

รายงานวิจัยฉบับสมบูรณ์

โครงการท่องเที่ยวไทย: จานนโยบายสู่รากหญ้า

(RTA5180013)

โดย

ศาสตราจารย์ ดร. มิ่งสรรพ ขาวสอด

และคณะ

มีนาคม 2555

ສັນນູພາເລຂທີ RTA5180013

รายงานวิจัยฉบับสมบูรณ์

โครงการท่องเที่ยวไทย: จากนโยบายสู่รากหญ้า

(RTA5180013)

ศาสตราจารย์ ดร.มิ่งสรรพ ขาวсад
รองศาสตราจารย์ ดร.อุดมศักดิ์ ศิลป์ประชารังษี
นายอัครพงศ์ อั้นทอง
ผู้ช่วยศาสตราจารย์ ดร.อนันต์ วัฒนกุลจารัส
ผู้ช่วยศาสตราจารย์ ดร.กุลดา เพ็ชรaruณ
รองศาสตราจารย์ พรทิพย์ เชียรธีริวิทย์
ผู้ช่วยศาสตราจารย์ ดร.ปิยะลักษณ์ พุทธวงศ์
นายจักรี เทจีสวารี
นายสุเมธ พฤกษ์ฤทธิ์

สถาบันศึกษาโยบายสาธารณะ
สถาบันบัณฑิตพัฒนบริหารศาสตร์
สถาบันศึกษาโยบายสาธารณะ
สถาบันบัณฑิตพัฒนบริหารศาสตร์
มหาวิทยาลัยสงขลานครินทร์
วิทยาเขตภูเก็ต
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่
มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย ศก�. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

หัวข้อ	หน้า
สารบัญ	<i>i</i>
1 ผลผลิตภัยใต้โครงการ	1
2 บทความที่ได้รับรางวัล	2
3 บทความดีพิมพ์ในวารสารระดับนานาชาติ	2
4 บทความดีพิมพ์ในวารสารระดับชาติ	3
5 บทความที่นำเสนอในงานประชุมวิชาการระดับนานาชาติ	4
6 บทความที่นำเสนอในงานประชุมวิชาการระดับชาติ	6
7 บทความที่ได้รับการตอบรับให้ดีพิมพ์ในวารสารระดับนานาชาติ อยู่ระหว่างรอตีพิมพ์	6
8 บทความที่เสนอไปยังวารสารระดับนานาชาติ เพื่อตีพิมพ์เผยแพร่ ขณะนี้อยู่ในขั้นตอนการประเมินของผู้ทรงคุณวุฒิ	7
9 เสนอแน่นโภบายด้านการท่องเที่ยวสู่สาธารณะนักท่องเที่ยวในหนังสือพิมพ์	7
10 การนำผลงานจากโครงการไปใช้ประโยชน์	8
11 การจัดประชุมพัฒนาศักยภาพให้นักวิจัยในโครงการ	9
12 การจัดประชุมนำเสนอผลงานของโครงการ	10
13 นักวิจัยที่สร้างจากโครงการ	10
ภาคผนวก	
ภาคผนวก 1 ผลผลิตภัยใต้โครงการ	ก 1 – 1
1.1 คำนำ	ก 1 – 1
1.2 หนังสือ	ก 1 – 6
1.3 รายงานวิจัย	ก 1 – 10
ภาคผนวก 2 บทความดีพิมพ์ในวารสาร	ก 2 – 1
1 บทความดีพิมพ์ในวารสารระดับนานาชาติ	ก 2 – 1
Change in managerial efficiency and managerial technology of hotels: an application to Thailand". Tourism Economics	ก 2 – 2
Measuring Operation Efficiency of Thai Hotels Industry: Evidence from Meta-Frontier Analysis	ก 2 – 18

สารบัญ (ต่อ)

