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  The concept of finite element method is applied to determine the 

gradient quantities.  The gradient at the center of control volume, n
i�


�
, is 

determined by the weighted residuals method and is assumed to be linearly 
distributed over cell i� ,
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i k k
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where � �kN x�  denotes the linear interpolation functions for the triangular cell and 

k 
1, 2, 3 represent the control volume vertices.  By applying the standard 
Galerkin method and the Gauss’s theorem to Eq. (51), the gradient quantities at a 
grid point are obtained as, 
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where M  is the lumped mass matrix and ,
n
J i�


�
 are the contributions of the 

gradient quantities in the control volume i�  to the gradient quantities at the grid 

point J .  In order to determine the total gradient quantities at the grid point J , Eq. 
(52) is applied to all the volumes surrounding it such that, 

,
1

NV
n n

J J i
i

� �




 
 
�
� �

 (53) 

where N V  is the number of the surrounding triangular cells.  The gradient 

quantities at the cell faces, n
ij�


�
, is then computed by applying the midpoint 

quadrature integration rule along the edge that connects grid points I  and J .
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 Figure 13 shows the pure-convection problem of a mixing of hot with 

cold front.  The computational domain is � � � �4,4 4,4� 
 � � �  and an initially 

straight frontal zone is given by, 

� �0 tanh
2
yx� � �
 � �  

! "
�  (54) 

the velocity field is defined as, 

max max

t tf fy xv i j
r f r f


 � �
� ��  (55) 

where 2 2r x y# �  is the distance from the origin of the coordinate system, 

maxf 
 0.385 is the maximum tangential velocity, and � �
� �2

tanh
cosht

r
f

r

 .  The 

problem is examined until the final time step is equal to 4.  The exact solution is 
shown by the two- and three-dimensional contour plots in Figs. 13(a)-(b). 
 The computation is initially performed by using an unstructured mesh 
consisting of 884 uniform triangular cells.  The initial and adaptive meshes with 
their computed solutions are shown by the two- and three-dimensional contour 
plots in Figs. 14(a)-(d), respectively.  The element size used in the initial mesh is 
0.4.  The maximum and minimum element sizes of the third adaptive mesh are 1.0 
and 0.004, respectively.  The figures show that spurious oscillations decrease as 
the meshes are refined.  The exact and computed solutions obtained from the third 
adaptive mesh are found to be good agreement. 

 

                         

                      (a)  2D contour plot                            (b)  3D contour plot 

Fig. 13. Exact solution of the mixing of hot with cold front. 
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(a)  Initial mesh and its solution 
 

      
 (b)  First adaptive mesh and its solution 
 

     
 (c)  Second adaptive mesh and its solution 
 

     
(d)  Third adaptive mesh and its solution 

Fig. 14.   Adaptive meshes and their computed solutions for 
                                  the mixing of hot with cold front. 
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 Figure 15 represents a singularly perturbed diffusion-reaction 

problem.  The computational domain is a unit square of � � � �0,1 0,1� 
 � .  The 

initial condition, � �0 x� � , and the Dirichet boundary condition, � �x� � , are 

prescribed as zero.  The source term is given by, 

� �2 220 4q x y
 � �  (56) 

The diffusion coefficient is specified as 310$ �
 , and the reaction coefficient, % ,
is set to be 2.  This example is performed until the final time step is equal to 5. 

 The computation is initially performed by using an unstructured mesh 
with 884 uniform triangular cells (20 cells along each boundary).  As the meshes 
are adapted with the computed solutions, small element sizes are generated in the 
region of high solution gradients along the boundary sides 1x 
 and 1y 
 .

Figurecs 15(a)-(d) show the initial and adaptive meshes with their corresponding 
solutions.  The computed solution obtained from the initial mesh shows some 
oscillations without overshooting along the boundary.  Oscillations decrease as 
the meshes are adapted with the solutions. 

 (a)  Initial mesh and its solution 

 (b)  First adaptive mesh and its solution 
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 (c)  Second adaptive mesh and its solution 

 (d)  Third adaptive mesh and its solution 

Fig. 15.  Adaptive meshes and their computed solutions of 
                                 the corner layer problem. 

Low-Speed Incompressible Flow

   For low-speed incompressible flow, the Galerkin method with equal-
order finite element has been employed.  The fundamental laws used to solve two-
dimensional, steady state, viscous incompressible flow consist of the law of 
conservation of: (a) mass which is called the continuity equation, and (b) the 
momentums, and (c) the energy, as follows,  
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The basic unknowns for the above coupled partial differential equations are the 
velocity components u and v, the pressure p, and the temperature T.

  For the three-node triangular element, the element assumes linear 
interpolation for both the velocity components and the pressure as, 

ii uNyxu 
),(                                                   (59a) 

ii vNyxv 
),(                                                   (59b) 

ii pNyxp 
),(                                                 (59c) 

ii TNyxT 
),(                                                   (59d) 

where i = 1, 2, 3; and iN  are the element interpolation functions for the velocity,  

the pressure, and the temperature. 

   The basic idea of the solution algorithm presented herein is to use the 
two momentum equations for solving both of the velocity components and use the 
continuity and the energy equation for solving the pressure and the temperature, 
respectively.  The procedure in deriving the finite element equations 
corresponding to the momentum and the continuity equations are described as 
follows. 

