บทคัดย่อ (Abstract)

ประเทศไทยได้มีการพัฒนาระบบเพาะเลี้ยงหอยเป้าฮื้อและกุ้งก้ามกรามที่ก้าวหน้าไปมากแต่การผลิตตัวอ่อนที่ สามารถอยู่รอดและพัฒนาไปเป็นตัวเต็มวัยยังมีอัตราเพิ่มขึ้นไม่มากนัก อีกทั้งการเลี้ยงพ่อ-แม่พันธุ์ในสภาพที่ไม่เหมือน ธรรมชาติทำให้พ่อ-แม่พันธุ์ลดประสิทธิภาพการสืบพันธุ์ลงเนื่องจากเกิดความเครียด จึงมีความจำเป็นที่จะต้องใช้สาร ฮอร์โมนช่วยกระคุ้น แต่จะกระทำเช่นนั้นได้ต้องมืองค์ความรู้พื้นฐานและความเข้าใจเกี่ยวกับการควบคุมกระบวนการพัฒนา และการทำงานของระบบสืบพันธุ์ซึ่งควบคุมโดยฮอร์โมนจากระบบประสาท ฮอร์โมนที่ควบคุมการทำงานของระบบสืบพันธุ์ เหล่านี้อาจถูกควบคุมอีกต่อหนึ่งโดยสารสื่อประสาท (neurotransmitters-NE) เช่น serotonin (5-HT) และ dopamine (DA) และ/หรือสารปรับสัญญาณประสาท (neuromodulator-NM) เช่น FMRF APGW amides และ GnRH สาร NE และ NM อาจ เป็นสารสื่อกลาง (chemical mediators) ตัวแรกที่รับรู้การเปลี่ยนแปลงของสภาพแวดล้อมภายนอก โดยเฉพาะอุณหภูมิ ความ ยาวของกลางวันต่อกลางคืน (photo period) ปริมาณอาหาร ฯลฯ ทั้งนี้เพื่อจะได้ควบคุมการหลั่งฮอร์โมนเพศและฮอร์โมนเร่ง การเจริญเติบโตที่กระตุ้นให้หอยหรือกุ้งปรับตัวเข้าสู่ช่วงการเจริญพันธุ์ (reproductive growth) หรือช่วงการเจริญเติบโตของ ร่างกาย (somatic growth) ที่เหมาะสมกับสภาพแวดล้อม

หอยเป้าฮื้อ

คณะผู้วิจัยได้ศึกษาลักษณะโครงสร้างของระบบประสาทและระบบสืบพันธุ์ของหอยเป้าฮื้อและการกระจายของ สารสื่อประสาท เซอโรโตนิน (5-HT) และสารปรับสัญญาณประสาท gonadotropin-releasing hormone (GnRH) ซึ่งเป็นสารที่ ผลิตโดยเซลล์ประสาทรับสัมผัสที่รับรู้การเปลี่ยนแปลงภายนอกที่มีอิทธิพลต่อการพัฒนาของระบบสืบพันธุ์ พบว่า 5-HT และ GnRH ส่วนใหญ่มีอยู่ในเซลล์ประสาทของปมประสาท cerebral และ pleuropedal โดยเซลล์เหล่านี้ไม่มีการรวมกลุ่มชัดเจน นอกจากนี้ยังได้ศึกษาความสัมพันธ์ระหว่างสาร 5-HT, GnRH และฮอร์โมน์ที่ควบคุมการสืบพันธุ์ในหอยเป้าฮื้อโดยเฉพาะ ฮอร์โมนประสาทที่คุมการหลั่งเซลล์สืบพันธุ์ (abalone egg-laying hormone-aELH) ในหอยเป้าฮื้อพันธุ์พื้นเมือง (Haliotis asinina) โดยได้ทำการสังเคราะห์ aELH ด้วยวิธีพันธุวิสวกรรมแล้วนำไปนีดกระคุ้นหอยพ่อ-แม่พันธุ์ พบว่าสารสื่อประสาทเซโรโทนิน (serotonin-5HT), GnRH และ aELH สามารถกระคุ้นการพัฒนาของรังไข่กับเซลล์ไข่และการตกไข่ได้ ซึ่งช่วยเพิ่ม ประสิทธิภาพของแม่พันธุ์ที่เลี้ยงแบบกักขังได้ และถ้าหากนำไปฉีดในหอยวัยอ่อนอายุก่อน 4 เดือนทำให้ได้หอยเพศเมียมากขึ้น นอกจากนั้นยังพบว่าสารปรับสัญญาณ APGW สามารถกระคุ้นการปล่อยเซลล์อสุจิจากพ่อพันธุ์ได้ทั้งหมด ทำให้สะดวกต่อการถ้าหนดระยะเวลาปล่อยเซลล์สืบพันธุ์เพศผู้และเพศเมียจากพ่อ-แม่พันธุ์ที่พร้อมกัน ทำให้สะดวกต่อการเก็บเซลล์สืบพันธ์เพศผู้และเพศเมียจากข่อ-แม่พันธุ์ที่ผลมากที่สุดคือ 1:100

