

รายงานวิจัยฉบับสมบูรณ์

โครงการ การปรับแต่งพื้นผิวของพอลิเมอร์และอนุภาคคอลลอยด์ เพื่อการประยุกต์ในทางชีวการแพทย์

> โดย ศาสตราจารย์ ดร. ประมวล ตั้งบริบูรณ์รัตน์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

> > 29 กรกฎาคม 2554

(ขยายเวลาโครงการถึง 30 กันยายน 2554)

รายงานวิจัยฉบับสมบูรณ์

โครงการ : การปรับแต่งพื้นผิวของพอลิเมอร์และอนุภาคคอลลอยด์ เพื่อการประยุกต์ในทางชีวการแพทย์

> ผู้วิจัย ศาสตราจารย์ ดร. ประมวล ตั้งบริบูรณ์รัตน์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดย สำนักงานคณะกรรมการการอุดมศึกษา และ สำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สรุปโครงการ (Executive Summary) ทุนส่งเสริมกลุ่มวิจัย ปี 2551

1) ชื่อโครงการ

(ภาษาไทย) การปรับแต่งพื้นผิวของพอลิเมอร์และอนุภาคคอลลอยด์

เพื่อการประยุกต์ในทางชีวการแพทย์

(ภาษาอังกฤษ) Surface Modification of Polymers and Colloidal Particles

for Biomedical Applications

ประกอบด้วย 4 โครงการย่อย ได้แก่

โครงการย่อยที่ 1 การปรับแต่งพื้นผิวของแผ่นฟิล์มที่เตรียมจากน้ำยางธรรมชาติ

ด้วยอนุภาคนาโนเพื่อพัฒนาการเตรียมถุงมือทางการแพทย์

Surface Modification of Natural Rubber Latex Film by Using

Nanoparticles for the Development of Medical Gloves' Preparation

โครงการย่อยที่ 2 การพัฒนาวัสดุควบคุมการปลดปล่อยยาในรูปแบบนาโนไฟเบอร์

โดยใช้พอถิแลคไทด์และอนุพันธ์

Preparation and Characterization of Drug Controlled-Release

Materials from Nanofibers Polylactide and Its Derivatives

โครงการย่อยที่ 3 การพัฒนาแผ่นปิดชนิดไวต่อแรงกดที่ทำจากยางธรรมชาติ

เพื่อประยุกต์ใช้ในทางการแพทย์

Natural Rubber-based Pressure Sensitive Adhesive Patch

for Medical Applications

โครงการย่อยที่ 4 การเตรียมอนุภาคนาโนพอถิเมอร์ที่มีสมบัติแม่เหล็ก

เพื่อใช้ในการแยกเซลล์เม็ดเลือด

Preparation of Magnetic Polymeric Nanoparticle

for Blood Cell Isolation

2) ชื่อหัวหน้าโครงการ

ชื่อ นามสกุล ศาสตราจารย์ ดร. ประมวล ตั้งบริบูรณ์รัตน์

หน่วยงานที่สังกัด ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ถ. พระราม 6 พญาไท กรุงเทพมหานคร 10400

โทรศัพท์ 0 2201 5135 Fax 0 2354 7165

e-mail: scptb@mahidol.ac.th

3) วัตถุประสงค์ (Objectives)

- 1. เพื่อปรับแต่งผิวของแผ่นยางธรรมชาติให้มีความขรุขระเพื่อให้แรงเสียดทานที่ผิวลดลง และ/หรือ ให้สามารถยึดติดกับแผ่นยางซิลิโคน และ/หรือแผ่นยางธรรมชาติที่กำจัดโปรตีนออกได้
- 2. เพื่อสังเคราะห์อนุภาคพอลิเมอร์ที่มีหมู่ฟังก์ชันที่เหมาะสม และ/หรือมีสมบัติแม่เหล็ก และ/หรือ ห่อหุ้มยาฆ่าเชื้อโรค และศึกษาวิจัยเพื่อประยุกต์ใช้ในการชีวการแพทย์
- 3. เพื่อสังเคราะห์พอลิเมอร์ย่อยสลายได้ แล้วเตรียมเป็นพอลิเมอร์ผสม โคพอลิเมอร์ (graft และ/หรือ block copolymer) เพื่อนำไปใช้ยึดเกาะบนผิวของอนุภาคพอลิเมอร์ และ/หรือปรับแต่งผิวของแผ่น ยางธรรมชาติ และ/หรือประยุกต์ใช้ในการควบคุมอัตราการปลดปล่อยยา

4) บทคัดย่อ (Abstract)

งานวิจัยนี้แบ่งเป็น 4 โครงการย่อย โครงการย่อยที่ 1 เป็นการปรับแต่งให้ผิวของถงมือยางพารามี ความขรุขระ ส่งผลให้แรงเสียดทานที่ผิวต่ำลง ด้วยการติดอนุภาคแข็งขนาดนาโนของพอลิเมทิล เมทรา คริเลต (PMMA) บนผิวของฟิล์มยาง พบว่า การติด PMMA ที่มีอนุภาคขนาดใหญ่ผสมกับอนุภาคขนาด เล็ก ทำให้ลดแรงเสียดทานที่ผิวของแผ่นยางได้อย่างมีประสิทธิภาพ และการที่อนุภาค PMMA ปกคลุม ผิวของแผ่นยางทำให้การสัมผัสโดยตรงระหว่างแผ่นฟิล์มยางกับผิวหนังลดลง จึงได้สกัดแผ่นยางที่พรี วัลคาในซ์ด้วยกำมะถันที่มีอนุภาค PMMA เคลือบอยู่ แล้วนำสารที่สกัดได้ด้วยอาหารเลี้ยงเซลล์ไป ทดสอบความเป็นพิษต่อเซลล์ L929 พบว่า สารสกัดที่ความเข้มข้น <13%, 37°C, 24 ชั่วโมง ไม่แสดง ความเป็นพิษต่อเซลล์ ทั้งนี้ ได้สังเคราะห์อนุภาค PMMA ที่มีใคโตแซนเป็นสารช่วยให้เสถียรที่ย่อยสลาย ได้ และมีสมบัติต้านเชื้อแบกทีเรียเพื่อนำไปติดบนแผ่นฟิล์มยางต่อไป งานวิจัยที่ทำควบคู่กัน คือ การ เตรียมถุงมือยางพาราสำหรับบุคลากรทางการแพทย์ โดยทำให้มีโครงสร้างเป็น 3 ชั้น ประกอบด้วยชั้น ของแคปซูลของพอลิเมอร์ที่ห่อหุ้มยาฆ่าเชื้อโรค (chlorhexidine digluconate; CHD) แทรกอยู่ระหว่างชั้น ของฟิล์มยาง โดยศึกษาผลของชนิด และน้ำหนักโมเลกุลของพอลิเมอร์ที่หุ้มแคปซูลต่อประสิทธิภาพการ กักเก็บยา แล้วนำแคปซูลที่เตรียมจากพอลิเมทิล อะคริเลต (PMA) ที่มีน้ำหนักโมเลกุลสูง (550K) ซึ่งกัก เก็บ CHD ได้มากกว่า 90% ไปติดลงบนแผ่นฟิล์มยางที่พรีวัลคาไนซ์ แล้วจึงขึ้นรูปเป็นฟิล์มยางปิดทับชั้น ของแคปซูลอีกชั้นหนึ่ง และเพื่อลดขั้นตอนการขึ้นรูปฟิล์ม จึงได้เตรียมอนุภาคคอมพอสิทแบบแกน-เปลือก (core-shell) ที่มีแคปซูลของ CHD-PMA เป็นแกนห่อหุ้มด้วยชั้นของอนุภาคยางสกิมที่พรีวัลคา ในซ์ด้วยกำมะถัน แล้วนำอนุภาคคอมพอสิทไปติดลงบนแผ่นฟิล์มของยาง เมื่ออนุภาคยางสกิมแห้งจะได้ เป็นฟิล์มชั้นบนของถุงมือ 3 ชั้น ภายในขั้นตอนเดียว

งานอีกส่วนหนึ่งของโครงการย่อยที่ 1 คือ การวิจัยเพื่อนำแผ่นยางธรรมชาติหรืออนุภาคพอลิ แมอร์คอลลอยค์มาเป็นตัวรองรับโมเลกุลของสารอินทรีย์ที่สังเคราะห์ขึ้นเพื่อให้เป็นเคมิคอลเซนเซอร์ ซึ่ง พอลิเมอริกเซนเซอร์นี้จะเพิ่มความไว หรือขยายสัญญาณเมื่อใช้ตรวจวัคสารที่ต้องการวิเคราะห์ เช่น นิวคลีโอไทค์ โลหะอิออน และกรคอะมิโน นอกจากนี้ ยังได้ศึกษาเพื่อนำผลิตภัณฑ์ยางธรรมชาติกลับมา ใช้ใหม่ โดยเตรียมพอลิเมอร์ผสมระหว่างเศษถุงมือยางพารากับโฟมของพอลิสไตรีนที่ทำให้มีโครงสร้าง ร่างแหแบบกึ่งสอดไขว้ (semi-IPNs) แล้วเสริมแรงด้วยเส้นใยเซลลูโลสที่ได้จากใบอ้อย และใบข้าวโพด เพื่อนำไปใช้ประโยชน์เป็นวัสดุประเภทไม้เทียม

โครงการย่อยที่ 2 เป็นการวิจัยเพื่อนำพอลิเมอร์ที่สลายตัวได้และเข้ากันได้กับร่างกาย ซึ่งมีพอลิ แลกไทด์ (PLA) เป็นองค์ประกอบ มาใช้ในทางชีวการแพทย์ โดยเตรียมวัสดุพอลิเมอร์หรือโคพอลิเมอร์ ให้อยู่ในหลายรูปแบบ เช่น เตรียมเป็นเส้นใยนาโน หรือนำไปเคลือบนผิวอนุภาคนาโนที่มีสมบัติความ เป็นแม่เหล็ก (MNP) หรือนำไปเคลือบผิวของวัสดุทางการแพทย์ รวมทั้งแผ่นยางธรรมชาติ เพื่อใช้เป็น ถุงมือทางการแพทย์ หรือแผ่นปิดแผลที่มีสมบัติในการปลดปล่อยยา หรือใช้เป็นสารเชื่อมโยงสายโซ่ (crosslinking agent) ของยางธรรมชาติที่มีหมู่อิพอกไซด์ (Epoxidized Natural Rubber; ENR) เพื่อให้ได้ ผลิตภัณฑ์ยางที่มีสมบัติเชิงกลที่ดี และย่อยสลายได้

โครงการย่อยที่ 3 เป็นการศึกษาเพื่อพัฒนาระบบการขนส่งยาทางผิวหนัง (transdermal drug delivery; TDD) ให้เป็นทางเลือกใหม่ของการขนส่งยาเข้าสู่ร่างกายนอกจากการรับประทานและการฉีด โดยมุ่งเน้นไปที่การพัฒนายางธรรมชาติให้เป็นวัสดุรองด้านหลังซึ่งอยู่ด้านนอกของ TDD และต้อง สัมผัสกับสิ่งแวดล้อมในระหว่างที่ใช้งาน จึงต้องสามารถทนต่อสารเคมี เข้ากันได้กับสารเติมเนื้อยา และทำให้ผู้ใช้รู้สึกสบาย จากการวัดค่าความแข็งแรงเชิงกล การผ่านของออกซิเจน และการจำกัดการ ผ่านของไอน้ำ พบว่า ยางธรรมชาติที่ปรับแต่งแล้ว เช่น ENR มีศักยภาพในการนำมาใช้เป็นวัสดุรอง ด้านหลัง และผลการศึกษาสมบัติต่างๆ แสดงว่า แผ่นยางธรรมชาติที่ปรับแต่งพื้นผิวด้วยโคพอลิเมอร์ ของ PLA อาจจะนำมาทำเป็นกาวที่ไวต่อแรงกดซึ่งมีสมบัติเข้ากับร่างกาย ไม่เป็นพิษต่อเซลล์ทดสอบ และสามารถบรรจุยาสำหรับนำส่งยาได้

โครงการย่อยที่ 4 เป็นการสังเคราะห์อนุภาคพอลิเมอร์คอลลอยค์ที่มีสมบัติความเป็นแม่เหล็ก (MPNP) แล้วนำมายึคติคกับโปรตีน หรือสารชีวภาพ เพื่อใช้ในการแยกโปรตีนออกจากส่วนผสม หรือใช้ ในการตรวจสอบเชื้อโรคโดยอาสัยสมบัติการยึดเกาะกับโปรตีน โดยได้ติดแอนติเจนของเชื้อมาลาเรีย และแอนติบอดีต่อเชื้อมาลาเรียบนอนุภาค MPNP ที่มีหมู่ฟังก์ชันอยู่ที่ผิว เพื่อพัฒนาวิธีทางภูมิคุ้มกันใน การแยกแอนติบอดีที่จำเพาะต่อเชื้อมาลาเรียและตัวเชื้อมาลาเรีย นอกจากนี้ ยังได้ยึดติดสายโอลิโกนิวคลี โอไทด์จำเพาะบนอนุภาค MPNP เพื่อตรวจวินิจฉัยหาความผิดปรกติของยืน BCR/ABL ในผู้ป่วยมะเร็ง เม็ดเลือดขาวชนิดเรื้อรังด้วยเทคนิคใหม่ที่ได้พัฒนาขึ้น เรียกว่า Magneto-PCR enzyme linked gene assay พบว่า ให้ผลการตรวจที่รวดเร็ว และมีความไวเทียบเท่าวิธีมาตรฐานที่ใช้ในปัจจุบัน (วิธี Real-time PCR) โดยมีความจำเพาะ มีความแม่นยำสูง ลดการใช้และสัมผัสสารพิษของผู้ปฏิบัติงานอีกด้วย นอกจากนี้ การที่ MPNP สามารถใช้แทนเอนไซม์เปอร์ออกซิเดสได้ จึงนำมาใช้ในขั้นตอนการตรวจสอบผลผลิตที่ ใด้จากปฏิกิริยา PCR เพื่อประยุกต์ใช้ในการตรวจหาเชื้อแบคทีเรียในเชิงปริมาณ โดยใช้ Vibrio cholerae และ Enterotoxigenic E. coli เป็นแบคทีเรียด้นแบบ ทำให้ได้กระบวนการทางเลือกในการตรวจหาเชื้อ

แบคทีเรียที่มีความสะดวก รวดเร็ว และสามารถวิเคราะห์เชื้อในเชิงปริมาณได้อย่างมีประสิทธิภาพ ใกล้เคียงกับเทคนิค PCR-ELISA

This research project consists of 4 subprojects. Subproject 1 focused on the surface modification of natural rubber (NR) glove for increasing the surface roughness and, hence, reduction of the surface friction by depositing poly(methyl methacrylate; PMMA) latex particles onto the NR or sulphur prevulcanized (SP)NR film. It was found that the adsorption of both large and small sizes of PMMA particles effectively reduced the surface friction of rubber film. Since the direct contact between skin and the modified SPNR film was decreased, it was expected that the cytotoxicity caused by the leachable proteins or other additives in SPNR glove and the allergic problem to certain sensitive individuals would be lowered. The culture medium of L929 fibroblasts was used for extracting the modified SPNR film and subjected to the in vitro cytotoxicity evaluation. Results showed that at the extract concentration of < 13% for 24h at 37°C, no toxicity potential was detected. In order to improve both the binding ability with SPNR and antimicrobial activity, the PMMA-chitosan core-shell particles were prepared for further depositing onto the ungrafted SPNR film. In parallel, we prepared the medical gloves consisting of threelayer thin film where the outermost and inner layers were prevulcanized NR and the active middle layer containing the polymeric capsule of disinfectant agent (chlorhexidine digluconate; CHD). The effects of types and molecular weight (MW) of the polymeric shell on the encapsulation efficiency were studied. The deposition of CHD-poly(methyl acrylate) (PMA) (550K) capsules having > 90% encapsulation efficiency onto the prevulcanized NR film was achieved by using the coagulant dipping process. The CHD-PMA capsules in the second layer were then coated with another prevulcanized NR layer to finally furnish a three-layer film. In order to reduce the preparation step, the composite particle composing of prevulcanized skim particles surrounding a CHD-PMA capsule was prepared and then used for coating the prevulcanized NR substrate in one step.

The rest part of subproject 1 emphasized on the employment of NR film or colloidal particles as a template for the construction of sensing material, i.e., chemical sensor, by using the synthesized organic molecules. The sensor benefits from high sensitivity and amplified output signal for the selective detection of nucleotides, metal ions and amino acids. For the sustainability purpose, the NR glove residue was blended with polystyrene foam waste to obtain the semi-IPNs structure. The material was reinforced with cellulose obtained from sugar cane and corn leaves and would be potentially used as artificial wood.

Subproject 2 aimed to utilize the biodegradable and biocompatible polylactide (PLA) based polymer for biomedical applications. The PLA and their copolymers could be fabricated in the form of nanofiber or used for coating magnetic nanoparticle (MNP) surface or medical devices including NR sheet for the preparation of medical gloves or an adhesive patch for drug controlled release. The PLA block copolymer was also applied as a crosslinking agent of epoxidized NR (ENR) which offered good mechanical property and biodegradability.

Subproject 3 focused on the study and development of transdermal drug delivery (TDD) which could be used as an alternative option apart from normal intake and injection. This subproject focused on the development of NR or prevulcanized NR as a backing material which must have good chemical property (i.e., chemical resistance to the external environment during the usage), miscibility with the drug (blending) and contact feeling (comfortable). From the mechanical properties, oxygen and water vapor transmission rates, it was found that the modified NR, i.e., ENR, attained the requirements for a backing material in the TDD system. In addition, the NR film surface adsorbed with the PLA block copolymer could be used as a sensitive adhesive patch containing controlled release drug and provided less toxicity to cells and good biocompatibility.

Subproject 4 involved the preparation of magnetic polymeric nanoparticle (MPNP) whose surface was immobilized with proteins and/or biological molecules. These particles could be employed for the separation of proteins from the biological matrix or for the detection of microorganisms, e.g., bacteria or parasite. The adsorption of malaria antigen or antibody onto the functionalized MPNP or the preparation of immunolatex was attempted for the diagnostic and separation purposes. A novel tool for the detection of BCR/ABL fusion gene in chronic myelogenous leukemia by the immobilization of MPNP with oligonucleotides was successfully developed. Our technique, named a "Magneto-PCR enzyme linked gene", provided the detection with high specificity and its sensitivity was commensurate to the current Real-time PCR method. The technique also minimizes the exposure to the toxic chemicals. Since the MPNP acted as peroxidase mimic, it could be used in the PCR protocol and further employed for the detection of Vibrio cholerae and Enterotoxigenic E. coli. This prompts the preparation of efficient method for the detection of food-borne pathogen with high efficiency and the sensitive compromising to the PCR-ELISA technique.

5) คำหลัก (Keywords)

Rubber, Latex, NanoParticle, Colloid, Copolymer, Polylactide, Sensor, Biomedical

สัญญาเลขที่ RTA5180003

โครงการ : การปรับแต่งพื้นผิวของพอลิเมอร์และอนุภาคคอลลอยด์เพื่อการประยุกต์ในทางชีวการแพทย์

รายงานฉบับสมบูรณ์

ชื่อหัวหน้าโครงการวิจัยผู้รับทุน: ศาสตราจารย์ ดร. ประมวล ตั้งบริบูรณ์รัตน์

ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

รายงานในช่วงตั้งแต่วันที่ 30 กรกฎาคม 2551 ถึง 29 กรกฎาคม 2554

(ขยายเวลาโครงการถึง 30 กันยายน 2554)

1. กิจกรรมที่ได้ดำเนินการ

โครงการย่อยที่ 1

1.1 การปรับแต่งพื้นผิวของแผ่นฟิล์มที่เตรียมจากน้ำยางธรรมชาติด้วยอนุภาคนาโน เพื่อพัฒนาการเตรียมถุงมือทางการแพทย์

ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

งานวิจัยนี้ เป็นการปรับแต่งผิวของแผ่นฟิล์มที่เตรียมจากน้ำยางธรรมชาติ (natural rubber; NR) เพื่อ แก้ปัญหาของการที่ถุงมือยางมีความเสียดทานกับผิวหนังสูง ทำให้สวมใส่และถอดออกได้ยาก โดยเฉพาะเมื่อ ผิวหนังเปียกชื้น โดยมุ่งทำให้ผิวของแผ่นฟิล์มยางมีความขรุขระ ส่งผลให้แรงเสียดทานบนผิวต่ำลง ด้วยการติด อนุภาคแข็งขนาดนาโนของ poly(methyl methacrylate) (PMMA) บนผิวของฟิล์มยาง ศึกษาปัจจัยต่างๆ เช่น ขนาด และการกระจายของขนาดอนุภาค PMMA และเนื่องจากการมือนุภาค PMMA ปกคลุมผิวของแผ่นยาง ทำให้ลดการสัมผัสโดยตรงระหว่างแผ่นฟิล์มยางกับผิวหนัง ซึ่งอาจจะแก้ปัญหาของการแพ้ถุงมือยางพาราของผู้ ที่แพ้ง่าย (hypersensitive) จึงได้นำแผ่นยางไปทดสอบความเป็นพิษ (cytotoxicity) ต่อเซลล์ L-929 และต่อมายัง ได้สังเคราะห์อนุภาค PMMA ที่มี chitosan อยู่ที่ผิว ซึ่ง chitosan นอกจากจะทำหน้าที่เป็นสารลดแรงตึงผิวที่ย่อย สลายได้แล้ว ยังมีสมบัติเป็น antibacteria อีกด้วย

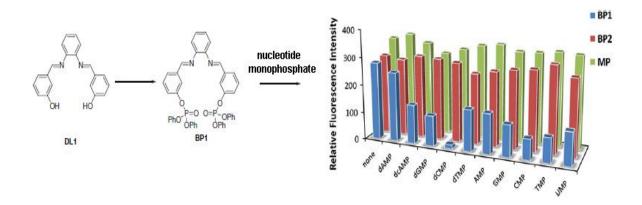
งานวิจัยอีกส่วนหนึ่งเป็นการพัฒนาการเตรียมถุงมือยางธรรมชาติเพื่อใช้ทางการแพทย์ให้มีโครงสร้าง เป็น 3 ชั้น คือ มีชั้นของแคปซูลของพอลิเมอร์ที่ห่อหุ้มยาฆ่าเชื้อโรค แทรกอยู่ระหว่างชั้นของฟิล์มยาง โดยได้ ศึกษาผลของชนิดและน้ำหนักโมเลกุล (molecular weight; MW) ของพอลิเมอร์ที่หุ้มแคปซูลต่อประสิทธิภาพ การกักเก็บยา รวมทั้งได้เตรียมอนุภาคคอมพอสิทโดยใช้เทคนิค heterocoagulation ติดอนุภาคยางสกิม (skim)

ที่พริวัลคาในซ์ด้วย sulphur รอบแคปซูลของพอลิเมอร์ที่บรรจุยา ให้มีโครงสร้างเป็น core-shell ก่อนจะนำไป ติดลงบนฟิล์มยางเพื่อเตรียมถุงมือที่มี 3 ชั้น ดังกล่าว

1.1.1 การเตรียมถุงมือที่มีแรงเสียดทานต่ำด้วยการติดอนุภาค PMMA

- 1) สังเคราะห์อนุภาค PMMA ให้มีขนาดต่างๆกัน แล้วนำไปติดลงบนแผ่นฟิล์ม NR ชนิดที่พรีวัลคาในซ์ (prevulcanize) ด้วย sulphur หรือ SPNR ผลของการศึกษาขนาดอนุภาคและการกระจายของขนาด อนุภาค พบว่า การใช้ PMMA ที่มีอนุภาคขนาดใหญ่ผสมกับอนุภาคขนาดเล็กทำให้ประสิทธิภาพในการ ลด surface friction ของแผ่นยางเพิ่มขึ้นมาก เนื่องจากอนุภาคขนาดเล็กเข้าไปแทรกระหว่างช่องว่างของ อนุภาค ทำให้อนุภาคขนาดใหญ่กระจายได้ดีขึ้น นอกจากนั้นยังพบว่าอนุภาคผสมสามารถปกคลุมบน พื้นผิวของแผ่นยางได้ดี จึงได้ทำการสกัดแผ่นยาง SPNR ที่ปรับแต่งแล้ว เมื่อนำสารสกัดไปทดสอบ cytotoxicity พบว่า ที่ความเข้มข้นของสารสกัด <13% ให้ผล negative กล่าวคือ ไม่มีผลยับยั้งการ เจริญเติบโตของ L929 cells ในขณะที่สารสกัดจากแผ่นยาง SPNR ให้ผล positive (เอกสารแนบ 5.1.4, 5.1.5)
- ขานที่กำลังคำเนินการ คือ การนำ chitosan ซึ่งเป็น polysaccharide ที่ biodegradable มาเป็น stabilizer ใน การเตรียมอนุภาค PMMA เพื่อลด surface friction ของแผ่นยางหลังการติดด้วยอนุภาค PMMA ดังกล่าว อย่างมีประสิทธิภาพมากขึ้น โดยที่ chitosan เป็น polycationic biomaterial ที่มีสมบัติด้านเชื้อแบคทีเรีย จึงคาดว่าสามารถติดอนุภาคพอลิเมอร์คอมพอสิทบนแผ่นยางที่มีประจุลบได้โดยตรงเช่นเดียวกับการติด อนุภาค PMMA ที่มี polyethyleneimine อยู่ที่ผิว (เอกสารแนบ 5.1.2) แล้วทำให้ได้ฟิล์มยางที่มีความ เสียดทานต่ำ และด้านเชื้อแบคทีเรียด้วยกระบวนการที่มีขั้นตอนน้อยลง (เอกสารแนบ 5.1.16)

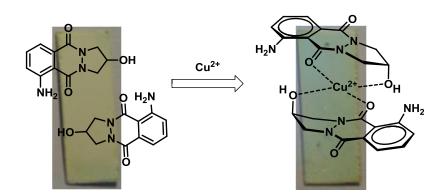
1.1.2 การเตรียมถุงมือทางการแพทย์ที่บรรจุแคปซูลของยาฆ่าเชื้อโรค


- 1) สังเคราะห์ poly(methyl acrylate) (PMA) ที่มี MW ต่างๆ แล้วนำมาเตรียมเป็นแคปซูลห่อหุ้ม disinfectant agent (chlorhexidine digluconate; CHD) โดยใช้เทคนิค controlled polymer nanoprecipitation ศึกษาผลของ MW ของ PMA ต่อประสิทธิภาพการกักเก็บ CHD แล้วนำแคปซูลที่เตรียมจาก PMA ที่มีค่า MW สูง (550K) ซึ่งกักเก็บ CHD ได้มากกว่า 90% ไปติดลงบนแผ่นฟิล์มยางที่เตรียมจากน้ำยางที่พริวัลคา ในซ์ด้วยรังสี gamma โดยใช้สารละลาย Ca(NO₃)2 เป็น coagulant แล้วจึงขึ้นรูปเป็นฟิล์มยางปิดทับชั้น ของแคปซูลอีกชั้นหนึ่ง ได้ตัวอย่างของถุงมือยางที่มี 3 ชั้น ซึ่งได้นำไป characterize ศึกษา morphology และวัด mechanical properties พบว่า เมื่อเพิ่มความเข้มข้นของ Ca(NO₃)2 ส่งผลให้ความหนาของแผ่นยาง 3 ชั้น และ tensile strength มีค่าเพิ่มขึ้น (เอกสารแนบ 5.1.1, 5.1.6, 5.1.9)
- 2) เพื่อเตรียมถุงมือแพทย์แบบ 3 ชั้น แต่ลดขั้นตอนการเตรียมลง ได้ใช้ PMA เตรียมแคปซูลของ CHD แล้ว ใช้เทคนิค heterocoagulation ติดอนุภาคยางสกิมที่พรีวัลคาในซ์ด้วย sulphur ล้อมรอบแคปซูลของ CHD-PMA ให้มีโครงสร้างเป็น core-shell แล้ว characterize ก่อนจะนำไปติดลงบนแผ่นฟิล์มของยาง ซึ่ง อนุภาคยางสกิมเมื่อแห้งก็จะเกิดเป็นฟิล์มยางธรรมชาติคลุมชั้นของแคปซูลของ CHD แล้วจึงจะทดสอบ ประสิทธิภาพของถุงมือที่เตรียมขึ้นต่อไป (เอกสารแนบ 5.1.7, 5.1.8)

1.2 การสังเคราะห์สารฟลูออเรสเซนต์เพื่อพัฒนาเป็นเซนเซอร์โดยมีพอลิเมอร์เป็นตัวรองรับ ดร. สรวง สมานหมู่ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.)

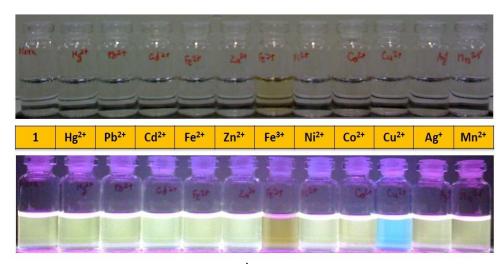
งานวิจัยส่วนนี้เป็นการสังเคราะห์สารอินทรีย์เพื่อพัฒนาเป็นเคมิคอลเซนเซอร์ ซึ่งแบ่งเป็นประเภทที่เกิด การเปลี่ยนแปลงสัญญาณฟลูออเรสเซนต์หรือเปลี่ยนสี เมื่อเกิด interaction กับสารที่ต้องการวิเคราะห์ (analyte) เช่น นิวคลีโอไทด์ (dCMP) โลหะอิออน (Cu²⁺, Fe³⁺) กรดอะมิโน (L-arginine) และ DNA โดยทำการสังเคราะห์ พอลิเมอริกเซนเซอร์ที่ใช้พอลิเมอร์เป็นตัวรองรับ ส่งผลให้เซนเซอร์ที่ใช้ในการตรวจวัดมี sensitivity เพิ่มขึ้น

1.2.1 การพัฒนาเซนเซอร์สำหรับตรวจวัดสารนิวคลีโอไทด์


สังเคราะห์อนุพันธ์ใหม่ของ ใดอิมีนลิแกนด์ ได้แก่ BP1 จากการทำปฏิกิริยา phosphorylation ใดอิมีนลิแกนด์ (DL1) ซึ่งเป็นสารตั้งต้นกับ diphenylchlorophosphate โดยคาดว่าเซนเซอร์ BP1 จะมีความสามารถในการเปลี่ยนแปลงสัญญาณฟลูออเรสเซนต์เมื่อทำปฏิกิริยากับสารนิวคลีโอไทด์ ผ่านกระบวนการ phosphorus-phosphorus coupling และเกิด intermolecular hydrogen bonding ซึ่งเมื่อทดสอบเซนเซอร์ BP1 ด้วยสารนิวคลีโอไทด์โมโนฟอสเฟตชนิดต่างๆ พบว่า สัญญาณฟลูออเรสเซนต์ของ BP1 ลดลงอย่างเห็นได้ชัดเมื่อเติมสาร deoxycytidine monophosphate (dCMP) (รูปที่ 1.2.1) (เอกสารแนบ 5.1.11) ซึ่งสัญญาณฟลูออเรสเซนต์ของ BP1 คับลงอย่างสมบูรณ์เมื่อเติม 2.5×10⁴ Mของ dCMP จากการคำนวณด้วยวิธี Job's plot analysis พบว่า อัตราส่วนในการจับตัวระหว่างเซนเซอร์ BP1 กับสาร dCMP มีค่า 1 ต่อ 1 และผลจากการศึกษาด้วย computer modeling บ่งชี้ว่า เป็นการจับกันด้วย intermolecular bonding

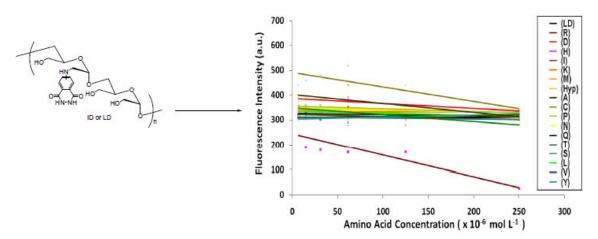
ฐปที่ 1.2.1

1.2.2 การพัฒนาเซนเซอร์สำหรับตรวจวัดโลหะอิออน


สังเคราะห์สารอนุพันธ์ของ luminol โดยการทำปฏิริยาระหว่างสารเรื่องแสง luminol กับ epichlorohydrin ได้สารชนิดใหม่ที่ชื่อว่า pyrazolidine luminol (PL) เมื่อตรวจสอบความจำเพาะกับ โลหะชนิดต่างๆ พบว่า สารดังกล่าวเป็นเซนเซอร์สำหรับตรวจวัด Cu^{2+} กล่าวคือ เมื่อเติม Cu^{2+} ลงไปใน สารละลาย PL สารละลายเปลี่ยนจากสีเหลืองอ่อนไปเป็นสีเขียวเข้ม ซึ่งสีจะเข้มขึ้นเมื่อเพิ่มความ เข้มข้นของ Cu^{2+} โดยเมื่อวัดด้วยเทคนิค UV/vis spectroscopy พบ peak ที่ 425 nm เกิดขึ้นใหม่ใน spectrum ของ PL และเมื่อศึกษาอัตราส่วนในการจับกันระหว่าง PL กับ Cu^{2+} ด้วยเทคนิค Mass spectrometry พบว่า PL และ Cu^{2+} จับตัวกันในอัตราส่วน 2 ต่อ 1 ต่อมาได้ตรึงเซนเซอร์ PL บนแผ่น ซิลิกาเพื่อใช้พัฒนาเป็นชุดตรวจสอบแบบแผ่นสำหรับ Cu^{2+} พบว่า สามารถตรวจ Cu^{2+} ในน้ำได้ใน ปริมาณที่ต่ำถึง 2 ในล้านส่วน (ppm) (รูปที่ 1.2.2) (เอกสารแนบ 5.2.3)

รูปที่ 1.2.2

นอกจากนี้ยังได้สังเคราะห์สารอนุพันธ์ dansyl hydrazine-salicyaldehyde (1) เป็นเซนเซอร์ แล้วนำมาตรวจหาความจำเพาะกับ โลหะหนักชนิดต่างๆ จากผลการทดลอง พบว่า เซนเซอร์ 1 มีการ ตอบสนองอย่างจำเพาะกับ Cu^{2+} โดยภายใต้แสง UV สารละลายเซนเซอร์ 1 ที่มีการเติม Cu^{2+} จะเกิดการ เปลี่ยนสัญญาณฟลูออเรสเซนต์จากสีเหลืองไปเป็นสีเขียว เมื่อใช้เทคนิค Job's plot analysis ทำให้ สามารถคำนวณอัตราส่วนในการจับตัวกันได้ระหว่างเซนเซอร์ 1 กับ Cu^{2+} ในอัตราส่วน 1:1 และพบว่า เซนเซอร์ 1 สามารถตรวจวัด Cu^{2+} ได้ต่ำถึง 0.6 ppm (รูปที่ 1.2.3) (เอกสารแนบ 5.2.2)

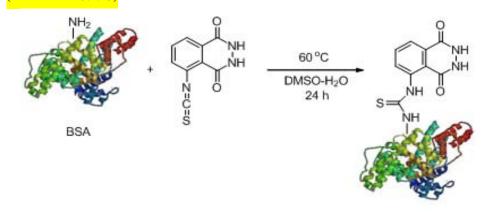

รูปที่ 1.2.3

สำหรับการตรวจจับ Fe³⁺ อย่างจำเพาะ ได้สังเคราะห์ 2-hydroxy benzyl cadaverine (DNSCH) ขึ้น เพื่อเป็นเคมิคอลเซนเซอร์ประเภทที่ดับสัญญาณฟลูออเรสเซนต์ ซึ่ง DNSCH สามารถผ่านเมมเบรน เข้าไป จับกับ Fe³⁺ ในเซลล์ได้อีกด้วย (รูปที่ 1.2.4) <mark>(เอกสารแนบ 5.1.12)</mark>

รูปที่ 1.2.4

1.2.3 การสังเคราะห์พอลิเมอริกเซนเซอร์ที่ละลายน้ำได้สูง สำหรับตรวจวิเคราะห์ L-arginine

เพื่อเพิ่ม sensitivity ของเซนเซอร์ในการตรวจวิเคราะห์สารชีวภาพที่มีความเข้มข้นต่ำๆ จึงได้ สังเคราะห์พอลิเมอริกเซนเซอร์จากอนุพันธ์ของพอลิเมอร์ dextran ที่มีสารเรื่องแสง luminol ติดอยู่ (LD) แล้วใช้ตรวจวิเคราะห์กรดอะมิโนโดยวิธีการคับสัญญาณฟลูออเรสเซนต์ ผลจากการทคสอบกับ กรดอะมิโนหลายชนิด พบว่า พอลิเมอริกเซนเซอร์ LD ตอบสนองอย่างจำเพาะกับ L-arginine โดยเมื่อ ความเข้มข้นของกรดอะมิโนคังกล่าวเพิ่มขึ้นถึง 50×10⁻⁵ M สัญญาณฟลูออเรสเซนต์ของพอลิเมอริก เซนเซอร์ LD ได้ดับลงอย่างสมบูรณ์ สาเหตุคาดว่ามาจากการจับตัวอย่างจำเพาะระหว่างส่วนของตัว รองรับ dextran กับกรดอะมิโน L-arginine ก่อนที่จะเหนี่ยวนำให้เกิดกระบวนการ Photo-induced electron transfer (PET) ไปยังส่วนของสารเรื่องแสง luminol ที่ติดอยู่บนตัวรองรับ dextran จนเกิดการ ดับสัญญาณในที่สุด (รูปที่ 1.2.5) (เอกสารแนบ 5.1.15)


Excitation wavelength (λ_{EX}) = 275 nm. Where LD = luminol dextran conjugate; R = L-Arginine; D = L-Aspartic acid; H = L-Histidine; I = L-Isoleucine; K = L-Lysine; M = L-Methionine; Hyp = L-Hydroxyproline; A = L-Alanine; C = L-Cysteine; P = L-Proline; N = L-Asparagine; Q = L-Glutamine; T = L-Threonine; S = L-Serine; L = L-Leucine; V = L-Valine; Y = L-Tyrosine.

ฐปที่ 1.2.5

1.2.4 การพัฒนาชุดตรวจโปรตีน และ DNA

การพัฒนาวิธีการตรวจหาโปรตีน และ DNA บนแผ่น solid-phase membrane ด้วยเทคนิค chemiluminescence จำเป็นต้องมีการพัฒนาหัวตรวจที่มีความไวสูง โดยการติดสารติดฉลากเรื่องแสง ที่สังเคราะห์ขึ้น ได้แก่ isothiocyanate luminol (ITL) ซึ่งเมื่อนำไปทดสอบการเรื่องแสง พบว่า สามารถ คงการเรื่องแสงได้ดี และสามารถติดฉลากลงไปยังโปรตีน bovine serum albumin (BSA) ได้ ซึ่งใช้เป็น หัวตรวจเรื่องแสงที่มีความไวสูงในระบบตรวจโปรตีน และ DNA บนแผ่น solid-phase membrane ด้วย

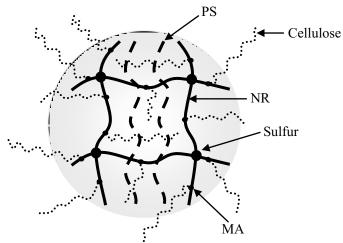
เทคนิค chemiluminescence และกำลังพัฒนาเพื่อใช้ตรวจแบคทีเรียที่ก่อให้เกิดโรคต่อไป (รูปที่ 1.2.6) (เอกสารแนบ 5.1.13)

รูปที่ 1.2.6

1.2 การเตรียมและตรวจสอบสมบัติพอลิเมอร์ผสมแบบกึ่งสอดใขว้จากยางธรรมชาติ/ พอลิสไตรีน และเซลลูโลส (เอกสารแนบ 5.2.4, 5.2.5, 5.3.4)

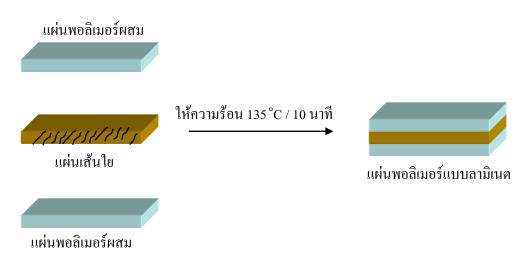
ผศ. ดร. สอาด ริยะจันทร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์

งานวิจัยส่วนนี้ เป็นการศึกษาการเตรียมและสมบัติของพอลิเมอร์ผสมจากยางธรรมชาติ (NR) กับโฟม ของพอลิสไตรีน (PSF) ให้มีโครงสร้างร่างแหแบบกึ่งสอดไขว้ (semi-IPNs) แล้วเสริมแรงด้วยเส้นใยเซลลูโลส ที่ได้จากใบอ้อยและใบข้าวโพด เพื่อนำใช้ประโยชน์เป็นวัสดุประเภทไม้เทียม เช่น ทำกรอบรูป เป็นต้น


ในขั้นตอนการเตรียมเส้นใยเซลลูโลส ได้ใช้เทคนิค ATR-FTIR ยืนยันการเปลี่ยนแปลงของเส้นใยซึ่งมี หมู่ฟังก์ชันที่สำคัญ คือ hydroxy group ที่ 3420 cm ใและ C-O-C ของ β -1,4–glycosidic bond ที่ 1046 cm ให้เทคนิค solid-state 13 C NMR แสดง chemical shift ของ hydroxy group ที่ 64.8 และ 72 ppm และ C-O-C ของ β -1,4–glycosidic bond ที่ 103 ppm ความเป็นอสัณฐานและผลึกของเส้นใยเซลลูโลสยืนยันด้วย peaks ที่ 82.6 และ 88.1 ppm รวมทั้งค่า 2 θ ที่ได้จากการใช้เทคนิค XRD เมื่อศึกษาขนาดอนุภาคและลักษณะสัณฐานวิทยา (morphology) พบว่า เส้นใยเซลลูโลสมีขนาดเส้นผ่านศูนย์กลางประมาณ 40 μ m ผลการทดสอบโดยใช้เทคนิค TGA แสดงว่า เส้นใยมีความทนทานต่อความร้อนมากถึง 390°C จากการศึกษาการย่อยสลายทางชีวภาพในดิน ของเส้นใย พบว่า เซลลูโลสที่เตรียมด้วย $HClO_4$ สามารถย่อยสลายเองได้ดีที่สุด และมีร้อยละการย่อยสลาย เพิ่มขึ้นเมื่อเวลาเพิ่มขึ้น

จากนั้นได้เตรียมน้ำยางธรรมชาติที่ prevulcanize ด้วย sulphur (SPNR) และสารละลาย PSF ใน styrene กับ MMA monomers ก่อนจะดัดแปรโครงสร้างของ SPNR ด้วยการ graft ด้วย maleic anhydride (MA) ร้อยละ 6 โดยน้ำหนัก ได้เป็น M-SPNR จากการตรวจสอบด้วยเทคนิค ATR-FTIR ปรากฏหมู่ฟังก์ชันของกลุ่ม carbonyl และ anhydride ที่ 1780-1784 cm⁻¹ และ 1854 cm⁻¹ ตามลำดับ ผลการศึกษาค่าความต้านทานแรงดึง ค่า modulus

ค่า hardness และค่าระยะยืดของ M-SPNR พบว่า มีค่าเพิ่มขึ้นเมื่อปริมาณ MA เพิ่มขึ้น และสามารถทนต่อความ ร้อนใค้สูงกว่า SPNR นอกจากนี้ ยังพบว่า M-SPNR มีค่าความต้านทานต่อตัวทำละลายและร้อยละการสกัด ลดลง แต่มีค่า %grafting เพิ่มขึ้น เมื่อปริมาณ MA เพิ่มขึ้น โดยมีค่าเปอร์เซ็นต์ความเป็นผลึกมากกว่า SPNR 1.7 เท่า จากการศึกษาด้วยเทคนิค TGA พบว่า M-SPNR มีช่วงการเริ่มเสื่อมสลายทางความร้อนก่อน SPNR แต่มีช่วงการทนต่อการเสื่อมสลายทางความร้อนสูงกว่า และสามารถทนความร้อนใค้สูงถึงอุณหภูมิ 450°C รูปจาก SEM แสดงว่า M-SPNR ที่ใด้จะมีลักษณะเป็นเนื้อเดียวกันหรือเป็นเฟสที่ต่อเนื่องกัน และมีลักษณะเหมือนกับ SPNR


ในการศึกษาการดัดแปรโครงสร้างของ M-SPNR ด้วยเส้นใยเซลลูโลส (M-SPNR-g-cellulose) สามารถ ยืนยันโครงสร้างทางเคมีของ M-SPNR-g-cellulose ด้วยเทคนิค ATR-FTIR และ solid state ¹³C-NMR พบว่า อัตราส่วนการบวมตัว (swelling ratio) ของ M-SPNR-g-cellulose มีแนวโน้มลดลง เมื่อปริมาณเซลลูโลสและ MA เพิ่มขึ้น ค่า modulus และ hardness ของพอลิเมอร์ผสมสูงขึ้น เมื่อปริมาณเซลลูโลสเพิ่มขึ้น โดยพอลิเมอร์ผสมมีสมบัติต้านทานความร้อนที่ 90°C ได้ดี อย่างไรก็ตาม ค่าความต้านทานแรงคึงและสมบัติการยึดตัวของพอ ลิเมอร์ผสมมีแนวโน้มลดลง เมื่อเปรียบเทียบกับ SPNR ภาพจาก SEM แสดงว่า เซลลูโลสมีการกระจายตัวได้ดี ในเมทริกซ์