  The two momentum equations (58a-b) are discretized by using the 
conventional Bubnov-Garlerkin’s method.  However, a special treatment for the 
convection terms is incorporated.  These terms are approximated by a monotone 
streamline upwinding formulation to be using with the triangular element.  In this 
approach, the convection terms in the form,  

y
v

x
u

�
�

�
�
� ��                                                          (60) 

which are related to the transport variable � , are first rewritten in the streamline 

coordinates as, 

s
Us �

��                                                             (61) 
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where sU  and s��/  are the velocity and the gradient along the streamline 

direction, respectively.  For pure convection, the term in Eq. (61) is constant along 
the streamline.  These terms are evaluated by a streamline tracing method which 
keeps track the direction of the flow within the element. 

  Using the standard Galerkin approach, each momentum equation is 
multiplied by weighting function, iN , and then the diffusion terms are integrated 

by parts using the Gauss theorem to yield the element equations in the form, 

( )* + * + * +upx RRuA �
                                       (62a) 

( )* + * + * +vpy RRvA �
                                       (62b) 

where the coefficient matrix ( )A  contains the known contributions from the 

convection and diffusion terms.  The load vectors on the right-hand side of Eqs. 
(63a-b) are defined by, 

* + * + �
�
�

�
 �
�

d
x
pNRpx                                                   (64a) 

* + * + �
�
�

�
 �
�

d
y
pNRpy                                                  (64b) 

* + * + ,��
�

��
�

�
�

�
�
�


 �
,

dn
y
un

x
uNR yxu &                            (64c) 

* + * + ,��
�

��
�

�
�

�
�
�


 �
,

dn
y
vn

x
vNR yxv &                            (64d) 

where � is the element area and , is the surface element boundary.  The element 
equations are assembled to yield the system equations for solving the velocity 
components.  Appropriate boundary conditions are then applied prior to solving 
such system equations for the updated velocity components.   

  To derive the discretized pressure equation, the method of weighted 
residuals is applied to the continuity equation (57), 
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where the integrations are performed over the element domain � and along the 
element boundary ,; nx and ny are the direction cosines of the unit vector normal 
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to element boundary with respect to x and y axis, respectively. As mentioned 
earlier, the continuity equation is used for solving the pressure, but the pressure 
term does not appear in the continuity equation.  For this reason, the relation 
between velocities and pressure are thus required. Such relations can be derived 
from the momentum equations (63a-b) as, 
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where u
if  and v

if  are the surface integral terms as in Eqs. (64c-d).  By assuming 

constant pressure gradient on an element, then,  
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By applying the element velocity interpolation functions, Eqs. (59a-b) into the 
continuity equation (65), 
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and introducing the nodal velocities ju  and jv  from Eqs. (67a-b), Eq. (69) 

becomes,  
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Finally, applying the element pressure interpolation functions, Eq. (60c), the 
above element equations can be written in matrix form with unknowns of the 
nodal pressures as, 
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   The above element pressure equations are assembled to form the 
global equations, nodal boundary conditions for pressure are imposed prior to 
solving for the updated nodal pressures.  The finite element equations 
corresponding to the energy equation can be derived in the same fashion.  Typical 
solutions obtained from the above formulation include the lid-driven cavity flow 
as shown in Figs. 16-18. The adaptive meshing technique has also been 
implemented with the formulation as demonstrated by the flow past a cylinder in 
Figs. 19-20. 



 39

Fig. 16.  Problem statement and finite element model of  
                                    the lid-driven cavity flow problem.     

Fig. 17.  Predicted streamline, pressure contours and velocity profile 
                         of x-direction on x = 0.5 at Re = 100 
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Fig. 18.  Predicted streamline, pressure contours and velocity profiles in the x
                   and y directions at Re = 1,000, 5,000 and 10,000. 

Fig. 19.   Problem statement of the flow past a cylinder.  
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                  (a)                                                         (b) 

                (c)                                                         (d) 

                (e)                                                         (f) 

Fig. 20.   Adaptive meshes and corresponding velocity contours: 
                              (a)-(b) Re = 10; (c)-(d) Re = 20; and (e)-(f) Re= 30. 

   Figure 21 shows the problem statement of the thermally driven flow in 
concentric cylinders.  The fluid is freely convected in the annular space between 
long, horizontal concentric cylinders due to high temperature on the inner cylinder 
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and lower temperature on the outer cylinder.  This problem was studied 
experimentally by Kuehn and Goldstein for which their results can be used for 
comparison.  All results are at the Prandtl number of 0.7 with a ratio of gap width 
to inner-cylinder diameter (L/D) of 0.8.  The finite element model consisting of 
2,170 nodes and 4,200 elements are shown in Fig. 21.  Figure 22 presents the 
predicted temperature contours on the left half and the velocity vectors on the 
right half at the Rayleigh numbers of 3,000 and 10,000.  Figure 23 shows the 
comparisons of the equivalent conductivities at the inner and outer cylinder 
surfaces.  The figures show good agreement of the predicted solutions and the 
experimental results.     

Fig. 21.   Finite element model for thermally driven flow in concentric 
                         cylinders. 

   

Fig. 22.   Predicted temperature contours and velocity vectors at Rayleigh  
                        numbers of 3,000 and 10,000. 
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Fig. 23.   Comparison of the local equivalent conductivities at Rayleigh  
    numbers of 3,000 and 10,000. 

