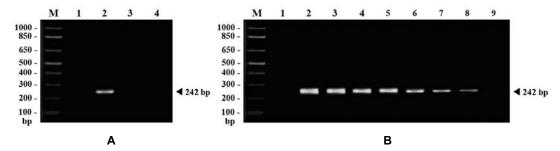
ไพรเมอร์

ไพรเมอร์ที่ใช้ในการวิจัยครั้งนี้ออกแบบและสังเคราะห์ขึ้นเพื่อเพิ่มปริมาณชิ้นส่วนของยืนกำหนดการ สร้างเอ็นเทอโรท็อกซิน (enterotoxin extracellular secretion protein, *EpsM*) ซึ่งออกแบบจากลำดับดีเอ็นเอ หมายเลข L13660 (gi:407329) ของ GenBank ประกอบด้วยไพรเมอร์ 2 ชนิด ที่มีค่า Tm ประมาณ 60°C คือ forward primer (5'- ATT ATT GGC TCC TGT GCA GG -3') และ reverse primer (5'- CTT GGC GCA TCA CTG CCC -3')

การเตรียมตัวอย่าง

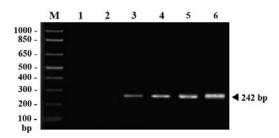

เพาะเลี้ยงแบคทีเรีย *V. cholerae* ในอาหาร TCBS broth ส่วนแบคทีเรียอีก 3 ชนิด เพาะเลี้ยงใน อาหาร nutrient broth โดยบ่มที่อุณหภูมิ 37°C และเขย่าด้วยความเร็ว 150 รอบ/นาที เป็นเวลาประมาณ 18-24 ชั่วโมง ปั่นแยกตะกอนเซลล์แบคทีเรียด้วยเครื่องเซนตริฟิวจ์ความเร็ว 1,000g เป็นเวลา 5 นาที ล้าง ตะกอนเซลล์แบคทีเรียด้วย alkaline peptone water (APW) แล้วละลายตะกอนเซลล์แบคทีเรียใน APW และ นับจำนวนแบคทีเรียภายใต้กล้องจุลทรรศน์โดยใช้ counting chamber หลังจากนั้นนำแบคทีเรียไปผสมกับ หอยนางรมแช่เย็นให้ได้ความเข้มขัน 10¹² เซลล์/กรัม และใช้เป็นตัวอย่างในการตรวจสอบ โดยชั่งตัวอย่าง 1 กรัม และเดิม APW ปริมาตร 99 มิลลิลิตร ซึ่งจะมีความเข้มขันแบคทีเรียเป็น 10¹⁰ เซลล์/มิลลิลิตร แล้วเจือ จางทีละ 10 เท่า ให้ได้ความเข้มขัน 10⁹, 10⁸, 10⁷, 10⁶, 10⁵, 10⁴ และ 10³ เซลล์/มิลลิลิตร ตามลำดับ

การทำพีซีอาร์

เพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในแบคทีเรีย โดยนำตัวอย่างที่เตรียมได้ปริมาตร 1 ไมโครลิตร มาเพิ่มปริมาณด้วยไพรเมอร์ทั้ง 2 ชนิด ชนิดละ 250 นาโนโมลาร์ ในบัฟเฟอร์ 1 เท่า (500 mM KCI, 200 mM Tris-HCI pH 8.4 และ 2.5 mM MgCl₂) ซึ่งมีนิวคลีโอไทด์ 4 ชนิด (dATP, dCTP, dGTP และ dTTP) ชนิดละ 200 ไมโครโมลาร์ และใช้เอนไซม์ *Taq* DNA polymerase (Invitrogen tife Technologies, Brazil) 0.5 ยูนิต มีปริมาตรรวม 20 ไมโครลิตร โดยปฏิกิริยาพีซีอาร์มี 3 ขั้นตอน คือ (1) ทำปฏิกิริยาที่อุณหภูมิ 94°C เป็นเวลา 5 นาที (2) ทำปฏิกิริยาที่อุณหภูมิ 94°C เป็นเวลา 30 วินาที, 55°C เป็นเวลา 30 วินาที และ 72°C เป็นเวลา 45 วินาที จำนวน 35 รอบ และ(3) ทำปฏิกิริยาที่อุณหภูมิ 72°C เป็นเวลา 7 นาที แล้วนำไปตรวจสอบด้วยวิธีอิเล็กโทรโฟรีซิสในเจลอะกาโรส 1.8 เปอร์เซ็นต์

ผลการทดลองและวิจารณ์

การเพิ่มปริมาณชิ้นส่วนดีเอ็นเอด้วยไพรเมอร์ที่ออกแบบจากชิ้นส่วนของยืนเอ็นเทอโรท็อกซินปรากฏ ว่าตรวจพบแถบดีเอ็นเอขนาด 242 คู่เบส ในตัวอย่างที่มี V. cholerae แต่ไม่พบแถบดีเอ็นเอในตัวอย่างที่มี E. coli, S. Typhimurium และ K. pneumoniae และตัวอย่างที่ไม่มีแบคทีเรีย (ภาพที่ 1A) แสดงว่าไพรเมอร์ที่ ออกแบบจากชิ้นส่วนของยืนเอ็นเทอโรท็อกซินนี้มีความจำเพาะต่อ V. cholerae โดยผลการทดลองนี้ สอดคล้องกับรายงานของ Kong et al. (2002) ซึ่งตรวจสอบตรวจสอบแบคทีเรียก่อโรคในน้ำทะเล 6 ชนิด ด้วยวิธีมัลติเพล็กซ์พีซีอาร์ (multiplex PCR)



ภาพที่ 1A การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินซึ่งพบแถบดีเอ็นเอที่จำเพาะต่อ *V. cholerae* ขนาด 242 คู่เบส [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (Invitrogen Life Techologies, USA); 1 คือตัวอย่างน้ำที่ไม่มีแบคทีเรีย; 2-5 คือตัวอย่างน้ำที่มี *V. cholerae, E. coli, S.* Typhimurium และ *K. pneumoniae* ตามลำดับ]

ภาพที่ 1B การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในตัวอย่างที่มี *V. cholerae* ความเข้มขันต่างๆ [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (Invitrogen Life Techologies, USA); 1 คือ ตัวอย่างที่ไม่มีแบคทีเรีย; 2-9 คือตัวอย่างที่มี *V. cholerae* ความเข้มขัน 10¹⁰, 10⁹, 10⁸, 10⁷, 10⁶, 10^5 , 10^4 และ 10^3 เซลล์/มิลลิลิตร ตามลำดับ]

การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินโดยใช้ตัวอย่างที่มี $V.\ cholerae$ ความเข้มขันต่างๆ ได้แก่ 10^{10} , 10^{9} , 10^{5} , 10^{5} , 10^{5} , 10^{5} , 10^{4} และ 10^{3} เซลล์/มิลลิลิตร เมื่อนำตัวอย่างแต่ละความเข้มขันปริมาตร 1 ไมโครลิตร ซึ่งมีแบคทีเรีย 10^{7} , 10^{6} , 10^{5} , 10^{4} , 10^{3} , 10^{2} , 10 และ 1 เซลล์ ไปเพิ่มปริมาณด้วยเทคนิคพีซีอาร์ พบว่าตัวอย่างน้ำที่มีแบคทีเรีย 10^{7} , 10^{6} , 10^{5} , 10^{4} , 10^{3} , 10^{2} และ 10 เซลล์ ปรากฏแถบดีเอ็นเอขนาด 242 คู่ เบส แต่ไม่พบแถบดีเอ็นเอในตัวอย่างที่มีแบคทีเรีย 1 เซลล์ (ภาพที่ 18) แสดงว่าเทคนิคพีซีอาร์ที่พัฒนาขึ้น เพื่อใช้ในการวิจัยครั้งนี้มีความไวต่อ $V.\ cholerae$ ถึง 10 เซลล์/ปฏิกิริยา หรือเทียบเท่ากับตัวอย่างที่มี $V.\ cholerae$ ความเข้มข้น 10^{4} เซลล์/กรัม

ตัวอย่างที่มี V. cholerae ความเข้มขัน 10³ เซลล์/มิลลิลิตร ซึ่งตรวจไม่พบแถบดีเอ็นเอจากการเพิ่ม ปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินด้วยเทคนิคพีซีอาร์นั้น เมื่อเติมอาหาร 2x TCBS broth ใน อัตราส่วน 1:1 แล้วนำไปบ่มที่อุณหภูมิ 37°C และเขย่าด้วยความเร็ว 150 รอบ/นาที เป็นเวลา 30, 45, 60, 75 และ 90 นาที หลังจากนั้นนำไปเพิ่มปริมาณด้วยเทคนิคพีซีอาร์ พบว่าตัวอย่างที่บ่มนาน 45, 60, 75 และ 90 นาที ปรากฏแถบดีเอ็นเอขนาด 242 คู่เบส แต่ไม่พบแถบดีเอ็นเอในตัวอย่างที่บ่มนาน 30 นาที (ภาพที่ 2) แสดงให้เห็นว่าสามารถเพิ่มความไวของเทคนิคพีซีอาร์ได้ด้วยการเพิ่มปริมาณแบคทีเรียในอาหาร TCBS broth เป็นเวลานานอย่างน้อย 45 นาที ก่อนนำไปทำพีซีอาร์ ซึ่งการเพิ่มความไวของเทคนิคพีซีอาร์ที่ พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้อาจเพิ่มได้มากขึ้นอีกด้วยการบ่มแบคทีเรียในอาหาร TCBS broth ให้นาน ขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียวิบริโอความเข้มขัน 10², 10 และ 1 เซลล์/มิลลิลิตร สามารถตรวจสอบได้ เช่นกันถ้าเพิ่มปริมาณ V. cholerae ในอาหาร TCBS broth ในระยะเวลาที่เหมาะสมก่อนนำไปทำพีซีอาร์ (นฤมล และ ชีระซัย, 2551)

ภาพที่ 2 การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในตัวอย่างที่มี *V. cholerae* ความเข้มขัน 10³ เซลล์/มิลลิลิตร [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (Invitrogen[™] Life Techologies, USA); 1 คือตัวอย่างน้ำที่ไม่มีแบคทีเรีย; 2-6 คือตัวอย่างน้ำที่มี *V. cholerae* ความเข้มขัน 10³ เซลล์/มิลลิลิตร หลังจากเพิ่มปริมาณในอาหาร TCBS broth เป็นเวลา 30, 45, 60, 75 และ 90 นาที ตามลำดับ]

สรุปผลการทดลอง

การวิจัยนี้ได้ประยุกต์เทคนิคพีซีอาร์เพื่อตรวจสอบ V. cholerae ที่ปนเปื้อนในหอยนางรมโดยไม่ต้อง สกัดแยกดีเอ็นเอจากแบคทีเรีย เทคนิคพีซีอาร์ที่พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้จะเพิ่มชิ้นส่วนของยีน เอ็นเทอโรท็อกซิน โดยมีความจำเพาะต่อ V. cholerae สูงและมีความไวของการตรวจสอบ V. cholerae ที่ ปนเปื้อนในหอยนางรม 10⁴ เซลล์/กรัม และสามารถเพิ่มความไวของการตรวจสอบได้ด้วยการเพิ่มปริมาณ แบคทีเรียในอาหาร TCBS broth ในระยะเวลาที่เหมาะสมก่อนนำไปทำพีซีอาร์ นอกจากนี้เทคนิคพีซีอาร์ที่ พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้ยังสามารถตรวจสอบ V. cholerae ที่ปนเปื้อนในหอยนางรมได้ภายในเวลา 4-5 ชั่วโมง

กิตติกรรมประกาศ

งานวิจัยนี้บางส่วนได้รับการสนับสนุนจาก กลุ่มวิจัยเมธิวิจัยอาวุโส สกว.-สกอ. (ศ.ดร.เพทาย เย็นจิตโสมนัส และคณะ)

เอกสารอ้างอิง

นฤมล ธนานันต์ และ ธีระชัย ธนานันต์. 2551. การตรวจสอบแบคทีเรีย *E.coli*. ในน้ำด้วยเทคนิคดูเพล็กซ์พีซี อาร์. *Thai J. Genet.* 1(2): 109-113.

วิกิพีเดีย. 2551. ห*อยนางรม*. มูลนิธิวิกิมีเดีย. แหล่งที่มา : http://th.wikipedia.org/wiki/หอยนางรม.

Matte, G.R., Matte, M.H., Rivera, I.G. and Martins, M.T. 1994. Distribution of potentially pathogen Vibrios in oyster from a tropical region. *J. Food Protection* 57: 870-873.

Kong, R.Y.C., Lee, S.K.Y., Law, T.W.F., Law, S.H.W. and Wu, R.S.S. 2002. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. *Water Res.* 36: 2802-2812.

USING POLYMERASE CHAIN REACTION TECHNIQUE FOR VIBRIO CHOLERAE DETECTION IN OYSTER

การใช้เทคนิคพีซีอาร์ตรวจสอบแบคทีเรีย Vibrio cholerae ในหอยนางรม

นฤมล ธนานันต์¹ และ ธีระชัย ธนานันต์²*

(1) คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์ อ.คลองหลวง จ.ปทุมธานี 13180 (2) ภาควิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต อ.คลองหลวง จ.ปทุมธานี 12120

บทลัลย่ะ

เทคนิคพีซีอาร์แบบไม่ต้องสกัดแยกดีเอ็นเอได้พัฒนาเพื่อตรวจสอบแบคทีเรีย Wibrio cholerae ในหอยนางรม โดยออกแบบไพรเมอร์เพื่อเพิ่มปริมาณชิ้นส่วนของยืนเอ็นเทอโรท็อกชิน ผลการวิจัยพบว่าเทคนิคพีซีอาร์ที่ พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้มีความจำเพาะต่อ V. cholerae สูงและมีความไวของการตรวจสอบในหอย นางรม 10 ใชลล์/กรัม ซึ่งสามารถเพิ่มความไวของการตรวจสอบได้ด้วยการเพิ่มปริมาณแบคทีเรียในอาหาร เหลวในระยะเวลาที่เหมาะสมก่อนนำไปทำพีซีอาร์

บทนำ

หอยนางรม (oyster) จัดอยู่ในวงศ์ Mollusca ซึ่งมีหลายชนิด โดยในประเทศไทยนิยมเพาะเลี้ยงเพื่อการค้า 2 พันธุ์ ได้แก่ (1) หอยนางรมพันธุ์เล็กหรือหอยนางรมปากจีบ (Saccostrea commercialis) ซึ่งส่วนใหญ่ เพาะเลี้ยงในภาคตะวันออก และ (2) หอยนางรมพันธุ์ใหญ่ มี 2 ชนิด คือ หอยตะโกรม (Crassostrea belcheri) และหอยตะโกรมกรามดำ (C. lugubris) ซึ่งส่วนใหญ่เพาะเลี้ยงในภาคใต้ (วิกิพีเดีย, 2551)

Vibrio เป็นแบคทีเรียเขตร้อนที่พบทั้งในน้ำจืดและน้ำเค็ม แบคทีเรียสกุลนี้มีสมาชิกมากกว่า 60 ชนิด (species) ชนิดที่ก่อโรคในคน ได้แก่ Vibrio chlorelae, V. parahemolyticus, V. vulnificus เป็นต้น โดย แบคทีเรียก่อโรคที่ลำคัญ คือ V. chorelae ซึ่งเป็นสาเหตุของโรคท้องร่วงรุนแรงหรืออหิวาตกโรค โดย V. chlorelae สายพันธุ์ O1 เคยระบาดทั่วโลกมาแล้ว 7 ครั้ง อาการของผู้ป่วยที่ติดเชื้อ V. chlorelae ในระบบ ทางเดินอาหารคือมีการถ่ายเป็นน้ำ (watery diarrhea) ซึ่งอุจจาระมีลักษณะเป็นน้ำขาวขุ่นเหมือนน้ำชาวข้าว แลมีลิ่มมูกปน เนื่องจากสารพิษที่เชื้อผลิตขึ้นส่งผลให้เชลล์ในลำไส้มีการขับน้ำ และเกลือแร่ออกมา รวมทั้ง ยังรบกวนการทำหน้าที่ของลำไส้ในการดูดน้ำและเกลือแร่ด้วย ลักษณะเด่นของ Vibrio คือต้องการเกลือใน การเจริญเติบโตและพบได้ในน้ำเค็ม ดังนั้นจึงพบว่ามีการปนเปื้อนในอาหารทะเล (Matte et al., 1994)

ปัจจุบันมีวิธีตรวจสอบแบดทีเรียที่ปนเบื้อนในอาหารและน้ำหลายวิธี อย่างไรก็ตามแต่ละวิธียังคงมีปัญหา เกี่ยวกับความไวและความจำเพาะ โดยต้องมีแบคทีเรีย 10*-10° เชลล์/มิลลิลิตร จึงให้ผลบวก ดังนั้นการนำ พีซ็อาร์ (PCR, polymerase chain reaction) มาใช้ตรวจสอบจึงได้รับความสนใจมากขึ้น งานวิจัยนี้มี วัตถุประสงค์คือพัฒนาเทคนิคพีซ็อาร์ที่เหมาะสมเพื่อใช้ตรวจสอบ V. chorelae ในหอยนางรมซึ่งเป็นวิธี ตรวจสอบรวดเร็วที่ให้ผลภายใน 6 ชั่วโมง

อุปกรณ์และวิธีการ

ง แบคทีเรีย

แบคทีเรียอ้างอิงที่ใช้ในการศึกษา คือ Vibrio cholerae แบคทีเรียควบคุม คือ Escherichia coli, Salmonella enterica serovar Typhimurium และ Klebsiella pneumoniae

ไพรเมอร์

ไพรเมอร์ที่ใช้ในการวิจัยครั้งนี้ออกแบบและสังเคราะห์ขึ้นเพื่อเพิ่มปริมาณชิ้นส่วนของยืนกำหนดการสร้าง เอ็นเทอโรท็อกซิน (enterotoxin extracellular secretion protein, *EpsM*) ประกอบด้วยไพรเมอร์ 2 ชนิด ที่มีค่า Tm ประมาณ 60°C คือ forward primer (5′- ATT ATT GGC TCC TGT GCA GG -3′) และ reverse primer (5′- CTT GGC GCA TCA CTG CCC -3′)

การเตรียมตัวอย่าง

การทำพีซีอาร์

เพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในแบคทีเรีย

มาเพิ่มปริมาณด้วยพีซีอาร์โดยมีไพรเมอร์ทั้ง 4 ชนิด

ตรวจสอบด้วยวิธีอิเล็กโทรโฟรีซิสในเจลอะกาโรส 1.8 เปอร์เซ็นต์

เอกสารอ้างอิ

นฤมล ธนานันต์ และ ธีระชัย ธนานันต์. 2551. การตรวจสอบแบคทีเรีย E.coli. ในน้ำด้วยเทคนิคดูเพล็กซ์พีซีอาร์. Thai J. Genet. 1(2): 109-113.

วิกิพีเดีย. 2551. หอยนางรม. มูลนิธิวิกิมีเดีย. แหล่งที่มา : http://th.wikipedia.org/wiki/หอยนางรม.

Matte, G.R., Matte, M.H., Rivera, I.G. and Martins, M.T. 1994. Distribution of potentially pathogen Vibrios in oyster from a tropical region. *J. Food Protection* 57: 870-873.

Kong, R.Y.C., Lee, S.K.Y., Law, T.W.F., Law, S.H.W. and Wu, R.S.S. 2002. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. *Water Res.* 36: 2802-2812.

ผลการทดลองและวิจารณ์

การเพิ่มปริมาณชิ้นส่วนดีเอ็นเอตัวยไพรเมอร์ที่ออกแบบจากชิ้นส่วนของยืนเอ็นเทอโรท็อกชินปรากฏว่า ตรวจพบแถบดีเอ็นเอขนาด 242 คู่เบส ในตัวอย่างที่มี V. cholerae แต่ไม่พบแถบดีเอ็นเอในตัวอย่างที่มี E. coli, S. Typhimurium และ K. pneumoniae และตัวอย่างที่ไม่มีแบคทีเรีย (ภาพที่ 1A) แสดงว่าไพรเมอร์ที่ออกแบบ จากชิ้นส่วนของยืนเอ็นเทอโรท็อกชินนี้มีความจำเพาะต่อ V. cholerae โดยผลการทดลองนี้สอดคล้องกับ รายงานของ Kong et al. (2002) ซึ่งตรวจสอบตรวจสอบแบคทีเรียก่อโรคในน้ำทะเล 6 ชนิด ด้วยวิธีมัลติเพล็กซ์ พีซีอาร์ (multiplex PCR)

การเพิ่มปริมาณชิ้นส่วนของยืนเอ็นเทอโรท็อกซินโดยใช้ด้วอย่างที่มี V. cholerae ความเข้มข้นต่าง ๆ ได้แก่ 10¹⁰, 10⁸, 10⁸, 10⁷, 10⁵, 10⁵, 10⁴ และ 10³ เซลล์/มิลลิลิตร เมื่อน้ำตัวอย่างแต่ละความเข้มข้นปริมาตร 1 ไมโครลิตร ซึ่งมีแบคทีเรีย 10⁷, 10⁶, 10⁵, 10⁴, 10³, 10², 10 และ 1 เซลล์ ไปเพิ่มปริมาณด้วยเทคนิคพีซือาร์ พบว่าตัวอย่างน้ำที่มีแบคทีเรีย 10⁷, 10⁶, 10⁵, 10⁴, 10³, 10² และ 10 เซลล์ ปรากฏแถบดีเอ็นเอขนาด 242 คู่เบส แต่ไม่พบแถบดีเอ็นเอในด้วอย่างที่มีแบคทีเรีย 1 เซลล์ (ภาพที่ 1B) แสดงว่าเทคนิคพีซือาร์ที่พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้มีความไวต่อ V. cholerae ถึง 10 เซลล์/ปฏิกิริยา หรือเทียบเท่ากับตัวอย่างที่มี V. cholerae ความ เข้มข้น 10⁴ เซลล์/กรัม

ตัวอย่างที่มี V. cholerae ความเข้มข้น 10³ เชลล์/มิลลิลิตร ซึ่งตรวจไม่พบแถบดีเอ็นเอจากการเพิ่มปริมาณ ชิ้นส่วนของยืนเอ็นเทอโรท็อกซินด้วยเทคนิคพีชีอาร์นั้น เมื่อเดิมอาหาร 2x TCBS broth ในอัตราส่วน 1:1 แล้ว นำไปบ่มที่อุณหภูมิ 37°C และเขย่าด้วยความเร็ว 150 รอบ/นาที เป็นเวลา 30, 45, 60, 75 และ 90 นาที หลังจาก นั้นนำไปเพิ่มปริมาณด้วยเทคนิคพีชีอาร์ พบว่าตัวอย่างที่บ่มนาน 45, 60, 75 และ 90 นาที ปรากฏแถบดีเอ็นเอ ขนาด 242 คู่เบส แต่ไม่พบแถบดีเอ็นเอในตัวอย่างที่บ่มนาน 30 นาที (ภาพที่ 2) แสดงให้เห็นว่าสามารถเพิ่ม ความไวของเทคนิคพีชีอาร์ได้ด้วยการเพิ่มปริมาณแบคทีเรียในอาหาร TCBS broth เป็นเวลานานอย่างน้อย 45 นาที ก่อนนำไปทำพีซีอาร์ ซึ่งการเพิ่มความไวของเทคนิคพีซีอาร์ที่พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้อาจเพิ่มได้ มากขึ้นอีกด้วยการบ่มแบคทีเรียในอาหาร TCBS broth ให้นานขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียในอาหาร TCBS broth ให้นานขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียในอาหาร TCBS broth ในนานขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียในอาหาร TCBS broth ในนานขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียในอาหาร TCBS broth ในนานขึ้น ดังนั้นตัวอย่างที่มีแบคทีเรียในอาหาร TCBS broth ในระยะเวลาที่เหมาะสมก่อนนำไปทำพีซีอาร์ (นฤมล และ ธีระชัย, 2551)