หัวข้อ	หน้า
2 บทความคิดพิมพ์ในการสารระดับชาติ	ก 2 – 34
การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทย โดยใช้แบบจำลอง SARIMA Intervention	ก 2 – 36
ความเอนเอียงของวิธีดีอีเอแบบสองขั้นตอน	ก 2 – 55
การเปลี่ยนแปลงประสิทธิภาพในการจัดการของโรงแรมในจังหวัดเชียงใหม่	ก 2 – 70
ความเป็นถูกต้องของการท่องเที่ยวในจังหวัดเชียงใหม่	ก 2 – 96
การตรวจสอบลักษณะของข้อมูลอนุกรรมเวลาสำหรับการพยากรณ์อุปสงค์การท่องเที่ยวในประเทศไทย	ก 2 – 112
ภาพลักษณ์และพฤติกรรมนักท่องเที่ยวต่างชาติภายในประเทศที่ได้สถานการณ์วิกฤตการเมืองไทย	ก 2 – 125
การวิเคราะห์อุปสงค์การท่องเที่ยวไทยในระยะยาว	ก 2 – 169
ทฤษฎีเศรษฐศาสตร์ชุดภาคสำหรับอุปสงค์การท่องเที่ยว	ก 2 – 203
ประสิทธิภาพการดำเนินงานของธุรกิจโรงแรมและเกสต์เฮาส์ในประเทศไทย	ก 2 – 224
ผลกระทบจากเหตุการณ์วิกฤตที่มีต่ออุปสงค์ของนักท่องเที่ยวต่างชาติของไทย	ก 2 – 244
ภาพลักษณ์และประสบการณ์ของนักท่องเที่ยวต่างชาติในตลาดที่สำคัญของประเทศไทย	ก 2 – 264
ภาคผนวก 3 บทความคิดพิมพ์ในหนังสือพิมพ์	ก 3 – 1
ภาพลักษณ์ท่องเที่ยวไทย: จะฟื้นฟูได้อย่างไร?	ก 3 – 3
มาระดับต้นเศรษฐกิจด้วยวิธีใหม่กันเถอะ	ก 3 – 6
การท่องเที่ยวเชิงสุขภาพ: ใครได้ใครเสีย	ก 3 – 9
ท่องเที่ยวไทย: โอกาสในวิกฤตชี้อนวิกฤต?	ก 3 – 12
การท่องเที่ยว VS วิกฤตการเมือง (อีกแล้ว)	ก 3 – 15
สำนักวิเคราะห์ การชุมนุมทางการเมือง กับอนาคตผลของการท่องเที่ยวจะเยี่ยวยาการท่องเที่ยวจากวิกฤตได้อย่างไร	ก 3 – 18
	ก 3 – 21