 
 

Heat Transfer in Solids

 For two-dimensional domain � bounded by surface S in the x-y coordinate 
system, the Poisson’s equation can be written in the conservation form as, 
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where � �yxf ,  denotes the source function.  The flux components E and F are 

defined by, 
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where U is the primary variable and c is the material property that depends on 
types of problem.  For examples, c may represent the thermal conductivity and the 
permeability coefficient for the heat transfer and the magnetostatics problem, 
respectively.  The Poisson’s equation shown in Eq. (73) is to be solved together 
with appropriate boundary conditions that may consist of, 
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where d and 1U  are constants and q is the secondary variable. 
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Nodeless Variable Flux-Based Finite Element Formulation 

The flux-based formulation is implemented herein to derive the finite 
element equations associated with the nodeless variable element.  For the 
triangular nodeless variable element, the distribution of the primary variable over 
the element is assumed in the form, 

         � � � � � �� �* +UyxNUyxNyxU
i

ii ,,,
6

1


 �




                      (76) 

where � �� �yxN ,  consists of the element interpolation functions, and * +U  is the 

vector of the unknown primary variables and the nodeless variables.  The nodal 
primary variables are 1U  through 3U , while 4U  through 6U  are the nodeless 

variables.   The element interpolation functions, 1N , 2N , 3N  are identical to the 

element interpolation functions 1L , 2L , 3L  used for the standard three-node 

triangular element.  The nodeless variable interpolation functions implemented in 
this paper are, 

   324 LLN 
       ;        315 LLN 
        ;       216 LLN 
              (77) 

Each nodeless variable interpolation function varies quadratically along 
one edge and vanishes along the other edges.  To derive the finite element 
matrices by means of the flux-based formulation, the method of weighted 
residuals is first applied to Eq. (73), 
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where � is the element domain.  The Gauss’s theorem is then applied to the flux 
derivative terms to yield, 

     ���
��

�
�
�

�,
�
�
� Ed

x
NdEnNd

x
EN i

S
xii                     (79a) 

     ���
��

�
�
�

�,
�
�
� Fd

y
NdFnNd

y
FN i

S
yii                     (79b) 

where S is the element boundary.  By substituting Eqs. 79(a)-(b) into Eq. (78) to 
yield, 
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In the flux-based formulation, the element flux distributions are computed 
from the actual nodal fluxes as, 
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where � �N  are the standard linear element interpolation functions, i.e., 

� �321 LLL .  The * +E  and * +F  are the vectors of the actual nodal fluxes, 
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Determination of nodal fluxes depends on the types of problem 
considered.  For heat transfer problem, as an example, the nodal heat fluxes are 
related to the temperature gradients through the Fourier’s law given by, 
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By substituting Eq. (83) into Eq. (81), the finite element equations are, 

 ( )* + ( )* + * + * +BRFDED yx ��
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where the matrices ( )xD  and ( )yD in Eq. (84) are, 
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and A is the element area.  The element nodal vector * +R  associated with the 

source variable is, 
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and the vector * +B  representing the boundary nodal vector is, 
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where l and m are the components of the unit vector normal to the element 
boundary.  The vector * +q  appearing in the above Eq. (87) may be replaced by 

different types of boundary conditions as shown in Eq. (75b).  The interpolation 
functions in Eq. (87) needed for integration along a typical element side are, 
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where L is the length of element edge and x is the local coordinate along the edge.  
The finite element equations, Eq. (84), are derived for all the elements prior to 
assembling to yield the system equations.  Appropriate boundary conditions of the 
given problem are then applied.  Finally, the system equations are iteratively 
solved for the nodal solutions and the nodeless variables using the preconditioned 
conjugate gradients method with an element-by-element approximation technique.  
Figures 24-26 show the application of the nodeless variable finite element and the 
use of an adaptive meshing technique for analyzing the temperature distribution in 
a plate subjected to complex surface heating. 
 

Fig. 24.   Governing equation, boundary conditions and solution contours 
                       for problem with high solution gradient in a square region. 
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Fig. 25.   Uniform and adaptive meshes with their solution contours 
                            for the problem with high solution gradient. 
 
 
 

 

Fig. 26.   Comparison of the exact and predicted solutions 
                                   for the problem with high solution gradient. 
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   The finite element formulation above has been extended for the 
thermal analysis of convectively-cooled solids.  The equations which govern 
convectively-cooled solids are the one-dimensional conservation of energy for the 
fluid flow and the two-dimensional conservation of energy equation for the solid.  
The energy equation for the fluid flow is given by 
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and the energy equation in the solid is, 
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where subscript f and s are the fluid and solid, respectively; u is the velocity in x 
direction, ' is the density, c is the specific heat, k is the coefficient of thermal 
conductivity, h is the convective heat transfer coefficient, p is the perimeter, Q is 
the internal heat generation rate per volume and T is the temperature. 
 

   Nodeless variable finite element equations can be derived from the 
method of weighted residuals.  The mass transport element and triangular element 
are used in the derivation.  For both elements, distributions of the temperature 
over the elements are assumed in the form 
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where iN  consists of the element interpolation functions and iT  are the vector of 

the unknown temperatures and the nodeless variables.  Equations (91) and (92) 
include the nodeless variable interpolation functions in fluid and solid 
respectively.  For the fluid, the nodal temperatures are 1T  and 2T , while 3T  is the 

nodeless variable.  For the solid, the nodal temperatures are 1T  through 3T , while 

4T  through 6T  are the nodeless variables.  The element interpolation functions, 1N  

and 2N  in fluid, 1N  through 3N  in solid are for the standard two-node line and 

three-node triangular element, respectively.  The nodeless variable interpolation 
functions used herein are, 
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For fluid, 

 
3 1 2N N N
   (93) 

For solid, 
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   To derive the nodeless variable finite element matrices, the method of 
weighted residuals is first applied to Eq. (89) and Eq. (90).  Integration by parts is 
then performed by using the Gauss theorem to yield the boundary term for 
applying various types of boundary conditions.  The nodeless variable finite 
element equations are, 
For fluid, 
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For solid, 
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where A is the element area,
 
m�  is the mass flow rate, L is the element length,

 
, is 

the element boundary, t is the element thickness, xn  and yn  are the direction 

cosines of the unit vector normal to the edge.  The above equations can be written 
in matrix form as shown below.  
 

