NUTRIENT EFFICIENCY FROM LOCAL GENETIC RESOURCE FOR BETTER CROP PRODUCTION

EXECUTIVE SUMMARY

Thailand is rich in genetic resource that can be exploited to help in nutrient management in agriculture, to improve economic efficiency in crop production and to reduce impact on the environment that includes emission of greenhouse gases. These can be found in indigenous cultivated plant species and their wild relatives like rice and sugarcane, in wild plant species and in symbiotic bacteria and fungi. This project has contributed to knowledge in nutrient efficiency for crop production in three sets of objectives as follows.

1. To identify key processes and mechanisms controlling useful traits (adaptation and grain quality) associated with nutrient efficiency in rice.

Rice varieties adapted to soil acidity identified out-performed sensitive varieties in farmers' fields, in yield and nutrient contents. Tolerance was associated with the ability (a) to keep extending the roots into the acidic soil layers, and (b) to retain aluminium (Al) in the roots, so keeping it away from the shoot. Iron (Fe) toxicity depressed root growth, plant dry weight, height and tillering. Leaf bronzing and tillering are simple indicators that can distinguish between tolerance and sensitivity in rice varieties. Application of Zn alleviated the effect of Fe toxicity in rice, thus providing a simple mean to overcome the problem in farmers' field. A wide range of grain Zn density has been found in Thai rice varieties, but with some major GxE effects. Some rice varieties had significantly higher Zn concentration when grown in submerged soil than in aerobic soil, especially those with exceptional high Zn. In general, white rice contains a lot less Zn than brown rice, as a significant proportion of the Zn is removed during polishing, but with significant milling loss of Zn among. Analysis of F1s and F2s suggested that grain Fe in rice was controlled by additive, recessive gene action that differed by two genes in the parents, suggesting that it should be simple to breed for higher grain Fe density.

2. To increase understanding on B efficiency in cereals and effects of B deficiency on fiber quality, from effects of B deficiency and fiber quality and genomic syntheny of B efficiency in rice, wheat and maize.

Studies of boron efficiency included experiments on wheat, and maize, with wheat work being more advanced, as it built on earlier work. Boron efficiency genes have been located on chromosome 4D. Backcrosses BC3 of BonzaBo2 have been made to create 12 isogenic lines for further genetic studies. In contrast to the effect on male fertility in wheat and barley, B deficiency in maize had adverse effects on the female reproductive system first, via function of the silk in pollen germination. No difference was found in the effect of B deficiency on their vegetative growth, but a range of B efficiency was found in relation to the reproductive growth of 7 maize varieties commonly grown in Thailand. Concentration of B in the pollen, tassel, silk, ear-leaf and flag-leaf all indicated B status that affected grain set and grain yield. Silk B is the most direct measure of B status for reproduction, but the ear leaf, flag leaf and tassel are useful indicator of B status that can be determined early and remedied by a B spray on the silk if necessary. No evidence of B deficiency adversely affecting fiber quality in eucalyptus was found. However, significant variation in B efficiency and responses to B among the clones mean that B efficiency may be useful in eucalyptus clones selected for areas in the north and northeast with widespread low B soils.

3. To identify factors and processes controlling contributions from AM fungi to

general soil health and nutrient cycling in legume and non-legume species.

We have found that when phosphorus was limiting, inoculation with soil freshly collected from the rhizosphere of pada (*Macaranga denticulata*), which contains an abundant and diverse population of natural AM fungi, increased accumulation of nutrients, plant growth and yield in food crops of shifting cultivation, including rice, maize, job's tears and sorghum, just as it did in the fallow enriching tree pada. However, AM fungi in the rhizosphere of these food crops are much less diverse than in the rhizosphere of pada. Natural population of AM fungi from the root zone of pada was also effective in improving growth of rubber seedlings. In addition to P deficiency, adverse effect of soil acidity was found alleviated by AM fungi. *Mimosa invisa* a common leguminous 'weed' of the lowlands have also been found associated with an abundant and diverse (25 species in 2 main genera) of AM fungi. The soil from root zone of mimosa proved to be as effective as that from pada on improving the growth of rubber seedlings.

