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o 0 +(%,-%) V9 =S (590) 5,20 (49)
% ¢ +(x,-x,)-V j’—%(al Vgr) v, <0
in_%(v’ @W) Vi 20
¢in+1/2 — At ) (50)
:_7(‘7/ V¢;) Vi <0

The concept of finite element method is applied to determine the
gradient quantities. The gradient at the center of control volume, v¢i", is

determined by the weighted residuals method and is assumed to be linearly

distributed over cell Q,,

Vg = 2N (3)Ve (51)

k=1

where N, ()?) denotes the linear interpolation functions for the triangular cell and

k=1, 2, 3 represent the control volume vertices. By applying the standard
Galerkin method and the Gauss’s theorem to Eq. (51), the gradient quantities at a
grid point are obtained as,

"/ LN -1 — n a]\]J (U) n o j—

Vg, = M| [ A (0)N,(v)g] do- [ ——=4 dx (52)

0Q; ox

where M is the lumped mass matrix and ?ﬁi are the contributions of the
gradient quantities in the control volume Q, to the gradient quantities at the grid

pointJ . In order to determine the total gradient quantities at the grid point J, Eq.
(52) is applied to all the volumes surrounding it such that,

Vg = 2V, (53)

where NV is the number of the surrounding triangular cells. The gradient

n
i >

quantities at the cell faces, V@, is then computed by applying the midpoint

quadrature integration rule along the edge that connects grid points / and J .
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Figure 13 shows the pure-convection problem of a mixing of hot with

cold front. The computational domain is Q=(—4,4)><(—4,4) and an initially

straight frontal zone is given by,

b (%) = —tanh@j (54)
the velocity field is defined as,
g o= 2Ly 2 )5 (55)
r max fmax

where r=./x>+)* is the distance from the origin of the coordinate system,

tanh (r)

———~72  Th
cosh?(r) ©

Sowx =0.385 1s the maximum tangential velocity, and f, =

problem is examined until the final time step is equal to 4. The exact solution is
shown by the two- and three-dimensional contour plots in Figs. 13(a)-(b).

The computation is initially performed by using an unstructured mesh
consisting of 884 uniform triangular cells. The initial and adaptive meshes with
their computed solutions are shown by the two- and three-dimensional contour
plots in Figs. 14(a)-(d), respectively. The element size used in the initial mesh is
0.4. The maximum and minimum element sizes of the third adaptive mesh are 1.0
and 0.004, respectively. The figures show that spurious oscillations decrease as
the meshes are refined. The exact and computed solutions obtained from the third

adaptive mesh are found to be good agreement.

(a) 2D contour plot (b) 3D contour plot

Fig. 13. Exact solution of the mixing of hot with cold front.
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(d) Third adaptive mesh and its solution

Fig. 14. Adaptive meshes and their computed solutions for

the mixing of hot with cold front.
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Figure 15 represents a singularly perturbed diffusion-reaction

problem. The computational domain is a unit square of 2 =(0,1)><(0,1). The

initial condition, ¢, ()?), and the Dirichet boundary condition, ¢()?), are

prescribed as zero. The source term is given by,
g = 20(x*+)7)+4 (56)

The diffusion coefficient is specified as &€ =107, and the reaction coefficient, &,

is set to be 2. This example is performed until the final time step is equal to 5.

The computation is initially performed by using an unstructured mesh
with 884 uniform triangular cells (20 cells along each boundary). As the meshes
are adapted with the computed solutions, small element sizes are generated in the

region of high solution gradients along the boundary sides x=1and y=1.

Figurecs 15(a)-(d) show the initial and adaptive meshes with their corresponding
solutions. The computed solution obtained from the initial mesh shows some
oscillations without overshooting along the boundary. Oscillations decrease as
the meshes are adapted with the solutions.
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Fig. 15. Adaptive meshes and their computed solutions of

the corner layer problem.

Low-Speed Incompressible Flow

For low-speed incompressible flow, the Galerkin method with equal-
order finite element has been employed. The fundamental laws used to solve two-
dimensional, steady state, viscous incompressible flow consist of the law of
conservation of: (a) mass which is called the continuity equation, and (b) the
momentums, and (c) the energy, as follows,

ou Ov
a+ 5_0 (57)
ou oul| _ Op 0’'u 0'u
p|:u5+v$} = 2, + ,u[axz +ay2} (58a)

ov ov 0 ov 0%
p|:lzla+v—:| = —£+ /J|:ax2 +a—y2j| (58b)
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oT  aT oT T
L2 = k| S+ 88 58
p[uﬁxﬂay} [axﬁ@yz} (8

The basic unknowns for the above coupled partial differential equations are the

velocity components # and v, the pressure p, and the temperature 7.

For the three-node triangular element, the element assumes linear

interpolation for both the velocity components and the pressure as,

u(x,y) = N,u, (59a)
v(x,y) = N,v, (59b)
p(x,y) = N, p, (59¢)
T'(x,y) = N,T, (59d)

where i = 1, 2, 3; and N, are the element interpolation functions for the velocity,

the pressure, and the temperature.

The basic idea of the solution algorithm presented herein is to use the
two momentum equations for solving both of the velocity components and use the
continuity and the energy equation for solving the pressure and the temperature,
respectively. The procedure in deriving the finite element equations
corresponding to the momentum and the continuity equations are described as

follows.

The two momentum equations (58a-b) are discretized by using the
conventional Bubnov-Garlerkin’s method. However, a special treatment for the
convection terms is incorporated. These terms are approximated by a monotone
streamline upwinding formulation to be using with the triangular element. In this

approach, the convection terms in the form,
U—+v— (60)

which are related to the transport variable ¢, are first rewritten in the streamline

coordinates as,

U, o (61)
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where U, and 0/0s are the velocity and the gradient along the streamline

direction, respectively. For pure convection, the term in Eq. (61) is constant along
the streamline. These terms are evaluated by a streamline tracing method which

keeps track the direction of the flow within the element.