For fluid, 

   ( ) ( )� �* + * + * +c v f s f f s s QK K K T K T Q� �� � � �� � � 
� � � �   (97) 

For solid, 

           ( )� �* + * + * +c f s s f s f QK K T K T Q� �� � � �� � 
� � � �  
(98) 
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These finite element equations can be written together as 
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where ( )cK  is the conduction matrix, ( )vK  is the mass transport convection 

matrix, f sK �� �� �  is the convection matrix between the  fluid and solid, * +QQ  is the 

internal heat generate load vector, * +fT  and * +sT  are the vectors of nodal 

temperatures in fluid and solid, respectively. 

   The first example for evaluation the nodeless finite element 
formulation is the problem of convectively-cooled solid subjected to uniform 
heating as shown in Fig. 27.  In the figure, the upper wall is subjected to uniform 
heating q.  Heat is transferred to the lower wall by the internal fluid flow.  The 
other walls of the problem are assumed to be adiabatic. 

  The parameters employed in the computation are as follows: the 
dimension H = 0.1 m and L = 2 m, the uniform heating parameter q = 8,000 
W/m2, the thermal conductivity ks = 1,000 W/m-K, the flow channel parameters 
are Pe = 200 (Re = 286) and Pe = 400 (Re = 572) with Pr = 0.7.  The finite 
element model, consisting of 408 nodes and 650 elements as shown in Fig. 28, is 
used in the analysis.  

Fig. 27.   Problem statement of convectively-cooled solid subjected to 
                         uniform heating. 

 
Fig. 28.   Nodeless variable finite element model consisting of 650 triangles 

                     and 408 nodes. 
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  Figure 29 shows the predicted temperature distributions along the 
upper wall, the lower wall and along the channel.  The predicted temperature 
distribution in solid is shown in Fig. 30.  Figure 31 shows the predicted 
temperature distributions at x = L, Pe=200 at different conductivity ratios, K=ks/kf.  
The solutions are compared with the results obtained from the Navier-Stokes 
finite element method.  The figure shows good agreement of the solutions. 
 
 

 
 
 

 

Fig. 29.   Comparison of Navier-Stokes and the nodeless variable finite element  
                  calculated the predicted temperature distributions along the two walls 
                  and the channel at Pe = 200 and Pe = 100. 
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Fig. 30.   Predicted temperature contours for convectively-cooled solid subjected 

                 to uniform heating at Pe = 200 and Pe = 400. 
 

 
 Fig. 31.   Comparison of the predicted temperatures from the Navier-Stokes and 

                  the nodeless variable finite element methods at x = L and Pe = 200. 
 

 To further evaluate the performance of the nodeless variable finite 
element method incorporated with the adaptive meshing technique, a plate 
subjected to an intense heating is considered.  The intense heating is simulated as 
a square width.  The analysis is performed by using two cases.  In the first case, 
three edges of plate are fixed at zero temperature.  In the second case, the plate 
has heat transfer by fluid flow along the lower edge.  The inlet temperature is 
specified as zero while all other edges are insulated. 

 In the first case as shown in Fig. 32, the exact plate temperature 
response can be derived in the form 

K=100 

x (m)
0.00 0.05 0.200.10 0.15 0.25 0.30 

100 

200 

150 

250 

50 

0 

K=10
K=1000 

Navier-Stokes FE
Nodeless FE

Fluid Solid

Te
m

pe
ra

tu
re

 (o C
) 

48 52 56 60

40 44 48 52



 53

  

� � � �
� � � �3 3

2,4 1,3

sinh1 1, sin sin
2 cosh

n

n nn n n

yq n nT y
Lk L H L

345 45 6
3 3 3

1 1


 


� � �� � � � �
 �� � ��  � �! " � �� � ��
� �

                

 

� �
� �

sinh
cos

2 cosh
n

n

yn
L H

345
3

0� ��� �
/� ��  

! " �� �.
 (100) 

where the origin of the 5 - y coordinate system is shown in Fig. 32, q is the heat 
source, H is the plate width, k is the plate thermal conductivity. The parameter � 
and 3n in Eq. (100) are defined by 
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where L is the plate length and w is the width of the heat source. 

 Figure 33 shows a structured finite element mesh consisting of 5,600 
elements and 3,208 nodes, and an adaptive mesh with only 742 elements and 446 
nodes.  Table 1 compares the predicted peak temperature obtained from the two 
finite element meshes using the convectional and nodeless variable finite element 
methods.  The values in the brackets denote the percentage error of the peak 
temperature as compared to the exact solution.  Table 1 indicates that the adaptive 
mesh uses fewer elements than the structured mesh but can provide higher 
solution accuracy.   

