุที่มีที่พื้นผิว ด้วยการปรับหมู่ฟังก์ชันด้วยวิธีการทางเคมี เช่น ทำเมทิลเลชันด้วยเมทิลไอโอไดด์ และรีดักทิฟแอลคิลเลชันด้วย 5-พอร์มิล-2-ฟิวเรนซัลโฟนิกแอซิดเพื่อให้มีประจุบวกและประจุลบ ตามลำดับ มีกระบวนการติดตามการเปลี่ยนหมู่ฟังก์ชันและความสามารถในการดูดซับซึ่งคีกว่าไคโท ซานที่ไม่มีการดัดแปรพื้นผิวดัง Paper ที่ 19 ได้ดัดแปรพื้นผิวไคโทซานมากยิ่งขึ้น เพื่อให้ประกอบ แผ่นฟิล์มเป็นชั้น ๆ ได้ N-sulfofurfuryl chitosan และ N-[(2-hydroxyl-3-trimethyl ammonium) propyl]chitosan chloride (HTACC) ติดตามการเปลี่ยนแปลงด้วย quartz crystal microbalance (QCM) และชั้นฟิล์มเหล่านี้สามารถอยู่บนพื้นผิวของพีอีที่ที่ฉายด้วยไอพลาสมาแล้วได้เป็นชั้น ๆ ซึ่ง ตรวจสอบได้ด้วยค่ามุมสัมผัสของน้ำ พื้นผิวนี้มีปฏิกิริยาต่อจุลชีพ ดัง Paperที่ 20 พื้นผิวของไคโท ซานสามารถทำให้ด้านแบกทีเรียได้มากขึ้นด้วยการทำให้หมู่อะมิโนกลายเป็นเกลือควอเทอร์นารี แอมโมเนียมด้วยวิธีทางเคมี 2 วิธีผ่านระบบวิวิธพันธ์ เพื่อให้เกิดประจุบวกและไม่ชอบน้ำ ได้ทดสอบ พื้นผิวเหล่านี้กับแบกที่เรียแกรมบวกและแกรมลบ ดัง Paperที่ 21 และนำเสนอใน Proceedings 17-23

โครงการย่อยที่ 6 Characterization of Silk Fabric Print Quality by Ink jet Ink (การตรวจสอบ สมบัติการพิมพ์ผ้าใหมด้วยหมึกพิมพ์อิงก์เจ็ต)

โครงการนี้เน้นหลักด้านการศึกษาสมบัติของเส้นใหม ผ้าใหม และการพิมพ์บนผ้าใหม ได้วิเคราะห์ เบื้องต้นเกี่ยวกับการพิมพ์ผ้าฝ้ายซึ่งมีราคาถูกกว่าก่อนว่าพิมพ์ด้วยหมึกพิมพ์ชุดที่เตรียมขึ้นมาได้ หรือไม่ พร้อมกับการวิจัยด้านเส้นใหมและหาแหล่งของผ้าใหมพื้นบ้าน การวิจัยด้านเส้นใหมได้วิจัย เป็นเวลา 1 ปี จึงทำให้นักวิจัยในทีมได้เขียนหนังสือเกี่ยวข้องกับใหมมา 1 เล่ม ดังห**นังสือชื่อ ใหมไทย จำนวน 114 หน้า** และPaperวิจัยจากงานวิจัยเบื้องต้นนี้เ**ป็น Paperที่ 22** ซึ่งบรรยายเกี่ยวกับสมบัติของ ใหมไทยที่ใช้ในอุตสาหกรรมที่สาวด้วยมือ (ของชาวบ้าน) กับเครื่องจักร ๖ของอุตสาหกรรม) การ เปรียบเทียบการพิมพ์ผ้าระหว่างการพิมพ์ด้วยระบบอิงก์เจ็ตซึ่งเป็นการพิมพ์ระบบดิจิทัลสมัยใหม่และ คาดว่าเป็นอนาคตของการพิมพ์สิ่งทอต่อไป กับการพิมพ์ด้วยระบบสกรีน พบว่า การพิมพ์ระบบอิงก์ เจ็ตสามารถพิมพ์สิ่งทอได้ เช่น ผ้าฝ้าย ดัง **Paper ที่ 23** จึงเริ่มงานพิมพ์ผ้าใหมด้วยการพิมพ์อิงก์เจ็ต

และตรวจสอบคุณภาพด้านการพิมพ์ผ้าด้วยเทคนิค Modulation transfer function ซึ่งอาศัยเทคนิคนี้ที่ ใช้ในกระดาษที่มีผิวหน้าเรียบ คุณภาพการพิมพ์ผ้าใหมนอกจากขึ้นกับคุณภาพของหมึกพิมพ์แล้วยัง ขึ้นกับลักษณะการทอผ้าด้วย ดัง Paper ที่ 24 การพิมพ์สิ่งทอในระบบการพิมพ์อิงก์เจ็ต หันมาใช้สาร ให้สีเป็นสารสีแทนสีย้อม ดังนั้น การพิมพ์ผ้าใหมด้วยหมึกพิมพ์อิงก์เจ็ตที่คิดค้นสูตรเอง ได้ ดำเนินการด้วยสารเคมีนำเข้าจากประเทศญี่ปุ่น ทำให้ได้เรียนรู้เทคนิคต่าง ๆ ของการพิมพ์ระบบนี้ และพบว่า การปรับพื้นผิวของผ้าพิมพ์มีผลกระทบทั้งด้านบวกและลบต่อการพิมพ์และการใช้งานของ ผ้าหลังการพิมพ์ดังPaper ที่ 25 จึงได้หันมาใช้สารทดแทนจากผลิตภัณฑ์จากเกษตรกรรม เช่น ไคโท ซาน และสารเคมีกลุ่มกรดอะมิโน ดัง Paper ที่ 26 และเลขที่คำขออนุสิทธิบัตร 0803000082 วันที่ รับคำขอ 23 มกราคม 2551

ปฏิสัมพันธ์ของสารเคลือบผิวและสารสีที่ใช้มีผลต่อสีพิมพ์ที่ได้ ดังนั้น การศึกษาระดับแคบ แต่ลึกด้านสารสีได้แสดงไว้ใน Paper ที่ 27 ส่วน Paper ที่ 28 ได้รายงานสาระต่าง ๆ เกี่ยวข้องกับการ พิมพ์ผ้า โดยเฉพาะผ้าไหมด้วยระบบการพิมพ์อิงก์เจ็ต นอกจากนี้ยังมีเนื้อหาที่นำเสนอใน Proceedings 24-30

รายนามกลุ่มวิจัย

ตารางที่ 1 คณาจารย์ที่เข้าร่วมโครงการประกอบด้วยคณาจารย์จากภาควิชาต่าง ๆ

		เริ่มเข้าร่วมโครงการ			ปัจจุบัน	
ชื่อ-นามสกุล	ตำแหน่งวิชาการ	สังกัด	ตำแหน่งใน	ตำแหน่งวิชาการ	สังกัด	สถานภาพปัจจุบัน
			โครงการ			
1. ดร. สุดา	ศาสตราจารย์ 11	ภาควิชา วท. ภาพถ่ายและ	หัวหน้าโครงการ	ศาสตราจารย์ 11	ภาควิชา วท. ภาพถ่ายและ	ศาสตราจารย์ 11
เกียรติกำจรวงศ์		เทคโนโลยีทางการพิมพ์	หัวหน้าโครงการ		เทคโนโลยีทางการพิมพ์	
		คณะวิทยาศาสตร์	ย่อยที่ 1, 2 และ		คณะวิทยาศาสตร์	
		จุฬาลงกรณ์มหาวิทยาลัย	6		จุฬาลงกรณ์มหาวิทยาลัย	
2. ดร. วนิดา	รองศาสตราจารย์ 8	ภาควิชาวิทยาศาสตร์ทั่วไป	หัวหน้าโครงการ	รองศาสตราจารย์ 9	ภาควิชาวิทยาศาสตร์ทั่วไป	กำลังขอตำแหน่ง
จีนศาสตร์		คณะวิทยาศาสตร์	ย่อยที่ 2		คณะวิทยาศาสตร์	วิชาการระดับ
		จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	ศาสตราจารย์ 10
3. ดร. วราวุฒิ	ผู้ช่วยศาสตราจารย์ 7	ภาควิชาเคมี คณะ	หัวหน้าโครงการ	ผู้ช่วยศาสตราจารย์ 8	ภาควิชาเคมี คณะ	ผู้ช่วย
ตั้งพสุธาดล		วิทยาศาสตร์	ย่อย ที่ 3		วิทยาศาสตร์ จุฬา ฯ	ศาสตราจารย์ 8
		จุฬาลงกรณ์มหาวิทยาลัย				
4. ดร. เจริญ	ผู้ช่วยศาสตราจารย์ 8	ภาควิชาเทคโนโลยียางและ	หัวหน้าโครงการ	รองศาสตราจารย์ 9	ภาควิชาเทคโนโลยียางและ	ผู้อำนวยการ
นาคะสรรค์		พอลิเมอร์ คณะวิทยาศาสตร์	ย่อย ที่ 4		พอลิเมอร์ คณะวิทยาศาสตร์	ศูนย์วิจัยแห่ง
		และเทคโนโลยี			และเทคโนโลยี	ความเป็นเลิศด้าน
		มหาวิทยาลัยสงขลานครินทร์			มหาวิทยาลัยสงขลานครินทร์	ยางธรรมชาติ
		วิทยาเขตปัตตานี			วิทยาเขตปัตตานี	