Using the standard Galerkin approach, each momentum equation is

multiplied by weighting function, N,, and then the diffusion terms are integrated

by parts using the Gauss theorem to yield the element equations in the form,
[4lu} = R,.}+{R)} (622)
[4liv} = R, }+{R)} (62b)

where the coefficient matrix [4] contains the known contributions from the

convection and diffusion terms. The load vectors on the right-hand side of Egs.
(63a-b) are defined by,

R} = —I{N}ap do (64a)
R,} = —J{N}g—lyjdﬂ (64b)
(R} = u J{N}[Z—anJrg—zn)}dF (64c)
(R} = yﬁf{N}[%nX+g—;ny}dF (64d)

where Q is the element area and /”is the surface element boundary. The element
equations are assembled to yield the system equations for solving the velocity
components. Appropriate boundary conditions are then applied prior to solving

such system equations for the updated velocity components.

To derive the discretized pressure equation, the method of weighted

residuals is applied to the continuity equation (57),

é[Nl.(gu av) = —I(ai +—vde +JNi(unx+vny)dF

- 0 (65)

where the integrations are performed over the element domain Q and along the

element boundary /7 n, and n, are the direction cosines of the unit vector normal
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to element boundary with respect to x and y axis, respectively. As mentioned
earlier, the continuity equation is used for solving the pressure, but the pressure
term does not appear in the continuity equation. For this reason, the relation
between velocities and pressure are thus required. Such relations can be derived

from the momentum equations (63a-b) as,

A, = = A+ [ - jN ade (662)

jil

Ay, = =D A+ fr- jzv ade (66b)

J#i

where f" and f" are the surface integral terms as in Egs. (64c-d). By assuming

1 1

constant pressure gradient on an element, then,

T —Kp,.‘g—i’ (67a)
v o= 9, —Kp,g—fv’ (67b)
where
_ZAuu/ + 1"
R vy (68a)
ZAIJVJ + f

A J#i

P, ) (68b)
[Ndo

K, = % i (68¢)

1

By applying the element velocity interpolation functions, Eqgs. (59a-b) into the
continuity equation (65),

ON.,
_ jé_xl( dQ I— Ny, dQ +JNi(unx+vny)dF =0 (69)

and introducing the nodal velocities u, and v, from Egs. (67a-b), Eq. (69)

becomes,

ON, op op
J-W(N]K )a dQ+j (N K )a dQ

Q
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= J.%(N,L;])dQ+J‘—(N1\:'])dQ — INi(unx+Vny)dr (70)
Q r

o 0y

Finally, applying the element pressure interpolation functions, Eq. (60c), the

above element equations can be written in matrix form with unknowns of the

nodal pressures as,

K. +K {p} = (RI+{R}+{R,)

where

(R} = J(Njﬁ,){%} dQ

{R,}

Il
|
—
—~
=
——
=
S
+
<
S
<
~
Q
=

(71)

(72a)

(72b)

(72¢)

(72d)

(72e)

The above element pressure equations are assembled to form the

global equations, nodal boundary conditions for pressure are imposed prior to

solving for the updated nodal pressures. The finite element equations

corresponding to the energy equation can be derived in the same fashion. Typical

solutions obtained from the above formulation include the lid-driven cavity flow

as shown in Figs. 16-18. The adaptive meshing technique has also been

implemented with the formulation as demonstrated by the flow past a cylinder in

Figs. 19-20.
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Fig. 16. Problem statement and finite element model of

the lid-driven cavity flow problem.
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Fig. 17. Predicted streamline, pressure contours and velocity profile
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» Multigrid method
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(b) Re=5,000
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Fig. 18. Predicted streamline, pressure contours and velocity profiles in the x
and y directions at Re = 1,000, 5,000 and 10,000.
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Fig. 19. Problem statement of the flow past a cylinder.
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(©) (d)
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Fig. 20. Adaptive meshes and corresponding velocity contours:
(a)-(b) Re = 10; (c)-(d) Re = 20; and (e)-(f) Re= 30.
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Figure 21 shows the problem statement of the thermally driven flow in

concentric cylinders. The fluid is freely convected in the annular space between

long, horizontal concentric cylinders due to high temperature on the inner cylinder
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and lower temperature on the outer cylinder. This problem was studied
experimentally by Kuehn and Goldstein for which their results can be used for
comparison. All results are at the Prandtl number of 0.7 with a ratio of gap width
to inner-cylinder diameter (L/D) of 0.8. The finite element model consisting of
2,170 nodes and 4,200 elements are shown in Fig. 21. Figure 22 presents the
predicted temperature contours on the left half and the velocity vectors on the
right half at the Rayleigh numbers of 3,000 and 10,000. Figure 23 shows the
comparisons of the equivalent conductivities at the inner and outer cylinder
surfaces. The figures show good agreement of the predicted solutions and the

experimental results.
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Fig. 22. Predicted temperature contours and velocity vectors at Rayleigh
numbers of 3,000 and 10,000.
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Present Experiment Present Experiment
35 Inner --- o 6.0 Inner --- o
30 Outer — o Outer — o
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(a) Ra = 3,000 (b) Ra =10,000

Fig. 23. Comparison of the local equivalent conductivities at Rayleigh
numbers of 3,000 and 10,000.

Heat Transfer in Solids

For two-dimensional domain € bounded by surface S in the x-y coordinate

system, the Poisson’s equation can be written in the conservation form as,

oFE OF
54—5 = f(x,») (73)

where f(x,y) denotes the source function. The flux components £ and F are

defined by,

E = —ca—U and F = —ca—U (74)

ox oy
where U is the primary variable and c is the material property that depends on
types of problem. For examples, ¢ may represent the thermal conductivity and the
permeability coefficient for the heat transfer and the magnetostatics problem,
respectively. The Poisson’s equation shown in Eq. (73) is to be solved together

with appropriate boundary conditions that may consist of,

Ul (x: y) on Sl (753.)
c%—;j+d(U—UO®) _ 4 onS, (75b)

where d and U are constants and ¢ is the secondary variable.
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Nodeless Variable Flux-Based Finite Element Formulation