 Figure 34 shows the adaptive mesh and the computed temperature 
contours.  Details of the adaptive mesh near the intense heating location and the 
temperature contours are shown in the lower figures.  These figures highlight 
small clustered elements are generated in the region of steep temperature 
gradients to capture the peak temperature and localized temperature distribution.  
At the same time, larger elements are generated in the other regions to reduce the 
computational time and the computer memory.  The comparison of the exact and 
the predicted temperature distributions along the top edge is shown in Fig. 35.  
The figure shows that the temperature distribution obtained from the adaptive 
meshing technique combined with the nodeless variable finite element method is 
in good agreement with the exact solution. 

 For the second case as described by Fig. 36, a fluid with fully 
developed inlet velocity and temperature profiles flows along the lower edge of 
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plate.  The parameters of fluid used in the computation are as follows: the thermal 
conductivity kf = 0.32 W/m-K, the specific heat cf = 1200 W/m-K, the density ' = 
54 kg/m3, the mass flow rate m�  = 0.054 kg/s, the convection coefficient h = 
929.52 W/m2-k.  At the intense heating location, the predicted peak temperature is 
218.30 oC obtained from the nodeless variable finite element method while the 
conventional finite element method yields the temperature of 217.91 oC. 

 Figure 37 shows the adaptive mesh that consists of 1,096 elements and 
667 nodes with its computed temperature solution.  Details of the adaptive mesh 
near the intense heating location and the temperature contours are shown in the 
lower insert of the figure.  Figure 38 shows the computed temperature 
distributions along the top edge, the lower edge and the fluid temperature in the 
channel obtained from the adaptive meshing technique combining with the 
nodeless variable finite element method.  The solution obtained is different from 
the first case because of heat transfer along the lower edge varies with the fluid 
flow and the wall temperature.  

 

Fig. 32.   Problem statement of a plate subjected intense heating. 

          
 

      

Fig. 33.   Structured and adaptive mesh models. 
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Fig. 34.   Adaptive mesh and the temperature response at the heat source location. 
 

 

Fig. 35.   Comparison of the exact temperature solution and the predicted 
                       temperature obtained from the combined adaptive meshing 
                       technique and the nodeless finite element method. 

 
 

 
 

Fig. 36.   Problem statement of a plate subjected intense heating with fluid flow  
                  beneath the plate. 
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Fig. 37.   Adaptive mesh and the temperature response at the heat source location. 
 
 
 
 
 

 
Fig. 38.   Predicted temperature from the combined adaptive meshing  

                          technique and the nodeless finite element method. 
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Table 1.  Comparison of the predicted peak temperatures obtained from 
                        the conventional and the nodeless variable finite element methods 
                        on both the uniform and adaptive meshes. 

Temperature (%Error) 
Mesh Convectional

FE
Nodeless

FE

Structured 
117.094
(2.169)

119.773
(0.070)

Adaptive
119.061
(0.526)

119.688
(0.002)

Structural Analysis

  The finite element equations for solid mechanic problems can be derived 
by applying the method of weighted residuals to the governing differential 
equations of interest.  As an example, the governing differential equations that 
represent the equilibrium conditions of a plate in two dimensions are, 

                       * + * + 0
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where the flux vector components * +SE  and * +SF  contain the stress compo-nents 

given by, 
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The stress components xx7 , yy7  and xy7  are related to strain components by the 

Hooke’s law, 
* + ( )* +$7 C
                                         (105) 

where * +7  is the vector of the stress components, ][C  is the matrix of the material 

elastic constants, and * +$  is the vector of the strain components. 

   These equations are to be solved with the boundary conditions that 
may consist of: (a) the specified displacements, u and v, in the x- and y-directions, 
respectively, 
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and (b) the specified boundary tractions, SxT  and SyT , in the x- and y-directions, 

respectively, 
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where xn  and yn  are direction cosines of the unit vector normal to the boundary. 

 Nodeless Variable Flux-Based Finite Element Formulation 

 The flux-based formulation is implemented to derive the 
corresponding finite element equations for the nodeless variable structural finite 
element.  For the triangular element shape, the distribution of displacements over 
the element in the x- and y-directions are assumed in the form, 
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where � �),( yxN  consists of the element interpolation functions; * +u  and * +v  are 

the vectors of the unknown displacements and the nodeless variables.  The 
nodeless variable interpolation functions implemented in this paper are, 

       324 LLN 
       ; 315 LLN 
        ; 216 LLN 
    (110) 

 Each nodeless variable interpolation function varies quadratically 
along one edge and vanishes along the other edges.  To derive the finite element 
matrices using the flux-based formulation, the method of weighted residuals is 
first applied to Eq. (103), 
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where �  is the element domain.  The Gauss’s theorem is then applied to the flux 
derivative terms to yield, 
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where S is the element boundary.  Substituting Eqs. (112)-(113) into Eq. (111) to 
yield,
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The compact form of Eq. (114) could be written as, 
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 In the flux-based formulation, the element flux distributions are 
computed from the nodal fluxes as, 
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and the vectors * +TN  and * +T0  are 
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 By following the same idea, the boundary tractions * +ST  could be 

written as, 

          * + ( )* +SS TNT 
                                          (125) 

where ( )N  and * +ST  are interpolation matrix and boundary tractions vector 

defined at the element boundary, respectively.  The interpolation functions in Eq. 
(125) needed for integration along the element side S are, 
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where L is the length of element edge and x is the local coordinate along the edge.  
Substituting Eqs. (120) and (125) into Eq. (115), the finite element equations for 
the element are, 
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 Appropriate boundary conditions of the given problem are then 
applied.  Finally, the system equations are iteratively solved for the nodal 
displacements and the nodeless variables using the preconditioned conjugate 
gradients method with an element-by-element approximation.  The method is used 
to analyze the deformed shape and the stress distribution in an L-shape plate 
under uniform loading along the left edge as shown in Fig. 39.  Figure 40 shows 
both the structured and unstructured meshes used in the analysis.  The lower-right 
insert of Fig. 40 also shows an adaptive mesh that has small clustered elements 
near the plate corner to provide stress solution accuracy for this problem. 
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Fig. 39.  Problem statement of L-shape domain. 