ສໍາລັບລາຍລະອຽດ
ສໍາລັບລາຍລະອຽດ

ໂຄຮກການ: ທ່ອງເຖິງວິໄລຍະ: ຈາກນໂຍບາຍສູ່ຮາກຫຍຸ້າ

ຮາຍງານຈົບສົນນຸ່ມບັນດາ

1. ພຸດພັດກາຍໃຫ້ໂຄຮກການ

1.1 ຕໍາຮາ

ຈຳນວນ 4 ເລີ່ມ ປະກອບດ້ວຍ

(1) ເຄຣຍຸສູ່ຄາສຕຣີວ່າດ້ວຍການທ່ອງເຖິງ

ໂດຍ ຜາສຕຣາຈາຣຍ໌ ດຣ.ມິ້ງສະຮະພ໌ ຂາວສອາດ

ດຣ.ອັກຣົພງ໌ ອັນທອງ

ຮອງຄາສຕຣາຈາຣຍ໌ ພຣທິພົມ ເນີຍຣີຣິວິທຍ໌

ຜູ້ໜ້າຍຄາສຕຣາຈາຣຍ໌ ດຣ.ກຸລດາ ເພື່ອຮວຮຸນ

(2) ເຄຣຍຸສູ່ຄາສຕຣີການປະເມີນມູລຄ່າສະຕານທີ່ທ່ອງເຖິງ

ໂດຍ ຮອງຄາສຕຣາຈາຣຍ໌ ດຣ.ອຸຄົມສັກດີ ຄືລປະຈາວງ໌

(3) ເຄຣຍຸສູ່ກິຈການທ່ອງເຖິງວິມຫກາຄ

ໂດຍ ຜູ້ໜ້າຍຄາສຕຣາຈາຣຍ໌ ດຣ.ອັນນັດ ວັດນຸ່ມຈັກສ

(4) ເຄຣຍຸສູ່ມືຕິວ່າດ້ວຍການທ່ອງເຖິງ

ໂດຍ ດຣ.ອັກຣົພງ໌ ອັນທອງ

1.2 ໜັ້ງສື່ອ

ຈຳນວນ 3 ເລີ່ມ ປະກອບດ້ວຍ

(1) ຜັກຍກາພຂອງອຸຕສາຫກຮຽນໂຮງແຮມໃນຈັງຫວັດທ່ອງເຖິງຫລັກຂອງປະເທດໄທ

ໂດຍ ຜາສຕຣາຈາຣຍ໌ ດຣ.ມິ້ງສະຮະພ໌ ຂາວສອາດ

ນາຍນຸ່ມສູລ ເຄຈື່ອຟູ

ດຣ.ອັກຣົພງ໌ ອັນທອງ

ນາຍນິມິຕ ນິມິຕຣເກີຍຕິໄກລ

(2) ການທ່ອງເຖິງວິໄລຍະ ຈາກນໂຍບາຍສູ່ຮາກຫຍຸ້າ

ໂດຍ ຜາສຕຣາຈາຣຍ໌ ດຣ.ມິ້ງສະຮະພ໌ ຂາວສອາດ

(3) ภาพลักษณ์การท่องเที่ยวไทย

โดย นายจักรี เตี้ยยวารี
ศาสตราจารย์ ดร.มิ่งสรรพ ขาวсад
นายสุเมธ พฤกษ์ฤทธิ์

1.3 รายงานวิจัย

จำนวน 2 เรื่อง ประกอบด้วย

(1) อุปสงค์การเดินทางท่องเที่ยวต่างประเทศของนักท่องเที่ยวชาวไทย

โดย ผู้ช่วยศาสตราจารย์ ดร.ปิยะลักษณ์ พุทธวงศ์

(2) การท่องเที่ยวเชิงเทศกาล

โดย ผู้ช่วยศาสตราจารย์ ดร.กุลดา เพ็ชรaruณ

2. บทความที่ได้รับรางวัล

จำนวน 1 เรื่อง คือ

(1) บทความเรื่อง “ความเป็นอุดมคุณภาพของการท่องเที่ยวในจังหวัดเชียงใหม่” โดย นายอัครพงษ์ อันทอง และ ศ. ดร.มิ่งสรรพ ขาวсад ได้รับรางวัล “*Best Paper Award of KUJE 16*” ประเภทรางวัล ชมเชย ของวารสารเศรษฐศาสตร์ประยุกต์ ประจำปีบบประมาณ 2552) วารสารเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, 16 (2): 32-47.

3. บทความตีพิมพ์ในวารสารระดับนานาชาติ

จำนวน 2 เรื่อง คือ

(1) Akarapong Untong, Professor Vicente Ramos, Professor Javier Rey-Maquieira and Professor Mingsarn Kaosa-ard. 2554. “**Change in managerial efficiency and managerial technology of hotels: an application to Thailand**”. *Tourism Economics* 17 (3): 565–580.

(2) Phanin Khrueathai, Akarapong Untong, Professor Mingsarn Kaosa-ard and Penato Andrin Villano. 2555. “**Measuring Operation Efficiency of Thai Hotels Industry: Evidence from Meta-Frontier Analysis**” *Journal of European Economy* 11(Special issue): 202-217.

4. บทความตีพิมพ์ในวารสารระดับชาติ

จำนวน 11 เรื่อง กีอ

(1) อัครพงศ์ อันทอง. 2552. “การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทย โดยใช้แบบจำลอง SARIMA Intervention.” วารสารวิชาการ ม.อบ. 11(1): 196-214. (ค่า Impact factor เท่ากับ 0.045)

(2) อัครพงศ์ อันทอง. 2552. “ความเสื่อมเสียของวิธีดิจิทัลแบบสองขั้นตอน.” วารสารเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ 16(1): 39-53.

(3) อัครพงศ์ อันทอง. 2552. “การเปลี่ยนแปลงประสิทธิภาพในการจัดการของโรงแรมในจังหวัดเชียงใหม่.” วารสารเศรษฐศาสตร์ธรรมศาสตร์ 27(3): 1-26.

(4) อัครพงศ์ อันทอง และ มิ่งสรรพ์ ขาวสอาด. 2552. “ความเป็นฤทธิ์ของนักท่องเที่ยวในจังหวัดเชียงใหม่.” วารสารเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ 16(2): 32-47. (บทความที่ได้รับรางวัล “Best Paper Award of KUJE 16” ประเภทรางวัลชมเชย ของวารสารเศรษฐศาสตร์ประยุกต์ ประจำปีงบประมาณ 2552)

(5) อัครพงศ์ อันทอง และปวีณา คำพุกกะ. 2553. “การตรวจสอบลักษณะของข้อมูลอนุกรรมเวลาร่วมกับการพยากรณ์อุปสงค์การท่องเที่ยวในประเทศไทย.” วารสารมนุษยศาสตร์และสังคมศาสตร์ มหาวิทยาลัยอุบลราชธานี 1(1): 60-85.