สรุปผลการทดลอ

nrรวิจัยนี้ได้ประยุกต์เทคนิคพีซีอาร์เพื่อตรวจสอบ V. cholerae ที่ปนเบื้อนในหอยนางรมโดยไม่ต้องสกัดแยก ดีเอ็นเอจากแบคทีเรีย เทคนิคพีซีอาร์ที่พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้จะเพิ่มชิ้นส่วนของยีนเอ็นเทอโรท็อกซิน โดยมีความจำเพาะต่อ V. cholerae สูงและมีความไวของการตรวจสอบ V. cholerae ที่ปนเบื้อนในหอยนางรม 10⁴ เชลล์/กรัม และสามารถเพิ่มความไวของการตรวจสอบได้ด้วยการเพิ่มปริมาณแบคทีเรียในอาหาร TCBS broth ในระยะเวลาที่เหมาะสมก่อนนำไปทำพีซีอาร์ นอกจากนี้เทคนิคพีซีอาร์ที่พัฒนาขึ้นเพื่อใช้ในการวิจัยครั้งนี้ยัง สามารถตรวจสอบ V. cholerae ที่ปนเปื้อนในหอยนางรมได้ภายในเวลา 4-5 ชั่วโมง

ภาพที่ 1A การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินชึ่งพบแถบดีเอ็นเอที่จำเพาะต่อ V. cholerae ขนาด 242 คู่เบส [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (InvitrogenTM Life Techologies, USA); 1 คือตัวอย่างน้ำที่ไม่มีแบคทีเรีย; 2-5 คือตัวอย่างน้ำที่มี V. cholerae, E. coli, S. Typhimurium และ K. pneumoniae ตามลำดับ]

ภาพที่ 1B การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในตัวอย่างที่มี V. cholerae ความเข้มขันต่าง ๆ [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (InvitrogenTM Life Techologies, USA); 1 คือ ตัวอย่างที่ไม่มีแบคทีเรีย; 2-9 คือตัวอย่างที่มี V. cholerae ความเข้มขัน 10¹⁰, 10¹, 10¹,

ภาพที่ 2 การเพิ่มปริมาณชิ้นส่วนของยีนเอ็นเทอโรท็อกซินในตัวอย่างที่มี V. cholerae ความเข้มข้น 10³ เซลล์/ มิลลิลิตร [M คือดีเอ็นเอมาตรฐาน 1 Kb Plus DNA Ladder (InvitrogenTM Life Techologies, USA); 1 คือตัวอย่างน้ำที่ไม่มีแบคทีเรีย; 2-6 คือตัวอย่างน้ำที่มี V. cholerae ความเข้มข้น 10³ เซลล์/มิลลิลิตร หลังจากเพิ่มปริมาณในอาหาร TCBS broth เป็นเวลา 30, 45, 60, 75 และ 90 นาที ตามลำดับ]

กิตติกรรมประกา

งานวิจัยนี้บางส่วนได้รับการสนับสนุนจากกลุ่มวิจัยเมธีวิจัยอาวุโส สกว-สกอ (ศ.ตร.เพทาย เย็นจิตโสมนัส และคณะ)

PA03	การแสดงออกของยืนในวิถีชีวสังเคราะห์รงควัตถุในกล้วยไม้หวายเอียสกุลพันธุ์ กลาย						
	ณัฐพันธ์ เกรียงพันธุ์ สมศักดิ์ อภิสิทธิวาณิช ยินดี ชาญวิวัฒนา และ เสาวนีย์ สุพุทธิธาดา						
PA04	การตรวจสอบลายพิมพ์ดีเอ็นเอของโคลนพันธุ์ยูคาลิปตัสโดยใช้เครื่องหมาย ไมโครแซทเทลไลท์	100					
	ธนรัตน์ ก.จันทราภานนท์ สมศักดิ์ อภิสิทธิวาณิช และ สุรินทร์ ปิยะโชคณากุล						
PA05	การใช้เทคนิคเอสอาร์เอพีเพื่อจำแนกพันธุ์บัวหลวง นฤมล ธนานั้นต์ อัมพร ปัชชามูล และ ธีระชัย ธนานั้นต์	105					
PA06	การสร้างแผนที่พันธุกรรม simplex และ double simplex ของอ้อย พัทธินันท์ ภูมิพันธ์ เพ็ญจันทร์ ทิพย์มงคลเจริญ กัลยารัตน์ ภู่สุดแสวง ประเสริฐ ฉัตรวชิระวงษ์ และ กิตติพัฒน์ อุโฆษกิจ	110					
PA07	ความหลากหลายทางพันธุกรรมของสบู่ดำในประเทศไทยโดยเทคนิคพีซีอาร์- อาร์เอฟแอลพีมลิวรรณ นาคขุนทด และ ขวัญฤดี มหิงษา	115					
PA08	การศึกษาเลคตินบริสุทธิ์ในผลปาล์มน้ำมันพันธุ์ Teneraวนิดา ฤทธิเดช และ ประภาพร อุทารพันธุ์	120					
PA09	การแสดงออกของยืน rubber elongation factor (REF) ในน้ำยางของกล้ายางพารา สายพันธุ์ที่ให้ผลผลิตสูงและต่ำ	125					
PA10	ลำดับนิวคลีโอไทด์ของตาลโตนดจากเครื่องหมายเอเอฟแอลพี อรุณรัศมิ์ วณิชชานนท์ อมรรัตน์ พงศ์ดารา และ เกษศิรินทร์ รัทจร	130					
มห๋ัษย	เพ้นธุศาสตร์						
PH01	การตรวจสอบการกลายของยีนอัลฟา-แอล-ไอดูโรนิเดสที่เกี่ยวข้องกับการเกิดโรค มิวโคโพลิแซ็คคาไรโดซีสชนิดที่ 1กรกช พรหมจันทร์ กัญญา ศุภปีดิพร และ วรศักดิ์ โชติเลอศักดิ์	135					
PH02	การตรวจมิวเตชันของยืน solute carrier family 4, member 1 (SLC4A1) ชนิด SAO และ G701D ด้วยวิธี polymerase chain reaction และ high-resolution melting analysis	140					

PH03	รายงานผลการตรวจโครโมโซมในผู้ป่วยมะเร็งเม็ดเลือดขาวจำนวน 386 ราย	145
	ถาวร สุภาพรม กรรณิการ์ ประทุมภักดิ์ วันเพ็ญ กาคำผุย และ แก้ว อุดมศิริชาคร	
PH04	การวิเคราะห์มิวเตชั่นของยีน <i>SPINK1</i> ในผู้ป่วยไทยที่เป็นโรคตับอ่อนอักเสบเรื้อรัง	150
	ธีระพงศ์ โพธิ์เอี่ยม สุพจน์ พงศ์ประสบชัย วรรณา ทองนพคุณ และ ชนินทร์ ลิ่มวงศ์	
PH05	การศึกษาประสิทธิภาพของผิวหนังสังเคราะห์พอร์สกินต่อการรักษาแผลของหนู	155
	ตะเภาอ้างอิงตามคู่มือแนะนำขององค์การอาหารและยาของสหรัฐอเมริกา	
	นฎา สุระประสิทธิ์ วรนุช ธนากิจ และ ถนอม บรรณประเสริฐ	
PH06	การศึกษาลักษณะทางคลินิกและการวิเคราะห์การกลายพันธุ์ของยืน <i>TBX5</i> ใน	160
	ผู้ป่วยกลุ่มอาการ Holt-Oram	
	ประมุข อัมรินทร์นุเคราะห์ กัญญา ศุภปีติพร และ วรศักดิ์ โชติเลอศักดิ์	
PH07	การตรวจพบ polysomy 17 ในผู้ป่วยโรคมะเร็งเต้านมโดยใช้เทคนิค fluorescence	165
	in situ hybridization (FISH)	
	ปิติชัย พรสรายุทธ วรารัตน์ กันหากิจ ศันสนีย์ วงศ์ไวศยวรรณ และ บุษบา ฤกษ์อำนวยโชค	
PH08	ไม่พบการกลายพันธุ์ในยืน SUMO1 ในผู้ป่วยไทยปากแหว่งเพดานโหว่ชนิดที่ไม่เป็น	170
	กลุ่มอาการ	
	สาวิตรี รัตนโสภา เพชรรัตน์ เลยกลาง พิชิต ศิริวรรณ วรศักดิ์ โชติเลอศักดิ์ และ กัญญา	
	คุภปีดิพร	
PH09	การแสดงออกของยืนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิสในเซลล์ตับที่ติดเชื้อ	175
	ไวรัสเด็งกี่	
	อัฐพันธ์ หมอช้าง เพทาย เย็นจิตโสมนัส และ ถาวรชัย ลิ้มจินดาพร	
พันธุศ	าสตร์พื้นฐานและพันธุศาสตร์ประยุกต์	
PB01	ผลกระทบของการตัดยืน mgsA ต่อการกระจายของแหล่งคาร์บอนระหว่างการ	180
	หมักแบบกะของเชื้ออีโคไลที่ผ่านกระบวนการพันธุวิศวกรรมเพื่อผลิตชักซิเนต	
	เขมวิทย์ จันต๊ะมา และ Lonnie O Ingram	
PB02	การโคลนยืนเจอร์มาครีนดีซินเทสที่เกี่ยวข้องกับกลิ่นหอมระเหยของมะกรูด	185
	กิตดิยา แสงสว่าง และ พัฒนา ศรีฟ้า ฮุนเนอร์	
PB03	การทดสอบฤทธิ์ยับยั้งการกลายของอาหารไทยโดยวิธีเอมส์	190
	จันทร์เพ็ญ แสงประกาย เกศศิณี ตระกลที่วากร และ เพลินใจ ตั้งคณะกล	

การตรวจมิวเตชันของยืน solute carrier family 4, member 1 (SLC4A1) ชนิด SAO และ G701D ด้วยวิธี polymerase chain reaction และ high-resolution melting analysis

Detection of SAO and G701D mutations in solute carrier family 4, member 1 (SLC4A1) gene by polymerase chain reaction and high-resolution melting analysis

ชูชัย เนตรธุวกุล¹ หนึ่งหทัย สวัสดี¹ และ เพทาย เย็นจิตโสมนัส¹²* Choochai Nettuwakul¹, Nunghathai Sawasdee¹ and Pa-thai Yenchitsomanus¹.²*

¹หน่วยอณูชีววิทยาการแพทย์ สถานส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ 10700

²หน่วยปฏิบัติการเทคโนโลยีชีวภาพทางการแพทย์ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) กรุงเทพฯ 10700

¹Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700

²Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10700

*Corresponding author: grpye@mahidol.ac.th

บทคัดย่อ

คณะผู้วิจัยได้พัฒนาวิธีตรวจมิวเตชันของยืน solute carrier family 4, member 1 (SLC4A1) ชนิด Southeast Asian ovalocytosis (SAO) และ G701D ด้วยวิธี polymerase chain reaction (PCR) และ high-resolution melting (HRM) analysis โดยใช้ตัวอย่างดีเอ็นเอจากผู้ป่วยที่ทราบจีโนไทป์ (genotype) แล้ว มา ทำการเพิ่มปริมาณด้วยวิธี PCR และตรวจด้วยวิธี HRM เพื่อสร้าง melting curve และ difference plot ผล การทดลองปรากฏว่าสามารถแยกความแตกต่างระหว่างจีโนไทป์ต่างๆ ได้ เทคนิคนี้จึงเป็นทางเลือกใหม่ที่ ง่ายและรวดเร็วสำหรับตรวจมิวเตชันของยืน SLC4A1 โดยเฉพาะชนิด SAO และ G701D ซึ่งพบบ่อยในคน ไทย

ABSTRACT

We have developed the method for detection of mutations in solute carrier family 4, member 1 (SLC4A1) gene by polymerase chain reaction (PCR) and high-resolution melting (HRM) analysis. The two mutations detected were Southeast Asian ovalocytosis (SAO) and G701D. The DNA samples from the patients with known genotypes were used for the detection by generating melting curve and difference plot. The result showed that both mutations could be detected and the genotypes could be assigned for all samples. Thus, PCR and HRM analysis is an alternative technique for simple and rapid detection of SLC4A1 mutations, especially for SAO and G701D which are frequently found in Thais.

คำสำคัญ: ยีน SLC4A1, ยีน AE1, เรียล-ไทม์ พีซีอาร์, มิวเตชัน, เอชอาร์เอ็ม

Key words: SLC4A1, AE1, real-time PCR, mutation, HRM

บทน้ำ

ยืน solute carrier family 4, member1 (SLC4A1) หรือ anion exchanger 1 (AE1) อยู่บนโครโมโชมที่ 17 ตำแหน่ง 17q21-17q22 (Lux et al., 1989) ยืนนี้ถอดรหัสได้โปรตีน anion exchanger 1 (AE1) ซึ่ง แสดงออกในเซลล์เม็ดเลือดแดงและเซลล์บุท่อหน่วยไตส่วนปลาย (distal renal tubule) ทำหน้าที่ช่วยคง รูปร่างของเซลล์เม็ดเลือดแดงและแลกเปลี่ยนไอออนในเซลล์เม็ดเลือดแดงและเซลล์บุท่อหน่วยไตส่วนปลาย มิวเตชันของยืน SLC4A1 สามารถทำให้เซลล์เม็ดเลือดแดงมีรูปร่างผิดปกติ เช่น ovalocytosis และ spherocytosis และทำให้เกิดโรคไตผิดปกติในการขับกรดซึ่งเกิดจากความบกพร่องในการขับกรดของเซลล์ บุท่อหน่วยไตส่วนปลาย มิวเตชันที่พบได้บ่อยในผู้ป่วยเด็กไทยในภาวะโฮโมซัยโกต (homozygote) คือ มิวเตชันชนิด G701D ซึ่งเกิดจากการแทนที่เบส GGC > GAC ที่โคดอน 701 ในเอกซอน 17 ทำให้มีการ เปลี่ยนกรดอะมิโนจากไกลซีน (glycine) เป็นกรดแอสพาติก (aspartic acid) ในโปรตีน (Tanphaichitr et al., 1998) นอกจากนี้ยังพบภาวะคอมปาวด์เฮ็ทเทอโรซัยโกต (compound heterozygote) โดยปรากฏอยู่ร่วมกับ มิวเตชันชนิด Southeast Asian ovalocytosis (SAO) ซึ่งเกิดจากการขาดหายไปของ 27 นิวคลีโอไทด์ ใน เอกซอน 11 (Jarolim et al., 1991; Vasuvattakul et al., 1999) ดังนั้นการตรวจมิวเตชันจึงเริ่มจากชนิด G701D และ SAO และวิธีที่ใช้มาก่อน ได้แก่ PCR-RFLP สำหรับมิวเตชันชนิด G701D และ PCR สำหรับมิว เตชันชนิด SAO (Vasuvattakul et al., 1999)

High-resolution melting (HRM) analysis เป็นวิธีวิเคราะห์ชิ้นดีเอ็นเอโดยอาศัยคุณสมบัติการคลาย เกลียวแยกเป็นสายเดี่ยวเมื่อปรับอุณหภูมิให้สูงขึ้น (Wittwer et al., 2003) ขั้นตอนการตรวจโดยวิธี HRM ประกอบด้วยการเพิ่มปริมาณชิ้นดีเอ็นเอด้วยวิธี PCR และวิเคราะห์ HRM ของ PCR product ที่เกิดขึ้นใน หลอดปฏิกิริยา ข้อมูลจากการวิเคราะห์ HRM จะถูกนำมาสร้างกราฟและเปลี่ยนเป็น difference plot เพื่อ วิเคราะห์จามผันแปร (variation) และวิเคราะห์จีโนไทป์ (genotype) ของยืน HRM สามารถใช้ตรวจสอบ

ความผิดปกติของยีนมนุษย์ในโรคหลายชนิด เช่น ยีน *BRCA1* และ *BRCA2* ในโรคมะเร็งเต้านม (De Leeneer *et al.*, 2008) ยีน *FGFR3* ในโรค achondroplasia (Hung *et al.*, 2008) และยีน *CFTR* ในโรค cystic fibrosis (Montgomery *et al.*, 2007)

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาเทคนิค HRM สำหรับตรวจสอบมิวเตชันในยืน *SLC4A1* ให้ง่าย รวดเร็ว ซึ่งจะเป็นประโยชน์ในการวินิจฉัยโรคไตผิดปกติในการขับกรด โดยเริ่มต้นศึกษามิวเตชันชนิด SAO และ G701D ที่พบบ่อยในผู้ป่วยเด็กไทย

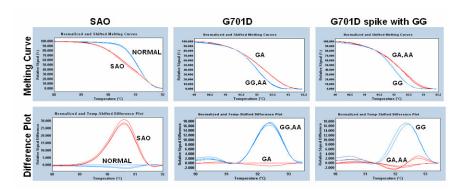
อุปกรณ์และวิธีการ

ตัวอย่างที่ใช้ในการทดลองและ PCR primers

ตัวอย่างดีเอ็นเอที่ใช้ในการทดลองนี้นำมาจากผู้ป่วยซึ่งทราบชนิดของมิวเตชันของยืน *SLC4A1* ตำแหน่งเอกซอนที่ 11 และ 17 และทราบจีโนไทป์ในยืนนี้แล้วจากงานวิจัยซึ่งรายงานก่อนหน้านี้ (Vasuvattakul *et al.*, 1999) โดยคัดเลือกตัวอย่างดีเอ็นเอจีโนไทป์ละ 2-3 ตัวอย่าง เพื่อใช้ในการวิเคราะห์ ด้วยวิธี PCR และ HRM

PCR primers สำหรับใช้เพิ่มปริมาณดีเอ็นเอบริเวณเอกซอนที่ 11 และ 17 ของยีน SLC4A1 นำมา จาก primers ที่ใช้ตรวจจีโนไทป์โดยวิธีดั้งเดิม โดย primers ที่ใช้แต่ละคู่ ครอบคลุมตำแหน่งที่เกิดความ ผันแปรเพียงตำแหน่งเดียว และให้ขนาด PCR product ไม่เกิน 500 คู่เบส

การทำ high-resolution melting (HRM) analysis


ปฏิกิริยา PCR และ HRM ทำโดยเครื่อง real-time PCR LightCycler 480 II (Roche Diagnostics, Germany) โดยใช้รีเอเจนส์ (reagents) และโปรไฟล์ในการทำพีซีอาร์ (PCR profile) เหมือนวิธีดั้งเดิม แต่มี การเติม Resolight dye (Roche Diagnostics, Germany) ในปฏิกิริยาเพื่อใช้วัดปริมาณดีเอ็นเอสายคู่ การตั้ง โปรแกรมเครื่องสำหรับวิเคราะห์ HRM ประกอบด้วย 96°C 1 นาที, 40°C 1 นาที จากนั้นค่อยๆ เพิ่ม อุณหภูมิ จนถึง 96°C พร้อมทั้งวัดค่าสัญญาณฟลูออเรสเซนต์ที่ได้ สร้าง difference plot และเปรียบเทียบกับ จีโนไทป์ที่ทราบแล้วโดยใช้โปรแกรม Gene Scanning 1.5.0 (Roche Diagnostics, Germany)

ผลการทดลองและวิจารณ์

ผลการวิเคราะห์ melting curve ของชิ้นดีเอ็นเอที่มีมิวเตชันชนิด SAO ในเอกซอน 11 และ G701D ใน เอกซอน 17 ของยืน *SLC4A1* พบว่ามีลักษณะเฉพาะ เมื่อนำข้อมูลมาสร้าง difference plot ทำให้สามารถ แยกความแตกต่างระหว่างจีโนไทป์ได้ โดยมิวเตซันชนิด SAO ในเอกซอน 11 ซึ่งพบเฉพาะจีโนไทป์แบบ heterozygote (N/SAO) และ homozygous wild-type (N/N) สามารถแยกจีโนไทป์จากกันได้ชัดเจน (ภาพที่ 1) ส่วนมิวเตซันชนิด G701D ในเอกซอน 17 ซึ่งมีจีโนไทป์ 3 แบบ คือ homozygous wild-type (G/G), heterozygous G/A และ homozygous mutant (A/A) พบว่าสามารถแยกจีโนไทป์ G/A จากจีโนไทป์อื่น แต่ ไม่สามารถแยกจีโนไทป์ G/G และ A/A จากกันได้ ดังนั้นจึงจำเป็นต้องทำการทดลองเพิ่ม โดยเติมดีเอ็นเอที่

มีจีโนไทป์ G/G ในตัวอย่าง ในการทำปฏิกิริยาพีซีอาร์ครั้งที่สอง ตัวอย่างที่มีจีโนไทป์ A/A จะเกิด heteroduplex และได้ difference plot เหมือนตัวอย่างที่มีจีโนไทป์ G/A เมื่อรวมผลการทดลองก็สามารถ แยกจีโนไทป์ 3 แบบ ออกจากกันได้ (ภาพที่ 1) นอกจากมิวเตชัน 2 ตำแหน่ง นี้ยังสามารถใช้วิธีวิเคราะห์ HRM ในการตรวจความผันแปรของยืน SLC4A1 อีก 16 ตำแหน่ง ซึ่งพบในผู้ป่วยและสมาชิกครอบครัวที่เป็น โรคไตผิดปกติในการขับกรด ผลการทดลองที่ได้จะตีพิมพ์ในโอกาสต่อไป

ผลการทดลองนี้แสดงให้เห็นว่าวิธีวิเคราะห์ HRM สามารถใช้ตรวจมิวเตชันและแยกความแตกต่าง ระหว่างจีโนไทป์ในยืน *SLC4A1* ทั้งในแบบที่มีการขาดหาย (deletion) และการแทนที่ (substitution) ของ นิวคลีโอไทด์ได้ ในบางกรณีไม่สามารถแยกความแตกต่างของจีโนไทป์แบบ homozygote ของมิวเตชันบาง ชนิดได้ เนื่องจากการแยกความแตกต่างระหว่าง wild-type และ mutant homoduplexes ทำได้ไม่ดีเท่ากับ การแยกความแตกต่างระหว่าง homoduplex กับ heteroduplex ทั้งนี้ขึ้นอยู่กับความยาวของชิ้นดีเอ็นเอและ นิวคลีโอไทด์ที่เป็นองค์ประกอบในชิ้นดีเอ็นเอที่วิเคราะห์นั้นด้วย (Wittwer *et al.*, 2003; Liew *et al.*, 2004)

ภาพที่ 1 ลักษณะ melting curve และ difference plot ของมิวเตชันชนิด SAO ในเอกซอน 11 และชนิด G701D ในเอกซอน 17 ของยืน *SLC4A1*

สรุปผลการทดลอง

งานวิจัยนี้ประสบความสำเร็จในการพัฒนาวิธี HRM เพื่อตรวจมิวเตชันชนิด SAO และชนิด G701D ของยืน SLC4A1 และสามารถแยกความแตกต่างระหว่างจีโนไทป์ได้ ซึ่งเป็นประโยชน์ในการวินิจฉัยโรคไต ผิดปกติในการขับกรดในเด็ก วิธีใหม่นี้ง่ายและรวดเร็วกว่าวิธีเก่า รวมทั้งสามารถวิเคราะห์ตัวอย่างจำนวน มากพร้อมกันได้ นอกจากนี้ยังสามารถนำไปประยุกต์ในการตรวจมิวเตชันและโพลีมอฟิซึม (polymorphism) ของยืนอื่นๆ ได้

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนจากคณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล และทุนเมธี วิจัยอาวุโส สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

เอกสารอ้างอิง

- De Leeneer K., Coene I., Poppe B., De Paepe A. and Claes K. 2008. Rapid and sensitive detection of BRCA1/2 mutations in a diagnostic setting: comparison of two high-resolution melting platforms. *Clin. Chem.* 54: 982-989.
- Hung, C.C., Lee, C.N., Chang, C.H., Jong, Y.J., Chen, C.P., Hsieh, W.S., Su, Y.N. and Lin, W.L. 2008.
- Genotyping of the G1138A mutation of the *FGFR3* gene in patients with achondroplasia using high-resolution melting analysis. *Clin. Biochem.* 41: 162-166.
- Jarolim, P., Palek, J., Amato, D., Hassan, K., Sapak, P., Nurse, G.T., Rubin, H.L., Zhai, S., Sahr, K.E. and Liu, S.C. 1991. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. *Proc. Natl. Acad. Sci. USA* 88: 11022-11026.
- Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Lyon, E. and Wittwer, C. 2004. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. *Clin. Chem.* 50: 1156-1164.
- Lux, S.E., John, K.M., Kopito, R.R. and Lodish, H.F. 1989. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). *Proc. Natl. Acad. Sci. USA* 86: 9089-9093.
- Montgomery, J., Wittwer, C.T., Kent, J.O. and Zhou, L. 2007. Scanning the cystic fibrosis transmembrane conductance regulator gene using high-resolution DNA melting analysis. *Clin. Chem.* 53: 1891-1898.
- Tanphaichitr, V.S., Sumboonnanonda, A., Ideguchi, H., Shayakul, C., Brugnara, C., Takao, M., Veerakul, G. and Alper, S.L. 1998. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J. Clin. Invest. 102: 2173-2179.
- Vasuvattakul, S., Yenchitsomanus, PT., Vachuanichsanong, P., Thuwajit, P., Kaitwatcharachai, C., Laosombat, V., Malasit, P., Wilairat, P. and Nimmannit, S. 1999. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. *Kidney Int.* 56: 1674-1682.
- Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G. and Pryor, R.J. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. *Clin. Chem.* 49: 853-860.