Fig. 40.  Uniformly refined meshes and adaptive meshes used in the analysis 
          of L-shape plate under uniform loading along the left edge. 
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where , is a limiting contour starting from the bottom crack face and ending at the 
top surface, W is the strain energy density, ij7  are the stress tensors, iu  are the 

displacement vectors, ij9  is the Kronecker’s delta, and in  is the outward normal 

vector to the vanishing contour ,.  In the absence of crack face tractions, Eq. 

(128) for the closed curve �� ��,�
 CCCC 1  can be written in the form, 
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where 1q  is any sufficiently smooth function in the region enclosed by C provided 

that it is unity on , and zero on 1C , and mi is the outward normal vector to the 

domain surrounded by C.  With the presence of thermal strain, the total strain 
tensor ij$  could be presented as the sum of the mechanical and the thermal strains, 

ij
m
ijij T 9:$$ �
 , where m

ij$  represents the mechanical strain, : is the coefficient 

of thermal expansion and T is the temperature relative to the reference state.  
Under the assumptions of the equilibrium conditions without the body forces and 
the strain energy density being only function of the mechanical strains, the 
divergence theorem is applied to Eq. (129) to yield the domain integral form, 

                     � �( )� ��

A
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where A is the area enclosed by C including the crack tip region as 0, 8 , and 
)(7tr  denotes the trace of ij7 .

  Typical solutions are illustrated by the problem of the compact tension 
specimen under loading in Figs. 41-43.  The problem statement of the compact 
tension specimen is given in Fig. 41, while an adaptive finite element mesh is 
shown in Fig. 42.  Figure 43 shows a good agreement of the computed J-integrals
obtained from the adaptive finite element method and an estimation method. 
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Fig. 41.   The compact tension specimen. 

Fig. 42.    The final adaptive mesh of the compact tension specimen with 
         three integration domains. 
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   Application of the adaptive meshing technique has been extended to 
the analysis of built-up structures.  The method is combined with the Discrete 
Kirchhoff Triangle (DKT) elements to analyze the bending behavior of the plates 
normally found in the built-up structure.  The governing differential equations for 
in-plane deformation and bending behavior of the plate are given as follows. 

 The equations for the in-plane deformation are governed by the two-
dimensional equilibrium equations after neglecting the in-plane body forces as, 
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For the plane stress case, the stress components x7 , y7  and xy;  are related to the 

strain components by Hooke’s law as, 
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where * +7 , * +$  and the thermal strain * +0$  vectors are defined by, 
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The material stiffness matrix ( )C  is given by, 
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and the vector for the coefficient of the thermal expansion * +6  is defined by, 

* + 0T6 6 6
 � �� �  (138) 
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  The equation for the transverse deflection w  in the z-direction normal 
to the x-y plane of a thin plate with the temperature ( )T z through its thickness t  is 

given by the equilibrium equation,  
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where ( , )p x y  is the applied lateral load normal to the plate, <  is Poisson’s ratio 

and D  is the bending rigidity.  The bending rigidity is defined by, 
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where E is the modulus of elasticity, t is the thickness of the plate. The thermal 
moment TM  in Eq. (139) is defined, 
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The Constant Strain Triangle (CST) and the Discrete Kirchoff Triangle (DKT) 
finite elements are used for the in-plane deformation and the transverse deflection, 
respectively, as explained below. 

 The CST element assumes a linear distribution of the displacement 
components over the element.  The finite element equations can be derived by 
applying the method of weighted residuals to the governing differential equations, 
Eqs. (131) and (132), which leads to the finite element equations in the form, 

( )* + * + * +m m mK F F9 
 �  (142) 

where the vector * +m9  contains the element nodal unknowns of the in-plane 

displacements in the element local x-y coordinates.  The unknowns are the two in-
plane displacements u  and v  for each node, thus, there are six unknowns per 
element.  The element stiffness matrix ( )mK  appearing in Eq. (142) is defined by, 

( ) ( ) ( )( )T
m m m mK B C B t A
  (143) 

where ( )mB  is the strain-displacement interpolation matrix.  The vector * +F  on the 

right-hand-side of Eq. (142) contains the applied mechanical forces at element 
nodes.  The vector * +mF consists of the equivalent nodal forces due to the thermal 

load defined by, 
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  The DKT element assumes a cubic distribution of the transverse 
deflection over the element.  The finite element equations can be derived by 
applying the method of weighted residuals to the plate bending equation, Eq. 
(139), which leads to the finite element equations in the form, 

( )* + * + * +b b p bK F F9 
 �  (145) 

where the vector * +b9  contains the element nodal unknowns of the transverse 

deflections and rotations.  Each node has a transverse deflection in z-direction and 
two rotations about x- and y- directions.  Thus there are nine degrees of freedom 
per element.  The element stiffness matrix ( )BK  and the nodal force vector due to 

the applied loads * +pF  are defined by,  

( ) ( ) ( )( )T
b b b

A

K B D B dA
 �  (146) 