The flux-based formulation is implemented herein to derive the finite
element equations associated with the nodeless variable element. For the
triangular nodeless variable element, the distribution of the primary variable over

the element is assumed in the form,

Uxy) = 3N, = LN ) 70

where | N(x,y)]| consists of the element interpolation functions, and {U} is the

vector of the unknown primary variables and the nodeless variables. The nodal

primary variables are U, through U,, while U, through U, are the nodeless
variables. The element interpolation functions, N,, N,, N, are identical to the
element interpolation functions L,, L,, L, used for the standard three-node
triangular element. The nodeless variable interpolation functions implemented in
this paper are,

N,=LL, ; N,=LL, ; N,=LL, (77)

Each nodeless variable interpolation function varies quadratically along
one edge and vanishes along the other edges. To derive the finite element
matrices by means of the flux-based formulation, the method of weighted

residuals is first applied to Eq. (73),
[%( 5+ 5w =0 78)

where Q is the element domain. The Gauss’s theorem is then applied to the flux

derivative terms to yield,
jN % o = J‘N En dl - j L EdQ) (79a)
jN —dQ jN Fn,dl ~ j L FdQ) (79b)
Q

where S is the element boundary. By substituting Eqgs. 79(a)-(b) into Eq. (78) to
yield,
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N: Ecy+ j% FdQ = [N,En.dU+ [N,Fn,dlU - [N, f(x,y)dQ (80)
Q ax Q 8)/ S S g Q

In the flux-based formulation, the element flux distributions are computed
from the actual nodal fluxes as,
3

E=YNE =[Ny wa F=3NE = [NIF} @)

i=1

where LNJ are the standard linear element interpolation functions, i.e.,

|L, L, L,|. The {E} and {F} are the vectors of the actual nodal fluxes,

- wy e ‘g—f w)
{E} = —c_%—];]_{U}2 and {F} = —c_%v_{U}2 (82)
- ) e %N )

Determination of nodal fluxes depends on the types of problem
considered. For heat transfer problem, as an example, the nodal heat fluxes are

related to the temperature gradients through the Fourier’s law given by,

-kfg—]r{r} —k%N{T}

(B} = . = =K S| b oand (7} =g, = =K ST @)
(N, (N,
el K5 ||

By substituting Eq. (83) into Eq. (81), the finite element equations are,
[DJ(E}+[D, J{F} = —{R}+{B} (84)

where the matrices [D,] and [Dy]in Eq. (84) are,

[D,] = Aj {‘Z—Z}Lﬁj dd and [D,] = Aj {%—]yv}mj dA (85)

and A4 is the element area. The element nodal vector {R} associated with the

source variable is,
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(R} = [{N}f(x,y)dd (86)

and the vector {B} representing the boundary nodal vector is,

(B} = [{N)|NJar(i{E}+ miF})

P (87)
= [N ]arig)

N
where / and m are the components of the unit vector normal to the element

boundary. The vector {g} appearing in the above Eq. (87) may be replaced by
different types of boundary conditions as shown in Eq. (75b). The interpolation

functions in Eq. (87) needed for integration along a typical element side are,

lel—% . N, = N3=1(1—fj (88)

X
L LU L
where L is the length of element edge and x is the local coordinate along the edge.
The finite element equations, Eq. (84), are derived for all the elements prior to
assembling to yield the system equations. Appropriate boundary conditions of the
given problem are then applied. Finally, the system equations are iteratively
solved for the nodal solutions and the nodeless variables using the preconditioned
conjugate gradients method with an element-by-element approximation technique.
Figures 24-26 show the application of the nodeless variable finite element and the
use of an adaptive meshing technique for analyzing the temperature distribution in

a plate subjected to complex surface heating.

VU =-Q(x,y) inQ

®\ for 0<x<1 ; 0<y<l

with U = 0 along edges.

Fig. 24. Governing equation, boundary conditions and solution contours

for problem with high solution gradient in a square region.
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3" Mesh: Uniform Mesh:
10,101 Triangles 12,800 Triangles
5,121 Nodes 6,561 Nodes

Quality = 99.92%

0.1

Solution, U

Fig. 25. Uniform and adaptive meshes with their solution contours

for the problem with high solution gradient.
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e Uniform Quadratic (80 x 80 intervals)
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Fig. 26. Comparison of the exact and predicted solutions

for the problem with high solution gradient.
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The finite element formulation above has been extended for the
thermal analysis of convectively-cooled solids. The equations which govern
convectively-cooled solids are the one-dimensional conservation of energy for the
fluid flow and the two-dimensional conservation of energy equation for the solid.

The energy equation for the fluid flow is given by

2
2T L, (7,-7.)-0,4, = 0 89
PrCrllp Ay o i a2 p\Ly— 1 Ay = (89)

and the energy equation in the solid is,

2 2
k, 67;5+872; -0 =0 (90)
ox°~ Oy

where subscript f'and s are the fluid and solid, respectively; u is the velocity in x
direction, p is the density, c is the specific heat, k is the coefficient of thermal
conductivity, / is the convective heat transfer coefficient, p is the perimeter, Q is

the internal heat generation rate per volume and 7 is the temperature.

Nodeless variable finite element equations can be derived from the
method of weighted residuals. The mass transport element and triangular element
are used in the derivation. For both elements, distributions of the temperature

over the elements are assumed in the form
3

T(x) = ) N,®T, O
i=1

T(x,y) = > N,(x, )T, (92)

i=1

where N, consists of the element interpolation functions and 7; are the vector of

the unknown temperatures and the nodeless variables. Equations (91) and (92)
include the nodeless variable interpolation functions in fluid and solid

respectively. For the fluid, the nodal temperatures are 7, and 7, , while 7, is the
nodeless variable. For the solid, the nodal temperatures are 7; through 7}, while
T, through 7| are the nodeless variables. The element interpolation functions, N,
and N, in fluid, N, through N, in solid are for the standard two-node line and

three-node triangular element, respectively. The nodeless variable interpolation

functions used herein are,
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For fluid,
Ny = NN, (93)
For solid,
N, = 4L,L,
N, = 4LL, (94)
N, = 4LL,