การตรวจมิวเตชันของยืน *solute carrier family 4*, *member 1 (SLC4A1)* ชนิด SAO และ G701D ด้วยวิธี polymerase chain reaction และ high-resolution melting analysis

ชูชัย เนตรธุวกุล¹ หนึ่งหทัย สวัสดี¹ และ เพทาย เย็นจิตโสมนัส¹,²

¹หน่วยอณูชีววิทยาการแพทย์ สถานส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล กรุงเทพฯ 10700 ²หน่วยปฏิบัติการเทคโนโลยีชีวภาพทางการแพทย์ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.)

บทน้ำ

มิวเตชันของยีน solute carrier family 4, member1 (SLC4A1) หรือ anion exchanger 1 (AE1) ในมนุษย์ ส่งผลให้เซลล์เม็ดเลือดแดงมีรูปร่างผิดปกติ เช่น ovalocytosis และ spherocytosis หรือทำให้เกิดโรคไตผิดปกติในการขับกรด มิวเตชันที่พบบ่อยในผู้ป่วยเด็กไทย คือ ชนิดที่ทำให้เกิดการแทนที่กรดอะมิโน G701D (GGC>GAC) ซึ่งอาจจะพบในภาวะโฮโมชัยโกต (homozygote) หรือคอม ปาวด์ เฮ็ทเทอโรชัยโกต (compound heterozygote) โดยปรากฏร่วมกับมิวเตชัน ชนิด Southeast Asian ovalocytosis (SAO) มิวเตชันชนิด SAO นี้ เกิดจากการ ขาดหายไปของ 27 นิวคลีโอไทด์ ในเอกชอน 11 วิธีดั้งเดิมที่ใช้ในการตรวจมิวเตชัน ทั้งสองชนิดนี้ คือ PCR-RFLP สำหรับมิวเตชันชนิด G701D และ PCR สำหรับมิวเตชันชนิด SAO ซึ่งทำการตรวจโดยวิธีอิเลคโตรโฟรีชิส (Vasuvattakul et al., 1999) งานวิจัยนี้มุ่งพัฒนาเทคนิค high-resolution melting (HRM) analysis (Wittwer et al., 2003) เพื่อให้สามารถตรวจมิวเตชันสองชนิดนี้ได้ง่ายและรวดเร็วขึ้น

วัตถุประสงค์

เพื่อพัฒนาเทคนิค HRM สำหรับตรวจมิวเตชันในยืน SLC4A1 ให้ง่าย และ รวดเร็ว ซึ่งจะเป็นประโยชน์ในการวินิจฉัยภาวะเม็ดเลือดแดงรูปร่างผิดปกติ และ โรคไตผิดปกติในการขับกรด

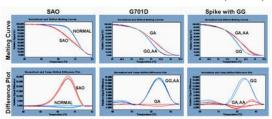
ขั้นตอนและวิธีการ

ตัวอย่างดีเอ็นเอที่ทราบและไม่ทราบชนิดของมิวเตชัน ของยืน *SLC4A1*

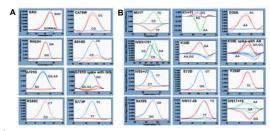
ทำปฏิกิริยา PCR บริเวณตำแหน่งที่เกิดมิวเตชัน โดยใช้ เครื่อง Real-time PCR LightCycler 480 II

ทำ high-resolution melting โดยเพิ่มอุณหภูมิให้ดีเอ็นเอ คลายเกลียวแยกเป็นสายเดี่ยว

สร้าง melting curve และ difference plot


เปรียบเทียบลักษณะและจัดกลุ่ม difference plot สำหรับจีโนไทป์ชนิดต่าง ๆ

ใช้ difference plot ที่ได้ เป็น standard control สำหรับตัวอย่างที่ไม่ทราบจีโนไทป์


วิเคราะห์และแปรผล

ผลการทดลอง

ผลการวิเคราะห์ melting curve ของชิ้นดีเอ็นเอในเอกซอน 11 ซึ่งพบจีโนไทป์ แบบ homozygous wild-type (N/N) และ heterozygote (SAO/N) พบว่าสามารถแยก จีโนไทป์จากกันได้ชัดเจนโดยใช้ difference plot ส่วนในเอกซอน 17 ซึ่งมีจีโนไทป์ 3 แบบ พบว่าสามารถแยกจีโนไทป์ heterozygous G/A จากจีโนไทป์อื่น แต่ไม่สามารถ แยกจีโนไทป์ homozygous wild-type (G/G) และ homozygous mutant (A/A) จาก กันได้ ดังนั้นจึงจำเป็นต้องทำการทดลองเพิ่ม โดยเติมดีเอ็นเอที่มีจีโนไทป์ G/G ใน ตัวอย่าง ในการทำปฏิกิริยาพีซีอาร์ครั้งที่สอง ตัวอย่างที่มีจีโนไทป์ A/A จะเกิด heteroduplex และได้ difference plot เหมือนตัวอย่างที่มีจีโนไทป์ G/A เมื่อรวมผล การทดลองก็สามารถแยกจีโนไทป์ 3 แบบ ออกจากกันได้ (ภาพที่ 1) นอกจากนี้ยัง ใช้วิธี HRM ตรวจความผันแปรของยืน SLC4A1 อีก 16 ตำแหน่ง ซึ่งพบในผู้ป่วยและ สมาชิกครอบครัวที่เป็นโรคไตผิดปกติในการขับกรดอีกด้วย (ภาพที่ 2)

ภาพที่ 1 ลักษณะ melting curve และ difference plot ของมิวเตชันชนิด SAO ใน เอกชอน 11 และชนิด G701D ในเอกชอน 17 ของยืน SLC4A1

ภาพที่ 2 การตรวจความผันแปรของยืน *SLC4A1* โดยใช้ High-resolution melting analysis ประกอบด้วยมิวเตชัน จำนวน 7 ตำแหน่ง ได้แก่ SAO, C479W, R602H, A858D, G701D, R589C และ S773P (A) และ single nucleotide polymorphism (SNP) จำนวน 11 ตำแหน่ง ได้แก่ M31T, K1+11, D38A, IVS3+701, K56E, IVS5+27, E72D, F266F, S438S, IVS17-48 และ IVS17+19 (B)

สรุปผลการทดลอง

งานวิจัยนี้ประสบความสำเร็จในการพัฒนาวิธี HRM เพื่อตรวจมิวเตชันชนิด SAO และชนิด G701D ของยืน SLC4A1 และสามารถแยกความแตกต่างระหว่าง จีโนไทป์ได้ ซึ่งเป็นประโยชน์ในการวินิจฉัยภาวะเม็ดเลือดแดงรูปร่างผิดปกติ และ โรคไตผิดปกติในการขับกรดในเด็ก นอกจากนี้ยังสามารถใช้ตรวจมิวเตชันและโพลี มอฟิซึม (polymorphism) อื่น ๆ ของยืน SLC4A1 และสามารถนำไปประยุกต์เพื่อ ตรวจยืนอื่น ๆ ได้ด้วย

กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนจากคณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล และทุนเมธีวิจัยอาวุโส สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

เอกสารอ้างอิง

- 1. Vasuvattakul, S., Yenchitsomanus, PT., Vachuanichsanong, P., Thuwajit, P., Kaitwatcharachai, C., Laosombat, V., Malasit, P., Wilairat, P. and Nimmannit, S. 1999. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int. 56: 1674-1682.
- 2. Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G. and Pryor, R.J. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49: 853-860.

การแสดงออกของยืนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิสในเซลล์ตับที่ติด เชื้อไวรัสเด็งกี่

Apoptotic gene expression profiling in dengue virus-infected liver cell line

อัฐพันธ์ หมอช้าง 1 เพทาย เย็นจิตโสมนัส 2 และ ถาวรชัย ลิ้มจินดาพร 3*

Atthapan Morchang¹, Pa-thai Yenchitsomanus² and Thawornchai Limjindaporn³*

บทคัดย่อ

การวิจัยนี้ได้นำเทคโนโลยี Human Apoptosis RT² Profiler™ PCR Array มาใช้ศึกษาการแสดงออก ของยืนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิส (apoptotic gene) จำนวน 84 ยืน โดยเทคนิค Real time RT-PCR พบว่าในระยะที่เกิดอะพอพโทซิสในเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่ มียืนที่มีการแสดงออกเพิ่มขึ้นจำนวน 46 ยืน และยืนที่มีการแสดงออกลดลงจำนวน 38 ยืน เมื่อเปรียบเทียบกับการแสดงออกของยืนในเซลล์ตับที่ ไม่ติดเชื้อไวรัสเด็งกี่ นอกจากนี้ยังพบว่ายืนที่มีการแสดงออกเพิ่มขึ้นมากกว่าสองเท่าขึ้นไปมีจำนวน 6 ยืน ซึ่ง เกี่ยวข้องกับการตายโดยอะพอพโทซิสทั้งทางด้าน extrinsic และ intrinsic pathway องค์ความรู้นี้ทำให้เข้าใจ กลไกการเกิดอะพอพโทซิสในเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่มากขึ้น และสามารถนำไปประยุกต์เพื่อผลิตยาที่ ช่วยลดอาการตับอักเสบและตับวายในผ้ป่วยไข้เลือดออกได้ในอนาคต

ABSTACT

Apoptotic gene expression profiling in dengue virus-infected hepatoma cell line using Human Apoptosis RT² Profiler™ PCR Array revealed that 46 genes were differentially up-regulated and 38 genes were differentially down-regulated during the apoptotic phase of dengue virus-infected hepatoma cell line. In addition, 6 genes, which were differentially up-regulated more than two-fold,

¹ภาควิชาวิทยาภูมิคุ้มกัน คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

²หน่วยอณูชีววิทยาการแพทย์ สถานส่งเสริมการวิจัย คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

³ภาควิชากายวิภาคศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

¹Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University

²Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University

³Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University

^{*}Corresponding author: limjindaporn@yahoo.com

involve not only in extrinsic but also in intrinsic pathway. This suggests a usefulness of apoptotic gene expression profiling in clarification of the apoptotic process of dengue virus-infected liver cells, which may lead to therapeutics toward prevention of fulminant hepatitis and hepatic failure in patients infected with dengue virus in the near future.

คำสำคัญ: อะพอพโทซิส, เซลล์ตับ, การแสดงออกของยืน, ไข้เลือดออก

Keywords: apoptosis, hepatoma cell line, gene expression, dengue virus infection

บทน้ำ

ไข้เลือดออกเป็นปัญหาทางสาธารณสุขที่สำคัญในประเทศเขตร้อน รวมทั้งในประเทศไทยซึ่งมีการแพร่ ระบาดอย่างต่อเนื่องทุกปีและมีแนวโน้มที่จะเพิ่มขึ้นเรื่อย ๆ (Thomas S.J. et al., 2003) ไข้เลือดออกเป็นโรค ที่เกิดจากเชื้อไวรัสเด็งกี่ซึ่งติดต่อสู่มนุษย์โดยมียุงลายบ้านและยุงลายสวน (Aedes aegypti, Aedes albopictus) เป็นพาหะ อาการของโรคมีความรุนแรงหลายระดับ ตั้งแต่เป็นไข้ติดเชื้อไวรัสแบบไม่จำเพาะไป จนถึงเป็นไข้เลือดออกและอาจเสียชีวิตด้วยอาการซ็อค พยาธิกำเนิดหลักของโรคเกิดจากการทำงานที่ผิดปกติ ของระบบภูมิคุ้มกัน ทำให้มีการผลิตสารไซโตไคน์ที่เพิ่มมากขึ้น ส่งผลให้เกิดพยาธิสภาพกับระบบหลอดเลือด และเกิดการรั่วไหลของพลาสม่าซึ่งจะทำให้เกิดภาวะซ็อคในที่สุด (Pang T. et al., 2007)

เชื้อไวรัสเด็งกี่สามารถติดเชื้อได้ในเซลล์หลายชนิดรวมทั้งเซลล์ตับ สภาวะตับถูกทำลายสามารถตรวจ พบได้ทั่วไปในผู้ป่วยไข้เลือดออกอันอาจจะนำไปสู่ภาวะตับอักเสบและตับวายในเด็ก และจากการตรวจ วิเคราะห์เนื้อเยื่อตับของผู้ป่วยบ่งบอกว่าเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่ถูกทำลายโดยกระบวนการอะพอพโทซิส อย่างไรก็ตามกลไกการเกิดอะพอพโทซิสนี้ยังไม่เป็นที่ทราบแน่ซัด (Seneviratne S.L. et al., 2006)

เนื่องจากกระบวนการเกิดอะพอพโทซิสเป็นผลการตอบสนองในระดับยืนของเซลล์ต่อเชื้อไวรัส การศึกษาการเปลี่ยนแปลงของยืนที่เกี่ยวข้องกับอะพอพโทซิสอาจทำให้เข้าใจกลไกการเกิดอะพอพโทซิส ภายในเซลล์ได้ดีขึ้น

Human Apoptosis RT² Profiler™ PCR Array เป็นเทคโนโลยีที่ใช้ในการศึกษาการแสดงออกของยืน ที่เกี่ยวข้องกับการตายโดยอะพอพโทซิส 84 ยีนได้ในคราวเดียวกัน โดยอาศัยเทคนิค Real time RT-PCR ซึ่ง เป็นเทคนิคที่มีความรวดเร็ว แม่นยำ และน่าเชื่อถือ เป็นประโยชน์ต่อความเข้าใจการเปลี่ยนแปลงของยืนที่ เกิดขึ้นในกระบวนการเกิดอะพอพโทซิสภายในเซลล์ซึ่งโยงใยกันเป็นระบบที่ซับซ้อน ที่ผ่านมาได้มีการใช้ เทคโนโลยีนี้สำหรับศึกษากลไกการเกิดอะพอพโทซิสในเซลล์ปอดที่ติดเชื้อวัณโรค ซึ่งผลการศึกษาได้คันพบ ยีนและโปรตีน Fas ที่มีการแสดงออกเพิ่มขึ้น และมีความสำคัญต่อการเกิดอะพอพโทซิสในเซลล์ปอดที่ติดเชื้อ วัณโรค (Lai Y.M. et al., 2007) จากการศึกษานี้แสดงให้เห็นถึงความสำคัญของการศึกษาการเปลี่ยนแปลง ของยีนและต่อเนื่องไปจนถึงความสำคัญของยีนนั้นต่อการเกิดอะพอพโทซิสในเซลล์ที่ดิดเชื้อ

เทคนิคเดียวกันนี้ได้ถูกนำมาศึกษาในเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่ เพื่อประโยชน์ในการเข้าใจกลไกการ เกิดอะพอพโทซิสในเซลล์ดับที่ติดเชื้อไวรัสเด็งกี่ อันจะนำไปประยุกต์ใช้ผลิตยา เพื่อช่วยลดอาการดับอักเสบ และตับวายในผู้ป่วยเด็กที่ติดเชื้อไวรัสเด็งกี่ได้ในอนาคต

อุปกรณ์และวิธีการ

เซลล์ HepG2 ซึ่งเป็นเซลล์มะเร็งตับชนิด hepatocellular carcinoma ถูกเลี้ยงด้วยอาหารเลี้ยงเซลล์ Dulbecco's Modified Eagle Medium (DMEM) ในจานเลี้ยงเซลล์ขนาดเส้นผ่านศูนย์กลาง 60 มิลลิเมตร และ ถูกทำให้ติดเชื้อด้วยเชื้อไวรัสเด็งกี่ ซีโรไทป์ 2 ด้วยปริมาณเชื้อไวรัสต่อเซลล์เท่ากับ 1 ต่อ 1 และเลี้ยงต่อไป เป็นเวลา 48 ชั่วโมง เซลล์ที่ไม่ติดเชื้อจะถูกเลี้ยงควบคู่ไปกับเซลล์ที่ติดเชื้อเพื่อใช้ในการเปรียบเทียบการ แสดงออกของยืน

หลังจาก 48 ชั่วโมง เซลล์จะถูกแบ่งออกเป็น 3 ส่วนเพื่อนำไปตรวจสอบ

(1) ปริมาณร้อยละการติดเชื้อ

ตรวจสอบโดยการย้อมเซลล์ด้วยแอนตี้บอดี้ต่อโปรตีนส่วนเปลือกนอกของเชื้อไวรัสเด็งกี่โคลน 3H5 และ secondary antibody ที่ติดฉลากด้วยสารเรื่องแสงชนิด FITC จากนั้นเซลล์ที่ถูกติดฉลากจะถูกนำไป วิเคราะห์ด้วยเครื่อง Flow cytometer

(2) ปริมาณร้อยละการตายโดยอะพอพโทซิส

ตรวจสอบโดยการย้อมเซลล์ด้วยสาร annexin V ที่ติดฉลากด้วยสารเรื่องแสงชนิด FITC และ propidium iodine (annexin V-FITC/PI) จากนั้นเซลล์ที่ถูกติดฉลากจะถูกนำไปวิเคราะห์ด้วยเครื่อง Flow cytometer

(3) สกัด RNA เพื่อศึกษาการแสดงออกของยืนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิส

สกัด RNA โดยใช้ High Pure RNA Isolation Kit (Roche) และตรวจวัดปริมาณและความบริสุทธิ์โดย เครื่อง spectrophotometer nanodrop RNA ปริมาณที่เหมาะสมจะถูกนำไป reverse transcribe ให้กลายเป็น cDNA โดยใช้ RT² First Strand Kit (SABioscience) cDNA ที่ได้จะถูกนำไปผสมกับ master mix ซึ่งมี SYBR green เป็นสารเรื่องแสงที่ใช้ตรวจวัดระดับผลผลิตของ PCR จากนั้นส่วนผสมทั้งหมดจะถูกเติมลงใน แต่ละหลุมของ Human Apoptosis RT² Profiler™ PCR Array (SABioscience) ซึ่งมี primers ที่จำเพาะต่อ ยีนแต่ละยีนอยู่ในแต่ละหลุมก่อนแล้ว real time PCR ทำโดยเครื่อง Roche LightCycler 480® (Roche) ใน absolute quantification mode เพื่อหาค่า threshold cycle (Ct) ของแต่ละยีน ค่า Ct ของแต่ละยีนจะถูกนำไป normalize ด้วยค่า Ct ของ house keeping gene และหาค่า fold change เปรียบเทียบระหว่างเซลล์ที่ติดเชื้อ และเซลล์ที่ไม่ติดเชื้อ โดยใช้หลักการ 2 -△△α ซึ่งจะคำนวณโดยใช้ Web-Based PCR Array Data Analysis (www.SABioscience.com)

การทดลองทั้งหมดจะถูกทำซ้ำ 3 ครั้งเพื่อรวบรวมค่าเฉลี่ยในการรายงาน

ผลการทดลองและวิจารณ์

เซลล์ HepG2 ที่ถูกทำให้ติดเชื้อด้วยเชื้อไวรัสเด็งกี่ซีโรไทป์ 2 ปริมาณเชื้อไวรัสต่อเซลล์เท่ากับ 1 ต่อ 1 ที่ เวลา 48 ชั่วโมงหลังจากติดเชื้อ พบว่ามีการติดเชื้อไวรัสเด็งกี่ร้อยละ 52.61 และมีการตายโดยอะพอพโทซิส ร้อยละ 17.48 ในขณะที่เซลล์ที่ไม่ติดเชื้อมีการตายโดยอะพอพโทซิสเพียงร้อยละ 7.50 การตายโดยอะพอพ โทซิสระหว่างเซลล์ที่ติดเชื้อและไม่ติดเชื้อมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p-value < 0.05)

เซลล์ที่ถูกเลี้ยงด้วยสภาวะเดียวกันนี้ได้ถูกนำไปศึกษาการแสดงออกของยืน พบว่าในระยะที่เกิด อะพอพโทซิสในเซลล์ที่ติดเชื้อ ยีนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิสทั้งหมด 84 ยีน มียีนที่มีการ แสดงออกเพิ่มขึ้น (up-regulated) จำนวน 46 ยีน และยีนที่แสดงออกลดลง (down-regulated) จำนวน 38 ยีน เมื่อเปรียบเทียบกับการแสดงออกของยีนในเซลล์ที่ไม่ติดเชื้อ

นอกจากนี้ยังพบว่ามียืนที่แสดงออกเพิ่มขึ้นมากกว่าสองเท่าจำนวน 6 ยืน ประกอบไปด้วยยืนในกลุ่ม ของ tumor necrosis factor (TNF family) ซึ่งเกี่ยวข้องกับการตายโดยอะพอพโทซิสทางด้าน extrinsic pathway บางยืนเคยมีการรายงานว่าแสดงออกเพิ่มขึ้นในเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่เช่นเดียวกัน (Matsuda T. et al., 2005) และยืนบางตัวในกลุ่มของ Bcl-2 (Bcl-2 family) ซึ่งทำหน้าที่เป็นโปรตีนที่เหนี่ยวนำการ เกิดอะพอพโทซิสของเซลล์ (pro-apoptotic protein) ที่เกี่ยวข้องกับการตายโดยอะพอพโทซิสทางด้าน intrinsic pathway

สรุปผลการทดลอง

ในระยะที่เกิดอะพอพโทซิสในเซลล์ตับที่ติดเชื้อไวรัสเด็งกี่ ยีนที่เกี่ยวข้องกับการตายโดยอะพอพโทซิส มีการเปลี่ยนแปลงทั้งแสดงออกเพิ่มขึ้นและแสดงลดลงเมื่อเปรียบเทียบกับการแสดงออกของยีนในเซลล์ที่ไม่ ติดเชื้อ แสดงให้เห็นถึงการเปลี่ยนแปลงในระดับยีนเพื่อตอบสนองต่อเชื้อไวรัสเด็งกี่ และยีนกลุ่มดังกล่าวมีทั้ง ที่เคยมีรายงานแล้วและยังไม่มีการรายงานมาก่อน

กิตติกรรมประกาศ

This research project is supported by Mahidol University. A.M. is a recipient of Siriraj Graduate Thesis Scholarship.