4. Nitrogen Fixation in Sugarcane (during period of extension: 20 July 2009 – 19 July 2010)

Nitrogen fixing endophytic bacteria were found to occur naturally in sugarcane in Thailand by isolation of the bacteria from all parts of the sugarcane plant in N free culture media and N balance studies in N-free sand culture. Detail studies of the endophyte populations have been conducted in local and commercial sugarcane varieties and wild sugarcane, indicating that the N fixing endophytes occur widely and naturally in sugarcane, in the same manner as the population of micro-organisms that help to digest cellulose in the guts of ruminants. Nitrogen balance studies of commercial sugarcane varieties found a wide range of N fixing potential in different plants of the same varieties. Measurement of N status of the sugarcane plant with chlorophyll meter correlated well with positive N balance in N-free sand culture.

Implications of main research findings

- 1. From variation in Al and Fe toxicity tolerance to grain richness in nutrients (Fe and Zn) in local rice germplasm the project has contributed to the knowledge that Thailand's local rice germplasm is rich in functional traits as well as having background genetic diversity that puts it in an intermediate stage of domestication between a wild ancestor and modern varieties. We have also found that farmers' tradition of rice seed selection and exchange has a key role in maintaining genetic diversity in Thailand's rice germplasm. The work on diversity in functional traits has now expanded to include resistance to the rice gall midge, an insect pest at 400-500 m that has expanded its range to higher elevation to almost 1,000 m, presumably because of global warming.
- 2. Results of effects of Zn fertilizer and Fe toxicity tolerant rice varieties have led to further research on management of rice in Fe toxic soil in Lao PDR, funded by HarvestPlus and International Zinc Association.
- 3. Confirmation of Pathumthani 1, which produces export quality jasmine rice as being well adapted to aerobic conditions in the field, has led to evaluation of adaptation to aerobic condition of more varieties with potential for jasmine rice production.
- 4. Results of Fe density in rice grain have led to bioavailability studies that have shown that although the Fe concentration may be lowered by milling, the Fe in white rice is generally much more biologically available than brown rice.
- 5. Although B deficiency affects both wheat and maize through fertilization failure, the fact that maize is affected via female fertility has implications for both further understanding of how B deficiency adversely affects reproduction in cereals and how B fertilizer may be managed to alleviate the problem.

- 6. The critical value for B deficiency established for reproductive development of maize can be used to diagnose for B deficiency that can affect seed set and seed yield. Flag leaf B and ear leaf B, although less direct than silk B, can be measured before anthesis and B applied to the silk as needed.
- 7. Now that we know B deficiency affects maize primarily through the silk, applying B on the silk has a potential to improve maize yield, and especially in hybrid maize seed production, in the north and northeast, where soils are low in B.
- 8. The finding that some eucalyptus clones are more B efficient means that selection for B efficiency could save the cost of B fertilizer and prevent loss of wood yield in plantations on low B soils in the north and northeast.
- 9. Plants that are associated with a rich diversity of AM fungi population, such as the tree macaranga and the weed mimosa, are ideal hosts for the production of AM fungi inoculants. Other plants should be investigated for the purpose. The management of the AM fungi in an ecosystem as in the rotational shifting cultivation with the macaranga as the key host for the AM fungi as the key host could be a model for the field crops.
- 10. Results from the study of procedures for evaluating symbiotic nitrogen fixation in sugarcane have led to a new project to develop method for screening and selecting sugarcane clones for nitrogen fixation along with regular traits such as local adaptation, resistance to major pests and diseases and high cane and sugar yield, and to isolate and study the N fixing endophytes and develop method for inoculating sugarcane cuttings.
- 11. The project contributed to national plan for coping with climate change in section on adaptation to climate change of Thailand's agriculture.
- 12. Thailand has the potential to benefit from its naturally occurring N fixing endophytic bacteria in sugarcane, and so lower the cost of N fertilizer and reducing the release of green house gas N₂O to the atmosphere. Management of N in the sugarcane crop for maximum benefits from the N fixing endophytes can be done by monitoring the crop for N status.