การศึกษากลใกการลงเกาะ(settlement) ของตัวอ่อนของหอยเป้าฮื้อพบว่า γ aminobutyric acid (GABA) 5γ aminovaleric acid (5AVA) ที่ความเข้มข้น 1 μΜ และ monosodium glutamate (MSG) ที่ความเข้มข้น 5 mM สามารถกระตุ้น การลงเกาะได้มากกว่า 50% เมื่อเปรียบเทียบกับกลุ่มควบคุมทำให้อัตราการลงเกาะและการอยู่รอดของตัวอ่อนหอยเป้าฮื้อ เพิ่มขึ้นมาก โดยกลุ่มควบคุมที่มีการลงเกาะเพียง 10-15% องค์ความรู้ที่ได้จากงานวิจัยพื้นฐานดังกล่าวแล้วสามารถนำไป ประยุกต์ใช้เพิ่มประสิทธิภาพการเพาะเลี้ยงหอยเป้าฮื้อ โดยเกษตกรรายย่อยและการเพาะเลี้ยงระดับเชิงพาณิชย์ได้

กุ้งก้ามกราม

การหลั่งฮอร์โมนที่ควบคุมวงจรการสืบพันธุ์กับการพัฒนาของต่อมสืบพันธุ์ และเซลล์สืบพันธุ์ของกุ้งก้ามกรามมี การส่งสัญญาณเป็นทอดๆ ผ่านเซลล์ประสาทลำดับแรกที่อยู่ใน optic lobe ซึ่งสร้างสารสื่อประสาท (neurotransmitters) ใน กลุ่ม indolamine ได้แก่ เซโรโทนิน (serotonin or 5-hydroxytryptamine-5-HT) และสารสื่อประสาทในกลุ่ม catecholamines (dopamine-DA และ octopamine-OA) โดย 5-HT และ DA ทำหน้าที่ตรงกันข้าม การฉีด 5-HT ในกุ้งก้ามกรามที่ระดับ2.5x10 5-2.5 x 10⁻⁷ mol/ตัว และ DA antagonist (spiperone-SP) ที่ระดับ 5.4 x 10⁻⁷ mol/ตัว ทำให้รังใช่พัฒนาเร็วขึ้นกว่าปกติ และมี การปล่อยใช่ออกมาในปริมาณและคุณภาพใกล้เคียงกับปกติ และยังทำให้ระยะการพัฒนาของเอมบริโอลดลงด้วย แต่การฉีด DA ในปริมาณใกล้เคียงกัน มีผลตรงกันข้าม พบว่า 5-HT และ DA มีการกระจายอยู่ในเกือบทุกส่วนของสมอง แต่จะมีความ เข้มข้นสูงในปมประสาท thoracic และต่อมสืบพันธุ์ ระดับ 5-HT มีเพิ่มขึ้นเรื่อยๆ จากระยะที่ 1 ของวงจรรังใช่จนมีระดับ สูงสุดในระยะที่ 4 ส่วน DA มีระดับความเข้มข้นที่สวนทางกัน

การออกฤทธิ์ของ 5-HT อาจถูกขยายสัญญาณด้วยสารปรับสัญญาณประสาท (neuromodulator) ซึ่งมักเป็นสารเปป ใหด์ขนาดเล็กหรือ เอไมด์ โดยเฉพาะ gonadotropin-releasing hormone (GnRH) และ Enkephalin (Enk) ซึ่งพบว่าการฉีด GnRH ที่ระดับ 50-500 ng/gm น้ำหนักตัว หรือ GnRH agonist ที่ระดับ 1000 ng/gm น้ำหนักตัว สามารถกระตุ้นให้วงจรของ การพัฒนารังไข่และการตกไข่เร็วขึ้นกว่าปกติ อีกทั้งมีปริมาณและคุณภาพของไข่ใกล้เคียงกับกลุ่มควบคุม พบว่า GnRH มีกระจายอยู่ในสมอง ปมประสาท thoracic และต่อมสืบพันธุ์