(6) อัครพงศ์ อันทอง และ มิ่งสรรพ์ ขาวสอาด. 2553. “ภาพลักษณ์และพฤติกรรมนักท่องเที่ยวต่างชาติภายใต้สถานการณ์วิกฤตการเมืองไทย.” วารสารเศรษฐศาสตร์ธรรมศาสตร์ 28(3): 55-98.

(7) อัครพงศ์ อันทอง และ มิ่งสรรพ์ ขาวสอาด. 2554. “การวิเคราะห์อุปสงค์การท่องเที่ยวไทยในระยะยาว.” วารสารเศรษฐศาสตร์ธรรมศาสตร์ 29(2): 1-34.

(8) อัครพงศ์ อันทอง และ กันต์สินี กันทะวงศ์วาร. 2554. “ทฤษฎีเศรษฐศาสตร์จุลภาคสำหรับอุปสงค์การท่องเที่ยว.” วารสารเศรษฐศาสตร์มหาวิทยาลัยเชียงใหม่ 15(2): 1-21.

(9) อัครพงศ์ อันทอง พนินท์ เครือไทย และ มิ่งสรรพ์ ขาวสอาด. 2554. “ประสิทธิภาพการดำเนินงานของธุรกิจโรงแรมและเกสต์เฮาส์ในประเทศไทย.” วารสารเศรษฐศาสตร์ประยุกต์ มหาวิทยาลัยเกษตรศาสตร์ 18(1): 44-63.

(10) อัครพงศ์ อันทอง วีเชนเต้ รามอส ชาเวียเรย์ บัมคคิโอระ และ มิ่งสรรพ์ ขาวสอาด. 2554. “ผลกระทบจากเหตุการณ์วิกฤตที่มีต่ออุปสงค์ของนักท่องเที่ยวต่างชาติของไทย.” วารสารเศรษฐศาสตร์ประยุกต์ มหาวิทยาลัยเกษตรศาสตร์ 18(2): 45-64.

(11) อัครพงศ์ อั้นทอง และ มิ่งสรรพ์ ขาวสอาด.2554. “ภาพลักษณ์และประสบการณ์ของนักท่องเที่ยวต่างชาติในตลาดที่สำคัญของประเทศไทย.” วารสารวิทยาการวิจัยและวิทยาการปัญญามหาวิทยาลัยบูรพา 9(1): 25-41.

5. บทความที่นำเสนอในงานประชุมวิชาการระดับนานาชาติ

จำนวน 14 เรื่อง คือ

(1) นายอัครพงศ์ อั้นทอง นำเสนอผลงานเรื่อง “ความเป็นฤดูกาลของนักท่องเที่ยวที่เข้าพักในสถานที่พักแรมในจังหวัดเชียงใหม่ (Seasonality Analysis of Tourism Arrivals at Accommodation Establishments in Chiang Mai, Thailand)” ในงานสัมมนาวิชาการประจำปีของ Asia Pacific Tourism Association (APTA) ที่เมืองอินชอน ประเทศไทยได้ระหว่างวันที่ 10-12 กรกฎาคม 2552

(2) ศ. ดร. มิ่งสรรพ์ ขาวสอาด ได้รับเชิญให้เป็นวิทยากรบรรยายในหัวข้อ “Mekong Tourism: Blessings for all” ที่ University of the Balearic Islands ประเทศสเปน ในวันที่ 6 มีนาคม 2552 (สก. ไม่เสียค่าใช้จ่าย)

(3) ศ. ดร. มิ่งสรรพ์ ขาวสอาด นำเสนอผลงานเรื่อง “The Managerial Efficiency Change of Hotels in Chiang Mai, Thailand” ในงานสัมมนา Euro CHRIE Helsinki 2009 ณ เมืองヘルシン基 ประเทศฟินแลนด์ระหว่างวันที่ 22 – 24 ตุลาคม 2552

