จากการศึกษาการปรับปรุงกุณภาพของผลิตภัณฑ์ประมงโดยเน้นศึกษาเกี่ยวกับซูริมิและเจลซูริมิ ของปลาผิวน้ำซึ่งมีเนื้อคำสูง เช่น ปลาแมกเกอเรลหลายชนิด ที่จับในภาคใต้ของประเทศไทย พบว่า ซูริมิจากปลาดังกล่าวสามารถมีความแข็งแรงเจลเพิ่มขึ้นโดยการผสมกับซู ริมิจากปลาเนื้อขาว เช่น ปลาจวด หรือการใช้กระบวนการละลายด้วยค่างในการผลิตซูริมิ นอกจากนี้การปรับปรุงเจลซูริมิสามารถกระทำได้ โดยการใช้สารประกอบฟินอลิกที่ผ่านกระบวนการออกซิเดชัน โดยเฉพาะกรดแทนนิก ซึ่งได้จากทางการค้าและจากสารสกัดจากธรรมชาติ โดยเฉพาะไม้เกี่ยม กรดแทนนิกที่ผ่านกระบวนการออกซิเดชัน สามารถเหนี่ยวนำให้เกิดการเชื่อมประสานโปรตีนกล้ามเนื้อในซูริมิ ส่งผลให้ โครงข่ายเจลมีความแข็งแรงเพิ่มขึ้น

สำหรับการศึกษาการใช้ประโยชน์จากวัสดุเสษเหลือการแปรรูปสัตว์น้ำ เช่น เครื่องใน หนัง เป็นต้น โดยได้สกัดโปรตีเอสและ จำแนกกุณลักษณะของโปรตีเอสจากเครื่องในปลาชนิดต่างๆ ซึ่งประกอบด้วย เปปซิน ทริปซิน โดยเปปซินสามารถใช้ในการย่อยโปรตีนเพื่อ ผลิตโปรตีนไฮโดร ไลเสตจากเนื้อปลา ส่วนทริปซินใช้ผลิตไฮโดร ไลเสตจากเนื้อปลาและเจลาติน ซึ่งมีฤทธิ์ทางชีวภาพ เช่นฤทธิ์ต้านอนุมูล อิสระ และฤทธิ์ยับยั้งเอนไซม์ ACEโดยเฉพาะเมื่อใช้ร่วมกับโปรตีเอสจากจุลินทรีย์ทางการค้าภายใต้สภาวะที่เหมาะสม นอกจากนี้มี การศึกษาเกี่ยวกับโปรตีเอสจากพืช เช่น ยางต้นรัก และสารยับยั้งโปรตีเอสจากเมล็ดถั่วต่างๆ เพื่อเป็นแนวทางพัฒนาการใช้ประโยชน์สำหรับ การแปรรูปสัตว์น้ำ โดยได้มีการแยกส่วนโปรตีเอสและสารยับยั้งโปรตีเอสโดยใช้ระบบ Aqueous two-phase และ three-phase

จากการพัฒนากระบวนการสกัดคอลลาเจนและเจลาตินจากหนังปลา โดยใช้เปปซินจากปลาเพื่อเพิ่มผลผลิตพบว่า ได้ผลผลิต เพิ่มขึ้น และไม่มีผลต่อสมบัติของคอลลาเจนและเจลาตินที่ได้ เมื่อศึกษาการปรับปรุงสมบัติการเกิดเจลของเจลาตินจากหนังปลา พบว่า การ ปฏิบัติเบื้องต้นต่อหนังปลาโดยใช้กรดฟอสฟอริกเพื่อเติมหมู่ฟอสเฟตให้กับเจลาตินส่งผลให้ความสามารถในการรวมตัวของโมเลกุลเจ ลาตินระหว่างการเกิดเจลสูงขึ้น นอกจากนี้ได้มีการศึกษาบทบาทของโปรตีเอสที่อยู่ภายในหนังปลาต่อการย่อยสลายโปรตีนและสมบัติการ เกิดเจล พบว่า การป้องกันการย่อยสลายโปรตีน โดยใช้สารยับยั้งโปรตีเอสสามารถรักษาความยาวโซ่ของโมเลกุลเจลาติน ส่งผลให้ ความสามารถในการเกิดเจลเพิ่มขึ้น และเจลาตินจากหนังปลาสามารถนำมาใช้เป็นชีววัสคุสำหรับเตรียมฟิล์มบริโภคได้ โดยฟิล์มมีสมบัติ ป้องกันการส่องผ่านของแสงยูวี