ฮอร์โมนที่เป็นสารออกฤทธิ์ระดับสุดท้ายคือ gonadotropins ซึ่งแบ่งเป็นสองกลุ่มคือ กลุ่มที่กระดุ้นการพัฒนาของต่อมเพสได้แก่ gonad-stimulating hormone (GSH) ซึ่งกระดุ้นการพัฒนาของรังไข่และเซลล์ไข่, vitellogenin stimulating ovarian hormone (VSOH) ซึ่งกระตุ้นการสร้างสารไข่ในเซลล์ไข่ ส่วนในเพศผู้มี androgenic gland hormone (AGH) ซึ่งกระตุ้นการพัฒนาของต่อมสืบพันธุ์ ได้แก่ gonad-inhibiting hormone (GIH) ซึ่งทำหน้าที่ตรงกันข้ามกับฮอร์โมนกลุ่มแรก นอกจากฮอร์โมนดังกล่าวเรายังพบว่าในกุ้งมีฮอร์โมนคล้ายๆกับ abalone egglaying hormone (aELH) กระจายอยู่ในปมประสาท thoracic และรังไข่ การฉีดฮอร์โมน ELH ที่ระดับ 5-500 ng/gm น้ำหนักตัวทำให้วงจรของการพัฒนารังไข่และการตกไข่ของกุ้งสั้นลงโดยมีการปล่อยไข่ในปริมาณและคุณภาพที่ปกติ เนื่องจากพบว่า ELH เป็นฮอร์โมนที่มีการอนุรักษ์สูงในกุ้งก้ามกราม กุ้งกุลาดำ และสัตว์พวก crustaceans ชนิดอื่นๆ เราจึงเชื่อว่า ELH เป็น gonadotropin ที่สำคัญมากตัวหนึ่งที่มีบทบาทในการพัฒนาของต่อมสืบพันธุ์และเซลล์สืบพันธุ์ ทั้งนี้เป็นไปได้ว่า ELH อาจเป็นหรือทำหน้าที่คล้าย GSH ซึ่งเป็นฮอร์โมนที่มีผู้เสนอว่ามีการออกฤทธิ์กระตุ้นการพัฒนาของรังไข่ในกุ้ง แต่ยังไม่เคยมีผู้ใด สามารถสกัดฮอร์โมนดังกล่าวออกมาได้

การเลี้ยงในสภาพกักขังทำให้กุ้งเกิดความเครียดเป็นเหตุให้การพัฒนาของต่อมสืบพันธุ์และการสืบพันธุ์ของพ่อ-แม่ พันธุ์กุ้งลดลงจนกระทั่งอาจจะไม่มีเพศสัมพันธ์เลย ทั้งนี้เป็นไปได้ว่าความเครียดมีผลกระทบต่อความสมคุลของฮอร์โมน gonadotropins โดยตรง การฉีด 5-HT และ/หรือ GnRH หรือแม้กระทั่งการให้ ELH โดยตรง สามารถกระตุ้นให้ประสิทธิภาพ การสืบพันธุ์ของพ่อ-แม่พันธุ์เพิ่มขึ้นได้ นอกจากนั้นการฉีดสารห้าม DA เช่น SP ช่วยเป็นปัจจัยเสริมที่ผลักดันให้มีการสร้าง และหลั่ง gonadotropin ที่มีฤทธิ์กระตุ้นการพัฒนาต่อมสืบพันธุ์ และพฤติกรรมสืบพันธุ์เพิ่มขึ้นได้ ในทำนองเดียวกับการ กระตุ้นตัวอ่อนทั้งสองเพศด้วยฮอร์โมนกำหนดเพศผู้ที่อยู่ในกลุ่ม insulin-like growth factor (IGF) และ/หรือ AGH และ/หรือ testosterone อาจทำให้เกิดการเปลี่ยนเพศของลูกกุ้งที่เป็นเพศผู้มากขึ้นได้ ซึ่งจะทำให้การเลี้ยงแต่เพศผู้อย่างเดียว (male sex monoculture)เป็นไปได้ และให้ผลตอบแทนแก่เกษตกรเพิ่มสูงขึ้น

The tropical abalone, *Haliotis asinina*, and the giant freshwater prawn, *Macrobrachium rosenbergii*, gear their reproductive and growth activities to fit the changing of environmental conditions. The most powerful environmental stimuli are light, photoperiod, lunar cycle, temperature, and availability of food. These cues are perceived by many specialized sense organs concentrating in the eyes and appendages around the head region. Specialized receptor cells and associated neurons in these structures and various neural ganglia are the principal structures that perceive and act in the signaling pathway to mediate the physiological and behavioral changes of these animals in response to the changes of environmental conditions.