5. ดร. วรวีร์	ผู้ช่วยศาสตราจารย์ 7	ภาควิชาเคมี คณะ	หัวหน้าโครงการ	ผู้ช่วยศาสตราจารย์ 8	ภาควิชาเคมี คณะ	กำลังขอตำแหน่ง
โฮ่เวน (ชื่อเดิม วิภาวี)		วิทยาศาสตร์	ย่อย ที่ 5		วิทยาศาสตร์	วิชาการระดับรอง
		จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	ศาสตราจารย์
6. ดร. อุษา	ผู้ช่วยศาสตราจารย์ 7	ภาควิชาวัสดุศาสตร์	หัวหน้าโครงการ	ผู้ช่วยศาสตราจารย์ 8	ภาควิชาวัสดุศาสตร์	
แสงวัฒนาโรจน์		คณะวิทยาศาสตร์	ย่อย ที่ 6		คณะวิทยาศาสตร์	
		จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	
7. ดร. อรวรรณ	รองศาสตราจารย์ 9	ภาควิชาเคมี คณะ	นักวิจัย	รองศาสตราจารย์ 9	ภาควิชาเคมี คณะ	
ชัยลภากุล		วิทยาศาสตร์			วิทยาศาสตร์	
		จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	
8. อาซีซัน	ผู้ช่วยศาสตราจารย์ 7	ภาควิชาเทคโนโลยียางและ	นักวิจัย	ผู้ช่วยศาสตราจารย์ 8	ภาควิชาเทคโนโลยียางและ	อยู่ในขั้นตอนขอ
แกสมาน		พอลิเมอร์ คณะวิทยาศาสตร์		และอยู่ในขั้นตอนขอ	พอลิเมอร์ คณะวิทยาศาสตร์	กำหนดตำแหน่ง
		และเทคโนโลยี		กำหนดตำแหน่ง	และเทคโนโลยี	วิชาการระดับรอง
		มหาวิทยาลัยสงขลานครินทร์		วิชาการระดับรอง	มหาวิทยาลัยสงขลานครินทร์	ศาสตราจารย์
		วิทยาเขตปัตตานี		ศาสตราจารย์	วิทยาเขตปัตตานี	
9. ดร. สุภาภรณ์	ผู้ช่วยศาสตราจารย์ 7	ภาควิชา วท. ภาพถ่ายและ	นักวิจัย และ	ผู้ช่วยศาสตราจารย์ 8	ภาควิชา วท. ภาพถ่ายและ	
นพคุณดิลกรัตน์		เทคโนโลยีทางการพิมพ์	ผู้ช่วยหัวหน้า		เทคโนโลยีทางการพิมพ์	
		คณะวิทยาศาสตร์	โครงการย่อย ที่		คณะวิทยาศาสตร์	
		จุฬาลงกรณ์มหาวิทยาลัย	2		จุฬาลงกรณ์มหาวิทยาลัย	
10. ดร. สิริวรรณ	อาจารย์พนักงาน	ภาควิชา วท. ภาพถ่ายและ	นักวิจัย และ	อาจารย์พนักงาน	ภาควิชา วท. ภาพถ่ายและ	
พัฒนาฤดี	มหาวิทยาลัย A 5	เทคโนโลยีทางการพิมพ์	ผู้ช่วยหัวหน้า	มหาวิทยาลัย A 5	เทคโนโลยีทางการพิมพ์	
		คณะวิทยาศาสตร์	โครงการย่อย ที่		คณะวิทยาศาสตร์	
		จุฬาลงกรณ์มหาวิทยาลัย	1		จุฬาลงกรณ์มหาวิทยาลัย	
11. ดร. ชวาล	อาจารย์ ระดับ 6	ภาควิชา วท. ภาพถ่ายและ	นักวิจัย	ผู้ช่วยศาสตราจารย์	ภาควิชา วท. ภาพถ่ายและ	ที่ปรึกษาของ

คูร์พิพัฒน์		เทคโนโลยีทางการพิมพ์		ระดับ 7	เทคโนโลยีทางการพิมพ์	สมาคมการ
		คณะวิทยาศาสตร์			คณะวิทยาศาสตร์	ถ่ายภาพดิจิทัล
		• จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	แห่งประเทศไทย
12. ดร. อมราวรรณ	อาจารย์พนักงาน	ภาควิชาเคมี คณะ	นักวิจัย	อาจารย์พนักงาน	ภาควิชาเคมี คณะ	
อินทรศิริ	มหาวิทยาลัย A 5	วิทยาศาสตร์		มหาวิทยาลัย A 5	วิทยาศาสตร์	_
		จุฬาลงกรณ์มหาวิทยาลัย			จุฬาลงกรณ์มหาวิทยาลัย	
13. ดร. รุ่งกานต์	อาจารย์พนักงาน	ภาควิชาวิทยาศาสตร์ทั่วไป	นักวิจัย	อาจารย์พนักงาน	ภาควิชาวิทยาศาสตร์ทั่วไป	
้ นุ้ยสินธุ์	มหาวิทยาลัย A 5	คณะวิทยาศาสตร์		มหาวิทยาลัย A 5	คณะวิทยาศาสตร์	
		้ จุฬาลงกรณ์มหาวิทยาลัย			้ จุฬาลงกรณ์มหาวิทยาลัย	
14. ดร. วิยงค์	นักวิจัยระดับ 1	์ ศูนย์นาโนเทคโนโลยี	นักวิจัย	นักวิจัยระดับ 2	์ ศูนย์นาโนเทคโนโลยีแห่งชาติ	หัวหน้าหน่วยวิจัย
กังวานศุภมงคล		้ แห่งชาติ สำนักพัฒนา			สำนักพัฒนาวิทยาศาสตร์และ	นาโนโคตทิง ศูนย์
·		วิทยาศาสตร์และเทคโนโลยี			เทคโนโลยีแห่งชาติ	นาโนเทคโนโลยี
		แห่งชาติ กระทรวง			กระทรวงวิทยาศาสตร์ และ	แห่งชาติ ฯ
		วิทยาศาสตร์ และเทคโนโลยี			เทคโนโลยี	
15. ดร. ธีรวัฒน์	อาจารย์พนักงาน	ภาควิชาวิทยาศาสตร์ทั่วไป	นักวิจัย	ผู้ช่วยผู้จัดการ	ธุรกิจส่วนตัว	
ธ ีรภัทรพรชัย	มหาวิทยาลัย A 5	คณะวิทยาศาสตร์				
		้ จุฬาลงกรณ์มหาวิทยาลัย				
16. อาจารย์ นิรมล	อาจารย์พนักงาน	ภาควิชา วท. ภาพถ่ายและ	ผู้ช่วยวิจัย	พนักงานการพิมพ์	โรงพิมพ์อัมรินทร์พริ้นติ้ง	ผู้ออกแบบหนังสือ
เกษตรศิลป์ชัย	มหาวิทยาลัย A 5	เทคโนโลยีทางการพิมพ์			(มหาชน) จำกัด	้ เน้นด้านการใช้สี
		คณะวิทยาศาสตร์				ในการสื่อความ
		 จุฬาลงกรณ์มหาวิทยาลัย				วู้สึกสี
17. ดร. นิสภา คีตปันย์	นักวิจัย	- ศูนย์เทคโนโลยีโลหะและ	นักวิจัย	นักวิจัย	กระทรวงวิทยาศาสตร์	
		วัสดุแห่งชาติ สำนักพัฒนา			เทคโนโลยี	