นอกจากนี้ได้แยกและจำแนกจุลินทรีย์จากสัตว์น้ำหมักหลายชนิด โดยเฉพาะสายพันธุ์ใหม่ เช่น Natrinema gari sp. Nov จาก น้ำปลา และ Halobacterium piscisalsi sp. Nov จากปลาร้า โดย Natrinema gari BCC 24369 สามารถสลายฮิสตามีนในน้ำปลา ส่วน แบคทีเรียแลกติกที่แยกจากปลาส้ม สามารถใช้ผลิตเป็นกล้าเชื้อเพื่อผลิตปลาส้มที่มีคุณภาพสม่ำเสมอ

ดังนั้นงานวิจัยนี้จึงให้ข้อมูลเพื่อความเข้าใจที่เพิ่มขึ้นเกี่ยวกับการปรับปรุงคุณภาพผลิตภัณฑ์ประมง และการใช้ประโยชน์จากวัสดุ เศษเหลือจากการแปรรูปสัตว์น้ำ ส่งผลให้มีการใช้ประโยชน์สำหรับผู้ประกอบการ องค์กร และหน่วยงานที่เกี่ยวข้องในอนาคตเพิ่มมากขึ้น คำหลัก ผลพลอยได้ สัตว์น้ำ คุณภาพ คอลลาเจน โปรดีเอส เจลลาติน ฟิลม์ ซูริมิ เจล จุลินทรีย์ ฤทธิ์ทางชีวภาพ

สารประกอบฟืนอลิก หนัง เครื่องใน

Abstract

The improvement of fishery products mainly focused on surimi and surimi products was carried out. Pelagic dark-fleshed fish including several kinds of mackerel caught in the southern part of Thailand were used for their gelling property. The gel strengthening of surimi from those species was achieved by blending with surimi from lean fish, e.g. croaker or the use of alkaline aided process. Additionally, the gel properties of surimi could be improved by using the oxidized phenolic compounds, especially tannic acid, both commercial susbtance or natural extract, particularly from kiam wood. Oxidized phenolic compounds were able to induce the cross-linking of muscle proteins in surimi, thereby strengthening the gel network.

Utilization of fish processing byproducts including viscera, skin, etc were investigated. Proteases including pepsin and trypsin from viscera of different fish species were successfully extracted and characterized. Fish pepsin was used to prepare the protein hydrolysate from fish muscle. Fish trypsin was also implemented to produce protein hydrolysate from fish muscle and fish gelatin with bioactivity including antioxiative activity and ACE inhibitory activity. Maximized use of fish protease was accomplished when it was used in conjunction with the selected commercial microbial proteases under the optimal condition. The study of plant protease, especially from the latex of *Calotropis procera*, and protease inhibitor from several legume seeds, was extended to serve as the possible novel processing aids for fish processing. Partitioning using aqueous two phase and three phase systems were successfully implemented to recover those proteases and protease inhibitors.

When collagen and gelatin from fish skin was extracted by the developed method using fish pepsin as the processing aid, the extraction yield was increased and it had no detrimental effect on the properties of resulting collagen and gelatin. Furthermore, the property of gelatin from skin, particularly gelling property was improved by the pretreatment with phosphoric acid prior to extraction. The incorporation of phosphate group mainly contributed to the enhanced interaction of gelatin molecules during gelation process. The role of endogenous protease associated with the skin in protein degradation and gelatin properties was elucidated. The prevention of degradation using the selected protease inhibitor was found to maintain the chain length, thereby improving the properties of resulting gelatin. Fish gelatin was used as a biomaterial for edible film preparation. The film showed the excellent UV light barrier property.

Microorganisms from fermented fishery products were isolated and identified. *Natrinema gari* sp. Nov was isolated from fish sauce, while *Halobaterium piscisalsi* sp. Nov. was isolated from Pla-ra. *Natrinema gari* BCC 24369 was used for histamine degradation in fish sauce. Lactic acid bacteria were also isolated from Pla-som and the selected strain was used as the starter culture for production of Pla-som to ensure the constant quality of finished product.

As a whole, the researches provided the better understanding on the improvement of fishery products and the utilization of fish processing byproducts, in which the further implementation by fish processors or related association/organization can be achieved.

Keywords: byproducts, fish, quality, collagen, protease, gelatin, film, surimi, gel, microorganisms, bioactivity, phenolic compounds, skin, viscera