ส่วนการดัดแปรโครงสร้างของ PSF ด้วย MA (M-PSF) พบว่า ปริมาณ MA ที่เหมาะสมในการเตรียม M-PSF คือ 6% โดยน้ำหนัก สามารถยืนยัน grafting ของ M-PSF ด้วยเทคนิค ATR-FTIR ของ peaks ที่ 1786 และ 1860 cm และจาก H NMR พบสัญญาณที่ 5.2 และ 5.8 ppm นอกจากนี้ยังพบว่า M-PSF ไม่ละลายเป็นเนื้อ เดียวกับ toluene และอัตราส่วนการบวมตัวและร้อยละการสกัดมีแนวโน้มลดลงเมื่อ MA เพิ่มขึ้น แต่ %grafting ค่าการทนแรงกระแทก ค่าความต้านทานแรงดึง ค่าความต้านทานการฉีกขาด ค่าระยะยืด และค่า modulus ของ M-PSF มีแนวโน้มเพิ่มขึ้น ส่วนค่าความแข็งมีการเปลี่ยนแปลงอย่างไม่มีนัยสำคัญ จากการศึกษาสมบัติทาง ความร้อน พบว่า M-PSF สามารถทนความร้อนได้สูงกว่า และมีค่า glass transition temperature (Tg) สูงกว่า PSF โดยมีลักษณะทางสัณฐานวิทยาที่แตกต่างกันอย่างไม่มีนัยสำคัญ และ สามารถยืนยันการเกิดโครงสร้างแบบ semi-IPNs ได้จากการสกัดด้วยตัวทำละลาย และนำส่วนที่ละลายออกมาไปตรวจสอบหาหมู่ฟังก์ชันที่สำคัญ รูป ที่ 1.3.1 แสดงแบบจำลองการเกิดพอลิเมอร์ผสม โดย MA เป็นสารเชื่อมขวางและเส้นใยเซลลูโลสจากใบ ข้าวโพดเป็นสารเสริมแรง

รูปที่ 1.3.1 แบบจำลองพอลิเมอร์ผสมแบบโครงสร้างร่างแหพอลิเมอร์แบบ semi-IPNs

ส่วนสุดท้ายเป็นการปรับปรุงสมบัติของพอลิเมอร์ผสมที่เตรียมได้ ด้วยการเติมปูนปลาสเตอร์ และสาร บอแรกซ์ พบว่า สมบัติเชิงกลของพอลิเมอร์ผสมที่เติมปูนปลาสเตอร์ร้อยละ 30 โดยน้ำหนัก มีค่าสมบัติเชิงกลดี ที่สุด อัตราการเผาไหม้มีแนวโน้มลดลงเมื่อปริมาณสารบอแรกซ์เพิ่มขึ้น นอกจากนี้พอลิเมอร์ผสมยังสามารถ ยับยั้งเชื้อแบคทีเรียสายพันธุ์ Escherichia coli ATCC 25922 ได้ จากนั้นได้ทำการลามิเนตด้วยกระบวนการทาง กล (รูปที่ 1.3.2) โดยนำแผ่นพอลิเมอร์ผสมปูนปลาสเตอร์ 2 แผ่น ประกบแผ่นเส้นใยที่เคลือบด้วยน้ำยาง SPNR และทาด้วยกาวยาง ATM แบบ special adhesive ทั้งสองด้าน ก่อนจะขึ้นรูปด้วยกระบวนการอัดเบ้าที่ 135°C เป็น เวลา 5 นาที พ่นแผ่นลามิเนตหลังจากการอัดเบ้าด้วยสเปรย์เคลือบเงาแล้วตากแดดให้แห้ง แล้วศึกษาสมบัติด้าน ต่างๆ ของแผ่นลามิเนตที่ได้

รูปที่ 1.3.2 โมเคลการเตรียมพอลิเมอร์ผสมแบบลามิเนต

โครงการย่อยที่ 2

<mark>รศ. ดร. ปกรณ์ โอภาประกาสิต</mark> สถาบันเทคโนโลยีนานาชาติสิรินธร *(SIIT)* มหาวิทยาลัยธรรมศาสตร์

การพัฒนาวัสดุควบคุมการปลดปล่อยยาในรูปแบบนาโนไฟเบอร์โดยใช้พอลิแลคไทด์และอนุพันธ์

Polylactide (PLA) เป็น aliphatic polyester ที่มีการนำมาใช้ประโยชน์อย่างแพร่หลาย เนื่องจากสมบัติ การสลายตัวได้ ความเข้ากันได้กับร่างกาย และสามารถสังเคราะห์ได้จากแหล่งวัตถุดิบหมุนเวียน ตัวอย่างการ นำมาใช้ประโยชน์ เช่น บรรจุภัณฑ์ วัสดุทางการเกษตร วัสดุทางชีวการแพทย์ เช่น drug controlled-release materials, วัสดุตกแต่งแผล scaffold เป็นต้น ซึ่งในการใช้ประโยชน์ที่แตกต่างกันก็ต้องการพอลิเมอร์ที่มีสมบัติ แตกต่างกัน โดยการปรับแต่ง PLA นั้นสามารถทำได้โดยการเตรียมเป็น copolymer เช่น poly(lactide-coethylene glycol), poly(L-lactide-co-DL-lactide), poly(lactide-co-ethylene terephthalate) หรือ polylactide-grafted chitosan เป็นต้น นอกจากนี้ยังสามารถเตรียมเป็นพอลิเมอร์ผสม เช่น PLA/natural rubber (NR) blend

สำหรับการใช้ในทางชีวการแพทย์นั้นมีการเตรียมวัสคุพอลิเมอร์ให้อยู่ในหลายรูปแบบ เช่น เส้นใย นาโน (nanofibers) หรือเตรียมเป็นอนุภาคนาโนที่มีสมบัติความเป็นแม่เหล็ก (magnetic nanoparticle; MNP) แล้วเคลือบผิวด้วยพอลิเมอร์ หรือการนำพอลิเมอร์ทางชีวภาพมาใช้ในการปรับปรุงสมบัติพื้นผิวของวัสคุทาง การแพทย์อื่น เช่น ยาง NR เพื่อใช้เป็นถุงมือทางการแพทย์ ถุงมือสำหรับผู้แพ้ยางธรรมชาติ หรือแผ่นปิดแผลที่มี สมบัติในการปลดปล่อยยา รวมทั้งยังสามารถใช้เทคนิค plasma ในการปรับปรุงสมบัติพื้นผิวของพอลิเมอร์ได้

2.1 การสังเคราะห์ poly(L-lactide)-based copolymers และการเตรียม nanofibers

สังเคราะห์ poly(L-lactide) (PLA) ที่มี MW ~40,000 โดยปฏิกิริยา ring-opening polymerization และ สังเคราะห์ poly(lactide-co-ethylene glycol) triblock copolymer จาก poly(ethylene glycol) (PEG) ที่มี MW ต่างกัน คือ 600, 2,000 และ 4,000 กับ lactic acid (LA) monomer โดยใช้อัตราส่วนโมล LA/PEG เป็น 98:2 และ 95:5 ตามลำดับ ได้ triblock copolymer ที่มี MW ในช่วงตั้งแต่ 5,000 – 20,000 จากนั้น จึงศึกษาการเตรียม nanofiber ของ poly(L-lactide) และ PLA-co-PEG copolymers ที่สังเคราะห์ได้ โดย ใช้เทคนิค electrospining เริ่มจากการหาสภาวะที่เหมาะสมในการฉีดสารละลายพอลิเมอร์ การ เปลี่ยนแปลงชนิดของตัวทำละลาย ความเข้มข้น และความต่างศักย์ไฟฟ้า พบว่า สามารถเตรียม nanofiber ของ PLA และ PLA-co-PEG copolymers ที่สมบูรณ์ได้โดย ใช้ DMF/THF mixed solvent (เอกสารแนบ 5.3.1, 5.3.2, 5.4.2)

2.2 การสังเคราะห์และศึกษาโครงสร้างผลึก interaction ของ poly(DL-lactide) copolymers

สังเคราะห์ poly(DL-lactide) (PDLLA_x) copolymers ที่มี DL content ต่างๆกัน ตั้งแต่ 2-50% โดย ปฏิกิริยา ring-opening polymerization แล้วตรวจสอบสมบัติ พบว่า สมบัติเชิงกลของ copolymer ขึ้นกับอัตราส่วน DL-lactide/L-lactide ในสายโซ่โมเลกุล แล้วเตรียม nanofiber ของ PDLLA_x โดยใช้ เทคนิค electrospining หาสภาวะที่เหมาะสมในการฉีดสารละลายพอลิเมอร์ โดยเปลี่ยนแปลงชนิดของ ตัวทำละลาย ความเข้มข้น และความต่างศักย์ไฟฟ้า พบว่า สามารถเตรียม nanofiber ของ poly(DL-lactide) ที่มีสมบัติและสัณฐานวิทยาที่แตกต่างกัน โดยเฉพาะลักษณะความเป็นรูพรุน จากนั้นจึงศึกษา interaction สมบัติทางกายภาพและสมบัติเชิงกล ตลอดจนลักษณะโครงสร้างการจัดเรียงตัวสายโซ่ของ PDLLA_x ที่มี D/L-lactide composition ในสายโซ่ที่แตกต่างกัน (เอกสารแนบ 5.4.3)

2.3 การใช้ PLA-PEG-PLA triblock copolymer เป็น curing agent สำหรับ Epoxidized NR

สังเคราะห์ poly(lactide-co-ethylene glycol) block copolymer ที่มีสมบัติ biodegradable/biocompatible จาก poly(ethylene glycol) ที่มี MW 2,000 และ LA monomer ได้เป็น PLA-PEG-PLA triblock copolymer ที่มีความยาวสายโซ่ PLA₄₆PEG₄₆PLA₄₆ จากนั้นจึงนำ copolymer ซึ่งมีหมู่ปลายทั้ง 2 ข้าง เป็น OH มาใช้เป็น crosslinking agent สำหรับ Epoxidized natural rubber (ENR) เพื่อให้ได้ผลิตภัณฑ์

ยางที่มีสมบัติเชิงกลที่ดี และมีสมบัติการย่อยสลายได้ โดยการใช้ปฏิกริยาระหว่าง epoxide ของ ENR กับ OH end-group ของ block copolymer ดังภาพ

เมื่อตรวจสอบโครงสร้างผลิตภัณฑ์ยางที่ได้ โดยการสกัดด้วยตัวทำละลายที่มีขั้วต่างกัน คือ THF และ toluene แล้วนำส่วนที่สกัดได้มาศึกษาโครงสร้างเคมี โดยเทคนิค H-NMR และ FTIR และ วัดค่า swelling ratio ใน toluene เพื่อตรวจสอบ crosslink density ศึกษาสมบัติเชิงกลของผลิตภัณฑ์ยาง ที่เตรียมได้ พบว่ามี tensile strength, elongation at break และ modulus ที่ใกล้เคียงกับยางตัวอย่างอื่นที่ vulcanize ด้วยเทคนิคมาตรฐาน ศึกษาสมบัติการส่งผ่าน gas ของฟิล์มที่เตรียมจากผลิตภัณฑ์ยางที่ได้ พบว่า water vapor, oxygen, carbon dioxide permeability ของชิ้นงานมีความสัมพันธ์กับปริมาณ ENR/copolymer ที่ใช้ ซึ่งสามารถนำไปใช้ประโยชน์ใน membrane applications ได้ ทำการพัฒนา กระบวนการเตรียมผลิตภัณฑ์ยาง ENR และ PLA/PEG copolymer ดังกล่าว โดยเทคนิค reactive blend เพื่อประยุกต์ใช้ประโยชน์ในทางอุตสาหกรรม ศึกษากลไกการ crosslink แบบ *in situ* โดยใช้ Rheometer และตรวจสอบ thermal stability ของผลิตภัณฑ์ยางที่ได้ (เอกสารแนบ 5.1.14, 5.4.4)

2.4 การพัฒนา polymer-coated magnetic nanoparticles โดยประยุกต์ใช้ polylactide copolymers

สังเคราะห์ poly(lactide-grafted-chitosan) แล้วตรวจสอบสมบัติโดยเทคนิค NMR, GPC, TGA, DSC และ FTIR spectroscopy จากนั้นจึงเตรียม MNP โดยเทคนิค chemical coprecipitation แล้วเคลือบผิว ด้วย poly(lactide-grafted-chitosan) ที่สังเคราะห์ได้ โดยไม่ต้องใช้ surfactant ชนิดอื่น ศึกษาผลของ อัตราส่วนของ MNP และ poly(lactide-grafted-chitosan) ต่อขนาดและสมบัติของ nanoparticles ที่ เตรียมได้ แล้วทำการ encapsulate ยา naproxen เพื่อใช้ประโยชน์ทางด้าน drug-controlled release materials โดยศึกษาผลของอัตราส่วนของ MNP และ poly(lactide-grafted-chitosan) ต่อขนาดและ สมบัติของ nanoparticles (เอกสารแนบ 5.4.6)

นอกจากนั้น ยังเตรียม MNP ที่ stabilize ด้วย oleic acid (OA) จากนั้นจึงเคลือบผิวด้วย poly(lactide-co-ethylene glycol) block copolymer (PLA-EG) ศึกษาผลของอัตราส่วนของ MNP:OA:PLA-EG ต่อขนาดและสมบัติของ nanoparticles ที่เตรียมได้ แล้วทำการ encapsulate ยา

naproxen เพื่อใช้ประโยชน์ทางด้าน drug-controlled release materials โดยศึกษาผลของอัตราส่วนของ MNP:OA:PLA-EG และ naproxen ต่อขนาดและสมบัติของ nanoparticles แล้วศึกษา morphology และ interactions ของ naproxen-encapsulated nanoparticles (เอกสารแนบ 5.4.5)

2.5 การสังเคราะห์ ตรวจสอบสมบัติและประยุกต์ใช้ประโยชน์ aliphatic aromatic copolyesters

สังเคราะห์ Lactic acid-co-ethylene terephthalate จากสารตั้งต้นที่เป็น acid 2 ชนิด คือ dimethyl terephthalate และ lactic acid กับ diols 4 ชนิด คือ ethylene glycol, propylene diol, propane glycol และ butane diol โดยใช้ปฏิกิริยา polycondensation และตัวเร่งปฏิกิริยา คือ Tin (II) octoate แล้ว ตรวจสอบสมบัติด้วยเทคนิค NMR, DSC, FTIR, TGA และ GPC จากนั้นจึงศึกษาสมบัติความเข้ากันได้ (miscibility) ของ Lactic acid-co-ethylene terephthalate ที่ได้กับพอลิเมอร์ทางการค้าชนิดอื่น เพื่อ ปรับแต่งสมบัติเชิงกลและทางกายภาพของ copolymer ที่สังเคราะห์ได้ ให้สามารถนำไปใช้ประโยชน์ ได้กว้างขึ้น แต่ยังคงความสามารถในการย่อยสลายในระดับที่เหมาะสม พัฒนากระบวนการผลิต และ เครื่องต้นแบบการผลิตวัสดุควบคุมและปลดปล่อยสารอาหารของพืช คือ ยูเรีย จาก Lactic acid-co-ethylene terephthalate ที่สังเคราะห์ได้ โดยเทคนิคการพ่นสารละลายพอลิเมอร์เคลือบบนยูเรีย และ เทคนิคการเตรียมเป็น microsphere แล้วศึกษากลไกการปลดปล่อยสารยูเรียของวัสดุที่ผลิตได้ (เอกสาร แนบ 5.4.5, 5.4.6)

โครงการย่อยที่ 3

ดร. สุภา วิรเศรษฐ์ /ผศ. ดร. รัฐพร ทองกุม ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

งานวิจัยส่วนนี้เป็นการศึกษาเพื่อพัฒนาระบบการขนส่งยาทางผิวหนัง (transdermal drug delivery; TDD) เป็นทางเลือกใหม่ของการขนส่งยาเข้าสู่ร่างกายนอกจากการรับประทานและการฉีด โดยสนใจ TDD แบบ drug-in-adhesive ซึ่งมีส่วนประกอบหลัก 3 ส่วน ได้แก่ backing materials มีหน้าที่ในการปกป้องพื้นผิว ด้านนอกของ TDD, pressure sensitive adhesive (PSA) ทำหน้าที่ในการยึดติดกับผิวหนังและเป็นส่วนที่มีการกัก เก็บยาและส่วนประกอบอื่นๆของยา และ release liner ทำหน้าที่ป้องกัน PSA ซึ่งส่วนนี้จะลอกออกก่อนการติด TDD กับผิวหนัง

ในงานวิจัยนี้มุ่งเน้นไปที่การพัฒนา backing materials และ PSA โดย backing materials อยู่ด้านนอก ของ TDD ซึ่งจะต้องสัมผัสกับสิ่งแวดล้อมในระหว่างที่ใช้งาน จึงต้องทนต่อสารเคมีและเข้ากันได้กับ excipient เนื่องจากการสัมผัสกันระหว่างชั้นของ backing และ excipient เป็นเวลานานอาจทำให้สารตัวเติม (additives) ละลายออกมาทางชั้นของ backing หรือทำให้เกิดการแพร่ผ่านของ excipient, ยา หรือ penetration enhancer ผ่าน ชั้นของ backing ออกมาได้ ทั้งนี้ ในการติด TDD กับผิวหนัง อีกปัจจัยหนึ่งที่ควรคำนึงถึง คือ ความสบาย (comfortable) ดังนั้น วัสดุที่นำมาทำเป็น backing ควรมีค่า modulus ต่ำ (flexibility สูง) มีการผ่านของออกซิเจน

(oxygen transmission rate; OTR) ได้ดี แต่มีการจำกัดการผ่านของไอน้ำ (water vapor transmission rate; WVTR) ที่ต่ำ กลุ่มวิจัย พิจารณาแล้วเห็นว่า ยางธรรมชาติ (NR) มีศักยภาพในการนำมาใช้เป็น backing material เนื่องจากมีความยืดหยุ่นสูงและสามารถขึ้นรูปเป็นฟิล์มบางได้ โดยต้องการศึกษาและปรับปรุง gas permeability โดยเฉพาะ OTR และ WVTR ของ NR เป็นหลัก เนื่องจากมีผลต่ออัตราการ release ของตัวยา สำหรับส่วนที่เป็น PSA พบว่า acrylic based PSA มีความเหมาะสมโดยเป็นหนึ่งในสามของ PSA ที่ใช้ในงานด้าน TDD (silicone based, acrylic based and polyisobutylene based PSAs) ซึ่งมีราคาไม่สูง มีสมบัติที่ดี และใช้กันอย่างกว้างขวาง

การพัฒนาแผ่นปิดชนิดไวต่อแรงกดที่ทำจากยางธรรมชาติเพื่อประยุกต์ใช้ในทางการแพทย์

3.1 การพัฒนา backing materials สำหรับแผ่นปิดชนิดไวต่อแรงกด (เอกสารแนบ 5.2.6)

ศึกษาสมบัติของการเป็น backing film ของยาง NR และ NR ที่ผ่านการ prevulcanize ด้วย ระบบperoxide/fructose เพื่อใช้ในการทำแผ่นปิดชนิดไวต่อแรงกด ในการปรับแต่งโครงสร้างของ NR นั้น แบ่งเป็นการปรับแต่งโครงสร้างภายในเนื้อยางโดยวิธี epoxidation เพื่อให้ได้ยาง ENR และการ ปรับแต่งโครงสร้างที่พื้นผิวของแผ่นยางโดยการทำ grafting ด้วยการใช้ O₂ plasma treatment ตามด้วย การจุ่มใน acrylamide (AAm) monomer ได้เป็น NR-g-PAAm โดยสมบัติของการเป็น backing film ที่ ศึกษา ได้แก่ Young's modulus อัตราการผ่านของแก๊สออกซิเจน (OTR) อัตราการผ่านของไอน้ำ (WVTR) และการยึดติดกับกาวชนิดไวต่อแรงกดจำพวก acrylate โดยยาง NR ที่ prevulcanize เป็นเวลา ต่างๆ กัน ก็เพื่อให้ได้ยางที่มีปริมาณการ crosslink ที่ต่างกัน ซึ่งตรวจสอบโดยวัดค่า swelling ratio และ ติดตามการเปลี่ยนแปลงสมบัติทางกายภาพของวัสดด้วย Dynamic Mechanical Analysis (DMA)

จากการทดลอง พบว่า ค่า swelling ratio ลดลงเมื่อเวลาในการ prevulcanize เพิ่มขึ้น โดยเริ่ม คงที่เมื่อทำการ prevulcanize ประมาณ 1 ชั่วโมง ผลของ DMA บ่งชี้ว่า Tg มีค่าเพิ่มขึ้น แต่ OTR และ WVTR มีค่าลดลง เมื่อเวลาในการ prevulcanize เพิ่มขึ้น เนื่องจากการเชื่อมโยงภายในอนุภาคของยางที่ เพิ่มมากขึ้นทำให้สายโซ่โมเลกุลเคลื่อนที่ได้ยากมากขึ้นและ free volume ในอนุภาคขางลดลง เมื่อ ทดสอบสมบัติต่างๆ พบว่า NR ที่ prevulcanize เป็นเวลาต่างๆ มีค่า Young's modulus อยู่ในช่วง 0.5–1.4 MPa ซึ่งใกล้เคียงกับของผิวหนังที่มีค่า 0.1-0.3 MPa ส่วนยาง ENR ที่มี epoxidation 10–40% ซึ่งได้ จากการ vary เวลาที่ใช้ในการทำปฏิกิริยา ก็ได้ทำการ prevulcanize แล้วติดตามการเปลี่ยนแปลงสมบัติ ทางกายภาพของวัสดุด้วย DMA พบว่า Tg มีค่าสูงขึ้นเมื่อ %epoxidation เพิ่มขึ้น เนื่องจากมีปริมาณ ของหมู่ออกซิเรนมากขึ้น ทำให้สายโซ่โมเลกุลเคลื่อนที่ได้ยากขึ้น เมื่อ epoxide content สูงขึ้น พบว่า ค่า Young's modulus สูงขึ้น และใกล้เคียงกับค่าของผิวหนัง โดยมีค่าสูงสุดไม่เกิน 5 เท่าของค่า ของ ผิวหนัง ในขณะที่ OTR ลดลง แต่ WVTR สูงขึ้น โดยที่ ENR ที่มี 39 mole % epoxide มีค่า WVTR ใกล้เคียงกับค่าการสูญเสียน้ำของผิวหนัง

เมื่อปรับแต่งโครงสร้างทางพื้นผิวของ NR โดยใช้เทคนิค O₂ plasma ส่งผลทำให้พื้นผิวของ ยางมีความเป็นขั้วมากขึ้น ซึ่งวัดได้จากค่า contact angle จากนั้นเมื่อติดกับ acrylate monomer พบว่า %weight uptake เริ่มคงที่ ที่ 5% acrylate monomer ในการทดสอบสมบัติของยาง NR-g-PAAm พบว่า OTR และ MVTR มีค่ามากกว่าของ NR เพียงเล็กน้อย เนื่องจากการปรับแต่งพื้นผิวทำให้ผิวหน้าของ แผ่นยางปกคลุมไปด้วยโมเลกุลที่มีขนาดเล็กของ PAAm แต่โมเลกุลภายใน bulk ของยางยังคงเดิม ผล จากการวัดด้วย ATR-FTIR กล่าวได้ว่า ความลึกของการปรับแต่งมีค่าน้อยกว่า 1 µm

นอกจากนี้ยังได้ทดสอบสมบัติการยึดติดระหว่างยาง NR, ENR และ NR-g-PAAm กับกาว acrylate โดยใช้ peel test พบว่า ค่า peel strength เรียงลำดับได้ดังนี้ ENR 39 > ENR 10 > NR-g-PAAm > NR ซึ่งแนวโน้มดังกล่าวสอดคล้องกับกลไกการยึดติด โดยใช้เทคนิค RAIR ซึ่งบ่งชี้ว่า การ ยึดติดระหว่าง NR กับกาว acrylate เป็นแบบกายภาพ เนื่องจากไม่มี peak เกิดใหม่ใน spectrum ของ RAIR ในขณะที่การยึดติดระหว่างยาง ENR กับกาวนั้น เป็นแบบที่มีพันธะเคมีเกิดขึ้น ซึ่งยืนยันได้จาก peak ที่เกิดขึ้นที่ ~1740 cm⁻¹ แต่การยึดติดระหว่างยาง NR-g-PAAm กับกาว ไม่พบ peak ใหม่ ทั้งที่เมื่อ พิจารณาจากโครงสร้างของ acrylate monomer กับกาวแล้ว คาดว่า สารทั้งสองชนิดสามารถเกิดพันธะ hydrogen ได้

3.2 การพัฒนา adhesive materials สำหรับแผ่นปิดชนิดไวต่อแรงกด (เอกสารแนบ 5.4.1)

งานวิจัยนี้เป็นการศึกษาการปรับแต่งพื้นผิว NR ด้วย PLA-PEG-PLA triblock copolymer (PELA) เพื่อนำมาเป็น adhesive materials ที่มีสมบัติ biocompatibility และสามารถบรรจุยาสำหรับการ นำส่งยาได้ด้วย โดยศึกษาอิทธิพลของ MW ของ PELA ที่มีต่อค่า reduced modulus, การยึดติดกับผิว NR ที่เป็น backing material และ adhesion ของ PELA

ในขั้นแรกได้สังเคราะห์ PELA ที่มี MW แตกต่างกัน โดยใช้ ring opening polymerization และใช้ stannous octanoate เป็นตัวเร่งปฏิกิริยา อัตราส่วนโดยโมลของ PEG ต่อ PLA เท่ากับ 1:1 โดยที่ PEG มี MW 2000, 8000, 12000 และ 20000 g/mol จากนั้นได้นำ PELA ที่สังเคราะห์ได้ไปศึกษา โครงสร้างและอัตราส่วนระหว่าง PEG ต่อ PLA ด้วยเทคนิค H-NMR พบ peak C-H ของ PEG ที่ 3.6 ppm และ C-H ของ PLA ที่ 5.1 ppm แสดงว่า สามารถสังเคราะห์ PELA ได้ และเมื่อเทียบ signal ทั้ง สองสามารถหาอัตราส่วนโดยโมลของ PEG ต่อ PLA ได้ค่าเท่ากับ 1.1-1.2 ต่อ 1.0 แสดงว่า PELA ที่ สังเคราะห์ได้มีอัตราส่วนของ PEG ต่อ PLA ใกล้เคียงกับ PELA ที่ต้องการ นอกจากนี้ยังได้วัด MW ด้วยเทคนิค GPC พบว่า Mn มีค่า 3200 - 32900 g/mol และมีค่าการกระจายของ MW 1.04-1.05 ซึ่งมีค่า ใกล้เคียง 1 มาก แสดงว่า PELA ที่สังเคราะห์ได้มีขนาดเท่าๆกัน จากนั้นได้นำ PELA มาปรับแต่งบน พื้นผิวของ NR ด้วยวิธี dipping โดยละลาย PELA ด้วย dichloromethane ให้มีความเข้มข้น 5%w/v จากนั้นนำแผ่นยาง NR ที่มีขนาด 2x5x0.2 ซม³ ไปแช่ในสารละลายที่ได้เตรียมไว้เป็นเวลา 24 ชั่วโมง แล้วนำไปอบในต้อบสุญญากาศจนแห้ง ก่อนนำไปศึกษาการยึดติดระหว่าง NR กับ PELA ด้วยเทคนิค FT-IR ซึ่งพบว่า peak ที่ 1380 cm⁻¹ ของ methyl group ของ NR นั้นลดลงและเกิด peak ที่ 1740 cm⁻¹ ของ carbonyl ของ PELA บ่งชี้การมี PELA ติดบนผิว NR และเมื่อเปรียบเทียบspectra ทั้งหมดแล้วไม่ พบว่าเกิดการสร้างพันธะใหม่เกิดขึ้น แสดงว่าการยึดติดของ PELA กับ NR เป็นแบบ physical interaction เมื่อศึกษาmorphology ของพื้นผิว NR ที่ปรับแต่งด้วย PELA ด้วยเทคนิค atomic force microscopy (AFM) โดยใช้ tapping mode พบว่า ลักษณะพื้นผิวของ NR ที่ปรับแต่งด้วย PELA นั้นมีค่า roughness (R_{ms}) เพิ่มขึ้น เมื่อเทียบกับ NR (ค่า R_{ms} ของ NR มีค่า 23.6 nm และค่า roughness ของ NR ที่ปรับแต่งพื้นผิวด้วย PELA มีค่าอยู่ในช่วง 50 – 92 nm) แสดงว่าที่พื้นผิวของ NR ที่ปรับแต่งค้วย PELA นั้นมี PELA ติดที่บริเวณพื้นผิวของยางจริง และจาก phase image พบว่า ไม่เกิด phase separation ของพื้นผิวที่ปรับแต่ง จึงยืนยันได้ว่า PELA นั้นสามารถยึดติดทั่วทั้งแผ่นฟิล์ม NR เมื่อ ทดสอบความเป็น hydrophilicity ของพื้นผิว NR ที่ปรับแต่งด้วย PELA ด้วยการวัดค่า water contact angle พบว่า water contact angle ของแผ่นฟิล์ม NR ที่ปรับแต่งด้วย PELA มีค่าต่ำกว่าของ NR แสดงว่า พื้นผิวมีความเป็น hydrophilic มากขึ้น โดยค่า water contact angle ของ NR มีค่าประมาณ 92° และ ค่า นี้จะเพิ่มขึ้นจาก 23- 90° เมื่อเพิ่ม MW ของ PELA เนื่องจากระบบของฟิล์ม NR ที่ปรับแต่งด้วย PELA ด้วย เทคนิค AFM โดยใช้ force mode พบว่า พื้นผิว NR และ NR ที่ปรับแต่งพื้นผิวด้วย PELA ด้วย เทคนิค AFM โดยใช้ force mode พบว่า พื้นผิว NR และ NR ที่ปรับแต่งพื้นผิวด้วย PELA นั้นมีค่า adhesion force มากกว่า NR โดย NR จะมีค่า deflection ที่ต่ำมาก และเมื่อเพิ่ม MW ของ PELA ค่า เพิ่มขึ้นจาก 50 – 325 nm แสดงว่า PELA นั้นมีสมบัติการยึดติดที่ดีและสามารถพัฒนาไปสู่การเป็น adhesive layer ที่มีสมบัติ biocompatibility และ biodegradability ที่มีความสามารถในการบรรจุยา หลากหลายประเภทได้

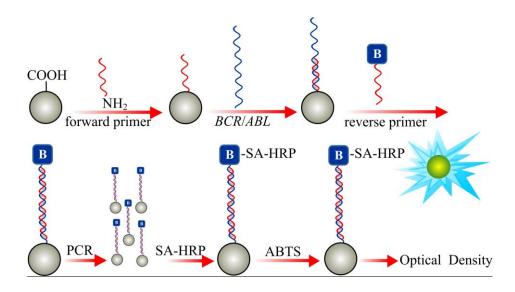
เนื่องด้วยค่า modulus บอกถึงความยืดหยุ่น จึงได้ทดสอบสมบัติเชิงกลระดับนาโน (nanomechanical property) ของ NR ที่ปรับแต่งพื้นผิวด้วย PELA ด้วยเทคนิค nanoindentation พบว่า modulus ของ NR มีค่า 2.4 MPa และค่า modulus มีค่าเพิ่มขึ้นเมื่อเพิ่ม MW ของ PELA โดย NR ที่ ปรับแต่งพื้นผิวด้วย PELA ให้ค่า modulus อยู่ในช่วง 0.9 - 2.4 MPa แสดงว่า PELA มีความเป็น soft material มากกว่า NR ซึ่งเมื่อใช้งานจริงจะก่อให้เกิดความรู้สึกสบายผิวต่อผู้ใช้ เนื่องจากมีความยืดหยุ่น มาก เพื่อเป็นการพิสูจน์ว่าการปรับแต่งพื้นผิว NR ด้วย PELA นั้น ช่วยทำให้ไม่เกิดการระคายเคืองต่อ ผู้ใช้งานจึงได้ทำการทดสอบสมบัติ cytotoxicity เพื่อทดสอบ biocompatibility ของ NR และ NR ที่ ปรับแต่งด้วย PELA ตามมาตรฐาน ISO 10993-5 ซึ่งเป็นมาตรฐานการทดสอบวัสดุทางการแพทย์ที่ใช้ งานกับร่างกายมนุษย์ พบว่า ปริมาณเซลล์ที่มีชีวิตอยู่บนแผ่นฟิล์ม NR มีประมาณ 20% และปริมาณ เซลล์ที่มีชีวิตอยู่บนแผ่นฟิล์ม NR ที่ปรับแต่งด้วย PELA มีประมาณ 70% โดยตามหลักการแล้วการ ทคสอบ cytotoxicity นั้นถ้ามีจำนวนเซลล์ที่มีชีวิตอยู่บนวัสดุเกิน 70% แสดงว่าวัสดุชนิดนั้นมีสมบัติ เป็น biocompatible materials ยืนยันว่า การปรับแต่ง NR ด้วย PELA นั้นเพิ่มความเป็น biocompatibility ให้กับแผ่นฟิล์ม NR และสามารถนำไปใช้งานจริงได้โดยไม่ก่อให้เกิดการแพ้ของ ผู้บริโภค นอกจากนี้ยังใค้ศึกษา creep เนื่องจาก PELA มีสมบัติเป็น viscoelastic materials และพบว่า NR เกิดการ creep น้อยที่สุดและเมื่อเพิ่ม MW ของ PELA การ creep มีค่ามากขึ้น ซึ่งนำไปสู่การศึกษา model ของ mechanical properties ของ viscoelastic materials ต่อไป

โครงการย่อยที่ 4

ดร. ดวงพร พลพานิช ศูนย์นาโนเทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ผศ. ดร. กุลชาติ จังภัทรพงศา

คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

การเตรียมอนุภาคนาโนพอลิเมอร์ที่มีสมบัติแม่เหล็กเพื่อใช้ในการแยกเซลล์เม็ดเลือด


งานวิจัยส่วนนี้เป็นการสังเคราะห์อนุภาคแม่เหล็กขนาดนาโน (magnetic nanoparticle; MNP) ด้วย กระบวนการ co-precipitation ระหว่าง Fe³⁺ กับ Fe²⁺ ในสารละลาย NH,OH และใช้ oleic acid เป็น stabilizer จากการตรวจสอบโดยการใช้เทคนิค X-ray diffraction (XRD) และ Vibrating sample magnetometer (VSM) พบว่า อนุภาค MNP ที่เตรียมขึ้น คือ magnetite (Fe₃O₄) และแสดงพฤติกรรม superparamagnetic ที่อุณหภูมิห้อง กล่าวคือ จะแสดงความเป็นแม่เหล็กเมื่อได้รับสนามแม่เหล็กจากภายนอกเท่านั้น จากนั้นจึงเตรียมอนุภาคนาโน พอลิเมอร์ที่มีสมบัติแม่เหล็ก (magnetic polymeric nanoparticle; MPNP) โดยกักเก็บ MNP ไว้ใน matrix ของ polystyrene/acrylic acid (PS/AA-MNP) หรือ polystyrene/divinyl benzene/acrylic acid (PS/DVB/AA-MNP) ด้วยวิธี miniemulsion polymerization เพื่อป้องกันการถูกออกซิไดซ์ของอนุภาค magnetite เป็น maghemite (Y-Fe,O,) ในสภาวะที่มีออกซิเจน อีกทั้งยังเป็นการปรับแต่งผิวของอนภาคเพื่อให้เกิดหม่ carboxylic ที่สามารถ ์ ยึดติดกับสารชีวโมเลกลหรือโมเลกลอื่นๆ ก่อนนำไปใช้งาน จากการตรวจสอบด้วยเทคนิค XRD และ TGA พบว่า อนุภาค PS/DVB/AA-MNP ที่เตรียมได้ แสดงพฤติกรรมเป็น superparamagnetic และมี magnetic content ทำให้อนุภาคดังกล่าวตอบสนองต่อสนามแม่เหล็กภายนอกได้อย่างรวดเร็ว PS/DVB/AA-MNP ออกจากตัวกลางได้อย่างสมบูรณ์ภายใน 3 นาที (เอกสารแนบ 5.2.1) นอกจากนี้ ยังได้ ทดสอบสมบัติ peroxidase-like activity ของอนุภาค PS/DVB/AA-MNP ในการเร่งปฏิกิริยาออกซิเคชันของ peroxidase substrate ในสภาวะที่มี H₂O₂ พบว่า อนุภาค PS/DVB/AA-MNP สามารถทำหน้าที่เป็นเอนไซม์ peroxidase ได้เช่นเดียวกับเอนไซม์ที่พบในธรรมชาติ อาทิ เอนไซม์ horseradish peroxidase (HRP) ซึ่งผลจาก การทดลองนี้ จะนำไปส่การพัฒนาเทคนิคในการตรวจหาเชื้อแบคทีเรียก่อโรคหรือโรคติดเชื้ออื่นๆ ต่อไป

งานวิจัยที่ทำควบคู่กันไป คือ การพัฒนาชุดทดสอบมาลาเรีย (เอกสารแนบ 5.1.3, 5.3.3) โดยการติด antigen ของเชื้อมาลาเรีย และ antibody ต่อเชื้อมาลาเรียบนพื้นผิวของ MPNP ที่มีหมู่ carboxylic อยู่ที่ผิวที่เป็น ผลิตภัณฑ์ทางการค้า (commercial carboxylated MPNP) เพื่อพัฒนาวิธีทางภูมิคุ้มกันในการแยก antibody ที่ จำเพาะต่อเชื้อมาลาเรียและตัวเชื้อมาลาเรีย ตามลำดับ โดยเตรียม MPNP ที่ติดด้วย antigen ของเชื้อ P. falciparum (MPNP-Ag) ด้วยการนำ antigen ที่สกัดได้จากตัวเชื้อ P. falciparum ในระยะ late trophozoite และ schizont ด้วยวิธี sonication มาติดลงบนผิวของอนุภาค MPNP โดยใช้ 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) เป็น crosslinking agent แล้วนำมาแยก antibody ต่อเชื้อ P. falciparum ที่อยู่ในพลาสมา ของผู้ป่วยที่ติดเชื้อมาลาเรีย จากการทดสอบด้วยเทคนิค Western blot analysis พบว่า อนุภาคดังกล่าวสามารถ แยก antibody ออกมาได้ ขณะนี้อยู่ในระหว่างการทดสอบด้วยเทคนิค mass spectroscopy เพื่อพิสูจน์ให้แน่ชัดว่า antibody ที่แยกออกมาได้นั้นมีความจำเพาะต่อเชื้อมาลาเรียชนิด P. falciparum ข้อมูลที่ได้จะนำไปตรวจสอบ

กับฐานข้อมูล proteomic ของเชื้อมาลาเรียชนิด P. falciparum ต่อไป ในส่วนการเตรียม MPNP ที่ติดด้วย antibody ที่จำเพาะต่อเชื้อมาลาเรีย (MPNP-anti-P. falciparum IgG) นั้น ทำโดยนำ antibody ที่จำเพาะต่อเชื้อ มาลาเรียที่ได้จากการตกตะกอนโปรตีนในพลาสมาของผู้ป่วยมาลาเรียชนิด P. falciparum ในระยะเฉียบพลัน ด้วย saturated ammonium sulphate ตามด้วยการแยก IgG antibody โดยใช้ Protein G column มาติดลงบนผิว ของ MPNP โดยใช้ EDC เป็น crosslinking agent แล้วนำมาทดลองแยก เม็ดเลือดแดงที่ติด P. falciparum ที่ ได้จากการเลี้ยงในหลอดทดลอง พบว่า อนุภาค MPNP-anti-P. falciparum IgG ดังกล่าว สามารถแยกเม็ดเลือด แดงที่ติดเชื้อมาลาเรียชนิด P. falciparum ได้ โดยพบเชื้อทั้งในระยะ ring, trophoziote และ schizont ภาพจาก SEM แสดงให้เห็นการจับกันระหว่าง MPNP-anti-P. falciparum IgG และ antigen ที่อยู่บนผิวของเม็ดเลือดแดง ที่ติดเชื้ออย่างชัดเจน งานในส่วนนี้อยู่ในระหว่างการทดลองเพิ่มเติมเพื่อเพิ่ม yield และ purity ของเชื้อที่แยกได้

นอกจากนี้ คณะผู้วิจัยยังได้ทำการยึดติดสาย oligonucleotide ที่จำเพาะ เพื่อตรวจวินิจฉัยหาความผิดปรกติ ของยืน BCR/ABL ในผู้ป่วยมะเริ่งเม็ดเลือดขาวชนิดเรื่อรัง (chronic myeloma leukemia; CML) ด้วยเทคนิคใหม่ ที่ได้พัฒนาขึ้น เรียกว่า Magneto-PCR enzyme linked gene assay (รูป 4.1) โดยอาศัยหลักการติด forward primer ซึ่งปรับแต่งปลายด้าน 5' ให้มีหมู่อะมิโน และมีคาร์บอน 6 ตัว (NH2-C6-forward primer) บนผิวของ commercial carboxylated MPNP (MPNP bound forward primer) โดยที่ reverse primer ติดด้วยโมเลกุล biotin ที่ปลาย 5' (biotinylated reverse primer) และเมื่อต้องการทดสอบกับยืนเป้าหมาย จึงนำ DNA ของคนไข้มะเร็ง เม็ดเลือดขาวมาทำปฏิกิริยา polymerase chain reaction (PCR) ด้วย MPNP bound forward primer และ biotinylated reverse primer และใช้ streptavidin-horseradish peroxidase เพื่อทำให้เกิดสีเมื่อผสมกับ peroxidase substrate และ H_2O_2 แล้วนำไปวัดความเข้มของสีด้วยเครื่อง spectrophotometer ที่ให้ผลกวามเข้มของสีแปรผัน ตรงกับการแสดงออกของยืนที่ผิดปกติของโรกมะเร็งเม็ดเลือดขาว ซึ่งหลักการดังกล่าวให้ผลการตรวจที่รวดเร็ว และมีความไวเทียบเท่าวิธี Real-time PCR (5 pg/ml) ซึ่งเป็นวิธีมาตรฐานที่ใช้กันในปัจจุบัน มีความจำเพาะ และ มีความแม่นยำสูง (high sensitivity and specificity) อีกทั้งยังช่วยลดการใช้และสัมผัสสารพิษของผู้ปฏิบัติงาน ด้วย (เอกสารแนบ 5.1.10)

ด้วยศักยภาพของ MPNP ทั้งในสมบัติการเป็นแม่เหล็กและสมบัติเสมือนเป็นเอนไซม์ peroxidase ใน การเร่งปฏิกิริยาออกซิเดชัน คณะผู้วิจัยจึงได้พัฒนาต่อยอดกระบวนการของเทคนิค Magneto-PCR enzyme linked gene assay โดยการนำ MPNP มาใช้แทนเอนไซม์ในขั้นตอนการตรวจสอบผลผลิตที่ได้จากปฏิกิริยา PCR เพื่อประยุกต์ใช้ในการตรวจหาเชื้อแบคทีเรียในเชิงปริมาณ โดยใช้เชื้อ Vibrio cholerae และ Enterotoxigenic E. coli (ETEC) เป็นแบคทีเรียต้นแบบ ซึ่งยังไม่เคยมีรายงานการนำสมบัติทั้ง 2 ของอนุภาค MNP มาประยุกต์ใช้ร่วมกันในการตรวจหาแบคทีเรียตั้นแบบ ซึ่งยังปริมาณด้วยวิธี PCR มาก่อน กระบวนการดังกล่าวจึง เป็นทางเลือกในการตรวจหาเชื้อแบคทีเรียที่มีความสะดวก รวดเร็วและสามารถวิเคราะห์เชื้อในเชิงปริมาณได้ อย่างมีประสิทธิภาพเทียบเคียงกับเทคนิค PCR-ELISA โดยมีข้อแตกต่างที่ไม่ต้องใช้ streptavidin-horseradish peroxidase ในขั้นตอนการตรวจสอบผลผลิต PCR

รูป 4.1 แผนภาพรูปแบบชุดตรวจวินิจฉัยโรคมะเร็งเม็ดเลือดขาวที่ได้พัฒนาขึ้น เมื่อนำ DNA เป้าหมายมาทำ ปฏิกิริยา PCR ร่วมกับ MPNP bound forward primer และ biotinylated reverse primer ซึ่งสามารถตรวจสอบการ แสดงออกของยืน BCR/ABL ได้โดยการใช้ streptavidin-horseradish peroxidase ร่วมกับ peroxidase substrate และ H_2O_2 ในการทำปฏิกิริยา และตรวจวัดระดับสีด้วย spectrophotometer

2. สรุปรวมผลงาน <mark>(เอกสารแนบ 5.1-5.4)</mark>

2.1 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

2.1.1 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติที่อยู่ในฐานข้อมูล และมี Impact Factor (IF)