		วิทยาศาสตร์และเทคโนโลยี				
		แห่งชาติ				
		กระทรวงวิทยาศาสตร์ และ				
		เทคโนโลยี				
18. นางสาววนิดา	ปริญญาโท จบ	กำลังสมัครเข้าเรียนปริญญา	ผู้ช่วยวิจัยบาง	นิสิตปริญญาเอก	หลักสูตรวิทยาศาสตร์	ศึกษาปริญญาเอก
ซ้อนสุข	หลักสูตรวิทยาศาสตร์	เอก สาขาวิทยาศาสตร์	เวลา ช่วยงาน		สิ่งแวดล้อม (นานาชาติ)	สาขาวิทยาศาสตร์
	สิ่งแวดล้อม บัณฑิต	สิ่งแวดล้อม จุฬา	วิจัยช่วงเดือน		บัณฑิตวิทยาลัย จุฬาลงกรณ์	สิ่ง แวดล้อม
	วิทยาลัย จุฬาลงกรณ์		มกราคม –		มหาวิทยาลัย	จุฬา ฯ
	มหาวิทยาลัย		เมษายน 2548			

ตารางที่ 2 รายนามนิสิตผู้ช่วยวิจัยที่สำเร็จการศึกษา

		เริ่มร่วมเข้าโครงการ		ปัจจุบัน			
ชื่อ-นามสกุล	ตำแหน่งวิชาการ	สังกัด	ตำแหน่งใน โครงการ	ตำแหน่งวิชาการ	สังกัด	สถานภาพปัจจุบัน	
1. นายวิวัฒน์	นิสิตปริญญาโท	หลักสูตรวิทยาศาสตร์	นิสิตผู้ช่วยวิจัย	พนักงานบริษัท	ธุรกิจส่วนตัว	สำเร็จการศึกษาภาค	
จิระประเสริฐกุล		สิ่งแวดล้อม บัณฑิตวิทยาลัย	บางเวลา			ปลาย ปีการศึกษา	
		จุฬาลงกรณ์มหาวิทยาลัย				2546	
						(เดือนเมษายน	
						2547)	
2. นางสาวพิริยา	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	พนักงานบริษัท	บริษัทการพิมพ์	สำเร็จการศึกษา	
พุทธิมัย		เทคโนโลยีทางการพิมพ์ คณะวิทยาศาสตร์	บางเวลา			ปีการศึกษา 2546	
		จุฬาลงกรณ์มหาวิทยาลัย					
3. นางสาวศันสนีย์	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	พนักงานบริษัท	บริษัทการพิมพ์และบรรจุภัณฑ์	สำเร็จการศึกษา	
ลีลาจริยกุล		เทคโนโลยีทางการพิมพ์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	บางเวลา		จำกัด	ปีการศึกษา 2546	
4. นางสาว อรศิริ	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นักศึกษาปริญญาเอก	Sydney University, Australia	สำเร็จการศึกษา	
อังศุประเวศ	.	า วิทยาศาสตร์พอลิเมอร์ คณะ	ข บางเวลา	และ Research		ปีการศึกษา 2547	
ч		วิทยาศาสตร์ จุฬาลงกรณ์		Assistant ของ บริษัท			
		มหาวิทยาลัย		Ancel (Australia)		มหาวิทยาลัย	
5. นางสาวดวงพร	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	ผู้ช่วยนักวิจัย	์ ศูนย์นาโนเทคโนโลยีแห่งชาติ	สำเร็จการศึกษาภาค	

	วิทยาศาสตร์พอลิเมอร์ คณะ			สำนักพัฒนาวิทยาศาสตร์และ	ปลาย ปีการศึกษา
	วิทยาศาสตร์ จุฬาลงกรณ์			เทคโนโลยีแห่งชาติ	2547
	มหาวิทยาลัย			กระทรวงวิทยาศาสตร์	
				เทคโนโลยี	
นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	พนักงานฝ่ายขาย	บริษัท CCC (มหาชน) จำกัด	สำเร็จการศึกษาภาค
	วิทยาศาสตร์พอลิเมอร์ คณะ				ปลาย ปีการศึกษา
	วิทยาศาสตร์ จุฬาลงกรณ์				2547
	มหาวิทยาลัย				
นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	พนักงาน	บริษัท กลุ่มปิโตรเคมี เครือปูน	สำเร็จการศึกษาภาค
	วิทยาศาสตร์พอลิเมอร์ คณะ	•		ซิเมนต์ไทย (มหาชน) จำกัด	ปลาย ปีการศึกษา
	วิทยาศาสตร์ จุฬาลงกรณ์				2547
	มหาวิทยาลัย				
นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	พนักงาน	บริษัท กลุ่มปิโตรเคมี เครือปูน	สำเร็จการศึกษาภาค
	วิทยาศาสตร์พอลิเมอร์ คณะ			ซิเมนต์ไทย (มหาชน) จำกัด	ปลาย ปีการศึกษา
	วิทยาศาสตร์ จุฬาลงกรณ์				2547
	มหาวิทยาลัย				
นิสิตปริญญาโท	ภาควิชาวัสดุศาสตร์	นิสิตผู้ช่วยวิจัย	นักวิชาการ ระดับ 4	สำนักงาน	สำเร็จการศึกษาภาค
	คณะวิทยาศาสตร์	_		มาตรฐานอุตสาหกรรม	ปลาย ปีการศึกษา
	จุฬาลงกรณ์มหาวิทยาลัย				2547
นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นักวิจัย	บริษัทอินเตอร์เนชันแนลแลบ	สำเร็จการศึกษาภาค
	วิทยาศาสตร์พอลิเมอร์ คณะ			บอราทอรี จำกัด	ต้น ปีการศึกษา
	วิทยาศาสตร์ จุฬาลงกรณ์				2548
	้ มหาวิทยาลัย				
	นิสิตปริญญาโท นิสิตปริญญาโท นิสิตปริญญาโท	วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์	วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์	วิทยาศาสตร์ จุพาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ นิสิตผู้ช่วยวิจัย พนักงานฝ่ายขาย วิทยาศาสตร์ พอลิเมอร์ คณะ วิทยาศาสตร์ จุพาลงกรณ์ มหาวิทยาลัย พนักงาน นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ นิสิตผู้ช่วยวิจัย พนักงาน วิทยาศาสตร์ จุพาลงกรณ์ มหาวิทยาลัย พนักงาน นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ นิสิตผู้ช่วยวิจัย พนักงาน นิสิตปริญญาโท ภาควิชาวัสดุศาสตร์ นิสิตผู้ช่วยวิจัย นักวิชาการ ระดับ 4 นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ นิสิตผู้ช่วยวิจัย นักวิจัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ นิสิตผู้ช่วยวิจัย นักวิจัย วิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย นิสิตผู้ช่วยวิจัย นักวิจัย	วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย นิสิตปริญญาโท ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วุฬาลงกรณ์มหาวิทยาลัย นิสิตปริญญาโท หลักสูตรปิโตรเคมีและ วุฬาลงกรณ์มหาวิทยาลัย นิสิตผู้ช่วยวิจัย นักวิจัย บริษัทอินเตอร์เนชันแนลแลบ บอราทอรี จำกัด