(4) นายอัครพงศ์ อั้นทอง นำเสนอผลงานเรื่อง “The change in managerial efficiency and technology on hotel in Chiang Mai, Thailand” ในงานสัมมนาวิชาการ “The Second International Association Tourism Economics” ระหว่างวันที่ 11-13 ธันวาคม 2552 ณ โรงแรมดีลันนา เชียงใหม่

(5) นายอัครพงศ์ อั้นทอง ดร. พนินท์ เครือไทย และ ศ. ดร. มิ่งสรรพ์ ขาวสอาด นำเสนอผลงานเรื่อง “Operational Efficiency in the Hotel Industry in Thailand: Meta-frontier analysis” ในงานประชุมหัวข้อ “16th Asia Pacific Tourism Association (APTA) Annual Conference, Competition and Collaboration between Regional Tourism Destination” ณ เมือง Macao สาธารณรัฐประชาชนจีน ระหว่างวันที่ 13-16 กรกฎาคม 2553 โดยการประชุมครั้งนี้มีการนำเสนอทั่วหมู่ 183 บทความ จากกว่า 40 ประเทศ โดยในงานประชุมจะมีการคัดเลือกบทความที่มีความโดดเด่นให้รับรางวัล Best Paper Award ทั่วหมู่ 3 บทความ ทั้งนี้ บทความนี้ได้ถูกคัดเลือกให้เข้ารอบเป็น 1 ใน 10 บทความที่เข้ารับการพิจารณาคัดเลือกเป็น Best Paper Award ด้วย

(6) บทความเรื่อง “The Seasonal Pattern and the Effects of Unexpected Events on Outbound Chinese Tourism: The Case of Chinese Tourist Arrivals to Thailand” โดย Akarapong Untong, Professor Vicente Ramos, Professor Javier Rey-Maquieira and Professor Mingsarn Kaosa-ard

นำเสนอในงานประชุม The Second International Conference on Tourism between China-Spain (ICTCHS2011), March 27-31, 2011, Palma de Mallorca, Spain.

(7) บทความเรื่อง “**Measuring Operation Efficiency of Thai Hotel Industry: Evidence from Meta-Frontier Analysis**” โดย Phanin Nonthakhot, Akarapong Untong and Professor Mingsarn Kaosa-ard. งานประชุม XII European Workshop on Efficiency and Productivity Analysis, June 22-24, 2011, Verona, Italy.

(8) บทความเรื่อง “**The Economics of A Foreign Tourist Lump-Sum Tax: A Theoretical Case Study of Thailand**” โดย ผศ. ดร.อนันต์ วัฒนกุลจรัส นำเสนอในงานสัมมนา “Advancing the Social Science of Tourism” 28th June-1st July 2011 University of Surrey, Guildford, UK. ซึ่งเป็นงานสัมมนาภายใต้ชื่อวารสารของ Annals of Tourism Research.

(9) บทความเรื่อง “**A Cross-Country Analysis of Labor Intensity and Employment in Tourism Industry**” โดย ผศ. ดร.อนันต์ วัฒนกุลจรัส นำเสนอในงานสัมมนา “Advancing the Social Science of Tourism” 28th June-1st July 2011 University of Surrey, Guildford, UK. ซึ่งเป็นงานสัมมนาภายใต้ชื่อวารสารของ Annals of Tourism Research.

(10) บทความเรื่อง “**The Effect of Thailand’s Political Crisis on Destination Image and International Tourism Behavior**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maqueira and นำเสนอในงานประชุม 3rd Conference of the International Association for Tourism Economics, July 4-7, 2011, Bournemouth University, United Kingdom.

(11) บทความเรื่อง “**Estimating Thailand’s Long-Run Tourism Demand**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maqueira and นำเสนอในงานประชุม 3rd Conference of the International Association for Tourism Economics, July 4-7, 2011, Bournemouth University, United Kingdom.

(12) บทความเรื่อง “**Assessing impacts of crises events on international tourism demand of Thailand**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maqueira and นำเสนอในงานประชุม 3rd Conference of the International Association for Tourism Economics, July 4-7, 2011, Bournemouth University, United Kingdom.

(13) บทความเรื่อง “**The Effect of Thailand’s Political Crisis on Destination Image and International Tourism Behavior**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor

Vicente Ramos and Professor Javier Rey-Maquieira นำเสนอในงานประชุม 1st World Research Summit for Tourism and Hospitality, December 10-13, 2011, Hotel ICON, Hong Kong.