- Paiphansiri, U., and Tangboriboonrat, P.*, "Deposition of Disinfectant Poly(methyl acrylate)
 Nanocapsules onto Natural Rubber Film via Layer-by-Layer Technique", J. Appl. Polym. Sci., 2009,
 112: 769-777 [IF 2009 = 1.203]
- Sunintaboon, P.*, Duangphet, S., and Tangboriboonrat, P., "Polyethyleneimine-functionalized Poly(methyl methacrylate) Colloidal Nanoparticles for Directly Coating Natural Rubber Sheet", *Colloid.* Surface A., 2009, 350: 114-120 [IF 2009 = 1.988]
- 3. Polpanich, D.*, Tangboriboonrat, P., and Elaissari, A.*, "Preparation and Agglutination of Immunonanolatex for Malaria Diagnosis", *J. Biomed. Nanotechnol.*, 2009, 5: 486-492 [IF 2009 = 1.588]
- 4. Anancharungsuk, W., Taweepreda, W., Wirasate, S., Thonggoom, R., and Tangboriboonrat, P.*, "Reduction of Surface Friction of Natural Rubber Film Coated with PMMA Particle: Effect of Particle Size", *J. Appl. Polym. Sci.*, 2010, 115: 3680-3686 [IF 2009 = 1.203]
- Anancharungsuk, W., Polpanich, D., Jangpatarapongsa, K., and Tangboriboonrat, P.*, "In vitro Cytotoxicity Evaluation of Natural Rubber Latex Film Surface Coated with PMMA Nanoparticles",
 Colloid. Surface B., 2010, 78: 328-333 [IF 2009 = 2.600]
- Tanpantree, S., Opaprakasit, P., Loykulnant, S., Kangwansupamonkon, W., and Tangboriboonrat, P.*,
 "Nanocapsules Embedded in Natural Rubber Latex Gloves", *J. Appl. Polym. Sci.*, 2010, 117: 1798-1803
 [IF 2009 = 1.203]
- 7. Kaewsaneha, C., Tangboriboonrat, P.*, Polpanich, D., and Smanmoo, S., "Preparation of Core-Shell Particle of Disinfectant Agent Nanocapsules-Skim Rubber Particles by the Heterocoagulation Technique", *Macromol. Res.*, 2010, 18: 876-883 [IF 2009 = 2.369]
- 8. Kaewsaneha, C., Opaprakasit, P., Polpanich, D., Smanmoo, S., and Tangboriboonrat, P.*, "Composite Particles of Disinfectant Nanocapsules-Skim Rubber Latex", *Int. J. Polym. Anal. Ch.*, 2010, 15: 524-535 [IF 2009 = 0.775]
- Tanpantree, S., Opaprakasit, P., Polpanich, D., Smanmoo, S., and Tangboriboonrat, P.*, "Polymeric Disinfectant Nanocapsules: Effect of Molecular Weight of Poly(methyl methacrylate)", *J. Biomed. Nanotechnol.*, 2010, 6: 1-6 [IF 2009 = 1.588]
- Jangpatarapongsa, K.*, Polpanich, D., Yamkamon, V., Ditaroth, Y., Peng-On, J., Thiramanas, R., Hongeng, S., Jootar, S., Charoenmak, L., and Tangboriboonrat, P., "DNA Detection of Chronic Myelogenous Leukemia by Magnetic Nanoparticles", *Analyst*, 2011, 136: 354-358 [IF 2009 = 3.272]

- Nasomphan, W., Tangboriboonrat, P., and Smanmoo, S.*, "Selective Fluorescence Sensing of Deoxycytidine 5'-Monophosphate (dCMP) Employing a Bis(diphenylphosphate)diimine Ligand", J. Fluoresc., 2011, 21: 187-194 [IF 2009 = 2.017]
- 12. Smanmoo, S.*, Nasomphan, W., and Tangboriboonrat, P., "Highly Selective Fluorescent Chemosensor for Fe³⁺ Imaging in Living Cells", *Inorg. Chem. Commun.*, 2011, 14: 351-354 [IF 2009 = 2.029]
- Smanmoo, S.*, Nasomphan, W., and Tangboriboonrat, P., "Isothiocyanatoluminol as a Chemiluminescence Labeling Reagent for Amino Acids and Proteins", *Chem. Lett.*, 2011, 40: 188-190
 [IF 2009 = 1.460]
- 14. Nguyen, T. H., Tangboriboonrat, P., Rattanasom, N., Petchsuk, A., Opaprakasit, M., Thammawong, C. and Opaprakasit, P.*, "Polylactic Acid/Ethylene Glycol Triblock Copolymers as Novel Crosslinker for Epoxidized Natural Rubber", *J. Appl. Polym. Sci.*, 2011, (in press) [IF 2009 = 1.203]
- 15. Nasomphan, W., Tangboriboonrat, P., and Smanmoo, S.*, "Selective Sensing of L-Arginine Employing Luminol Dextran Conjugate", *Macromol. Res.*, 2011, (accepted) [IF 2009 = 2.369]
- Kanjanathaworn, N., Kaewsaneha, C., Polpanich, D., Jangpatarapongsa, K., and Tangboriboonrat, P.*,
 "Composite Nanoparticles on the Natural Rubber Latex Glove for Reduction of Surface Friction and
 Cytotoxicity", *Polym. Polym. Comp.*, 2011, (accepted) [IF 2009 = 0.470]

2.1.2 ผลงาน submit แล้วในวารสารวิชาการระดับนานาชาติที่อยู่ในฐานข้อมูล และมี IF

- 17. Charoenmak, L., Polpanich, D.*, Thiramanas, R., and Tangboriboonrat, P., "Preparation of Super-paramagnetic Polystyrene-based Nanoparticles Functionalised by Acrylic Acid", *Macromol. Res.*, 2011, (revised) [IF 2009 = 2.369]
- 18. Smanmoo, S.*, Nasomphan, W. and Tangboriboonrat, P., "A Highly Selective "Turn-on" Chemosensor Based on Dansyl-salicylaldehyde Schiff Base for Cu²⁺ Ion Detection", (submitted)
- 19. Smanmoo, S*, Nasomphan, W. and Tangboriboonrat, P., "Pyrazolidine Luminol as a Selective Colorimetric for Cu²⁺ in An Aqueous Environment", (submitted)
- 20. Riyajan, S.*, Intharit, I., and Tangboriboonrat, P., "Physical Properties of Maleated Sulfur Prevulcanized Natural Rubber-g-Cellulose Fiber", (submitted)
- 21. Riyajan, S.*, Intharit, I., and Tangboriboonrat, P., "Physical Properties of Polymer Composite: Natural Rubber Glove/Polystyrene Foam Waste/Cellulose", (submitted)
- 22. Wirasate S.*, Chokbunpiam, C., Thonggoom, R., and Tangboriboonrat, P., "Backing-required Properties of Films based on Natural Rubber for Transdermal Patch Application", (submitted)

2.1.3 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติอยู่ใน scopus แต่ไม่มี IF

- Nguyen, T.H., Petchsuk, A., Tangboriboonrat, P., Opaprakasit, M., Sharp, A., and Opaprakasit, P.*,
 "Synthesis and Characterizations of PLLA/PEG Block Copolymers", Adv. Mater. Research, 2010, 93-94: 198-201.
- Thammawong, C., Petchsuk, A., Opaprakasit, M., Chanunpanich, N., Tangboriboonrat, P., and Opaprakasit, P.*, "Preparation and Characterizations of Electrospun Lactide-based Polymeric Nanofibers", *Adv. Mater. Research*, 2010, 93-94: 377-380.
- Thiramanas, R., Wanotayan, R., Rahong, S., Jangpatarapongsa, K., Tangboriboonrat, P., and Polpanich, D.*, "Improving Malaria Diagnosis via Latex Immunoagglutination Assay in Microfluidic Device", *Adv. Mater. Research*, 2010, 93-94: 292-295.
- 4. Riyajan, S., Intharit, I., Thaiprasansup, S., and Tangboriboonrat, P., "Preparation of Novel Composite from Natural Rubber, Bagasse and Plaster", *Journal of Chemistry and Chemical Engineering*, 2010, 4: 56-57

2.1.4 manuscripts ที่กำลังจัดเตรียมเพื่อส่งตีพิมพ์ในวารสารวิชาการนานาชาติที่มี IF

- 1. Improvement of Biocompatibility of Natural Rubber by PLA-PEG-PLA Triblock Copolymer
- Synthesis and Characterizations of Poly(L-Lactic Acid-co-Ethylene Glycol) (PLLA/PEG) Block Copolymers
- 3. Enhancement of Mechanical Properties of Poly(L-lactide-co-D,L-lactide) Copolymers by Physical Crosslinks Derived from Configuration Interlocks
- 4. Property Modification of Epoxidized Natural Rubber: Crosslinking by Reactive Blend Technique of Poly(L-Lactic Acid-co-Ethylene Glycol) Block Copolymers
- Preparation and Characterizations of Fe₃O₄ Magnetic Nanoparticles Coated PLA-grafted Chitosan Copolymer as Potential Drug Delivery Material for Naproxen
- Morphology and Interactions of Naproxen-loaded Fe₃O₄ Magnetic Nanoparticles Coated PLA-co-PEG Block Copolymer

2.2 ความก้าวหน้าในการสร้างที่มวิจัย <mark>(เอกสารแนบ 5.6)</mark>

- มีการนำเสนอความก้าวหน้าของงานวิจัยและแลกเปลี่ยนข้อคิดเห็นของนักวิจัย และนักศึกษา ในกลุ่มเมธิวิจัยอาวุโส สกว. เป็นประจำอย่างต่อเนื่อง (เฉลี่ยเดือนละ 2 ครั้ง) ทำให้เกิดการ ทำงานร่วมกัน และเกิดงานวิจัยใหม่เพิ่มขึ้น เช่น การวิจัยเพื่อนำ copolymer ของ polylactide (PLA) ที่สังเคราะห์ขึ้นในโครงการย่อยที่ 2 มาเป็น crosslinking agent ชนิดใหม่ของ epoxidized natural rubber (ENR) ที่เตรียมตามวิธีการในโครงการย่อยที่ 1 และนำไปใช้ในการ ปรับแต่งผิวของแผ่นยาง NR เพื่อเพิ่ม biocompatibility ในโครงการย่อยที่ 3 หรือการนำ PLAgrafted chitosan copolymer ไปติดบนผิวของ magnetic nanoparticles (MNP) ที่เตรียมใน โครงการย่อยที่ 4 เพื่อเป็น potential drug delivery material ในโครงการย่อยที่ 2 เป็นต้น
- มีการประชุมอย่างสม่ำเสมอภายในแต่ละ โครงการวิจัยย่อย ก่อนจะมานำเสนอความก้าวหน้า ในที่ประชุมกลุ่มใหญ่ ทำให้ร่วมกันแก้ปัญหาวิจัยที่เกิดขึ้นได้ดีขึ้น ร่วมกันดูแลวิทยานิพนธ์ และปริญญานิพนธ์ของนักศึกษาอย่างใกล้ชิดมากขึ้น และได้ร่วมกันเขียน manuscript
- มีการเยี่ยมชมห้อง Lab ของแต่ละกลุ่มย่อย ในต่างสถาบัน ในระหว่างการประชุมกลุ่มซึ่งจัด โดย โครงการวิจัยย่อยนั้น ทำให้ได้ใช้ห้อง Lab และอุปกรณ์วิจัยร่วมกัน และพึ่งพา/ปรึกษา งานเฉพาะค้าน ตามความชำนาญของแต่ละกลุ่ม โดยเปิด โอกาสให้ผู้ที่สนใจท่านอื่นๆใน สถาบันนั้นๆ เข้าร่วมฟังด้วย มีการแลกเปลี่ยนข้อคิดเห็น/แนวคิดในการทำวิจัยร่วมกัน
- ขยายความร่วมมือ โดยเชิญนักวิจัย/อาจารย์ใหม่ที่เพิ่งจบ และยังไม่ได้อยู่ในกลุ่มวิจัยบรรยาย ในเรื่องที่เคยทำวิจัย/เรื่องที่สนใจ ร่วมไปกับการนำเสนอความก้าวหน้าของงานวิจัยโดย นักวิจัย/นักศึกษาในกลุ่มที่จัดเป็นประจำอย่างต่อเนื่อง รวมทั้งได้เชิญนักวิจัย สวทช. เป็น อาจารย์ที่ปรึกษาร่วมในวิทยานิพนธ์ของนักศึกษาที่รับทุน ทำให้มีผู้เข้าร่วมทีมวิจัยเพิ่มขึ้น
- ช่วยให้อาจารย์/นักวิจัยรุ่นใหม่ ได้เริ่มต้นทำงานวิจัยแบบเป็นตัวของตัวเอง โดยส่งเสริมให้ขอ
 ทุนพัฒนาสักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่/ทุนส่งเสริมนักวิจัยรุ่นใหม่ สกอ./
 สกว. และทุนอื่นๆ ที่อาจารย์/นักวิจัยเหล่านั้นเป็นหัวหน้าโครงการ
- กระตุ้น/ส่งเสริมให้อาจารย์/นักวิจัยในกลุ่มฯ ขอตำแหน่งวิชาการในระดับที่สูงขึ้น และให้
 อาจารย์/นักวิจัย/นักศึกษาเข้าร่วมกิจกรรมต่างๆที่เป็นประโยชน์ต่ออาชีพนักวิจัย เช่น การ
 นำเสนอผลงานในที่ประชุมวิชาการ (โดยขอการสนับสนุนเพิ่มจากแหล่งทุนอื่น เช่น บัณฑิต
 วิทยาลัย มหาวิทยาลัยมหิดล) รวมทั้งกระตุ้น/ส่งเสริม/จูงใจให้ขอรับรางวัลต่างๆ ด้านการวิจัย
- จัดประชุมประจำปีเมธีวิจัยอาวุโส สกว. 2 ครั้ง ณ มหาวิทยาลัยมหิดล ทั้งที่พญาไท กรุงเทพฯ และที่วิทยาเขตสาลายา จ.นครปฐม ส่วนครั้งที่ 3 จัดขึ้นที่มหาวิทยาลัยสงขลานครินทร์ วิทยา เขตหาดใหญ่ (มีการบรรยาย/ซักถาม เรื่อง การเขียนข้อเสนอโครงการวิจัยที่ดี) โดยเชิญ อาจารย์/นักวิจัย/นักสึกษาจากหลากหลายหน่วยงาน มีผู้เข้าร่วมครั้งละประมาณ 100 คน (เอกสารแนบ 5.5) ซึ่งได้มีการปรึกษา/ร่วมงานวิจัยกัน และนักวิจัยหลายท่านที่ไม่เคยทำงานวิจัยร่วมกัน ได้เริ่มทำงานวิจัยด้วยกัน

3. กิจกรรมอื่นๆ ที่เกี่ยวข้อง

3.1 ผลงานอื่นๆ เช่น การไปเสนอผลงาน การได้รับเชิญไปเป็นวิทยากร การได้รับรางวัล

Invited lectures

- P. Tangboriboonrat*, C. Amornchaiyapitak and P. Opaprakasit, "Surface Modification of Natural Rubber and Its Use in Biomedical Applications", IUPAC 5th International Symposium on Novel Materials and Synthesis (NMS-V) & 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Shanghai, P. R. China: October 18-22, 2009.
- P. Tangboriboonrat*, C. Amornchaiyapitak, T. Arpornwichanop and W. Saksopon, "Surface Modification of Epoxidized Natural Rubber by Polymerization of Methyl Methacrylate in Waterbased System", Second International Conference on Polymer Processing and Characterization (ICPPC – 2010), Kottayam, Kerala, India: January 15-17, 2010.
- P. Tangboriboonrat*, D. Polpanich, K. Jangpatarapongsa, W. Anancharungsuk and N. Kanjanathaworn, "Poly(methyl methacrylate) Nanoparticles on the Natural Rubber Latex Glove for Reduction of Surface Friction and Cytotoxicity", *International Conference & Exhibition on Pure and Applied Chemistry 2011 (PACCON 2011)*, Bangkok, Thailand: January 5-7, 2011.

Oral presentations

- S. Tanpantree*, P. Tangboriboonrat, W. Kangwansupamonkon, S. Loykulnant, "Disinfectant Loaded Polymeric Nanocapsule Prepared by Nanoprecipitation Method for Use in Medical Glove", *International Rubber Conference (IRC 2008)*, Kuala Lumpur, Malaysia: October 20-23, 2008.
- W. Anancharungsuk*, A. Sruanganurak and P. Tangboriboonrat, "Coating of Natural Rubber Latex Film with Poly(methyl methacrylate) for Reducing Surface Friction of Rubber", *International Rubber Conference (IRC 2008)*, Kuala Lumpur, Malaysia: October 20-23, 2008.
- P. Sriromreun*, A. Petchsuk, M. Opaprakasit, P. Tangboriboonrat, and P. Opaprakasit, "Properties and Degradability of Poly(ethylene terephthalate-co-lactic acid) Copolymer and Its Blends",
 International Conference & Exhibition on Pure and Applied Chemistry 2009 (PACCON 2009),
 Phitsanulok, Thailand: January 14-16, 2009.
- 4. A. Kordach*, A. Petchsuk, M. Opaprakasit and P. Opaprakasit, "Preparation and Properties of Controlled-Release Materials for Urea Fertilizer from Copolyester and Its Blends", *International Conference & Exhibition on Pure and Applied Chemistry 2009 (PACCON 2009)*, Phitsanulok, Thailand: January 14-16, 2009.

- C. Kaewsaneha* and P. Tangboriboonrat, "Preparation of Composite Disinfectant Nanocapsule for Use in Medical Glove", 2nd Polymer Graduate Conference of Thailand, Bangkok: May 21-22, 2009.
- T. H. Nguyen*, A. Petchsuk, P. Tangboriboonrat, M. Opaprakasit, A. Sharp and P. Opaprakasit, "Synthesis and Characterizations of PLLA/PEG Block Copolymers", *International Conference on Functionalized and Sensing Materials 2009 (FuSeM 2009)*, Bangkok, Thailand: December 7-9, 2009.
- C. Thammawong*, A. Petchsuk, M. Opaprakasit, N. Chanunpanich, P. Tangboriboonrat and P. Opaprakasit, "Preparation and Characterizations of Electrospun Lactide-based Polymeric Nanofibers", *International Conference on Functionalized and Sensing Materials 2009 (FuSeM 2009)*, Bangkok, Thailand: December 7-9, 2009.
- C. Kaewsaneha* and P. Tangboriboonrat, "Preparation of Composite Disinfectant Nanocapsules for Use in Medical Glove", *Advanced Polymeric Materials and Technology Symposium (APMT 2010)*, Jeju, Korea: January 24-27, 2010.
- L. Charoenmark*, D. Polpanich, K. Jangpatarapongsa and P. Tangboriboonrat, "Development of Magnetic Nanoparticle for Gene Detection in Cancer", *Advanced Polymeric Materials and Technology Symposium (APMT 2010)*, Jeju, Korea: January 24-27, 2010.
- D. Polpanich*, R. Thiramanas, L. Chareonmak, K. Jangpatarapongsa and P. Tangboriboonrat, "Magnetic Polymeric Nanoparticles for Food Pathogen Detection", *UK-Thailand Conference on Nanomedicine*, Bangkok, Thailand: March 22-23, 2010.
- L. Charoenmark*, K. Jangpatarapongsa, D. Polpanich and P. Tangboriboonrat, "Synthesis of Magnetic Polymeric Nanoparticle for Leukemia Detection", 1st Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.
- 12. N. Kanjanathaworn*, W. Anancharungsuk, D. Polpanich K. Jangpatarapongsa and P. Tangboriboonrat, "Coating Poly(methyl methacrylate) Particles on Sulphur Prevulcanized Natural Rubber Film for Reduction of Surface Friction and Cytotoxicity", Ist Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.
- 13. C. Kaewsaneha* and P. Tangboriboonrat, "Heterocoagulation of Disinfectant Nanocapsules by Skim Rubber Particles for the Preparation of Core-Shell Particles", Ist Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.
- 14. W. Nasomphan*, S. Smanmoo and P. Tangboriboonrat, "Selective Fluorescence Sensing of Deoxycytidine 5'-monophosphate (dCMP) Employing Bis(diphenyl-phosphate)diimine Ligand",

- The 5th International Conference on Cutting-Edge Organic Chemistry in Asia (ICCEOCA-5), HsinChu, Taiwan: November 6-8, 2010.
- C. Kaewsaneha* and P. Tangboriboonrat, "Preparation of Medical Gloves from Skim Rubber Latex",
 MUSC Graduate Research Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27,
 2010.
- J. Mangmeemak*, P. Tangboriboonrat, N. Rattasom and A. Somwangthanaroj, "Toughening of Polylactic Acid Blended with Natural Rubber", *International Conference & Exhibition on Pure* and Applied Chemistry 2011 (PACCON 2011), Bangkok, Thailand: January 5-7, 2011.

Poster presentations

- R. Thiramanas, R. Wanotayan, S. Rahong, K. Jangpatarapongsa, P. Tangboriboonrat and D. Polpanich, "Improving Malaria Diagnosis via Latex Immunoagglutination Assay in Microfluidic Device", *International Conference on Functionalized and Sensing Materials 2009 (FuSeM 2009)*, Bangkok, Thailand: December 7-9, 2009.
- N. Srisawang, A. Petchsuk, S. Wirasate, R. Thonggoom and P. Tangboriboonrat, "Pressure Sensitive Adhesive Properties of PLA-PEG-PLA Triblock Copolymer for Transdermal Drug Deliveries Patch", *Pure and Applied Chemistry International Conference 2010 (PACCON 2010)*, Ubon Ratchathani, Thailand: January 21-23, 2010.
- C. Chokbunpiam, S. Wirasate, R. Thonggoom and P. Tangboriboonrat, "Nanoindentation Measurements of Natural Rubber Thin Film for Medical Applications", *Pure and Applied Chemistry International Conference 2010 (PACCON 2010)*, Ubon Ratchathani, Thailand: January 21-23, 2010.
- 4. I. Intharit, S. Riyajan and P. Tangboriboonrat, "Physical Properties of Polymer Blend from Polystyrene Foam Waste, Natural Rubber and Cellulose", 12th International Seminar on Elastomers (ISE 12), Cha-Am, Petchburi, Thailand: March 8-11, 2010.
- T. Arpornwichanop, W. Saksopon, and P. Tangboriboonrat, "Surface Modification of Epoxidized Natural Rubber by Formation of Interpenetrating Polymer Networks with Poly(methyl methacrylate)", 12th International Seminar on Elastomers (ISE 12), Cha-Am, Petchburi, Thailand: March 8-11, 2010.
- 6. Y. Distarot, D. Polpanich, V. Yamkamon, J. Peng-On, R. Thiramanas, P. Tangboriboonrat and K. Jangpatarapongsa, "A Novel Molecular Diagnostic of Chronic Myeloid Leukemia by Magnetic Nanoparticle", 5th SBE International Conference on Bioengineering and Nanotechnology, Biopolis, Singapore: August 1-4, 2010.

- 7. I. Intharit, S. Riyajan and P. Tangboriboonrat, "Preparation New Polymer from Natural Rubber and Cellulose", *The 20th Thanksin University Annual Conference Thai Society Development with Creative Research*, Hat Yai, Songkla, Thailand: September 16-17, 2010.
- I. Intharit, S. Riyajan and P. Tangboriboonrat, "Preparation New Polymer from Natural Rubber and Cellulose", Ist Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.
- W. Nasomphan, S. Smanmoo and P. Tangboriboonrat, "Selective Fluorescence Sensing of Deoxycytidine 5'-monophosphate (dCMP) Employing a Bis(diphenyl-phosphate)diimine Ligand", Ist Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.
- 10. I. Intharit, S. Hayeeyusoh, S. Riyajan and P. Tangboriboonrat, "Preparation and Characterization of Polymer Blend from NR Glove/PVA and NR Glove/PS Foam Bioscience", *The 7th IMT-GT UNINET The 3rd Joint International PSU-UNS Conferences*, Hat Yai, Songkhla, Thailand: October 7-8, 2010.
- L. Charoenmark, K. Jangpatarapongsa, D. Polpanich and P. Tangboriboonrat, "Development of Magnetic Nanoparticle for DNA Detection of Cancer", MUSC Graduate Research Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27, 2010.
- 12. N. Kanjanathaworn, D. Polpanich, P. Sunintaboon and P. Tangboriboonrat, "Surface Modification of Sulphur Prevulcanized Natural Rubber Film by Functionalized Chitosan-Poly(methyl methacrylate) Particles", MUSC Graduate Research Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27, 2010.
- T. Arpornwichanop, P. Numprasanthai, R. Thonggoom and P. Tangboriboonrat, "Modification of Epoxidized Natural Rubber Latex Sheet for Reduction of Surface Friction", *MUSC Graduate* Research Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27, 2010.
- 14. C. Chokbunpiam, R. Thonggoom, P. Tangboriboonrat and S. Wirasate, "Development and Characterization of Backing Film based on Natural Rubber for Trandsdermal Drug Delivery Patch", Pure and Applied Chemistry International Conference 2011 (PACCON 2011), Bangkok, Thailand, January 5-7, 2011.
- T. Tangchaikeeree, P. Vesurai, R. Thiramanas, D. Polpanich, R. Yaicharoen, R. Udomsangpetch,
 P. Tangboriboonrat and K. Jangpatarapongsa, "Antibody Immobilized Magnetic Nanoparticles for Malaria Separation", *Pure and Applied Chemistry International Conference (PACCON 2011)*,
 Bangkok, Thailand: January 5-7, 2011.
- 16. N. Srisawang, A. Petchsuk, P. Tangboriboonrat and R. Thonggoom, "Environmental Effects of PLA-PEG-PLA Triblock Copolymer as Potential Drug Carriers for Iontophoresis Transdermal Drug

Delivery", The 6th International Conference on Molecular Electronics and Bioelectronics (M&BEG), Sendai, Japan: March 16-18, 2011.

Invited speakers

- 1. **ดร. ดวงพร พลพานิช** ได้รับเชิญให้บรรยายเรื่อง **อนุภาคคอลลอยด์ขนาดนาโนสำหรับการตรวจ วินิจฉัยโรคมาลาเรีย** ในการประชุมเชิงปฏิบัติการการพัฒนาหลักสูตรฟื้นฟูและพัฒนาศักยภาพ
 บุคลากรด้านการตรวจวินิจฉัยทางห้องปฏิบัติการสำหรับโรคมาลาเรียและเท้าช้าง ณ ห้องประชุมศูนย์
 อบรมโรค ติดต่อนำโดยแมลง อ.พระพุทธบาท จ.สระบุรี (3 เมษายน 2552)
- 2. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัต**น์ ได้รับเชิญให้บรรยายเรื่อง **การนำเสนอผลงานทางวิชาการด้วยวาจา อย่างมีประสิทธิภาพ** ณ ห้องปรีคา วิบูลย์สวัสดิ์ คณะพลังงานสิ่งแวคล้อมและวัสดุ มหาวิทยาลัย เทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ (16 กันยายน 2552)
- 3. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์** ได้รับเชิญให้บรรยายเรื่อง **การนำเสนอผลงานทางวิชาการด้วยวาจา อย่างมีประสิทธิภาพ** ณ ห้องประชุมประภา ประจักษ์ศุภนิติ สำนักงานอธิการบดี มหาวิทยาลัย เทคโนโลยีพระจอมเกล้าธนบุรี กรุงเทพฯ (16 ธันวาคม 2552)
- 4. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์** ได้รับเชิญให้บรรยายเรื่อง **บอกเล่าเก้าสิบเทคนิคในการเขียนและ ตีพิมพ์งานวิจัย (สาขาวิทยาศาสตร์)** ณ ห้องประชุม 4228 อาคารสิ่งแวดล้อมพัฒนดล คณะสิ่งแวดล้อม และทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล ศาลายา (21 มกราคม 2553)
- 5. ดร. กุลชาติ จังภัทรพงศา ได้รับเชิญไปเป็นวิทยากรบรรยายเรื่อง ELISA and Rapid detection test for malaria infection ในการอบรมเชิงปฏิบัติการการพัฒนาหลักสูตรฟื้นฟูและพัฒนาศักยภาพ บุคลากรด้านการตรวจวินิจฉัยทางห้องปฏิบัติการสำหรับโรคมาลาเรีย ณ ห้องประชุมศูนย์อบรม โรคติดต่อนำโดยแมลง อ.พระพุทธบาท จ.สระบุรี (1 เมษายน 2553)
- 6. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์** ได้รับเชิญให้บรรยายเรื่อง **เตรียมตัวอย่างไรจึงจะได้ตำ**แหน่งรอง **ศาสตราจารย**์ ณ ห้องปฏิบัติการมัลติมีเดีย อาคาร 4 คณะเทคโนโลยีสื่อสารมวลชน มหาวิทยาลัย เทคโนโลยีราชมงคล กรุงเทพฯ (19 เมษายน 2553)
- 7. ผ**ศ. ดร. ปกรณ์ โอภาประกาสิต** ได้รับเชิญเป็นวิทยากรในการอบรมเชิงปฏิบัติการ**เทคนิคด้าน**Infrared microspectroscopy โดยสถาบันวิจัยแสงซินโครตรอน (องค์การมหาชน) กระทรวง
 วิทยาศาสตร์และเทคโนโลยี (2-4 มิถุนายน 2553)
- 8. **ดร. สรวง สมานหมู่** ได้รับเชิญเป็นวิทยากรบรรยายเรื่อง **ค่ายนักสืบสิ่งมีชีวิตเปล่งแสง** ในค่ายอบรม เชิงปฏิบัติสำหรับนักเรียนมัธยมตอนปลาย ณ บ้านวิทยาศาสตร์สิรินธร อุทยานวิทยาศาสตร์ประเทศ ไทย อ.คลองหลวง จ.ปทุมธานี (16 มิถุนายน 2553)
- 9. ผ**ศ. ดร. สอาด ริยะจันทร**์ ได้รับเชิญเป็นวิทยากรในการบรรยาย เรื่อง **การปรับปรุงสมบัติยางและการ** ประยุกต์ใช้งาน โดยสถาบันวิจัยแสงซินโครตรอน (องค์การมหาชน) กระทรวงวิทยาศาสตร์และ เทคโนโลยี (25 ตุลาคม 2553)

- 10. ผ**ศ. ดร. สอาด ริยะจันทร์** ได้รับเชิญเป็นวิทยากรในการบรรยาย เรื่อง **การปรับปรุงสมบัติยางและการ ประยุกต์ใช้งาน** โดย สกว./สกอ. ในงาน "นักวิจัยรุ่นใหม่...พบ...เมชีวิจัยอาวุโส สกว." ชะอำ จ.เพชรบุรี (16 ตุลาคม 2553)
- 11. **ดร. สรวง สมานหมู่** ได้รับเชิญเป็นวิทยากรบรรยาย เรื่อง **ค่ายนักสืบนิติวิทยาศาสตร์** ในค่ายอบรม เชิงปฏิบัติสำหรับนักเรียนมัธยมตอนปลาย ณ บ้านวิทยาศาสตร์สิรินธร อุทยานวิทยาศาสตร์ประเทศ ไทย อ.คลองหลวง จ.ปทุมธานี (12 มกราคม 2554)
- 12. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน**์ เป็นวิทยากรในฐานะผู้แทนจาก สกว. ให้การบรรยายเรื่อง **การเขียน** ข้อเสนอโครงการอย่างไรจึงจะได้รับทุน ณ ห้องประชุมสมภพ โหตระกิตย์ อาคารสำนักอธการบดี 2 มหาวิทยาลัยธุรกิจบัณฑิตย์ กรุงเทพฯ (15 กุมภาพันธ์ 2554)
- 13. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์** ได้รับเชิญให้บรรยายเรื่อง **เตรียมตัวอย่างไรจึงจะได้ตำ**แหน่ง วิชาการ ณ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคล กรุงเทพฯ (9 มิถุนายน 2554)
- 14. **ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน**์ เป็นวิทยากรในฐานะผู้แทนจาก สกว. ให้การอบรมเชิงปฏิบัติการ เรื่อง **การเขียนข้อเสนอโครงการที่ดี** ณ มหาวิทยาลัยราชภัฎอุบลราชธานี จ.อุบลราชธานี (27 กรกฎาคม 2554)

ผลงานที่ตีพิมพ์ในประเทศ

- 1. P. Tangboriboonrat ได้รับเชิญให้เขียน Review article ในวารสาร Trends Research in Science and Technology มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ และเป็น editorial board
 - [D. Polpanich, K. Jangpatarapongsa and P. Tangboriboonrat*, "Colloidal Polymer Particles for Use in Immunological Application", Trends Research in Science and Technology, 2009, 1: 1-7]
- 2. คร. กุลชาติ จังภัทรพงศา "นาโนเทคโนโลยีกับการตรวจทางห้องปฏิบัติการทางการแพทย์" **หนังสือ** พิมพ์มติชนฉบับพิเศษ Hospital Healthcare, ปีที่ 4 ฉบับที่ 30 มีนาคม 2553.
- 3. สอาค ริยะจันทร์ "สุดยอดนักวิทยาศาสตร์" Go Genius ฉบับที่ 67 ปีที่ 6 2553 หน้า 38

3.2 การเชื่อมโยงทางวิชาการกับนักวิชาการอื่นๆ ทั้งใน และต่างประเทศ (เอกสารแนบ 5.6) การเชื่อมโยงกับนักวิจัยในประเทศแบ่งได้เป็น 3 แบบ คือ

1. **อาจารย์/นักวิจัยที่ร่วมกันเขียนข้อเสนอโครงการวิจัย และทำวิจัยตั้งแต่เริ่มโครงการ** โดยมีนักวิจัยหลัก ทำหน้าที่หัวหน้าโครงการย่อย รับผิดชอบดูแลงานวิจัยทั้งส่วนของนักวิจัย-นักศึกษา/เขียน manuscript/ การเงินของแต่ละกลุ่มย่อย แล้วจัดส่งรายงานความก้าวหน้าทุก 6 เดือน ซึ่งได้มีการประชุมปรึกษา หารือ/แก้ปัญหางานวิจัยกันทั้งทีมเป็นระยะๆ รวมทั้งตรวจ/แก้วิทยานิพนธ์ และ manuscript อย่าง สน้ำเสมค

- 2. อาจารย์/นักวิจัยที่เข้าร่วมโครงการเมื่อเริ่มโครงการไปแล้ว การเข้าร่วมนั้นส่วนหนึ่งเกิดขึ้นเนื่องจาก การเชิญให้นักวิจัย/อาจารย์ใหม่ที่เพิ่งจบการศึกษา และยังไม่ได้อยู่ในกลุ่มวิจัยใดๆ มาบรรยายในเรื่องที่ เคยทำวิจัย/เรื่องที่สนใจ ร่วมไปกับการนำเสนอความก้าวหน้าของงานวิจัยโดยนักวิจัย/นักศึกษาในกลุ่ม ที่จัดเป็นประจำอย่างต่อเนื่อง เช่น ดร. สรวง สมานหมู่ สูนย์พันธุวิสวกรรมและเทคโนโลยีชีวภาพ แห่งชาติ สวทช. ผศ. ดร. สอาด ริยะจันทร์ คณะวิทยาสาสตร์ มหาวิทยาลัยมหิดล หรือโดยการเชิญอาจารย์/นักวิจัย/นักศึกษาจากหลายหน่วยงานเข้าร่วมการประชุมประจำปีเมธิวิจัยอาวุโส สกว. ทำให้ได้พบปะพูดคุยกัน และนักวิจัยหลายท่านที่ไม่เคยทำงานวิจัยร่วมกัน ได้เริ่มทำงานวิจัยที่มีความสนใจร่วมกัน เช่น ผศ. ดร. อนงค์นาฎ สมหวังธนโรจน์ คณะวิสวกรรมสาสตร์ จุฬาลงกรณ์มหาวิทยาลัย หรือเกิดจากการที่ อาจารย์/นักวิจัยใหม่ติดต่อขอให้เมธิวิจัยอาวุโส สกว. เป็น mentor ในการขอทุนพัฒนาสักยภาพในการ ทำงานวิจัยของอาจารย์รุ่นใหม่/ทุนส่งเสริมนักวิจัยรุ่นใหม่ สกอ./สกว. หรือทุนอื่นๆ เช่น ดร. พันธ์ญา สุนินทบูรณ์ คณะวิทยาสาสตร์ มหาวิทยาลัยมหิดล และ ดร. รักเกียรติ เจตคติ คณะวิทยาสาสตร์ มหาวิทยาลัยอุบลราชธานี และที่สำคัญคือ แต่ละโครงการย่อยได้มีการขยายความร่วมมือกับนักวิจัย ท่านอื่นๆ โดยมักจะเป็นอาจารย์ใหม่ในสถาบันนั้นๆ
- 3. อาจารย์/นักวิจัย หรือผู้เชี่ยวชาญเฉพาะด้าน ที่ทำหน้าที่เป็นที่ปรึกษางานวิจัย นอกจากที่ปรึกษาที่กลุ่ม วิจัยได้เชิญไว้ตั้งแต่ตอนเขียนข้อเสนอโครงการวิจัยแล้ว เมื่อทำวิจัยไประยะหนึ่ง บางโครงการย่อยได้ ติดต่อขอความช่วยเหลือกับผู้เชี่ยวชาญเฉพาะด้าน อาทิ ผส. คร. กุลชาติ จังภัทรพงสา ในโครงการย่อย ที่ 4 ได้สร้างความร่วมมือกับ รศ. นพ. สุรเดช หงส์อิง ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี และ คร. วิชนันท์ แย้มกมล ภาควิชาจุลทรรศนศาสตร์คลินิก คณะแทคนิค การแพทย์ มหาวิทยาลัยมหิดล เพื่อร่วมกันพัฒนาเทคนิคในการตรวจวัดระดับยืนที่ผิดปกติในผู้ป่วย โรคมะเร็งเม็ดเลือดขาวโดยใช้อนุภาคแม่เหล็กด้วยเทคนิค Enzyme-linked DNA assay โดย รศ. นพ. สุรเดช หงส์อิง ได้ให้คำปรึกษา/แนะนำเกี่ยวกับรูปแบบการพัฒนาชุดทดสอบและการนำไปใช้ใน อนาคต รวมทั้งความเป็นไปได้ในการทดลองใช้ในขั้นการทดสอบกับผู้ป่วยโรคมะเร็งเม็ดเลือดขาว ที่ เข้ารับการรักษา ณ โรงพยาบาลรามาธิบดี และเปรียบเทียบกับการตรวจวินิจฉัยโดยใช้เทคนิคเดิม นอกจากนี้ โครงการย่อยที่ เ ได้เชิญ ดร. สุรพิชญ์ ลอยกุลนันท์ ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ และ คร. วิยงค์ กังวานศุภมงคล ศูนย์นาโนเทคโนโลยีแห่งชาติ ทำหน้าที่นักวิจัยที่ปรึกษาร่วมของ นักศึกษาปริญญาโทที่รับทุนสถาบันบัณชิตวิทยาสาสตร์และเทคโนโลยีไทย (TGIST) สวทช.

การเชื่อมโยงกับนักวิจัย**ต่างประเทศ**แบ่งได้เป็น 2 แบบ คือ

- 1. **อาจารย**์/**นักวิจัยที่เป็นที่ปรึกษาร่วม**ภายใต้โครงการปริญญาเอกกาญจนาภิเษก (คปก.) หรือทุนอื่นๆ
- อาจารย์/นักวิจัย หรือผู้เชี่ยวชาญเฉพาะด้าน ที่ทำหน้าที่เป็นที่ปรึกษางานวิจัย นอกจากที่ปรึกษาที่กลุ่ม
 วิจัยได้ระบุไว้ในข้อเสนอโครงการวิจัยแล้ว ยังมีความร่วมมือเพิ่มเติมกับ Professor Dr. Paul E.
 Orndorff Department of Microbiology, College of Veterinary Medicine North Carolina State

University, USA, **Professor Dr. Masaaki Kai** Graduate School of Pharmaceutical Science, Nagasaki University, Nagasaki, Japan unz **Dr. Elene Shikobava** BATFARMA Company, Georgia

3.3 การได้รับทุนอื่นๆ/รางวัล-เกียรติ

- นางสาววรัญญา อนันต์จรุงสุข และ นางสาวเสาวรีย์ ตันพันตรี นักศึกษาปริญญาโท สาขา วิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิคล ได้รับทุน สนับสนุนบางส่วนจากบัณฑิตวิทยาลัย มหาวิทยาลัยมหิคล ในการไปเสนอผลงานแบบ oral ในการประชุม *International Rubber Conference (IRC 2008)* ณ เมือง Kuala Lumpur ประเทศ Malaysia (20-23 ตุลาคม 2551)
- ผศ. ดร. ปกรณ์ โอภาประกาสิต สถาบันเทคโนโลยีนานาชาติสิรินธร (SIIT) มหาวิทยาลัย ธรรมศาสตร์ ได้รับทุนช่วยเหลือการวิจัยด้านวิทยาศาสตร์และเทคโนโลยี จากมูลนิธิโทเรเพื่อ การส่งเสริมวิทยาศาสตร์ ประเทศไทย ครั้งที่ 15 พ.ศ. 2551
- รศ. ดร. นพวรรณ ชนัญพานิช สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ ได้รับทุน สนับสนุนงานวิจัยนาโนศาสตร์ จากสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)
- ดร. รัฐพร ทองกุม และ ดร. สุภา วิรเศรษฐ์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รับการ สนับสนุนจากคณะวิทยาศาสตร์ ให้อยู่ใน Capability Unit วิทยาศาสตร์และวิศวกรรมพื้นผิว
- นายอรรถพล กอเดช นักศึกษา SIIT มหาวิทยาลัยธรรมศาสตร์ ได้รางวัลการนำเสนอผลงาน คีเค่นประเภทบรรยาย จากสมาคมเคมี (ประเทศไทย) [A. Kordach*, A. Petchsuk, M. Opaprakasit and P. Opaprakasit, "Preparation and Properties of Controlled-Release Materials for Urea Fertilizer from Copolyester and Its Blends", International Conference & Exhibition on Pure and Applied Chemistry 2009 (PACCON 2009), Phitsanulok, Thailand: Jan 14-16, 2009]
- นางสาวจริยา แก้วเสน่หา นักศึกษาปริญญาโท สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รางวัลการนำเสนอผลงานดีเด่นประเภทบรรยาย จาก สมาคมโพลิเมอร์ (ประเทศไทย) [C. Kaewsaneha* and P. Tangboriboonrat, "Preparation of Composite Disinfectant Nanocapsule for Use in Medical Glove", 2nd Polymer Graduate Conference of Thailand, Bangkok, Thailand: May 21-22, 2009]
- นางสาวลลิดา เจริญมาก นักศึกษาปริญญาโท สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รับทุน TGIST สวทช. ปี 2552
- นายยุรนันท์ ดิษฐโรจน์ นักศึกษาปริญญาตรี คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล ได้รับ ทุนปริญญานิพนธ์โครงการสร้างปัญญาวิทย์ผลิตนักเทคโน (YSTP) สวทช. ปี 2552

- ดร. สรวง สมานหมู่ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สวทช. ได้รับทุนฝ่าย อุตสาหกรรม สกว. ในโครงการวิจัยขนาดกลางเรื่องยางพารา (Medium Projects on Rubber; MPR) ปี 2552
- นางสาววรัญญา อนันต์จรุงสุข มหาบัณฑิต สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ คณะ วิทยาศาสตร์ มหาวิทยาลัยมหิดล ได้รับรางวัลวิทยานิพนธ์ดี จากบัณฑิตวิทยาลัย มหาวิทยาลัย มหิดล ประจำปี 2552
- ดร. รัฐพร ทองกุม ได้รับตำแหน่งวิชาการ ผศ. เมื่อ กันยายน 2552
- ผศ. ดร. สอาด ริยะจันทร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้รับทุนพัฒนา ศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ สกว./สกอ. ปี 2553
- ดร. สรวง สมานหมู่ ได้รับทุนส่งเสริมนักวิจัยรุ่นใหม่ สกว./สกอ. ปี 2553
- นางสาวจริยา แก้วเสน่หา และ นางสาวลลิดา เจริญมาก ได้รับทุนสนับสนุนบางส่วนจาก บัณฑิตวิทยาลัย มหาวิทยาลัยมหิดล ในการไปเสนอผลงานแบบ oral ในการประชุม

 **Advanced Polymeric Materials and Technology Symposium (APMT 2010), Jeju, Korea:

 January 24-27, 2010
- ผศ. ดร. รัฐพร ทองกุม และ ดร. สุภา วิรเศรษฐ์ ได้รับทุนพัฒนาศักยภาพในการทำงานวิจัย ของอาจารย์รุ่นใหม่ สกว./สกอ. ปี 2553
- ดร. กุลชาติ จังภัทรพงศา คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล ได้รับทุนวิจัยจาก มหาวิทยาลัยมหิดล ปี 2553
- ผศ. ดร. สอาด ริยะจันทร์ ได้รับรางวัลนักวิทยาศาสตร์รุ่นใหม่ มูลนิธิส่งเสริมวิทยาศาสตร์ และเทคโนโลยีในพระบรมราชูปถัมภ์ ปี 2553
- นางสาวจริยา แก้วเสน่หา นักศึกษาปริญญาเอก สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ มหาวิทยาลัยมหิดล ได้รับทุน คปก. ปี 2553
- นายณัฐพงษ์ หริวงศานุภาพ นักศึกษาปริญญาตรี ภาควิชาเคมี คณะวิทยาศาสตร์
 มหาวิทยาลัยมหิดล ได้รับทุนโครงการ YSTP สวทช. ปี 2553
- นายปฐมพงศ์ เวศอุไร นักศึกษาปริญญาตรี คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล ได้รับ ทุนโครงการ YSTP สวทช. ปี 2553
- ผศ. ดร. ปกรณ์ โอภาประกาสิต ได้รับตำแหน่งวิชาการ รศ. ตุลาคม 2553
- ดร. กุลชาติ จังภัทรพงศา ได้รับตำแหน่งวิชาการ ผศ. เมื่อ พฤศจิกายน 2553
- รศ. ดร. ปกรณ์ โอภาประกาสิต ได้รับทุนสนับสนุนโครงการวิจัยเรื่อง Development of Nanomaterials for Use in Biomedical Applications จากโครงการ National research university จาก สกอ. งบประมาณปีละ 1.37 ล้านบาท เป็นเวลา 3 ปี
- นางสาวจริยา แก้วเสน่หา ได้รับคัดเลือกเป็น SC STAR 2010 ใน MUSC Graduate Research
 Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27, 2010.