เอกสารอ้างอิง

Thomas, S.J., Strickman, D. and Vaughn, D.W. 2003. Dengue epidemiology: virus epidemiology, ecology, and emergence. *Advances Virus Res.* 61: 235-289.

Pang, T., Cardosa, M.J. and Guzman, M.G. 2007. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). *Immunol. Cell boil.* 85: 43-45.

- Seneviratne, S.L., Malavige, G.N. and de Silva, H.J. 2006. Pathogenesis of liver involvement during dengue viral infections. *Transactions of the Royal Society of Tropical Medicine and Hygiene*. 100: 608-614.
- Lai, Y.M., Mohammed, K.A., Nasreen, N., Baumuratov, A., Bellew, B.F. and Antony, V.B. 2007. Induction of cell cycle arrest and apoptosis by BCG infection in cultured human bronchial airway epithelial cells. *Amer. J. Physiol.* 293: 393-401.
- Matsuda, T., Almasan, A., Tomita, M., Tamaki, K., Saito, M., Tadano, M., et al. 2005. Dengue virus-induced apoptosis in hepatic cells is partly mediated by *Apo2* ligand/tumour necrosis factor-related apoptosis-inducing ligand. *J. Gen. Virol.* 86: 1055-1065.

Apoptotic Gene Expression Profiling in Dengue Virus-Infected HepG2 cells

Atthapan Morchang¹, Pa-thai Yenchitsomanus² and Thawornchai Limjindaporn³

¹Department of Immunology; ² Medical Molecular Biology Unit, Office for Research and Development; ³Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University

INTRODUCTION

Dengue virus infection is an important public health problem in tropical region, including Thailand. Although the main pathogenesis is the abnormality of hemostasis and vascular system, the liver injury is occasionally observed in patients infected with dengue virus. In addition, the liver is considered as one of the replication sites of dengue virus. Dengue virus-infected liver cells also undergoes apoptosis (1). To elucidate the molecular mechanism of apoptosis in dengue virus-infected liver cells, the altered expression of apoptotic genes during apoptotic phase of dengue virus infection is investigated in this study using human apoptosis RT² profiler™ PCR array, which is based on real time RT-PCR technique.

MATERIALS & METHODS

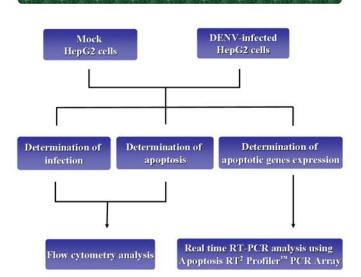


Figure 1. Apoptosis RT² Profiler™ PCR Array. Array plate contains 84 apoptosis-relevant genes involving in both extrinsic and intrinsic pathway. The bottom row contains control wells.

Figure 2. Percentage of infection and apoptosis examined by monoclonal antibody specific to DENV E and Annexin V/PI staining, respectively. Upon infected with dengue virus, HepG2 cells were positive to dengue virus antigen for 52.61 % and underwent apoptosis for 17.48%, which is statistically different from those of mock HepG2 cells.

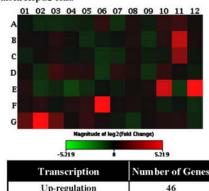


Figure 3. Heat map and table represent fold change of 84 apoptosis-relevant genes during apoptotic phase of dengue virus-infected HepG2 cells. Red and green indicated up- and down- regulated gene expression, respectively. Several intensity is based on the level of transcription. The table summarized the number of mRNA expression of 84 apoptosis-relevant genes.

38

Down-regulation

Total

CONCLUSION

During apoptotic phase of dengue virus-infected HepG2 cells, the apoptotic genes were altered either up- or down-regulated. Several altered novel genes were identified involving not only in extrinsic but also in intrinsic pathways. Some were previously reported; for example, the genes of tumor necrosis factor (TNF) family, which involved in extrinsic pathway (2). Further studies will be directed toward the functional role of these genes in dengue virus-induced apoptosis in liver cells.

REFERENCES

- Seneviratne SL, Malavige GN, de Silva HJ, Pathogenesis of liver involvement during dengue viral infections. Trans R Soc Trop Med Hyg; 2006 (100): 608-614.
- 2.Matsuda, T., Almasan, A., Tomita, M., Tamaki, K., Saito, M., Tadano, M., et al., Dengue virus-induced apoptosis in hepatic cells is partly mediated by Apo2 ligand/tumour necrosis factor-related apoptosis-inducing ligand. J Gen Virol.; 2005 (86):1055-1065.

Abstract

การประชุมวิชาการ "วิทยาศาสตร์วิจัย" ครั้งที่ 2

The 2nd Science Research Conference

กลุ่มที่ 1 สาขาฟิสิกส์ ฟิสิกส์ประยุกต์และเทคโนโลยี วัสดุศาสตร์ และวิทยาศาสตร์ศึกษา

กลุ่มที่ 2 สาขาวิทยาศาสตร์ชีวภาพ, เทคโนโลยีชีวภาพ และวิทยาศาสตร์ศึกษา

กลุ่มที่ 3 สาขาเคมี เคมีสิ่งแวดล้อม และวิทยาศาสตร์ศึกษา

กลุ่มที่ 4 สาขาคณิตศาสตร์, สถิติ และคณิตศาสตร์ศึกษา

กลุ่มที่ 5 สาขาวิทยาการคอมพิวเตอร์ และเทคโนโลยีสารสนเทศ

วันที่ 9-10 มีนาคม 2552 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร

ทับที่	ชื่อ	สกุล	หัวข้อเรื่อง	รหัส			
1	หูศรี	ตลับมุข	น้ำตาลกลู โคสในเลือดและค่าทาง โลหิตวิทยาในหนูเบาหวาน ที่ได้รับส่วนสกัดจาก รากหนอนตายห ยากแตกต่างกัน	P-B01			
2	ธารทิพย์ บุญส่ง การตรวจวัคปริมาณไขมันในตับหนู Wistar ที่ได้รับสุราจริงที่ตรวจพบว่ามีอะซิทัลดิไฮด์สูงสุดแบบ เรื้อรัง						
3	ปรียาลักษณ์	โคหนองบัว	AND				
4	ณาตยา	แก้วพบศ					
5	รักชนก	สุวรรณมณี	ความผิดปกติของระบบทางเดินหายใจ และสารเคมีในบรรยากาศการทำงาน ในพนักงานยางแผ่น รมควัน จั๋งหวัดสงขลา	P-B05			
6	สาลี	อินทร์เจริญ	การศึกษาอาการผิดปกติของระบบทางเดินหายใจและปริมาณ จุลินทรีย์ในบรรยากาศ การทำงานของ ผู้ประกอบอาชีพฟาร์มเลี้ยงไก่ จังหวัดสงขลา	P-B06			
7	เฉลิมชัย	แป้นน้อย	การสัมผัสฝุ่นอินทรีย์ในบรรยากาศการทำงานของคนทำงาน ในโรงสีข้าว	P-B07			
8	เบญจมาภรณ์	พิมพา	การศึกษาปริมาณและคุณภาพของน้ำมันปาล์มดิบที่สกัดโดยโรงงานสกัดน้ำมันปาล์มดิบ	P-B08			
9	ควงแข	กาญจนโสภา	การแขกเชื้อแบคทีเรียที่สามารถย่อยสถายยางพารา Isolation of Bacteria Able to Metabolize Natural Rubber	P-B09			
10	เครื่อมาศ	ยงทะเล	การย่อยสถายน้ำมันหล่อลื่นเครื่องยนต์ที่ใช้แล้วโดย Serratia sp.	P-B10			
11	เสาวภา	แก้วสุขใส	การคัดเลือกจุลินทรีย์ที่สามารถย่อยสลายน้ำมันหล่อลื่นเครื่องยนต์ที่ใช้แล้ว	P-B11			
12	วิชุดา	เกตุใหม่	การคัดแยกขีสต์ที่มีความสามารถในการผลิตสารลดแรงตึงผิวชีวภาพจากดินที่ปนเปื้อนน้ำมัน Screening of Biosurfactant-Producing Yeasts from Oil Contaminated Soils	P-B12			
13	กิดวดี	รูปพรหม	COMPARISON OF VIRUS CONCENTRATION METHODS BASED ON WHOLE OYSTERS AND DIGESTIVE TISSUES FOR DETECTION OF ROTAVIRUS AND NOROVIRUS IN OYSTERS	P-B13			
14	ถึชา	แขนา	การผลิตอิมัลซิไฟเออร์ชีวภาพโดยเชื้อขีสต์ Production of Bioemulsifier by Yeast	P-B14			
15	อรวัก	แก้วเผือก	การผลิต โปรตีนเซลล์เดียวจากเชื้อขีสต์ที่แยกได้จากน้ำสาเหล้า Production of Yeast Single Cell Protein Isolated from Distilled Slop	P-B15			
16	อลิตา	ฮินฮง	การคัดแยกแบคทีเรียที่สามารถผลิตสารอิมัลซิไฟเออร์ชีวภาพ Screening of Bioemulsifier Producing Bacteria	P-B16			
17	ป๊ทมา	ใชยเวช	ผลความเข้มข้นของสารอาหารต่อการเจริญและความชัดเจนของ Bacillus cereus บนอาหาร	P-B1			
18	พรพงษ์	สุทธิรักษ์	Antibiotics Contamination of Wild Spotted Babylon (<i>Babylonia areolata</i> , Link 1807) from Various Fishing Grounds in the Gulf of Thailand การปนเปื้อนของสารปฏิชีวนะในหอยหวานแท้ (<i>Babylonia areolata</i> , Link 1807) จากแหล่งประมงต่างๆ ในธรรมชาติบริเวณอ่าวไทย	P-B18			
19	ชีรวัฒน์	อ่อนลมูล	การคัดกรองสารที่มีฤทธิ์ยับยั้งการเจริญของจุลินทรีย์จากแอคดิโนมัยสีทที่แยกได้จากทะเล	P-B19			
20	นันทวุฒิ	นิยมวงษ์	การยับยั้งจุลินทรีย์ของแอกติโนมัยสีทจากดินถ้ำในจังหวัดนกรสวรรค์	P-B20			
21	ณฐพล	ควงธรรม	Interaction between human kidney anion exchanger 1 (kAE1) and kinesin family member 3B (KIF3B) in human kidney cells	P-B21			
22	รองเคช	ตั้งตระการพงษ์	ลักษณะและโครงสร้างต่างๆของ Haller s organ ที่พบในเท็บสุนัข Brown dog tick (<i>Rhipicephalus</i> sanguineus) ตัวเต็มวัย โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	P-B22			
23	อุบลวรรณ	บุญถ้ำ	พยาธิฮีส โดของเนื้อเยื่อปลาดะเพียนขาวที่สัมผัสน้ำทิ้งจากโรงงานฟอกข้อมผ้า	P-B23			
24	สุริศักดิ์	ประสานพันธ์	ความเป็นพิษต่อเซลล์ของปลาตะเพียนขาวจากการสัมผัสน้ำทิ้งจากโรงงานฟอกข้อมผ้า	P-B24			
25	เกศสุนี อนุพันธ์	ชมชื่น กงบังเกิด	การตรวจสอบข้าวโพคคัดแปลงพันธุกรรมในท้องตลาดเมืองพิษณุโลก การสำรวจกลัวยไม้บริเวณอุทยานแห่งชาติทุ่งแสลงหลวง จังหวัดพิษณุโลก	P-B25 P-B26			

P-B21 ปฏิสัมพันธ์ระหว่างโปรตีนแอนไอออนเอ็กซ์เช็นเจอร์-วันและโปรตีนไคเนซินแฟมิลี่ เมมเบอร์-ทรีบี ในเซลล์ไตของมนุษย์

Interaction between human kidney anion exchanger 1 (kAE1) and kinesin family member

3B (KIF3B) in human kidney cells

ณฐพล ดวงธรรม¹, ถาวรชัย ลิ้มจินดาพร¹, หนึ่งหทัย สวัสดี², เพียงผกา ง้าวจันหลัา², เพทาย เย็นจิตโสมนัส²*

¹ภาควิชากายวิภาคศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

²หน่วยอณูชีววิทยาการแพทย์ คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

บทคัดย่อ

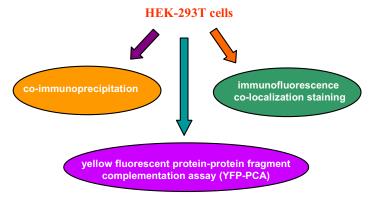
มิวเตชั่นของยืนแอนไอออนเอ็กเช็นเจอร์-วัน (AE1) สามารถทำให้เกิดความบกพร่องที่โปรตีน kAE1 ซึ่งส่งผล ให้เกิดโรคที่มีผิดปกติในการขับกรด (dRTA) โดยมีภาวะกรดคั่งในร่างกาย เนื่องจากความผิดปกติในการขับกรดที่ ท่อส่วนปลายของหน่วยไต โดยการศึกษาก่อนหน้านี้พบว่าการเกิดมิวเตชั่นของโปรตีน kAE1 บางประเภท เช่น R901X ซึ่งเกิดจากการขาดหายไปของกรดอะมิโน 11 ตัว ทำให้เกิดการเคลื่อนย้ายของโปรตีน kAE1 ผิดตำแหน่ง ไปที่ผิวเซลล์ด้านบน (apical) แทนที่จะไปที่ด้านเบโซเลเทอรัล (basolateral) ของเซลล์ของท่อหน่วยไต ดังนั้น โปรตีนที่มีปฏิสัมพันธ์กับปลายด้านคาร์บอกซิลของ kAE1 น่าจะเกี่ยวข้องกับการเคลื่อนย้ายของ kAE1 เพราะฉะนั้น การเข้าใจถึงการกลไกควบคุมและการเคลื่อนที่ของ kAE1 ไปในตำแหน่งที่ถูกต้องนั้นจำเป็นที่จะต้องหาโปรตีนตัว อื่นที่จะมาเกี่ยวข้องกับขบวนการเหล่านี้ กลุ่มวิจัยของเราใช้วิธียีสต์ทูไฮบริด (yeast two-hybrid) และสามารถ หาโปรตีนที่จะมีปฏิสัมพันธ์กับด้านปลายคาร์บอกซิลของ kAE1 โดยพบว่าโปรตีนไคเนชินแฟมิลี่เมมเบอร์-ทรีบี (KIF3B) มีปฏิสัมพันธ์กับ kAE1 ในเซลล์ยีสต์ การศึกษานี้ต้องการตรวจสอบการเกิดปฏิสัมพันธ์ในเซลล์ใดของ มนุษย์ (HEK-293T) วิธี yellow fluorescent protein-protein fragment complementation assay (YFP-PCA) ถูก นำมาใช้และพบว่า kAE1 และ KIF3B มีปฏิสัมพันธ์ของโปรตีนสองตัวนี้ทำให้เกิดการเชื่อมกันของโปรตีน YFP ทำ ให้เห็นแลงสีเหลืองเมื่อมองผ่านกล้องคอนโฟคอล นอกจากนี้การหาตำแหน่งของโปรตีนในเซลล์ โดยใช้วิธี double staining ถูกนำมาใช้ยืนยันและพบว่า kAE1 immunofluorescence นั้นแสดงออกในตำแหน่งเดียวกันทั้งภายในเซลล์และผิวเซลล์ สรุปได้ว่า kAE1 และ KIF3B นั้นมีปฏิสัมพันธ์กัน โดยที่ KIF3B น่าจะมีส่วนช่วยในการเคลื่อนย้ายของ kAE1 การศึกษาที่จะทำต่อไปคือการหาบทบาทของ KIF3B ที่เกี่ยวกับกับการเคลื่อนย้าย kAE1 ภายในเซลล์

คำสำคัญ : โปรตีนแอนไอออนเอ็กซ์เซ็นเจอร์-วัน, โปรตีนไคเนชินเฟมิลี่เมมเบอร์-ทรีบี, ปฏิสัมพันธ์ระหว่างโปรตีน, เซลล์ไต

*Corresponding author. E-mail: ptyench@gmail.com

Interaction between human kidney anion exchanger 1 (kAE1) and kinesin family member 3B (KIF3B) in human kidney cells

Natapol Duangtum¹, Thawornchai Limjindaporn¹, Nunghathai Sawasdee², Piengpaga Ngaojanlar², Pa-thai Yenchitsomanus²


¹Department of Anatomy, ²Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand

INTRODUCTION

Kidney anion exchanger 1 (kAE1) is an exchanger of chloride (Cl-) and bicarbonate (HCO3-) at the basolateral membrane of α -intercalated cells of the kidney. Defects of kAE1 may result in a kidney disease ; distal renal tubular acidosis (dRTA), and most of the defects occur either from mistargeting or impaired trafficking of kAE1 to the basolateral membrane. To understand the regulation and transportation of kAE1 to the appropriate site, it will be necessary to identify proteins that interact with kAE1. A yeast two-hybrid system (Y2H) using the C-terminus of kAE1 as a bait was carried out to identify kAE1- interacting proteins, and kinesin family member 3B (KIF3B), which is a motor subunit of kinesin-2, was isolated (1). However, the interaction between kAE1 and KIF3B in human mammalian cells has not been established. Therefore, this study aims to confirm interaction between kAE1 and kinesin family member 3B (KIF3B) in kidney HEK-293T cell line.

MATERIALS & METHODS

Confirmation of interaction of kAE1 and KIF3B in

RESULTS AND DISCUSSION

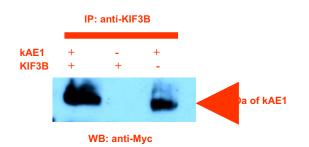


Figure 1. The interaction of kAE1 and KIF3B in HEK-293T cells by coimmunoprecipitation showed that antibody to KIF3B pulled down kAE1 suggesting that kAE1 binds specifically to KIF3B.

Figure 2. Co-localization of kAE1 with KIF3B in HEK 293T cells. The two proteins were co-localized mainly at the cell surface of co-transfected HEK-293T cells.

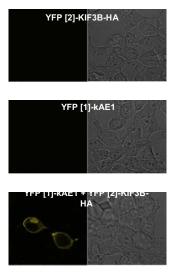


Figure 3. The interaction between kAE1 and KIF3B in HEK 293T cells examined by YFP-PCA. Transfections of the HEK-293T cells with YFP[1]-AE1 + YFP[2]-KIF3B-HA showed intracellular yellow fluorescent signals, indicating the interaction between kAE1 and KIF3B.

CONCLUSION

KIF3B is one of the kinesin II subfamilies of kinesin superfamily, which consists of a large family of molecular motors that transport intracellular cargos along microtubules using the energy derived from ATP hydrolysis (2). In the present study, interaction between kAE1 and KIF3B in human kidney cells (HEK-293T) was demonstrated by co-immunoprecipitation, co-localization and YFP-PCA assays. KIF3B may play a role in kAE1 trafficking. Further studies will be directly toward the role of KIF3B in trafficking of kAE1 in physiological and pathological conditions.

REFERENCES

- 1. Ngaojanlar, P., *Identification of human kidney proteins interacting with the carboxyl terminus of anion exchanger 1(thesis).*, Faculty of Graduate studies. 2006, Mahidol university. p.1-31, 77-78, 103.
- Yamazaki, H., Nakata, T., Okada, Y., and Hirokawa, N., KIF3A/B: A heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J. Cell Biol., 1995. 130: p. 1387–1399.

บทคัดย่อ การเสนอผลงานแบบโปสเตอร์

การประชุมนักวิจัยรุ่นใหม่ พ∪ **เมธีวิจัยอาวุโส สกว**. ครั้งที่ 8

วันที่ 16-18 ตุลาคม 2551 โรงแรมฮอลิเดย์อินน์ รีสอร์ท รีเจนท์ บีช ชะอำ จังหวัดเพชรบุรี

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)

BIO: Biological Sciences

PJ-BIO-C17	Combination effect of fibronectin and TNF- α on osteopontin expression through $\beta 1$ integrin and ERK in head and neck squamous cell carcinoma	Piyamas Sumrejkanchanakij	419
PJ-BIO-C18	Generation of MCF-7 Cells Stably Overexpressing a Novel Truncated WT1 and Full length	Potchanapond Graidist	420
PJ-BIO-C19	Wilms'tumor 1 gene Alters Expression Level of Actin Binding Proteins Alpha actinin 1, Cofilin 1 and Gelsolin via Both of Direct and Indirect Regulation	Tamyarat Jomgeow	421
PJ-BIO-C20	The roles of COX-2, survivin, and VEGF in carcinogenesis of cervical squamous cell carcinoma	Jongkolnee Settakorn	422
PJ-BIO-C21	Development of sensitive and specific biomarkers for early detection of cholangiocarcinoma	Kanyanath Piumngam	423
PJ-BIO-C22	Risk Factors Associated with the Occurrence of Frontoethmoidal Encephalomeningocele	Kanya Suphapeetiporn	424
PJ-BIO-C23	Candidate-gene Association Study of Kidney Stone in Northeastern Thai Population	Nanyawan Rungroj	425
PJ-BIO-C24	A novel mutation causing a truncated hepatic nuclear factor-1 $lpha$ (HNF-1 $lpha$) in a Thai family with maturity onset diabetes of the young (MODY)	Suwattanee Kooptiwut	426
PJ-BIO-C25	The Assessment of Vascular Stiffness and Occlusion in Metabolic Disease, Risk Group of Cardiovascular Disease, and Healthy Volunteers at a Primary Care Unit in Phitsanulok, Thailand	Wanvisa Boonlert	427
PJ-BIO-C26	Glutathione S-transferase: a novel <i>Periplaneta americana</i> allergen among Thais	Nitat Sookrung	428

C: Biomedical Science, Noncommunicable Diseases, Aging and Stem Cells

Candidate-gene Association Study of Kidney Stone in Northeastern Thai Population

Rungroj, N.¹, Sritippayawan, S.², Thongnoppakhun, W.¹, Paemanee, A.^{3,4}, Sawasdee, N.³, Nettuwakul, C.³, Jintaviwat, A.³, Sudtachat, N.^{3,4}, Ungsupravate, D.³, Sootichote, R.³, Praihirunkit, P.⁵, Chuawattana, D.², Akkarapathumwong, V.⁵, Borwornpadungkitti, S.⁶, Susaengrat, W.⁶, Vasuvattakul, S.², Malasit, P.^{3,4}, Yenchitsomanus, P.^{3,4*}

¹Division of Molecular Genetics and ³Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, ²Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, ⁴Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, ⁵Institute of Molecular Biology and Genetics, Mahidol University, Salaya, Nakorn Pathom, ⁶Khon Kaen Regional Hospital, Khon Kaen, Thailand

Abstract

Kidney stone is a common public health problem in northeastern (NE) Thai population. Its etiology is unknown but is proposed to result from an interaction between genetic predisposition and environment factor. Abnormality of urinary stone-inhibitor proteins may lead to kidney stone formation. The urinary stone-inhibitor proteins previously reported include trefoil factor 1, calgranulin (A, B, and C), bikunin, osteopontin, Tamm-Horsfall glycoprotein, and urinary prothrombin fragment 1. To investigate the role of these proteins in kidney stone disease in the NE Thai population, we employed candidate-gene association study in the patients with kidney stone (cases) and normal individuals (controls) collected from Khon Kaen Regional Hospital. Single nucleotide polymorphisms (SNPs) distributed within and flanking 8 candidate genes including TFF1, S100A8, S100A9, S100A12, AMBP, SPP1, UMOD, and F2, encoding the 8 urinary stone-inhibitor proteins (listed above) were genotyped in 112 DNA samples each of the case and control groups by the method of multiplex primer extension and denaturing high-pressure liquid chromatography (DHPLC). Altogether 67 SNPs, on average 5-14 SNPs per gene, were analyzed in each group. The results revealed significant differences between case and control groups of 8 SNPs in the F2 gene (P<0.05). The SNP haplotype – CGTTCCGCTA in this gene were significantly different in the case and control groups (OR 0.43, 95% CI 0.24-0.78; P=0.0062). This indicates that F2 may influence genetic susceptibility to kidney stone in the patients studied. The association study will be conducted in a different cohort to confirm this finding and functional SNP will be identified by sequencing and additional genotyping.