* + T
p p

A

F N pdA� �
 � �� (147)

where the strain-displacement interpolation matrix ( )bB  is,
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where , ,yx xHH H
5 5 =

�� 0� 0 � 0� �
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The coefficients kP , kq , kr  and kt ; k = 4, 5, 6 depend on the element shape and are 

given by, 
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where 2 2
ij ij ijx y
 ��   (157) 

   The coefficients ijx and ijy , ,i j 
 1, 2, 3 are defined in terms of the 

element nodal coordinates,  

   ij i jx x x
 �  (158) ; ij i jy y y
 �  (159) 
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and the plate material stiffness matrix ( )D  in Eq. (146) is defined by,

                              ( )
3

2

1 0
1 0

12(1 )
10 0

2
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<
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� �
� �
� �
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� �
� �

 (160) 

The above finite element matrices are in closed-form so that they can be 
implemented in the computer program directly.  

 The vector of the equivalent nodal forces due to the temperature 
change * +bF  in Eq. (145) is defined by, 

* + ( ) * +T
b b

A

F B M dA
 �  (161) 

where the vector * +M  is given by, 

* + 0T TM M M
 � �� �  (142) 

The vector of the equivalent nodal forces due to the thermal load * +bF  can be 

derived in closed-form as, 

* + ( )
1
1
0

T
b TF M G

� 0
� �
 � /
� �
� .

 (163) 

where the matrix ( )G  is, 

( )
31 11 12 12

31 21 12 22
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1
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y G y G
G x G x G

x G x G y G y G
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 (164) 

The coefficients ijx and ijy , ,i j 
 1, 2, 3 are given in Eqs. (158) - (159).  The row 

matrices ijG� �� � ; i, j = 1, 2, in Eq. (164) are given by, 

(
)

11 5 5 5 4 4 4 4 5

4 5 4 5

( )

( ) ( )
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q q r r
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(
)

12 6 6 6 4 6 4 6

4 6 4 4 4

( ) ( )

( )

G p q r p p q q

r r p q r
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 (166) 
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(
)
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(
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(3 ) ( ) ( )

( ) ( 3 )

G t r q t t r r

q q t r q
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 (168) 

where the coefficients kP , kq , kr  and kt ; k = 4, 5, 6 are given in Eqs. (153)-(157). 

 To demonstrate the capability of the adaptive meshing technique for 
thermal stress analysis of a complex plate structure, the three-dimensional built-up 
structure with intersection panels is considered.  The localized heating results in 
high temperature gradients and attendant thermal stresses in the structure.  Both 
structure temperature and boundary conditions are prescribed as shown in Fig. 44.  
The peak temperature of 390 K is assumed in the two hot spot regions with the 
temperature distributions.  Away from these hot spot regions, the structure 
temperature is closed to the surrounding medium temperature of 55 K. 

  A fine finite element model is first constructed as shown in Fig. 45(a).  
The model consists of 3,168 nodes and 6,114 triangular elements.  The predicted 
stress distribution in the Y-direction superimposed on the deformed geometry is 
shown in Fig. 45(b).  The high compressive stress with a magnitude of 172 MPa is 
at the two hot spot regions.  However, a quite higher tensile stress with a 
magnitude of 372 MPa occurs between these two hot spot regions.  This fine finite 
element model requires a large computational time as well as the computer 
memory.  These difficulties can be alleviated and the analysis computational time 
can be reduced by the use of the adaptive meshing technique. 

 Application of the adaptive meshing technique starts from 
constructing a fairly uniform mesh as shown in Fig. 46(a).  The initial mesh 
consists of 547 nodes and 994 triangular elements.  With this mesh, the predicted 
thermal stress distribution on the deformed geometry is shown in Fig 47(a).  The 
peak compressive stress at the two hot spots is 138 MPa while the peak tensile 
stress between both hot spots is 228 MPa.  The temperature and the stress 
distributions (in the form of Von Mises stress) obtained from the initial mesh are 
used as the meshing parameters to construct a new adaptive mesh, shown in Fig. 
46(b), with 528 nodes and 989 elements.  The finer elements are concentrated in 
the high stress regions on the panels to provide accurate solution.  Coarser 
elements are generated in other regions to reduce the problem size and 
computational time.  The predicted thermal stress distribution in the Y-direction 
superimposed on the deformed geometry is shown in Fig. 47(b).  The figure 
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shows that the adaptive mesh model can provide the same stress solution accuracy 
as those obtained from the fine mesh model. 

Fig. 44.  Boundary conditions and temperature distributions 
   for the intersection panels 

(a) fine Mesh                           (b) stress contours  

Fig. 45.  Fine finite element mesh and predicted axial stress contours 
         on deformed configuration. 
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                            (a)                                  (b) 

Fig. 46.  Finite element meshes for intersection panel: (a) initial mesh and  
              (b) adaptive mesh. 

 

                            (a)                                  (b) 

Fig. 47.  Predicted axial stress contours from: (a) initial mesh and  
    (b) adaptive mesh. 