- นางสาวณัฐกุล กาญจนถาวร นักศึกษาปริญญาโท สาขาวิทยาศาสตร์และเทคโนโลยีพอลิ แมอร์ มหาวิทยาลัยมหิคล ได้รับรางวัล Best Oral Presentation Award จากสมาคมโพลิเมอร์ ประเทศไทย Ist Polymer Conference of Thailand (PCT-1), Bangkok, Thailand: October 7-8, 2010.7
- นางสาวณัฐกุล กาญจนถาวร ได้รับรางวัล Poster Award จากงาน MUSC Graduate
 Research Exposition 2010 (GradExpo 2010), Bangkok, Thailand: October 26-27, 2010.
- นายวีระชัย นาสัมพันธ์ นักศึกษาปริญญาเอก สาขาวิทยาศาสตร์และเทคโนโลยีพอลิเมอร์ มหาวิทยาลัยมหิดล ใด้รับรางวัล Oral Award จากการ ไปนำเสนอผลงานแบบ oral ในงาน oth Junior Workshop on Cutting-Edge Organic Chemistry in Asia, โดย ได้รับทุนบางส่วน จาก สถาบันวิจัยจุฬาภรณ์ (Chulabhon Research Institute) [W. Nasomphan, S. Smanmoo, P. Tangboriboonrat, "Selective Fluorescence Sensing of Deoxycytidine 5'-monophosphate (dCMP) Employing Bis(diphenyl-phosphate)diimine Ligand", The 5th International Conference on Cutting-Edge Organic Chemistry in Asia (ICCEOCA-5), Hsinchu, Taiwan: November 6-8, 2010.]
- นายนฤดม ศรีสว่าง นักศึกษาปริญญาเอก หลักสูตรวิทยาศาสตร์และวิศวกรรมวัสดุ มหาวิทยาลัยมหิดล ได้รับทุน Japan-East Asia Network of Exchange for Students and Youths (JENESYS 2010) ไปทำงานวิจัยที่ Kyushu Institute of Technology (KIT) ประเทศ ญี่ปุ่น เป็นเวลา 6 เดือน
- คร. สรวง สมานหมู่ ได้รับเชิญเป็น Editorial Board ในวารสาร International Journal of Applied Sciences (IJAS) ISSN 2180-1258
- นายอิศระ อินทฤทธิ์ นักศึกษาปริญญาโท คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้รับรางวัล Best Poster Award จากสมาคมโพลิเมอร์แห่งประเทศไทย *I* Polymer Conference of Thailand (PCT-1)*, Bangkok, Thailand: October 7-8, 2010.
- ผศ. ดร. สอาด ริยะจันทร์ ได้รับรางวัล TRF-CHE-Scopus Young Researcher Award 2010
 สาขา Agricultural Sciences & Technology Category ปี 2553 จากจาก สกว. สกอ. และ สำนักพิมพ์ Elsevier
- ผศ. ดร. สอาด ริยะจันทร์ ได้รับรางวัลอาจารย์รุ่นใหม่ จากคณะวิทยาศาสตร์ มหาวิทยาลัย สงขลานครินทร์ ปี 2554
- ผ**ศ. ดร. สอาด ริยะจันทร**์ ได้รับรางวัลอาจารย์ที่ปรึกษาวิทยานิพนธ์ดีเด่น ระดับปริญญาโท บัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ ปี 2554
- นางสาวชมพูนุช โชคบุญเปี่ยม นักศึกษาปริญญาโท สาขาวิทยาศาสตร์และเทคโนโลยีพอลิ-เมอร์ มหาวิทยาลัยมหิดล ได้รับรางวัล Poster Award จากงาน *Pure and Applied Chemistry International Conference 2011 (PACCON 2011)*, Bangkok, Thailand: January 5-7, 2011.

- นายยุรนันท์ ดิษฐโรจน์ นักศึกษาปริญญาตรี คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล ได้รับ รางวัลผลงานทางวิชาการยอดเยี่ยมระดับปริญญาตรี (Outstanding award) จาก สวทช. ปี 2554
- นางสาวญาณภัทร แม้นถาวรศิริ นักศึกษาปริญญาโท คณะเทคนิคการแพทย์ มหาวิทยาลัย มหิดล ได้รับทุน TGIST สวทช. ปี 2554
- นางสาวอัจฉราวลัย พรเจริญ นักศึกษาปริญญาตรี คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล ได้รับทุนโครงการ YSTP สวทช. ปี 2554
- ดร. สรวง สมานหมู่ ได้รับการแต่งตั้งจากกระทรวงวิทยาศาสตร์และเทคโนโลยี ให้เป็น อนุกรรมการวิชาการและที่ปรึกษาวิชาการค่าย Bioluminescence ในงานกิจกรรมเทศกาล วิทยาศาสตร์เยาวชนเอเปค ครั้งที่ 4 ณ ศูนย์ประชุมอุทยานวิทยาศาสตร์ประเทศไทย จ. ปทุมธานี (22-26 สิงหาคม 2554)

3.4 นักศึกษาปริญญาโทที่สำเร็จการศึกษา (เอกสารแนบ 5.6)

 นางสาวชลดา อมรชัยยาพิทักษ์ สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 30 มกราคม 2552

 นางสาววรัญญา อนันต์จรุงสุข สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 31 มีนาคม 2552

3. **นางสาวเสาวรีย์ ตันพันตรี** สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 31 มีนาคม 2552

4. **นางสาวจริยา แก้วเสน่หา** สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 23 กุมภาพันธ์ 2553

5. **นางสาวไท เฮียน เหวียน** สอบป้องกันวิทยานิพนธ์ปริญญาโท สถาบันเทคโนโลยีนานาชาติสิรินธร มหาวิทยาลัยธรรมศาสตร์

เมื่อวันที่ 21 พฤษภาคม 2553

4. นางสาวลลิดา เจริญมาก สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 17 มีนาคม 2554
 7. นายอิศรา อินทฤทธิ์ สอบป้องกันวิทยานิพนธ์ปริญญาโท

มหาวิทยาลัยสงขลานครินทร์ เมื่อวันที่ 3 มิถุนายน 2554

8. **นางสาวณัฐกุล กาญจนถาวร** สอบป้องกันวิทยานิพนธ์ปริญญาโท มหาวิทยาลัยมหิดล เมื่อวันที่ 30 กันยายน 2554

3.5 นักศึกษาระดับปริญญาตรีที่สำเร็จการศึกษา <mark>(เอกสารแนบ 5.6)</mark>

1. นางสาวศศิธร พรหมวัลย์ 2. นางสาวกิรศิกานท์ ดาบคำ

นางสาวธนิดา อาภรณ์วิชานพ 4. นางสาววรรณิกา ศักดิ์โสพล

- 5. นายยุรนันท์ ดิษฐโรจน์
- 7. นายเชียรรัตน์ ตั้งใชยคีรี
- 9. นายสรยุทธ ฉัตรากาญจน์
- 11. นางสาวอธิษฐาน ยศสงคราม
- 13. นายปฐมพงศ์เวศอุไร

- 6. นางสาวจุฑารัตน์ เพ็งอัน
- 8. นางสาวภาวิณี โดดเครื่อ
- 10. นายสุธีรพล ปิงใจ
- 12. นางสาววราภรณ์ เที่ยงธรรม

4. ความเห็นของผู้วิจัย

โดยทั่วไปแต่ละโครงการย่อยส่วนมากมีความก้าวหน้าตามแผนการวิจัย โดยไม่มีอุปสรรค สำคัญ ซึ่งการทำงานในลักษณะของโครงการย่อยทำให้นักวิจัยรุ่นกลาง/รุ่นใหม่ ได้ฝึกฝนการเป็น หัวหน้าโครงการวิจัยที่ดี สามารถวางแผนงานได้ลึก/กว้างขึ้น มีความรับผิดชอบสูงขึ้น โดยรู้จักการ ดูแลทีมวิจัยขนาดเล็ก-กลาง มีการขอความร่วมมือ/คำแนะนำจากนักวิจัยทั้งใน/นอกกลุ่ม เพื่อให้ งานวิจัยที่ตนดูแลก้าวหน้าไปตามที่กำหนดไว้ โดยการจัดให้อาจารย์/นักวิจัย/นักศึกษามานำเสนอ ความก้าวหน้าของงานวิจัยเป็นระยะๆ เป็นโอกาสสำคัญของการแลกเปลี่ยนข้อคิดเห็นในการทำวิจัย ร่วมกัน ร่วมกันแก้ปัญหาวิจัยที่เกิดขึ้น ร่วมกันดูแลนักศึกษาในกลุ่ม

ทั้งนี้ การจัดประชุมประจำปี และการประชุมกลุ่มย่อยเป็นการเปิดโอกาสให้นักวิจัยนอกกลุ่ม
วิจัยสนใจเข้ามาร่วมทีมเพิ่มขึ้นเรื่อยๆ โดยมีการร่วมกันดูแลนักศึกษา ใช้ห้อง Lab สารเคมี เครื่องมือ
ต่างๆ ร่วมกัน และร่วมกันเขียน manuscripts ทำให้ขอบข่ายงานวิจัยกว้างขึ้น และเล็งเห็นการประยุกต์/
ประโยชน์ที่กว้างและหลากหลายขึ้น

สังเกตใค้ชัดเจนว่าการทำงานวิจัยด้วยทุนเมธิวิจัยอาวุโส สกว. นี้ มีส่วนสำคัญทำให้อาจารย์/นักวิจัย/นักศึกษาทั้งใน/ต่างสถาบันมีการร่วมมือกันมากขึ้น มีการแลกเปลี่ยนความรู้/ความชำนาญ ในลักษณะ "เสริมสร้าง" "เติมเต็ม" "ต่อยอด" ส่งผลให้แต่ละโครงการย่อยมีความเชื่อมโยงกันมากขึ้น และร่วมมือกับผู้เชี่ยวชาญเฉพาะค้านภายนอกกลุ่มวิจัยมากขึ้น ส่งผลให้มีความก้าวหน้าในอาชีพ นักวิจัย เช่น อาจารย์ในกลุ่มได้ตำแหน่งวิชาการสูงขึ้น โดยบางท่านได้รับรางวัลที่เกี่ยวข้องกับการวิจัย และการที่แต่ละคนได้มีโอกาสนำเสนอความก้าวหน้าของงานวิจัยอย่างสม่ำเสมอ ทำให้ได้ฝึกคิด คิด เองเป็น และพัฒนาเป็นโครงการอื่นๆแตกยอดออกไปจากงานวิจัยนี้ อาจารย์/นักวิจัย/นักศึกษาแต่ละ ท่านมีทักษะการเขียนข้อเสนอโครงการ และ manuscripts ที่ดีขึ้น ภายใต้การดูแลอย่างใกล้ชิดจาก นักวิจัยอาวุโส ทำให้ได้รับทุนประเภทอื่นๆเพิ่มเติม และการได้นำเสนอความก้าวหน้าของงานวิจัยนั้น ยังเป็นการเพิ่มทักษะ/ความชำนาญ/ความมั่นใจ ทำให้ทั้งอาจารย์/นักวิจัย/นักศึกษาสามารถนำเสนอ งานวิจัยในการประชุมวิชาการได้ดี มีผลลัพธ์จากการได้รับรางวัลการนำเสนอผลงานวิจัย อันอาจเป็น แรงจูงใจที่ทำให้นักศึกษาหลายคนศึกษาต่อในระดับที่สูงขึ้น และเป็นแรงดึงดูดให้นักศึกษาใหม่ระดับ บัณฑิตศึกษาเข้ามาร่วมกลุ่มกับอาจารย์/นักวิจัยใหม่มากขึ้น

5. เอกสารแนบ

5.1 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติที่อยู่ในฐานข้อมูล และมี Impact Factor (IF)

- 5.1.1 Paiphansiri, U., and Tangboriboonrat, P.*, J. Appl. Polym. Sci., 2009, 112: 769-777
- 5.1.2 Sunintaboon, P.*, Duangphet, S., and Tangboriboonrat, P., Colloid. Surface A., 2009, 350: 114-120
- 5.1.3 Polpanich, D.*, Tangboriboonrat, P., and Elaissari, A.*, J. Biomed. Nanotechnol., 2009, 5: 486-492
- 5.1.4 Anancharungsuk, W., Taweepreda, W., Wirasate, S., Thonggoom, R., and Tangboriboonrat, P.*, *J. Appl. Polym. Sci.*, 2010, 115: 3680-3686
- 5.1.5 Anancharungsuk, W., Polpanich, D., Jangpatarapongsa, K., and Tangboriboonrat, P.*, *Colloid.*Surface B., 2010, 78: 328-333
- Tanpantree, S., Opaprakasit, P., Loykulnant, S., Kangwansupamonkon, W., and Tangboriboonrat,P.*, J. Appl. Polym. Sci., 2010, 117: 1798-1803
- 5.1.7 Kaewsaneha, C., Tangboriboonrat, P.*, Polpanich, D., and Smanmoo, S., *Macromol. Res.*, 2010, 18: 876-883
- 5.1.8 Kaewsaneha, C., Opaprakasit, P., Polpanich, D., Smanmoo, S., and Tangboriboonrat, P.*, Int. J. Polym. Anal. Ch., 2010, 15: 524-535
- 5.1.9 Tanpantree, S., Opaprakasit, P., Polpanich, D., Smanmoo, S., and Tangboriboonrat, P.*, *J. Biomed.*Nanotechnol., 2010, 6: 1-6
- 5.1.10 Jangpatarapongsa, K.*, Polpanich, D., Yamkamon, V., Ditaroth, Y., Peng-On, J., Thiramanas, R., Hongeng, S., Jootar, S., Charoenmak, L., and Tangboriboonrat, P., *Analyst*, 2011, 136: 354-358
- 5.1.11 Nasomphan, W., Tangboriboonrat, P., and Smanmoo, S.*, *J. Fluoresc.*, 2011, 21: 187-194
- 5.1.12 Smanmoo, S.*, Nasomphan, W., and Tangboriboonrat, P., Inorg. Chem. Commun., 2011, 14: 351-354
- 5.1.13 Smanmoo, S.*, Nasomphan, W., and Tangboriboonrat, P., Chem. Lett., 2011, 40: 188-190
- 5.1.14 Nguyen, T. H., Tangboriboonrat, P., Rattanasom, N., Petchsuk, A., Opaprakasit, M., Thammawong,C. and Opaprakasit, P.*, *J. Appl. Polym. Sci.*, 2011 (in press)
- 5.1.15 Nasomphan, W., Tangboriboonrat, P., and Smanmoo, S.*, Macromol. Res., 2011 (accepted)
- 5.1.16 Kanjanathaworn, N., Kaewsaneha, C., Polpanich, D., Jangpatarapongsa, K., and Tangboriboonrat,P.*, *Polym. Polym. Comp.*, 2011 (accepted)

5.2 ผลงาน submit แล้วในวารสารวิชาการระดับนานาชาติที่อยู่ในฐานข้อมูล และมี IF

- 5.2.1 Charoenmak, L., Polpanich, D.*, Thiramanas, R., and Tangboriboonrat, P., "Preparation of Super-paramagnetic Polystyrene-based Nanoparticles Functionalised by Acrylic Acid", *Macromol. Res.*, 2011, (revised)
- 5.2.2 Smanmoo, S.*, Nasomphan, W. and Tangboriboonrat, P., "A Highly Selective "Turn-on" Chemosensor Based on Dansyl-salicylaldehyde Schiff Base for Cu²⁺ Ion Detection", (submitted)
- 5.2.3 Smanmoo, S*, Nasomphan, W. and Tangboriboonrat, P., "Pyrazolidine Luminol as a Selective Colorimetric for Cu²⁺ in An Aqueous Environment", (submitted)
- 5.2.4 Riyajan, S.*, Intharit, I., and Tangboriboonrat, P., "Physical Properties of Maleated Sulfur Prevulcanized Natural Rubber-g-Cellulose Fiber", (submitted)
- 5.2.5 Riyajan, S.*, Intharit, I., and Tangboriboonrat, P., "Physical Properties of Polymer Composite:

 Natural Rubber Glove/Polystyrene Foam Waste/Cellulose", (submitted)
- 5.2.6 Wirasate S.*, Chokbunpiam, C., Thonggoom, R., and Tangboriboonrat, P., "Backing-required Properties of Films based on Natural Rubber for Transdermal Patch Application", (submitted)

5.3 ผลงานตีพิมพ์ในวารสารวิชาการระดับนานาชาติอยู่ใน scopus แต่ไม่มี IF

- 5.3.1 Nguyen, T.H., Petchsuk, A., Tangboriboonrat, P., Opaprakasit, M., Sharp, A., and Opaprakasit, P.*,
 Adv. Mater. Research, 2010, 93-94: 198-201
- 5.3.2 Thammawong, C., Petchsuk, A., Opaprakasit, M., Chanunpanich, N., Tangboriboonrat, P., and Opaprakasit, P.*, *Adv. Mater. Research*, 2010, 93-94: 377-380
- 5.3.3 Thiramanas, R., Wanotayan, R., Rahong, S., Jangpatarapongsa, K., Tangboriboonrat, P., and Polpanich, D.*, *Adv. Mater. Research*, 2010, 93-94: 292-295
- 5.3.4 Riyajan, S., Intharit, I., Thaiprasansup, S., and Tangboriboonrat, P., *Journal of Chemistry and Chemical Engineering*, 2010, 4: 56-57

5.4 manuscripts ที่กำลังจัดเตรียมเพื่อส่งตีพิมพ์ในวารสารวิชาการนานาชาติที่มี IF

- 5.4.1 Improvement of Biocompatibility of Natural Rubber by PLA-PEG-PLA Triblock Copolymer
- 5.4.2 Synthesis and Characterizations of Poly(L-Lactic Acid-co-Ethylene Glycol) Block Copolymers
- 5.4.3 Enhancement of Mechanical Properties of Poly(L-lactide-co-D,L-lactide) Copolymers by Physical Crosslinks Derived from Configuration Interlocks
- 5.4.4 Property Modification of Epoxidized Natural Rubber: Crosslinking by Reactive Blend Technique of Poly(L-Lactic Acid-co-Ethylene Glycol) Block Copolymers

- 5.4.5 Preparation and Characterizations of Fe₃O₄ Magnetic Nanoparticles Coated PLA-grafted Chitosan Copolymer as Potential Drug Delivery Material for Naproxen
- 5.4.6 Morphology and Interactions of Naproxen-loaded Fe₃O₄ Magnetic Nanoparticles Coated PLA-co-PEG Block Copolymer

5.5 การจัดประชุมประจำปีเมธิวิจัยอาวุโส สกว. – ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์

กำหนดการ/บรรยากาศของการประชุมประจำปีเมธิวิจัยอาวุโส สกว.

- 5.5.1 การประชุมครั้งที่ 1
 - วันศุกร์ที่ 24 กรกฎาคม 2552 ณ โรงแรมศาลายาพาวิลเลียน มหาวิทยาลัยมหิดล ศาลายา จ.นครปฐม
- 5.5.2 การประชุมครั้งที่ 2 วันศุกร์ที่ 30 กรกฎาคม 2553 ณ ห้อง N101 คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล กรุงเทพฯ
- 5.5.3 การประชุมครั้งที่ 3 วันศุกร์ที่ 29 กรกฎาคม 2554 ณ ห้องสัมมนาคณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จ.สงขลา

5.6 รายชื่อกลุ่มวิจัย เมธีวิจัยอาวุโส สกว. – ศ. ดร. ประมวล ตั้งบริบูรณ์รัตน์

Deposition of Disinfectant Poly(methyl acrylate) Nanocapsules onto Natural Rubber Film via the Layer-by-Layer Technique

Umaporn Paiphansiri, Pramuan Tangboriboonrat

Department of Chemistry, Faculty of Science, Mahidol University, 6 Rama Road, Phyathai, Bangkok 10400, Thailand

Received 11 August 2007; accepted 30 October 2008 DOI 10.1002/app.29464

Published online 13 January 2009 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: An aqueous core containing a disinfectant agent (chlorhexidine digluconate) was encapsulated in a poly(methyl acrylate) shell with a modified nanoprecipitation technique. After redispersion of the capsules in an aqueous medium, the remaining amount of the disinfectant agent was as high as 90%. The nanocapsules were successfully adsorbed via the layer-by-layer technique onto a γ -radiation-

Key words: core-shell polymers; morphology; rubber; self-assembly; surfaces

INTRODUCTION

The knowledge of natural rubber (NR) films is well evolved, especially for glove production, because the use of medical gloves is highly recommended for those individuals who are exposed to the blood or bodily fluids of patients. However, the problem of needle puncture or other accidents that might take place during surgery or patient treatment that could lead to viral infections of medical personnel needs to be addressed. Busnel and coworkers developed a medical glove that incorporates disinfectant droplets between its rubber sheets. When a needle punctures the glove, the disinfectant agent is released and neutralizes any infectious agents carried by the needle.

Among the several types of disinfectant agents, chlorhexidine digluconate (CHD) salt, a dicationic surfactant possessing a wide spectrum of activity against Gram-positive and Gram-negative bacteria, has been widely exploited.^{6–8} To incorporate the water-soluble guest molecule, a well-defined nanocapsule with an aqueous core ideally has to be pre-

pared in a single step, and the shell that is formed should be stable and have high structural perfection. However, the available protocols are still limited to water-in-oil (w/o) or inverse interfacial polymerization.9-11 The inverse miniemulsion process, which generally provides critically stabilized small droplets dispersed in an organic continuous phase, has been applied. By the ultrasonication of a two-phase system, stable nanodroplets including the disinfectant agent for further encapsulation have been prepared by a modified nanoprecipitation method. 12-14 The droplet size, ranging from 30 to 500 nm, is principally governed by the type and amount of the surfactant used as the compatibilizer. One key characteristic of a miniemulsion is that no effective material exchange should occur between the droplets, and this is known as the Ostwald ripening effect. 15 In the case of an inverse miniemulsion, the salt or CHD (which is an extremely hydrophilic component) in aqueous miniemulsion droplets plays an important role in building up osmotic pressure inside each droplet. 13,16

To physically adsorb polyelectrolytes, particles, or capsules onto a solid template, the layer-by-layer (LbL) technique, concerning mainly the sequential adsorption of oppositely charged materials via electrostatic attraction, is effectively used. A multilayer thin film with precise control of the structure and thickness at the molecular level has been fabricated via the LbL process. ¹⁷ Our previous works also showed that this method could be applied to inserting anionic polystyrene particles into a cationic polyelectrolyte assembled film coated on a glass substrate. ^{18,19} This effectively increased the film's

Journal of Applied Polymer Science, Vol. 112, 769–777 (2009) © 2009 Wiley Periodicals, Inc.

Correspondence to: P. Tangboriboonrat (scptb@mahidol.ac. th).

Contract grant sponsor: The Thailand Research Fund (to P.T.).

Contract grant sponsor: Royal Golden Jubilee (through its Ph.D. program to U.P.).

Contract grant sponsor: Deutscher Akademischer Austausch Dienst.

roughness and resulted in a significant increase in the hydrophobicity of the surface with Nafion at the outermost layer. Furthermore, the deposition of hard poly(methyl methacrylate) (PMMA) particles onto NR latex sheets successfully increased the surface roughness and hardness and hence diminished the friction of the rubber surface. ^{20,21}

Because the simple and versatile LbL process is independent of the substrate size and topology and does not affect the bulk properties of the substrate, it was used for the deposition of disinfectant nanocapsules onto y-radiation-vulcanized natural rubber (RVNR) latex film, a medical glove model used in this study. The disinfectant nanocapsules were prepared by the modified nanoprecipitation of poly(methyl acrylate) (PMA) from an organic continuous phase onto w/o miniemulsion droplets containing the CHD solution. The effect of the concentration of PMA on the encapsulation efficiency of the nanocapsules was determined by proton nuclear magnetic resonance (¹H-NMR) measurements. After the redispersion of the nanocapsules into an aqueous medium, stable nanocapsules with high encapsulation efficiency were then selected to attach onto an RVNR latex sheet. Before the deposition of the soft disinfectant PMA nanocapsules onto the RVNR latex sheet, a study employing hard PMMA particles was performed as a function of the latex concentration and immersion time. The coated surface was then characterized by contact angle measurements, attenuated total reflection/Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM).

EXPERIMENTAL

Materials

All chemicals, including CHD (20% in water; Sigma, Steinheim, Germany), potassium persulfate (KPS; Fluka, Germany), sodium dodecyl sulfate (SDS; Fluka, GC, Japan), soybean phosphatidylcholine (PC; Sigma), dichloromethane (Fluka, purum), cyclohexane (Fluka, purum), tetrahydrofuran (THF; Fluka; purum), ethanol (Fluka; purum), methanol (Fluka; purum), hexadecane (Fluka; purum), deuterated water, Nonidet (Biochemika, Fluka), pyrazine (Merck; GC, Japan), calcium chloride (Fluka, GR, Switzerland), and RVNR latex (Siam Okamoto Co., Ltd., Pathumthani, Thailand), were used without further purification. The monomers, methyl methacrylate (Fluka; purum, Deisenhafen, Germany) and methyl acrylate (Aldrich; 99%), were purified by passage through a column packed with neutral and basic aluminum oxide (Fluka; Purum). The block copolymer emulsifier poly[(butylene-co-ethylene)-b-(ethylene oxide)] [P(B/E-EO)], with a molecular mass of 3700 g/mol for the poly(butylene-co-ethylene) block and a molecular mass of 3600 g/mol for the poly(ethylene oxide) (PEO) block, was synthesized with Kraton liquid (Shell, TX).²² PMA was prepared with the miniemulsion polymerization technique.^{12,23}

Nanocapsule preparation

The organic continuous phase, comprising dichloromethane (9.5 g), a known amount of P(B/E-EO) or PC [% w/v: ratio of the surfactant (g) to the drug volume (mL)], and cyclohexane (12 g), was first prepared. An antiseptic agent, a CHD solution (0.5 mL), was charged into the solvent mixture. A solution of PMA (100 or 200 mg) in dichloromethane (0.5 g) was slowly dropped into the mixture, which was subsequently ultrasonicated for 2 min at 90% amplitude with a Branson W450 sonifier (Danbury, CT) with a 1/2" tip. Then, the temperature was raised to 50°C in an open vessel with continuous mechanical stirring overnight. During the evaporation of dichloromethane, cyclohexane was added to replace dichloromethane and also its evaporated volume.

Characterization of the nanocapsules

The size of the nanocapsules was characterized with dynamic light scattering measurements (NanoZS, Malvern, UK). For the determination of the encapsulation degree of the antiseptic agent, the nanocapsules were separated by centrifugation in a microcentrifuge (Eppendorf) and were carefully dried before dissolution in a mixture of THF and ethanol. Deuterated water and a known amount of pyrazine were applied as an external solvent and as a calibration product for the quantitative analysis of the encapsulation efficiency by ¹H-NMR (DRX 400 with 400.123 MHz, Bruker).²⁴ The mass of the drug in the nanocapsule was calculated from the area ratio of the peaks at 7.66 and 9.07 ppm corresponding to aromatic protons of the CHD and pyrazine, respectively. The morphology of the capsules, which were mounted on a copper grid before coating with carbon, was investigated with transmission electron microscopy (TEM; EM 400, Phillips, Eindhoven, The Netherlands).

The separated nanocapsules were finally redispersed in a 2% (w/v) aqueous SDS solution with stirring overnight for complete deaggregation. The characterization procedures, mentioned previously, were also exploited, and the remaining amount of the drug in the nanocapsules after redispersion in water was evaluated.

Deposition of PMMA and/or disinfectant PMA nanocapsules onto an RVNR sheet

The dried rubber sheet $(1.5 \times 4 \times 0.1 \text{ cm}^3)$, cast from RVNR latex at room temperature, adhered to a poly(ethylene terephthalate) film without any adhesive. The rubber surface was cleaned by the immersion of the sample into distilled methanol (100 mL)

and a 2% (W/V) 555 requestion									
		ocapsules in cyclohexane 4% w/v P(B/E-EO)]	Redispersion nanocapsules [2% w/v SDS aqueous solution]						
PMA content (mg)	Size (nm)	Encapsulation efficiency (%)	Size (nm)	Remaining disinfectant agent (%)					
100 200	150 190	100 100	456 258	87 85					

TABLE I
Characteristics of PMA Nanocapsules with 4% (w/v) P(B/E-EO) from Cyclohexane and a 2% (w/v) SDS Aqueous Solution

and then Milli-Q water (100 mL) for 15 min for each step during sonication in an ultrasonic cleaning bath. After drying in air, the obtained rubber sheet was kept in a desiccator.

PMMA latex was synthesized by miniemulsion polymerization.²⁴ An aqueous solution of Nonidet (1–8 wt % dry latex) was then added to PMMA latex [1% total solid content (TSC)] before shaking (Burell) for 12 h at room temperature. The amount of Nonidet adsorbed onto the particles was deduced from the quantity of an aqueous solution of 0.5M CaCl₂ added to provoke visible coagula.

PMMA (Nonidet) was prepared by the addition of an 8 wt % concentration of the dry latex to PMMA latex having TSCs of 0.1, 0.5, and 0.85%. The RVNR strip was then immersed into the PMMA (Nonidet) latex at pH 2 for various time intervals. The sample was subsequently washed with water via a series of three rinsing baths and finally dried at room temperature. The optimum condition of PMMA adsorption was further applied for the incorporation of a 0.85% TSC of disinfectant PMA nanocapsules.

Surface analysis of PMMA (Nonidet) and/or disinfectant PMA nanocapsules (Nonidet) deposited onto an RVNR sheet

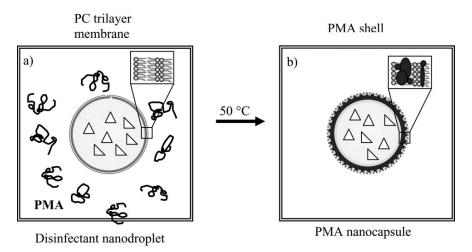
The surface of PMMA deposited onto an RVNR sheet was characterized with ATR–FTIR spectroscopy (Equinox 55, Bruker). The spectra (32 scans at a 4-cm⁻¹ resolution) were collected with a Ge crystal in a multireflection mode. The change in the characteristic absorption peaks at 1730 and 1378 cm⁻¹, corresponding to C=O stretching of the carboxylate group of PMMA and C—H bending of —CH₃ of NR, respectively, was investigated.

A sessile drop contact angle measurement was performed on RVNR adsorbed with disinfectant PMA nanocapsules with a contact angle goniometer (G-1, Kruss, Hamburg, Germany). The surface morphology of the modified RVNR sheet was determined by SEM (JSM 5410LV, JEOL, Tokyo, Japan).

RESULTS AND DISCUSSION

PMA nanocapsules

The characterization of PMA nanocapsules with 4% (w/v) P(B/E-EO) dispersed in cyclohexane and


redispersed in a 2% (w/v) SDS aqueous solution was carried out, and the data are listed in Table I.

It was observed that the nanocapsule sizes were 150 and 190 nm with 100 and 200 mg of PMA, respectively. An encapsulation efficiency of 100% with both concentrations was detected by ¹H-NMR measurement. After redispersion of the PMA nanocapsules, the remaining amount of the disinfectant agent was as high as about 90%. The dissolution of a large amount of PMA (300–500 mg) in the continuous phase took more time in comparison with other polymers. ²⁴ The high viscosity of the PMA solution caused the formation of coagulum during the evaporation of dichloromethane; consequently, probably because of the low mobility of the molecular chains, the polymer did not deposit onto the aqueous nanodroplets. ²⁵

Besides P(B/E-EO), the other surfactant used for the preparation of PMA nanocapsules was PC, a double-tailed zwitterionic surfactant, the chemical structure of which is shown in Figure 1. With a disinfectant agent volume of 0.5 mL and a solvent mixture volume of 22 mL and with a dichloromethane/ cyclohexane ratio of 1:1.2, the optimum formulation of the inverse miniemulsion for the nanocapsule preparation was limited to 150 mg of PMA and 100 mg of PC (or 20% w/v with respect to the disinfectant volume).

As previously mentioned, the size of the aqueous miniemulsion droplets dispersed in the cyclohexane phase can be designed by the type and amount of the surfactant applied. In comparison with 4% (w/v) P(B/E-EO), a PC content as high as 20% (w/v) was required to obtain stable disinfectant nanodroplets, which were dispersed in a solvent mixture of dichloromethane and cyclohexane containing PMA. This might be explained in term of self-assembly characteristic of PC molecules on the nanodroplet surface. Yamada et al. Toposed that a well-defined trilayer membrane of PC with an 8-nm

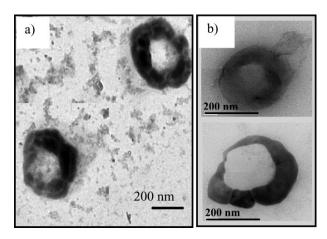
Figure 1 Chemical structure of soybean PC.

Figure 2 Schematic representation of (a) a PC-stabilized disinfectant nanodroplet in a solvent mixture of dichloromethane and cyclohexane and (b) a PMA nanocapsule dispersed in a cyclohexane phase.

thickness, organized spontaneously on a water nanodroplet, was responsible for steric stabilization in an organic continuous phase, as depicted in Figure 2(a). The internal membrane structure was constructed from the alternative orientation of each selfassembled PC layer: the first and third layers turned their hydrophilic head groups toward the nanodroplet and exposed hydrophobic alkyl chains of the third layer to the organic phase. The second layer intervened, placing alkyl chains with those of the first layer, and the head group encountered the head group of the third layer.²⁷ In the presence of PC's trilayer membrane, the precipitated PMA was possibly deposited onto the hydrophobic tails of PC's outermost layer or inserted within the hydrophobic part of the assembled membrane, as schematically displayed in Figure 2(b). Consequently, PMA nanocapsules about 306 nm in diameter, dispersed in the cyclohexane phase, were obtained.

After the separation of PMA nanocapsules from the cyclohexane phase by centrifugation, the nanocapsules could spontaneously redisperse into the water phase without the addition of any surfactant under continuous stirring overnight. This might be due to the reorientation of the top PC layer by the turning of its hydrophilic head group toward the aqueous continuous phase and/or migration of the PC molecules in the second layer to the nanocapsule surface so that the PMA nanocapsule would gain electrostatic stabilization. The stable aqueous core nanocapsule dispersed in water, having an average size of 216 nm, was hence evaluated. The ζ -potential of the PMA nanocapsule against the pH was then monitored, as shown in Figure 3.

The results indicated that the PMA nanocapsule exhibited positive character when the pH was below 9.4. Above this pH, the ζ -potential was negative.


This amphoteric character, having a pI of 9.4, confirmed the presence of choline [N(CH₃)₃] and phosphate moieties of PC, which imparted particle stability, on the nanocapsule surface. Our results agreed well with a former work²⁹ concerning the utilization of poly[2-(methacryloyloxy)ethyl phosphorylcholine]-*block*-poly[2-(dimethylamino)ethyl methacrylate] for stabilizing gold nanoparticles in an aqueous phase.

Morphological study of the PMA nanocapsules

TEM micrographs of air-dried nanocapsules using 100 mg of PMA with 4% (w/v) P(B/E-EO) from the cyclohexane phase were previously displayed.²⁵ It was observed that the size of the nanocapsules was remarkably smaller than that obtained from the dynamic light scattering measurements because the nanocapsules greatly shrank under the high-energy electron beam in TEM. However, the core–shell morphology of the nanocapsules could be clearly noted.

Figure 3 $\,$ ζ-Potential of PMA nanocapsules prepared with 150 mg of PMA and 20% (w/v) PC versus the pH.

Figure 4 TEM micrographs of nanocapsules with 150 mg of PMA and 20% (w/v) PC: (a) dispersed in cyclohexane and (b) redispersed in an aqueous phase.

The morphologies of PMA nanocapsules (with 150 mg of PMA and 20% w/v PC) dispersed in cyclohexane and redispersed in an aqueous phase were evaluated, and the TEM micrographs are shown in Figure 4.

It was observed that the PMA nanocapsules possessed a spherical shape with a core–shell morphology in both cyclohexane and after redispersion into the aqueous phase. However, the PMA shell was denser than that prepared with 4% (w/v) P(B/E-EO).²⁴ This might be due to the fact that the PC trilayer, organizing on the disinfectant nanodroplet surface, contributed to hydrophobic vacancy. A large amount of precipitated PMA was entrapped, and this gave rise to the formation of the thick shell. The disinfectant PMA nanocapsule, prepared with 20% (w/v) PC, was used for incorporation into an RVNR latex sheet in further steps.

Deposition of PMMA latex particles onto an RVNR latex sheet

Monodisperse PMMA latex with an average size of 143 \pm 0.5 nm and a TSC of 20.3 \pm 0.03% was attained. The ζ -potentials at pH 2–11 were negative, and this was possibly derived from the strong acidic groups (SO $_4^-$) from KPS and SDS, which served as the initiator and anionic surfactant, respectively.

To determine the change from electrostatic stabilization to steric stabilization of the PMMA latex adsorbed with a nonionic surfactant, Nonidet, whose molecule contains PEO moieties, an electrolyte solution was added to provoke the visible coagula. The results showed that the volume of 0.5M CaCl₂ required for PMMA latex coagulation was increased with increasing Nonidet concentration. With less than 8% Nonidet, PMMA latex was immediately coagulated after the addition of a CaCl₂ aqueous so-

lution. On the contrary, the latex remained stable at a minimum Nonidet concentration of 8%. The modification of latex stabilization from electrostatic stabilization to steric stabilization was, therefore, achieved with 8% Nonidet.

Because an LbL hydrogen-bonded film can be generated by the self-assembly of a weak polyacid and a neutral polymer at a low pH, the study of deposition of PMMA adsorbed by Nonidet [PMMA (Nonidet)] onto an RVNR latex sheet at pH 2 proceeded. The presence of PMMA (Nonidet) deposited onto an RVNR latex sheet with various immersion times at latex concentrations of 0.1, 0.5, and 0.85% was elucidated with ATR–FTIR. The spectra of RVNR sheets dipped into 0.1% PMMA (Nonidet) at different times are illustrated in Figure 5.

In the spectrum of RVNR, the characteristic peaks at 2961, 2922, and 2856 (C—H stretching), 1450 (C—H bending of —CH₂—), 1378 (C—H bending of —CH₃), and 837 cm⁻¹ (C—H deformation of *cis* C=C—H) were detected. After the deposition of PMMA (Nonidet), an additional peak, a strong absorption at 1730 cm⁻¹ related to C=O stretching of the carboxylate group, was observed. In addition, the intensity of the latter increased with increasing immersion time; concomitantly, the intensity of the absorbance at 1378 cm⁻¹ of RVNR decreased. This implied an interpolymer complex formation between PEO groups on the PMMA surface and carboxylic

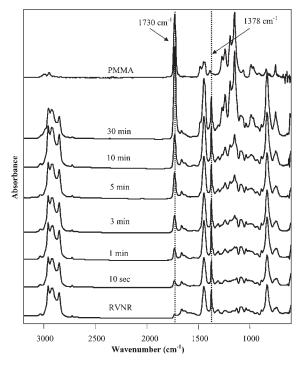
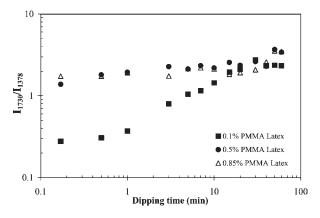



Figure 5 ATR-FTIR spectra of RVNR latex sheets immersed in 0.1% PMMA (Nonidet; pH 2) at various dipping times.

Figure 6 Absorbance ratios of 1730- and 1378-cm⁻¹ peaks (I_{1730}/I_{1378}) for RVNR sheets deposited with PMMA latex (0.1, 0.5, or 0.85%) as a function of the dipping time.

groups of the residual protein substance on RVNR, which played a role in the driving force for PMMA deposition.^{30,31}

To evaluate the change in the PMMA (Nonidet) content on the RVNR sheet, the absorbance ratios of the peak at 1730 cm⁻¹ of PMMA to that at 1378 cm⁻¹ of RVNR were calculated and plotted versus the dipping times at latex concentrations of 0.1, 0.5, and 0.85%, as depicted in Figure 6.

The results indicated that at the low latex concentration of 0.1%, the adsorption was directly proportional to the immersion time of 1–30 min and then approached a constant value after 30 min. At high latex concentrations of 0.5 and 0.85%, the deposition contents were almost constant within 1 min. Our results were in agreement with the former work, which reported that the repulsion among latex

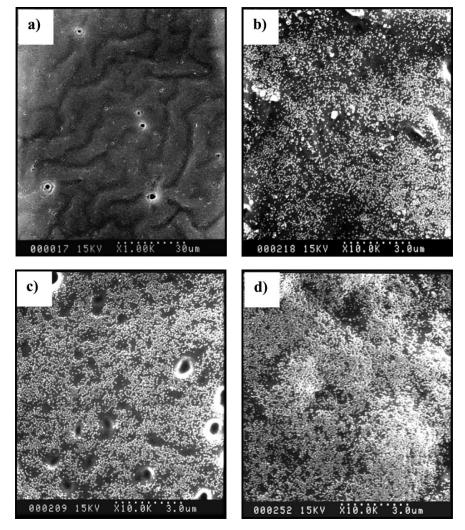
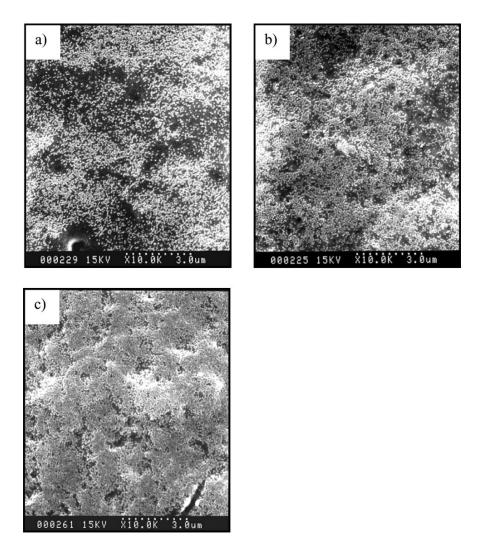
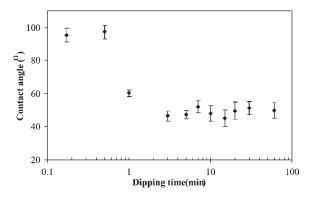



Figure 7 SEM micrographs of (a) pristine RVNR and (b-d) RVNR adsorbed with 0.1% PMMA (Nonidet) as a function of the dipping time (10 s, 1 min, and 30 min, respectively).

Figure 8 SEM micrographs of RVNR adsorbed with 0.85% PMMA (Nonidet) as a function of the dipping time: (a) 10 s, (b) 30 s, and (c) 30 min.

particles at high latex concentrations provided a high collision between the particles and substrate surface. 18–21 Because the adsorption rate and surface coverage depended strongly on the size of the colloidal particle, 32 the small size of PMMA, containing more active sites to attract the substrate surface, was therefore attributed to comparable deposition contents at all latex concentrations after 30 min of dipping.


The morphologies of RVNR sheets coated with PMMA (Nonidet) at different dipping times were investigated with SEM. The micrographs for 0.1 and 0.85% PMMA (Nonidet) are displayed in Figures 7 and 8, respectively.

It was noted that the pristine RVNR surface in Figure 7(a) exhibited a curvature with several voids, which might be attributed to the detachment of additives applied in the commercial latex. With the increasing immersion time of PMMA (Nonidet), as shown in Figures 7(b–d) and 8(a–c), dense particles

packed onto the rubber surface were more pronounced. In comparison with the high latex concentration of 0.85% presented in Figure 8, relatively closed packing of the particles could be obtained with 30 s of dipping, as shown in Figure 8(b). Furthermore, the multilayer particles deposited onto the substrate at the immersion time of 30 min are revealed in Figure 8(c), and they might be due to the bridging formation of free latex particles that collided with the particles occupied on the rubber surface. ^{33,34}

Deposition of disinfectant PMA nanocapsules (Nonidet) onto an RVNR latex sheet

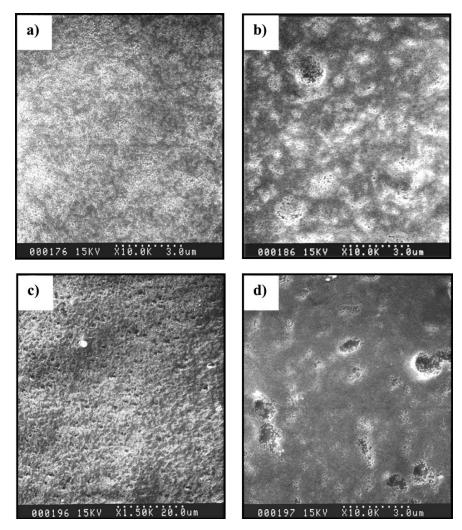

From the success of PMMA (Nonidet) deposition, a 0.85% TSC of PMA nanocapsules prepared with 20% (w/v) PC was adsorbed with 8% Nonidet before deposition onto RVNR at pH 2. Because the

Figure 9 Water contact angle of a PMA nanocapsule (Nonidet) deposited onto an RVNR sheet as a function of the dipping time.

existence of polar groups could lower the hydrophobicity of the substrate, the water contact angle of the PMA nanocapsule (Nonidet) deposited onto an RVNR sheet as a function of the dipping time was measured. The data are presented in Figure 9.

The results indicated that the contact angles rapidly decreased from 95 \pm 4 to 46 \pm 2° with the immersion time of 3 min and then remained constant. The low contact angle confirmed the presence of nanocapsules, whose surface bore PC and/or Nonidet molecules, on the rubber surface. Our results agreed well with a previous work,35 which reported that the grafting of phosphorylcholine onto a poly(ether urethane) surface exhibited a water contact angle of 43°. The insignificant change when the dipping time was greater than 3 min might be due to the limitation of the technique; that is, the contact angle measurement is sensitive only for the analysis of the outermost surface.³⁶ Thus, the increment of the deposition amount of the nanocapsules with increasing deposition time would not affect the contact angle.

Figure 10 SEM micrographs of a PMA nanocapsule (Nonidet) deposited onto an RVNR sheet as a function of the dipping time: (a) 10, (b) 30, and (c,d) 50 min.

The surface morphologies of PMA nanocapsules (Nonidet) deposited onto rubber sheets with various dipping times were determined, and the SEM micrographs are illustrated in Figure 10. The rubber surface appeared smoother with the dipping time increasing from 10 to 50 min. The explanation was that PMA with a low glass-transition temperature formed a film at room temperature and hence covered the curvature and large voids on the pristine RVNR surface. It could therefore be assumed that the incorporation of disinfectant PMA nanocapsules into the RVNR latex sheet was achieved through the formation of an interpolymer complex driven at pH 2 as previously mentioned.