OUTPUTSTwo sets of expected outputs proposed and achieved are as follows:

Project outputs	Proposed	Achieved
1. Capacity building		
Next generation research leaders†	6(4)†	8(6)
New researchers plus PhD students‡	3	4+11‡
Graduate students	3 MS 8 PhD	20 MS 17 PhD
Graduate studies completed during project	2 MS 7 PhD	9 MS 14 PhD
2. Publication and dissemination		
Papers in international refereed journals		
Published/accepted	12	18(15)§
Manuscripts under preparation		6
Technical papers in Thai/local publication		28
Conference papers		98
Newspaper articles		10
Farmers' handbooks and pamphlet	1	3
3. Contribution to national plan for coping		
with climate change: adaptation of Thailand's		1
agriculture		

†Post doctoral fellows in brackets. ‡8 RGJ and 3 CHE and others §ISI/SCOPUS journals in brackets

ทรัพยากรพันธุกรรมท้องถิ่น เพื่อการใช้ธาตุอาหารพืชในการเพาะปลูกอย่างมีประสิทธิภาพ บทสรุป

ประเทศไทยมีทรัพยากรธรรมชาติที่หลากหลายที่สามารถนำมาใช้ในการเพิ่มประสิทธิภาพการจัดการธาตุ อาหารในระบบการเพาะปลูก เพื่อเพิ่มผลตอบแทนทางเศรษฐกิจและลดผลกระทบต่อสิ่งแวดล้อมรวมไปถึงการลด การปลดปล่อยก๊าซเรือนกระจก ลักษณะทางพันธุกรรมเหล่านี้พบได้ในทั้งพืชปลูกและพืชป่าในท้องถิ่นตลอดจน แบคทีเรียและเชื้อราที่อยู่ร่วมกับพืชแบบพึ่งพา ผลงานวิจัยในโครงการนี้ได้เพิ่มพูนความรู้เกี่ยวกับประสิทธิภาพการ ใช้ธาตุอาหารในระบบการผลิตพืชในวัตถุประสงค์ 3 กลุ่มดังต่อไปนี้

1. บ่งชี้กลไกและกระบวนการหลักที่ควบคุมกำหนดการแสดงออกของลักษณะสำคัญต่อประสิทธิภาพ การใช้ธาตุอาหารในข้าว

ในแปลงข้าวไร่ของเกษตรกรที่มีดินเป็นกรด ได้พบว่าพันธุ์ข้าวทนกรดให้ผลผลิตและสะสมธาตุอาหารได้ ดีกว่าพันธุ์ไม่ทน ความทนทานต่อดินกรดสอดคล้องกับความสามารถ (ก) หยั่งรากลงไปในชั้นดินที่มี pH ต่ำ และ (ข) การกันธาตุอลูมิเนียม (AI) ที่เป็นพิษไว้ในรากมิให้ถูกส่งขึ้นไปเป็นอันตรายแก่ต้นและใบ ธาตุเหล็ก (Fe) ที่มี มากเกินไปจนเป็นพิษมีผลเสียต่อการเจริญเติบโตของราก การสะสมน้ำหนักแห้ง การแตกกอ และการเกิดสนิมที่ใบ สองลักษณะท้ายเป็นเครื่องชี้ให้สามารถแยกแยะพันธุ์ที่มีธาตุสังกะสีสูงกว่าข้าวพันธุ์หลักส่วนใหญ่หลายเท่าตัว และบาง พันธุ์มีธาตุสังกะสีในเมล็ดใด้พบพันธุ์ข้าวไทยหลายพันธุ์ที่มีธาตุสังกะสีสูงกว่าข้าวพันธุ์หลักส่วนใหญ่หลายเท่าตัว และบาง พันธุ์มีธาตุสังกะสีในเมล็ดสูงเมื่อปลูกในสภาพนาสวนกว่าเมื่อปลูกแบบข้าวไร่ (ข้าวแอโรบิก) ธาตุสังกะสีในเมล็ด ข้าวส่วนใหญ่อยู่ในเยื่อหุ้มเมล็ดและจมูกข้าว ที่ถูกขัดออกไปเป็นรำในระหว่างการสี ธาตุสังกะสีในข้าวขาวจึงมีน้อย กว่าในข้าวกล้อง สำหรับธาตุเหล็กในเมล็ดข้าวได้พบว่าการถ่ายทอดลักษณะเหล็กสูงถูกควบคุมโดยยีนด้อยที่ แตกต่างกัน 2 ยืนในพันธุ์เหล็กสูงและพันธุ์เหล็กด่ำ ซึ่งหมายความว่าการปรับปรุงพันธุ์ข้าวให้มีธาตุเหล็กในเมล็ดสูง น่าจะทำได้ไม่ยากนัก โดยทำการคัดเลือกสายพันธุ์เหล็กสูงด้วยการย้อมสี Perls' Prussian Blue