To derive the nodeless variable finite element matrices, the method of
weighted residuals is first applied to Eq. (89) and Eq. (90). Integration by parts is
then performed by using the Gauss theorem to yield the boundary term for
applying various types of boundary conditions. The nodeless variable finite
element equations are,

For fluid,

LJ’kA{‘Z—]:H%—ZJ ax{T, |+ ijc{N} {‘Z—Z_ (T, |+ Ljhp{N}LNde{Tf}

0

i) - () orma ©3)

For solid,

NS SIS
- [t N}t(‘”’s o, ny]dl“+ [i¥) 0uas (96)

n, +
ox oy
where A4 is the element area, m2 is the mass flow rate, L is the element length, I"is

the element boundary, 7 is the element thickness, n, and n, are the direction

cosines of the unit vector normal to the edge. The above equations can be written

in matrix form as shown below.
For fluid,
(&I IK I+ K N T T = {20 ©7)

For solid,

(K [K T[T = {00 (98)
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These finite element equations can be written together as

(kI k(K] K] {T} {Q}

_I:Kf'—s:' [K0]+|:Kf—s:| T Qo,

where [K_] is the conduction matrix, [K,] is the mass transport convection

99)

matrix, [K /zs] is the convection matrix between the fluid and solid, {QQ} is the

internal heat generate load vector, {T f.} and {T,} are the vectors of nodal
temperatures in fluid and solid, respectively.

The first example for evaluation the nodeless finite element
formulation is the problem of convectively-cooled solid subjected to uniform
heating as shown in Fig. 27. In the figure, the upper wall is subjected to uniform
heating g. Heat is transferred to the lower wall by the internal fluid flow. The

other walls of the problem are assumed to be adiabatic.

The parameters employed in the computation are as follows: the
dimension H = 0.1 m and L= 2 m, the uniform heating parameter g = 8,000
W/mz, the thermal conductivity &, = 1,000 W/m-K, the flow channel parameters
are Pe = 200 (Re = 286) and Pe = 400 (Re = 572) with Pr = 0.7. The finite

element model, consisting of 408 nodes and 650 elements as shown in Fig. 28, is

AN S

used in the analysis.

A
A
Tin e ————————— ——

Fig. 27. Problem statement of convectively-cooled solid subjected to

uniform heating.

Fig. 28. Nodeless variable finite element model consisting of 650 triangles
and 408 nodes.
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Figure 29 shows the predicted temperature distributions along the

upper wall, the lower wall and along the channel. The predicted temperature
distribution in solid is shown in Fig. 30. Figure 31 shows the predicted
temperature distributions at x = L, Pe=200 at different conductivity ratios, K=k/ky.
The solutions are compared with the results obtained from the Navier-Stokes

finite element method. The figure shows good agreement of the solutions.

Temperature (°C)

Temperature (°C)

80r ----- Navier-Stokes FE
A0O0 Nodeless FE /_ Upper wall
60 _— e - f
\— Lower wall
a--"8d O
l&/ ’D a
40+ oo
_o-—2X"
/O,_o-/-o—"o"/o’ N Channel
-

20 | | ! |
0.0 0.5 1.0 1.5 2.0
x (m)

a) Pe =200
801 ----- Navier-Stokes FE
A0 Nodeless FE
60r Upper wall
TR f
PEEEEN Lower wall
A-"B87 _é o
406 °©
————— [5)
o .—0—-—C——® o= ®
oo . Channel
20 | | ! |
0.0 0.5 1.0 1.5 2.0
x (m)
b) Pe =400

Fig. 29. Comparison of Navier-Stokes and the nodeless variable finite element

calculated the predicted temperature distributions along the two walls
and the channel at Pe = 200 and Pe = 100.
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AN

K L

Fig. 30. Predicted temperature contours for convectively-cooled solid subjected
to uniform heating at Pe = 200 and Pe = 400.
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Fig. 31. Comparison of the predicted temperatures from the Navier-Stokes and

the nodeless variable finite element methods at x = L and Pe = 200.

To further evaluate the performance of the nodeless variable finite
element method incorporated with the adaptive meshing technique, a plate
subjected to an intense heating is considered. The intense heating is simulated as
a square width. The analysis is performed by using two cases. In the first case,
three edges of plate are fixed at zero temperature. In the second case, the plate
has heat transfer by fluid flow along the lower edge. The inlet temperature is

specified as zero while all other edges are insulated.

In the first case as shown in Fig. 32, the exact plate temperature

response can be derived in the form
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_ g )& 1| . (nxg) sinh(4,y) OOL|:E }
Ter)=1x {; 2 {Sm( 2L ]cosh(an)}r;Mj 7 sin(@)

nr& ) sinh(4,y)
{COS( 2L jcosh(lﬂH)}} (100)

where the origin of the & - y coordinate system is shown in Fig. 32, ¢ is the heat

source, H is the plate width, k is the plate thermal conductivity. The parameter a
and 4, in Eq. (100) are defined by

nzw

a="7 (101)
2 2
J, = ”4]’; (102)

where L is the plate length and w is the width of the heat source.

Figure 33 shows a structured finite element mesh consisting of 5,600
elements and 3,208 nodes, and an adaptive mesh with only 742 elements and 446
nodes. Table 1 compares the predicted peak temperature obtained from the two
finite element meshes using the convectional and nodeless variable finite element
methods. The values in the brackets denote the percentage error of the peak
temperature as compared to the exact solution. Table 1 indicates that the adaptive
mesh uses fewer elements than the structured mesh but can provide higher

solution accuracy.

Figure 34 shows the adaptive mesh and the computed temperature
contours. Details of the adaptive mesh near the intense heating location and the
temperature contours are shown in the lower figures. These figures highlight
small clustered elements are generated in the region of steep temperature
gradients to capture the peak temperature and localized temperature distribution.
At the same time, larger elements are generated in the other regions to reduce the
computational time and the computer memory. The comparison of the exact and
the predicted temperature distributions along the top edge is shown in Fig. 35.
The figure shows that the temperature distribution obtained from the adaptive
meshing technique combined with the nodeless variable finite element method is

in good agreement with the exact solution.