CONCLUSIONS

The formation of aqueous core nanocapsules by controlled polymer nanoprecipitation onto inverse miniemulsion droplets containing CHD has been conclusively established. The deposition of a PMA shell from an organic continuous phase onto a dispersed phase of stable nanodroplets was achieved by changes in the gradient of the solvent/nonsolvent mixture of dichloromethane and cyclohexane under mild evaporation. After the redispersion of the nanocapsules in an aqueous medium, stable nanocapsules with an aqueous core redispersed in the aqueous continuous phase were obtained. The success of the deposition of PMMA latex particles on an RVNR sheet via the LbL technique led to the development of PMA nanocapsules adsorbed onto the rubber film. The low contact angle confirmed the presence of nanocapsules, whose surface bore PC and/or Nonidet molecules, on the RVNR surface. The surface morphologies of PMA nanocapsules (Nonidet) deposited onto the rubber sheet with various dipping times were observed by SEM.

References

- 1. Eklund, A. M.; Ojajärvi, J.; Laitinen, K.; Valtonen, M.; Werkkala, K. A. Ann Thorac Surg 2002, 74, 149.
- 2. Osman, M. O.; Jensen, S. L. World J Surg 1999, 23, 630.
- 3. Yazdanpanah, Y.; Boelle, P. Y.; Carrat, F.; Guiguet, M.; Abiteboul, D.; Valleron, A. J. J Hepatol 1999, 30, 765.
- 4. Busnel, R. G.; Argy, G. U.S. Pat. 5,024,852 (1991).
- 5. Busnel, R. G.; Cheymol, A.; Riess, G. U.S. Pat. 5,804,628 (1998).

- Mulberry, G.; Snyder, A. T.; Heilman, J.; Pyrek, J.; Stahl, J. Am J Infect Control 2001, 29, 377.
- 7. Lboutounne, H.; Chaulet, J. F.; Ploton, C.; Falson, F.; Pirot, F. J Controlled Release 2002, 82, 319.
- Lafforgue, C.; Carret, L.; Falson, F.; Reverdy, M. E.; Freney, J. Int J Pharm 1997, 147, 243.
- 9. Pitaksuteepong, T.; Davies, N. M.; Tucker, I. G.; Rades, T. Eur J Pharm Biopharm 2002, 53, 335.
- 10. Watnasirichaikul, S.; Rades, T.; Tucker, I. G.; Davies, N. M. Int J Pharm 2002, 235, 237.
- Wu, D.; Scott, C.; Ho, C. C.; Co, C. C. Macromolecules 2006, 39, 5848.
- Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, 5222.
- Landfester, K.; Willert, M.; Antonietti, M. Macromolecules 2000, 33, 2370.
- Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, 2679.
- Sudol, E. D.; El-Aasser, M. S. In Emulsion Polymerization and Emulsion Polymers; Lovell, P. A.; El-Aasser, M. S., Eds.; Wiley: Chichester, UK, 1997.
- 16. Landfester, K. Adv Mater 2001, 13, 765.
- 17. Decher, G. Science 1997, 277, 1232.
- 18. Sangribsub, S.; Tangboriboonrat, P.; Pith, T.; Decher, G. Polym Bull 2005. 53, 425.
- Sangribsub, S.; Tangboriboonrat, P.; Pith, T.; Decher, G. Eur Polym J 2005, 41, 1531.
- Sruanganurak, A.; Sanguansap, K.; Tangboriboonrat, P. Colloid Surf A 2006, 289, 110.
- Sruanganurak, A.; Tangboriboonrat, P. Colloid Surf A 2007, 301. 147.
- Schlaad, H.; Kukula, H.; Rudloff, J.; Below, I. Macromolecules 2001, 34, 4302.
- 23. Bechthold, N.; Landfester, K. Macromolecules 2002, 33, 4682.
- 24. Paiphansiri, U.; Tangboriboonrat, P.; Landfester, K. Macromol Biosci 2006, 6, 33.
- Caruso, F. Colloids and Colloid Assemblies; Wiley-VCH: Weinheim, 2004.
- Gupta, R.; Muralidhara, H. S.; Davies, H. T. Langmuir 2001, 17, 5176.
- 27. Yamada, A.; Yamanaka, T.; Hamada, T.; Hase, M.; Yoshikawa, K.; Baigl, D. Langmuir 2006, 22, 9824.
- 28. Schrader, W.; Kaatze, U. J Phys Chem B 2001, 105, 6266.
- 29. Yuan, J.-J.; Schmid, A.; Armes, S. P. Langmuir 2006, 22, 11022.
- 30. DeLongchamp, D. M.; Hammond, P. T. Langmuir 2004, 20, 5403.
- 31. Tangboriboonrat, P.; Buranabunya, U. Colloid Polym Sci 2001, 279, 615.
- 32. Litton, G. M.; Olson, T. M. Colloid Surf A 1996, 107, 273.
- 33. Zhang, L.; Liu, Y.; Liu, Z. J Appl Polym Sci 1993, 49, 1415.
- Elimelech, M. Particle Deposition and Aggregation: Measurement, Modeling and Simulation; Colloid and Surface Engineering Series; Butterworth-Heinemann: Woburn, MA, 1995.
- 35. Van der Heiden, A. P.; Willems, G. M.; Lindhout, T.; Pijpers, A. P.; Koole, L. H. J Biomed Res 1998, 40, 195.
- Castell, P.; Wouters, M.; de With, G.; Fischer, H.; Huijs, F. J Appl Polym Sci 2004, 92, 2341.

Contents lists available at ScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering Aspects

journal homepage: www.elsevier.com/locate/colsurfa

Polyethyleneimine-functionalized poly(methyl methacrylate) colloidal nanoparticles for directly coating natural rubber sheet

Panya Sunintaboon*, Sitthi Duangphet, Pramuan Tangboriboonrat

Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Article history:
Received 18 June 2009
Received in revised form 20 August 2009
Accepted 7 September 2009
Available online 11 September 2009

Keywords: PMMA nanoparticle PMMA colloid Surface modification Rubber Polyethyleneimine

ABSTRACT

This work illustrated a convenient surface modification of sulphur-prevulcanized natural rubber (SPNR) sheet with poly(methyl methacrylate) (PMMA) colloidal nanoparticles without pre-treatment of the rubber. The SPNR sheet was simply immersed into the latex of PMMA core that was functionalized with polyethyleneimine (PEI) shell (PMMA/PEI) via a soap-free emulsion polymerization. The presence of PMMA/PEI nanoparticles on the SPNR sheet was revealed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). It was also traced by the changes of surface roughness, adhesion force, and relative surface stiffness obtained from atomic force microscopy (AFM) analysis. The surface coverage (C_s) values depended on the variation of immersion time and particle concentration. Water contact angles on the PMMA/PEI-coated SPNR sheet decreased with increasing C_s values.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Natural rubber (NR) latex tapped from Hevea brasiliensis tree, consisting mainly of cis-1,4 polyisoprene, has proven to be useful for fabrication of thin materials, e.g., tubing, balloons, condoms, and gloves. Although sulphur-prevulcanized natural rubber (SPNR) latex film possesses excellent inherent elastic property, its tack and high surface friction are serious drawbacks and hence limit its use in certain applications, including gloves [1]. Tightly fitting surgical or examination gloves is difficult to don because of the tendency of the glove to stick to users' skin or even to itself. Therefore, several surface treatments, without a significant change on the rubber bulk properties, have attracted much attention. In general, powder talc or cornstarch is applied for reducing the friction between the rubber film surface and the human skin [2]. However, these additives have many disadvantages, e.g., being the cause of granulomas in surgical wounds [3,4]. The powder-free gloves via a halogenation process are, therefore, of great interest [5,6]. Nevertheless, the halogenated NR gloves become hard, brittle, and dark in appearance, while their surface was slippery, and could limit their use. Apart from the approaches already mentioned, modification of NR or SPNR latex film with hard particles seems to be promising to reduce the overall surface friction coefficient, which would allow the glove to be donned more readily. However, the rubber substrate, particle surface, or both of them need some pre-treatments in order to promote the binding ability. Janssen studied the use of vinyl-functionalized beads to chemically bond to the glove's surface without the addition of binder [7]. Sruanganurak et al. used the layer-by-layer (LbL) technique to deposit PMMA particles on hydrophilic NR or SPNR film that was pre-modified with polyacry-lamide (PAAm) [8].

In order to skip pre-treatment steps of SPNR sheet prior to deposition of PMMA particles, the use of PMMA (core) and polyethyleneimine (PEI) (shell) (PMMA/PEI) core-shell nanoparticles reported by Li et al. [9] was investigated in this present work. Due to the fact that PEI affixed on the nanoparticles' surface can electrostatically interact with negatively charged molecules such as enzymes or DNA [10,11], they should bind with polar non-rubber components (proteins and phospholipids) distributed on the surface of NR latex particles [12] and also on the rubber sheet. Herein, the PMMA/PEI nanoparticles were first prepared by a soap-free emulsion polymerization. Then, they were deposited directly to the rubber sheet via a simple immersion. The presence of the nanoparticles was confirmed by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurement. The surface coverage (C_s) values were determined from SEM images with the variation of immersion time and nanoparticle concentration. The change of surface properties, e.g., surface roughness, adhesion force, and relative surface stiffness of both uncoated and coated SPNR sheets were also derived from AFM analysis. The deposition of PMMA/PEI nanoparticles onto SPNR sheets in this work would be a model for convenient surface modification of several substrates.

^{*} Corresponding author. Tel.: +66 2 441 9816 20x1138; fax: +66 2 441 0511. E-mail address: scpsu@mahidol.ac.th (P. Sunintaboon).

2. Experimental

2.1. Materials

High ammonia-preserved NR (HA-NR) latex was purchased from Bangkok Rubber Co. Ltd., Rayong, Thailand. Sulphur, zinc oxide (ZnO), zinc diethyldithiocarbamate (ZDEC), and Lovenox used were commercially available at Lucky Four Co. Ltd., Nonthaburi, Thailand. Methyl methacrylate (MMA) monomer (Fluka, Purum) was purified by passing through a column packed with neutral and basic aluminum oxide adsorbents (Fluka, Purum). PEI, MW of 750,000 (Aldrich, 50 wt% aqueous solution) was diluted by distilled water to 10 wt% before subjected to polymerization. Other reagents, e.g., *t*-butyl hydroperoxide (TBHP) (Fluka, 70%), Potassium hydroxide (KOH) (AnalaR, pellets), Potassium laurate (Fluka, Purum), or methanol (Fisher, AR) were used as received.

2.2. Preparation of SPNR sheets

The rubber sheets used in this entire work were cast at room temperature from SPNR latex compounded from HA-NR latex with sulphur, ZnO, ZDEC, and Lovenox. Then, the compounded latex was ground by ball-milling to obtain a 50% aqueous dispersion [13]. Total solid content (% TSC) and dry rubber content (% DRC) of the latex were determined using the method described in ASTM D1076-97, Section 9. The amount of ingredients used for compounding SPNR latex is shown in Table 1.

The surface of SPNR sheet was sequentially cleaned with methanol and then water for 15 min in an ultrasonic bath (Sonorex RK 100 H, Bandelin). The rubber sheet was cut into square pieces with an approximate weight of 0.2 g each.

2.3. Synthesis and characterization of PMMA/PEI nanoparticles

PMMA/PEI nanoparticles were synthesized through a batchwise soap-free emulsion polymerization. Distilled water (26 g) and a 10 wt% PEI aqueous solution (15 g), adjusted with concentrated hydrochloric acid (Merck) to pH 7, were charged into a 100-mL three-neck round-bottomed water-jacketed reactor. After purging nitrogen for 30 min, the MMA monomer (6g) was added into the reactor under continuous stirring. The polymerization was then started after adding an aqueous solution of 5×10^{-3} M TBHP (3 mL) and the polymerization temperature was controlled at 80 ± 1 °C for 2 h. The resulted latex was cleaned to remove the free PEI by repeated centrifugation-redispersion, at centrifugation speed of 15,000 rpm and time of 30 min for each cycle. The conversion percentage was determined by a gravimetric method, based on the amount of MMA used and that of polymerized MMA [9]. Particle size was determined by the SEM image analysis (SEM 2300 s, Hitachi). ζ-potential values were obtained by using microelectrophoresis (Zetasizer 3000, Malvern Instrument, UK) in 1 mM NaCl solution at room temperature. All measurements were done at the

Table 1 Formulations used for preparation of SPNR latex.

Ingredients	Part by weight (g)
Concentrated NR latex (60% DRC)	167
Stabilizers - Potassium hydroxide (KOH) solution (10% w/v) - Potassium laurate solution (20% w/v) - Lovenox	3 1 1
Vulcanizing ingredients (50% dispersion) - Sulphur - Zinc diethyldithiocarbamate (ZDEC) - Zinc oxide (ZnO)	1 2 0.5

wavelength of $633 \, \text{nm}$ at $25 \, ^{\circ}\text{C}$ with a scattering angle of 90° . All results reported were the average of three determinations.

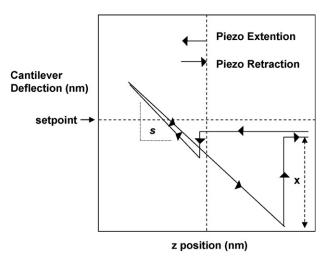
2.4. Preparation and characterization of SPNR sheet deposited by PMMA/PEI nanoparticles

The SPNR sheet adhered on a poly(ethylene terephthalate) (PET) film was immersed in a glass tube, containing a PMMA/PEI nanoparticle dispersion (1–15% TSC) for 10–60 min. The immersed sample was then washed with water three times, and finally allowed to dry at ambient temperature.

After deposition, the air-dried SPNR sheet was characterized by FTIR, SEM, AFM, and water contact angle measurement. The FTIR (EQUINOX 55, Bruker) spectra (32 scans at $4\,\mathrm{cm}^{-1}$ resolution) of the SPNR surface were collected with a single reflection mode on a Ge crystal. Contact angles of a water droplet (approximately 5 μ L) on the rubber surface were also determined (G-1, Krüss). Each value reported was the average of ten separated drops of water on a given SPNR sheet.

The images of coated SPNR sheet were clarified by SEM (SEM 2300s, Hitachi), and AFM (Model Ns3a, Digital Instrument Inc.) equipped with Nanoscope IIIa controller via the tapping mode (scan size of $10~\mu\text{m} \times 10~\mu\text{m}$, at six different locations). The surface coverage (C_s) values, indicating the amount of PMMA/PEI nanoparticles adsorbed per unit area of the sheet surface, were determined by the image analysis of SEM and AFM micrographs. C_s values were then calculated by the following equation [14]:

$$C_{\rm S}(\%) = \frac{N}{N_{\rm max}} \times 100 \tag{1}$$


where N is the number of nanoparticles per unit area; N_{max} is the maximum number of nanoparticles on the same area assuming a hexagonal dense packing of particles [15].

Surface mean roughness (R_a) was directly calculated from the Nanoscope software by using Eq. (2):

$$R_{\mathbf{a}} = \frac{1}{n} \sum_{j=1}^{n} \left| Z_j \right| \tag{2}$$

where Z_j is the current difference between the height and the mean plane, and n is the number of points in the image.

Relative surface stiffness and adhesion force of the sample were derived from the force or force-to-distance curve (FDC) (Scheme 1) obtained from a contact mode AFM measurement [16]. The silicon nitride tip with a spring constant of 0.58 N/m was used, and the tip frequency was set at 0.9965 Hz. In general, extending lines from FDC

Scheme 1. A typical structure of force–distance curve (FDC).

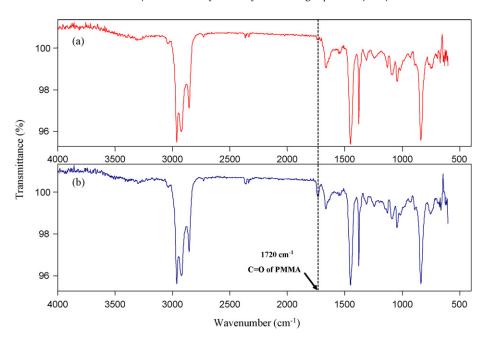


Fig. 1. FTIR spectra of (a) uncoated and (b) PMMA/PEI nanoparticles-coated SPNR sheets.

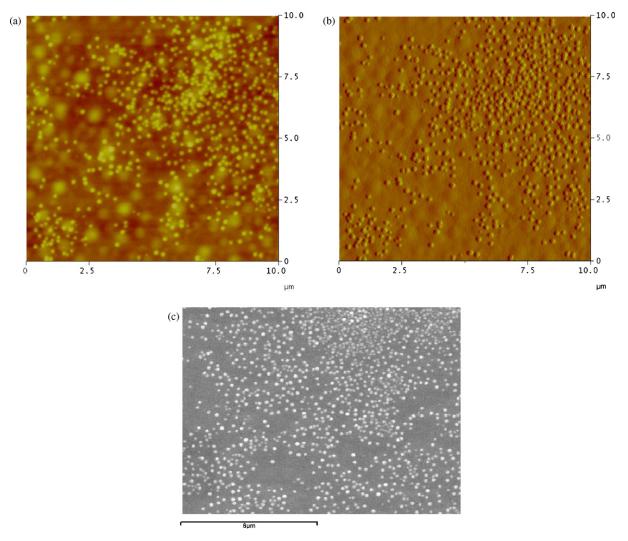


Fig. 2. Micrographs of PMMA/PEI nanoparticle-coated NR surface: (a) AFM (height), (b) AFM (amplitude), and (c) SEM (10,000X) micrographs.

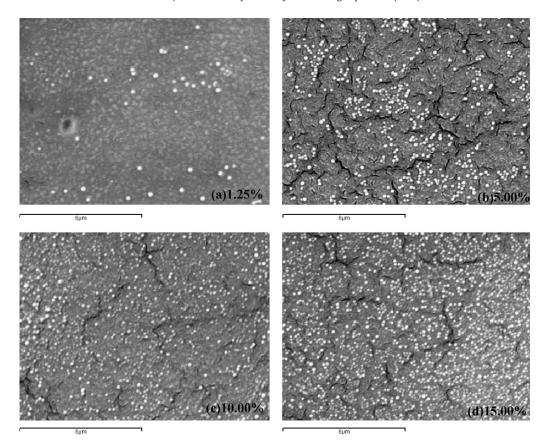


Fig. 3. SEM micrographs of PMMA/PEI nanoparticle-coated the SPNR surfaces as a function of PMMA/PEI latex concentration: (a) 1.25, (b) 5.00, (c) 10.00, and (d) 15.00% TSC at 40 min of immersion time.

reflect a surface stiffness, while retracting lines represent adhesion force between a tip and a surface. The relative surface stiffness was obtained by comparing the surface stiffness of uncoated and coated SPNR sheets to that of the reference silicon surface as shown in Eq. (3)

Relative surface stiffness =
$$\frac{S_s}{S_{si}}$$
 (3)

 S_S is the slope of extending line of a tip on a sample surface, and S_{Si} is the slope of extending line of a tip on the reference silicon surface.

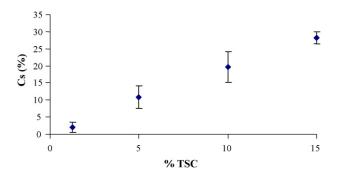
The adhesion force is defined by the Eq. (4):

$$F = kx \tag{4}$$

where x is the deflection of the tip before pull-off in nanometers (retracting direction), and k is the spring constant of cantilever (0.58 N/m).

The scan size was the same as that determined in the tapping mode ($10~\mu m \times 10~\mu m$). Each value reported was the average of five different areas of sample surface.

3. Results and discussion


3.1. Surface characterization of PMMA/PEI-coated SPNR sheets

The PMMA/PEI nanoparticle latex, synthesized by the emulsifier-free emulsion polymerization, was subjected to size and zeta potential measurements. Data showed that its average diameter was of 130 ± 4 nm, with narrow size distribution, and a positive zeta potential of 56 mV. It was reported by Li et al. [9,17] that PEI plays a major role for particle formation and colloidal stabilization in this polymerization system. The particle

formation started when TBHP complexes with amine groups on PEI resulting in the formation of redox pairs. As a consequence of electron transfer from the redox pairs, free radicals could be generated on the PEI itself. These radicals could propagate MMA monomers leading to the amphiphilic PEI-graft-PMMA oligomers. Such oligomers aggregate to micelle-like domains, which could be the sites for further polymerization and growth of the particles. By considering the particle nucleation and growth processes as mentioned, the hydrophilic amine groups of PEI are located on the particles' surface bringing both electrostatic and steric stabilization to the particles. The protonation of PEI amine groups caused positive surface charges, which was in accordance with the zeta potential result.

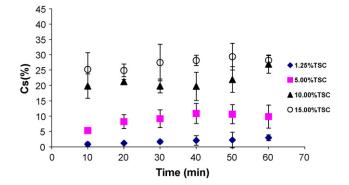
After dipping the SPNR sheet in the PMMA/PEI nanoparticle latex, the alternation of chemical composition on the SPNR surface was traced by FTIR spectroscopy. The spectra of the SPNR sheets, both uncoated and coated with PMMA/PEI nanoparicles are shown in Fig. 1. Both spectra showed similar signals belonging to NR: at $2950-2850\,\mathrm{cm^{-1}}$ (C—H stretching), $1450\,\mathrm{cm^{-1}}$ (C—H deformation of —CH $_2$ —), and $836\,\mathrm{cm^{-1}}$ (C—H deformation of $cis\,C$ —C—H). However, the spectrum of PMMA/PEI-coated SPNR sheet had the additional signal at $1720\,\mathrm{cm^{-1}}$, assigned to a C=O stretching of grafted PMMA in the nanoparticles, which could not be detected in that of the uncoated SPNR sheet. This evidence supported the fact that the PMMA/PEI nanoparticles were deposited on the SPNR sheet.

The SPNR surface was also characterized by SEM and AFM. The SEM and AFM micrographs in Fig. 2 revealed that PMMA/PEI nanoparticles were uniformly distributed on the SPNR sheet in a mono-layered fashion. From these results, it is proved that PMMA/PEI nanoparticles can be deposited on the SPNR sheets without any pre-treatment of their surface. PEI existing on the particles'

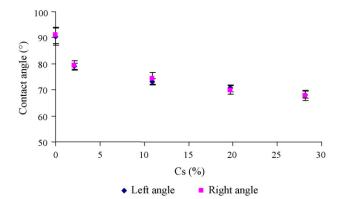
Fig. 4. Effect of PMMA/PEI nanoparticles latex concentration on C_s values for the SPNR sheets immersed for 40 min.

surface might interact electrostatically with the long-chain fatty acid soaps and polypeptides of SPNR, which enhanced a deposition of the PMMA/PEI particles on the rubber sheet [12]. In addition, it has been known that PEI itself has an adhesion promoting ability on several surfaces [18–20], which would assist the deposition.

3.2. Determination of surface coverage


3.2.1. Effect of PMMA/PEI latex concentration

The PMMA/PEI latex concentrations were varied at 1.25, 5.00, 10.00 and 15.00% TSC at dipping time of 40 min. After deposition process, the coated SPNR sheet was characterized by SEM and the resulted micrographs are shown in Fig. 3 (a)–(d).


It was found that at low PMMA/PEI latex concentration (1.25% TSC) the adsorbed nanoparticles were uniformly distributed on the SPNR surface without aggregation. However, at higher latex concentration (10% TSC), some aggregation of PMMA/PEI nanoparticles were observed and more pronounced at 15% TSC. This lateral aggregation of PMMA/PEI core–shell nanoparticles at high % TSC was probably due to the inter-diffusion of a soft PEI shell [21], and was facilitated when the number of PMMA/PEI nanoparticles increased with latex concentration. The relationship between latex concentration and the $C_{\rm S}$ of SPNR sheet coated with PMMA/PEI particles is shown in Fig. 4. It was noticed that the $C_{\rm S}$ values increased with increasing latex concentration as previously reported when depositing PMMA nanoparticles on the SPNR grafted with polyacrylamide [22]. From this experiment, the highest $C_{\rm S}$ value of 27.4% was obtained.

3.2.2. Effect of immersion time

Next, the effect of immersion time on the C_s values was examined and the results are shown in Fig. 5. As expected, the C_s values increased with increasing immersion time in the initial period for all latex concentration levels and became almost constant after

Fig. 5. Effect of immersion time on C_s values.

Fig. 6. Water contact angles on PMMA/PEI nanoparticle-coated NR sheets as a function of C_s values.

40 min. The constant C_s at the time longer than 40 min indicated that the deposition–detachment process might reach the equilibrium state when the rates of deposition and detachment of the particles are similar. In addition, the results showed that the higher concentrations provided the higher C_s values for each immersion time. It could be explained that the repulsion among similar charged particles provided the great collision between particle and surface of the substrate [22].

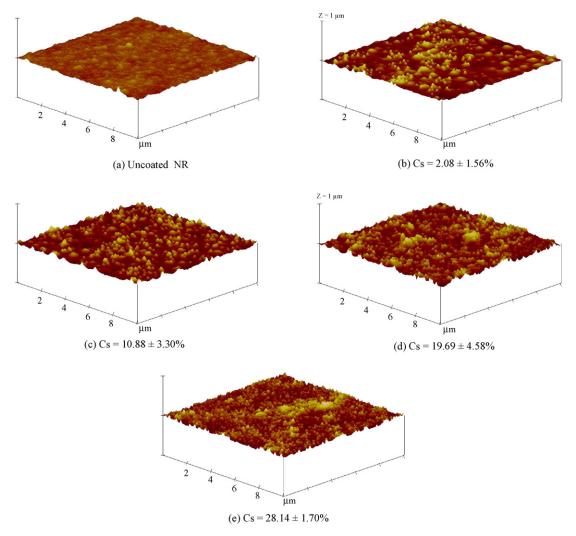
3.3. Water contact angles of PMMA/PEI-coated SPNR sheets

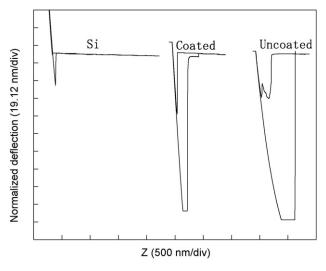
The effect of C_s values on the water contact angles (both left and right) of coated SPNR sheets were then investigated, and the data are presented in Fig. 6. The results from both left and right contact angles were similar, and it was found that the water contact angles abruptly decreased from 91° to 74° when increasing the C_s values from 0 to 10.9% and then slightly decreased when the C_s values were greater than 10.9%. The decrease of contact angle was possibly ascribed to the presence of hydrophilic groups on the rubber surface derived from PEI, which was affixed on the surface of PMMA/PEI nanoparticles as already described. This information indicated that the modification of SPNR sheet with PMMA/PEI nanoparticles affected hydrophilicity of the SPNR surface.

3.4. AFM analysis: surface roughness, adhesion force, and relative surface stiffness

The AFM micrographs of the SPNR sheets coated with PMMA/PEI nanoparticles at C_s values of 2.1, 10.9, 19.7 and 28.1%, compared with the uncoated sheet, are presented in Fig. 7 (a)-(e). The flat and rather smooth surface of the uncoated SPNR sheet was noticed, while the coated rubber surface composed of many modules growing out of surface after the deposition of PMMA/PEI nanoparticles. The topographical images clearly showed that the PMMA/PEI particles were arranged onto the SPNR surfaces as a single layer. However, the aggregates were increasingly evident at higher C_s values. It was believed that these aggregates stemmed from a bridging attraction of PEI chain on the PMMA/PEI surface, which was formed under the action of capillary forces during drying the PMMA/PEI layer [23]. The mean surface roughness (R_a) of SPNR sheet coated with PMMA/PEI nanoparticles at various C_s values was also analyzed from the AFM micrographs, and the data are displayed in Fig. 8. The mean surface roughness increased from 13.9 to 31.2 nm with increasing C_s values because of the presence of adsorbed latex particles, which would have potential to reduce a surface friction of rubber sheets [7,8].

In addition to surface topography, AFM analysis provides other information such as relative surface stiffness and adhesion force.




Fig. 7. AFM micrographs of (a) uncoated NR and PMMA/PEI nanoparticle-coated NR surfaces at C_s values of: (b) 2.1, (c) 10.9, (d) 19.7, and (e) 28.1%.

To obtain such information, FDC derived from a contact mode AFM was analyzed. The PMMA/PEI-coated NR sheet with the $C_{\rm S}$ value of 10.9 was selected as a representative of coated SPNR sheet, compared to that of the uncoated sample and a reference silicon wafer surface. The FDCs of silicon, uncoated, and PMMA/PEI coated SPNR surfaces are shown in Fig. 9. In general, the extending lines directly

relate to the surface stiffness, whereas the retracting lines indicate the adhesion between a tip and a surface. The adhesion force and relative surface stiffness of all three samples, deduced from their respective FDC, are summarized in Table 2.

Fig. 8. Effect of $C_{\rm s}$ values on mean surface roughness ($R_{\rm a}$) of PMMA/PEI nanoparticles-coated NR sheets.

 $\textbf{Fig. 9.} \ \ \textbf{FDCs of the cantilever on Si, uncoated NR, and PMMA/PEI nanoparticle-coated NR surfaces. } \\$

Table 2Comparison of adhesion force and relative surface stiffness for Si, uncoated, and PMMA/PEI nanoparticle-coated SPNR surfaces.

Sample	Adhesion force (nN)	Relative stiffness
Silicon	20.84 ± 0.10	1.00
Uncoated NR sheet	182.86 ± 4.64	0.72 ± 0.06
PMMA/PEI-coated NR sheet	134.09 ± 2.17	0.85 ± 0.01

The adhesion force is based on the amount of force felt by the cantilever as the probe tip is brought close to a sample surface and then pulled away. It can be seen that the coated NR surface had the adhesion force of 134.1 nN, lower than that of the uncoated NR sheet (182.9 nN). This indicated that the presence of hard particles on the SPNR sheet could dramatically alter the surface properties of the rubber sheet. Moreover, it has proven that the existence of soft PEI did not affect the property of hard PMMA particles, instead promoting the particles' deposition on SPNR sheets only. The FDCs also showed that the relative surface stiffness values for the uncoated and coated SPNR sheets were 0.72 and 0.85, respectively. The increased relative surface stiffness of the coated SPNR would be the result of hard PMMA core of the particles. Therefore, the increase of relative surface stiffness and decrease of adhesion force implied that the deposition of PMMA/PEI particles on the SPNR sheets would reduce the rubber's tack property.

4. Conclusions

The convenient deposition of PMMA/PEI colloidal nanoparticles to modify the SPNR sheet surface was accomplished in this recent work. The presence of PEI on the PMMA/PEI nanoparticles' surface can enhance their deposition on SPNR sheets without pre-surface treatments of the rubber sheet. FTIR, SEM, and AFM analyses evidently revealed the deposition of PMMA/PEI nanoparticles onto the SPNR surface. C_s values were found to depend on the immersion time and the PMMA/PEI latex concentration. The presence of the PMMA/PEI nanoparticles on the surface led to the changes in SPNR surface roughness, relative surface stiffness, and adhesion force, as analyzed from AFM. Moreover, due to the ability of this synthetic method to tailor the property of the core component, i.e., being hard, soft, or brittle, therefore, a wide variety of particles with PEI shell can be prepared. This would lead to an opportunity for convenient surface modification of various substrates and various surface properties.

Acknowledgements

This work was supported by The Thailand Research Fund (TRF) (MRG4880124) and Mahidol University. P.T. is a TRF Senior Researcher (RTA5180003). Technical assistance of Dr. N. Ratanasom, Dr. S. Thanawan, and Mr. S. Radabutra is also acknowledged.

References

- [1] A. Momose, Powderfree surgical gloves, US Patent, 4,597,108 (1986).
- [2] M. Lundberg, K. Wrangsjö, S.G.O. Johansson, Latex allergy from glove powder—an unintended risk with the switch from talc to cornstarch, Allergy 52 (1997) 1222–1228.
- [3] P. Cullinan, R. Brown, A. Field, J. Hourihane, M. Jones, R. Kekwick, R. Rycroft, R. Stenz, S. Williams, C. Woodhouse, Latex allergy: a position paper of the British society of allergy and clinical immunology, Clin. Exp. Allergy 33 (2003) 1484–1499.
- [4] E.A. Field, The use of powdered gloves in dental practice: a cause for concern, J. Dent. 25 (1997) 209–214.
- [5] P.E. Esemplare, D. Beeferman, Rubber articles having improved slip coating, US Patent 3,967,014 (1976).
- [6] C.C. Ho, M.C. Khew, Surface characterisation of chlorinated unvulcanised natural rubber latex films. Int. I. Adhes. Adhes. 19 (1999) 387–398.
- [7] R.A. Janssen, Glove having improved donning characteristics, US Patent 6,972,148 B2 (2005).
- [8] A. Sruanganurak, K. Sanguansap, P. Tangboriboonrat, Layer-by-layer assembled nanoparticles: a novel method for surface modification of natural rubber latex film, Colloid Surf. A 289 (2006) 110–117.
- [9] P. Li, J. Zhu, P. Sunintaboon, F.W. Harris, New route to amphiphilic core-shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups, Langmuir 18 (2002) 8641–8646.
- [10] K.M. Ho, X.P. Mao, L.Q. Gu, P. Li, Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells, Langumir 24 (2008) 11036–11042.
- [11] J. Zhu, A. Tang, L.P. Law, M. Feng, K.M. Ho, D.K.L. Lee, F.W. Harris, P. Li, Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers, Bioconj. Chem. 16 (2005) 139–146.
- [12] C.C. Ho, T. Kondo, N. Muramutsu, H. Ohshima, Surface structure of natural rubber latex particles from electrophoretic mobility data, J. Colliod Interf. Sci. 178 (1996) 442–445.
- [13] P. Tangboriboonrat, C. Lerthititrakul, Morphology of natural rubber latex particles prevulcanised by sulphur and peroxide systems, Colloid Polym. Sci. 280 (2002) 1097–1103.
- [14] A. Kampes, B. Tieke, Self-assembly of carboxylated latex particles at charged surfaces: influences of preparation conditions on the state of order of the monolayers, Mat. Sci. Eng. C-Bio. S 8–9 (1999) 195–204.
- [15] D.C. Blackley, Polymer Latices, vol. 1, Chapman & Hall, London, 1997.
- [16] S. Thanawan, S. Radabutra, P. Thamasirianunt, T. Amornsakchai, K. Suchiva, Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film, Ultramicroscopy 109 (2009) 189–192.
- [17] P. Li, J. Zhu, P. Sunintaboon, F.W. Harris, Preparation of tatexes with poly(methyl methacrylate) cores and hydrophilic polymer shells containing amino groups, J. Disper. Sci. Technol. 24 (3 & 4) (2003) 607–613.
- [18] S. Sangribsub, P. Tangboriboonrat, T. Pith, G. Decher, Adsorption of polystyrenepoly(4-vinylpyridine) diblock copolymer on the assembled latex film, Eur. Polym. J. 41 (2005) 1531–1538.
- [19] B. Ding, C. Li, S. Fijita, S. Shiratori, Layer-by-layer self-assembled tubular films containing polyoxometalate on electrospun nanofibers, Colloid Surf. A 284 (2006) 257–262.
- [20] Y. Tian, Q. He, C. Tao, J. Li, Fabrication of fluorescent nanotubes based on layerby-layer assembly via covalent bond, Langmuir 22 (2006) 360–362.
- [21] P. Sunintaboon, K.M. Ho, P. Li, S.Z.D. Cheng, F.W. Harris, Formation of nanostructured materials via coalescence of amphiphilic hollow particles, J. Am. Chem. Soc. 128 (2006) 2168–2169.
- [22] A. Sruanganurak, P. Tangboriboonrat, Surface modification of sulphurprevulcanized natural rubber latex sheet via layer-by-layer assembled PMMA particles, Colloid. Surf. A 301 (2007) 147–152.
- [23] J. Schmitt, P. Mächtle, D. Eck, H. Möhwald, C.A. Helm, Preparation and optical properties of colloidal gold monolayers, Langmuir 15 (1999) 3256–3266.

Borrower: COO

Received: 12/21/2009

Lending String: *NYG,NYG,CIN,CIN,VYQ

ILL Number: 60922836

Patron: O-Suteewong, Teeraporn, <TN;754152>

Policy

Stevenson Ranch, CA; American Scientifi

Cornell University Library-ILL Contact Info:

Fax: 607/255-0850

Email Address: olin-ils@cornell.edu

Ariel: 128.253.70.20

Odyssey:

Charge Maxcost: \$25IFM

New York State Library Contact Info:

Phone: 518-474-5383 Email: ill@mail.nysed.gov

Office Hours:

Monday-Friday, 8am to 5pm

TN#: 46885

Call #: Online Journal

Location: ONLINE E-TEXT

Book/Journal Title: Journal of biomedical nanotechnology.

Volume: 5

Issue:Issue: 5

Year 2009\

Pages: 486-492

Article Title: Duangporn Polpanich,
Pramuan Tangboriboonrat, and
Abdelhamid; Preparation and
Agglutination of ImmunoNanolatex for Malari

Book Author:

Imprint: Stevenson Ranch, CA; American Scientifi

Please Do Not Remove this slip from book

Delivered By:

New York State Library New York State Library- ILL/IDS Cultural Education Center, 6th Floor Albany, NY 12230 New York State Library 12/21/2009 Albany, NY 12230 Ship to: Cornell University Library-ILL Olin Library Central Ave Cornell University Ithaca, NY 14853-6401

a to a data de la large la ladar a caracter de la constante de la constante de la constante de la constante de

Lending - Article

Preparation and Agglutination of Immuno-Nanolatex for Malaria Diagnosis

Duangporn Polpanich^{1, 2, *}, Pramuan Tangboriboonrat¹, and Abdelhamid Elaissari^{3, *}

¹Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
² National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA),
Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
³ Université de Lyon, F-69622, Lyon, France; Laboratoire d'Automatique et de Génie des Procédés, Université Lyon 1,
CNRS, UMR 5007, Villeurbanne 69622, France

This is the first systematic study on the adsorption of malaria antigen onto latex particles to elaborate immuno-latex for diagnostic purpose. Immuno-latex was prepared from adsorption of malaria antigen onto polystyrene (PS) or poly(styrene-co-acrylic acid) (St/AA) latex particles and was used for detection of antibody to *P. Falciparum* based on agglutination test. Adsorption behavior of the malaria antigen onto polymer particles as a function of incubation time, antigen concentration, pH and concentration of the medium was studied. The prepared immuno-latexes were characterized in terms of immuno-agglutination and specific bridging using patient's plasma with *P. Falciparum* infection. This evaluation was performed using photon correlation spectroscopy.

Keywords: Latex, Protein Adsorption, In Vitro Test, Malaria, Agglutination.

1. INTRODUCTION

Malaria remains the most important parasitic disease having a major impact on people in tropical countries. Among the four species of malaria, *P. Falciparum* deserves particular attention because of the severity of disease syndromes that it causes. The enormous variability in *P. Falciparum* proteins, which express from the multi-stage life cycle, is critical to the parasite's survival, enabling it to evade host immune defense. At the moment, there is no commercially available vaccine for the parasite. Additionally, the parasite is increasingly resistant to current antimalarial drug, i.e., chloroquine and the antifolate sulphadoxine/pyrimethamine, as are the *Anopheles* mosquito vector to insecticides.¹⁻³

Besides the development of the effective vaccines and antimalarial drugs, the challenge ahead faced in diagnosis and treatment of malaria is a very important aspect of malaria control.^{4,5} Generally, the presence of parasites within red blood cells (RBCs) is detected by microscopic examination. However, this technique can be problematic since it takes up to an hour of preparation time and is labor-intensive. In addition, interpretation of the result requires considerable expertise.^{1,6} Several companies have

In order to avoid the flat support, colloidal particle which provides large specific surface area is of great interest to use as a solid support of biomolecule. 9-11 Solid-phase immunoassays require latex particle with narrow size distribution and functionalized surface bearing carboxylic, amino or thiol groups for immobilization of antigen (or antibody) in order to form immuno-latex. 12 Innovations for immuno-latex development are filter separation agglutination, particles capture enzyme linked immunosorbent, dyed microsphere sandwich and latex

recently developed diagnostic kits, based on the enzymelinked immuno-sorbent assay (ELISA) principle, for detection of malaria such as Malaria Ag CELISA and Pan Malaria IgG CELISA. 7,8 The Malaria Ag CELISA test is applied to detect a circulating histidine rich protein II (HRP II) antigen which is secreted by blood stages of P. Falciparum parasites. Although the high sensitivity can be achieved, the HRP II may persist for up to fortnight even after successful therapy, a positive test result does not indicate a failed therapeutic response. While the Malaria IgG CELISA test detected P. Falciparum malaria antibody in the serum is used for screening of blood donor for exposure to malaria.8 However, a negative result does not guarantee the non-transmissible malaria donor due to the fact that early in P. Falciparum infection antibody is not detectable and more frequently P. Malariae, P. Vivax and P. Ovale infections may not result in detectable antibody.8

^{*}Authors to whom correspondence should be addressed.

agglutination tests.^{11, 13} In the latter test, the immuno-latex, appeared as smooth polymer particles suspension, is mixed with the fluid to be analyzed. The presence of specific antibody (or antigen) in the analyte creates link between particles resulted in the *in vitro* aggregation or clumping of the microspheres that can be clearly observed with the naked eyes.¹⁴ Not only that it is a rapid test but it is also portable and suitable for use in the field.^{14, 15} The key points of this diagnostic test are based on: (i) the use of appropriate latex particle, (ii) that particle used as solid support of biomolecule for capturing step (i.e., antigen or antibody) and (iii) the complex formation with specific antibody (or antigen or target). The high efficiency and sensitivity are related to the amount and conformation of the immobilized biomolecule and the accessibility of the target.¹⁶

The main objective of this present work is to elaborate sensitive latexes by immobilization of malaria antigen extracted from the malaria parasites onto negatively charged sulfate polystyrene (PS) or carboxylic poly(styrene-co-acrylic acid) (St/AA) particles. It was important to note that many works concerning protein adsorption onto latex particles have been done by using bovine serum albumin (BSA) as a protein model. ^{17–19} To our knowledge, this is the first systematic study on the adsorption of malaria antigen extracted from the malaria parasites adsorbed onto the latex particles. This study was investigated as a function of incubation time, antigen concentration, pH, salinity and specific agglutination of the elaborated latex containing antigen for malaria detection was evaluated by using *P. Falciparum* patients' plasma.

2. EXPERIMENTAL DETAILS

2.1. Preparation and Characterization of Latex Particle

PS and St/AA latexes were synthesized via a batch soap-free emulsion polymerization. Transmission electron microscopy (TEM) (JEOL; TEM 200-cx) was applied to investigate number average diameter (\bar{D}_n) , weight average diameter (\bar{D}_n) , and polydispersity index (PDI) of the latex particles. Hydrodynamic diameter (\bar{D}_h) of the latex particles in aqueous NaCl solution (1 mM) was measured by Coulter Counter (Coulter electronics; Hialeah) at room temperature. Conductimetric back titration and zeta potential measurement (Malvern, 3000 HS) were used to determine surface charge density (σ) and zeta potential value of the particle, respectively. The data are summarized in

2.2. Preparation and Characterization of Malaria Antigen

P. Falciparum parasites (strain AMB47) were cultured in human RBC (group O) at 5% hematocrit in RPMI-1640 medium (pH 7.2), gentamicin (40 µg/mL), HEPES

Table I. Hydrodynamic diameter (\bar{D}_h) , number average diameter (\bar{D}_n) , weight average diameter (\bar{D}_w) , polydispersity index (PDI), surface charge density (σ) and zeta potential values (ζ) of PS and St/AA latexes.

Latex	$ar{D}_h \ (ext{nm})$	$ar{D}_n$ (nm)	$ar{D}_w$ (nm)	PDI	σ (μ C/cm ²)	ζ (mV) at pH 7
PS	512±49 ^a	514	515	1.0014	-4 ± 2^{a} -271 ± 9^{a}	-70±5
St/AA	349±21 ^a	335	336	1.0003		-50±5

^aSD: Standard deviation

(25 mM) (GIBCOBRL®) and human serum (10%). The parasites were incubated (Heraeus, Hera cell) at 37 °C in CO₂ atmosphere (5%) until reaching mature stages (>3% parasitemia). The mature parasites were enriched by gradient centrifugation (800 g, 25 min) using Percoll (60%) (Sigma). Purity and yield of the enriched pellet was determined under optical microscope (Carl Zeiss, Axiostar plus). After sonication for 25 s and then centrifugation to remove insoluble pigments, the concentration of soluble crude antigen was measured by using the Bradford method. (21) ARX

2.3. Adsorption of Malaria Antigen onto Latex Particle

The known amounts of the polymer particle and of malaria antigen were added to an eppendorf tube and then made up to 500 μ l with phosphate buffer (10 mM). The mixture was incubated, while gently stirred for a given time (10 min-3 h), at room temperature before centrifugation (12,000 rpm, 20 min). The supernatant was analyzed and the pellet of particles was resuspended in phosphate buffer (10 mM, pH 7.0) containing bovine serum albumin (BSA) (0.5 mg/ml). The adsorbed amount of protein onto the particles surface ($\Gamma_{\rm ads}$) was calculated from the following equation:

$$\Gamma_{\rm ads} = \frac{V(C_i - C_f)}{m\Sigma} \tag{1}$$

where V (ml) is volume of the solution, C_i (mg/ml) and C_f (mg/ml) are initial and final concentrations of malaria antigen in the solution, respectively, determined by using the Bradford method, m (g) is mass of the latex particles, and Σ (m²/g) is specific surface of the PS or St/AA particles.

In order to study effect of protein concentration, various concentrations of malaria antigen (12–50 μ g/ml) and polymer particles were incubated in phosphate buffer (10 mM, pH 6.8) for 2 h. For investigation of the influence of electrostatic interaction on the protein adsorption process, the experiment was carried out at various pHs (4.8–8.8) and buffer concentrations (1, 10 and 100 mM) at constant C_i and incubation time.

2.4. Characterization of Immuno-Latex

Zeta potential value of the immuno-latex suspended in phosphate buffer (10 mM) was measured by using Zeta

Sizer in the presence of NaCl solution (1 mM). In each measurement, pH of the medium was adjusted by adding HCl or NaOH (1 M) solution. The average value of each sample was reported for at less three measurements.