11. นางสาวจิราวรรณ	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	พนักงาน	บริษัท CCC ในเครือปูนซิเมนต์	สำเร็จการศึกษา ปี
สิรมานนท์		วิทยาศาสตร์พอลิเมอร์ คณะ			ไทย (มหาชน) จำกัด	การศึกษา 2548
		วิทยาศาสตร์ จุฬาลงกรณ์				
		มหาวิทยาลัย				
12. นางสาวสมฤทัย	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นักวิจัย	ศูนย์เทคโนโลยีโลหะและวัสดุ	สำเร็จการศึกษา
ชรรณษานนท์		วิทยาศาสตร์พอลิเมอร์ คณะ			แห่งชาติ สำนักพัฒนา	ภาคตัน ปีการศึกษา
		วิทยาศาสตร์ จุฬาลงกรณ์			วิทยาศาสตร์และเทคโนโลยี	2548
		มหาวิทยาลัย			แห่งชาติ	
13. นายโกวิท	นิสิตปริญญาตรี	ภาควิชาวิทยาศาสตร์ทั่วไป	นิสิตผู้ช่วยวิจัย	พนักงาน	บริษัท เอกชน	สำเร็จการศึกษา ปี
ปัญญาโสภณเลิศ		คณะวิทยาศาสตร์	บางเวลา			การศึกษา 2547
		จุฬาลงกรณ์มหาวิทยาลัย				(เมษายน 2548)
14. นางสาวสุกัญญา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงาน	บริษัทเอกชน	สำเร็จการศึกษา ปี
แจ่มจินโน		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย			การศึกษา 2548
		และเทคโนโลยี				
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
15. นางสาวกรุงจิตต์	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงาน	บริษัทไทยเลเท็กซ์ คอร์เปอร์เร	สำเร็จการศึกษา ปี
นวลสมศรี		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย		ชัน จำกัด	การศึกษา 2548
		และเทคโนโลยี				
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
16. นางสาวมณฑา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษา ผู้ช่วย	พนักงานบริษัท	บริษัท ยูเนี่ยนฟุตแวร์ จำกัด	สำเร็จการศึกษา
แท่งทอง		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย			ภาคปลายปี

		และเทคโนโลยี				การศึกษา 2548
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
17. นางสาวณัฐศิริ	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	พนักงานฝ่ายเทคนิค	บริษัท การบรรจุภัณฑ์ จำกัด	สำเร็จการศึกษา ปี
ศรีสิทธิพันธกุล		วิทยาศาสตร์พอลิเมอร์ คณะ	บางเวลา			การศึกษา 2548
1		วิทยาศาสตร์ จุฬาลงกรณ์				
		มหาวิทยาลัย				
18. นางสาว อภิญญา	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	พนักงานฝ่ายเทคนิค	บริษัท Chemical House จำกัด	สำเร็จการศึกษา
จนาศักดิ์		เทคโนโลยีทางการพิมพ์	บางเวลา			ปีการศึกษา 2548
		คณะวิทยาศาสตร์				
		จุฬาลงกรณ์มหาวิทยาลัย				
19. นางสาวพันธิภา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงาน	บริษัทเอกชน	สำเร็จการศึกษา ปี
วงษ์วานิช		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย			การศึกษา 2548
		และเทคโนโลยี				
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
20. นายพัฒนา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงาน	ศึกษาต่อระดับปริญญาโท คณะ	สำเร็จการศึกษา ปี
เกื้อเส้ง		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย		วิทยาศาสตร์	การศึกษา 2548
		และเทคโนโลยี			มหาวิทยาลัยมหิดล	
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
21. นางสาวพรรณา	นิสิตปริญญาตรี	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	นักศึกษาปริญญาโท	ศึกษาต่อระดับปริญญาโทสาขา	
ราย วงษ์วิกย์กรณ์		เทคโนโลยีทางการพิมพ์			เยื่อ สถาบันเทคโนโลยีแห่ง	

		คณะวิทยาศาสตร์			เอเซีย (AIT) ปทุมธานี	
		จุฬาลงกรณ์มหาวิทยาลัย				
22 นางสาวจนันท์	นิสิตปริญญาตรี	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	พนักงานฝ่ายเทคนิค	บริษัท Advance Agro	สำเร็จการศึกษา ปี
เกียรติเจริญวิทย์		เทคโนโลยีทางการพิมพ์			Industries จำกัด	การศึกษา 2548
		คณะวิทยาศาสตร์				
		จุฬาลงกรณ์มหาวิทยาลัย				
23. นางสาว	นักศึกษาปริญญาโท	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	นักศึกษาปริญญาเอก	ภาควิชาเทคโนโลยียางและพอ	ศึกษาต่อ สาขา
เมธากาญจน์ จานทอง		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย		ลิเมอร์ คณะวิทยาศาสตร์ และ	เทคโนโลยีพอลิเมอร์
		และเทคโนโลยี			เทคโนโลยี	มหาวิทยาลัยสงขลา
		มหาวิทยาลัยสงขลานคริน			มหาวิทยาลัยสงขลานครินทร์	นครินทร์ วิทยาเขต
		ทร์ วิทยาเขตปัตตานี			วิทยาเขตปัตตานี	ปัตตานี
24. นางสาวเกศรา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงานบริษัท	-	สำเร็จการศึกษาภาค
ศรียศ		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย			ปลายปีการศึกษา
		และเทคโนโลยี				2549
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
25. นางสาวคนรรยา	นักศึกษาปริญญาตรี	ภาควิชาเทคโนโลยียางและ	นักศึกษาผู้ช่วย	พนักงานบริษัท	-	สำเร็จการศึกษาภาค
ขวัญเมือง		พอลิเมอร์ คณะวิทยาศาสตร์	วิจัย			ปลายปีการศึกษา
		และเทคโนโลยี				2549
		มหาวิทยาลัยสงขลานคริน				
		ทร์ วิทยาเขตปัตตานี				
26. นางสาวประอร	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นักวิจัย	อุตสาหกรรมบรรจุภัณฑ์	สำเร็จการศึกษาภาค
ณ นคร		วิทยาศาสตร์พอลิเมอร์ คณะ			จังหวัดเพชรบุรี	ปลายปีการศึกษา

		วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย				2550
27. นางสาวดวงตะวัน เฟื่องฟุ้ง	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย	นิสิตผู้ช่วยวิจัย	นักวิจัย	อุตสาหกรรมเคมี จังหวัด สมุทรสงคราม	สำเร็จการศึกษาภาค ปลายปีการศึกษา 2550
28. นางสาวกลองทอง จักรวัฒนธรรม	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ เทคโนโลยีทางการพิมพ์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	นิสิตผู้ช่วยวิจัย	นักวิจัย	อุตสาหกรรมการพิมพ์	สำเร็จการศึกษาภาค ปลายปีการศึกษา 2550
29. นางสาวปริญญา ภรณ์ แสงสุข	นิสิตปริญญาตรี	ภาควิชา วท. ภาพถ่ายและ เทคโนโลยีทางการพิมพ์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	นิสิตผู้ช่วยวิจัย	พนักงานบริษัท scg	อุตสาหกรรมกระดาษ	สำเร็จการศึกษาภาค ปลายปีการศึกษา 2550
30. นางสาวสกุลรัตน์ พิชัยยุทธ์	นักศึกษาปริญญาโท	ภาควิชาเทคโนโลยียางและ พอลิเมอร์ คณะวิทยาศาสตร์ และเทคโนโลยี มหาวิทยาลัยสงขลานคริน ทร์ วิทยาเขตปัตตานี	นักศึกษาผู้ช่วย วิจัย	นักศึกษาปริญญาโท	ภาควิชาเทคโนโลยียางและพอ ลิเมอร์ คณะวิทยาศาสตร์ และ เทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี	สำเร็จการศึกษาภาค ปลายปีการศึกษา 2550
31. นางสาวนพรรณ ภรณ์ วัลลภ	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ วิทยาศาสตร์พอลิเมอร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย	นิสิตผู้ช่วยวิจัย	นักศึกษา	ประเทศอังกฤษ	ศึกษาต่อด้านภาษา ที่ประเทศอังกฤษ