For the second case as described by Fig. 36, a fluid with fully

developed inlet velocity and temperature profiles flows along the lower edge of
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plate. The parameters of fluid used in the computation are as follows: the thermal
conductivity ky= 0.32 W/m-K, the specific heat c,= 1200 W/m-K, the density p =
54 kg/m’, the mass flow rate m = 0.054 kg/s, the convection coefficient 7 =
929.52 W/m>-k. At the intense heating location, the predicted peak temperature is
218.30 °C obtained from the nodeless variable finite element method while the

conventional finite element method yields the temperature of 217.91 °C.

Figure 37 shows the adaptive mesh that consists of 1,096 elements and
667 nodes with its computed temperature solution. Details of the adaptive mesh
near the intense heating location and the temperature contours are shown in the
lower insert of the figure. Figure 38 shows the computed temperature
distributions along the top edge, the lower edge and the fluid temperature in the
channel obtained from the adaptive meshing technique combining with the
nodeless variable finite element method. The solution obtained is different from
the first case because of heat transfer along the lower edge varies with the fluid
flow and the wall temperature.

A
0.01 m
¢ g =10° W/m’ 0.02 m
k=70 W/m-K
§ —
0°C g 0°c— |4+
< 1m » T

Fig. 32. Problem statement of a plate subjected intense heating.

5600 elements
3208 nodes

742 elements
446 nodes

Fig. 33. Structured and adaptive mesh models.
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Fig. 35. Comparison of the exact temperature solution and the predicted
temperature obtained from the combined adaptive meshing

technique and the nodeless finite element method.
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Fig. 36. Problem statement of a plate subjected intense heating with fluid flow
beneath the plate.
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Fig. 37. Adaptive mesh and the temperature response at the heat source location.
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Fig. 38. Predicted temperature from the combined adaptive meshing
technique and the nodeless finite element method.
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Table 1. Comparison of the predicted peak temperatures obtained from
the conventional and the nodeless variable finite element methods

on both the uniform and adaptive meshes.

Temperature (%Error)

Mesh Convectional Nodeless
FE FE

117.094 119.773

Structured (2.169) (0.070)

| 119.061 119.688

Adaptive (0.526) (0.002)

Structural Analysis

The finite element equations for solid mechanic problems can be derived
by applying the method of weighted residuals to the governing differential
equations of interest. As an example, the governing differential equations that

represent the equilibrium conditions of a plate in two dimensions are,

ox oy

where the flux vector components {E¢} and {F} contain the stress compo-nents
given by,

(Es} - {Z} ad (R} - {Z} (104)

xy Yy

The stress components o

xx 2

o, and o, are related to strain components by the

Hooke’s law,

{o} = [Cle} (105)

where {c} is the vector of the stress components, [C] is the matrix of the material
elastic constants, and {¢} is the vector of the strain components.
These equations are to be solved with the boundary conditions that

may consist of: (a) the specified displacements, # and v, in the x- and y-directions,
respectively,
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u = u(x,y) ;v =v(x,y) (106)

and (b) the specified boundary tractions, 7y and Ty, in the x- and y-directions,

{TSX} ) |:O-xx ny}{nx} (107)
TSy ny O-yy ny

where n, and n, are direction cosines of the unit vector normal to the boundary.

respectively,

Nodeless Variable Flux-Based Finite Element Formulation

The flux-based formulation 1is implemented to derive the
corresponding finite element equations for the nodeless variable structural finite
element. For the triangular element shape, the distribution of displacements over

the element in the x- and y-directions are assumed in the form,

u(x,y) = ZN,(x,y)u,»(r)=LN(x,y)J{u} (108)
v(6y) = 2Ny (O =[N(xy) v} (109)

where | N(x,y)| consists of the element interpolation functions; {u} and {v} are

the vectors of the unknown displacements and the nodeless variables. The

nodeless variable interpolation functions implemented in this paper are,

N, = LL, N5 = LL, ) Ny = LL, (110)

Each nodeless variable interpolation function varies quadratically
along one edge and vanishes along the other edges. To derive the finite element
matrices using the flux-based formulation, the method of weighted residuals is
first applied to Eq. (103),

jN(ai} a{i }jdﬂ =0 (111)

where Q is the element domain. The Gauss’s theorem is then applied to the flux

derivative terms to yield,

jN a{E}dQ = J.N{E} dr - j L{E 1O (112)
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o0iFy} oN,
JNI.WCZQ = SJ.Ni{FS}nde—JE{FS}dQ (113)

where S is the element boundary. Substituting Eqgs. (112)-(113) into Eq. (111) to
yield,

ON, ON, B
JE{ES}dQJr JE{FS}dQ = JNi{ES}nxdFJr SIN,.{FS}nydr (114)

The compact form of Eq. (114) could be written as,

[(B;]' {o}dq = [INT {1y}ar (115)
where
v, ON, T
ox 5 ox .
N
= 0 =L ... (o =¢
[B;] o e (116)
ON, 0N, ON, N,
| Oy Ox dy Ox |
v N, 0 .. N, 0 5
_{0 N, 0 Nj (117)
o} =lo, o, o, (118)
i}y =|r. 7]’ (119)

In the flux-based formulation, the element flux distributions are

computed from the nodal fluxes as,

{o} = [N]c} (120)

where

[N = {0} N} {0} (121)
0}
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{O-xx}l,z,3
{E} - {O-yy }1,2,3 (122)

{O-xy }1,2,3

and the vectors {N }T and {5}T are
{N}T =[N, Ny N] (123)
oy =10 0 o] (124)

By following the same idea, the boundary tractions {7y} could be

written as,
i} = [NJT) (125)

where [N] and {T,} are interpolation matrix and boundary tractions vector

defined at the element boundary, respectively. The interpolation functions in Eq.