2.5. Investigation of Latex Agglutination

Photon correlation spectroscopy (PCS) was conducted to monitor the agglutination reaction. The immuno-latex was diluted with filtered deionized water in order to have particle number (N_p) of about 1.62×10^{10} /l before pouring into a quartz cuvette. The recorded initial D_h was calculated from Stokes-Einstein equation. Then the immuno-latex was mixed with various concentrations of *P. Falciparum*-infected plasma $(0.1-0.9~\mu g/ml)$ for 10 min before determining the presence of cluster and measuring the aggregate's size twice.

In addition, the appearance of the immuno-agglutinated particles was investigated under optical microscopy (OM). The PS or St/AA immuno-latex (0.2% w/v) (9.5 μ l) was mixed with the *P. Falciparum*-infected or naïve control plasma (0.5 μ l) onto a glass slide. The slide was tilted with rotating action continuously for 30 s and then covered with a cover glass. The morphology of the cluster of immuno-latex particles was immediately observed under OM at magnification of 50. The aggregate's size was then determined by using Carnoy V2.0 software.

3. RESULTS AND DISCUSSION

3.1. Adsorption of Malaria Antigen onto Latex Particle

Since most of antigen occurs predominantly in mature blood stage parasite (late trophozoite and schizont). The P. Falciparum parasites cultured until more than 3% parasitemia of the mature stage were used to prepare maturia antigen. Due to the different density of the infected RBCs in each blood stage (densities of ring stage or uninfected RBCs = 1.10 g/ml, of trophozoite = 1.079 g/ml, and of schizont = 1.070 g/ml),²³ the mature infected RBCs were isolated by using gradient centrifugation. High purity of 94.8% (90–100%) of the enriched parasites with yielding of 60.7% (39.1–92.6%) was obtained. The concentration of malaria crude antigen quantified by Bradford method (in 10 mM phosphate buffer, pH 6.8) was equal to 5.8 mg/ml.

3.1.1. Effect of Incubation Time

The immobilization of protein onto polymeric surface has been extensively examined using various approaches. The result tendency shows that the adsorption phenomena is related to the nature of particle surface and protein, incubation time, protein concentration, pH and the salinity of the medium, and incubation temperature.^{24,25} The amounts

of malaria antigen adsorbed onto PS and St/AA particles (Γ_{ads}) as a function of incubation time were determined and the data are presented in Figure 1.

As shown in Figure 1, the Γ_{ads} values rapidly increased in the initial period before reaching constant value of 3.0 and 2.8 mg/m² for PS and St/AA latexes, respectively, within 20 min. It was believed that the protein transports toward the interface and starts the adsorption via one point attached onto the substrate's surface. This process is driven by the partial dehydration of hydrophobic parts of both protein and surface resulting in an increase in entropy from the freedom gained by water molecules which lowers the Gibbs free energy of the system and, hence, favors adsorption.²⁶ As the incubation time increases, the structure rearrangement of the protein takes place which encourages the increase in the number of contact points.²⁷ The adsorption kinetic results were in agreement with the general tendency observed in literature reported that almost all immobilized proteins could be adsorbed within 10-20 min and the adsorption was totally complete during 1+2 h;25 This rapid adsorption process of malaria antigen might be related to high interaction between both protein and particles. This adsorption behavior is useful to point out the minimal incubation time for reaching equilibrium state.

3.1.2. Effect of Protein Concentration

The adsorption isotherms, i.e., the plot of $\Gamma_{\rm ads}$ versus the equilibrium protein concentration ($C_{\rm eq}$) of malaria antigen onto both latexes, were investigated at constant pH (pH 6.8) and salinity (10 mM phosphate buffer). The results obtained are presented as shown in Figure 2. The initial slope at low $C_{\rm eq}$ of the curve indicated the affinity of protein for the substrate's surface.¹⁴

From Figure 2, it was observed that the Γ_{ads} greatly increased up to the plateau value indicating the saturated

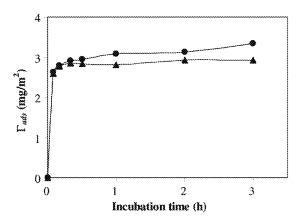


Fig. 1. Adsorption kinetics of malaria antigen onto PS (•) and St/AA (▲) latexes (pH 6.8, 10 mM of NaCl solution).

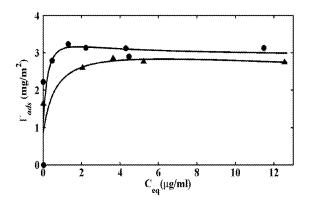


Fig. 2. Adsorption isotherms of malaria antigen onto PS (•) and St/AA (A) latexes (pH 6.8, 10 mM of NaCl solution, incubation time 2 h).

adsorption of malaria antigen onto the particle of 3.0 and 2.8 mg/m² for PS and St/AA particles, respectively. The affinity of the antigen to the PS particle was slightly higher than that of the St/AA surface, which might be due to the hydrophilicity of PAA shell on polystyrene seed.^{28,29} The observed low affinity between protein and PAA shell can be attributed to repulsive hydration forces, which decreased conformational entropy.

3.1.3. Effects of pH and Buffer Concentration

According to the amphoteric nature of antigen protein, the effects of pH and ionic strength of adsorption medium were considered in order to better understand the driving force involving in the adsorption process. The Late of malaria antigen onto PS and St/AA latex particles as function of pH (4.8-8.8) at various buffer concentrations (1, 10 and 100 mM) are given in Figure 3.

It could be presumed that the adsorption of the malaria

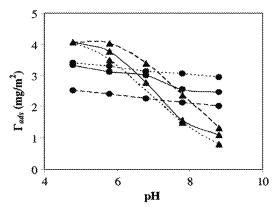


Fig. 3. Γ_{adv} of malaria antigen adsorbed onto PS (\bullet) and St/AA (\blacktriangle) latexes as a function of pH at various buffer concentrations; 1 mM (- - -), 10 mM (—) and 100 mM (···) ($C_i = 29.3 \mu \text{g/ml}$, incubation time 2 h).

pH. On contrary, the adsorption of malaria antigen (Γ_{ads}) onto St/AA based particle greatly decreased with increasing pH to alkaline region, irrespective of buffer concentration. Since crude antigen is the mixture of proteins from malaria parasites and RBCs whose physical properties such as molecular mass and isoelectric point (pI) are different, it was difficult to identify type of protein adsorbed onto the particle surface and also to point out the real effect of ionic strength. Although the maximum Γ_{ads} of various proteins onto negatively charged particle was generally found at pH around pI of the protein due to the minimized of intra- and intermolecular electrostatic repulsions of the protein molecules. 17,30 But our results did not show this trend. The explanation of a large decrease of Γ_{ads} with increasing pH in the case of St/AA latex might be contributed by several reasons. At alkaline pH medium, the ionisation (protonation or dissociation) of amino acids along the protein chain caused the increment of net negative charges of antigen molecule. This led to the increase in the electrostatic repulsion among the approaching antigen molecules and the highly negative charged St/AA latex which did not favour the adsorption process. In addition, the increase of molecular volume of the antigen molecule with increasing pH probably attributed to the decrease on adsorption capacity.³¹ While the adsorption of malaria antigen onto PS particle took place even when charges of protein and its sorbent are the same.

Additionally, Figure 3 shows that the adsorption onto PS particle was increased with increasing buffer concentration. It could be due to the fact that charges of antigen molecule were screened leading to the depletion of electrostatic repulsion in the interior of antigen and the lateral repulsion between the adsorbed antigen molecules. These caused the high amount of antigen molecules possibly adsorbed onto a given surface area of PS. In addition, as antigen onto PS particle was not drastically sensitive to roomerly reported, the increase of salt concentration could reinforce the hydrophobic interaction between protein molecule and solid support leading to the increasing the amount of adsorbed protein.31 This behavior suggested that the hydrophobic interaction mainly governed the adsorption of malaria antigen onto the PS particle.

> The opposite trend was noticed when St/AA particle was exploited as the adsorbent, i.e., the protein adsorbed amount was inversely proportional to the buffer concentration. Such results could be also explained by considering the influence of salt concentration on the PAA layer's thickness. As previously demonstrated, the hydrodynamic radius of the fully dissociated PAA chain of a spherical brush St/AA particle declined when the ionic strength was increased.³² As shown in Figure 4, with increasing salinity, the interacting sites or -COO groups along the shrinkage PAA chains reduced the accessible surface for malaria antigen molecule due to steric hindrance. From the results, it could be concluded that the driving force for malaria

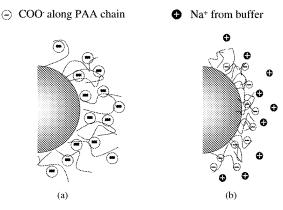


Fig. 4. Schematic illustrations of St/AA surface at (a) low and (b) high

antigen adsorbed onto the St/AA particle was electrostatic interaction.

To examine whether antigen molecule might desorb from the particle surface, after adsorption, the PS and St/AA immuno-latexes were redispersed in the phosphate buffer whose pH and concentration of medium were the same as those used in the adsorption experiment. After centrifugation and determination of the residual protein in the supernatant, no any desorption was observed in both cases. These results suggested that the adsorption of malaria antigen onto the particle surface was irreversible process.

3.2. Examination of Latex Agglutination

3.2.1. Zeta Potential of Immuno-Latex

Zeta potential measurement was applied to characterize the latex after being adsorbed with malaria antigen. The data obtained would relate to the colloidal stability of Photon correlation spectroscopy (PCS) was applied to

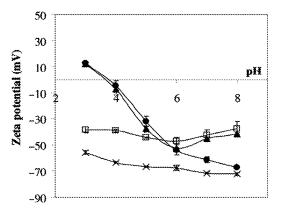


Fig. 5. Zeta potential versus pH for: bare PS (\times) , bare St/AA (\square) , PS immuno-latex ($\Gamma_{ads}3.0~mg/m^2$) (\bullet) and St/AA immuno-latex $(\Gamma_{ads}2.8 \text{ mg/m}^2) (\blacktriangle).$

the adsorbed particles. Figure 5 shows the zeta potential values of PS and St/AA immuno-latexes at Γ_{ads} 3.0 and 2.8 mg/m², respectively, compared with the bare PS and St/AA particles as a function of pH.

As expected, the zeta potential values of the latex particles before and after antigen adsorption were significantly different. Bare PS and St/AA particles exhibited the negative zeta potential values in the investigated pH due to the presence of $-SO_4^-$ in the case of PS and the presence of both $-SO_4^-$ and $-COO^-$ originated from initiator (ammonium persulfate) and AA monomer, respectively, for St/AA particle. While the PS and St/AA immuno-latexes showed the positive zeta potential value at pH 3.0 and then became more negative with increasing pH. The pI value of the PS and St/AA immuno-latexes was 3.8 and 3.6, respectively. The slightly higher pI in the case of PS immuno-latex might be caused from the larger Γ_{ads} . The observed positive zeta potential was attributed to the cationic character of the adsorbed antigen at acidic pH. It was important to note that each immuno-latex particle gave the lower colloidal stability indicated by the less zeta potential (in absolute value) value compared to that of the bare one. This might provoke the nonspecific agglutination of particles which is a crucial problem for the development of latex agglutination test. Several research groups improved the colloidal stability of the immuno-latex particle by the post-treatment to cover non-occupied surface part of the immuno-latex with BSA.33 The BSA molecule not only acted as a stabilizer but also suppressed the nonspecific agglutination. Therefore, in this study, we managed BSA post-treatment in order to reduce the nonspecific agglutination.

3.2.2. Investigation of Latex Agglutination by Using Photon Correlation Spectroscopy

measure the hydrodynamic diameter (D_h) and average diffusion coefficient (D) of the St/AA immunolatex particle after mixing with various concentrations of P. Falciparum-infected plasma. The plot of D_h values of St/AA immuno-latex versus plasma concentration demonstrated the bell-shape curve, whereas the relationship between D and plasma concentration exhibited the opposite trend.³⁴ It was explained that, at maximum D_h value which corresponded to plasma concentration of $0.46 \mu g/ml$, the number of antibody in the infected plasma was equivalent to the amount of antigen adsorbed onto the particle surface. This caused the effective binding between antibody and antigen and then the largest size of immune complex.35 The system seemed to lose the immuno-reactivity when increasing plasma concentration over 0.46 μ g/ml possibly due to the saturation of the adsorbed antibody and, consequently, the bridging process was not favorable.

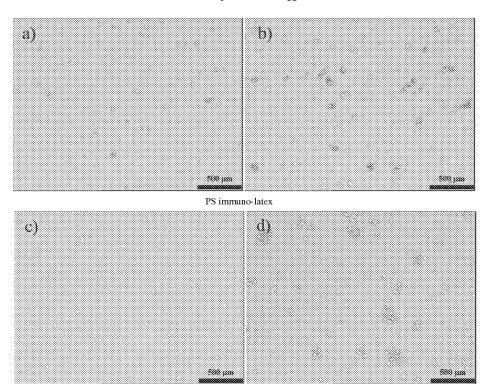


Fig. 6. Optical micrographs of PS and St/AA immuno-latexes after mixing with mataria naïve control [(a, c)] or with P. Falcipanun-infected plasma [(b, d)].

St/AA immuno-latex

3.2.3. Morphology of Latex Agglutination Under Optical Microscope

The morphology of clusters of immune complexes of PS and St/AA immuno-latexes were investigated via optical microscope. The micrographs of PS and St/AA well-characterized PS and St/AA particles provided a or with P. Falciparum-infected plasma are displayed in Figures 6(a, c) and (b, d), respectively.

It was observed in Figures 6(b) and (d) that the immune complex's size after mixing PS or St/AA immuno-latexes with P. Falciparum-infected plasma was 53 and 150 μ m, respectively. The size of the immune complex belonging to St/AA immuno-latex when mixed with the infected plasma (Fig. 6(d)) was significantly larger than that mixed with the control sample (Fig. 6(c)). Whereas the slight difference in the immune complex's size of PS immuno-latex mixed with those plasma was noticed in Figures 6(a) and (b). The low immuno-reactivity of PS immuno-nanolatex might be caused from the loss of antigen's nature conformation while deformation or spreading onto hydrophobic PS surface during adsorption process²⁸ or the adsorption was performed via the active part of the antigen. On contrary, the hydrophilic St/AA surface improved the antigen-antibody interaction by extending the PAA-antigen complex into the aqueous phase allowing the accessibility of free-targeted antibody.

4. CONCLUSIONS

great potential to be used as a solid support for malaria P. Falciparum antigen extracted from parasites by using gradient centrifugation. The fast adsorption kinetics was achieved irrespective of types of latex. The $\Gamma_{\rm ads}$ values of the kinetic curves reached a constant value of 3.0 and 2.8 mg/m² for PS and St/AA, respectively, within only 20 min. The affinity of malaria antigen toward the St/AA particle was lower than that of the PS particle. By varying pH and concentration of adsorption medium, the adsorption of malaria antigen onto PS particle was mainly governed by hydrophobic interaction, whereas the electrostatic interaction dictated the St/AA particle adsorption with the antigen. By using photon correlation spectroscopy (PCS) and optical microscopy (OM) techniques, the occurrence of immune complexes after mixing the St/AA immunolatex with the P. Falciparum-infected plasma was confirmed. This indicated that the St/AA immuno-latex might be introduced as an alternative tool for malaria diagnosis.

Acknowledgments: Research grant from The Thailand Research Fund (TRF) to Pramuan Tangboriboonrat, scholarships to Duangporn Polpanich under the TRF Golden Jubilee Ph.D. Program and French Embassy in Thailand are gratefully acknowledged. The authors would like to express sincere gratitude to Dr. R. Udomsangpetch for providing all facilities to prepare malaria antigen and insightful discussions and suggestions. Finally, the authors thank the BioMérieux Company for research support through the chemicals and equipments.

References and Notes

- World Health Organization, World malaria report; WHO/HTM/ GMP/2008.1, World Health Organization, Geneva (2008).
- R. G. Ridley, Medical need scientific opportunity and the drive for antimalarial drugs. *Nature* 415, 686 (2002).
- International Artemisinin Study Group, Artesunate combinations for treatment of malaria: meta-analysis. <u>Lancet</u> 363, 9 (2004).
- World Health Organization, Malaria rapid diagnosis: Making it work, World Health Organization, Philippines (2003).
- World Health Organization, WHO informal consultation on laboratory methods for quality assurance of malaria rapid diagnostic tests, World Health Organization, Philippines (2004).
- A. Moody, Rapid diagnostic tests for malaria parasites, <u>Clin. Micro-biol. Rev.</u> 15, 66 (2002).
- C. M. Kifude, H. G. Rajasekariah, D. J. Sullivan, Jr., V. A. Stewart, E. Angov, S. K. Martin, C. L. Diggs, and J. N. Waitumbi, Enzymelinked immunosorbent assay for detection of Plasmodium falciparumhistidine-rich protein 2 in blood, plasma, and serum. Clin. Vaccine. Immunol. 15, 1012 (2008).
- Data on http://www.cellabs.com.au, CelLabs Pty Limited (Accessed May 2009).
- C. Pichot, Surface-functionalized latexes for biotechnological applications. Curr. Opinion Colloid Interface Sci. 9, 213 (2004).
- J. Park, S. Kurosawa, J. Watanabe, and K. Ishihara, Evaluation of 2methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. <u>Anal. Chem.</u> 76, 2649 (2004).
- D. Polpanich, P. Tangboriboonrat, A. Elaissari, and R. Udomsangpetch, Detection of malaria infection via latex agglutination assay. *Anal. Chem.* 79, 4690 (2007).
- C. Wang, W. Yang, and S. Fu, Colloidal Polymers: Synthesis and Characterization, edited by A. Elaissari, Marcel Dekker Inc., New York (2003), pp. 93–116.
- L. B. Bangs, New developments in particle-based immunoassay: Introduction. <u>Pure Appl. Chem.</u> 68, 1873 (1996).
- 14. J. A. Molina-Bolivar and F. Galisteo-Gonzalez, Colloidal Biomolecules, Biomaterials, and Biomedical Applications, edited by A. Elaissari, Marcel Dekker Inc., New York (2004), pp. 53–101.
- T. H. Abdoel and H. L. Smits, Rapid latex agglutination test for the serodiagnosis of human brucellosis. <u>Diagn. Microbiol. Infect. Dis.</u> 57, 123 (2007).
- L. Davalos-Pantoja, J. L. Ortega-Vinuesa, D. Bastos-Gonzalez, and R. Hidalgo-Alvarez, Colloidal stability of IgG- and IgY-coated latex microspheres. <u>Colloids Surf. B</u> 20, 165 (2001).

- 17. W. Li and S. Li, A study on the adsorption of bovine serum albumin onto electrostatic microspheres: Role of surface groups. *Colloids Surf. A Physicochem. Eng. Aspects* 295, 159 (2007).
- N. Shamim, L. Hong, K. Hidajat, and M. S. Uddin, Thermosensitivepolymer-coated magnetic nanoparticles: Adsorption and desorption of bovine serum albumin. *J. Colloid Interface Sci.* 304, 1 (2006).
- D. Duracher, R. Veyret, A. Elaissari, and C. Pichot, Adsorption of bovine serum albumin protein onto amino-containing thermosensitive core-shell latexes. *Polym. Int.* 53, 618 (2004).
- D. Polpanich, P. Tangboriboonrat, and A. Elaissari, The effect of acrylic acid amount on the colloidal properties of polystyrene latex. *Colloid Polym. Sci.* 284, 183 (2005).
- M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248 (1976).
- 22. A. E. Bianco, P. E. Crewther, R. L. Coppel, H. D. Stahl, D. J. Kemp, R. F. Anders, and G. V. Brown, Patterns of antigen expression in asexual blood stages and gametocytes of *Plasmodium falciparum*. Am. J. Trop. Med. Hyg. 38, 258 (1988).
- 23. K. Y. Zhang, J. X. Zhou, J. K. Huang, B. H. Lin, Z. H. Wu, C. W. Yuan, and Q. L. Huang, Purification of isolation of different stages of Plasmodium vivax, P. falciparum and P. berghei. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi (Chinese Journal of Parasitology & Parasitic Diseases) 11, 262 (1993).
- 24. Z. G. Peng, K. Hidajat, and M. S. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles. *J. Colloid Interf. Sci.* 271, 277 (2004).
- D. Duracher, R. Veyret, A. Elaissari, and C. Pichot, Adsorption of bovine serum albumin onto amino-containing thermosensitive coreshell latexes. *Polym. Int.* 53, 618 (2004).
- C. A. Haynes and W. Norde, Globular proteins at solid/liquid interfaces. Colloid Surf. B 2, 517 (1994).
- H. Kawaguchi, D. Duracher, and A. Elaissari, Colloidal Biomolecules, Biomaterials, and Biomedical Applications, edited by A. Elanssari, Marcel Dekker Inc., New York (2004), pp. 189–210.
- W Norde and J. Lyklema, Why proteins prefer interfaces. <u>J. Bio-mater Sci. Polym. Edn.</u> 2, 183 (1991).
- A Gessner, R. Waicz, A. Lieske, B. R. Paulke, K. Mader, and R. H. Muller, Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. *Inter. J. Pharm.* 196, 245 (2000).
- 30. J. Segra, J. Puig, A. Martin, F. Galisteo, MaJ Galvez, and R. Hidalgo-Alvarez, On the adsorption of IgG onto polystyrene particles: Electrophotetic mobility and critical coagulation concentration. *Colloid Polym. Sci.* 270, 574 (1992).
- D. Gao, D. Q. Lin, and S. J. Yao, Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorption with cation ligand. *J. Chromatogr. B* 859, 16 (2007).
- X. Guo, A. Weiss, and M. Ballauff, Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. *Macromolecules* 32, 6043 (1999).
- J. L. Ortega-Vinuesa and D. Bastos-Gonzalez, A review of factors affecting the performances of latex agglutination tests. <u>J. Biomater.</u> Sci. Polym. Edn. 12, 379 (2001).
- D. Polpanich, P. Tangboriboonrat, and A. Elaissari, Colloidal Nanoparticles in Biotechnology, edited by A. Elaissari, John Wiley & Sons, Inc., Hobohen, New Jersey, USA (2008), pp. 65–93.
- J. L. Ortega-Vinuesa, J. A. Molina-Bolivar, J. M. Peula, and R. Hidalgo-Alvarez, A comparative study of optical techniques applied to particle-enhanced assays of C-reactive protein. <u>J. Immunol.</u> <u>Methods</u> 205, 151 (1997).

Received: 31 March 2009. Revised/Accepted: 17 June 2009.

Reduction of Surface Friction of Natural Rubber Film Coated with PMMA Particle: Effect of Particle Size

Waranya Anancharungsuk, Wirach Taweepreda, Supa Wirasate, Rattaporn Thonggoom, Pramuan Tangboriboonrat

¹Department of Chemistry, Faculty of Science, Mahidol University, Phyathai, Bangkok 10400, Thailand ²Polymer Science Program, Faculty of Science, Prince of Songkla University, Hatyai, Songkla 90112 Thailand

Received 6 August 2009; accepted 21 September 2009 DOI 10.1002/app.31459

Published online 4 November 2009 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: The friction coefficient of the sulphur-prevulcanized natural rubber (SPNR) film could be effectively reduced by deposition of poly(methyl methacrylate) (PMMA) particles. The nanoscale surface roughness of rubber, determined by atomic force microscope, was directly proportional to the particle size of PMMA particle at 12% surface coverage (Cs). The %Cs and surface roughness of the modified SPNR increased, while the friction coefficient decreased, with increasing PMMA latex concentration and

immersion time. By using a mixture of latexes having both large and small sizes, the increase in the amount of small particles resulted in the better distribution of large particles deposited on the rubber surface. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 3680–3686, 2010

Key words: emulsion polymerization; films; rubber; self-assembly; surfaces

INTRODUCTION

Friction between skin and rubber is a crucial drawback in the application of gloves made of sulfur-prevulcanized natural rubber (SPNR) latex. In general, the friction coefficient of SPNR can be decreased with powder, grease or liquid. However, the use of lubricating powder such as talc or corn starch to dust the surgical gloves can cause contamination to the patient. Moreover, it is known that talc does not help the wound healing process and corn starch causes allergic reactions. Recently, the mimetic behavior has been obtained by deposition of poly (methyl methacrylate) (PMMA) nanoparticles onto the SPNR film by using the simple and versatile Layer-by-Layer (LbL) technique. 2,3 The surface charge on SPNR sheet was derived from grafted polyacrylamide (PAAm), under UV, onto the rubber surface pretreated with Ar plasma. By the electrostatic interaction between the negative PMMA latex particles and the SPNR grafted with PAAm (SPNRg-PAAm), the possible loss of coated particles is, therefore, overcome. This has been proven by the

It was reported that the convenient and direct route for reducing real contact area (RCA) and, hence, friction between silicon surfaces was the deposition, followed by dry etching of microparticles having different sizes on the surface.⁵ Analysis of the friction of the elastomer, carried out using a friction tribometer with different sizes of spherical steel indenter, confirmed that the friction coefficient decreases with increasing surface roughness directly linked to the decrease of RCA. The model, proposed by Bowden and Tabor, showed that the friction force due to adhesion force on rough surface was determined by the distribution of the number of asperities and asperity heights or shapes in contact.6,7 Another source of the friction attributed to deformation depends also on the surface asperities of elastic, plastic or viscoelastic material.

As variation in the particle size of coated particles randomly adsorbed on SPNR would affect the hillocks and RCA, effect of the size of PMMA particles on the surface roughness and friction of SPNR-g-PAAm was investigated in this present work. The different sizes of PMMA latexes were synthesized by soap-free emulsion polymerization. As in the previous case on monodispersed PMMA, the modified

Journal of Applied Polymer Science, Vol. 115, 3680–3686 (2010) © 2009 Wiley Periodicals, Inc.

insignificant change of the amount of PMMA particles on the SPNR-g-PAAm film after applying 7 stretched cycles.³ These particles caused an increase in surface roughness and effectively reduced the friction coefficient of rubber, which resulted from the decrease of contact area between the bodies.⁴

 $^{{\}it Correspondence\ to:\ P.\ Tangboriboonrat\ (scptb@mahidol.ac.\ th).}$

Contract grant sponsor: The Thailand Research Fund, Commission on Higher Education; contract grant number: RTA5180003.

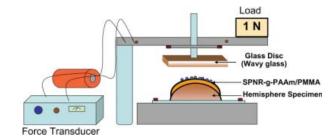
rubber was characterized by using scanning electron microscope (SEM), atomic force microscope (AFM), and friction test machine.

EXPERIMENTAL

Materials

Methyl methacrylate (MMA) monomer (Fluka, Purum) was purified by passing through a column packed with neutral and basic aluminum oxide (Fluka, Purum). The purified monomer was stored at 4°C until use. Acrylamide (AAm) monomer (Fluka, Purum) and methanol (Merck, AR) were used as received.

Surface modification of SPNR sheet


A dried rubber sheet, casted from SPNR latex (Dr. Boo, Chonburi, Thailand), was pretreated with Ar plasma prior to surface grafting, under UV, with PAAm.² The SPNR-g-PAAm sheet was then immersed into PMMA latex synthesized by the soap-free emulsion polymerization using potassium persulphate (KPS) as initiator. To obtain anionic PMMA particles with the size of 162, 364, 480, or 626 nm, MMA concentration of 0.18, 1.46, 2.19, or 3.28M, respectively, was added in the aqueous solution of KPS (0.18 g) dissolved in deionized water (137 g) and the polymerization took place at 80°C for 2 h. The remaining steps and characterizations were carried out as explained elsewhere.² By varying immersion time, latex concentration and ionic strength, the surface coverage (Cs), determined from the ratio of the area of the deposited PMMA particles to the selected area under SEM image (15 \times 21 μ m²), could be adjusted.⁸

Characterization of SPNR sheet coated with PMMA particles

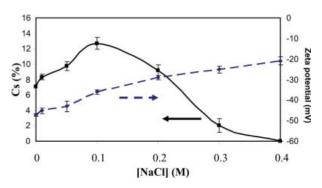
Morphology of the modified SPNR sheet surface was examined by using a Multimode AFM (Digital Instrument, Nanoscope IIIa) equipped with Nanoscope IIIa controller in tapping mode with the scan size of $20 \times 20 \ \mu\text{m}^2$. Because of the fact that PMMA particles were deposited onto a smooth SPNR surface, the surface mean roughness (R_a) was calculated from Nanoscope software by applying the following equation previously used by Perrin et al.⁹:

$$R_a = \frac{1}{n} \sum_{j=1}^n |Z_j|$$

where Z_j is current difference between the height and the mean plane and n is number of points in the image.

Figure 1 Schematic view of plate-on-hemisphere type friction test machine. [Color figure can be viewed in the online issue, which is available at www.interscience. wiley.com.]

In tapping mode the cantilever is driven to oscillate at near its resonance frequency by a small piezo-electric element mounted on the AFM tip holder. ¹⁰ An electronic servo uses the piezoelectric actuator to control the height of the cantilever above the sample to maintain an oscillation amplitude while the cantilever is scanned over the sample. A height image is, therefore, produced by imaging the force of the oscillating contacts of the tip with the sample surface. The friction coefficient of the SPNR-g-PAAm coated with PMMA particles was then measured by using a friction test machine (TE 75R, Plint) as schematically shown in Figure 1.


The device consists of a wavy glass disc, fixed on the arm of counterbalance connected to the force transducer. Load was applied by a dead weight at 1N on a tip of counterbalance. The specimen (2.5 \times 5.0 cm²) was clamped on a rubber hemisphere. The friction coefficient was measured by moving the glass surface against the specimen with stroke length of 5 mm at a speed of 0.25 mm/s in six cycles and four directions.

RESULTS AND DISCUSSION

Effect of NaCl on %Cs

Because of the fact that the thickness of electrical double layer or Debye length (κ^{-1}) affects the hydrodynamic volume of charge particle, the effect of ionic strength of PMMA latex, with the smallest particle size (162 nm), on %Cs was investigated. Both the zeta potential of PMMA latex and %Cs values as a function of NaCl concentration are presented in Figure 2.

As expected, the Cs increased from 7.7 to 12.3% with increasing [NaCl] from 0 to 0.1M which correlated well with the decrease of the absolute value of zeta potential from -40 to -30 mV. It could be explained that the presence of NaCl compressed the electrical double layer and decreased the repulsion among the charged particles which, consequently, allowed the high number of particles to deposit onto

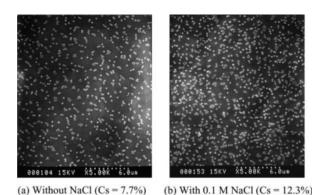
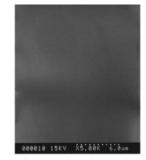


Figure 2 Effect of NaCl concentration on zeta potential of PMMA latex particle (162 nm) and on %Cs values of SPNR-*g*-PAAm sheet coated with the PMMA ([PMMA] = 3 mg/mL, pH 4, immersion time = 30 min). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]


the SPNR-g-PAAm surface. ¹¹ However, with increasing [NaCl] greater than 0.1M, the Cs values suddenly decreased and coagulation visually appeared due to the instability of particles possibly caused by screening of the surface charge on the particles by Na⁺ and Cl⁻. The results also agreed well with the zeta potential value which illustrated that the charged colloidal particles are unstable in the range of -30 to +30 mV. ¹²

The higher Cs value when adding 0.1M NaCl (12.3%) compared to that in the absence of NaCl (7.7%) was clearly observed under SEM. The micrographs of the SPNR-g-PAAm film surfaces coated with PMMA latex particles without NaCl and with adding 0.1M NaCl are, respectively, shown in Figure 3(a,b).

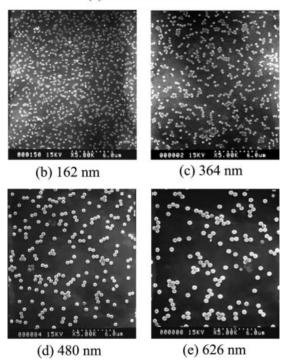

It has been reported that the influence of electrical double layer of small particles on the surface coverage is more significant than that of large particles, the maximum %Cs when depositing PMMA par-

Figure 3 SEM micrographs of SPNR-g-PAAm surfaces adsorbed with PMMA particles; (a) without NaCl and (b) with adding 0.1M NaCl ([PMMA] = 3 mg/mL, pH 4, immersion time = 30 min).

(a) Without PMMA

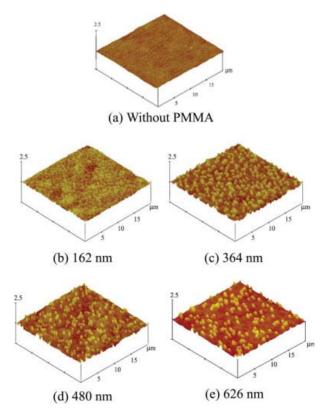


Figure 4 Surface morphology of (a) SPNR-g-PAAm and SPNR-g-PAAm surfaces coated with PMMA particles sizes of (b) 162, (c) 364, (d) 480, (e) 626 nm (Cs = 12%).

ticles with the smallest size of 162 nm was selected for further investigation. In the study of the effect of PMMA particle size on the surface roughness and friction of the modified rubber, the Cs value of SPNR-g-PAAm sheets adsorbed with PMMA particles having sizes of 162, 364, 480, or 626 nm was fixed at 12% by varying the latex concentration and immersion time.

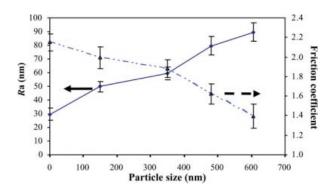
Effect of PMMA particle size

Figures 4 and 5 show the surface morphology, obtained from using SEM and AFM, of (a) SPNR-*g*-PAAm and SPNR-*g*-PAAm films after being deposited with PMMA particles having sizes of (b) 162, (c) 364 (d) 480 and (e) 626 nm at 12% Cs.

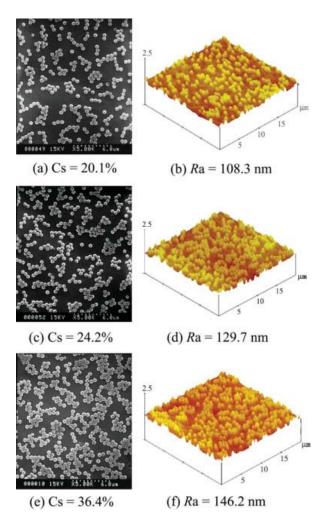
Figure 5 AFM images of (a) SPNR-g-PAAm and SPNR-g-PAAm surfaces coated with PMMA particles having sizes of (b) 162, (c) 364, (d) 480, (e) 626 nm (Cs = 12%). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

The micrographs in Figures 4 and 5 clearly showed that the PMMA particles adsorbed onto the rubber sheet in the form of monolayer possibly due to the strong repulsion between charge particles. However, some aggregates were formed especially when using the large particles (626 nm). It can be explained by the effect of capillary force which is theoretically two order of magnitude higher than the electrostatic repulsive force of particles. Moreover, the attractive capillary force between two particles during drying is proportional to the square of the diameter.

To obtain the surface mean roughness (R_a) value of the SPNR-g-PAAm sheets coated with PMMA particles, the AFM in tapping mode was used and the R_a values, obtained from the topographic images, plotted versus particle sizes are displayed in Figure 6.


The results clearly indicated that the R_a of SPNR-g-PAAm sheet coated with PMMA increased with increasing PMMA particle size at fixed Cs. It is likely that the decrease of contact area of the top surface of the sample is responsible for this observation. The presence of hard PMMA particles on the SPNR-g-

PAAm surface resulted in the change in both surface chemical compositions and surface roughness. Consequently, the friction coefficient reduced from 2.2 for SPNR-g-PAAm ($R_a = 29.7$ nm) to 2.0 for SPNR-g-PAAm sheets coated with PMMA particles having particle size of 162 nm ($R_a = 49.9$ nm). However, for the rubber sheets coated with PMMA particles series, the %Cs was maintained at 12%, thus, friction force in this case is mainly dependent on the roughness, which directly linked to the real contact area. The increase in R_a from 49.9 to 72.6 nm corresponded to the decrease of the friction coefficient from 2.0 for SPNR-g-PAAm sheets coated with PMMA particles having particle size of 162 nm to 1.4 for the rubber sheet coated with PMMA having large particle size (626 nm) as shown in Figure 6.


Effect of %Cs

Because of the fact that the larger PMMA particle deposited onto the SPNR-*g*-PAAm provided the lower surface friction at fixed Cs, the largest PMMA particle size was selected for the study of the effect of %Cs on surface roughness and friction of the rubber. The SEM and AFM micrographs of the SPNR-*g*-PAAm surfaces coated with PMMA particles (626 nm) at various Cs values, obtained by varying dipping time and latex concentration, are presented in Figure 7.

As previously observed, the topographic images showed that these large PMMA particles, especially at high %Cs in Figure 7(e,f), arranged onto the SPNR-g-PAAm surface in aggregate form. Besides the capillary force, the bridging effect caused from the grafted PAAm chain which dangled into the solution and attached several latex particles might be responsible for the aggregation.¹⁶ These aggregates

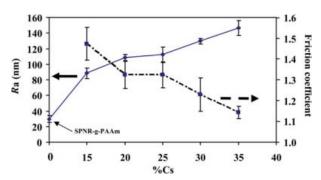

Figure 6 Surface mean roughness (R_a) and friction coefficient of SPNR-g-PAAm and SPNR-g-PAAm sheets coated with PMMA particles having various sizes (Cs = 12%). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 7 SEM and AFM micrographs of SPNR-g-PAAm surfaces coated with PMMA particles of 626 nm showing various %Cs and R_a . [Color figure can be viewed in the online issue, which is available at www.interscience. wiley.com.]

could alter the surface asperities and, consequently, the R_a value was nonlinearly proportional to the %Cs as displayed in Figure 8.¹⁷ An increase of R_a also led to a marked reduction in friction coefficient of the modified SPNR as also shown in Figure 8.

To confirm the stability of PMMA particles deposited onto the SPNR-*g*-PAAm surface, the SEM micrographs of the modified SPNR surface before and after rubbing for six cycles in four directions under the friction test machine are shown in Figure 9. The slightly change of %Cs from 36.4 to 33.4 might be due to the grafting PAAm chains which are able to increase the interfacial adhesion between particle and matrix.¹⁸ It was, therefore, concluded that the SPNR-*g*-PAAm coated with PMMA particles was stable under the rubbing conditions.

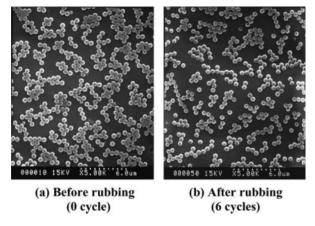


Figure 8 Effects of Cs value on R_a and friction coefficient of SPNR-g-PAAm surface coated with PMMA particles (626 nm). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Effect of polydispersity of PMMA particles

The highest Cs value of 36.4% obtained from using the largest size PMMA of 626 nm was still lower than that of the calculated value using the random sequential adsorption (RSA) model (54.7%) which indicated the SPNR-g-PAAm surface could not be completely covered. It should be noted that the presence of various complex particle-particle, particle-surface or hydrodynamic interactions is not considered in the RSA model.¹⁸

To increase the amount of PMMA particles on the surface, the deposition of a mixture of latexes having both large and small particle sizes of 162 and 626 nm on the rubber substrate was, therefore, attempted. It was believed that the small particles might adsorb into the interstices between large particles. ¹⁸ The %Cs values as a function of various number ratios of the large to small particles ($N_L:N_S$) are presented in Figure 10. The SEM micrographs of

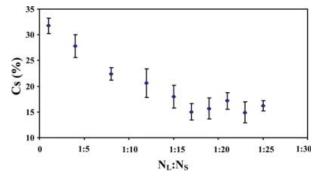
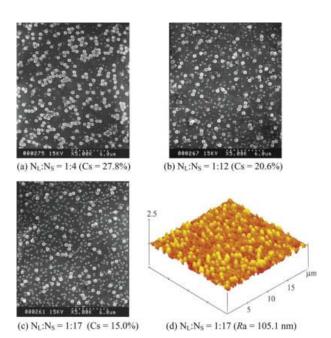


Figure 9 SEM micrographs of SPNR-g-PAAm surfaces coated with PMMA particles of 626 nm (a) before and (b) after rubbing for six cycles


the SPNR-g-PAAm surfaces at N_L : N_S of 1:4, 1:12, and 1:17 are, respectively, displayed in Figure 11(a–c) while Figure 11(d) shows the AFM micrograph when N_L : N_S was 1:17.

The results in Figure 10 revealed that the total Cs value decreased with increasing $N_L:N_S$ from 1:1 to 1:17. At a ratio greater than 1:17, the Cs approached a constant value of about 16% which might be explained by the selective deposition of the smaller particles resulting in smaller surface coverage as shown in Figure 11. The increasing number of N_S resulted in a decrease of %Cs. The reason for size selection is a combination of three mechanisms, i.e., (i) smaller particles diffuse faster to the surface from the bulk solution, (ii) small particles adsorbed on the surface may block a comparatively large area for adsorption of larger particles, and (iii) small particles can adsorb in the spaces between larger particles, not accessible for the large particles themselves.¹⁹

The better distribution of large particles with increasing the quantity of small particles was observed in Figure 11(c). This might be due to the high thickness of electrical double layer of the small particle which, consequently, increased the space between large particles and impeded their approach. ^{13,19} Similar effect of particle polydispersity on surface coverage was previously reported when a mixture of two silica particle sizes (100 and 500 nm) were adsorbed onto Si substrate having polyelectrolyte multilayer formation.8 It should be noticed that at the Cs of 15%, the R_a obtained when using bimodal particle size in Figure 11(d) (105 nm) was greater than that obtained when using monodispersed PMMA particle (90 nm) as shown in Figure 8. The increase in R_a in the former case would increase RCA and, hence, potentially reduce the surface friction of rubber sheet.

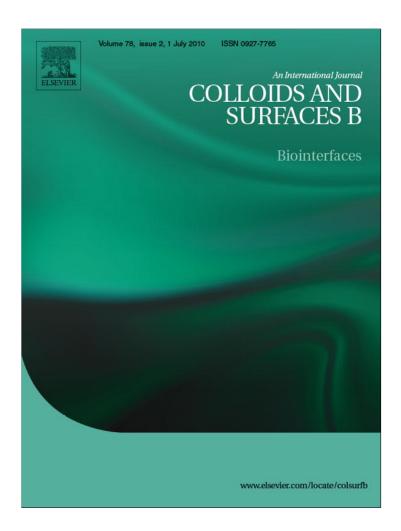
Figure 10 Effect of number ratios of the large (626 nm) to the small particles (162 nm) of PMMA latexes ($N_L:N_S$) on %Cs of the coated SPNR-g-PAAm surfaces. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 11 SEM micrographs of SPNR-g-PAAm surfaces deposited with a mixture of two PMMA latexes having number ratio of large (626 nm) to small (162 nm) particles ($N_L:N_S$) of (a) 1 : 4 (b) 1 : 12 and (c) 1 : 17 and (d) AFM micrograph at $N_L:N_S$ of 1 : 17. [Color figure can be viewed in the online issue, which is available at www. interscience.wiley.com.]

CONCLUSIONS

At the same %Cs value, the high surface roughness and, hence, low friction coefficient of the SPNR-g-PAAm sheet were obtained from coating with PMMA particle having large size (626 nm). By deposition of the large PMMA particles, both surface roughness and friction of the substrate could be further decreased with increasing %Cs. An attempt to cover the surface with the mixture of latex having both small (162 nm) and large particle sizes (626 nm) resulted in a better distribution of large particles which caused a slightly increase in R_a .

References


- 1. Momose, A. U.S. Pat. 4,597,108 (1986).
- Sruanganurak, A.; Sanguansap, K.; Tangboriboonrat, P. Colloid Surface A 2006, 289, 110.
- 3. Sruanganurak, A.; Tangboriboonrat, P. Colloid Surface A 2007, 301, 147.
- 4. Tabor, D. J Lubric Technol 1981, 103, 169.
- 5. Zhang, Y.; Sundararajan, S. Tribol Lett 2006, 23, 1.
- Deshpande, V. S.; Balint, D. S.; Needleman, A.; Giessen, E. V. D. Model Simul Mater Sci Eng 2007, 15, S97.
- Bowden, F. P.; Tabor, D. Friction: An Introduction to Tribology; Anchor Press: New York, 1973; pp 23–24.
- 8. Qiu, H.; Lee, W.Y. J Am Ceram Soc 2006, 89, 1180.
- 9. Perrin, A.; Lanet, V.; Theretx, A. Langmuir 1997, 13, 2557.
- 10. Dufrene, Y. F. Nature 2004, 2, 451.