32. นางสาวกมลฉัตร	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	อาจารย์โรงเรียน	มหาวิทยาลัยพระจอมเกล้า	
จรุงจิตอารีย์		วิทยาศาสตร์พอลิเมอร์ คณะ		ดาราณีวิทยา	ธนบุรี	
		วิทยาศาสตร์ จุฬาลงกรณ์				
		มหาวิทยาลัย				
33. นายปรัชญา	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	จะสอบวิทยานิพนธ์
สาตรพันธุ์		วิทยาศาสตร์พอลิเมอร์ คณะ			วิทยาศาสตร์พอลิเมอร์ คณะ	เดือน มีนาคม 2551
·		วิทยาศาสตร์ จุฬาลงกรณ์			วิทยาศาสตร์ จุฬาลงกรณ์	
		มหาวิทยาลัย			มหาวิทยาลัย	
34. นางสาวสรัลนุช	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	จะสอบวิทยานิพนธ์
วัฒนสมัย		วิทยาศาสตร์พอลิเมอร์ คณะ			วิทยาศาสตร์พอลิเมอร์ คณะ	เดือน เมษายน
		วิทยาศาสตร์ จุฬาลงกรณ์			วิทยาศาสตร์ จุฬาลงกรณ์	2551
		มหาวิทยาลัย			มหาวิทยาลัย	
35. นางสาวมนวดี สุข	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาโท	ภาควิชา วท. ภาพถ่ายและ	จะสอบวิทยานิพนธ์
นิธิพล		เทคโนโลยีทางการพิมพ์			เทคโนโลยีทางการพิมพ์ คณะ	เดือน เมษายน
		คณะวิทยาศาสตร์			วิทยาศาสตร์ จุฬาลงกรณ์	2551
		จุฬาลงกรณ์มหาวิทยาลัย			มหาวิทยาลัย	
36. นางสาววิไลพร	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	จะสอบวิทยานิพนธ์
ใกรสุวรรณ		วิทยาศาสตร์พอลิเมอร์ คณะ			วิทยาศาสตร์พอลิเมอร์ คณะ	เดือน มีนาคม 2551
		วิทยาศาสตร์ จุฬาลงกรณ์			วิทยาศาสตร์ จุฬาลงกรณ์	
		มหาวิทยาลัย			มหาวิทยาลัย	
37. นางสาวจิราพร	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาโท	หลักสูตรปิโตรเคมีและ	จะสอบวิทยานิพนธ์
วงแสวง		วิทยาศาสตร์พอลิเมอร์ คณะ	_		วิทยาศาสตร์พอลิเมอร์ คณะ	เดือน มีนาคม 2551
		วิทยาศาสตร์ จุฬาลงกรณ์			วิทยาศาสตร์ จุฬาลงกรณ์	

		มหาวิทยาลัย			มหาวิทยาลัย	
38. นางสาวเต็มสุข	นิสิตปริญญาเอก	หลักสูตรปิโตรเคมี คณะ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาเอก	หลักสูตรปิโตรเคมี คณะ	กำลังศึกษาเทอมที่
แตงหอม	หอม วิทยาศาสตร์ จุฬ				วิทยาศาสตร์ จุฬาลงกรณ์	5 ได้รับทุน สกว.
		มหาวิทยาลัย			มหาวิทยาลัย	คปก. รุ่น 8 (พิเศษ)
39. นางสาวเมธาวี	นิสิตปริญญาตรี	ภาควิชา วท. ภาพถ่ายและ	นิสิตผู้ช่วยวิจัย	นิสิตปริญญาเอก	หลักสูตรปิโตรเคมี คณะ	กำลังศึกษาปริญญา
พฤทธิภาพย์		เทคโนโลยีทางการพิมพ์			วิทยาศาสตร์ จุฬาลงกรณ์	เอกด้วยทุน สกว.
		คณะวิทยาศาสตร์			มหาวิทยาลัย	คปก.
		จุฬาลงกรณ์มหาวิทยาลัย				

ตารางที่ 4 สรุปจำนวนคณาจารย์

ระดับ	สาขาวิชา	ตำแหน่งวิชาการ	สังกัด	จำนวน
ปริญญา			คณะ/มหาวิทยาลัย	(คน)
เอก	วิทยาศาสตร์และ	ศาสตราจารย์ ระดับ 11	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
	วิศวกรรมศาสตร์พอลิเมอร์	อาจารย์ A 5		1
		นักวิจัย ระดับ 1	ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ	1
			้ กระทรวงวิทยาศาสตร์และเทคโนโลยี	
	วิทยาศาสตร์และ	รองศาสตราจารย์	วิทยาศาสตร์และเทคโนโลยี	1
	เทคโนโลยียาง	ระดับ 9	มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี	
	เคมีวิเคราะห์	รองศาสตราจารย์	<u> </u>	1
		ระดับ 9	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	
		อาจารย์ A 5		1
	ชีวเคมี	รองศาสตราจารย์	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
		ระดับ 9	·	
	วิทยาศาสตร์พอลิเมอร์	ผู้ช่วยศาสตราจารย์	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	2
		ระดับ 8	·	
	วิทยาศาสตร์สิ่งทอ	ผู้ช่วยศาสตราจารย์	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
		ระดับ 8		
	วิทยาศาสตร์การเคลือบผิว	ผู้ช่วยศาสตราจารย์	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
		ระดับ 8	·	
	วิทยาศาสตร์ทางสี	ผู้ช่วยศาสตราจารย์	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1

		ระดับ 8		
	วัสดุศาสตร์	อาจารย์ A 5	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
		นักวิจัย ระดับ 1	ศูนย์นาโนเทคโนโลยีแห่งชาติ	1
			กระทรวงวิทยาศาสตร์และเทคโนโลยี	
	จุลชีววิทยา	อาจารย์ A 5	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
โท	ปิโตรเคมีและวิทยาศาสตร์	ผู้ช่วยศาสตราจารย์	วิทยาศาสตร์และเทคโนโลยี	1
	โพลิเมอร์	ระดับ 8	มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี	
	เทคโนโลยีทางภาพ	อาจารย์ A 5	วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	1
	วิทยาศาสตร์สิ่งแวดล้อม	นักวิจัยอิสระ	-	1
		รวมทั้งสิ้น		18

ตารางที่ 5 สรุปจำนวนนักวิจัยรุ่นใหม่ที่สำเร็จการศึกษาแล้ว

ระดับปริญญา	สาขาวิชา	คณะ	มหาวิทยาลัย	จำนวนนิสิต (คน)
โท	ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์	วิทยาศาสตร์	จุฬาลงกรณ์มหาวิทยาลัย	11
โท	เทคโนโลยีการยางและพอลิเมอร์	วิทยาศาสตร์และเทคโนโลยี	มหาวิทยาลัยสงขลานครินทร์	2
			วิทยาเขตปัตตานี	
โท	วัสดุศาสตร์	วิทยาศาสตร์	จุฬาลงกรณ์มหาวิทยาลัย	1
โท	เทคโนโลยีทางการพิมพ์	วิทยาศาสตร์	จุฬาลงกรณ์มหาวิทยาลัย	3
โท	วิทยาศาสตร์สิ่งแวดล้อม	บัณฑิตวิทยาลัย	จุฬาลงกรณ์มหาวิทยาลัย	1
ตรี	เทคโนโลยีทางภาพและการพิมพ์	วิทยาศาสตร์	จุฬาลงกรณ์มหาวิทยาลัย	5
ตรี	เทคโนโลยีการยางและพอลิเมอร์	วิทยาศาสตร์และเทคโนโลยี	มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี	6
୩ଟି	วิทยาศาสตร์ทั่วไป	วิทยาศาสตร์	จุฬาลงกรณ์มหาวิทยาลัย	1
	รว	ามทั้งสิ้น		30

นิสิตที่จะสำเร็จการศึกษาระดับปริญญาโทในเดือนพฤษภาคม 2551 อีก 5 คน นิสิตปริญญาโทและ เอกที่ยังไม่สำเร็จการศึกษาอีก 1 และ 2 คน ตามลำดับ รวมทั้งสิ้น มีนิสิตที่เป็นผู้ช่วยวิจัยจำนวน 38 คน