(125) needed for integration along the element side S are,

v, = 31-%) (126)

X
N =1-2 ; N, =
! L " L\ L

* .
L b
where L is the length of element edge and x is the local coordinate along the edge.
Substituting Eqgs. (120) and (125) into Eq. (115), the finite element equations for

the element are,

(B, [NJofs} = [[NT [N]ar(T} (127)

Q N

Appropriate boundary conditions of the given problem are then
applied. Finally, the system equations are iteratively solved for the nodal
displacements and the nodeless variables using the preconditioned conjugate
gradients method with an element-by-element approximation. The method is used
to analyze the deformed shape and the stress distribution in an L-shape plate
under uniform loading along the left edge as shown in Fig. 39. Figure 40 shows
both the structured and unstructured meshes used in the analysis. The lower-right
insert of Fig. 40 also shows an adaptive mesh that has small clustered elements

near the plate corner to provide stress solution accuracy for this problem.
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Fig. 39. Problem statement of L-shape domain.
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Fig. 40. Uniformly refined meshes and adaptive meshes used in the analysis
of L-shape plate under uniform loading along the left edge.

The J and Domain Integral Technique for Crack Problems

Under the quasi-static analysis with crack lying on the x, axis, the two

dimensional J-integral is defined by,
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J = lim (ws, —ou,,)ndC (128)
r
where I is a limiting contour starting from the bottom crack face and ending at the

top surface, W is the strain energy density, o, are the stress tensors, u; are the
displacement vectors, 50. is the Kronecker’s delta, and #, is the outward normal

vector to the vanishing contour I'. In the absence of crack face tractions, Eq.

(128) for the closed curve C = C,—TI'+C" + C™ can be written in the form,

J = |(ou;,~Ws,)mg,dcC (129)

c

where g, is any sufficiently smooth function in the region enclosed by C provided
that it is unity on I' and zero on C,, and m; 1s the outward normal vector to the

domain surrounded by C. With the presence of thermal strain, the total strain

tensor &; could be presented as the sum of the mechanical and the thermal strains,

g; = & +pTo;, where &' represents the mechanical strain, S is the coefficient

of thermal expansion and 7 is the temperature relative to the reference state.
Under the assumptions of the equilibrium conditions without the body forces and
the strain energy density being only function of the mechanical strains, the

divergence theorem is applied to Eq. (129) to yield the domain integral form,

J = j[ oy, ~W3,)q,,+ Pir(c)Tq,] d4 (130)

where 4 is the area enclosed by C including the crack tip region as I' - 0, and

tr (o) denotes the trace of o, .

Typical solutions are illustrated by the problem of the compact tension
specimen under loading in Figs. 41-43. The problem statement of the compact
tension specimen is given in Fig. 41, while an adaptive finite element mesh is
shown in Fig. 42. Figure 43 shows a good agreement of the computed J-integrals

obtained from the adaptive finite element method and an estimation method.
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Fig. 41. The compact tension specimen.

20/

Fig. 42. The final adaptive mesh of the compact tension specimen with

three integration domains.
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Fig. 43. Comparison of J-integrals from adaptive finite element

and estimation methods for the compact tension specimen.
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Application of the adaptive meshing technique has been extended to
the analysis of built-up structures. The method is combined with the Discrete
Kirchhoff Triangle (DKT) elements to analyze the bending behavior of the plates
normally found in the built-up structure. The governing differential equations for
in-plane deformation and bending behavior of the plate are given as follows.

The equations for the in-plane deformation are governed by the two-

dimensional equilibrium equations after neglecting the in-plane body forces as,

E
90, Ty _ (131)
Ox Oy

or. &

g (132)
ox oy

For the plane stress case, the stress components o, , o, and 7z, are related to the

strain components by Hooke’s law as,
{o} = [C]{g—go} (133)

where {o}, {¢} and the thermal strain {,} vectors are defined by,

o} =lo, o, 7,] (134)

(e} = {a} (T(x»)-T)) (136)

The material stiffness matrix [C] is given by,

I v 0
[c] = l—Ev2 v1o0 (137)
0 0 I-v
2

and the vector for the coefficient of the thermal expansion {a} is defined by,

{a}T:La a 0] (138)
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The equation for the transverse deflection w in the z-direction normal

to the x-y plane of a thin plate with the temperature 7(z) through its thickness 7 is

given by the equilibrium equation,

(84w 204w a“wJ__ 1 (62MT o*M,

o e o) vl o | & J”’(x’y) (139)

where p(x,y) is the applied lateral load normal to the plate, v is Poisson’s ratio

and D is the bending rigidity. The bending rigidity is defined by,

_EP
b= 12(1-v?) (140)

where E is the modulus of elasticity, is the thickness of the plate. The thermal
moment M, in Eq. (139) is defined,

My =Ea [ (1(2)-T,)zde (141)

The Constant Strain Triangle (CST) and the Discrete Kirchoff Triangle (DKT)
finite elements are used for the in-plane deformation and the transverse deflection,

respectively, as explained below.

The CST element assumes a linear distribution of the displacement
components over the element. The finite element equations can be derived by
applying the method of weighted residuals to the governing differential equations,
Egs. (131) and (132), which leads to the finite element equations in the form,

(K. 16, ={F} +{F,} (142)

where the vector {5,} contains the element nodal unknowns of the in-plane

displacements in the element local x-y coordinates. The unknowns are the two in-
plane displacements » and v for each node, thus, there are six unknowns per

element. The element stiffness matrix K, ] appearing in Eq. (142) is defined by,

[K.]=[B.] [C.][B,] 4 (143)

where [B,,] is the strain-displacement interpolation matrix. The vector {F} on the
right-hand-side of Eq. (142) contains the applied mechanical forces at element

nodes. The vector {F,,}consists of the equivalent nodal forces due to the thermal

load defined by,
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{F,}=[B,]'[C.]{a}(T, ~ T, )14 (144)

The DKT element assumes a cubic distribution of the transverse
deflection over the element. The finite element equations can be derived by
applying the method of weighted residuals to the plate bending equation, Eq.
(139), which leads to the finite element equations in the form,

[K,){6,} = {F,} +{F,) (145)

where the vector {5,} contains the element nodal unknowns of the transverse

deflections and rotations. Each node has a transverse deflection in z-direction and
two rotations about x- and y- directions. Thus there are nine degrees of freedom

per element. The element stiffness matrix [K,] and the nodal force vector due to

the applied loads {Fp} are defined by,

(k] = [[B] [P][B,]d4 (146)