3686 ANANCHARUNGSUK ET AL.

11. Sangribsub, S.; Tangboriboonrat, P.; Pith, T.; Decher, G. Eur Polym J 2005, 41, 1531.

- 12. Zhang, K.; Song, Z.; Lin, C.; Feng, S.; Chen, B. J Ceram Proc Res 2007, 8, 52.
- 13. Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T. Langmuir 1997, 13, 6195.
- Ahn, J. S.; Hammond, P. T.; Rubner, M.; Lee, I. Colloid Surf A 2005, 259, 45.
- 15. Kralchevsky, P. A.; Nagayama, K. Langmuir 1994, 10, 23.
- 16. Schmitt, J.; Mächtle, P.; Eck, D.; Möhwald, H.; Helm, C. A. Langmuir 1999, 15, 3256.
- 17. Klieger, P.; Lamond, J. F. Significance of tests and properties of concrete and concrete-making materials. Technology and Engineering; ASTM: Philadelphia, Pennsylvania, 1994; p. 421.
- 18. Semmler, M.; Ricka, J.; Borkovec, M. Colloid Surf A 2000, 165,
- 19. Hanarp, P.; Sutherland, D. S.; Glod, J.; Kasemo, B. J Colloid Interface Sci 2001, 241, 26.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy

Colloids and Surfaces B: Biointerfaces 78 (2010) 328-333

Contents lists available at ScienceDirect

Colloids and Surfaces B: Biointerfaces

journal homepage: www.elsevier.com/locate/colsurfb

In vitro cytotoxicity evaluation of natural rubber latex film surface coated with PMMA nanoparticles

Waranya Anancharungsuk^a, Duangporn Polpanich^b, Kulachart Jangpatarapongsa^c, Pramuan Tangboriboonrat^{a,*}

- ^a Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
- b National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
- c Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand

ARTICLE INFO

Article history:
Received 11 October 2009
Received in revised form 3 February 2010
Accepted 22 March 2010
Available online 27 March 2010

Keywords: Cytotoxicity Surface modification Nanoparticles Latex Rubber

ABSTRACT

In order to increase surface roughness of the sulphur-prevulcanized natural rubber (SPNR) film and, hence, decrease the direct contact between the rubber and skin, the poly(methyl methacrylate) (PMMA) latex particles were deposited onto the SPNR film grafted with polyacrylamide (SPNR-g-PAAm). The surface coverage of PMMA particles on the SPNR-g-PAAm increased with increasing latex immersion time, particle size and concentration. Prior to the *in vitro* cytotoxicity evaluation on L-929 fibroblasts, the SPNR and SPNR-g-PAAm coated with PMMA particles were extracted by using the culture medium. Results showed that the cytotoxicity effect could be significantly reduced by coating PMMA particles onto the rubber film. At the extract concentrations of \leq 12.5% for 24 h at 37 °C, no toxicity potential was detected. The study will be helpful for development of gloves designed for the hypersensitive person.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

With the aim to avoid the direct contact between hand and object, especially in biomedical and electronic applications, donning gloves is strongly recommended. Due to the good mechanical properties of the thin film, sulphur-prevulcanized natural rubber (SPNR) latex is generally used as raw material for glove manufacture. However, it has been reported that NR latex gloves give rise to certain health disorders in some sensitive individuals [1,2]. Two types of substances that may cause allergic problems are Type I, the naturally occurring non-rubbers from Hevea brasiliensis tree and Type IV, the chemicals added into the latex, e.g., antioxidant [2-4]. The Type I reaction is immediate hypersensitivity, mediated by immunoglobulin E (IgE) antibodies to specific proteins in the latex. The symptoms of latex allergy are thought to be due to the massive localization or systemic release of histamine upon binding of the protein allergen to the sensitized IgE-bearing mast cell [2,5–7]. The signs and symptoms may manifest from rhinitis to death. However, the prevalence of latex allergy in population is believed to be very low. Although the leachable latex proteins might be increased when sweats, no cytotoxic potentials to L-929 cells were observed when gloves were extracted with distilled water or saline (9 g/L of NaCl) at 50 °C for 72 h [8].

Besides the chemicals added into NR latex, lubricant powder is sprinkled onto the gloves to facilitate donning and to prevent the inner part of the glove from adhering to itself or to the skin [9,10]. Unfortunately, the use of talc to dust the glove can be harmful, e.g., to surgical wounds, inducing granuloma sarcoma [10]. The problems of corn starch involving allergic reactions and serving as a carrier for bacteria and germs were also reported [7,10]. Currently, the most effective method for preparing powder-free gloves is by chlorination which, however, produces the dark colored and poor ageing gloves. Alternatively, the easy route for reduction of the glove-skin contact area or the surface friction of rubber is by polymer coating [11]. However, friction, stretching or other activities may cause the coating to easily peel-off even during storage [9]. In order to improve the attachment to polymer coating and to mimic the lubricant powder, deposition of the plastic nanoparticles, i.e., poly(methyl methacrylate) (PMMA), onto SPNR film grafted with polyacrylamide (SPNR-g-PAAm) has been processed by using the simple and versatile layer-by-layer (LbL) technique [12,13]. Due to the electrostatic interaction, the monodisperse particles could be firmly adsorbed onto the rubber surface, i.e., the amount of PMMA particles on the SPNR-g-PAAm film did not significantly change after applying with 7 stretched cycles.

Since the PMMA particles' deposition reduced the direct contact area between SPNR film surface and skin, the allergic potential caused by the non-rubbers or additives would effectively decrease. An *in vitro* test using cell culture, an effective method for rapid evaluation employing standard protocols and produce quantita-

^{*} Corresponding author. Tel.: +66 2 201 5135; fax: +66 2 354 7151. E-mail address: scptb@mahidol.ac.th (P. Tangboriboonrat).

tive data, was selected for the investigation of the cytotoxicity of SPNR latex film coated with PMMA nanoparticles. Previous work has shown that the latex gloves extracted with the culture medium provided much stronger cytotoxic activity than those extracted with distilled water or saline [8]. It was explained that both polar and non-polar components are extracted by the culture medium from the sample. Therefore, the RPMI-1640 medium was employed for the extraction of SPNR-g-PAAm/PMMA and unmodified SPNR followed by testing, according to ISO 10993-5, with a mouse fibroblast L-929 cell line [14]. The proliferation of L-929 fibroblasts was investigated by counting the number of colonies forming under optical microscope. Scanning electron microscope (SEM) was used for the study of the effect of particle size of PMMA, synthesized by a soap-free emulsion polymerization, on the surface coverage of SPNR-g-PAAm.

2. Experimental

2.1. Materials

Methyl methacrylate (MMA) monomer (Fluka, Purum) was purified by passing through a column packed with neutral and basic aluminium oxide (Fluka, Purum). The purified monomer was stored at 4°C until use. Acrylamide (AAm) monomer (Fluka, Purum), riboflavin (Sigma) and methanol (Merck, AR) were used as received.

SPNR latex (Dr. Boo Co. Ltd., Chonburi, Thailand) was filtered through a 250 mesh aluminium screen before use. The total solid content (% TSC) was determined by using the method described in ASTM D 1076-97.

2.2. Deposition of PMMA particles onto SPNR sheet

The PMMA latexes with different sizes were prepared by the soap-free emulsion polymerization process at various MMA monomer contents (0.18–3.28 M) using potassium persulfate (4×10^{-4} M) as an initiator. The reaction was carried out at $80\,^{\circ}$ C for 2 h. The particle size and polydispersity index (PDI) were measured by using dynamic light scattering while the zeta potential was measured by using a microelectrophoresis apparatus (Malvern, Zetasizer nanoZS). Particle number (N_p , per liter) was calculated from the following equation [15]:

$$N_{\rm p} = \frac{6Sc}{\rho \pi D_{\rm h}^3} \tag{1}$$

where Sc is the solid content (g/L), ρ is the polymer density, and D_h is the average particle diameter. The remaining steps and characterizations were described elsewhere [12].

Prior to PMMA particles' deposition, the surface of SPNR latex sheet $(2.5\,\mathrm{cm}\times5.0\,\mathrm{cm}\times0.1\,\mathrm{cm})$ was pretreated with Ar plasma (Basic plasma kit BP-1, Samco) for 90 s. It was then immersed into an aqueous solution of 5 wt% AAm $(40\,\mathrm{mL})$ and $0.05\,\mathrm{mM}$ riboflavin $(2\,\mathrm{mL})$ under UV (Mercury HPLN $1000\,\mathrm{W}$, Phillips) for 30 min. After rinsing with a jet of deionized water, the sample was left in a $60\,^\circ\mathrm{C}$ water bath with continuous stirring for $16\,\mathrm{h}$. The SPNR grafted with PAAm (SPNR-g-PAAm) was subsequently dipped into a beaker containing PMMA latex $(0.1-5\,\mathrm{mg/mL})$ for $2-30\,\mathrm{min}$. The sample was washed with Milli-Q water via a series of three rinsing baths and dried at room temperature [12]. SEM (S-2500, Hitachi) was used for morphological study and for determination of the surface coverage (Cs) as a ratio of the area of deposited PMMA particles to selected area under SEM image $(15\,\mathrm{\mu m}\times21\,\mathrm{\mu m})$ [16].

2.3. In vitro cytotoxicity test

L-929 mouse fibroblast cells were cultured in RPMI completed medium as previously described [17]. Cell viability was stained by

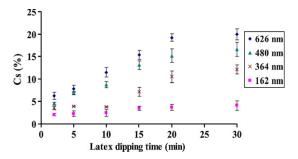
Table 1Effect of MMA concentration on the particle size, PDI and particle number of PMMA latexes.

MMA concentration (M)	Particle size (nm)	Polydispersity index (PDI)	Particle number/ mL (×10 ¹²)
0.18	162 ± 5	0.017	4.4
0.36	242 ± 4	0.014	4.7
1.46	364 ± 2	0.019	4.6
2.19	480 ± 4	0.045	4.0
2.92	558 ± 6	0.033	4.1
3.28	626 ± 8	0.042	3.9

tryphan blue exclusion technique and the number of living cells was counted with hemacytometer. The cell morphology and proliferation were observed under an optical microscope (CKX41, Olympus).

The cytotoxicity test was performed by colony-forming technique according to ISO 10993 Part 5 [14]. The samples (0.1 g) of the SPNR-g-PAAm coated with PMMA particles and the unmodified SPNR (positive control) were separately immersed into the completed medium (1 mL), i.e., RPMI-1640 supplemented with HEPES (25 mM), D-glucose (1.8 mg/mL), glutamine (2 mM), gentamicin (40 mg/mL) and 10% heat-inactivated Fetal calf serum (FCS). After incubation at 37 °C under 5% CO₂ for 24 h, the extracted fraction was serially diluted with the completed medium to attain 50, 25, 12.5 and 6.25% extracts. L-929 cells were seeded at the density of 100 cells/well in 24-well plates and incubated for 24 h. The culture medium (negative control) was then replaced by the diluted extract medium. After 6 days, the number of colonies on each well was counted under the microscope and %inhibition of cell growth was evaluated. The P-value (P) was calculated from SAS Analysis V6.12 software.

3. Results and discussion


3.1. Analysis of PMMA latex

Due to the fact that the soap-free emulsion polymerization is based on homogeneous nucleation mechanism, PMMA particles with different sizes (95–100% conversion) were obtained from varying the MMA contents. In the early stage of polymerization, the persulfate radicals initiate the MMA monomer dissolved in the aqueous phase to form oligomeric radicals. When reaching the critical chain length, which is 60–80 units for the MMA monomer, the oligomeric radicals precipitate out of the aqueous phase and the primary particles are formed [18,19]. The particles continuously grow by using monomer transported from the monomer droplet. Their stability maintained by adsorbing ionic fragment of the initiator molecules was confirmed by the negative zeta potential of –33 mV. When the particle number is kept constant, particle size of latex depends mainly on the monomer concentration.

Particle size, PDI and particle number of PMMA latex particles as a function of MMA concentrations were determined and the data are shown in Table 1.

From Table 1, particle size of PMMA latex increased with increasing MMA concentration while the particle number was almost constant. These results could be explained from the solubility of MMA in water. Since the MMA concentrations used in all cases were greater than their water solubility (0.16 M), the non-initiated MMA monomer could diffuse into the primary particles previously formed in the initial stage of nucleation [20]. Consequently, the particle diameter increased with increasing MMA concentration whereas no new particles were generated and the latex particles were kept stable [21]. The PDI and the particle number in Table 1 correlated well with the explanation within this monomer concentration range [20].

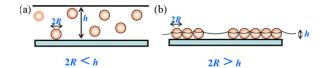
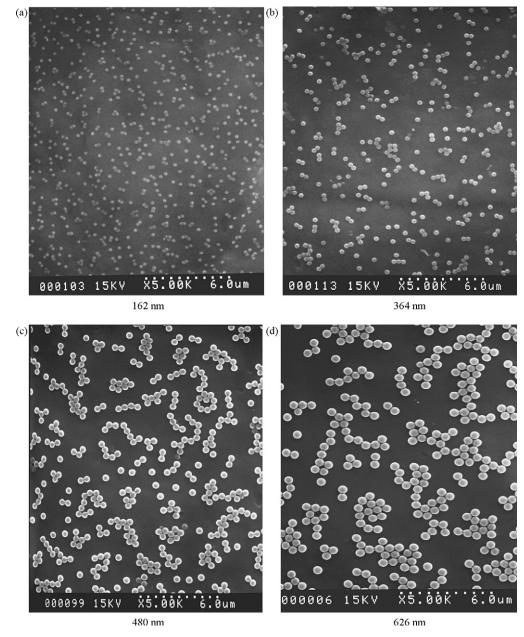

W. Anancharungsuk et al. / Colloids and Surfaces B: Biointerfaces 78 (2010) 328-333

Fig. 1. %Cs values versus time used for dipping SPNR-g–PAAm films into PMMA latexes having various sizes (pH 4, [PMMA] = 0.1 mg/mL).


3.2. Effects of PMMA latex concentration and immersion time

The effect of PMMA particle size (162, 364, 480 and 626 nm), deposited onto the SPNR film, on the percent surface coverage (%Cs)

Fig. 3. Two-dimensional ordering of particles, having diameter of 2R, suspend in a liquid layer of thickness, h, on a substrate: (a) the motion of particles in the liquid layer whose thickness is much larger than the particle size and (b) the capillary forces appear and give rise to aggregation when its thickness becomes comparable or slightly smaller than the particle [26].

was investigated. Prior to the particles' adsorption, the presence of PAAm onto the SPNR-g-PAAm surface was confirmed by ATR-FTIR spectra, showing the peaks of N-H stretching at 3357 cm⁻¹ and C=O stretching of the amide group at 1665 cm⁻¹, and by the low water contact angle of 29° [12,13]. The modified SPNR film was subsequently immersed into the PMMA latex (0.1 mg/mL) at pH 4 and the Cs values plotted with dipping times are presented in Fig. 1.

 $\textbf{Fig. 2.} \hspace{0.2cm} \textbf{ SEM micrographs of SPNR-g-PAAm deposited by PMMA particles of (a) 162 nm, (b) 364 nm, (c) 480 nm and (d) 626 nm ([PMMA] = 1 mg/mL, immersion time = 10 min). \\$

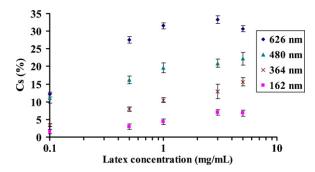
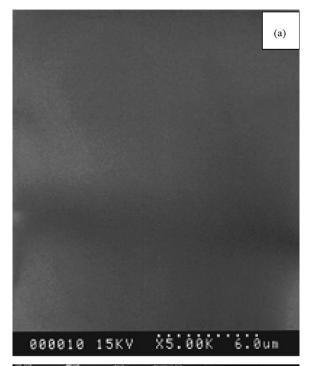
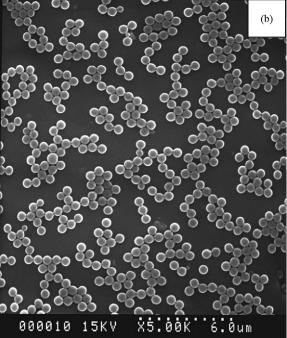


Fig. 4. Effect of concentration of PMMA latex having different particle sizes on %Cs of SPNR-g-PAAm films (pH 4. immersion time = 10 min).

It was observed that the %Cs values linearly increased with increasing immersion time from 2 to 20 min. The nearly constant %Cs, after dipping for 20 min, might be due to the repulsive force between particles in the latex and also those previously adsorbed onto the substrate [22]. Based on the random sequential adsorption (RSA) model, a geometrical jamming limit of the non-interacting particles leads to the maximum Cs of 54.7% [23]. When the particle–particle, particle–surface and hydrodynamic interactions are considered, the %Cs in the experiment is obviously lower than the RSA jamming limit [24].


Results also showed that the %Cs increased with increasing size of PMMA particles. SEM micrographs of PMMA particles with different sizes adsorbed onto the SPNR-g-PAAm surface ([PMMA] = 1 mg/mL, immersion time = 10 min) are displayed in Fig. 2.


The more uniform PMMA particle distribution on the SPNRg–PAAm surface was observed in Fig. 2(a) when the smaller particles were used. The aggregation of larger particle might be due to the effect of capillary force which is the main contribution of structural rearrangement of particles during the drying step [25]. The rearrangement of particles, having diameter of 2R, on a flat plate with a liquid layer of thickness, h, caused from capillary force is schematically presented in Fig. 3.

The particles in the top layer suddenly protrude from the thinning liquid films when change from disordered state, Fig. 3(a), to the ordered state in Fig. 3(b) [26]. The gravity plays the role of keeping the film surface planar by the disjoining pressure. When the film is thin enough, the capillary interactions between colloidal particles are entirely governed by the surface tension and the effect of gravity is negligible. The theoretical calculations show that the adhesion force between particle and substrate is proportional to the particle diameter, while the attractive capillary force between two particles during drying is proportional to the square of the diameter [27,28]. Therefore, with an increase in diameter, the significant capillary forces pull the particles together to form islands as observed in Fig. 2(d). However, a detailed understanding of this effect is still lacking.

In order to maximize the surface coating, the effect of PMMA latex concentration on the %Cs of SPNR-g-PAAm film was then studied (pH 4, immersion time = 10 min) and the data are displayed in Fig. 4.

Fig. 4 clearly showed that, at fixed latex concentration, the larger particle size provided the higher Cs value possibly due to the thinner electrical double layer [16,29]. Moreover, for all particle sizes, the %Cs increased with increasing the latex concentration until 5 mg/mL. It was explained that the high latex concentration favored the repulsion among similar charged particles providing the great collision between surface of the particle and that of the substrate as mentioned earlier. However, for 5 mg/mL of the PMMA latex with the largest size (626 nm), the slightly decrease of Cs value was observed. It was believed that the aggregated particles impeded the deposition of new particles on the surface [23].

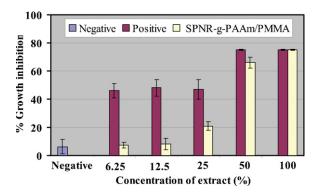
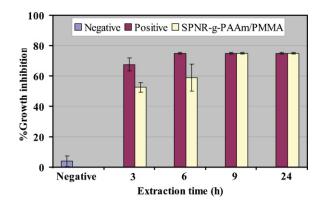


Fig. 5. SEM micrographs of (a) unmodified SPNR and (b) SPNR-g-PAAm coated with PMMA particles (size = 626 nm, Cs = 35%).

From these results, it was clearly observed that the highest Cs value of 35% was achieved when the largest PMMA particle size of 626 nm was adsorbed onto the SPNR-g-PAAm. SEM micrographs of the SPNR-g-PAAm/PMMA compared with the unmodified SPNR are shown in Fig. 5. These samples were selected for *in vitro* cytotoxic testing in the further step.

3.3. In vitro cytotoxicity test on L-929 fibroblasts

Similar to other materials aimed for use in biomedical applications, the toxicity of latex gloves made of the SPNR-g-PAAm/PMMA was evaluated. The recommended *in vitro* cytotoxicity test to L-


Fig. 6. Growth inhibitions of L-929 fibroblasts as a function of concentrations of the extract of SPNR-g-PAAm/PMMA films compared with that of unmodified SPNR (positive control) (extraction time 24 h, 37 $^{\circ}$ C) and of the medium without the extract (negative control).

929 fibroblast cells related to hypersensitive users was performed [30].

3.3.1. Effects of extract concentrations and time on growth inhibition

Growth inhibition of L-929 fibroblast cells by the extract was determined by colony-forming assays (CFA) [12,31]. Cells were cultured under various concentrations of the test liquid extract comparing to that of positive (SPNR) and the negative (without the extract) controls. The number of cell colonies was examined at day 6 when cell proliferate and colonies formed were clearly observed [31] and the data are shown in Fig. 6.

As compared to the negative control, $\leq 12.5\%$ diluted sample slightly affected the growth inhibition of L-929 cells ($P \leq 0.01$). The higher concentration of the extract of 25, 50 and 100%, resulted in the higher percentage of growth inhibition of the cells of 21, 66 and 75% inhibition, respectively. When compared with the unmodified SPNR at the extract concentrations $\leq 25\%$, the significant decrease of

Fig. 7. Growth inhibition value of L-929 fibroblasts at various extraction times of the SPNR-g- PAAm/PMMA films compared with the unmodified SPNR film (37° C, 100% extract concentration).

growth inhibition was clearly observed (P = 0.02), i.e., the cytotoxicity was effectively reduced by the surface modification of coating PMMA particles onto the SPNR-g-PAAm.

In order to mimic the physiological conditions, the extraction time of the SPNR-g–PAAm/PMMA and the unmodified SPNR was decreased from 24 to 3 h at 37 $^{\circ}$ C. The relationship between extraction time and % growth inhibition when using 100% extract concentration at day 6 is shown in Fig. 7.

It was noticed that, at short extraction times (\leq 6 h), the % growth inhibition of SPNR-g–PAAm/PMMA sample was lower than that of SPNR ($P \leq$ 0.02). At longer extraction times (\geq 9 h), the growth inhibition attained the maximum value of 75% in both cases. The data indicated that the long extraction time resulted in the increase of substance released from the sample and, hence, more cells growth inhibition and toxicity [32,33]. From the results, it could be assumed that the SPNR latex gloves modified by PMMA particles' adsorption could be considered to be safe under normal conditions.

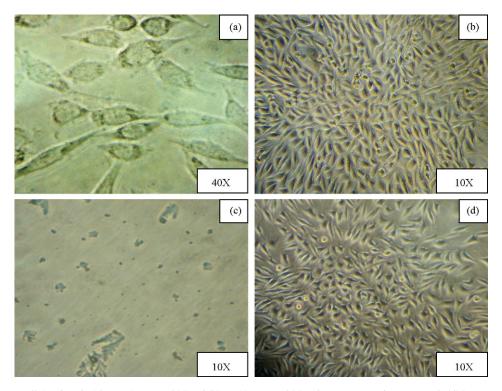


Fig. 8. Morphology of L-929 cells incubated with negative control (a) and (b), positive control (c) and SPNR-g-PAAm/PMMA sample (d) (25% extract concentration, day 6 after culturing).

3.3.2. Morphologies of L-929 fibroblasts exposed to SPNR and SPNR-g-PAAm/PMMA

The optical micrographs of L-929 cells incubated with medium extract of SPNR-g-PAAm/PMMA sample compared with the negative and positive controls are displayed in Fig. 8.

From Fig. 8(a) and (b), spindle-shaped and adherent cells growing as a confluent monolayer were observed. Similar to the negative control in Fig. 8(b), the SPNR-g-PAAm/PMMA extract did not affect morphology and cell proliferation as presented in Fig. 8(d), i.e., the cells spread out and exhibited a spindle to elongated shape which revealed normal morphology and proliferation pattern. On the contrary, the morphology of cells significantly changed, i.e., loss of spindle shape and detachment from the plate, when using the unmodified SPNR sample as shown in Fig. 8(c). Moreover, these cells could not continuously grow or proliferate. From these results, it could be suggested that the SPNR extracted by the culture medium had inhibitory effect on the growth of normal L-929 cell lines, while the SPNR-g-PAAm/PMMA sample effectively reduced the cytotoxicity.

4. Conclusions

When using the extract concentrations \leq 25% for 24 h, the cytotoxicity of the SPNR film to L-929 mouse fibroblast cells was effectively reduced by coating its surface with PMMA latex particles. At the maximum Cs, monitored by using large particle size, long immersion time and high latex concentration, the growth inhibition of the cells increased with increasing the concentration and time of extraction. Although the maximum growth inhibition of 75% was induced by 100% extract concentration for 24 h, at the extraction time \leq 6 h, the 100% extract of SPNR-g–PAAm/PMMA significantly reduced the toxicity to the cells. These findings proved valuable for further *in vivo* toxicity and more intensive allergenic investigations for developing of powder-free gloves.

Acknowledgement

Research grant (RTA5180003) from The Thailand Research Fund (TRF)/the Commission on Higher Education (CHE) to P.T. is gratefully acknowledged.

References

- [1] F.W. Perrella, A.A. Gaspari, Methods 27 (2002) 77.
- [2] H.M. Binkley, T. Schroyer, J. Catalfano, J Athl Training 38 (2003) 133.
- [3] P. Cullinan, R. Brown, A. Field, J. Hourihane, M. Jones, R. Kekwick, R. Rycroft, et al., Clin Exp Allergy 33 (2003) 1484.
- [4] K. Turjanmaa, H. Alenius, S. Makinen-Kiljunen, T. Rcunala, T. Palosou, Allergy 51 (1996) 593.
- [5] A.M. Spina, H.J. Levine, L. Ky, Oral Surg Oral Med Oral Pathol 87 (1999)
- [6] C.R. Hamann, K. Turjanmaa, R. Rietschel, C. Siew, D. Owensby, S.E. Gruninger, K.M. Sullivan, JADA 129 (1998) 43.
- 7] M.O. Osman, S.L. Jensen, World J Surg 23 (1999) 630.
- [8] H.S. Baek, J.Y. Yoo, D.K. Rah, D.-W. Han, D.H. Lee, O.H. Kwon, J.-C. Park, Yonsei Med J 46 (2005) 579.
- [9] W. Truscott, Methods 27 (2002) 69.
- [10] A. Momose, US Patent No. 4597108 (1986).
- [11] F. Hostetller, D. Rhum, M.R. Forman, M.N. Helmus, N. Ding, US Patent No. 6080488 (1986).
- [12] A. Sruanganurak, K. Sanguansap, P. Tangboriboonrat, Colloid Surf A 289 (2006) 110.
- [13] A. Sruanganurak, P. Tangboriboonrat, Colloid Surf A 301 (2007) 147–152.
- [14] Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity, ISO 10993, 1999, pp.1–8.
- [15] H. Shimizu, T. Shiraishi, R. Wada, M. Okabe, Colloid Polym Sci 285 (2006) 107
- [16] H. Qiu, W.Y. Lee, J Am Ceram Soc 89 (2006) 1180.
- [17] M. Sokolsky-Papkov, A.J. Domb, J. Golenser, Biomacromol 7 (2006) 1529.
- [18] R.M. Fitch, C.H. Tsai, in: R.M. Fitch (Ed.), Polymer Colloids, Plenum, New York, 1971.
- [19] Y.C. Chen, C.F. Lee, W.Y. Chiu, J Appl Polym Sci 61 (1996) 2235.
- 20] A. Zhang, J. Bao, J Appl Polym Sci 93 (2004) 2815
- [21] S. Gu, H. Akama, D. Nagao, Y. Kobayashi, M. Konno, Langmuir 20 (2004) 7948.
- [22] A. Kampes, B. Tieke, Mater Sci Eng (1999) 195, C8-9.
- [23] M. Semmler, J. Ricka, M. Borkovec, Colloid Surf A 165 (2000) 79.
- [24] Y. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, Langmuir 13 (1997) 6195.
- [25] H. Cong, W. Cao, Langmuir 19 (2003) 8177.
- [26] P.A. Kralchevsky, K. Nagayama, Langmuir 10 (1994) 23.
- [27] J.S. Ahn, P.T. Hammond, M. Rubner, I. Lee, Colloid Surf A 259 (2005) 45.
- [28] P. Henarp, D.S. Sutherland, J. Glod, B. Kasemo, Colloid Surf A 214 (2003) 23.
- [29] T. Serizawa, H. Takeshita, M. Akashi, Langmuir 14 (1998) 4088.
- [30] J. Yun, Q. Zhong, J.Y. Kwak, W.H. Lee, Oncogene 24 (2005) 4009.
- [31] A. Matsuoka, K. Isama, T. Tsuchiya, J Biomed Mater Res 75A (2005) 439.
- [32] J.C. Wataha, P.E. Lockwood, S.K. Nelson, D. Rakich, J Oral Rehabil 26 (1999) 379.
- [33] D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglastein, T. Kissel, Biomaterials 24 (2003) 1121.

Nanocapsules Embedded in Natural Rubber Latex Gloves

Saovaree Tanpantree, Pakorn Opaprakasit, Surapich Loykulnant, Wiyong Kangwansupamonkon, 4 Pramuan Tangboriboonrat1

¹Department of Chemistry, Faculty of Science, Mahidol University, Phyathai 10400, Bangkok, Thailand ²School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology,

Received 27 October 2009; accepted 22 January 2010 DOI 10.1002/app.32132

Published online 29 March 2010 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: To prepare medical gloves containing disinfectant agent, poly(methyl acrylate) (PMA) with \overline{M}_w of 550 K was synthesized via the iniferter technique and then used for encapsulating disinfectant agent, i.e., chlorhexidine digluconate (CHD), droplets. The CHD-PMA nanocapsules suspended in a sodium dodecyl sulfate aqueous solution having 93% encapsulation efficiency were successfully embedded between the outermost and inner layers of γ-radiation vulcanized natural rubber (RVNR) latex films by the coagulant dipping process. A RVNR/CHD-PMA nanocapsules/RVNR three-layer structure was revealed by the contact angle measurement, ATR-FTIR and SEM. Both the tensile strength and elongation at break of the three-layer film were also measured. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 1798-1803,

Key words: elastomers; films; morphology; rubber; surfaces

INTRODUCTION

Natural rubber (NR) latex has been widely used for the production of gloves for medical personnel. Although NR has good mechanical properties which are unmatched by most synthetic rubbers, the gloves, especially those used by surgeons and dentists, are frequently perforated or torn during employment due to needles or sharp objects. 1,2 Medical gloves containing disinfectant droplets were, therefore, developed.^{3,4} When the glove is punctured, the antiseptic agent would neutralize infectious agents carried by the needle and a significant reduction of infection rate is obtained.⁵

It is worth mentioning that gloves made of synthetic rubber are rather thick when compared with gloves made of NR latex, hence, tactile sensation and manual dexterity are decreased. The preparation

Journal of Applied Polymer Science, Vol. 117, 1798–1803 (2010) © 2010 Wiley Periodicals, Inc.

of NR gloves containing chlorhexidine digluconate (CHD), possessing activity against Gram-positive and Gram-negative bacteria, in the form of nanocapsules has been studied.^{6–8} Recently, precipitation of poly(methyl acrylate) (PMA) with weight average molecular weight (\overline{M}_{vv}) of 470 K onto nanodroplets of a CHD aqueous solution has been applied to prepare nanocapsules by changing the gradient of dichloromethane/cyclohexane.⁸ The CHD-PMA capsules were then redispersed in 2% w/v sodium dodecyl sulfate (SDS) aqueous solution before depositing onto the surface of y-radiation vulcanized natural rubber (RVNR) latex sheet.

In this work, we report the preparation of a threelayer thin film where the outermost and inner layers were RVNR and the active middle layer containing CHD-PMA nanocapsules (RVNR/CHD-PMA nanocapsules/RVNR) by using the coagulant dipping process. To obtain the capsule's wall which is strong enough to prevent any premature release, yet delicate enough to break up under the required circumstances, the synthesis of PMA with M_w of 550 K was attempted. The thermal iniferter technique based on controlled radical polymerization under mild conditions was selected for the PMA synthesis. Increases in encapsulation efficiency and capsule's size which would allow the effective release of the disinfectant agent for neutralization of infectious agents were aimed for. The water contact angle measurement,

Thammasat University, Pathumthani 12120, Thailand ³National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand

⁴National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand

Correspondence to: P. Tangboriboonrat (scptb@mahidol.ac.

Contract grant sponsor: The Thailand Research Fund/ Commission on Higher Education; contract grant number: RTA5180003.

Contract grant sponsors: Thailand Graduate Institute of Science and Technology, National Science and Technology Development Agency.

attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) were used for characterization of the coated surfaces. The effects of coagulant (Ca(NO₃)₂) concentration on the thickness, tensile strength, and elongation at break of the RVNR/CHD-PMA nanocapsules/RVNR three-layer film were also investigated.

EXPERIMENTAL

Materials

Methyl acrylate (MA) monomer (Fluka, Purum) was purified by passing through a column packed with neutral and basic aluminum oxide (Fluka, Purum) and the iniferter, i.e., N-bromosuccinimide (Aldrich, >98%) was recrystallized and dried under vacuum before use. Other reagents, i.e., dichloromethane (Lab-scan, AR), cyclohexane (Lab-scan, AR), methanol (Lab-scan, AR), deuterated chloroform (Wimad), tetrahydrofuran (THF) (Lab-scan, AR), soybean phosphatidylcholine or lecithin (MP Biochemicals), sodium dodecyl sulfate (Fluka, GC), 20% w/v CHD (Sigma), calcium nitrate (Ca(NO₃)₂) (TSL chemicals, AR), and Teric 16A16 (East Asiatic, AR) were used as received. The commercial RVNR latex was kindly supplied by the Siam Okamoto Co. (Pathumthani, Thailand).

Synthesis of PMA

Polymerization of PMA using the thermal iniferter was carried out according to the method previously reported. The PMA were synthesized by mixing *N*-bromosuccinimide ($0.68 \times 10^{-2}M$) with MA monomer (11.11M) for 300 min. The $\overline{\rm M}_w$ of the PMA was determined by gel permeation chromatography (Waters, 150-CV) at 30°C using THF as eluent. For the chemical structure and end group analysis, PMA (10 mg) dissolved in CDCl₃ (2 mL) was analyzed by proton-nuclear magnetic resonance spectroscopy (1 H-NMR) (Bruker, DP×400).

Preparation of CHD-PMA nanocapsules

The CHD-PMA nanocapsules, stabilized by lecithin (100 mg), in cyclohexane were prepared by using the controlled nanoprecipitation technique described elsewhere. 6.8 0.5% w/v SDS aqueous solution (10 mL) was then added into cyclohexane (10 mL) containing the nanocapsules. After evaporation of the cyclohexane by using a rotary evaporator (Buchi, Rotavapor R200) at 40°C for 15 min, the capsules suspended in SDS aqueous solution were obtained.

The sizes of the CHD nanodroplets and CHD-PMA nanocapsules were measured with a dynamic

light scattering apparatus (Malvern, Zetasizer NanoZS). The charge density of the nanocapsules redispersed in SDS aqueous solution was determined by a microelectrophoresis apparatus (Malvern, Zetasizer nanoZS). The morphology of the CHD-PMA nanocapsules was examined by Transmission Electron Microscopy (TEM) (JEOL, JEM-2010). The encapsulation efficiency was determined by using ¹H-NMR, where deuterated water and a known amount of pyrazine were applied as an external solvent and a calibration product, respectively. The mass of CHD in a nanocapsule was calculated from the area ratio of peaks at 7.66 to 9.07 ppm corresponding to aromatic-protons of CHD and pyrazine, respectively.

Preparation of RVNR/CHD-PMA nanocapsules/RVNR three-layer films

The three-layer film of RVNR/CHD-PMA nanocapsules/RVNR was prepared by the coagulant dipping process. A glass mold was first immersed for 5 s in various concentrations of Ca(NO₃)₂ coagulant solution (5, 10, and 15% w/v) mixed with nonionic wetting agent (0.1% w/v Teric 16A16). Thereafter, the mold was dipped in 45% total solid content of RVNR latex. The middle layer containing disinfectant agent was produced by dipping the partially dry first layer in 5% w/v Ca(NO₃)₂ for 5 s and, subsequently, in 1% CHD-PMA nanocapsules redispersed in SDS aqueous solution for various dipping times. The sample was washed with Milli-Q water via a series of three rinsing baths and dried at room temperature before being analyzed by water contact angle measurement (G-1, Kruss). Each value of the contact angle reported is the average of at least 10 separate drops of water on a given surface. ATR-FTIR spectra of the samples were recorded on a Bruker EQUI-NOX 55 spectrometer (32 scans at 4 cm⁻¹ resolution) by employing a Ge ATR crystal with face angle of 45° in a single-reflection mode.

The outermost layer was subsequently prepared by following the same procedure as that used in the first step. Finally, the three-layer thin film was dried in an oven at 65°C for 15 min. The surface morphology of RVNR inner and outer layers and that of CHD-PMA nanocapsules deposited onto the rubber film was examined by SEM (Hitachi, S-2500).

The thickness of the three-layer film was measured with a digital caliper (KEIBA) at 10 different areas of each sample. The dumbbell specimens were used for tensile testing (Instron, model 5566), stamped out of the three-layer film by using a sharp die according to DIN 53504. For each sample, at least five specimens were tested with a crosshead speed of 100 mm/min using a load cell of 1000N.

1800 TANPANTREE ET AL.

RESULTS AND DISCUSSION

Characterization of CHD-PMA nanocapsules

The synthesized PMA having \overline{M}_w of 550 K and molecular weight distribution $(\overline{M}_w/\overline{M}_n)$ of 1.6 was used for the preparation of capsule's shell. The size of monodisperse CHD droplet was 251 \pm 7 nm, whereas that of the nanocapsules suspended in cyclohexane and in SDS agueous solution were 385 \pm 7 and 386 ± 18 nm, respectively. The zeta potential value of the CHD-PMA nanocapsules in SDS aqueous solution which was constant at about -95 mV, confirmed the electrostatic stabilization of the capsules in the medium. From the similar size of CHD-PMA nanocapsules in both media, it can be deduced that a tight molecular interlocking of the long PMA chains effectively entrapped the CHD. The result was confirmed by the high-encapsulation efficiency of CHD-PMA nanocapsules dispersed in cyclohexane (100%) and those redispersed in SDS aqueous solution (93%), as determined by ¹H-NMR. A welldefined structure of nanocapsules redispersed in 0.5% SDS aqueous solution, observed under TEM, is shown in Figure 1.

Characterization of CHD-PMA nanocapsules deposited onto RVNR latex film

Water contact angles of the CHD-PMA nanocapsules deposited onto the RVNR latex film are plotted in Figure 2 versus dipping times.

The results show that the water contact angle of the RVNR surface covered with CHD-PMA nanocapsules abruptly decreased from 95° to 46° within the first

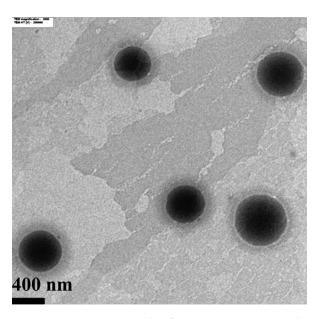
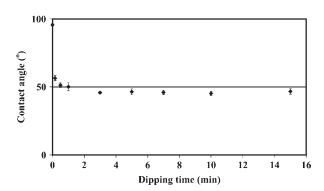



Figure 1 TEM micrograph of CHD-PMA nanocapsules redispersed in 0.5% of SDS aqueous solution.

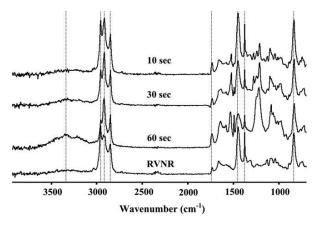
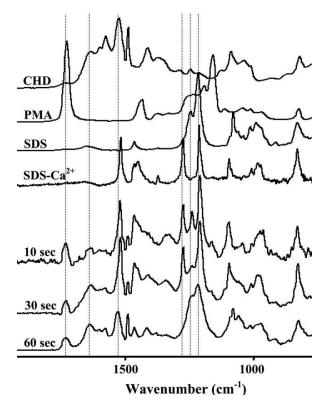


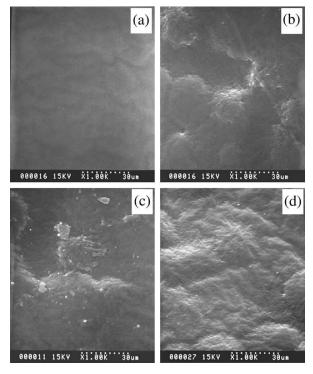
Figure 2 Water contact angles of RVNR film coated with CHD-PMA nanocapsules as a function of dipping time.


3 min of dipping time. After immersing for 3 min, the contact angle approached a constant value, which implies complete coverage of the CHD-PMA nanocapsules on the rubber surface. The low water contact angle confirms the presence of CHD-PMA nanocapsules, whose surface beared lecithin and/or SDS molecules. The present results agree with the values of water contact angle of poly(ether urethane) grafted with lecithin and the gelatin particles stabilized by SDS which were 43° and 50°, respectively. 11,12

The ATR-FTIR spectra of RVNR and CHD-PMA coated-RVNR films are shown in Figure 3 as a function of dipping time.

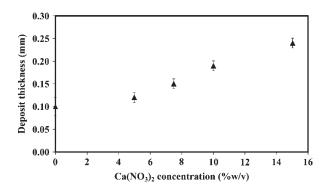
In the spectrum of RVNR, characteristic peaks at 2961, 2922, 2856 (C—H stretching), 1450, 1378 (C—H bending of —CH₃) and 837 cm⁻¹ (C—H deformation of *cis* C=C—H) are seen. In addition, a weak C=O stretching band is observed at 1725 cm⁻¹ due to a trace amount of carbonyl groups generated during vulcanization.¹³ After deposition of PMA nanocapsules, the spectra show an intense C=O stretching mode associated with carbonyl of PMA at 1730 cm⁻¹.¹⁴ The two observable peaks related to CHD

Figure 3 ATR-FTIR spectra of RVNR and CHD-PMA nanocapsules deposited onto the RVNR surface for various dipping times.


Figure 4 ATR-FTIR spectra of CHD, PMA, SDS on RVNR, SDS treated Ca²⁺ on RVNR, and CHD-PMA nanocapsules deposited on RVNR with different dipping times (10, 30, and 60 s) after subtraction of the RVNR spectrum.

appear in the spectrum of nanocapsules deposited onto RVNR sheet, i.e., (1) the broad band at 3450 cm⁻¹, possibly attributable to N—H stretching; and (2) an absorption peak at 1500–1650 cm⁻¹ from C=C stretching of the aromatic moiety in the CHD molecule. The result strongly supports that CHD-PMA nanocapsules are deposited onto the RVNR surface. However, the band characteristics of RVNR is still clearly observed in all samples with dipping times of 10, 30, and 60 s, indicating penetration of the infrared beam through the capsules layer to the RVNR base layer.

Complex vibrational modes in the region of 1600–1000 cm⁻¹ are also observed in the spectra. To investigate the origin of these bands, the RVNR spectrum was subtracted from those of the capsule-coated samples to eliminate the rubber characteristics. These spectra are compared with those of PMA, CHD, SDS, and Ca²⁺-treated SDS in Figure 4. All difference spectra show combinations of band characteristics of PMA at 1730 cm⁻¹, CHD at 1641 and 1530 cm⁻¹, and SDS at 1245 and 1214 cm⁻¹ (asymmetric SO₂ stretching), respectively.¹⁷ An increase in intensities of these vibrational modes as a function of dipping time indicates an increase in the degree of nanocapsules deposition.

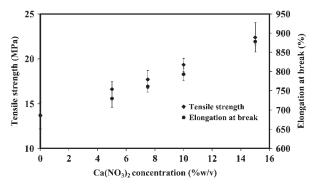

Intriguingly, the spectra show changes in the vibrational modes of sulfate groups of SDS, i.e., two bands are observed at 1245 and 1214 cm⁻¹ in the spectrum of the sample prepared using a dipping time of 60 s. This is similar to those found in the spectrum of the original SDS (neutralized by Ca²⁺cations). However, a new band is found at 1278 cm⁻¹ in the spectra of the samples prepared using dipping times of 10 and 30 s. This band is probably due to sulfate groups bound with Ca²⁺, as also observed in the spectrum of Ca²⁺-treated SDS. The existence of this mode in the samples with dipping times of 10 and 30 s indicates the formation of electrostatic interaction between Ca2+ located at the RVNR surface and SDS molecules on the nanocapsules, which plays a key role in the initial stage of deposition. When the submersion time reaches 60 s, the band disappears, i.e., the interaction has diminished. This is because the nanocapsules are probably fused together and fully cover the RVNR surface, which prevents the formation of such interaction in the later stage of deposition. Nonetheless, the existence of the two lower frequency bands indicates the presence of SDS molecules in the nanocapsules layer.

The SEM micrographs of RVNR sheet and RVNR sheets covered with CHD-PMA nanocapsules as a function of dipping time are displayed in Figure 5.

Figure 5 SEM micrographs of (a) RVNR sheet and RVNR sheets covered with CHD-PMA nanocapsules as a function of dipping time; (b) 30 s, (c) 5 min, and (d) 10 min.

1802 TANPANTREE ET AL.

Figure 6 Effect of Ca(NO₃)₂ concentration on the thickness of RVNR/CHD-PMA nanocapsules (dipping time for 30 s)/RVNR three-layer film.


A flat and smooth surface of the former is observed in Figure 5(a) when compared with the rough surface caused by the deposited CHD-PMA nanocapsules in the latter [Fig. 5(b–d)]. Because of the low glass transition temperature (T_g) of the PMA shell (15°C), the nanocapsules could fuse and form a film at room temperature. ¹⁸ From the micrographs, it can be deduced that the multilayer deposition took place by bridge formation of the nanocapsules to the rubber surface. ¹⁹

Tensile properties and morphology of the three-layer film

Effect of coagulant concentration

The thickness of the RVNR/CHD-PMA nanocapsules/RVNR three-layer film obtained by using various concentrations of Ca(NO₃)₂ coagulant was measured and the data are presented in Figure 6.

The results show that the thickness of the RVNR/CHD-PMA capsules/RVNR three-layer film increased proportional to the Ca(NO₃)₂ concentration. This is because the higher amount of coagulant on the mold caused a higher rate of diffusion of the coagulant

Figure 7 Effect of Ca(NO₃)₂ concentration on tensile strength and elongation at break of the RVNR/CHD-PMA nanocapsules/RVNR three-layer films.

into the latex.^{20,21} Without using coagulant, the three-layer film obtained was not uniform.

Because of the fact that some defects of the multilayer thin film might occur during the dipping process, the mechanical properties of the samples as a function of coagulant concentration were measured. The tensile strength and elongation at break of the three-layer films plotted versus Ca(NO₃)₂ concentrations are presented in Figure 7.