Keywords: kidney stone, nephrolithiasis, association study, single nucleotide polymorphisms, SNPs, trefoil factor 1, calgranulin, bikunin, osteopontin, Tamm-Horsfall glycoprotein, urinary prothrombin fragment 1, primer extension, DHPLC

*Corresponding author.

Tel.: 0-2419-7000 ext. 6666-70; Fax: 0-2418-4793

E-mail: grpye@mahidol.ac.th

Candidate-gene Association Study of Kidney Stone in Northeastern Thai Population

Rungroj, N.¹, Sritippayawan, S.², Thongnoppakhun, W.¹, Paemanee, A.³, ⁴, Sawasdee, N.³, Nettuwakul, C.³, Jintaviwat, A.³, Sudtachat, N.³, ⁴, Ungsupravate, D.³, Sootichote, R.³, Praihirunkit, P.⁵, Chuawattana, D.², Akkarapatumwong, V.⁵, Borwornpadungkitti, S.⁶, Susaengrat, W.⁶, Vasuvattakul, S.², Malasit, P.³, ⁴, Yenchitsomanus, P.³, ⁴

¹Division of Molecular Genetics and ³Division of Medical Molecular Biology, Department of Research and Development, ²Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, ⁴Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, ⁵Institute of Molecular Biology and Genetics, Mahidol University, Salaya, Nakorn Pathom, ⁶Khon Kaen Regional Hospital, Khon Kaen, Thailand

BACKGROUND

Kidney stone is a common public health problem in the population of the Northeastern (NE) Thailand. Its etiology is unknown but may result from an interaction between genetic predisposition and environment factor. Genetic abnormality or polymorphisms of the genes encoding urinary stone-inhibitor proteins may be involved in kidney stone formation. A case-control association study was performed to evaluate the genetic factor in kidney stone formation in the NE Thai population by analyses of single nucleotide polymorphisms (SNPs) in TFF1, S100A8, S100A9, S100A12, AMBP, SPP1, UMOD, and F2 genes, encoding trefoil factor 1, calgranulin (A, B, and C), bikunin, osteopontin, Tamm-Horsfall glycoprotein, and urinary prothrombin fragment 1, which are known urinary stone-inhibitor proteins.

OBJECTIVE

To examine frequencies of SNPs in the 8 genes including *TFF1*, *S100A8*, *S100A9*, *S100A12*, *AMBP*, *SPP1*, *UMOD*, and *F2* and evaluate their association with kidney stone in the NE Thai population.

MATERIALS & METHODS

SNPs in the regions of 8 candidate genes were selected (Figure 1) and genotyped in DNA samples of 112 cases (the patient with kidney stone) and 112 normal controls, in Khon Kaen and nearby provinces, by the method of multiplex primer extension and denaturing high-pressure liquid chromatography (DHPLC).

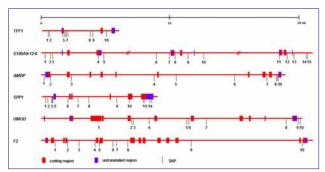


Figure 1. Gene structure of eight candidate genes and positions of SNPs selected for study

Multiplex PCRs (2- to 6- plex per reaction) were performed to amplify DNA fragments containing the selected SNPs in each gene. These PCR products were treated with ExoSAP-IT® to remove excess primers and nucleotides and then used as templates in primer extension reaction which was conducted as sets. The primer extension products were then analyzed by DHPLC machine (Wave, Transgenomic™) using fully denaturing condition with a column temperature of 70°C.

Statistical tests for deviation from Hardy-Weinberg equilibrium (HWE) of genotypes and association between SNP frequencies and disease were performed by using DeFinetti, SNPStats, and Haploview programs.

ACKNOWLEDGEMENT

This work was supported by the Thailand Research Fund (TRF), the National Center for Genetic Engineering and Biotechnology (BIOTEC), and Mahidol University. PY is a TRF-Senior Research Scholar.

RESULTS

Altogether 67 SNPs of 8 candidate genes were genotyped in 112 cases and 112 controls. Examples of the results of SNP genotyping by multiplex primer extension and DHPLC are shown in Figure 2.

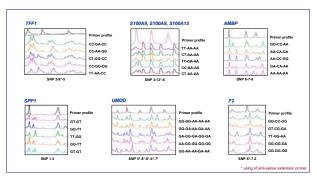


Figure 2. Examples of elution profiles and SNP-genotype calling of the eight genes by using multiplex primer extensions and DHPLC.

A number of 57 SNPs were found to be in Hardy-Weinberg equilibrium. Statistical analysis revealed significant differences between control and case groups of SNP allele and genotype frequencies in the F2 gene (Table 1). The inheritance model considered by Akaike's Information Criterion was recessive. The control group had significantly higher proportions of homozygous genotypes of minor alleles of 8 SNPs than that of the case group (P= 0.0036-0.016) with the odds ratios (OR) 0.15-0.40.

Table 1. Allele and genotype frequencies of 10 SNPs in the F2 gene in the control and case groups.

SNP No.	Ref. SNP ID	Allele	Allele frequency (%)		OR (95% CI)	P-value	Genotype	Genotype frequency (%)		OR (95% CI)	P-value
			Control	Case				Control Case			
SNP1	rs2070850	T	54.5	65.2	1.00	0.021	T/T-C/T	77.7	90.2	1.00	0.01
SNP-1	1920/0850	C	45.5	34.8	0.64 (0.44-0.94)	0.021	C/C	22.3	9.8	0.38 (0.18-0.81)	0.01
SNP2	rs3136435	G	88.8	86.6	1.00	0.472	G/G-A/G	100	99.1	1.00	0.24
SNPZ	153136435	A	11.2	13.4	1.23 (0.70-2.17)	0.472	AA	0	0.9	NA (0.00-NA)	0.24
SNP3	rs3136441	¢	56.7	67.4	1.00	0.019	C/C-C/T	80.4	92.9	1.00	0.0052
SNP3	153136441	T	43.3	32.6	0.63 (0.43-0.93)	0.019	T/T	19.6	7.1	0.31 (0.13-0.74)	0.0052
	rs2070851	С	55.8	68.3	1.00		C/C-C/T	78.6	92	1.00	0.0041
SNP4		T	44.2	31.7	0.59 (0.40-0.86)	0.006	T/T	21.4	8	0.32 (0.14-0.73)	
SNP5	rs2070852	0	67	75.4	1.00	0.047	G/G-G/C	89.3	98.2	1.00	0.0037
SNPS		C	33	24.5	0.66 (0.44-1.00)	0.047	C/C	10.7	1.8	0.15 (0.03-0.69)	
SNP6	rs3136456	C	89.3	87.1	1.00	0.464	C/C-A/C	100	98.2	1.00	0.095
2000		A	10.7	12.9	1.24 (0.70-2.20)	0.464	AA	0	1.8	NA (0.00-NA)	0.095
SNP7	rs3136457	C	56.2	66.1	1.00	0.033	C/C-C/G	78.6	91.1	1.00	0.0083
SNP/		G	43.8	33.9	0.66 (0.45-0.97)	0.033	GIG	21.4	8.9	0.36 (0.16-0.79)	0.0083
SNP8	rs3136460	0	56.2	67.4	1.00	0.015	G/G-C/G	78.6	92	1.00	0.0041
2141-8		C	43.8	32.6	0.62 (0.42-0.91)		C/C	21.4	8	0.32 (0.14-0.73)	0.0041
SNP9	rs2282687	C	56.2	65.2	1.00	0.053	C/C-C/T	78.6	90.2	1.00	0.016
		T	43.8	34.8	0.69 (0.47-1.01)	0.053	T/T	21.4	9.8	0.40 (0.19-0.86)	0.016
SNP10	rs3136516	0	80.8	89.3	1.00	0.012	G/G-G/A	94.6	100	1.00	
		A	19.2	10.7	0.50 (0.30-0.87)	0.012	AA	5.4	0	0.00 (0.00-NA)	0.0036

Linkage disequilibrium (LD) and haplotypes analyses of SNPs in F2 are shown in Figure 3 and Table 2. SNPs 3-10 are in a strong LD and clustered in one LD block. Six haplotypes, with frequencies >1%, were estimated based on Expectation Maximization (EM) algorithm. Two haplotypes (CGTTCCGCTA and CGTTCCGCTG) were found to be significantly more frequent in the control than in the case with P=0.0062 and 0.049, indicating that these haplotypes were associated with a protective effect.

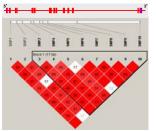


Figure 3. Linkage disequilibrium (LD) plot showing D' and LD block of genotyped SNPs in F2 gene determined by the Haploview program.

Table 2. Association between haplotypes of 10 SNPs of F2 gene and kidney stone risk

Haplotype	Frequ	uency	OR (95% CI)	P	
парютуре	Control	Case	OR (95% CI)		
1. TGCCGCCGCG	0.5267	0.5967	1.00		
2. CGTTCCGCTA	0.1857	0.0893	0.43 (0.24 - 0.78)	0.0062*	
3. CGTTCCGCTG	0.1355	0.0803	0.51 (0.26 - 0.99)	0.049	
4. CATTGAGCTG	0.0966	0.1115	1.01 (0.51 - 2.01)	0.98	
5. CGCCGCCGCG	0.0134	0.0194	1.08 (0.23 - 5.21)	0.92	
6. TGCCCCCGCG	0.0045	0.0238	4.18 (0.47 - 37.05)	0.2	

^{*}P = 0.0372 after employing Bonferroni's correction for 6 haplotype-comparisons.

CONCLUSION

The genetic polymorphisms of F2 are found to be associated with kidney stone, suggesting that F2 may influence susceptibility to the disease in the NE Thai population studied.

A novel mutation causing a truncated hepatic nuclear factor- 1α (HNF- 1α) in a Thai family with maturity onset diabetes of the young (MODY)

Kooptiwut, S.^{1*}, Sujjitjoon, J.², Tantibhedhyangkul, W.², Chongjaroen, N.², Plengvidhya, N.³, Banchuin, N.², Yenchitsomanus, P.⁴

¹Department of Physiology Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand ²Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand ³Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand ⁴Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Abstract

Maturity onset diabetes of the young (MODY) is a monogenic form of type 2 diabetes. Mutations of six individual genes are reported to cause MODY and in Caucasian mutations most commonly occurred on hepatocyte nuclear factor- 1α (HNF- 1α) gene. In the analysis of mutations in the six known MODY genes in Thai patients, Siriraj Diabetes Research Group (SiDRG) identified a novel mutation with an insertion of 14-nucleotides in HNF-1 α at the positions between 1659 and 1660. Computer analysis predicted a frameshift mutation introducing two new amino acids and an early stop at codon 556 (HNF-1\alpha G554SfsX556), generating a truncated protein with 555 instead of the full length of 631 amino acids. This mutation was observed in two generations of the MODY family but was not detected in 200 normal healthy controls. To study its function, $HNF-1\alpha$ G554SfsX556 was created from a wild-type $HNF-1\alpha$ construct by modified site-directed ligase-independent mutagenesis (SLIM) method. In vitro transcription and translation (TnT) assay showed the wild-type (WT) and truncated HNF-1α proteins with the sizes of 68 and 59 kDa, respectively. The truncated protein could bind to the promoter sequence as demonstrated by electrophoresis mobility shift assay (EMSA). The functional study of WT and mutant HNF-1α will be determined in both HeLa and βTC3 cells.

Keywords: diabetes, MODY, HNF-1 α, frameshift mutation, truncated protein, Thai

*Corresponding author.

Tel.: 0-2419-9720; Fax: 0-2411-5009 E-mail: siskw@mahidol.ac.th

A novel mutation causing a truncated hepatic nuclear factor- 1α (HNF- 1α) in a Thai family with maturity onset diabetes of the young (MODY)

Suwattanee Kooptiwut¹, Jatuporn Sujjitjoon², Wiwit Tantibhedhyangkul², Nalinee Chongjaroen², Nattachet Plengvidhya³, Napatawn Banchuin², Pa-thai Yenchitsomanus⁴

¹Department of Physiology, ²Department of Immunology, ³Department of Medicine, ⁴Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Introduction

Mutation of hepatocyte nuclear factor-1α (HNF-1α) gene causes a common form of maturity-onset diabetes of the young (MODY). Recently, Siriraj Diabetic Research Group identified a novel frameshift G554SfsX3 mutation (Fig 1A) of $HNF-1\alpha$ in Thai MODY patients. The G554SfsX3 mutation resulted in an insertion of 14 nucleotides, AGTGAGTGAAGCCC (Fig 2A), which contains a stop codon TGA at amino acid position 556. The mutation was detected in two generations of one MODY family (Fig. 2B) but was not observed in 200 normal healthy controls. This mutation is predicted to generate a truncated protein of 555 amino acids instead of the wild-type protein with 631 amino acids i.e. a part of C-terminal transactivation domain is deleted (Fig 1B). Therefore, $HNF-1\alpha$ G554SfsX3 mutation is most likely to be a pathogenic mutation. To perform functional studies of this mutation, HNF-1 α G554SfsX3 was created by site-directed ligase-independent mutagenesis (SLIM) to be transfected into a pancreatic β-cell line.

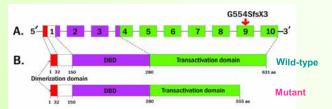


Figure 1. Genomic (A) and proteomic (B) structure of HNF-1α.

(A) The position of G554SfsX3 was found in exon 9. (B) The wild-type and mutant protein contain 631 and 555 amino acids (aa), respectively.

Spontaneous circularization by annealing of complementary overhangs

Results

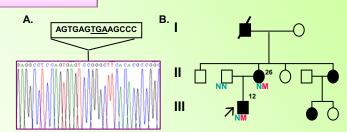
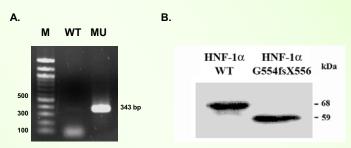



Figure 2. DNA sequencing (A) and pedigree (B) with proband who carries HNF-1 α G554SfsX3 mutation.

A. The inserted 14 nucleotides and stop codon were shown in box and underlined, respectively. (B) Family tree of proband and number indicates the age at diagnosis of each individual. The genotypes are indicated under symbols. N: normal, M: mutant allele.

All plasmids were screened by PCR using BGH-reverse and specific detection forward primers which contain 14 inserted nucleotides. The mutant plasmid could be amplified by PCR with target size 343 bp while the wild-type plasmid could not (Fig 3A). Subsequently, the plasmid with positive PCR screening were verified by DNA sequencing. Sequencing result of mutant plasmid showed an insertion of 14 nucleotides, AGTGAGTGAAGCCC, at the position between 1659 and 1660 of wild-type sequence. *In vitro* transcription and translation (TnT) assay showed the wild-type (WT) and mutated HNF-1α proteins with the sizes of 68 and 59 kDa, respectively. (Fig 3B).

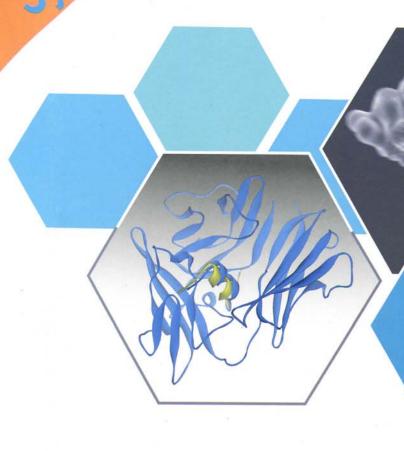
Figure 3. Agarose gel electrophoresis of PCR products and western blot analysis of *in vitro* transcription and translation (TNT) assay of wild type and mutant plasmids.

Conclusion

The recombinant plasmid containing $HNF-1\alpha$ G554SfsX3 mutation was generated by SLIM method. To study its functional impact, transfection and promoter assay will be performed in pancreatic β -cell line.

Acknowledgements

This work was supported by Thailand Research Funds and Siriraj Grant for research and development (to SK). NP was supported by Research Career Development Grant of Thailand Research Fund. JS was supported Siriraj Graduate Study Scholarship. PY is a TRF-Senior Research Scholar.


E-mail: siskw@mahidol.ac.th

Third Annual

Protein Society of Thailand

Trainos IIIII of Protein Society of Thailand

Frontiers in Protein Research

28-29 August 2008

Chulabhorn Research Institute Conference Center

Organized by

Poster Presentation 26 Kingkaew Piriyakananon Optimal immobilization of lipase from Candida rugosa on hydrophobic supports for the production of biodiesel
Poster Presentation 27 Sirikwan Ponprateep Effects of recombinant anti-lipopolysaccharide factor isoform 3 protein on vibriosis prevention in the black tiger shrimp <i>Penaeus monodon</i>
Poster Presentation 28 Nunghathai Sawasdee Visualization of interaction between kidney anion exchanger 1 (kAE1) and adaptor-related protein complex 1 µ1A subunit (AP1M1) by protein fragment complementary assay (PCA)
Poster Presentation 29 Thanyaporn Wongnate Investigation on the mechanism of flavin reduction in pyranose-2-oxidase using substrate analogue
Poster Presentation 30 Supriya Seshadri Characterization and preliminary crystallization of rice (<i>Oryza sativa</i>) Os3bglu6 rice β-glucosidase
Poster Presentation 31 Umpika Chotchayapong Thermal stability and denaturation rate of myoglobin from stripped-snake head fish (Ophiocephalus striatus)
Poster Presentation 32 Khakhanang Ratananikom Transglucosylation activities of dalcochinase mutant as assessed by reactivation kinetics
Poster Presentation 33 Warintra Pitsawong Probing interaction between bacterial luciferase and luxG protein
Poster Presentation 34 Chanthakan Nuchsuk Purification of a new heme-agglutinating protein from seed coat of physic nut
Poster Presentation 35 Surapong Pinitglang Three-dimensional structure by homology modeling and functional charaterization of falcipain-3: hemoglobinase from the malarial parasite <i>Plasmodium falciparum</i>
Poster Presentation 36 Siriya Thammachat Characterization of amino acids on N- and C-terminal fragments of Cyt2Aa2 toxin
Poster Presentation 37 Khajeelak chiabkaem Protocatechuic aldehyde and protocatechuic acid inhibit migration and matrix metalloprotease activity in MDA-MB-231 breast cancer cell line 57
Poster Presentation 38 Suparat Taengchaiyaphum Analysis of phosphoproteins in the hemocyte of <i>Penaeus monodon</i>

Poster Presentation 28

VISUALIZATION OF INTERACTION BETWEEN KIDNEY ANION EXCHANGER 1 (kAE1) AND ADAPTOR-RELATED PROTEIN COMPLEX 1 µ1A SUBUNIT (AP1M1) BY PROTEIN FRAGMENT COMPLEMENTARY ASSAY (PCA)

<u>Nunghathai Sawasdee</u>¹, Piengpaga Ngaojanlar¹, Thawornchai Limjindaporn^{1,2}, Pa-thai Yenchitsomanus^{1,3}

¹Division of Medical Molecular Biology, Department of Research and Development, ²Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, and ³Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA)

Kidney anion exchanger 1 (kAE1) is an exchanger of chloride (Cl⁻) and bicarbonate (HCO₃⁻) at the basolateral membrane of α-intercalated cells of the kidney. Defects of kAE1 may result in a kidney disease - distal renal tubular acidosis (dRTA) and most of these defects occur from impaired trafficking or mis-targeting of kAE1 to the basolateral membrane. However, the mechanism involving in trafficking and targeting of kAE1 to express at surface membrane is not yet known. We searched for proteins binding to the C-terminal tail of kAE1 (Ct-kAE1) which contains motifs crucial for its intracellular trafficking by yeast two-hybrid screen and identified an adaptor-related protein complex 1 µ1A subunit (AP1M1) or µ1A-adaptin as an interacting partner of Ct-kAE1. To confirm their interaction, kAE1 and µ1A-adaptin were expressed as full lengths in human embryonic kidney 293T cells (HEK 293T). In addition to co-immunoprecipitation (CoIP), co-purification and co-localization, their interactions were also examined by yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA). Two separate fragments of YFP were fused to the N-terminus of kAE1 and N-terminus of µ1A-adaptin. interactions between kAE1 and µ1A-adaptin in HEK 293T cells were demonstrated by intracellular yellow fluorescent signals. Such interactions may be important in the cell surface transport or recycle of kAE1.

Supported by Senior Research Scholar Grant of Thailand Research Fund (to PY) and Siriraj Graduate Scholarship (to PN).

Siriraj Medical Journal

Volume 60, Supplement 1, March 2008

http://www.sirirajmedj.com

การประชุมวิชาการ

120 ปี คีรีราข

Siriraj Scientific Congress

The 120th Anniversary of Siriraj Hospital

สู่ศักราชใหม่แห่วการแพทย์ชั้นเลิศและนวัตกรรม A New Era of Best Practice and Innovation

> 17-21 มีนาคม 2551 คณะแพทยศาสตร์ศิริราชพยาบาล

Mutations of Maturity-Onset Diabetes of the Young (MODY) Genes in Thais with Early-Onset Type 2 Diabetes Mellitus

Nattachet Plengvidhya¹, Watip Boonyasrisawat², Nalinee Chongjaroen², Prapaporn Jungtrakoon², Sutin Sriussadaporn¹, Sathit Vannaseang¹, Napatawn Banchuin², Pa-thai Yenchitsomanus³

angers,) economology and Metabolism. Department of Medicine. ^{*}Department of Immunology. *Division of Riccical Metacular Biothey в под так Верешой and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bandkok 19700 "Inaliand".

Objective: Six known genes responsible for maturity-onset diabetes of the young (MODY) were analyzed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes.