(£} = [[N,] paa (147)

A

where the strain-displacement interpolation matrix [B, ] is,

VH J FH J

o0& Y12 on
1 aH aHy

[Bb]:ﬂ { 8§ J xl{wJ (148)

OH , GHy . aHy
X31 o0& + V3 0 Y12 on |
OH OH
where {aH" },{ z },{aHX} and z } are given by,
o¢ o¢ on on

Pi(1=2¢)+n (P - F)
96(1-28)-1 (45 + 45)

—4+6((§+7])+r6(1 25) (r5 +r6)
~F(1-26)+7 (P + Fy)

oH
l q6(1-28)+ 1 (g4 — 45) (149)
{85} _2+6§+r6(1—2§)+77(1’4—’”6)
—n(Py+ )
77(‘]4_‘15)

’7<r4—”5)
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t6(1_2§)+77(15_16)
1+”6(1—295)—77(”5+”6)
—qﬁ((l—zg))m((qswé))
—tc1=2&)+nlty +15
{a:y}: en(1-22) 0y ) (150)
“0 | < ge1-26)-n(gs—ge)

—’7(t4+f5)
77(’”4—”5)
~n(qs—gs)

~A(1-27)+& (A~ F)
%(1—277)—5(115 +%)
—4+6(§+77)+(r5(1—237)—§(r5+re)
S\P+F
(2} (04— ae) (151)
E(ry —15)
P(1-27)-¢(P + Ry)
(15(1—2'7)+§(Q4 —‘IS)
—2+677+r5(1—277)+§(r4 —r5)

_t5(1_277)+§(’5 _t6)
1+”5(1—2’7)_§(”5 +”6)
—QS(1_277)+§(515 +%)

{aH }: &ty +15)

5(”4_”6) (152)
- (94~ 96)
ts(1-2n7)— &ty +15)
—l+r5(1—277)+§(r4 _’”5)
—45(1—2’7)—5(44 —QS)

The coefficients P, ¢,, r, and ¢, ; k=4, 5, 6 depend on the element shape and are

given by,
—6x; 3x; ¥y
B=—" (153); g ="4" (154)
I I3
3y? —6y,
== 158); g =— (156)
ty ty

where 0y =\X; +V; (157)

The coefficients x;andy,, i, j=1, 2, 3 are defined in terms of the

element nodal coordinates,

Xy =X —X; (158); Yi=Vi=V; (159)
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and the plate material stiffness matrix [D] in Eq. (146) is defined by,

£ 1 v 0
t
D] = —/—— 0 160
[P] 12(1-v?) Y - (160)
00 —2
2

The above finite element matrices are in closed-form so that they can be

implemented in the computer program directly.

The vector of the equivalent nodal forces due to the temperature
change {F,} in Eq. (145) is defined by,

(£} = [[8,] (a1} as (161)

where the vector {M} is given by,
{My=|M, M, 0] (142)

The vector of the equivalent nodal forces due to the thermal load {F,} can be

derived in closed-form as,
1
{F)=M,[G] {1 (163)
0

where the matrix [G] is,

1 il LG11J+)/12 LG12J
[G] = g X5 |_G21 J — X, LGzzJ (164)
Xy LGIIJ_XIZ LG12J+)/31 LG21J+y12 LGzzJ

The coefficients x,and y;, i, /=1, 2, 3 are given in Egs. (158) - (159). The row

matrices {G[j J ; 1, j=1,2,1in Eq. (164) are given by,

|G, |=[ps -4, -n p, 4. 7. (-p,—p.)

165
(a,—-q,) (r,—1)] (163)

|G, |=[-p, -4, -, (p,+p) (4,-4,)

166
(r,-r) -p, 4, 1] (166)
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LGZIJ:[tS (3_}’5) q; 1, (_3+r4) -4,

167
(1, -t) (r,-1) (=q,+4,)] (167)

|G, |=[~t, BG-r) q, @, +1t) (r,-7)

168
(_q4+q6) _IA (_3+r:t) _q4] ( )

where the coefficients P, ¢,, r, and ¢, ; k=4, 5, 6 are given in Eqgs. (153)-(157).

To demonstrate the capability of the adaptive meshing technique for
thermal stress analysis of a complex plate structure, the three-dimensional built-up
structure with intersection panels is considered. The localized heating results in
high temperature gradients and attendant thermal stresses in the structure. Both
structure temperature and boundary conditions are prescribed as shown in Fig. 44.
The peak temperature of 390 K is assumed in the two hot spot regions with the
temperature distributions. Away from these hot spot regions, the structure

temperature is closed to the surrounding medium temperature of 55 K.

A fine finite element model is first constructed as shown in Fig. 45(a).
The model consists of 3,168 nodes and 6,114 triangular elements. The predicted
stress distribution in the Y-direction superimposed on the deformed geometry is
shown in Fig. 45(b). The high compressive stress with a magnitude of 172 MPa is
at the two hot spot regions. However, a quite higher tensile stress with a
magnitude of 372 MPa occurs between these two hot spot regions. This fine finite
element model requires a large computational time as well as the computer
memory. These difficulties can be alleviated and the analysis computational time
can be reduced by the use of the adaptive meshing technique.

Application of the adaptive meshing technique starts from
constructing a fairly uniform mesh as shown in Fig. 46(a). The initial mesh
consists of 547 nodes and 994 triangular elements. With this mesh, the predicted
thermal stress distribution on the deformed geometry is shown in Fig 47(a). The
peak compressive stress at the two hot spots is 138 MPa while the peak tensile
stress between both hot spots is 228 MPa. The temperature and the stress
distributions (in the form of Von Mises stress) obtained from the initial mesh are
used as the meshing parameters to construct a new adaptive mesh, shown in Fig.
46(b), with 528 nodes and 989 elements. The finer elements are concentrated in
the high stress regions on the panels to provide accurate solution. Coarser
elements are generated in other regions to reduce the problem size and
computational time. The predicted thermal stress distribution in the Y-direction

superimposed on the deformed geometry is shown in Fig. 47(b). The figure
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shows that the adaptive mesh model can provide the same stress solution accuracy

as those obtained from the fine mesh model.