ตารางที่ 6 ผลงานทางวิชาการ

Articles with peer review

Project	Article title	Journal/Journal Impact Factor	Authors	Notes
No/Paper No		(2006)		
1/1	Synthesis and Characterization	J. Appl. Polymer. Sci. 2006, 102, 2915-	Jiraprasertkul, W.; Nuisin,	Paper 1
	of Cassava Starch Graft	2928.	R.; Jinsart, W.;	
	Poly(acrylic acid) and	(Journal impact factor, JCR	<u>Kiatkamjornwong, S</u> .	
	Poly(acrylic acid)-co-	2006=1.306)		
	Acrylamide] and Polymer			
	Flocculants for Wastewater			
	Treatment			
1/2	Synthesis and Properties of	Polym. Eng. Sci. 2007, 47, 447-459.	Aungsupravate, O.;	Paper 2
	Solvent absorptive Methyl	(Journal Impact factor, JCR	Kangwansupsmonkon. W.;	
	Methacrylate-Divinylbenzene	2006=1.414)	Chavasiri, W.;	
	Copolymer Beads		Kiatkamjornwong, S.	
1/3*	Removal of Congo Red and	J. Hazard. Mat. under revision	Noppakundilograt, S.;	Paper 3
	Direct Blue 71 by	(Journal impact Factor, JCR	Nanakorn, P.;	
	Acrylamide/Acrylic acid-	2006=1.858)	<u>Kiatkamjornwong</u> , <u>S</u> .	
	Based Aluminum Flocculants			
1/4 *	Synthesis and	Under revision and to be submitted to	Noppakundilograt, S.;	Paper 4
	Characterization of	Polym. Eng. Sci.,	Nanakorn, P.; Kittichai	
	Acrylamide-Based Aluminium	(Journal impact factor, JCR	Sonjaipanich, K.; Seetapan,	
	Flocculant Turbidity	2006=1.414)	N., Kiatkamjornwong, S.	
	Reduction in Wastewater			
2/1	Graft Copolymerization,	Carbohyd. Polym. 2006, 66, 229-245	Lanthong, P.; Nuisin, R.;	Paper 5
	Characterization, and	(Journal impact factor, JCR	Kiatkamjornwong, S.	
	Degradation of Cassava	2006=1.784)		
	Starch-g-acrylamide/itaconic			

	acid Superabsorbents			
2/2	Synthesis and Swelling Properties of Poly[acrylamide- co-(Crotonic acid)] Superabsorbents	React. Funct. Polym. 2007, 67, 865-882 (Journal impact factor, JCR 2006= 1.561)	Yiamsawas, D.; Kangwansupsmonkon. W.; Chailapakul, O.; <u>Kiatkamjornwong, S.</u>	Paper 6
2/3*	Syntheses of Acrylamide- ltaconic Acid Superabsorbent Polymers and Superabsorbent Polymer/Mica Nanocomposites	To be Submitted to Polymer Engineering and Science (Journal impact factor, JCR 2006=1.414)	Phattanarudee, S.; Foungfung, D.; Kiatkamjornwong, S.	Paper 7
2/4*	Syntheses of Acrylamide-co- Itaconic Acid/Mica Superabsorbent Polymer Composites	To be submitted to the Journal of Applied Polymer Science, JCR Impact Factor, 2006, 1.306	Srisithipantakul, N.; Kiatkamjornwong, S.	Paper 8
3/1	Effects of Redox Initiator on Graft Copolymerization of Methyl Methacrylate onto Natural Rubber	J. Appl. Polym. Sci. 2006, 101, 2587-2601 (Journal impact factor, JCR 2006=1.036)	Kochthongrasamee, T.; Prasassarakich, P.; <u>Kiatkamjornwong, S.</u>	Paper 9
3/2	Silica-reinforced Natural Rubber Prepared by the Sol- gel Process of Ethoxysilanes in Rubber Latex	J. Appl. Polym' Sci. (Journal impact factor, JCR 2006= 1.0.36), Accepted	Tangpasuthadol, V.; Intasiri, A.; Nuntivanich, D.; Niyompanich, N.; Kiatkamjornwong, S.	Paper 10
3/3	Sol-gel Process of Alkyltricthoxysilane in Latex for Alkylated Silica Formation in Natural Rubber	Polym. Eng. Sci. Under revision (Journal impact factor, JCR 2006=1.414)	Siramanont, J.; Tangpasuthadol, V.; Intasiri, A.; Na-ranong, N.; Kiatkamjornwong, S.	Paper 11
3/4	Effects of methyl methacrylate	Submitted to Polymer for Advanced	Satraphan, P.;	Paper 12

	grafting and <i>in situ</i> silica particle formation on the morphology and mechanical properties of natural rubber composite films	Technologies, JCR impact factor = 1.406.	Intasiri, A. Tangpasuthadol, V.; Kiatkamjornwong, S.	
3/5*	In Situ Silica Reinforcement of Radiation Prevulcanixed Natural Rubber Latex	Manuscript in preparation and to be completed	Charunghitaree, K. Tangpasuthadol, V. Boonyawat, J. Kiatkamjornwong, S.	Paper 13
4/1	Dynamic Vulcanization of Natural Rubber/High-density Polyethylene Blends: Effect of Compatibilization, Blend Ratio and Curing System	Polym. Test. 2006, 25, 782-792. (Journal impact factor, JCR 2006=1.312)	Nakason, C., Nuansomsri, K.; Kaesaman, A.; <u>Kiatkamjornwong, S.</u>	Paper 14
4/2	Thermoplastic Elastomer Based on High-density Polyethylene/Natural Rubber Blends: Rheological., Thermal, and Morphological	Polym. Adv. Technol. 2008, 19(2), 85-98. (JCR Journal impact factor, 2006=1.406)	Nakason, C.; Jamjinno, S.; Kaesaman, A.; Kiatkamjornwong, S.	Paper 15
4/3	Thermoplastic Elastomer Based on Epoxidized Natural Rubber and High-density Polyethylene Blends; Effect of Blend Compatibilizers on Mechanical and Morphological Properties	J. Appl. Polym. Sci. (Journal impact factor, JCR 2006=1.036), Accepted.	Nakason, C.; Jarnthong, M.; Kaesaman, A.; Kiatkamjornwong, S.	Paper 16
4/4	Influences of Blend Compatibilizers on Dynamic, Mechanical, and Morphological Properties of	Polymer Testing, Accepted.	Pichaiyut, S., <u>Nakason, C,</u> Kaesaman, A., Kiatkamjornwong, S.	Paper 17

	Dynamically Cured Maleated Natural Rubber and High- Density Polyethylene Blends.			
4/5	Influences of Blend Proportions and Curing Systems on Dynamic, Mechanical, and Morphological Properties of Dynamically Cured ENR/HDPE Blends	Submitted to Polymer Engineering and Science and under review	Jarnthong, M.; Nakason, C.; Kaesaman, A.; Kiatkamjornwong, S.	Paper 18
5/1	Surface-charged Chitosan: Preparation and Protein Adsorption	Carbohyd. Polym. 2007, 68, 44-53 (Journal impact factor, JCR impact 2006=1.784)	Hoven, V. P.; Tangpasuthadol, V.; Angkitpaiboon, Y.; Vallapa, N.; Kiatkamjornwong, S.	Paper 19
5/2	Alternating Bioactivity of Multilayer Thin Films Assembled From Charged Derivatives of Chitosan	J. Colloid. Intl. Sci. 2007, 316, 311-343. (Journal impact factor, JCR 2006=2.313)	Channasanon, S.; Graisuwan, W.; Kiatkamjornwong, S. Hoven, V. P.;	Paper 20
5/3*	Enhancing Antibacterial Activity of Chitosan Surface by Heterogeneous Quaternization	Manuscript under writing.	Vallapa, N.; Hoven, V. P.; Thongchul, N.; Tangpasuthadol, V.; Kiatkamjornwong, S.	Paper 21
6/1	Properties of Industrial Thai Silks Reeled by Hand and by Machine	J. Royal Institute of Thailand. 2007, 32, 134-148. TCI พ. ศ. 2549 = 0.013	Sangwatanaroj, U.; Puicharoen, P.; Kiatkamjornwong, S.	Paper 22
6/2	Comparison of Textile Print Quality between Inkjet and	Surf. Coat. Inter. Part B: Coat. Transac. 2005, 88, 25-34.	Kiatkamjornwong, S. Putthimai, P.;	Paper 23