2. สร้างความรู้เกี่ยวกับการใช้โบรอนในการสร้างผลผลิตในธัญพืช และคุณภาพผลผลิตในพืชเส้นใย

การศึกษาประสิทธิภาพการใช้ธาตุอาหารโบรอนในข้าวสาลีได้พบยืนที่ควบคุมในโครโมโซม 4D และพบว่า สามารถใช้ marker assisted selection (MAS gwm192 และ gwm165) คัดเลือกพันธุ์ข้าวสาลีให้ทนทานต่อการ ขาดโบรอนในดินได้ ยืนยันได้ด้วยการติดเมล็ด และได้สร้าง isogenic lines 12 สายพันธุ์เพื่อการศึกษาพันธุกรรม ของประสิทธิภาพการใช้ธาตุอาหารโบรอนต่อไป สำหรับในข้าวโพดได้พบว่าการขาดโบรอนมีผลกระทบต่อการติด เมล็ดเช่นกัน แต่ในทางที่แตกต่างจากข้าวสาลีและข้าวบาร์เลย์ที่มีเกสรตัวผู้เป็นหมันเมื่อขาดโบรอน โดยการขาด โบรอนมีผลกระทบต่อข้าวโพดที่ยอดเกสรตัวเมียหรือไหม ที่เป็นอุปสรรคต่อการงอกของละอองเรณู การขาดโบรอน มีผลน้อยต่อการสร้างตันและใบที่ไม่แตกต่างกันระหว่างพันธุ์ข้าวโพด แต่พบความแตกต่างระหว่างพันธุ์ ในความ ทนทานต่อการขาดโบรอนของระบบการผสมเกสร พัฒนาการ และการติดเมล็ดของข้าวโพดที่ปลูกในประเทศไทย 7 พันธุ์ ได้พบว่าความเข้มข้นของธาตุอาหารโบรอน ในละอองเรณู ในช่อเกสรตัวผู้ ไหม (ยอดเกสรตัวเมีย) ใบธง ใบ ใต้ฝัก ล้วนแต่ใช้เป็นตัวชี้วัดสถานะภาพการขาดโบรอนในข้าวโพดได้ โบรอนในไหมเป็นตัวชี้วัดที่ตรงเป้าที่สุด แต่ ใบธง ใบใต้ฝัก และช่อเกสรตัวผู้ ที่วิเคราะห์ได้ก่อนการผสมเกสร เป็นตัวชี้วัดที่ทันต่อเวลามากกว่า และหากพบว่า ขาดสามารถแก้ไขปัญหาได้ทันท่วงทีโดยการพ่นโบรอนให้ลงบนไหม สำหรับการขาดโบรอนในเยื่อไม้ไม่พบว่าการ ขาดโบรอนมีผลกระทบต่อลักษณะทางคุณภาพของเยื่อไม้ยุคาลิปตัส แต่พบความแตกต่างระหว่างพันธุ์ยูคาในการขาดโบรอนมีผลกระทบต่อลักษณะทางคุณภาพของเยื่อไม้ยุคาลิปตัส แต่พบความแตกต่างระหว่างพันธุ์ยูคาในการขาดโบรอนมีผลกระทบต่อลักษณะทางคุณภาพของเยื่อไม้ยุคาลิปตัส แต่พบความแตกต่างระหว่างพันธุ์ยูคาในการขาดโบรอนมีผลกระทบต่อลักษณะทางคุณภาพของเยื่อไม้ยุคาลิปตัส แต่พบความแตกต่างระหว่างพันธุ์ยูคาในการ