Materials and Methods: Fifty-one unrelated probands with early-onset type 2 diabetes, twenty-one of whom were well-suited with classic MODY criteria, were analyzed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including $HNF-4\alpha$, GCK, $HNF-1\alpha$, IPF-1, $HNF-1\beta$, and $NeuroD1/\beta2$, by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in the regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations.

Results: We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, $HNF-1\alpha$ P475L, $HNF-1\alpha$ S554fsX556, NeuroD -303G>A and NeuroD A322N. Mutation of IPF-1 and $HNF-1\beta$ was not identified in the studied probands.

Conclusion: Genetic variability of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

Mutations of Maturity-Onset Diabetes of the Young (MODY) genes in Thais with Early-Onset Type 2 Diabetes Mellitus

Nattachet Plengvidhya¹, Watip Boonyasrisawat², Nalinee Chongjaroen², Prapaporn Jungtrakoon², Sutin Sriussadaporn¹, Sathit Vannaseang¹, Napatawn Banchuin², Pa-thai Yenchitsomanus³

¹Division of Endocrinology and Metabolism, Department of Medicine, ²Department of Immunology, ³Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

INTRODUCTION

Maturity-onset diabetes of the young (MODY) is a special monogenic form of type 2 diabetes characterized by young age at onset usually before 25 years and autosomal dominant inheritance. To date, mutations in any one of six genes are described as a cause of MODY, including $HNF-4\alpha IMODY1$, GCKIMODY2, $HNF-1\alpha IMODY3$, IPF-1IMODY4, $HNF-1\beta IMODY5$, and NeuroD1IMODY6. All of them encode transcription factors expressed in pancreatic β-cell, excepting for glucokinase (GCK) which is a key enzyme involve in glycolytic and insulin secretory processes. Schematic model of a pancreatic β-cell and the proteins implicated in MODY was shown in Figure 1. The prevalence of mutations in each MODY gene is different among various ethic groups. Therefore, it is interesting to study the prevalence of MODY gene mutations in Thai patients.

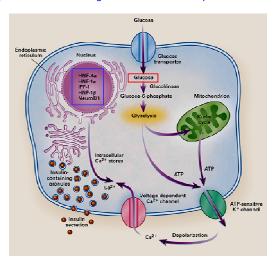


Figure 1 Pancreatic β -cell and the proteins implicated in MODY.

OBJECTIVE

Six known genes responsible for maturity-onset diabetes of the young (MODY) were analyzed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes.

MATERIALS AND METHODS

We screened the promoters, exons, and exon-intron boundaries of six known MODY genes, including $HNF-4\alpha$, GCK, $HNF-1\alpha$, IPF-1, $HNF-1\beta$, and $NeuroD1/\beta2$ for mutation in 51 unrelated probands with early-onset type 2 diabetes, 21 of whom were well-suited with classic MODY criteria by PCR-SSCP technique followed by direct sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations.

RESULTS

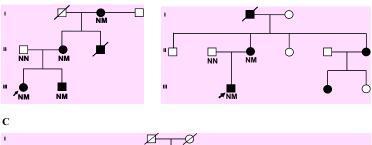
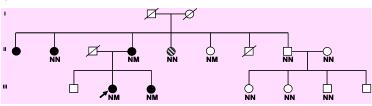

A total of thirty seven nucleotide variations were identified. Seven of them were potentially pathogenic mutations (Table1). Five of these mutations are novel, including GCK R327H, $HNF-1\alpha$ P475L, $HNF-1\alpha$ G554fsX556, NeuroD1 -303G>A and NeuroD1 A322N. $HNF-1\alpha$ R203C and G554fsX556 is segregated with the disease in family (Figure 2). Mutation of IPF-1 and $HNF-1\beta$ were not identified in the studied probands. We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais.

Table 1 Possibly pathogenic mutations of four MODY genes observed in Thai patients.


Gene	Location	Nucleotide change	Designation	Family	Subject	Segregating with disease
HNF-4α (MODY1)	Exon 8	C <u>G</u> T>C <u>A</u> T	R312H ^b	F019	M19	ND
GCK (MODY2)	Exon 8	C <u>G</u> C>C <u>A</u> C	R327H ^{a,b}	F049	M49	ND
HNF-1α (MODY3)	Exon 3	<u>с</u> ст> <u>т</u> ст	R203Cb	F043	M43	Yes
	Exon 7	CCG>CTG	P475La,b	F022	M22	ND
	Exon 9	Insertion 14 nt	G554fsX556ª	F027	M27	Yes
NeuroD1 (MODY6)	Promoter	G>A	-303G>Aª	F036	M36	ND
	Exon 2	GCT>AAT	A322Na,b	F050	M50	No

a Novel sequence variations

b Sequence variations alter amino acids that are conserved across species.

В

Figure 2 Pedigrees of probands carried mutations of $HNF-1\alpha$ R203C (A), $HNF-1\alpha$ G554fsX556 (B which segregated with diabetes in the affected families but NeuroD1 A322N did not (C). Relatives of probands who carried $HNF-4\alpha$ R312H, GCK R327H, and $HNF-1\alpha$ P475L were not available for the study. "N" refers to the normal allele and "M" refers to a mutated allele.

CONCLUSION

Mutations in *HNF-1* \(\alpha\) MODY3 are more common among patients being studies, compared to other 5 MODY genes. However, these 6 known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

ACKNOWLEDGEMENTS

This work was supported by the Research Career Development Grant of Thailand Research Fund (TRF) (to NP), TRF-RGJ Ph.D. scholarship (to WB and PJ) and Siriraj Grant for Research Development (to NP). PT is TRF Senior Research Scholar.

Genetic Variabilities of *Nkx6.1* and *Nkx2.2* in Thais with Maturity-Onset Diabetes of the Young (MODY)

Napat Songtawee^{1,3}, Nattachet Plengvidhya², Watip Boonyasrisawat¹, Napatawn Banchuin¹, Pa-thai Yenchitsomanus³

Department of Immunology ²Department of Medicine ³Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700. Thailand

Objective: MODY is a monogenic subtype of Type 2 diabetes characterized by early onset, autosomal dominant inheritance, and impaired insulin secretion. Mutations in six different genes have been found to cause MODY; including, glucokinase, $HNF-4\alpha$, $HNF-1\beta$, IPF-1, $HNF-1\alpha$ and NeuroD1. However, some families with clinical diagnosis of MODY do not carry mutations in these known genes. Thus, additional MODY genes should exist. In animal models, transcription factors Nkx6.1 and Nkx2.2 have been shown to play an important role in β -cell development, suggesting that their genes may potentially be candidates for MODY. The aim of this study was to investigate whether genetic variations of Nkx6.1 and Nkx2.2 are observed in Thai patients with MODY.

Materials and Methods: We screened the coding regions and intron-exon boundaries of the Nkx6.1 and Nkx2.2 for mutations in 46 probands of families with clinical diagnosis of MODY using PCR-SSCP technique followed by direct sequencing. All of the six known MODY genes have already been excluded in these families.

Results: A mutation resulting in substitution of methionine by isoleucine at position 28 (M28I) of Nkx6.1 was identified in one proband. In addition, substitution of leucine by proline at position 35 (L35P) was found in one proband and in one normal control. A TCGTCG deletion at codon 54-55 (S54-55del) of Nkx6.1 was observed in one normal control. An intronic SNP (IVS2+28A \rightarrow C) was observed with higher frequencies in MODY probands than in normal controls although it did not reach statistical significance. A SNP 3' UTR+12A \rightarrow G of Nkx2.2 was identified in one proband and 3' UTR+41C \rightarrow T was observed in one normal control. In addition, substitution of asparagine by lysine (N36K) of Nkx2.2 was found in one proband and four normal controls.

Conclusion: The genetic variabilities of *Nkx6.1* and *Nkx2.2* are not a major cause of MODY in Thai patients being studied. Thus, these families are precious resources for identifying novel MODY genes.

Genetic Variabilities of Nkx6.1 and Nkx2.2 in Thais with Maturity-Onset Diabetes of the Young (MODY)

Napat Songtawee^{1,2}, Nattachet Plengvidhya³, Watip Boonyasrisawat¹, Napatawn Banchuin¹, Pa-thai Yenchitsomanus²

¹Department of Immunology, ²Division of Medical Molecular Biology, Department of Research and Development, ³Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

INTRODUCTION

Maturity onset diabetes of the young (MODY), a monogenic subtype of type 2 diabetes, is characterized by autosomal dominant inheritance, early onset, and β cell dysfunction. MODY is caused by mutations in 6 different genes encoding glucokinase enzyme and transcription factors: HNF-4 α , HNF-1 α , IPF-1, HNF-1 β and NeuroD1. All of them are expressed in β -cells of pancreas (Figure 1). However, some families with clinical diagnosis of MODY do not carry mutations in these known genes. Thus, additional MODY genes should exist.

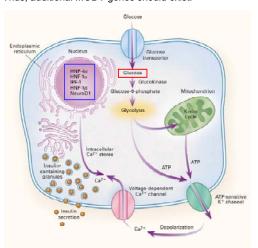


Figure 1 Pancreatic β -cell and the proteins implicated in MODY (Fajans et al NEJM 2001).

Identification of MODY genes has highlighted the role of transcription factors in the development of diabetes. In animal models, transcription factors Nkx6.1 and Nkx2.2 have been shown to play a crucial role in β-cell development (Figure 2), suggesting that the genes encoding these 2 transcription factors may potentially be candidate genes for the development of MODY.

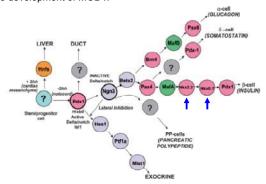


Figure 2 Role of transcription factors during cell differentiation within developing pancreas (Habener et al Endocrinology 2005).

OBJECTIVE

To investigate whether genetic variations of Nkx6.1 and Nkx2.2 genes are observed in Thai patients with MODY and early-onset type 2 diabetes.

MATERIALS AND METHODS

We screened coding regions and intron-exon boundaries of Nkx6.1 and Nkx2.2 genes for mutations in 46 probands of families with clinical diagnosis of MODY or early-onsettype 2 diabetes by using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique followed by direct sequencing. All of the 6 known MODY genes have already been excluded in these families.

RESULTS

Summary of nucleotide variations identified in Nkx6.1 gene.

		Nucleotide			Ge	notype	Allele frequency						
Location Co	Codon/nt	change	Designation	МО	DY (n =	- 46)	Con	trol (n	М	ODY	Control		
Exon 1	31	AT <u>G</u> → AT <u>C</u>	M31I	G/G 45 0.98	G/C 1 0.02	C/C 0 0.00	G/G 74 1.00	G/C 0 0.00	C/C 0 0.00		0.99 0.01	G: C:	1.00 0.00
	35	C <u>T</u> G → C <u>C</u> G	L35P	T/T 45 0.98	T/C 1 0.02	C/C 0 0.00	T/T 73 0.99	T/C 0 0.00	C/C 1 0.01	T: C:	0.99 0.01	T: C:	
	54-55	TCGTCG deletion ^a	S54-55del	N/N 46 1.00	N/∆ 0 0.00	Δ/Δ 0 0.00	N/N 73 0.99	N/∆ 1 0.01	Δ/Δ 0 0.00		1.00 0.00	N : Δ:	0.99 0.01
Intron 2	nt+28	A→C♭	IVS2+28 A→C °	A/A 18 0.39	A/C 23 0.50	C/C 5 0.11	A/A 30 0.41	A/C 37 0.50	C/C 7 0.09	A: C:	0.64 0.36	A: C:	0.66 0.34

- six nucleotides (TCGTCG) deletion results in the in-frame deletion of serine at position 54-55.
 nucleotide change at the position -22 relative to the splice donor site of intron 2.
 VSZ nt-28 A-V Show high frequencies with no statistically significant difference.

Summary of nucleotide variation identified in Nkx2.2 gene.

Location		Nucleotide		Genotype frequency									Allele frequency			
	Codon/nt alteration Designation				DY (n =	46)	Con	trol (n	М	ODY	Control					
Exon 1	36	AA <u>C</u> → AA <u>A</u>	N36K	C/C 45 0.98	C/A 1 0.02	A/A 0 0.00	C/C 70 0.95	C/A 4 0.05	A/A 0 0.00		0.99 0.01	C: A:				
3' UTR	nt+12	A → G ª	3'UTR+12 C → G	A/A 45 0.98	A/G 1 0.02	G/G 0 0.00	A/A 74 1.00	A/G 0 0.00	G/G 0 0.00		0.99 0.01	A: G:				
	nt+41	C → T b	3'UTR+41 C → T	C/C 46 1.00	C/T 0 0.00	T/T 0 0.00	C/C 73 0.99	C/T 1 0.01	T/T 0 0.00		1.00 0.00	C: T: (

nucleotide change at the position +12 relative to the stop codon (TGA) in the 3' untranslated region nucleotide change at the position +41 relative to the stop codon (TGA) in the 3' untranslated region

Nkx6.1 S54-55del Nkx2.2

Gene structure and nucleotide variations identified in the Nkx6.1 and Nkx2.2 genes. The boxes represent exons and the horizontal lines represent introns. and indicate the NK decapeptide domain and homeodomain, respectively.

CONCLUSION

A possibly pathogenic mutation for Nkx6.1 (M31I) and Nkx2.2 (3' UTR+ 12A→G) was identified in one proband each. However, the genetic variations of these two genes are not a major cause of MODY and early-onset type 2 diabetes in Thai patients studied. These families are precious resources for identifying novel genes responsible for MODY.

ACKNOWLEDGEMENTS

This work was financially supported by Siriraj Grant for Research Development and Thailand Research Fund (TRF)-Research Career Development Grant (to NP). NS was supported by BIOTEC (NSTDA) Graduate Scholarship and WB by TRF-Royal Golden Jubilee (RGJ) Ph.D. Scholarship. PY is a TRF-Senior Research Scholar.

Association Analysis of *Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)* Polymorphisms and Type 2 Diabetes Mellitus in Thai Patients

Wanisa Salaemae¹, Nattachet Plengvidhya², Napatawn Banchuin¹, Pa-thai Yenchitsomanus³

'Department of Immunology, ²Department of Medicine, ³Division of Medical Molecular Biology, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Objective: Peroxisome proliferator-activated receptor gamma (PPAR γ) regulates cellular functions related to lipid metabolism, glucose homeostasis, and adipocyte differentiation. It has recently been shown that polymorphisms of $PPAR\gamma$ might influence the genetic susceptibility to type 2 diabetes mellitus (T2D); however, the results have been somewhat inconsistent in different populations. The purpose of this study was to investigate the association of $PPAR\gamma$ polymorphisms, especially Pro12Ala, with clinical features in T2D Thai patients.

Materials and Methods: 285 T2D patients and 258 non-diabetic controls were genotyped for Pro12Ala and several tag-single nucleotide polymorphisms (tagSNPs) in the $PPAR\gamma$ gene by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Chi-square (χ^2) test, Mann-Whitney U test, Kruskal-Wallis H test and independent-T test were used in statistical analysis.

Results: Eventhough the association between Pro12Ala polymorphism and T2D was not found, some polymorphisms were significantly associated with particular clinical features in the studied subjects. In addition, a unique electrophoretic mobility shift of an amplified fragment from exon 6 was noted, possibly suggesting a private mutation, and was detected in one diabetic patient.

Conclusion: Pro12Ala polymorphism was not associated with T2D in the group of Thai patients studied. However, some of these polymorphisms may influence particular clinical features. A unique electrophoretic mobility shift in exon 6 is worth further investigation.

Association Analysis of *Peroxisome Proliferator-Activated Receptor Gamma* (*PPARy*) Polymorphisms and Type 2 Diabetes Mellitus in Thai Patients

Wanisa Salaemae¹, Nattachet Plengvidhya², Napatawn Banchuin¹, Pa-thai Yenchitsomanus³

¹Department of Immunology, ²Division of Endocrinology and Metabolism, Department of Medicine, ³Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Introduction

Polymorphisms of several human genes have been found to influence genetic predisposition to complex, multifactorial forms of type 2 diabetes (T2DM). One of those genes is *peroxisome proliferator-activated receptor gamma* ($PPAR\gamma$) that regulates cellular functions related to lipid metabolism, glucose homeostasis, and adipocyte differentiation. In addition, sequence variations in $PPAR\gamma$ are associated with several metabolic diseases. Drugs that activate PPAR γ , thiazolidinediones, are currently used to treat T2DM and $PPAR\gamma$ polymorphisms may affect its therapeutic response. $PPAR\gamma$ polymorphisms are known to be different in various populations; however, these are unknown in Thai population.

Objective

To investigate the association between $PPAR\gamma$ polymorphisms and T2DM as well as certain clinical characteristics in Thai patients. The studied polymorphisms include Pro12Ala and three tag-single nucleotide polymorphisms (tagSNPs) i.e. rs3856806 (C161 \rightarrow T), rs9817428, and rs4135275. Locations of the polymorphisms are shown in Figure 1.

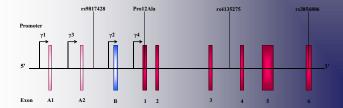


Figure 1 Physical locations of the studied human PPARy polymorphisms.

Materials and Methods

Type 2 diabetic patients (n = 277) were recruited at the Diabetic Clinic, Siriraj Hospital, Mahidol University. The individuals in the control group (n = 337) had normal fasting plasma glucose levels without family history of T2DM among first and second degree relatives. Genomic DNA was extracted from peripheral blood mononuclear cells by standard protocol. Genotyping was performed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Differences in distribution of alleles and genotypes between the groups were assessed by the χ^2 test. All other statistical analyses were done using SPSS statistical analysis software version 13.0 for Windows.

Results

Genotypes were found to be in Hardy-Weinberg equilibrium for both T2DM and controls. The frequencies of the alleles and genotypes are not different between the groups (Table 1). Table 2 represents the genotype means for each of the outcome variables of Pro12Ala, C161→T, and rs4135275 that showed significant association with different characteristics such as weight, body mass index (BMI), waist, hip, systolic blood pressure (systolic BP), fasting plasma glucose, and triglyceride. The results of rs9817428 did not produce any positive findings.

Table 1 Results of *PPARγ* SNP genotyping in the patients with T2DM and control group showing as allele and genotype frequencies. The numbers in parentheses are percentages.

Polym orphic site		Ai	lele	Genotype					
		1	2	11	12	22			
Pro12Ala (C/G)	T2DM	534 (0.964)	20 (0.036)	257 (0.928)	20 (0.072)	0 (0.000)			
	Controls	651 (0.966)	23 (0.034)	315 (0.935)	21 (0.062)	1 (0.003)			
		P = 0	0.852	P = 0.797					
C161→T (C/T)	T2DM	412 (0.744)	142 (0.256)	148 (0.534)	116 (0.419)	13 (0.047)			
	Controls	511 (0.758)	163 (0.242)	190 (0.564)	131 (0.389)	16 (0.047)			
		P = 0).559)	P = 0.747					
rs9817428 (C/A)	T2DM	279 (0.504)	275 (0.496)	75 (0.271)	129 (0.466)	73 (0.264)			
	Controls	361 (0.536)	313 (0.464)	104 (0.309)	153 (0.454)	80 (0.237)			
		P = (0.264	P=0912					
rs4135275 (A/G)	T2DM	291 (0.525)	263 (0.475)	80 (0.289)	131 (0.473)	66 0.238			
	Controls	358 (0.531)	316 (0.469)	102 (0.303)	154 (0.457)	81 (0.240)			
		P = 0	0.838	P = 0.546					

Table 2 The association between PPARγ polymorphisms and either clinical characteristics in both type 2 diabetic patients and controls.

Polymorphic site	Characteristics			Mean ± SD			P value			
Pro12Ala (C/G)			cc	CG + GG		CC&(CG+GG)	CC&CG&GG	(CC+CG)&GG		
	BMI (kg/m ²)	T2DM	27.97 ± 5.59	27.71 ± 3.66		0.773*	-	-		
		Controls	23.99 ± 3.23	22.00 ± 1.88		0.029*	0.067 ^b	0.889ª		
	Waist (cm)	T2DM	\$8.46 ± 11.65	83.83 ± 17.27		0.682*				
		Controls	82.53 ± 9.41	77.54 ± 4.29		0.002*	0.096 ^d	0.605°		
C161→T (C/T)			cc	CT	TT	CC&(CT+TT)	CC&CT&TT	(CC+CT)&TT		
	weight (kg)	T2DM	71.05 ± 13.44	67.05 ± 16.96	73.3 ± 17.68	0.019 ^a	0.020 ^b	0.372 ^a		
		Controls	59.33 ± 9.98	58.67 ± 9.83	59.12 ± 8.03	0.732ª	0.823 ^d	0.686*		
	BMI (kg/m ²)	T2DM	28.49 ± 4.72	27.06 ± 6.00	29.52 ± 8.11	0.010 ^a	0.019 ^b	0.632 ^a		
		Controls	24.17 ± 3.38	23.51 ± 2.94	23.26 ± 2.75	0.220*	0.454	0.545*		
	Waist (cm)	T2DM	89.71 ± 11.40	85.96 ± 10.97	89.70 ± 22.69	0.0574	0.017	0.4032		
		Controls	\$3.07 ± 9.35	\$1.47 ± 2.94	78.79 ± 7.76	0.131 ^s	0.2074	0.222 ^k		
	Hip (cm)	T2DM	100,70 = 9.83	97.14 ± 9.17	99.00 ± 25.77	0.010a	0.075	0.9825		
	15.00 PM	Controls	96.18 ± 7.21	95.12 ± 6.04	92.38 ± 9.75	0.262*	0.5272	0.654*		
	Fasting glucose (mg/dl)	T2DM	196.55 ± 98.85	212.55 ± 85.83	261.2 ± 168.04	0.039*	0.1095	0.358*		
		Controls	87.55 ± 6.18	87.96 ± 6.27	89.83 ± 8.62	0.496*	0.441 ⁶	0.2181		
	Triglyceride (mg/d)	T2DM	206.36 ± 257.67	182.02 ± 95.12	363.4 = 350.38	0.441*	0.041*	0.011		
	2000 0000000000000000000000000000000000	Controls	105.75 ± 54.79	115.59 ± 66.60	107.83 ± 58.45	0.403*	0.6370	0.8431		
rs4135275 (A/Q)			AA	AG	GG	AA&(AG+GG) AA&AG&GG (AA+AG)&				
	weight (kg)	T2DM	67.61 = 11.37	71.83 ± 17.86	67.21 ± 13.03	0.406*	0.020	0.277*		
		Controls	60.30 ± 11.06	59.17 ± 8.43	59.25 ± 10.46	0.543*	0.8069	0.9998		
	BMI (kg/m ²)	T2DM	26.92 ± 3.85	28.92 ± 6.62	27.27 ± 4.26	0.142*	0.019*	0.526*		
	100000000000000000000000000000000000000	Controls	23.82 ± 3.03	23.58 ± 3.15	24.39 ± 3.42	0.965*	0.3314	0.220 ^a		
	Hip (cm)	T2DM	97.54 = 10.90	100.61 ± 11.30	98.28 ± 9.73	0.431	0.0179	0.394*		
	100000000000000000000000000000000000000	Controls	96.18 ± 5.83	94.96 ± 7.51	96.05 ± 7.24	0.483*	0.690 th	0.846 ^a		
	Systolic BP (mmHg)	TIDM	129.08 = 15.98	135.51 = 19.53	133.11 = 16.11	0.040*	0.9425	0.851*		
		Controls	115.83 = 13.26	114.56 ± 14.57	118.63 ± 16.63	0.915*	0.357 ^b	0.1994		
	Triglyceride (mg/dl)	T2DM	226.18 ± 214.37	165.86 ± 85.11	255.87 ± 355.68	0.415*	0.041 ^B	0.021*		
		Controls	105.33 ± 51.74	108.77 ± 64.52	114.76 ± 59.93	0.613*	0.3890	0.1698		

Note: Data were analyzed by using ^a Mann-Whitney U Test, ^b Kruskal-Wallis H Test, ^c T-test, ^d ANOVA

Interestingly, an abnormal electrophoretic mobility shift of amplified fragment from exon 6 was found in one diabetic patient (P46). The result of direct sequencing demonstrated a novel polymorphism with dinucleotide (AG) deletion downstream to the stop codon in 3' UTR of $PPAR\gamma$ (Fig. 2a, b, c).