Fluid-Thermal-Structural Interaction

     The governing equations for conjugate heat transfer between the solid 
and fluid flow consist of the conservation of mass which is called the continuity 
equation, the conservation of momentum in x- and y- directions, and the 
conservation of energy, as follows, 

Continuity equation, 

MPa172�

(Peak)
MPa372�

MPa138�

(Peak)
MPa228�
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Momentum equations, 
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Energy equation, 
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where u and v are the velocity components in the x- and y- direction, respectively, 
' is the density, p is the pressure, & is the viscosity, g is the gravitational 
acceleration constant, : is the volumetric coefficient of thermal expansion, T is 
the temperature, 0T  is the reference temperature for which buoyant force in the y-

direction vanishes, c is the specific heat, k is the coefficient of thermal 
conductivity and Q is the internal heat generation rate per unit volume.  Equation 
(169d) can be used for solving conduction heat transfer in solid by setting both the 
velocity components, u and v, as zero. 

Finite Element Formulation 

 The three-node triangular element is used in this study.  The element 
assumes linear interpolation functions for the velocity components, the pressure, 
and the temperature as, 

� �yxu , � ��
 ii uyxN , � �* +uN
            (170a) 

� �yxv , � ��
 ii vyxN , � �* +vN
            (170b) 

� �yxp , � ��
 ii pyxN , � �* +pN
            (170c) 

� �yxT , � ��
 ii TyxN , � �* +TN
            (170d) 

where i = 1, 2, 3; and iN  is the element interpolation functions. 
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  The basic idea of the solution algorithm presented herein is to use the 
two momentum equations for solving both of the velocity components, use the 
continuity equation for solving the pressure, and use the energy equation for 
solving the temperature in solid and fluid regions. 

Streamline Upwind Petrov-Galerkin Method 

  The basic idea of the streamline upwind method is to include diffusion 
only in the flow direction.  Extended to a Petrov-Galerkin formulation, the 
standard Galerkin weighting functions are modified by adding a streamline 
upwind perturbation, p, for suppressing the non-physical spatial oscillation in the 
numerical solution, which again acts only in the flow direction.  Herein, the 
modified weighting function, Wi, can be expressed as, 

        iW     =   pNi �    = ��
�

��
�

�
�

�
�
�

�
y

Nv
x

Nu
U
hN ii

i 2
6                       (171) 

where 6 is calculated for each element from, 

       6   =  opt6     =
Pe

Pe 1coth �                               (172a) 

with  Pe    =
k
hU

~2
      and U  =   22 vu �          (172b) 

where Pe  is the Peclet numbers, U  is mean resultant velocity and h is element 

size.

   A typical solution of a coupled fluid-structure heat transfer is shown by 
the problem in Figs. 48-49.  Figure 48 describes the problem statement of a fluid 
circulation in a cavity with hot tube at the center and cold walls on both sides.  
The bottom edge of the cavity is insulated, while there is heat transfer to the solid 
along the top edge.  Figure 49 shows the predicted temperature contours of the 
fluid and solid when the solid has different values of the thermal conductivity 
coefficient.
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Fig. 48.   Coupled fluid flow and heat transfer in solid.

Fig. 49.   Temperature contours at different solid thermal conductivities. 

  Figure 50 shows the problem statement of a free convection flow in an 
enclosure with fins.  Along the lower and upper edges of the model, the 
temperatures are specified as 1 and 0, respectively, while both sides of the model 
are insulated.  The objective is to investigate the flow behaviors of the fluids in 
both the lower and upper enclosures.  The finite element model for the two fluid 
regions and the three fins is shown in Fig. 51.  Figure 52 shows the predicted 
temperature distributions in both the fluid regions and the three fins.  The 
predicted Von Mises stress distribution on the deformed shape of the fins is 
shown in Fig. 53. 
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Fig. 50.   Problem statement of free convection flow in enclosures with fins. 
 

 
  Fig. 51.   Finite element model for fluid and structure of free convection flow
        in enclosures with fins. 

 
Fig. 52.   Computed temperature distributions for the fluid and structure of 

                      free convection flow in enclosures with fins. 
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Fig. 53.  Predicted Von Mises stress distribution on deformed fin shape for  

                     the problem of free convection flows in enclosures. 
 

  The high-speed compressible flow formulation is combined with the 
heat transfer and the structural analyses of the structure to demonstrate the fluid-
thermal-structural interaction phenomena.  Figure 54 shows the problem statement 
of a Mach 4 flow over a wedge in a channel.  The flow creates a shock wave that 
impinges on a panel embedded in the upper wall of the channel.  Figures 55(a) 
and (b) show an adaptive finite element mesh and the predicted density contours, 
respectively.  The upper figure shows small clustered elements generated along 
the shock wave and in the boundary layers along both the wedge and the upper 
wall surfaces.  The impingement of the shock on the panel causes the panel 
temperature to rise.  The panel then bows into the free stream and alters the flow 
field.  Figures 56(a) and (b) show the adaptive finite element mesh and the 
corresponding density contours after the panel has bowed and altered the flow 
field.  This example clearly demonstrates the advantage of the adaptive finite 
element method for predicting the fluid, thermal and structural interaction 
phenomena.       
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Fig. 54.   A Mach 4 flow in a channel. 
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(a) Adaptive mesh 
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 (b) Density distribution 

Fig. 55.    Adaptive mesh and corresponding density contours (kg/m3)
                           for a Mach 4 flow in a channel at initial time. 

 

 
(a) Adaptive mesh 
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 (b) Density distribution 

Fig. 56.   Adaptive mesh and corresponding density contours for a Mach 4
                      flow in a channel with convex deformation at 60 seconds. 
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