ตอบสนองต่อการขาดโบรอนในดิน หมายความว่าการคัดเลือกพันธุ์ทนทานน่าจะมีประโยชน์ในการปลูกยูคาในดิน โบรอนต่ำที่มีอยู่อย่างแพร่หลายในภาคตะวันออกเฉียงเหนือและภาคเหนือ

3. บ่งชี้ปัจจัยและกลไกที่ควบคุมการทำงานของเชื้อราไมโคไรซ่าต่อคุณภาพดินและการหมุนเวียนธาตุ อาหาร

โครงการได้พบว่าดินจากบริเวณรากต้นปะดะ (Macaranga denticulata ไม้ป่าบำรุงดินจากไร่หมุนเวียน) ที่ มีประชากรเชื้อราอาร์บัสคูล่าร์ไมโคไรซ่า ("เอเอ็ม") ที่หลากหลาย ช่วยเร่งการเจริญเติบโตและเพิ่มผลผลิตพืช อาหารสำคัญหลายชนิด เช่นข้าวไร่ ข้าวโพด เดือย ข้าวฟ่าง และถั่ว แต่พบว่าเชื้อราเอเอ็มในรากของพืชปลูก เหล่านี้มีความหลากหลายน้อยกว่าในรากปะดะ และความหลากหลายของเชื้อราเอเอ็มยังลดลงไปอีกในดินที่อุดม ด้วยธาตุฟอสฟอรัส เชื้อราเอเอ็มจากรากปะดะยังสามารถเร่งการดูดซับธาตุอาหารและเจริญเติบโตของกล้า ยางพาราได้เป็นอย่างดี ไมยราบเลื้อยที่ขึ้นอยู่ดาษดื่นทั่วไปเป็นอีกพืชหนึ่งที่มีประชากรเชื้อราเอเอ็มที่หลากหลาย ในบริเวณราก (25 species ใน 2 genera หลัก) ดินจากบริเวณรากไมยราบเลื้อยใช้เป็นหัวเชื้อเอเอ็มปลูกให้แก่กล้า ยางพาราได้ผลดีพอ ๆกับดินจากรากปะดะ

4. การตรึงไนโตรเจนในอ้อย (ในช่วงขยายเวลา 20 กรกฎาคม 2552 - 19 กรกฎาคม 2553)

การศึกษาแบคทีเรียที่แยกออกได้จากส่วนต่างๆของต้นอ้อย และสมดุลในโตรเจนในต้นอ้อยที่ปลูกโดย ไม่ให้ในโตรเจนในสารละลายธาตุอาหาร พบว่าพันธุ์อ้อยพื้นเมือง อ้อยพันธุ์อุตสาหกรรม และอ้อยป่า ในประเทศ ไทยมีแบคทีเรียตรึงในโตรเจนที่หลากหลายตามธรรมชาติ (ในทำนองเดียวกับจุลินทรีย์ช่วยย่อยเซลลูโลสใน กระเพาะสัตว์เคี้ยวเอื้อง) ศักยภาพการตรึงในโตรเจนในอ้อยที่วัดด้วยวิธี N balance สอดคล้องอย่างมีนัยยะสำคัญ กับสถานภาพของในโตรเจนในต้นอ้อยที่วัดด้วยเครื่องวัดคลอโรฟิล