Abalone

The anatomical organization and detailed histology of the abalone nervous and reproductive systems together with the distribution of the controlling neurotransmitters (NE), 5-HT, and neuromodulators (NM), GnRH, have been studied. These NE and NM have been localized principally in the cerebral and pleuropedal ganglia. Furthermore, the neurohormone, especially the abalone egg-laying hormone (aELH) have also been detected in these ganglia and the gonads. Recombinant aELH has been synthesized. The administrations of serotonin (5-HT), GnRH, or aELH could shorten the ovarian cycle and the maturation of oocytes in female broodstocks. 5-HT and aELH could also stimulate spawning in female. On the other hand, APGW could stimulate spermiation in mature males. These treatments could stimulate the simultaneous spawning and spermiation which allow expedient collection of the gametes for the in vitro fertilization. Administration of 5-HT, aELH and GnRH in juvenile abalone with age less than 4 months could also stimulate the ovarian and testicular maturation at the earlier age. Furthermore, 5-HT and aELH tend to increase the number of females more than males. In addition to the endocrine manipulation of the reproductive processes, we have also studied the factors that could increase the settlement and metamorphosis of the abalone larvae. It was demonstrated that GABA, 5AVA at 1 µM and MSG at 5 mM could enhance settlement rate of the veliger larvae by 50% when compared to the control which was at 10-15%. This endocrine manipulation could also increase the rate of metamorphosis and survival of the abalone spats. This technique could be used for small as well as large scale aquaculture.

Prawn

Major neurotransmitters that could stimulate the reproduction and growth of the giant freshwater prawn are indolamine (serotonin or 5-hydroxytryptamine-5HT), and catecholamines (dopamine-DA, octopamine-OA). Indolamine and catecholamine are usually antagonistic in their actions; for example, 5-HT was found to stimulate hyperglycemic hormone (CHH) and gonadotrophic hormone (GSH) which stimulate the ovarian maturation, while DA and OA

inhibit the releases and consequently the actions of these hormones. The actions of neurotransmitters may be mediated and modified by groups of neuromodulators, which are usually composed of short peptides or amides, the most prominent of which are enkephalin and GnRH. Gonadotrophic hormones themselves are classified into stimulatory group (GSH/VSH, VSOH, AGH) and inhibitory group (GIH) which inhibit the syntheses and releases of the formers. In addition to these two groups of hormone, we have detected the presence the prawn egg-laying hormone (ELH) which is similar to abalone ELH, in thoracic ganglia and ovary of prawn. The administration of this hormone (aELH) at the dosages of 5 ng/gm BW to 500 ng/gm BW could significantly shortening the ovarian cycle and spawning period. When characterized by HPLC, the prawn ELH is very similar to abalone ELH. Other vertebrate-type hormones is present including insulin-like growth factor (IGF). This hormone was detected in the androgenic gland of the giant freshwater prawn, which is highly similar to that of the closely related species, *Cherax destructor*. This hormone could be male-sex determining factors acting in addition to or in place of AGH, as up to date AGH could not yet be isolated in the freshwater prawn. In addition, the evidence for the presence of vertebrate-type sex steroids (testosterone, estradiol), and their stimulating effects on the prawn gonads has been demonstrated by our group.

When reared in captivity, the fecundity of the broodstocks always decline which is due to the imbalance of gonadotrophins, perhaps caused by unnatural environment and stress. The restoration of stimulatory gonadotrophins by direct supplementation of ELH, and/or by stimulation with 5-HT, and/or neuromediators like GnRH, could improved the gonadal maturation and greater production of gametes. Furthermore, this processes could be enhanced by the inhibition of the inhibitory hormones with DA inhibitor. Likewise, we demonstrated that the male-sex determination of freshwater prawn could be controlled by the antagonistic hormones, ie, IGF and GIH. If such endocrine manipulative strategies are possible, then they could be applied for economic benefit in aquaculture, such as in avoiding eyestalk-ablation in prawn (especially *P. monodon* and *P. vannamei*) which is routinely employed to stimulate the ovarian maturation and spawning, as well as in the sex conversion to obtain and culture only male prawn.