As observed in Figure 7 both tensile strength and elongation at break of the three-layer thin film linearly increase with increasing $Ca(NO_3)_2$ concentration. The high mechanical properties can be interpreted as the result of interparticle crosslinking through the Ca^{2+} and also of the high film thickness as presented in Figure 6.²² On the other hand, the thin film obtained without using $Ca(NO_3)_2$ possessed low tensile strength and elongation at break, possibly due to defects, e.g., pinholes, generated during processing.²¹

Surface morphology

The SEM micrographs in Figure 8 show the surface morphologies of (a) the inner RVNR layer; (b) the

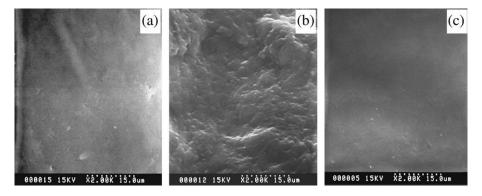


Figure 8 SEM micrographs of the surfaces of (a) inner RVNR layer; (b) RVNR film coat with CHD-PMA nanocapsules (dipping time = 30 s); and (c) the outermost RVNR layer.

RVNR film with CHD-PMA nanocapsules (dipping time = 30 s, using 5% Ca(NO₃)₂ as coagulant), and (c) the outermost RVNR layer.

It is observed in Figure 8(a) that the RVNR inner layer exhibits a rather smooth surface which might be attributed to slippage of the wet deposit formed on the mold. Figure 8(b) shows CHD-PMA nanocapsules deposited onto the inner RVNR layer. The multilayer of CHD-PMA nanocapsules covers the RVNR surface and the capsules are fused together due to the low T_{σ} of the PMA shell. Finally, the outermost layer of RVNR was coated onto the nanocapsules middle layer, producing the three-layer thin film. The homogeneous and smooth surface morphology of the outer RVNR layer in Figure 8(c) confirms the advantage of multidipping where the pinholes running through the whole film, if at all existent, are absent. From the micrographs, it can be deduced that the RVNR/CHD-PMA nanocapsules/ RVNR three-layer thin film has a suitable structure for further development of disinfectant medical glove's production due to the potential release of CHD for neutralization of infectious agents.

CONCLUSIONS

The size, shell thickness, and encapsulation efficiency of CHD-PMA nanocapsules were significantly improved when using a PMA shell with \overline{M}_w of 550 K. The presence of nanocapsules on the RVNR latex sheet was deduced from the low contact angle value and ATR-FTIR spectra. Under SEM, multilayers of nanocapsules deposited onto the rubber with various dipping times were clearly observed. The coagulant dipping method was successfully used for preparation of the RVNR/CHD-PMA nanocapsules/ RVNR three-layer thin film whose thickness and tensile properties increased with increasing concentration of coagulant. From SEM micrographs, it could be deduced that a three-layer structure was obtained, where the outermost and inner layers were RVNR and the active middle layer contained CHD-PMA nanocapsules. This structure was suitable for further development of disinfectant medical glove's preparation for the potential release of CHD for neutralization of the infectious agents carried by needles commonly used in medical practice.

References

- Eklund, A. M.; Ojajärvi, J.; Laitinen, K.; Valtonen, M.; Werkkala, K. A. Ann Thorac Surg 2002, 74, 149.
- 2. Osman, M. O.; Jensen, S. L. World J Surg 1999, 23, 630.
- 3. Busnel, R. G.; Argy, G. U.S. Pat. 5,024,852 (1991).
- 4. Sonntag, P.; Hoerner, P.; Cheymol, A.; Argy, G.; Riess, G.; Rieter, G. Nat Mater 2004, 3, 311.
- Bricout, F.; Moraillon, A.; Sonntag, P.; Hoerner, P.; Blackwelder, W.; Plotkin, S. J Med Virol 2003, 69, 538.
- Paiphansiri, U.; Tangboriboonrat, P.; Landfester, K. Macromol Biosci 2006, 6, 33.
- 7. Paiphansiri, U.; Tangboriboonrat, P.; Landfester, K. Macromol Symp 2007, 251, 54.
- Paiphansiri, U.; Tangboriboonrat, P. J Appl Polym Sci 2009, 112, 769.
- 9. Otsu, T. J Polym Sci Part A: Polym Chem 2000, 38, 2121.
- Zhou, H.; Jiang, J.; Zhang, K. J Polym Sci Part A: Polym Chem 2005, 43, 2567.
- Van Der Heiden, P. A.; Willems, M. G.; Lindhout, T.; Pijpers, A. P.; Koole, H. L. J Biomed Mater Res 1998, 40, 195.
- 12. Vinetsky, Y.; Magdassi, S. Colloid Polym Sci 1998, 276, 395.
- Ratnam, T. C.; Nasir, M.; Baharin, A.; Zaman, K. Polym Int 2000, 49, 1693.
- 14. Chowdhury, P.; Pal, C. M. Eur Polym J 1999, 35, 2207.
- Cortest'es, E. M.; Sinisterra, D. R.; Avilacampos, J. M.; Tortamano, N.; Rocha, G. R. J Inclsion Phenom Macrocycl Chem 2001, 40, 297.
- Suci, A. P.; Geesey, G. G.; Bonnie, J. J Microbiol Methods 2001, 46, 193.
- 17. Socrates, G. Infrared Characteristic Group Frequencies: Tables and Charts; Wiley: New York, 1994.
- 18. Metin, B.; Blum, F. D. J Chem Phys 2006, 124, 054908.
- Elimelechm, M. Particle Deposition and Aggregation: Measurement, Modeling and Simulation; Colloid and Surface Engineering Series; Butterworth-Heiemann: Woburn, MA, 1995.
- Sasidharan, K. K.; Joseph, R.; Rajammal, G.; Pillai, V. P.; Gopalakrishnan, S. K. J Appl Polym Sci 2001, 81, 3141.
- Blackley, D. C. Polymer Latices; Chapman & Hall: London, 1997.
- 22. Zin, W. WBM Radia Phys Chem 1998, 52, 611.

Preparation of Core-Shell Particle of Disinfectant Agent Nanocapsules-Skim Rubber Particles by the Heterocoagulation Technique

Chariya Kaewsaneha and Pramuan Tangboriboonrat*

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand

Duangporn Polpanich

National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phaholyothin Road, Patumthani 12120, Thailand

Srung Smanmoo

Bioresources Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Phaholyothin Road, Patumthani 12120, Thailand

Received March 11, 2010; Revised April 26, 2010; Accepted May 12, 2010

Abstract: Sulphur-prevulcanised skim (SPVS) rubber particles were heterocoagulated on an aggregate of a disinfectant agent (chlorhexidine digluconate; CHD)-poly(methyl acrylate) (PMA) nanocapsules. The CHD-PMA nanocapsule stabilized by lecithin was prepared using the modified nanoprecipitation of PMA from an organic continuous phase onto nanodroplet containing the CHD aqueous solution. Cationic and anionic nanocapsules were produced by separately redispersing the nanocapsules into a water and 0.5% sodium dodecyl sulphate (SDS) aqueous solution, respectively. The largest aggregate, which was obtained from homocoagulation of the CHD-PMA nanocapsules with opposite charges, was selected as a core surrounded with SPVS shell particles. An interpolymer complex between poly(ethylene oxide) (PEO) moieties adsorbed on the aggregate and indigenous surfactant (protein-lipid) and/or SDS on the SPVS particle surface was the driving force for heterocoagulation. Data from the size, zeta potential measurements and TEM images of the heterocoagulated CHD-PMA/SPVS indicated the composite particle containing the CHD-PMA core.

Keywords: heterocoagulation, capsule, composite, skim, nanoparticle.

Introduction

The tri-layer glove consisting of disinfectant agent between two elastomeric layers is desired for minimising the risk of infection that might result from the glove's puncture. ¹⁻³ For loading a disinfectant liquid in between two thin rubber layers, microcapsules comprising an inner core of active agent enveloped by polymer shell are of great interest especially in processing. The liquid-filled capsules dispersed in an aqueous medium can be easily prepared and simply incorporated into rubber films *via* a sequential dipping process.^{3,4} Recently, the well-defined nanocapsules containing disinfectant agent possessing wide spectrum of activity against Gram-positive and Gram-negative bacteria, i.e., chlorhexidine digluconate (CHD) salt, have been prepared employing the controlled nanoprecipitation of poly(methyl acrylate)

(PMA) onto the inverse miniemulsion droplets of CHD aqueous solution. 4-6 The deposition of PMA from the organic phase onto the CHD nanodroplets was achieved by evaporating off the solvent (dichloromethane) from the mixture of solvent/non-solvent (dichloromethane/cyclohexane). Increasing the amount and weight average molecular weight (\overline{M}_w) of PMA, the encapsulation efficiency of the disinfectant agent was significantly increased.⁴ After the redispersion of nanocapsules (\overline{M}_{w} of PMA = 550 K) into 0.5% w/v sodium dodecyl sulphate (SDS) aqueous solution, the maximum remaining amount of CHD in the capsules with an average size of 386 ± 18 nm was found to be as high as 93%. The incorporation of CHD-PMA nanocapsules into the y-radiation vulcanised natural rubber (RVNR) films was achieved by using the coagulant dipping process. The nanocapsules in the middle layer were then coated with another RVNR layer to finally furnish a tri-layer film.

^{*}Corresponding Author. E-mail: scptb@mahidol.ac.th

With the aim to increase the compatibility between disinfectant nanocapsules and sulphur-prevulcanised natural rubber (SPNR) latex film generally used for preparing the gloves, the sulphur-prevulcanised skim (SPVS) particles were applied as the CHD-PMA nanocapsule's shell in the present study. It was reported that after prevulcanisation by sulphur, the skim latex, a by-product obtained from the concentrating process of natural rubber (NR) latex, shows a uniform crosslink in each particle. This would result in the formation of a coherent film with good mechanical properties. The SPVS (average diameter 134 nm) was, therefore, used as agglomerating latex in the heterocoagulation process for the preparation of composite particle containing NR core (average diameter 750 nm). This process involves agglomeration, mainly based on neutralisation, of smaller particles onto a larger particle of another polymer. Coreshell particles are obtained by heating the system at temper-

ature above the glass transition temperature (T_{o}) of smaller particles. Different types of monomer pairs, even in the case of hydrophilic core and hydrophobic shell, and polymerinorganic colloids having electronic, optics and electrochromic properties can be prepared by using this process. 8-12 The main factors controlling the core-shell particle are: i) the optimum number of smaller particles covering a larger core particle for shell formation, ii) a large contrast between the charges of larger and smaller particles provides a strong driving force to counter balance the repulsion between the similarly charged particles and, iii) the relationship of polymer surface energies of core and shell polymer particles expressed by Young's equation. 12 However, an interpolymer complex principle based on the interaction between poly(ethylene oxide) (PEO) of a nonionic surfactant (Nonidet) adsorbed on the SPVS particles and indigenous surfactant (protein-lipid) on the NR particle was also successfully

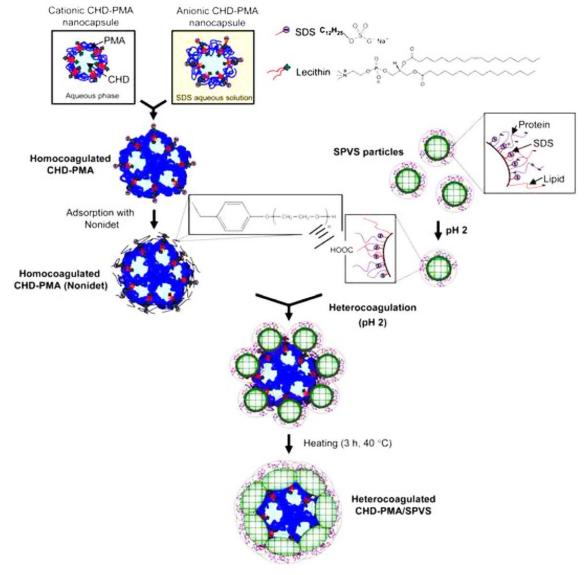


Figure 1. Schematic of the preparation of heterocoagulated CHD-PMA/SPVS.

applied to prepare the heterocoagulated NR/SPVS. Results from the zeta potential measurement and toluene-resistance of the film casted from the composite latex compared with the NR film indicated the existence of SPVS at the outer layer. The heterocoagulation technique was applied for the preparation of core-shell of CHD-PMA/SPVS particle in this work. Since the size of CHD-PMA nanocapsule was similar to that of SPVS particle, the aggregate CHD-PMA nanocapsules were first prepared for further used as a core in the heterocoagulation process. Besides providing the large core size, the volume fraction of CHD in the composite CHD-PMA/SPVS particle would be increased without CHD droplet coalescence. In the process, the CHD-PMA nanocapsules, stabilised by lecithin, in cyclohexane were separately redispersed into an aqueous phase and 0.5% SDS aqueous solution to obtain the cationic and anionic nanocapsules, respectively. These two types of nanocapsules were then homocoagulated to form a large aggregate which was used as a core particle in the subsequent step. Since both the aggregate core and SPVS shell particles possessed negative charges, a nonionic surfactant (Nonidet) bearing PEO moieties was adsorbed onto the anionic aggregate and formed the complex with protein-lipid and/or SDS on the SPVS particle surface. The overall procedure is schematically presented in Figure 1. The zeta potential, size and morphology of composite particles were investigated.

Experimental

Materials. Skim latex (Pan Asia Bio Tech Co., Thailand) was prevulcanised by using sulphur (S; EMCO Intertrad Co.), zinc diethyldithiocarbamate (ZDEC; EMCO Intertrad Co.) and zinc oxide (ZnO; Global Chemical Co.) as described elsewhere. Particle size and zeta potential of skim and SPVS latices were measured by using a dynamic light scattering (DLS) apparatus and a microelectrophoresis (Malvern, Zetasizer Nano ZS). The morphology of the particles mounted on a carbon-coated copper grid was studied by TEM (JEOL, JEM-2010).

Methyl acrylate (Fluka, Purum) monomer was purified by passing through a column packed with neutral and basic aluminium oxide (Fluka, Purum). Potassium hydroxide (Merck), sodium dodecyl sulphate (SDS; Fluka), acetone (Lab-scan), hydrochloric acid (Merck), sodium hydroxide (Lab-scan), chlorhexidine digluconate (20% in water, Sigma), potassium persulfate (KPS; Fluka), soybean phosphatidylcholine or lecithin (MP Biochemical), dichloromethane (Lab-scan), cyclohexane (Lab-scan), ethanol (Fluka), methanol (Lab-scan), hexadecane (Fluka), tetrahydrofuran (Lab-scan) and pyrazine (Merck) were used as received.

Preparation of CHD-PMA Nanocapsules. PMA was synthesised *via* the miniemulsion polymerisation process as previously described.⁵ The weight average molecular weight (\overline{M}_w) of PMA was determined by a gel permeation chro-

Table I. The Formulation Used for Preparation of CHD-PMA Nanocapsules

Ingredients	Amount	
PMA Lecithin Dichloromethane Cyclohexane CHD solution	0.15 g 0.10 g 12.0 mL 12.0 mL 0.5 mL	

matography (Waters/600/2414/600 equipped with refractive index detector).

CHD-PMA nanocapsules (\overline{M}_w of PMA = 250 K) were prepared by using the modified nanoprecipitation technique as described elsewhere.⁴⁻⁶ The formulation used for preparation of CHD-PMA nanocapsules is shown in Table I.

For determination of the encapsulation efficiency, the nanocapsules were separated by centrifugation at 1,4000 rpm for 40 min and were carefully dried at room temperature before dissolving in a mixture of THF and ethanol. Deuterated water and a known amount of pyrazine were applied as an external solvent and a calibration product for the quantitative analysis of the encapsulation efficiency by ¹H NMR (Bruker, DRX 400).

Encapsulation efficiency (%) =

Mass of CHD in nanocapsules
Mass of CHD in formulation ×100

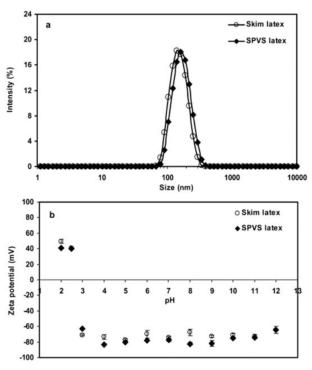
Mass of CHD in nanocapsules was calculated from the area ratio of peaks at 7.66 to 9.07 ppm corresponding to aromatic-protons of the CHD and pyrazine respectively.⁵

Preparation of CHD-PMA/SPVS Core-Shell Particle. To obtain cationic and anionic nanocapsules, the CHD-PMA nanocapsules in cyclohexane were, separately, redispersed in deionised water and 0.5% w/v SDS aqueous solution (1:1), respectively. After evaporation of the cyclohexane by using a rotary evaporator (Buchi, Rotavapor R200) at 40 °C for 15 min, the nanocapsules suspended in deionised water and in SDS aqueous solution were obtained. The nanocapsules with opposite charges were then mixed in an Erlenmeyer flask under stirring for 10 min at room temperature. The weight ratios of cationic to anionic nanocapsules were varied from 90:10 to 10:90. The size and zeta potential of aggregate were examined and the morphology was investigated under TEM.

The homocoagulated CHD-PMA at the weight ratio of cationic to anionic nanocapsules of 40:60 was selected for use as the core of CHD-PMA/SPVS composite particle. Nonidet (10% by weight of dried nanocapsules) was first added into the aggregate before shaking (IKA, VIBRAX VXR basic) for 24 h. The amount of adsorbed Nonidet was deduced from the quantity of an aqueous solution of 0.5 M CaCl₂ added to provoke the visible coagula.⁷ A known amount of 1% homocoagulated CHD-PMA (Nonidet) was

mixed with 1% SPVS latex at pH 2 in an Erlenmeyer flask at room temperature. The blending ratio was calculated from the theoretical number (N_{max}) of the shell particles required to form a closely packed particulate monolayer on a core particle from the following equation.^{7-9,12}

$$N_{max} = \frac{2\pi}{\sqrt{3}} \left[\frac{R_c + R_s}{R_s} \right]^2$$


where R_c and R_s are the radii of core and shell particles, respectively. The ratios of the homocoagulated CHD-PMA (Nonidet) core to SPVS shell particles in the blends were varied from N_{max} , N_{max} /2, N_{max} /4 to N_{max} /8.

The size, zeta potential and morphology of the CHD-PMA/SPVS composite latex particle were examined.

Results and Discussion

General Characteristics of the Latex. Prior to using SPVS as agglomerating particles for the preparation of CHD-PMA/SPVS composite particle, the size, zeta potential, degree of crosslink and morphology of SPVS particles were investigated. The size distribution curves of skim and SPVS latices, measured by using the DLS technique, are shown in Figure 2(a).

Results showed that both skim and SPVS latices exhibited a unimodal size distribution. The average particle size of skim was 148 ± 2 nm which was in good agreement with the previous data obtained from the photon correlation spec-

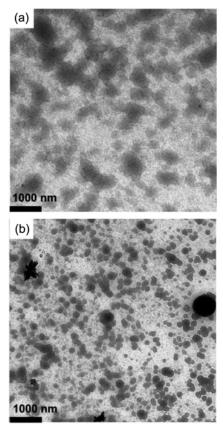
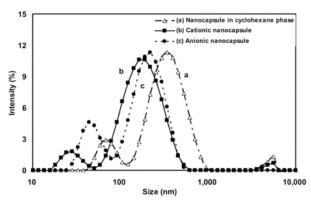


Figure 2. Characteristics of skim and SPVS latex particles (a) size distributions and (b) zeta potentials versus pH.


troscopy (124 nm) and AFM images (200 nm). 13,14 For SPVS, its average particle size was found to be 164 ± 2 nm. The shift in the size distribution curve of SPVS from the skim latex was only marginal which possibly resulted from the SDS added during the prevulcanisation. It was reported that the addition of SDS in NR latex enhanced the mechanical and chemical stabilities of the latex by rearranging the indigenous soaps and making them more effective as stabilisers. 15,16 By considering the particle charge as a factor affecting the movement of the particle through a fluid, the more highly charged particles would move slower than those of the lower charge.¹⁷ Based on the DLS technique, when a light photon hits a moving particle, the frequency of the scattered light will be different from the incident frequency, depending on whether the particle is moving towards or away from the observer. From the extent of this Doppler broadening, the diffusion coefficient (D) and the mean radius of particle (r) can be determined from D = kT/r $6\pi\eta r$ where k is Boltzmann constant, T is temperature and η is viscosity of fluid medium. 18 This principle supported the fact that the size of higher charged SPVS particles was slightly larger than that of lower charge skim particles. The explanation was confirmed by the zeta potentials determined at various pHs as shown in Figure 2(b). The results indicated the amphoteric characteristic of skim and SPVS particles with an isoelectric point (pI) at about pH 2.8. The particles possessed positive charge when the pH was below 2.8 and rapidly changed to negative above this pH. This amphotericity confirmed the presence of amino acids on the rubber particle surface. However, the pI value was lower than that of normal proteins (4.0-6.0) which can be explained that, in addition to proteins, fatty acids are also present on the particle surface as generally observed in NR latex.7,19 Results showed that the absolute value of zeta potential of SPVS was insignificantly higher than that of the skim latex. The similar effective charge on both types of particles might be responsible for the equal velocity of these colloidal particles in an electric field.

TEM micrographs of an air-dried skim and SPVS latex particles prevulcanised for 5 h are shown in Figures 3(a) and (b), respectively.

A clear-cut boundary or the contour of the SPVS particle in Figure 3(b) as compared to that of the skim particle in Figure 3(a) was clearly observed. Due to the fact that the diluted latices were dropped and then dried on a copper grid in the sample preparation step, the harder SPVS particle, in which chemical crosslinking of rubber chains takes place internally, would restrict the chain mobility and retain its shape. In contrast, the particle contours of non-crosslinked skim particles disappeared, resulting in blurred spots.²⁰ The result also agreed with the internal morphology of prevulcanised latex particles examined by the phase transfer/bulk polymerisation/TEM technique which revealed the uniform crosslink structure of SPVS particles.⁷

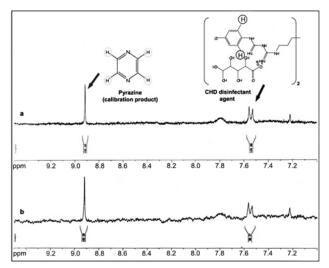


Figure 3. TEM micrographs of (a) skim and (b) SPVS latex particles prevulcanised for 5 h (%swelling ratio = 220).

Figure 4. Size distributions of CHD-PMA nanocapsules in (a) cyclohexane phase, (b) aqueous phase (cationic nanocapsule), and (c) 0.5% w/v SDS solution (anionic nanocapsule).

Analysis of CHD-PMA Nanocapsules. The CHD-PMA nanocapsules dispersed in cyclohexane were prepared by the modified nanoprecipitation of PMA ($\overline{M}_w = 250$ K) onto nanodroplets consisting of CHD aqueous solution. The nanocapsules suspended in cyclohexane were then redispersed in an aqueous phase and in 0.5% w/v SDS aqueous solution to produce cationic and anionic nanocapsules, respectively. The size distribution curves are presented in Figure 4.

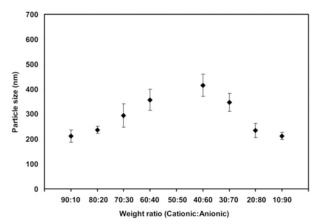


Figure 5. ¹H NMR spectra used for determination of the encapsulation efficiency of nanocapsules suspended in (a) cyclohexane and (b) aqueous phase.

Results showed that the average size of CHD-PMA nanocapsules in cyclohexane was 390 ± 1 nm. After the redispersion into an aqueous phase, their average size decreased to 190 ± 2 nm. The remaining amount of the CHD in nanocapsules suspended in cyclohexane and those in redispersed nanocapsules were 100 and 86% respectively. This was due to the diffusion of CHD caused by an osmotic pressure difference between the internal nanocapsule and the continuous phase. ²¹ The ¹H NMR spectra used for determination of the encapsulation efficiency in both cases are shown in Figure 5.

In addition, the average size of the nanocapsules in SDS aqueous solution (anionic nanocapules) was slightly larger $(220 \pm 2 \text{ nm})$ than those redispersed in the aqueous phase (cationic nanocapsules). This might be due to the rearrangement of lecithin on the nanocapsule's surface as previously proposed.⁶ In an aqueous medium, lecithin rearranged by turning its hydrophilic positive head groups towards the continuous phase. 6,22 The zeta potential of +82 mV measured directly as prepared (pH 5.1) confirmed the role of choline [N⁺(CH₃)₃] moieties of lecithin on the nanocapsules. On the contrary, the nanocapsules suspended in the SDS aqueous solution exhibited the negative charge with the zeta potential of -92 mV at the prepared pH (pH 4.7). This was caused by the adsorption of an alkyl chain of SDS onto the hydrophobic part of lecithin without turning the positively charged choline moieties to the top layer.^{23,24} The repulsion of anionic nanocapsules resulted in the expansion of their size.

Homocoagulation of CHD-PMA Nanocapsules. Before preparing CHD-PMA/SPVS core-shell particle, the size of core was increased by homocoagulation of CHD-PMA nanocapsules. At pH of about 4-5, the difference of zeta potential values between the cationic and anionic nanocapsules was at maximum, the nanocapsules having oppositely

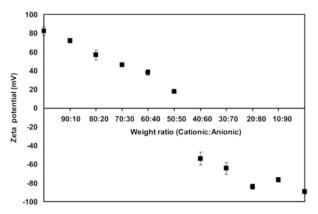
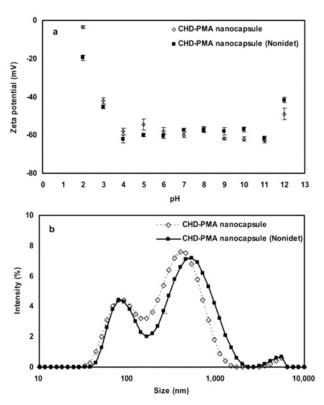


Figure 6. Sizes of homocoagulated CHD-PMA nanocapsules at weight ratios of cationic:anionic varying from 90:10 to 10:90.

charges would effectively form an aggregate at this pH. The sizes of homocoagulated CHD-PMA or aggregates at various blending ratios are presented in Figure 6.


Results showed that the size of homocoagulated CHD-PMA increased with the increasing amount of anionic nanocapsules from 10 to 60%. The largest aggregate with the average size of 415 ± 44 nm was obtained when the weight ratio of cationic:anionic nanocapsules was 40:60. It was noticed that the aggregate was not stable at the weight ratio of 50:50 which correlated well with its zeta potential value of less than +30 mV as shown in Figure 7.

Data in Figure 7 also indicated that the stable homocoagulated CHD-PMA from the weight ratio of 100:0 to 60:40 exhibited the positive character caused by lecithin. The absolute value of zeta potential decreased with the increasing amount of anionic nanocapsules due to partial neutralisation. Obviously, the zeta potentials of aggregates having a high ratio of anionic nanocapsules turned to be negative. The zeta potential of the largest aggregate prepared at the weight ratio of cationic to anionic nanocapsules of 40:60 was -54 mV.

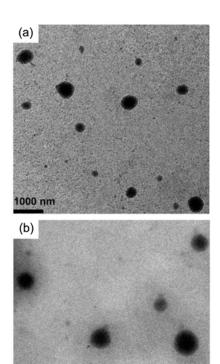


Figure 7. Zeta potentials of homocoagulated CHD-PMA nanocapsules at various weight ratios of cationic:anionic varying from 90:10 to 10:90.

Heterocoagulation of CHD-PMA/SPVS Particles. For preparation of CHD-PMA/SPVS core-shell particle using the heterocoagulation technique, the largest size of homocoagulated CHD-PMA prepared at the weight ratio of 40:60 was selected as a core. Since both the aggregate core and SPVS shell particles possessed negative charges, the driving force for the interaction between core and shell particles could not be electrostatically controlled. An interpolymer complex principle previously applied to prepare the heterocoagulated NR/polychloroprene (CR) and NR/SPVS particles with core-shell structure was, therefore, applied.^{7,8} The anionic homocoagulated CHD-PMA was covered with the Nonidet having PEO moieties which then formed a complex with protein-lipid and/or SDS on the SPVS particle surface. The adsorption of Nonidet onto the homocoagulated nanocapsules was examined by the addition of an aqueous solution of 0.5 M CaCl₂. It was found that the volume of 0.5 M CaCl₂ required for coagulating the homocoagulated nanocapsules was increased with increasing Nonidet concentration. By using Nonidet less than 10% by weight of dry nanocapsules, the homocoagulated nanocapsules were immediately coagulated. After adding CaCl₂ aqueous solution, they remained stable at minimum Nonidet concentration of 10%. The change of stabilisation from electrostatic to steric effect was, therefore, achieved at 10 % of Nonidet. Since the zeta potential directly determines the effective charge of particles or the electrostatic potential at

Figure 8. Homocoagulated CHD-PMA nanocapsules and those adsorbed with Nonidet (a) zeta potentials and (b) size distributions.

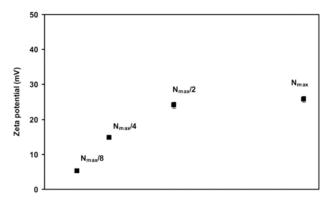
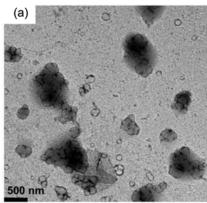


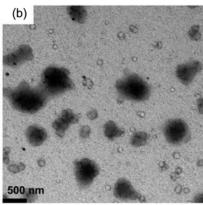
Figure 9. TEM micrographs of (a) homocoagulated CHD-PMA and (b) homocoagulated CHD-PMA (Nonidet) nanocapsules.

1000 nm

shear plane of electrical double layer, the zeta potential of the homocoagulated CHD-PMA (Nonidet) was not significantly different from that of the original anionic nanocapsules (Figure 8(a)). However, the hydrophilic PEO moieties of Nonidet on the aggregate oriented towards the dispersion medium. Hence, the amount of absorbed water or the hydrated layer around the aggregate increased. The boundary between the homocoagulated nanocapsules surface and the surrounding fluid was, therefore, shifted. Because the hydrated PEO moved with the aggregate, the extent of the Doppler broadening and the diffusion coefficient, therefore, decreased. This resulted in an increase in their hydrodynamic volume as observed in Figure 8(b). The TEM micrographs in Figure 9 supported this explanation.

Figure 9 showed that the homocoagulated CHD-PMA, before and after adsorption with Nonidet, possessed the spherical shape. The low T_g of PMA shell (10 °C) facilitated the nanocapsules fusion or the formation of aggregate. The homocoagulated nanocapsules coated with Nonidet in Figure 9(b) confirmed the increase of aggregate's size possibly from the existence of PEO. The PEO chains on the homocoagulated CHD-PMA (Nonidet) core were allowed to form the complex via hydrogen bonding, at pH 2, with carboxylic groups of the protein-lipid molecules residing on the SPVS shell particles. The zeta potentials of the heterocoagulated particles at various blending ratios (N_{max} , N_{max} /2, N_{max} /4, and




Figure 10. Zeta potentials of heterocoagulated CHD-PMA (Nonidet)/SPVS particles at various blending ratios.

 $N_{max}/8$) were measured and the data are shown in Figure 10. It was observed that the zeta potentials of all blends were positive and reached the maximum value at +25.7 mV at N_{max} . This value was vastly different from that of the core CHD-PMA (Nonidet) (-19.6 mV) but approached the zeta potential of the shell SPVS particles (+40.8 mV). The data confirmed the presence of SPVS as the outer layer of the composite particles as observed in the heterocoagulation of NR/SPVS. Besides the interpolymer complex between Nonidet and the protein-lipid, the heterocoagulation between homocoagulated CHD-PMA (Nonidet) and SPVS could be driven by the complex formation of PEO and SDS on SPVS particle surface. 26,27 It was reported that the micelle of SDS molecules with a smaller aggregation number than normal was bound to the PEO coil.27 This leads to the PEO-SDS complex that behaves like a polyelectrolyte as supported by evidences from an increase in viscosity, a decrease in the surface tension and partial special volume.

The morphology of homocoagulated CHD-PMA (Nonidet)/SPVS particles was then investigated by TEM. The micrographs of heterocoagulated CHD-PMA/SPVS particles prepared at N_{max} before and after heating for 3 h at 40 °C are shown in Figure 11.

The image in Figure 11(a) revealed that the composite particles having a raspberry-like morphology consisted of SPVS particles (light) surrounding the homocoagulated CHD-PMA (Nonidet) core (dark). The size of composite particles determined by TEM was similar to that determined by light scattering (712 ± 7 nm) although some SPVS particles could not adsorb onto the aggregate CHD-PMA. Each individual SPVS particle showed a clear-cut edge due to its high crosslink density which might prevent the interdiffusion of polyisoprene as already mentioned. Consequently, raising the temperature to 40 °C for 3 h, the SPVS particles in Figure 11(b) were partially fused to provide the aggregate CHD-PMA/SPVS core-shell-like particle. Similar to the heterocoagulation of large polypyrrole particles with small polyacrylate particles, the long period and the relatively high temperature of heat processing needed for complete

Figure 11. TEM micrographs of heterocoagulated CHD-PMA/SPVS particles prepared at N_{max} (a) before and (b) after heating for 3 h at 40 °C.

spreading of small particles (low T_g) for shell formation were not anticipated.¹² It was also believed that the difficulty in spreading of the SPVS particles on the core surface was due to the high interfacial tension and the presence of water as mentioned above. The coherent film of the outer SPVS shell would be miscible with the SPNR film used as the substrate for further gloves' preparation.

Conclusions

The small SPVS shell particles were heterocoagulated onto a large aggregate CHD-PMA core prepared from homocoagulation of CHD-PMA nanocapsules having opposite charges. The driving force of the CHD-PMA/SPVS composite particle's formation was an interpolymer complex between PEO adsorbed on the aggregate and carboxylic groups derived from indigenous surfactant (proteinlipid) and/or SDS on the SPVS particle surface. Data from size, zeta potential measurements and TEM of the composite particles indicated the CHD-PMA core enveloped by SPVS particles structure. The coherent film of SPVS would be miscible with the substrate when deposits the CHD-PMA/SPVS composite particles onto the SVNR film which would be suitable for further preparation of medical gloves.

Acknowledgements. Research grant (RTA5180003) from The Thailand Research Fund/Commission on Higher Education is gratefully acknowledged.

References

- (1) R. G. Busnel and G. Argy, US. Patent 5024852 (1991).
- (2) R. Jorda, P. Autant, and R. René, US. Patent 5585050 (1996).
- (3) P. Sonntag, P. Hoerner, A. Cheymol, G. Argy, G. Riess, and G. Rieter, *Nat. Mater.*, **3**, 311 (2004).
- (4) S. Tanpantree, P. Opaprakasit, S. Loykulnant, W. Kangwansupamonkon, and P. Tangboriboonrat, *J. Appl. Polym. Sci.*, **117**, 1798 (2010).
- (5) U. Paiphansiri, P. Tangboriboonrat, and K. Landfester, *Macromol. Biosci.*, 6, 33 (2006).
- (6) U. Paiphansiri and P. Tangboriboonrat, J. Appl. Polym. Sci., 112, 769 (2009).
- (7) U. Paiphansiri and P. Tangboriboonrat, Colloid Polym. Sci., 284, 251 (2005).
- (8) P. Tangboriboonrat and U. Buranabunya, *Colloid Polym. Sci.*, **279**, 615 (2001).
- (9) R. H. Ottewill, A. B. Schofield, J. A. Waters, and N. St. J. Williams, *Colloid Polym. Sci.*, 275, 274 (1997).
- (10) M. Okubo and Y. Lu, Colloid Surf. A, 109, 49 (1996).
- (11) J. Wang and X. Yang, Colloid Polym. Sci., 286, 283 (2008).
- (12) H. Li and E. Kumacheva, Colloid Polym. Sci., 281, 1 (2003).
- (13) P. Tangboriboonrat, T. Tanunchai, and C. Tiyapiboonchiya, Plast. Rubber Compos., 28, 357 (1999).
- (14) M. M. Rippel, L. T. Lee, C. A. P. Leite, and F. Galembeck, J. Colloid Interf. Sci., 268, 330 (2003).
- (15) P. Tangboriboonrat and C. Lerthititrakul, Colloid Polym. Sci., 280, 1097 (2002).
- (16) D. C. Blackley, A. A. Nor Aisah, and R. Twaits, *Plast. Rubber Mater. Appl.*, **4**, 77 (1979).
- (17) D. J. Shaw, Introduction to colloid and surface chemistry, 3rd edn., Butterworth & Co (Publishers) Ltd, Boston, 1980, pp 19-43.
- (18) R. J. Hunter, Introduction to modern colloid science, 1st edn., Oxford Univ. Press, New York, 1993, pp 32-56.
- (19) C. C. Ho, T. Kondo, N. Muramatsu, and H. Ohshima, J. Colloid Interf. Sci., 178, 442 (1996).
- (20) S. Winsunthorn, F. Bonfils, C. Pochat-Bohatier, D. Bouyer, A. Deratani, and C. Dupuy, J. Appl. Polym. Sci., 108, 960 (2008).
- (21) K. Landfester, N. Bechthold, F. Tiarks, and M. Antonietti, Macromolecules, 32, 5222 (1999).
- (22) S. J. Ryhänen, J. M. I. Alakoskela, and P. K. J. Kinnunen, *Langmuir*, **21**, 5707 (2005).
- (23) N. Deo and P. Somasundaran, *Colloid Surf. A*, **186**, 33 (2001).
- (24) L. Kong, J. K. Beattie, and R. J. Hunter, *Colloid Surf. B*, 27, 11 (2003).
- (25) A. Martín-Rodríguez, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, J. Colloid Interf. Sci., 187, 139 (1997).
- (26) W. Brown, J. Fundin, and M. da Graça Miguel, *Macromole-cules*, 25, 7192 (1992).
- (27) K. Contractor and P. Bahadur, Eur. Polym. J., 34, 225 (1998).

This article was downloaded by: [Tearle, Jacqueline][informa internal users]

On: 8 December 2010

Access details: Access Details: [subscription number 755239602]

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymer Analysis and Characterization

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646643

Composite Particles of Disinfectant Nanocapsules-Skim Rubber Latex

Chariya Kaewsaneha³; Pakorn Opaprakasit¹; Duangporn Polpanich°; Srung Smanmoo⁴; Pramuan Tangboriboonrat³

^a Faculty of Science, Department of Chemistry, Mahidol University, Bangkok, Thailand ^b School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand ^c National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand ^d Bioresources Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand

Online publication date: 19 November 2010

To cite this Article Kaewsaneha, Chariya , Opaprakasit, Pakorn , Polpanich, Duangporn , Smanmoo, Srung and Tangboriboonrat, Pramuan(2010) 'Composite Particles of Disinfectant Nanocapsules-Skim Rubber Latex', International Journal of Polymer Analysis and Characterization, 15: 8, 524-535

To link to this Article: DOI: 10.1080/1023666X.2010.521294 URL: http://dx.doi.org/10.1080/1023666X.2010.521294

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

International Journal of Polymer Anal. Charact., 15: 524-535, 2010

Copyright © Taylor & Francis Group, LLC

ISSN: 1023-666X print

DOI: 10.1080/1023666X.2010.521294

COMPOSITE PARTICLES OF DISINFECTANT NANOCAPSULES-SKIM RUBBER LATEX

Chariya Kaewsaneha, Pakorn Opaprakasit, Duangporn Polpanich, Srung Smanmoo, and Pramuan Tangboriboonrat

¹Faculty of Science, Department of Chemistry, Mahidol University, Bangkok, Thailand

²School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand

³National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand

⁴Bioresources Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand

Skim latex, a by-product of natural rubber latex, was prevulcanized by sulfur and then used in the preparation of composite particles with disinfectant nanocapsules. Each polymeric nanocapsule contained chlorhexidine digluconate (CHD) as a disinfectant agent encapsulated with poly(methyl acrylate) (PMA) as a shell. The driving force for the heterocoagulation of CHD-PMA nanocapsule and sulfur-prevulcanized skim (SPVS) particle was the electrostatic interaction between the positive charge of lecithin residing on the surface of the nanocapsule and the negative charge from the indigenous surfactant (protein-lipid) and/or from sodium dodecyl sulfate on the surface of the SPVS latex particle. The zeta potential and morphology of heterocoagulated particles indicated the formation of the CHD-PMA/SPVS composite particles. Structures and formation mechanisms of the composite particles with different blend ratios were revealed by depth profiling confocal Raman spectra.

Keywords: Composites; Core-shell polymers; Nanoparticle; Rubber; Surfactants

INTRODUCTION

Skim latex, a by-product obtained from the concentrating process of natural rubber (NR) latex, contains small rubber particles (\sim 5% dry rubber content) with high molecular weight of 10^6 g/mol.^[1,2] This latex has been used for encapsulating urea fertilizer in a controlled-release application due to the large amount of

Submitted 7 August 2010; accepted 20 August 2010.

Research grant (RTA5180003) from The Thailand Research Fund/Commission on Higher Education is gratefully acknowledged. The authors thank Mr. Alongkot Treetong (NANOTEC) for helpful assistance on Raman experiments.

Correspondence: Pramuan Tangboriboonrat, Faculty of Science, Department of Chemistry, Mahidol University, Rama 6 Rd., Phyathai, Bangkok 10400, Thailand. E-mail: scptb@mahidol.ac.th

nonrubber substances, including proteins. [3] Similar to the case of NR latex, the prevulcanization or initial cross-linking within the rubber particle is the minimum requirement for skim rubber modification. Drying of the prevulcanized latex produces a cross-linked film without any need of further vulcanization. The physical properties of the final product can be controlled by the design of cross-linking in latex particles. [4,5] A coherent film would be achieved when each latex particle is homogeneously cross-linked. The uniform mesh structure of all sulfur-prevulcanized skim (SPVS) particles observed under transmission electron microscopy (TEM) might also be the reason for the preferred sulfur prevulcanization. [2]

Because of the small particle size (120–200 nm) and homogeneous cross-linked structure, SPVS was previously used as an agglomerating latex in the preparation of composite particles containing NR core (750 nm) by the heterocoagulation process. ^[2] This technique offers a good possibility for controlling the morphology of composite latex particles, particularly the core-shell type, e.g., polypyrrole/polyacrylic and poly(styrene-co-butadiene)/poly(butyl acrylate). ^[6,7] The interaction between the core and agglomerating particles is governed by electrostatic, hydrophobic, or hydrogen interactions. ^[6,8,9] However, the interpolymer complex based on the interaction between poly(ethylene oxide) adsorbed on SPVS particles and indigenous surfactant (protein-lipid) on the NR particle was employed in the preparation of heterocoagulated NR/SPVS. ^[2] Because of the skim's low glass transition temperature (-70°C), the NR/SPVS core-shell particles could be obtained without annealing the composite particles at high temperature.

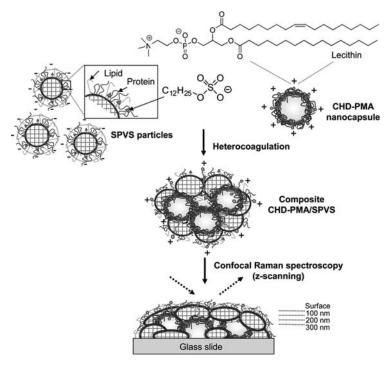


Figure 1. Schematic of the preparation and characterization of composite CHD-PMA/SPVS.

The aim of the present study was to explore potential use of SPVS in entrapment of chlorhexidine digluconate-poly(methyl acrylate) (CHD-PMA) nanocapsules. The SPVS film with good physical properties is expected to be miscible with the substrate when the composite particles are deposited onto a sulfur-prevulcanized NR film for further preparation of disinfectant gloves, desired for minimizing the risk of infection from glove puncture. The CHD-PMA/SPVS composite particles were produced by the heterocoagulation technique based on the electrostatic interaction between negative charges derived from indigenous surfactant and SDS on SPVS and cationic charges of lecithin on CHD-PMA nanocapsules. For the first time, structures and formation mechanisms of the composite particles obtained from different CHD-PMA/SPVS blend ratios were characterized by depth profile analysis employing confocal Raman spectroscopy, which is a powerful technique for depth profiling of materials, especially coatings, membranes, and composite materials. The overall procedure is schematically presented in Figure 1.

EXPERIMENTAL SECTION

Materials

Methyl acrylate (Fluka, Purum) monomer was purified by passing through a column packed with neutral and basic aluminium oxide (Fluka, Purum). Sulfur (S; Emco Intertrade Co.), zinc diethyldithiocarbamate (ZDEC; Emco Intertrade Co.), zinc oxide (ZnO; Global Chemical Co.), potassium hydroxide (Merck), sodium dodecyl sulfate (SDS; Fluka), acetone (Lab-scan), hydrochloric acid (Merck), sodium hydroxide (Lab-scan), chlorhexidine digluconate (20% in water, Sigma), potassium persulfate (KPS; Fluka), soybean phosphatidylcholine or lecithin (MP Biochemical), dichloromethane (Lab-scan), cyclohexane (Lab-scan), ethanol (Fluka), methanol (Lab-scan), hexadecane (Fluka), tetrahydrofuran (Lab-scan), and pyrazine (Merck) were used without further purification. Deionized water was used throughout the experiments.

Latex and Characterizations

Total solid content (%TSC) of skim latex (Pan Asia Bio Tech Co., Thailand) was determined using the method described in ASTM D1076:1988. Acetone was used as a rubber coagulant for determination of dry rubber content.^[3]

The preparation of SPVS latex and the determination of swelling ratio of latex film were carried out as described elsewhere. [2,14] Vulcanizing ingredients, i.e., S, ZDEC, and ZnO powders, were prepared as 50% aqueous dispersion by ball milling for at least 72 h. The formula used for the preparation of SPVS latex is shown in Table I.

The particle sizes of skim and SPVS lattices were measured by a particle size analyzer (Malvern, Zetasizer Nano ZS). Their zeta potential values were determined using laser Doppler electrophoresis apparatus (Malvern, Zetasizer Nano ZS) at 25°C after adjusting pH by the addition of 0.01 M of HCl or NaOH. Polystyrene latex with known particle size and zeta potential was used as standard for calibration. For the morphological study of skim and SPVS particles, the diluted latex was dried