ความหมายของผลงานหลักและการใช้ประโยชน์

- 1) ความทนทานต่อดินกรดของต้นข้าว และปริมาณธาตุอาหาร (Fe, Zn) ในเมล็ดข้าว เป็นความหลากหลายใน ลักษณะที่เป็นประโยชน์ ที่โครงการนี้มีส่วนในการสร้างความเข้าใจถึงความหลากหลายทางพันธุกรรมของข้าว ไทย ที่ครอบคลุมทั้ง molecular และ functional diversity และพบว่าธรรมเนียมการคัดเลือกพันธุ์และ แลกเปลี่ยนพันธุ์ข้าวของเกษตรกรมีบทบาทสำคัญในการอนุรักษ์ความหลากหลายทางพันธุกรรมของพันธุ์ข้าว พื้นเมือง นำไปสู่ลักษณะความทนทานต่อแมลงบั่วที่กำลังรุกระบาดขึ้นไปในนาที่สูงถึง 1000 เมตร เนื่องจาก ภาวะโลกร้อน
- 2) ผลงานเรื่องการลดการเป็นพิษของธาตุเหล็กด้วยสังกะสี ได้นำไปสู่การขยายงานวิจัยเพื่อการจัดการปัญหาธาตุ เหล็กเป็นพิษในนาข้าวในประเทศลาว โดยการสนับสนุนของ HarvestPlus และ International Zinc Association.
- 3) การพิสูจน์ว่า ปทุมธานี 1 ที่ใช้ผลิตข้าวเกรดส่งออก "หอมปทุม" ว่าปลูกได้ดีในสภาพแอโรบิก ซึ่งนำไปสู่การ ทดสอบข้าวนาสวนพันธุ์ข้าวหอมในการปลูกแบบแอโรบิกอีกหลายพันธุ์
- 4) ผลงานวิจัยเรื่องธาตุเหล็กในเมล็ดข้าวนำไปสู่การศึกษาความเป็นประโยชน์ของธาตุเหล็กต่อผู้บริโภค ที่พบว่า แม้ในข้าวขาวจะมีธาตุเหล็กต่ำกว่าข้าวกล้อง แต่ธาตุเหล็กในข้าวขาวอาจมีประโยชน์ต่อผู้บริโภคมากกว่าข้าว กล้อง

- 5) ความรู้ว่าการขาดโบรอนมีผลกระทบต่อการติดเมล็ดทางเกสรตัวเมียในข้าวโพดในขณะที่ในข้าวสาลีทางเกสร ตัวผู้ เป็นการปูทางไปสู่ (ก) ความเข้าใจถึงผลกระทบจากการขาดธาตุโบรอนต่อระบบการสืบพันธุ์และสร้าง ผลผลิตเมล็ดในธัญพืช และ (ข) การจัดการปุ๋ย
- 6) ความเข้มข้นของธาตุอาหารโบรอนในไหม (ยอดเกสรตัวเมีย) เป็นตัวชี้วัดสถานะภาพการขาดโบรอนใน ข้าวโพดที่ตรงเป้าที่สุด แต่ใบธง ใบใต้ฝัก และช่อเกสรตัวผู้ ที่วิเคราะห์ได้ก่อนการผสมเกสร เป็นตัวชี้ที่ทันต่อ เวลามากกว่า เพราะสามารถแก้ไขปัญหาได้ทันท่วงทีโดยการพ่นโบรอนให้ลงบนไหมหากพบว่าขาด
- 7) ความรู้ว่าการขาดโบรอนที่ใหมจะทำให้ข้าวโพดติดเมล็ดลดลง การให้โบรอนที่ใหมมีโอกาสเพิ่มอัตราการติด เมล็ดใด้ มีประโยชน์ต่อการผลิตเมล็ดข้าวโพดโดยเฉพาะเมล็ดพันธุ์ลูกผสม
- 8) ความรู้ว่าสายพันธุ์ยูคามีความทนทานต่อการขาดโบรอนต่างกัน น่าจะเป็นประโยชน์ต่อการคัดเลือกและ ปรับปรุงพันธุ์ยูคาสำหรับพื้นที่ดินขาดโบรอนที่แพร่หลายในภาคเหนือและตะวันออกเฉียงเหนือ
- 9) พืชที่อยู่ร่วมกับประชากรเชื้อราเอเอ็มที่หลากหลาย เช่นปะดะ หรือไมยราบเลื้อย ใช้เป็นพืชอาศัยผลิตหัวเชื้อ เอเอ็มได้เป็นอย่างดี สำหรับพืชเศรษฐกิจที่เป็นพืชยืนต้นเช่นยางพารา กาแฟ และไม้ผล บทบาทของต้นปะดะ ในการเป็นพืชอาศัยของเชื้อราเอเอ็มในไร่หมุนเวียน และผลิตหัวเชื้อในรูปของสปอร์และรากติดเชื้อให้แก่พืช อาหารและพืชอื่น ๆในระบบ เป็นต้นแบบของการจัดการระบบนิเวศดิน ที่น่าจะเป็นประโยชน์ต่อการจัดการดิน ในระบบการเพาะปลูกที่เอื้อต่อจุลินทรีย์ที่เป็นประโยชน์
- 10) ผลการประเมินวิธีการศึกษาการตรึงในโตรเจนในอ้อยเบื้องตัน ที่สามารถแยกแยะระหว่างท่อนพันธุ์อ้อยที่มีและ ไม่มีการตรึงในโตรเจนได้ นำไปสู่โครงการใหม่ที่จะพัฒนาระบบการคัดเลือกสายพันธุ์อ้อยที่มีศักยภาพการตรึง ในโตรเจนจากอากาศไปพร้อม ๆกับลักษณะสำคัญอื่นๆ เช่นการปรับต่อต่อสภาพแวดล้อมเฉพาะถิ่น ความ ทนทานหรือต้านทานต่อโรคแมลงสำคัญ และการแยกและศึกษาเชื้อแบคทีเรียตรึงในโตรเจนจากในต้นอ้อย และวิธีการปลูกเชื้อให้ท่อนพันธุ์อ้อยต่อไป
- 11) มีส่วนร่วมในการร่างแผนแม่บทโลกร้อน ในส่วนของผลกระทบและการปรับระบบการเพาะปลูกในภาวะ ภูมิอากาศแปรปรวนและเปลี่ยนแปลง
- 12) ด้วยประชาการแบคทีเรียตรึงในโตรเจนที่มีอยู่หลากหลายทั่วไปในต้นอ้อย ทั้งพันธุ์พื้นเมือง พันธุ์อุตสาหกรรม และอ้อยป่า ประเทศไทยนับว่ามีโอกาสได้รับประโยชน์ในการปลูกอ้อย ด้วยการลดต้นทุนการใส่ปุ๋ยในโตรเจน และลดการปลดปล่อยก๊าซเรือนกระจก №0 จากการตรึงในโตรเจนในอ้อย ไม่แพ้บราซิล
- 13) แนวทางการจัดการเพื่อได้ประโยชน์สูงสุดจากแบคทีเรียตรึงในโตรเจนในต้นอ้อย คือการจัดการปุ๋ยในโตนเจน ให้พอดีไม่น้อยไปจนเป็นข้อจำกัดต่อผลผลิต และไม่มากไปจนทำให้การตรึงในโตรเจนโดยแบคทีเรียลดลง
- 14) การจัดการปุ๋ยในโตนเจนให้พอดี สามารถทำได้โดยการประเมินสถานภาพของในโตรเจนในต้นอ้อยด้วยวัดคลอ โรฟิล ด้วยเครื่องวัดคลอโรฟิลหรือแถบสีที่มีราคาไม่แพง