(c) Heterozygous (P46)

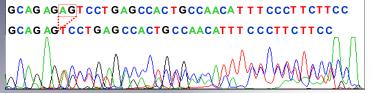


Figure 2 A novel polymorphism with dinucleotide (AG) deletion in 3' UTR in PPARy.

- (a) Location of novel polymorphism in PPARγ.
- (b) In 500 unrelated subjects, a unique electrophoretic mobility shift on polyacrylamide gel was detected in one subject, P46 in lane 2.
- (c) Heterozygous nucleotide pattern of P46. Upper, wild-type PPARγ seuence; lower, frame shift sequencing corresponding to AG deletion.

Conclusion

No association between studied $PPAR\gamma$ polymorphisms and T2DM was observed in the groups of patients and controls analyzed in this study. However, we found that Ala allele at Pro12Ala SNP is associated with lower BMI and waist when compared with Pro allele in the control group. In contrast, significant association of C161 \rightarrow T and rs4135275 with the clinical characteristics were shown in the patient group. The feature of metabolic syndrome was clearly present in the patient group who carried T allele at C161 \rightarrow T when compared with the C allele. A novel polymorphism, delAG in 3' UTR, is interesting to be investigated further for its effect on mRNA stability and association with T2DM.

Acknowledgements

This work was supported by a Research Grant from Mahidol University. PY is supported by Senior Research Scholar Grant from Thailand Research Fund (TRF).

Distal Renal Tubular Acidosis Caused by a Novel Compound Heterozygous A858D/G701D Mutations in Human Solute Carrier Family 4, Anion Exchanger, Member 1 (SLC4A1) Gene

Nunghathai Sawasdee¹, Sookkasem Khositseth², Wandee Udomchaiprasertkul¹, Siri Khoprasert³, Jing Li⁴, Reinhart A.F. Reithmeier⁴, Pa-thai Yenchitsomanus¹

¹Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University. Bangkok 10700, ²Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani 12120. Thailand, ³Departments of Biochemistry and Medicine, University of Toronto, Ontario M5S 1A8, Canada, ⁴Surajthani Hospital, Thailand

Objective: Distal renal tubular acidosis (dRTA) caused by a novel compound heterozygous A858D/G701D mutations in the human solute carrier family 4, anion exchanger, member 1 (SLC4A1) was diagnosed in two pediatric patients from one Thai family. To further investigate for the molecular defect associated with this compound heterozygous condition, we expressed and co-expressed mutant kidney AE1 (kAE1) proteins in human embryonic kidney (HEK) 293 and Madin-Darby canine kidney (MDCK) epithelial cells and investigated their interaction, trafficking, and cellular localization.

Materials and Methods: HEK 293 cells were transfected or co-transfected with recombinant plasmids containing either wild-type kAE1, kAE1 A858D or kAE1 G701D cDNA, tagged with the sequence of either His-, HA- or Myc-epitope and examined for protein expression by Western blot assay, protein dimerization by co-purification and co-immunoprecipitation, and subcellular localization by double-immunofluorescence staining and confocal microscopy. Additionally, cell surface expression of kAE1 was analyzed by fluorescent activated cell sorting (FACS). Similar studies were also performed in non-polarized and polarized MDCK cells using a retroviral-derived expression system.

Results: In the individual expression in HEK 293 and MDCK cells, the wild-type kAE1 was localized at the cell surface, kAE1 A858D was observed both in the cytoplasm and on the cell surface, but kAE1 G701D was present mainly in the cytoplasm, confirming the results of our previous studies. In the co-expression experiments, the wild-type kAE1 could form heterodimers with either kAE1 A858D or kAE1 G701D and rescued the mutant proteins to express on the cell surface. The co-expression of kAE1 A858D and kAE1 G701D resulted in heterodimer formation, but in predominantly intracellular retention in both HEK 293 and MDCK cells.

Conclusion: The trafficking defect and decreased expression of kAE1 A858D and kAE1 G701D on the cell surface likely resulted in a decrease of functional kAE1 at the basolateral membrane of the α-intercalated cells in the kidney, and finally caused dRTA.

Pa-thai Yenchitsomanus¹

Distal renal Tubular Acidosis Caused by Novel Compound Heterozygous A858D/G701D Mutations in Human Solute Carrier Family 4, Anion Exchanger, Member 1 (SLC4A1) Gene

Nunghathai Sawasdee¹, Sookkasem Khositseth², Wandee Udomchaiprasertkul¹, Siri Khopraset³, Ling Li⁴, Reinhart A.F. Reithmeier⁴,

¹Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, ²Department of Pediatrics, Faculty of Medicine, Thammasat University, ³Surajthani Hospital, Thailand, ⁴Departments of Biochemistry and Medicine, University of Toronto, Ontario, Canada

BACKGROUND

We have recently identified two pediatric patients with distal renal tubular acidosis (dRTA) caused by novel compound heterozygous A858D/G701D mutations in human solute carrier family 4, anion exchanger, member 1 (SLC4A1), encoding kidney anion exchanger 1 (kAE1), in a Thai family (AJKD 2007; AJH 2008). However, the molecular defect associated with this compound heterozygous condition is unknown. We therefore investigated into interaction, trafficking, and cellular localization of wild-type and mutant kAE1 proteins expressed and co-expressed in cultured cell lines.

OBJECTIVE

To investigate interaction, trafficking, and cellular localization of wild-type and mutant kidney AE1 (kAE1) proteins expressed and co-expressed in human embryonic kidney (HEK) 293 and Madin-Darby canine kidney (MDCK) epithelial cells.

METHODS Construction of recombinant plasmid and site-directed mutagenesis (Recombinant plasmids containing wild-type and mutant kAE1 cDNA) Transfection and co-transfection of recombinant plasmids into HEK 293 and MDCK cells Western blot analysis **FACS** analysis (Cell surface expression) (Protein expression) His-tagged co-purification Immunofluorescence and co-immunoprecipitation (Cellular localization) (Protein-protein interaction)

RESULTS

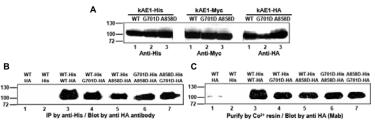


Figure 1. Expression of wild-type (WT) and mutant kAE1 fusion proteins in HEK 293 cells analyzed by Western blot method (A), and interaction of wild-type and mutant kAE1 fusion proteins in HEK 293 cells analyzed by co-immunoprecipitation (B) and affinity co-purification (C).

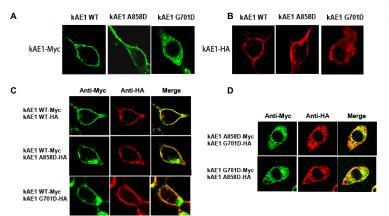


Figure 2. Cellular localization of WT and mutant kAE1 tagged with Myc epitope (A) or hemagglutinin (HA) (B), co-localization of WT and mutant kAE1 (C), and co-localization of two mutant kAE1 (D) in HEK 293 cells, detected by immunofluorescence staining and confocal microscopy.

RESULTS (cont.)

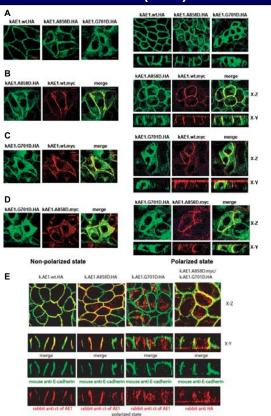


Figure 3. Cellular localization of WT or mutant kAE1 (A), WT and mutant kAE1 (B-C), and two mutant kAE1 (D) in non-polarized (top-left panel) and polarized (top-right and bottom panels) MDCK cells. E-cadherin (epithelia basolateral marker) was used to co-stain with WT, mutant, or two mutant kAE1 in polarized MDCK cells (E).

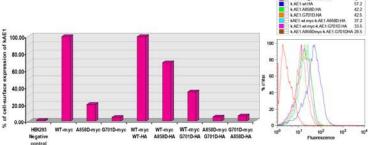


Figure 4. Percentage of cell surface expression of WT and mutant kAE1 in HEK 293 (A) and MDCK cells (B) detected by flow cytometry.

SUMMARY

When they were individually expressed, wild-type kAE1 was localized at the surface of HEK 293 cells (Fig. 2A & B) and MDCK cells (Fig. 3A), kAE1 A858D was observed both in the cytoplasm and at the cell surface but kAE1 G701D was mainly retained in the cytoplasm. When they were co-expressed, the wild-type kAE1 could form heterodimers with either kAE1 A858D or kAE1 G701D (Fig. 1B & C) and rescued the mutant proteins to express on the cell surface (Fig. 2C, 3B & C). The co-expressed kAE1 A858D and G701D could also form heterodimer (Fig. 1B & C) but showed intracellular retention in both HEK 293 and MDCK cells (Fig. 2D and Fig. 3D). kAE1 A858D might partially rescue kAE1 G701D to the cell surface (Fig. 3E). The impaired trafficking and intracellular retention of kAE1 A858D and G701D would lead to decrease functional kAE1 at the basolateral membrane – this molecular defect might occur in the kidney α -intercalated cells in the dRTA patients with the novel compound heterozygous mutations.

A Novel *Hepatocyte Nuclear Factor-1α* Frameshift (G554fsX556) Mutation Identified in a Thai MODY Family Decreases Transcriptional Activity on Human GLUT2 and Rat L-PK Promoters in HeLa Cell Line

Jatuporn Sujjitjoon¹, Suwattanee Kooptiwut², Titikan Chukijrungroat², Wiwit Tantibhedhyangkul¹, Namoiy Semprasert², Nattachet Plengvidhya³, Napatawn Banchuin¹, Pa-thai Yenchitsomanus⁴

¹Department of Immunology. ²Department of Physiology. ³Division of Endocrinology and Metabolism, Department of Medicine, ⁴Division of Medical Molecular Biology. Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700. Thailand

Objective: Siriraj Diabetic Research Group identified a novel $HNF-1\alpha$ frameshift (G554fsX556) mutation, resulted from an insertion of 14 nucleotides, into members of a Thai family with maturity-onset diabetes of the young (MODY). This mutation generates a truncated protein containing 555 amino acids, which lacks a part of C-terminal transactivation domain. To examine the transcriptional activity of the $HNF-1\alpha$ G554fsX556 mutation on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters, luciferase activity was measured in HeLa cells transiently co-transfected with two different plasmid constructs, one containing the mutant gene and the other containing one of the two promoters which was placed to control the luciferase reporter gene.

Materials and Methods: pcDNA3.1-HNF-1 α G554fsX556 mutant plasmid was created by modified site-directed ligase-independent mutagenesis method and entire coding sequences of all constructs were verified by automated DNA sequencing. HeLa cells were transiently transfected with pcDNA3.1 empty vector or HNF-1 α wild-type or HNF-1 α G554fsX556 mutant together with pGL3-hGLUT2 or pGL3-rat L-PK reporter vector and pRL-SV40 vector using Fugene 6 reagent. After 24 hours of transfection, the cells were lysed and luciferase activity was measured using Dual-Luciferase® Reporter (DLR) Assay. Normalized luciferase activities from three independent experiments were shown in mean \pm SEM and analyzed by unpaired student's t test. The p-value <0.05 was considered to have statistically significant difference.

Results: The normalized luciferase activities of $HNF-1\alpha$ wild-type and G554fsX556 mutant on human GLUT2 promoter in the HeLa cell line were 3.62±0.35 and 2.16±0.21, respectively (p<0.05). Similarly, the normalized luciferase activities of $HNF-1\alpha$ wild-type and G554fsX556 mutant on rat L-PK promoter in the HeLa cell line were 14.05±1.53 and 7.79±0.76, respectively (p<0.05).

Conclusion: A truncated HNF-1 α G554fsX556 protein had a significantly reduced transactivation on human GLUT2 and rat L-PK promoters when compared to HNF-1 α wild-type. The loss of function of HNF-1 α G554SfsX556 might be involved in impaired β -cell function and pathogenesis of MODY.

A novel *hepatocyte nuclear factor-1α* frameshift (G554fsX556) mutation identified in a Thai MODY family decreases transcriptional activity on human GLUT2 and rat L-PK promoters in HeLa cell line

Α.

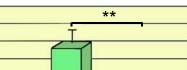
Jatuporn Sujjitjoon¹, Suwattanee Kooptiwut², Titikan Chukijrungroat², Wiwit Tantibhedhyangkul¹, Namoiy Semprasert², Nattachet Plengvidhya³, Napatawn Banchuin¹, Pa-thai Yenchitsomanus⁴ ¹Department of Immunology, ²Department of Physiology, ³Division of Endocrinology and Metabolism, Department of Medicine, ⁴Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

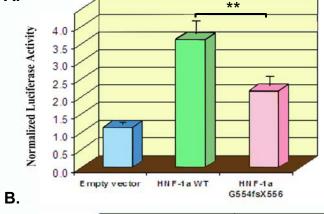
INTRODUCTION

A novel hepatocyte nuclear factor- 1α (HNF- 1α) frameshift (G554fsX556) mutation, resulted from an insertion of 14 nucleotides, was identified by our group in a Thai family (Fig 1) with maturity-onset diabetes of the young (MODY). This mutation generates a truncated HNF-1α protein containing 555 lacking part acids. а of transactivation domain. However, its transactivation function on the downstream genes is unknown. We therefore examine the transcriptional activity of the HNF-1α G554fsX556 protein on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters, transient transfection and luciferase reporter assay were performed.

Figure 1. Segregation of the *HNF-1α* G554fsX556 mutation in MODY family

Diabetic and nondiabetic subjects are indicated by filled and open symbols, respectively. The age at diagnosis and genotypes (N, normal $HNF-1\alpha$; M, mutant $HNF-1\alpha$) are shown.


Cell culture plate Plasmid construction er Glu Sto Transient Transfection Preparation of cell lysate Dual-Luciferase Reporter assay


Data analysis

METHODS

Figure 2. Schematic representation of plasmid construction, transient transfection and luciferase reporter assay.

The wild-type (HNF-1 α WT) and mutant (HNF-1 α G554fsX556) plasmids were constructed. HeLa cells were then transiently transfected with pcDNA3.1 empty vector or HNF-1a WT or HNF-1a G554fsX556 mutant together with pGL3-hGLUT2 or pGL3-rat L-PK reporter vector and pRL-SV40 vector using Fugene 6 reagent. After 24 hours of transfection, HeLa cells were lysed and luciferase activity was measured using Dual-Luciferase® Reporter (DLR) Assay.

RESULTS

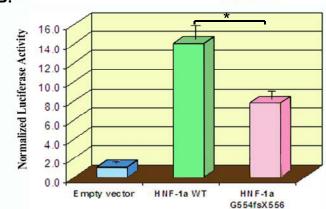


Figure 3. Transcriptional activity of HNF-1α WT and HNF-1α G554fsX556 on human GLUT2 or rat L-PK promoters in HeLa cells.

The normalized luciferase activities of empty vector, HNF-1α WT and G554fsX556 mutant on human GLUT2 (A) and rat L-PK promoters (B) in HeLa cells. Data expressed as mean±SEM (N=3).

**, *p*-value <0.01, *, *p*-value <0.05 (by unpaired student's *t* test).

CONCLUSION

The truncated HNF-1α G554SfsX556 protein had a significantly reduced transactivation on human GLUT2 and rat L-PK promoters when compared to HNF-1 α WT. The loss of function of HNF-1 α G554SfsX556 may be involved in pancreatic β-cell dysfunction and pathogenesis of MODY.

ACKNOWLEDGEMENTS

This work was supported by Siriraj Grant for research and development (to SK and NP) and Thailand Research Fund (to SK, NP and PY). JS was supported by Siriraj Graduate Study Scholarship. PY is a TRF-Senior Research Scholar.

Decreased Repressor Activity of Paired Box 4 (PAX4) R192H Polymorphism Associated with Maturity-onset Diabetes of the Young (MODY) in Thai Patients

Titikan Chukijrungroat¹, Suwattanee Kooptiwut¹, Jatuporn Sujjitjoon², Napat Songtawee³, Namoiy Semprasert¹, Nattachet Plengvidhya⁴, Napatawn Banchuin², Pa-thai Yenchitsomanus³

¹Department of Physiology. ²Department of Immunology. ³Division of Medical Molecular Biology. Office for Research and Development ⁴Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Objective: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes with autosomal dominant inheritance and early onset (age <25 years). In an attempt to identify the causative genes of MODY in Thai patients by the candidate gene approach, Siriraj Diabetes Research Group found that a polymorphism (G>A) of PAX4 gene, resulting in a substitution of arginine192 by histidine (R192H) in the DNA-binding domain (homeodomain) of the protein, had a higher allele frequency in the MODY patients than in the normal controls (p<0.0001). To examine the transcriptional repressor activity of PAX4 R192H on human insulin and glucagon promoters, a dual-luciferase reporter assay was performed in transiently transfected β TC3 and α TC1.9 cells.

Materials and Methods: A pcDNA3.1/HisB PAX4 R192H was generated by site-directed mutagenesis. The wild-type PAX4 and PAX4 R192H plasmids were transiently transfected into βTC3 and αTC1.9 cells using the FUGENE 6 transfection reagent (Roche) together with either pGL3-human insulin or pGL3-human glucagon promoter, and pRL-SV40. After 24 hours, the transcriptional repressor activities of the wild-type and mutant PAX4 were measured using Dual-Luciferase Reporter Assay System (Promega). The assay for each experiment was performed three times to determine its average value (mean?SEM). The data were then analyzed using one-way ANOVA followed by Bonferroni's post hoc test. P-values <0.05 were considered statistically significant.

Results: The normalized luciferase reporter activities of the wild-type PAX4 and PAX4 R192H on the human insulin promoter in the β TC3 cells were 6.94±0.33 and 8.49±0.42, respectively (P < 0.05). Similarly, the normalized luciferase activities of the wild-type PAX4 and PAX4 R192H on the human glucagon promoter in the α TC1.9 cells were 0.70±0.04 and 1.32±0.07, respectively (P < 0.01).

Conclusion: Compared with the wild-type PAX4, PAX4 R192H, which was found to be associated with MODY, had significantly decreased repressor activities on the human insulin and glucagon promoters and may be involved in the pathogenesis of MODY in Thai patients.

Decreased Repressor Activity of Paired Box 4 (PAX4) R192H Polymorphism Associated with Maturity-Onset Diabetes of the Young (MODY) in Thai Patients

<u>Titikan Chukijrungroat</u>¹, Suwattanee Kooptiwut¹, Jatuporn Sujjitjoon², Namoiy Semprasert¹, Napat Songthawee³, Nattachet Plengvidhya⁴, Napatawn Banchuin², Pa-thai Yenchitsomanus³

¹Department of Physiology, ²Department of Immunology, ³Division Medical Molecular Biology, Department of Research and Development, ⁴Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Introduction

Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes with autosomal dominant inheritance and early onset (age <25 years). In an attempt to identify the causative genes of MODY in Thai patients by the candidate gene approach, Siriraj Diabetes Research Group found that a polymorphism (G>A) of *PAX4* gene, resulting in a substitution of arginine192 by histidine (R192H) in the DNA-binding domain (homeodomain) of the protein, had a higher allele frequency in the MODY patients than in the normal controls (p<0.0001). Thus, the R192H polymorphism may modify PAX4 repressor activity and play role in pathogenesis of MODY.

Objective

To examine the transcriptional repressor activity of PAX4 R192H on human *insulin* and *glucagon* promoters.

Materials and Methods R 2. Transient transfection 24 hours 3. Preparation of cell lysate н PAX4 **βTC3** or αTC1.9 clls 1. Construction of PAX4 WT and R192H 4. Luciferase reporter plasmids assay by luminometer 5. Analysis of repressor activity

Figure 1 The PAX4 wild-type (WT) and PAX4 R192H plasmids were transiently transfected into βTC3 and αTC1.9 cells using the FUGENE 6 together with either pGL3-human insulin or pGL3-human glucagon promoter, and pRL-SV40. After 24 hours, the transcriptional repressor activities were measured using Dual-Luciferase Reporter Assay System.

The experiment was performed three times to determine its average value (mean±SEM). The data were then analyzed by using one-way ANOVA followed by Bonferroni's *post hoc* test. *P*-values <0.05 were considered to be significant.

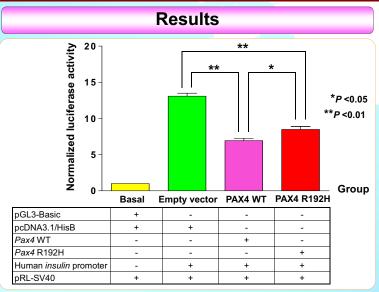


Figure 2 Normalized luciferase activity of Pax4 R192H compared with Pax4 WT on human *insulin* promoter in βTC3 cell.

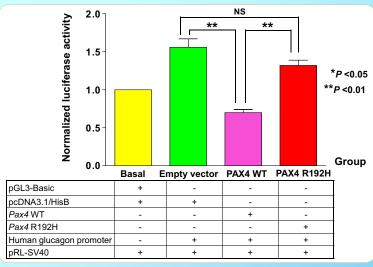


Figure 3 Normalized luciferase activity of Pax4 R192H compared with Pax4 WT on human *glucagon* promoter in αTC1.9 cell.

Conclusion

Compared with PAX4 WT, PAX4 R192H which was found to be associated with MODY had significantly decreased repressor activities on the human insulin and glucagon promoters, indicating that it may be involved in the pathogenesis of MODY in Thai patients.

Acknowledgements

This work was supported by Siriraj Graduate Study Scholarship (to TC), Siriraj Grant for Research Development (to SK and NP) and the Research Career Development Grant of Thailand Research Fund (to NP) and TRF Senior Research Scholar Grant (to PY).

Genetic Variability of Visceral Adipose Tissue-Derived Serpin (vaspin) Gene Associated with Clinical Characteristics of Type 2 Diabetes in Thai Patients

Nonglucksanawan Ritthisuntorn¹, Kanjana Leejinda¹, Nattachet Plengvidhya², Napatawn Banchuin¹, Pa-thai Yenchitsomanus³

¹Department of Immunology, ²Department of Medicine, ³Division of Medical Molecular Biology, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Objective: To investigate whether sequence variations of visceral adipose tissue-derived serpin (vaspin) gene encoding an adipokine with insulin-sensitizing effects have impact on clinical characteristics of type 2 diabetes in Thai patients

Materials and Methods: Type 2 diabetic patients (n=199) were recruited at the Diabetic Clinic, Siriraj Hospital. Genomic DNA samples were extracted from peripheral blood mononuclear cells. Tag-single nucleotide polymorphisms (TagSNPs) of vaspin were selected from international SNP databases (dbSNP and HapMap). Genotyping was performed by mismatched PCR and restriction fragment length polymorphism (RFLP), followed by direct sequencing. Statistic Package for Social Sciences (SPSS) program version 12.0 was used for analysis of associations among tagSNPs and clinical characteristics of the patients.