	Screen Printing		Noguchi, H.	
6/3	Modulation Transfer Function Measurement for Ink Jet Printed Silk Fabrics	J. Imag. Sci. Techno. 2007, 51, 127-140. (Journal impact factor, JCR 2006=0.616)	Janasak, A.; Koopipat, C.; Noguchi, H.; <u>Kiatkamjornwong, S.</u>	Paper 24
6/4	Surface-modified and Micro- Encapsulated Pigments Ink for Ink Jet Printing on textile Fabrics	Prog. Org. Coat, 2008, 62, 145-161. Journal impact factor, JCR 2006=1.581	Leelajariyakul, S.; Noguchi, H.; <u>Kiatkamjornwong, S.</u>	Paper 25
6/5	Pretreatment of Silk Fabric Surface with Amino Compounds for Ink Jet Printing	Submitted to Progress in Organic Coatings, Journal impact factor, JCR 2006=1.581	Phattanarudee, S.; Chakvattanatham, S.; <u>Kiatkamjornwong, S.</u>	Paper26
6/6*	Anionically surface – modified Pigmented-Based Ink Jet Ink Performance On Silk Fabric	To be submitted to Progress in Organic Coatings, JCR impact factor 2006 = 1.581	Kiatkamjornwong, S. Phattanarudee, S.; Chakvattanatham, S.;	Paper 27
6/7	Silk Fabric Printing by Ink Jet Ink Printing System	J. Royal Institute of Thailand. (In Thai), accepted. TCI พ. ศ. 2549 = 0.013	Kiatkamjornwong, S. Noppakundilograt, S.; Phattanarudee, S.;	Paper 28

^{*} Paper เหล่านี้ ยังไม่อาจดำเนินการสำเร็จได้ในเวลาที่กำหนด จะขอส่ง Paper ฉบับสมบูรณ์ เมื่อได้รับฉบับสมบูรณ์จากวารสารที่ต่างประเทศ รวม Paper ที่ได้พิมพ์ เผยแพร่และอยู่ระหว่างการรอพิมพ์ของโครงการที่ 1 จำนวน 2 Paper กำลังดำเนินการ 2 Paper, โครงการที่ 2 พิมพ์แล้ว 2 Paper ดำเนินการ 2 Paper, โครงการที่ 3 พิมพ์และรับแล้ว 2 Paper ดำเนินการแก้ไข 1 Paper กำลัง review 1 Paper ยังเขียนไม่เสร็จ 1 Paper โครงการที่ 4 พิมพ์แล้ว 2 Paper ตอบรับ 2 Paper กำลัง review 1 Paper โครงการที่ 5 พิมพ์แล้ว 2 Paper จะ submit อีก 1 Paper โครงการที่ 6 พิมพ์แล้ว 4 Paper รับจะพิมพ์ 1 Paper กำลัง review 1 Paper กำลังแก้ไข และจะ submit ได้อีก 1 Paper รวมPaperที่พร้อมเผยแพร่ 18 Paper ที่เหลือ 10 Paper จะแล้วเสร็จและเผยแพร่ได้ในเร็ว ๆ นี้ หมายเหตุ ชื่อขีดเส้นใต้ คือ corresponding author ของเอกสารนั้น

Proceedings				
Project/ number of presentation	Title of the presented paper	Detail of conference	Authors	Notes
1/1	Synthesis and Performance of Acrylamide-Based Aluminium Flocculent	32 nd Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 10-12, 2006, E-E0087	Nanakorn, P.; Noppakundilograt, S.; Kiatkamjornwong, S.	Proceedings 1
2/1	Synthesis and Water Absorption of Superabsorbent Polymer of Acrylamide-co- (Itaconic acid)/Mica Composites	32 nd Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October10-12, 2006, E-E0082	Foungfung, D., Phattanarudee, S.; Kiatkamjornwong, S.	Proceedings 2
3/1	Sol-Gel Process of Ethoxysilane in Natural Rubber Latex to Prepare Silica-Reinforced Rubber Composites	31st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 18-20, 2005, E_E0067	Tangpasuthadol, V.; Nuntivanich, D.; Niyompanich, N.; Intassiri, A.; Kiatkamjornwong, S.	Proceedings 3
3/2	Formation of Silica in Natural Rubber by Sol-Gel Process of Alkyltriethoxysilane and Tetraethoxysilane in Latex	31 st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October18-20, 2005, E _E0095	Siramanont, J.; Inatasiri, A.; Tangpasuthadol, V.; Kiatkamjornwong, S.	Proceedings 4
3/4	Reinforcement of Natural Rubber by the Sol-Gel Process of Tetraethoxysilane and Alkyltriethoxysilane in Latex	32 nd Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October10-12, 2006, E_E0097	Tangpasuthadol, V.; Siramanont, J.; Ranong, N.; Intasiri, A.; Kiatkamjornwong, S.	Proceedings 5
3/5	Natural Rubber-Silica Composite-the Sol-gel	32 nd Congress on Science and Technology of Thailand at Queen	Charungchitaree, K.; Tangpasuthadol, V.;	Proceedings 6

	Process of Alkoxysilane in Radiation Prevulcanized Latex	Sirikit National Convention Center, October10-12, 2006, E_E0075	Boonjawat, J.; Kiatkamjornwong, S.	
3/6	In situ Formation of Silica in Radiation-Vulcanized Natural Rubber Latex by a Sol-Gel Process Using Alkoxysilanes	The first Polymer Graduate Conference of Thailand, Faculty of Science, Mahidol University, Salaya, May 10-11, O-PC06	Charungchitaree, K.; Tangpasuthadol, V.; Boonjawat, J.; Kiatkamjornwong, S.	Proceedings 7
3/7	Reinforcement of Radiation Vulcanized Rubber by Silica Generated In Situ From Alkoxysilane	2 nd Mathematics & Physical Science International Graduate Congress, December 12-14, 2006, Poster.	Charungchitaree, K.; Boonjawat, J.; Intasiri, A.; Kiatkamjornwong, S. Tangpasuthadol, V.	Proceedings 8
3/8	Preparation of Methyl Methacrylate-Grafted Natural Rubber Films by IN Situ Generated Silica Using Sol- Gel Process	The first Polymer Graduate Conference of Thailand, Faculty of Science, Mahidol University, Salaya, May 10- 11, O-PC07	Satraphan, P.; Intasiri, A.; <u>Tangpasuthadol, V</u> .; Kiatkamjornwong, S.	Proceedings 9
3/9	Reinforcement of Methyl Methacrylate-Grafted Natural Rubber Films Reinforced by In Situ Silica	3 rd Mathematics & Physical Science International Graduate Congress, December 12-14, 2007. (Poster no A039), pp. 179-183 with a poster.	Satraphan, P.; Intasiri, A.; Tangpasuthadol, V.; Kiatkamjornwong, S.	Proceedings 10
3/10	Preparation of Methyl Methacrylate Grafted Natural Rubber Films Containing in situ Generated Silica	33 rd Congress on Science and Technology of Thailand at Walailak University, October 18-20, 2007, E_E0044	Satraphan, P.; Intasiri, A.; Tangpasuthadol, V.; Kiatkamjornwong, S.	Proceedings 11
3/11	Reinforcement of Natural Rubber Grafted with Methyl Methacrylate and Silane Coupling Agent by In Situ	33 rd Congress on Science and Technology of Thailand at Walailak University, October 18-20, 2007, E_E0051	Wattanasamai, S.; Tangpasuthadol, V.; Kiatkamjornwong, S.	Proceedings 12

	Generated Silica			
4/1	Modification of Natural Rubber	31 st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 18-20, 2005, STT08.	Kiatkamjornwong, S.	Proceedings 13
4/2	Thermoplastic Natural Rubber Based on ENR/HDPE Blends: Influence of Epoxide Groups on Mechanical Properties	Monograph on Advances in Natural Rubber Materials Research: Design, Processing & Manufacturing Hainan Publishing House, December, 2006 pp. 329-337. International Symposium on Natural Rubber Material (ISNRM), 13- 14 October 2006, pp. 329-337	Kiatkamjornwong, S. Vongpanich, P.; Kaesaman, A.; <i>Nakason, C.</i> ;	Proceedings 14 Do not have digital file
4/3	Thermoplastic Natural Rubber Based on ENR/HDPE Blends: Influence of Oil on Rheological, Mechanical, and Morphological Properties	Monograph on Advances in Natural Rubber Materials Research: Design, Processing & Manufacturing Hainan Publishing House, December, 2006 pp. 321-328. International Symposium on Natural Rubber Material (ISNRM), 13- 14 October 2006, pp. 321-328.	Nakason, C.; Kueseng, P.; Kaesaman, A.; <u>Kiatkamjornwong, S</u> .	Proceedings 15 Do not have digital file
4/4	Influence of Process Oil on Properties of Thermoplastic Vulcanizates Based on Maleated Natural Rubber and High-Density Polyethylene Blends	The 1 st Thailand-Japan Rubber Symposium at Jomtien Palm Beach Hotel, August 20-22, 2007	Nakason, C.; Pichaiyut, S.; Kaesaman, A.; Kiatkamjornwong, S.	Proceedings 16
5/1	Selective Protein Adsorption of Surface-Charged Chitosan	31st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 18-20, 2005.K_K0006	Hoven, V. P.; Tangpasuthadol, V.; Angkitpaiboon, Y.; Kiatkamjornwong, S.	Proceedings 17