Fig. 44. Boundary conditions and temperature distributions

for the intersection panels
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Fig. 45. Fine finite element mesh and predicted axial stress contours

on deformed configuration.
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Fig. 46. Finite element meshes for intersection panel: (a) initial mesh and

(b) adaptive mesh.
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Fig. 47. Predicted axial stress contours from: (a) initial mesh and

(b) adaptive mesh.

Fluid-Thermal-Structural Interaction

The governing equations for conjugate heat transfer between the solid
and fluid flow consist of the conservation of mass which is called the continuity
equation, the conservation of momentum in x- and y- directions, and the

conservation of energy, as follows,

Continuity equation,
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e - 1

ox " 3y 0 (169a)
Momentum equations,

ou  Ou op [0%u 0
ov op v 0™ |
p[ua—+v5} @Jrﬂ[?*ry_ pg (1= B(T -T)) (169¢)

Energy equation,

or oT o’'T o°T

where u and v are the velocity components in the x- and y- direction, respectively,
p is the density, p is the pressure, u is the viscosity, g is the gravitational
acceleration constant, £ is the volumetric coefficient of thermal expansion, 7 is
the temperature, 7, is the reference temperature for which buoyant force in the y-
direction vanishes, ¢ is the specific heat, k& is the coefficient of thermal
conductivity and Q is the internal heat generation rate per unit volume. Equation
(169d) can be used for solving conduction heat transfer in solid by setting both the

velocity components, # and v, as zero.

Finite Element Formulation

The three-node triangular element is used in this study. The element

assumes linear interpolation functions for the velocity components, the pressure,

and the temperature as,

u(x,y) = Y N(x,y)u, = |N]{u} (170a)
v(x,y) = 2 N(xy)y, = [N} (170b)
p(xy) = Y2 N(xy)p, = [NJip) (170¢)
T(x,y) = XN = [N|T} (170d)

where i =1, 2, 3; and N, is the element interpolation functions.
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The basic idea of the solution algorithm presented herein is to use the
two momentum equations for solving both of the velocity components, use the
continuity equation for solving the pressure, and use the energy equation for

solving the temperature in solid and fluid regions.

Streamline Upwind Petrov-Galerkin Method

The basic idea of the streamline upwind method is to include diffusion
only in the flow direction. Extended to a Petrov-Galerkin formulation, the
standard Galerkin weighting functions are modified by adding a streamline
upwind perturbation, p, for suppressing the non-physical spatial oscillation in the
numerical solution, which again acts only in the flow direction. Herein, the

modified weighting function, W, can be expressed as,

ah | ON, ON,
W = N + = N.+ ! ! 171
i i p i 2|U| |:u ax +v ay :| ( )
where « is calculated for each element from,
1
a = a, = cothPe— e (172a)
with Pe ﬂ and |U] = Ju? +1? (172b)

2k

where Pe is the Peclet numbers, |U| is mean resultant velocity and h is element

size.

A typical solution of a coupled fluid-structure heat transfer is shown by
the problem in Figs. 48-49. Figure 48 describes the problem statement of a fluid
circulation in a cavity with hot tube at the center and cold walls on both sides.
The bottom edge of the cavity is insulated, while there is heat transfer to the solid
along the top edge. Figure 49 shows the predicted temperature contours of the
fluid and solid when the solid has different values of the thermal conductivity

coefficient.
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Fig. 48. Coupled fluid flow and heat transfer in solid.

Fig. 49. Temperature contours at different solid thermal conductivities.

Figure 50 shows the problem statement of a free convection flow in an
enclosure with fins. Along the lower and upper edges of the model, the
temperatures are specified as 1 and 0, respectively, while both sides of the model
are insulated. The objective is to investigate the flow behaviors of the fluids in
both the lower and upper enclosures. The finite element model for the two fluid
regions and the three fins is shown in Fig. 51. Figure 52 shows the predicted
temperature distributions in both the fluid regions and the three fins. The
predicted Von Mises stress distribution on the deformed shape of the fins is

shown in Fig. 53.
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Fig. 50. Problem statement of free convection flow in enclosures with fins.

8

Fig. 51. Finite element model for fluid and structure of free convection flow

in enclosures with fins.
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Fig. 52. Computed temperature distributions for the fluid and structure of

free convection flow in enclosures with fins.
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Fig. 53. Predicted Von Mises stress distribution on deformed fin shape for

the problem of free convection flows in enclosures.

The high-speed compressible flow formulation is combined with the
heat transfer and the structural analyses of the structure to demonstrate the fluid-
thermal-structural interaction phenomena. Figure 54 shows the problem statement
of a Mach 4 flow over a wedge in a channel. The flow creates a shock wave that
impinges on a panel embedded in the upper wall of the channel. Figures 55(a)
and (b) show an adaptive finite element mesh and the predicted density contours,
respectively. The upper figure shows small clustered elements generated along
the shock wave and in the boundary layers along both the wedge and the upper
wall surfaces. The impingement of the shock on the panel causes the panel
temperature to rise. The panel then bows into the free stream and alters the flow
field. Figures 56(a) and (b) show the adaptive finite element mesh and the
corresponding density contours after the panel has bowed and altered the flow
field. This example clearly demonstrates the advantage of the adaptive finite
element method for predicting the fluid, thermal and structural interaction

phenomena.
0.3 m ‘ 0.25 m ‘ 0.15m r—
S 1 0,002 m
Deformed (t > 0) “nel
Undeformed (t=0 0.2
(=0 Panel holder o
M=4

Mach wave
Shock wave

Fig. 54. A Mach 4 flow in a channel.
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(b) Density distribution

Fig. 55. Adaptive mesh and corresponding density contours (kg/m’)

for a Mach 4 flow in a channel at initial time.

avad

(a) Adaptive mesh

(b) Density distribution

Fig. 56. Adaptive mesh and corresponding density contours for a Mach 4

flow in a channel with convex deformation at 60 seconds.
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