Results: Patients who carried minor allele G of SNP rs6575439 (A>G) had significantly higher fasting blood sugar (FBS) than patients who carried major allele A [p = 0.033, AA vs (AG+GG)]. Patients who carried minor C allele of SNP rs4905211 (T>C) had significantly higher body mass index (BMI) but lower serum HDL-C than patients who carried major T allele [p = 0.034, TT vs (TC+CC) and p = 0.032, TT & TC & CC, respectively]. However, carriers of T allele were diagnosed with diabetes at an earlier age (p = 0.022, (TT+TC) & CC). For SNP rs1012808 (T>C), patients who carried minor C allele had higher diastolic blood pressure than those of who carried major T allele (p = 0.031, (TT+TC) & CC). Carriers of major G allele of SNP rs3736804 (G>T) had lower BMI and serum triglyceride level than those who carried minor T allele [p = 0.040, GG & (GT+TT) and p = 0.022, GG & (GT+TT), respectively].

Conclusion: Genetic variability of vaspin seems to influence certain clinical characteristics of type 2 diabetes in Thai patients.

Genetic variability of visceral adipose tissue-derived serpin (vaspin) associated with clinical characteristics of type 2 diabetes in Thai patients

Nonglucksanawan Ritthisuntorn¹, Kanjana Leejinda¹, Nattachet Plengvidhya², Napatawn Banchuin¹, Pa-thai Yenchitsomanus³

¹Department of Immunology, ²Division of Endocrinology and Metabolism, Department of Medicine, ³Division of Medical Molecular Biology, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

INTRODUCTION

Vaspin is a novel adipokine recently identified in visceral fat of humans and mice, belonging to the serine protease inhibitor (serpine) superfamily with glucose-lowering and insulinsensitizing effects. Sequence variations of vaspin may affect the risk of developing type 2 diabetes mellitus which is characterized by chronic hyperglycemia and insulin resistance and may influence certain clinical characteristics of the disease in the patients.

OBJECTIVE

To investigate whether genetic variability of vaspin has any effect on clinical characteristics of type 2 diabetes mellitus in Thai patients.

MATERIALS AND METHODS

Type 2 diabetic patients (n=199) were recruited at the Diabetic Clinic, Siriraj Hospital. Genomic DNA samples were extracted from peripheral blood mononuclear cells. Tag-single nucleotide polymorphisms (TagSNPs) of vaspin were selected from international SNP databases (dbSNP and HapMap). Genotyping was performed by mismatched PCR and restriction fragment length polymorphism (RFLP), which was confirmed by direct sequencing. Statistic Package for Social Sciences (SPSS) program version 12.0 was used for analysis of associations among tagSNPs and the studied clinical characteristics of the disease in the patients.

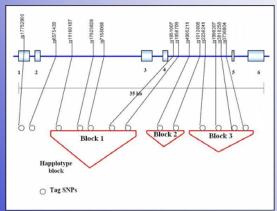


Figure 1 Diagrammatic representation of the vaspin gene structure and selected tagSNPs shown as rs numbers, the unfilled blocks represents exons which are numbered from 1 to 6. The haplotype blocks are also indicated.

RESULTS

The patients who carry minor allele G of SNP rs6575439 (A>G) had higher fasting plasma glucose (FPG) than the patients who carry major allele A [p = 0.033, AA vs (AG+GG)] (Table1). Carriers of major G allele of SNP rs3736804 (G>T) had lower body mass index (BMI) and serum triglyceride level than those who carry minor T allele [p = 0.040, GG & (GT+TT) and p = 0.022, GG & (GT+TT), respectively

Table 1 Association of vaspin SNP rs6575439 (A>G) and clinical characteristics of type 2 diabetes in Thai patients.

Clinical and laboratory characteristics			MeansSE	Pvalue								
SNP2 A>G		NA .	AG					i G	AA & (AG+GG)	AA & AG &	(AA+AG) & GG	
	Mean		SD	Mean		SD	Mean		SD			
BMI (kigimi)	27.41		5.02 (91)	27.75		4.57 (00)	28.21		5.66 (28)	0.3364	0.613°	0.889*
Waist (cm)	88.43		11.54 (91)	87.66		13.49 (80)	88.34		10.72 (28)	0.736	0.9154	0.9139
WaistHip ratio	0.90		0.07 (91)	0.89	±	0.09 (79)	0.88		0.05 (28)	0.554 ^a	0.7170	0.458*
FBS (mmol/l)	190.80		96.93 (90)	220.81	*	100.46 (80)	206.15		102.80 (27)	0.0335	0.0679	0.928*
HbA1C (%)	8.86	±	6.66 (88)	9.90	*	11.12 (80)	8.57		2.60 (28)	0.125*	0.3099	0.5543
Systolic BP (mmHg)	132.16		18.84 (91)	133.53	*	17.29 (80)	132.22		18.26 (27)	0.600*	0.866*	0.930*
Diastolic BP (mmHg)	81.08	*	10.62 (91)	81.25		9.86 (80)	81.04		11.43 (27)	0.837*	0.979	0.943*
Age at diagnosis (years)	49.34	1	12.50 (91)	47.02		9.46 (79)	52.39	1	7.98 (28)	0.036°	0.1574	0.090
Total chalesterol (mmoVI)	228.88	1	49.11 (91)	227.41		48.07 (79)	214.08		49.59 (20)	0.495°	0.4014	0.100*
Triglyceride (mmol/l)	188.88		146.09 (91)	209.06		167.02 (80)	155.11		63.64 (28)	0.626*	0.2449	0.1909
LDL (mmolf)	146.90		43.67 (89)	140.98	*	41.71 (80)	138.38		37.52 (28)	0.2740	0.530*	0.505
HDL (mmolf)	50.29	+	14.55 (90)	50.88	+	15.84 (78)	48.18		11.36 (28)	0.8328	0.977%	0.9039

- Mann-Whitney U test
 Krustal-Wallis H test
 T-test
 ANOVA

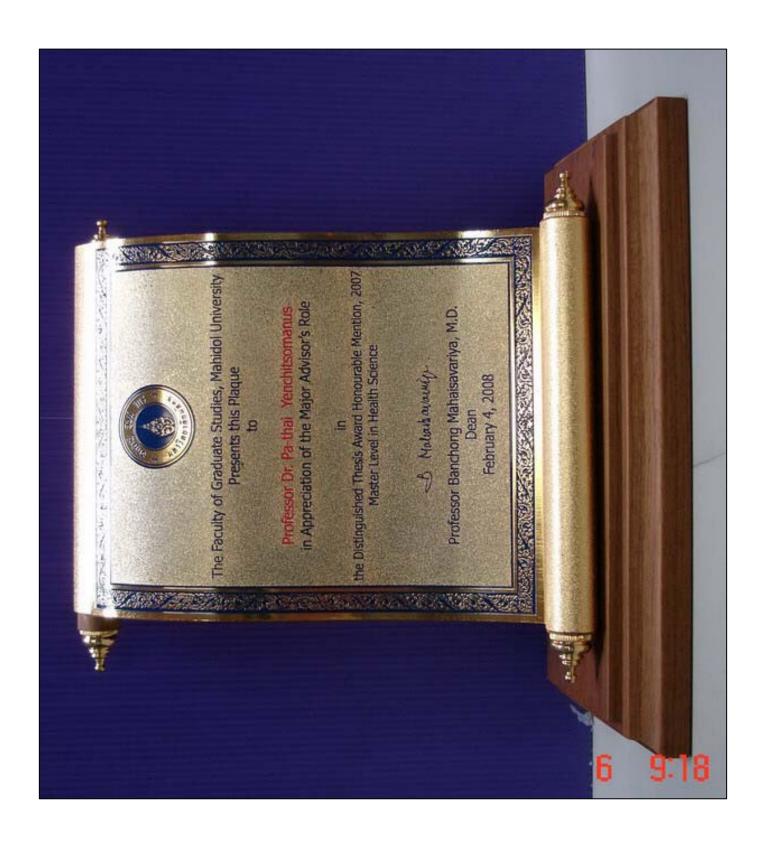
Table 2 Association of vaspin SNP rs3736804 (G>T) and clinical characteristics of type 2 diabetes in Thai patients.

Dimical and laboratory characteristics	MeansSE of clinical and laboratory characteristics, according to genetypes (n)										Pvoltee				
SNP13 G>T	GG			GT .			200000	1	т	GG & (GT•IT)	GG & GT &	(GG+GT) &			
BMI (kg/m²)	27.20		4.85 (153)	20.97	1	5.14 (43)	28.10		3.10 (3)	0.022*	0.072	0.664*			
Waist (cm)	07.50	1	12.23 (153)	90.04		12.13 (43)	07.33		13.32 (3)	0.266*	0.503*	0.912			
Watsthip ratio.	0.09	=	0.08 (152)	0.00		0.00 (43)	0.09	:	0.06 (3)	0.423	0.724*	0.9131			
FBS (mmol/l)	209.22	1	101.15 (152)	189.24	1	91.49 (42)	217.67	1	149.25 (3)	0.161*	0.369*	0.886*			
HbA1C (%)	9.50		9.50 (150)	0.40	1	3.00 (43)	7.10		0.53(3)	0.417*	0.644°	0.521*			
Systolic BP (mmHg)	132.63	1	17.95 (152)	131.63	1	17.45 (43)	153.33	2	20.02 (3)	0.919*	0.171*	0.064*			
Diastolic BP (mmHg)	01.11		10.22 (152)	00.42	1	10.60 (43)	93.33		11.55 (3)	0.935*	0.172°	0.065*			
Age at diagnosis (years)	49.77		10.92 (153)	49.98	1	10.10 (42)	58.00	1	17.70 (3)	0.346°	0.299#	0.156°			
Total cholesterol (mmol/l)	225.98		49.25 (152)	227.60		47.22 (43)	224.33		63.61 (3)	0.864	0.979*	0.9449			
Triglyceride (mmol/l)	204.29		163.10 (153)	152.79		64.97 (43)	148.67		33.30 (3)	0.040*	0.118*	0.828*			
LDL (mmolf)	141.19		42.88 (150)	149.87		38.76 (43)	154,67	,	43.52 (3)	0.2040	0.439#	0.6389			
HDL (mmott)	49.33		14.49 (150)	53.53		15 30 (43)	47.33	,	6.51 (3)	0.0529	0.128*	0.894*			

- - CONCLUSION

Genetic variability of vaspin seems to influence certain clinical characteristics of type 2 diabetes in Thai patients.

ACKNOWLEDGEMENTS


This work was supported by a research grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC). PY is supported by a Senior Research Scholar Grant from Thailand Research Fund.

Appendix VIII

Awards

Faculty of Graduate Studies, Mahidol University

Presents this Certificate to

Ms. Nunghathai Sawasdee

Distinguished Thesis Award Honourable Mention, 2007

Master in Health Science

for Thesis entitled: INTERACTION, TRAFFICKING AND SUBCELLULAR LOCALIZATION OF MUTANT KIDNEY ANION EXCHANGER 1 (KAEI) PROTEINS IN CULTURED HUMAN EMBRYONIC KIDNEY 293 (HEK 293) CELLS

Major advisor: Professor Dr. Pa-Thai Yenchitsomanus

Master of Science Program in Immunology, Faculty of Medicne Siriraj Hospital

-B. Maliaysowanize.

(Professor Banchong Mahaisavariya, M.D.)

February 4, 2008

สภากิติยแห่งชาติ

พอบประกาศนียบัตรนี เพื่อประกาศเกียรติคุณ

93.29nwel પુત્તરધર્ભેરેન્નિર્ફેન્ન

ในฐานะที่ได้รับรางกัดอิทยานิพนธ์ (ระดับปริญญาเอก) ประตำปี ๒๕๔๒ รางกัด ระดับดี

ศาสตราการย์ ดร.เพทาย เย็นกิตโสหนัส

ในฐานะอาอารย์ที่ปรึกษาหลักที่ให้คำแนะนำและคอบคุมการอัดทำอิทยานิพนธ์

เรื่อง "ยิ่งของพนุษย์ที่เกี่ยวข้องกับการเกิดโรดเบาหวานฑิเดทีพบในผู้ปฏยที่อายุน้อยและการเกิดภาวะแทรกข้อนของหลอดเลือดหัวใจในโรดเบาหญาน"

मिति हा तुममें क तृभगाभँभव भूभवमैत्तामा कददन

-GL mdila

(นางการกูญนา ปานย์อยงาน) รองเดขาธิการคณะกรรมการกู้ฉับแห่งชาติ รักษาราชการก

เดขาธิการคุณะกรรหการกิจัยแห่งชาติ

ประธานติภากิติยแห่งชาติ (นายอภิติทธิ์ เลขชาชักะ) นายกรัฐหนตรี

สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) กระทรวงศึกษาธิการ COMMISSION ON HIGHER EDUCATION

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) THE THAILAND RESEARCH FUND

เกียรติบัตรเสนอผลงานวิจัยดีเยี่ยมแบบโปสเตอร์

เพื่อแสดงว่า

ผศ.ดร. ถาวรชัย ลิมจินดาพร

เป็นผู้เสนอผลงานวิจัยดิเยียม

ในการประชุมนักวิจัยรุ่นใหม่..พบ..เมธิวิจัยอาวุโส สกว. ระหว่างวันที่ ๑๕ - ๑๗ ตุลาคม ๒๕๕๒

ขอจงมีความเจริญด้วยจตุรพิธพร ทำคุณประโยชน์ในด้านการสร้างสรรค์ปัญญา เพื่อพัฒนาประเทศสืบต่อไปชั่วกาลนาน

4-

जिंद्र जीवाक महिनावां

คร. สุเมช แช้มนุ่น

เลขาธิการคณะกรรมการการอุดมศึกษา

L'Streets No

ศาสตราจารย์ คร. สวัสดิ์ ตันตระรัตน์ ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย

ขอมอบเกียรติบัตรฉบับนี้ให้ไม้เพื่อแสดงว่า

คณมที่ตา จุลกับ

ได้รับราบจิลที่ 2

การประกวดผลงานวิจัย Oral Presentation กลุ่ม อาจารย์ ข้าราชการและบุคคลทั่วไป

1301 Determination of Genetic Variation of Galectin-3 in Cholangiocarcinoma ในงานประชุมวิชาการ ครั้งที่ 25 ประจำปี 2552 ระหว่างวันที่ 13 – 16 ตุลาคม 2552

ณ ห้องบรรยาย 1 — 4 อาคารเตรียมวิทยาศาสตร์คลินิก คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ให้ไว้ ณ วันที่ 16 ตุลาคม 2552

รองศาสตราจารย์บูญส่ง พจนสนทร) ประธานคณะกรรมการจัดประชุมวิชาการ

(คาสตราจารยภเศก ลุมพิกานนท์)

คณบดิคณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

ผลการพิจารณาการนำเสนอผลงานวิจัย การประชุมเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 14

ชื่อผู้เสนอผลงาน อำภา ยาสมุทร์

รหัสผลงานวิจัย H008

ชื่อผลงาน กา

การแสดงออกของยืนที่เกี่ยวข้องกับกระบวนการออโตเฟจีในเซลตับ

ที่ติดเชื้อไวรัสเด็งกี่

ได้รับการประเมินผลให้เป็น<u>ผลงานวิจัยดี</u> กลุ่มสาขาวิทยาศาสตร์สุขภาพ

(รองศาสตราจารย์ คร.ประยุทธ อัครเอกฒาลิน) ประธานกรรมการฝ่ายวิชาการ

11 กันยายน 2552

Faculty of Graduate Studies, Mahidol University

Presents this Certificate to

Miss Suchada Sengsai

Distinguished Thesis Award Honourable Mention, 2008

Master Level in Health Science for Thesis entitled:

NONSTRUCTURAL PROTEIN 1 IN DENGUE VIRUS- INFECTED HUMAN KIDNEY CELL LINE IDENTIFICATION OF HOST CELLULAR PROTEINS INTERACTING WITH DENGUE VIRAL

Major advisor. Prof. Dr. Pathai Yenchitsomanus

The Master of Science Program in Immunology Faculty of Medicine Siriraj Hospital

B. Mileyaver

(Prof. Banchong Mahaisavariya, M.D.)

Dean

February 6, 2009

คณะแพทยศาสตร์ศิริราชพยาบาล มีความภูมิใจและขอแสดงความชินดีแก่

ศ.คร.เพทาย เย็นจิตโสมนัส

ผู้ประกอบเกียรติคุณสมควรได้รับรางวัลบุคลากรดีเด่น ประจำปี 2550 วันที่ 22 ก.พ. 2551

8/2

(ศ.คลินิก นพ.ธีรวัฒน์ กุลทนันทน์) คณบดี

In recognition and appreciation to

Prapaporn Jungtrakoon

for outstanding oral presentation in

RGJ - Ph.D. Congress X

April 3-5, 2009

P. Bay

Professor Dr. Piyawat Boon-long Director The Thailand Research Fund

H contanoour

Professor Dr. Naksitte Coovattanachai Director The Royal Golden Jubilee Ph.D. Program

คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร ชอมอบเกียรติบัตรนี้เพื่อแสดงว่า

CLEWR RIVESSU

กลุ่ม 2 สาขาวิทยาศาสตร์ชีวภาพ เทคโนโลยีชีวภาพ และวิทยาศาสตร์ศึกษา ได้รับรางวัลดีเด่น ประเภทการนำเสนอผลงานแบบ Poster Presentation

វើ១៤ Interaction between human kidney anion exchanger 1 (kAE1) and kinesin family member 3B (KIF3B) in human kidney cells

ในระหว่างวันที่ 9-10 มีนาคม 2552 ณ คณะวิทยาศาสตร มหาวิทยาลัยนเรควร ในการประชุมวิชาการ "วิทยาศาสตร์วิจัย" ครั้งที่ 2

Love your

(รองศาสตราจารย์ ดร.ชยันต์ บุณยรักษ์) คณบดีคณะวิทยาศาสตร์

SECOND PRIZE Outstanding Poster Presentation

Awarded To

Nunghathai Sawasdee

Third Annual Symposium of the Protein Society of Thailand

28-29 August 2008

Chulabhorn Research Institute Conference Center

Bangkok, Thailand

Jack.

Prof. M.R. Jisnuson Svasti Chairman, Protein Society of Thailand

Sponsored by Protein Society of Thailand

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

มอบกิตติบัตรนี้ เพื่อประกาศเกียรติคุณ

นางสาวฐิติกานต์ ชูกิจรุ่งโรจน์

ในฐานะที่ใด้รับ**รางวัสชนะเดิศ ประเภท Poster Presentation**

1304 "Decreased repressor activity of paired box 4 (PAX4) R192H polymorphism associated with maturity-onset diabetes of the young (MODY) in Thai patients"

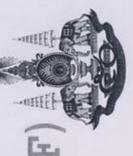
ในการประกาดเสนอผลงานวิจัยระดับบัณฑิตศึกษาศิริราช (Siriraj Graduate Research Conference) ในการประชุมวิชาการ ๑๒๐ ปีศิริราช ประจำปี ๒๕๕๑ (ครั้งที่ ๔๗)

โดยมี

ผล.ดร.พญ.สุวัฒนี คุปติวูฒิ ประธานคณะกรรมการควบคุมวิทยานิพนธ์

ผล.ดร.นพ.ชัยเลิศ พิชิตพรชัย ประธานคณะกรรมการบริหารหลักสูตรวิทยาศาสตรมหาบัณฑิตสาขาสรีรวิทยา

ให้ไว้ ณ วันที่ ๒๑ มีนาคม พุทธศักราช ๒๕๕๑


Can Day (ศ. นพ.ชัยรัตน์ ฉายากูล) รองคณบดีฝ่ายการศึกษาหลังปริญูญา

(ศ.คลินิก นพ.ธีรวัฒน์ กุลทนันทน์)

คณบดี คณะแพทยศาสตร์ศิริราชพยาบาล

The Thailand Research Fund (TRF)

In recognition and appreciation to

Janjuree Netsawang

for outstanding poster presentation in

RGJ - Ph.D. Congress IX

April 4-6, 2008

P.Buty.

Professor Dr. Plyawat Boon-long Director The Thailand Research Fund

H. comthyooling

Professor Dr. Naksitte Coovattanachai Director The Royal Golden Jubilee Ph.D. Program

Faculty of Graduate Studies, Mahidol University

Presents this Certificate to

Ms. Nunghathai Sawasdee

Distinguished Thesis Award Honourable Mention, 2007

Master in Health Science

for Thesis entitled: INTERACTION, TRAFFICKING AND SUBCELLULAR LOCALIZATION OF MUTANT KIDNEY ANION EXCHANGER 1 (KAE1) PROTEINS IN CULTURED HUMAN EMBRYONIC KIDNEY 293 (HEK 293) CELLS

Major advisor: Professor Dr. Pa-Thai Yenchitsomanus

Master of Science Program in Immunology, Faculty of Medicne Siriraj Hospital

(Professor Banchong Mahaisavariya, M.D.)

Dean

February 4, 2008

สภาวิจัยแห่งชาติ

หอบประกาศนิยบัตรนี้ เพื่อประกาศเกียรติดณ

ตร. อมรรัชน์ กาญจนหถุทับ ตร. สุอา เสริมบุตร หศ. ตร. นพ. อนรัช ศามตากับ พศ. ตร. รุพาธิป มงคลหรัพยา ตร. พญ. ปนิษฎิ อวิรุทธ์มันท์ ตร. ฐนิยา ตรงจินตา และ ตร. วันวิสา เตณีรัตติศัย นท. ปริตา มาลาสิทธิ์ ศ.ตรมทกาย เย็นวิติโสมนัส ผศ.ตร.สจำ พัฒนากิจสกุล ผส.ตร.นท.การรขับ สิมิจนตาพร นายแพทก์วิศิษฎ์ ทองบุญเกิด ตร.ประทัฒน์ สุรเผล ดร.ชัญญา พุทธิชันธ์ ดร.ศัพที่ไป น้อยสดรากู หญ.ลัดดา ตำวิการเลิศ พญ.ศีริจิตต์ ราสนวัฒน์ พญ.รรณี ลิฟเษิกุล รศ.ตร.นพ.นพพร สิทธิสมโต รศ.ตร.รัศระ กิสณฤกษ์ ตร.ทุนสุข กิหานปง ในฐานะที่ได้รับรางวัลผลงานวิจัย ประจำปี **๒๕๕๐**

รางวัล ดิเยียม

เรื่อง งานวจับโรคใช้เลือดออกและไรรัสเต็รกิ

ให้ไว้ เม วันที่ ๒ กุมภาพันธ์ พุทธศักราช ๒๕๕๑

Drum willen

เลขาอีการคณะกรรฝการวิจัยแห่งชาติ (หายอานนท์ หนายอานน)

สภาวิจัยแห่งชาติ

ศาสตราจารย์ ดร.เพทาย เย็นจิตโสมนัส ผู้ช่วยศาสตราจารย์ ดร.วรากรณ์ อัครปทุมวงคื หอบประกาศนิยบัตรนี้ เพื่อประกาศเกียรติคุณ ในฐานะที่ได้รับรางวัลผลงานวิจัย ประจำปี **๒๕๕๐** และ นายแพทย์ สมเกียร์ติ วสุรัฐฏกุล

รางวัด สมเสย

เรื่อง การศึกษาอณูพันธุศาสตร์ของโรคโตผิตปกติในการขับกรด

Prome ustan