5/2	Formation of Ultrathin Film	31st Congress on Science and	Channasanon, S.;	Proceedings 18
	Charged Derivatives of	Technology of Thailand at Queen	Kiatkamjornwong, S.	
	Chitosan	Sirikit National Convention Center,	Hoven, V. P.	
		October 18-20, 2005, E_E0095.		
5/3	Preparation and Antibacterial	32 nd Congress on Science and	Vallapa, N.;	Proceedings 19
	Activity of Quaternary	Technology of Thailand at Queen	Thongchul, N.;	
	Ammonium- Containing	Sirikit National Convention Center,	Kiatkamjornwong, S.	
	Chitosan Surface	October10-12, 2006, H_H0043	Hoven, V. P.	
5/4	Selective Protein Adsorption	The 7 th Asia-Pacific Chitin and	Tangpasuthadol, V.,	Proceedings 20
	of Surface Bearing N-	Chitosan Symposium, Bexco, Busan,	Angkitpaiboon, Y.,	
	sulfofurfuryl Chitosan	Korea, April 23-26, 2006, pp. 114 - 116	Channasanon, S.,	
			Kiatkamjornwong, S.,	
			Hoven, V.P.	
5/5	Formation and	33 rd Congress on Science and	Graisuwan, W.;	Proceedings 21
	Biocompatibility of	Technology of Thailand at Walailak	Kiatkamjornwong, S.	
	Multilayer Film Assembled	University, October 18-20, 2007	Hoven, V. P.	
	From Charged Derivatives of			
	Chitosan			
5/6	Formation and	Proceeding of the 3 rd Mathematics &	Graisuwan, W.;	Proceedings 22
	Biocompatibility of	Physical Science International Graduate	Kiatkamjornwong, S.	
	Multilayer Film Assembled	Congress, December 12-14, 2007,	Hoven, V. P.	
	From Charged Derivatives of	A038 with a poster, pp. 322-326.		
	Chitosan			

5/7	Alternating Bioactivity of Multilayer thin Film Assembled from Charged Derivatives of Chitosan	งานประชุมวิชาการวิศวกรรมชีวการแพทย์ แห่งชาติ ครั้งที่ (NCBME 2007) วันที่ 8 กรกฎาคม 2550 ณ โรงแรมทวินทาวเวอร์	Graisuwan, W.; Channasanon, S.; Kiatkamjornwong, S. Hoven, V. P.	Proceedings 23
		กรุงเทพฯ จัดโดยจุฬาลงกรณ์มหาวิทยาลัย และสำนักงานพัฒนาวิทยาศาสตร์และ		
		เกอโนโลยีแห่งชาติ มีเพียงโปสเตอร์เท่านั้น		
6/1	Properties of Silk Fibers in Thailand	31 st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 18-20, 2005 L-L0003	Puicharoen, P.; Sangwatanaroj, U.; Kiatkamjornwong, S.	Proceedings 24
6/2	Color Gamut of Inkjet Ink Printed on Glycine-padded Silk Fabrics	31 st Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 18-20, 2005.L-L0008	Kasadesinchai, N., Kiatkamjornwong, S.	Proceedings 25
6/3	MTF Measurement for Inkjet Printing on Silk Fabrics	Proceeding of 31 st Congress on Science and Technology of Thailand, Suranaree University of Technology, October 18-20, 2005, L_L0006.	Janasak, A.; <i>Koopipat, C.</i> ; <u>Kiatkamjornwong, S</u> .	Proceedings 26
6/4	Comparison of Light Scattering within the Silk Fabrics and Paper by MTF	Proceeding of 31 st Congress on Science and Technology of Thailand, Suranaree University of Technology, October 18- 20, 2005.L _L0007	Koopipat, C.; Janasak, A.; Noguchi, H.; Kiatkamjornwong, S.	Proceedings 27
6/5	Measurement and Analysis of Sharpness of Printed Image on Silk Fabric by Ink Jet Printer	The ICIS'06 International Congress of Imaging Science, "Linking the explosion of Imaging Applications with the Science and Technology of	Koopipat, C.; Janasak, A.; Kiatkamjornwong, S.	Proceedings 28 Do not have digital file

6/6	การพัฒนาเส้นใยใหมแนวทาง ใหม่สู่สากล	Imaging" May 7-11, 2006, Rochester, New York, IS&T, Springfield, VA, pp. 641-644, pp. 641-644. การประชุมวิชาการ "1 ศตวรรษวัตกรรมใหม ไทย ก้าวที่ท้าทายในศตวรรษหน้า" ระหว่าง วันที่ 23-24 สิงหาคม 2549 โรงแรมตักสิถา จ. มหาสารคาม จัดโดยศูนย์วัตกรรมใหม มหาวิทยาลัยมหาสารคาม (ไม่มีเลขหน้าจากผู้	อุษา แสงวัฒนาโรจน์	Proceedings 29 Do not have digital file
6/7	Effects of Amino Acid and	จัดประชุม)	Chalmattanathan V:	Dragodings 20
0//	Sericin Pretreatment on Properties of Printed Silk Fabric	32 nd Congress on Science and Technology of Thailand at Queen Sirikit National Convention Center, October 10-12, 2006, E-E0084	Chakvattanatham, K.; Phattanarudee, S.; Kiatkamjornwong, S.	Proceedings 30

ชื่อที่ขีดเส้นใต้ คือ Corresponding author ของบทความนั้น ส่วนชื่อที่พิมพ์ตัวเอียง คือ ผู้นำเสนอผลงานนั้น

หนังสือ

ลำดับที่	ชื่อเรื่อง	ชื่อผู้แต่ง	รายละเอียด
1	ใหมไทย (จำนวน 114 หน้า)	ผศ.ดร.อุษา แสงวัฒนาโรจน์	บทที่ 1 เส้นทางไหมไทยและสถิติการนำเข้าส่งออกเส้นไหม
	เสนอต่อสำนักพิมพ์แห่ง	ศ.ดร.สุดา เกียรติกำจรวงศ์*	บทที่ 2 การปลูกหม่อนและการเลี้ยงใหม
	จุฬาลงกรณ์มหาวิทยาลัย	ผศ.ดร.สุภาภรณ์ นพคุณดิลกรัตน์	บทที่ 3 การสาว การลอกกาว การฟอกและการย้อมเส้นใหม
	เพื่อพิมพ์เผยแพร่	อาจารย์ ดร.สิริวรรณ พัฒนาฤดี	บทที่ 4 ลักษณะและสมบัติของเส้นใหมไทย
		*บรรณาธิการ	บทที่ 5 งานวิจัยต่างๆ ที่เกี่ยวข้องกับไหม
			บทที่ 6 การพิมพ์ผ้าไหมด้วยระบบการพิมพ์อิงก์เจ็ต

สิทธิบัตร

ลำดับที่	ชื่อเรื่อง	ชื่อผู้แต่ง	รายละเอียด
1	การผลิตสารละลายปรับ	ศ.ดร.สุดา เกียรติกำจรวงศ์	ตามสัญญาการรับทุน คณะวิจัยได้โอนสิทธิ์ให้จุฬาลงกรณ์
	สภาพผิวผ้าจากไคโตซานและ	ผศ.ดร.สุภาภรณ์ นพคุณดิลกรัตน์	มหาวิทยาลัย และสำนักงานกองทุนวิจัย ครองสิทธิ์ร่วมกัน โดยมี
	ใกลซีนสำหรับการพิมพ์ระบบ	นางสาวเมธาวี พฤทธิภาพย์	นักวิจัยเป็นผู้คิดค้นประดิษฐ์
	อิงค์เจ็ต	นางสาวปริญญาภรณ์ แสงสุข	
	เลขที่คำขออนุสิทธิบัตร	นางสาวพรรณราย วงษ์วิกย์กรณ์	
	0803000082 วันที่รับคำขอ	นางสาวจนันท์ เกียรติเจริญวิทย์	
	23 มกราคม 2551		