เป้าหมายและผลสัมฤทธิ์ของโครงการ

ผลสัมฤทธิ์	เป้าหมาย	ความสำเร็จ
1. การสร้างกลุ่มวิจัยและขีดความสามารถนักวิจัย		
นักวิจัยผู้นำรุ่นใหม่	6(4)†	8(6)
นักวิจัยใหม่ + นักศึกษาป.เอก คปก. และอื่นๆ	3	4+11‡
นักศึกษาบัณฑิตศึกษา	3 MS 8 PhD	20 MS 17 PhD
นักศึกษาสำเร็จการศึกษาในระหว่างโครงการ	2 MS 7 PhD	9 MS 14 PhD
2. การตีพิมพ์เผยแพร่		
วารสารวิชาการนานาชาติที่มีการตรวจสอบ		
บทความตีพิมพ์/ตอบรับแล้ว	12	18(15)§
บทความเสนอกำลังเตรียม		6
บทความวิชาการตีพิมพ์เป็นภาษาไทย		28
ผลงานเสนอในการประชุม		98
บทความเผยแพร่ทั่วไป (หนังสือพิมพ์)		10
คู่มือเกษตรกร และแผ่นพับ	1	3
3. ร่วมร่างแผนแม่บทโลกร้อน ในส่วนของการปรับ		
ระบบการเพาะปลูกในภาวะภูมิอากาศแปรปรวน และเปลี่ยนแปลง		1

[†] ในวงเล็บคือนักวิจัยหลังปริญญาเอก ‡ ทุนคปก. 8 ทุน ทุน สกอ. และอื่นๆ 3 ทุน § ในวงเล็บคือบทความในวารสารในฐานข้อมูล ISI