(14) บทความเรื่อง “**The Effect of Perceived Value of Tourism Attraction and Logistics Management on Destination Loyalty: an Application to Chiang Mai, Thailand**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maquieira นำเสนอในงานประชุม 1st World Research Summit for Tourism and Hospitality, December 10-13, 2011, Hotel ICON, Hong Kong.

6. บทความที่นำเสนอในงานประชุมวิชาการระดับชาติ

จำนวน 2 เรื่อง คือ

(1) ผศ. ดร.อนันต์ วัฒนกุลจรัส นำผลงานเรื่อง “ผลกระทบทางเศรษฐกิจจากการคัดถอยในอุตสาหกรรมท่องเที่ยวไทย: การศึกษาข้อมูลด้วยแบบจำลองเศรษฐกิจแบบดุลยภาพทั่วไป” นำเสนอในการสัมมนาวิชาการระดับชาติหัวข้อ “ฝ่าวิกฤตประเทศไทย: ทางเลือกสู่สังคมใหม่” จัดโดย สถาบันบัณฑิตพัฒนบริหารศาสตร์ เมื่อวันที่ 1 เมษายน 2552 โดยใช้ชื่อเรื่องในการสัมมนาว่า “วิกฤตการท่องเที่ยว... วิกฤตเศรษฐกิจ: การศึกษาข้อมูลด้วยแบบจำลองเศรษฐกิจแบบดุลยภาพทั่วไป”

(2) ผศ. ดร.อนันต์ วัฒนกุลจรัส นำเสนอผลงานวิจัยในเรื่อง “ผลกระทบของการจัดเก็บภาษีนักท่องเที่ยวต่างชาติแบบเงินก้อนในประเทศไทย” ในการประชุมวิชาการ ในวันคล้ายวันสถาปนา สถาบันบัณฑิตพัฒนบริหารศาสตร์ ประจำปี 2553 เรื่อง “สร้างปัญญาสู่สังคมที่สมดุลและยั่งยืน” ณ อาคารสยามบรมราชกุมารี ชั้น 6 ห้อง 601 สถาบันบัณฑิตพัฒนบริหารศาสตร์ กรุงเทพมหานคร เมื่อวันที่ 1 เมษายน 2553

7. บทความที่ได้รับการตอบรับให้ตีพิมพ์ในวารสารระดับนานาชาติ อยู่ระหว่างรอตีพิมพ์

จำนวน 2 เรื่อง คือ

(1) บทความเรื่อง “**The seasonal pattern and the effects of shocks on Chinese Outbound tourism: the case of Thailand**” โดย Akarapong Untong, Professor Vicente Ramos, Professor Mingsarn Kaosa-ard and Professor Javier Rey-Maquieira รอตีพิมพ์ในวารสาร **The Journal of GMS Development Studies**.

(2) บทความเรื่อง “**Thailand’s Long-run Tourism Demand**” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maquieira รอตีพิมพ์ในวารสาร **Tourism Economics**.

8. บทความที่เสนอไปยังวารสารระดับนานาชาติ เพื่อตีพิมพ์เผยแพร่ ขณะนี้อยู่ในขั้นตอนการประเมินของผู้ทรงคุณวุฒิ จำนวน 1 เรื่อง คือ

(1) บทความเรื่อง “Political Crisis, Destination Image and Experience” โดย Akarapong Untong, Professor Mingsarn Kaosa-ard, Professor Vicente Ramos and Professor Javier Rey-Maquieira เสนอตีพิมพ์ในวารสาร **Annals of Tourism Research**.

9. เสนอแนะนำนโยบายด้านการท่องเที่ยวสู่สาธารณะผ่านทางบทความในหนังสือพิมพ์

จำนวน 7 ครั้ง คือ

(1) ศ. ดร.มิ่งสระพ์ ขาวсадад เสนอวิธีฟื้นฟูภาพลักษณ์ท่องเที่ยวไทย ในบทความเรื่อง “ภาพลักษณ์ท่องเที่ยวไทย: จะฟื้นฟูได้อย่างไร?” หนังสือมติชน คอลัมน์กระแสที่รรศน์ (วันที่ 7 มกราคม พ.ศ. 2552)

(2) ศ. ดร.มิ่งสระพ์ ขาวсадад เสนอให้ใช้การท่องเที่ยวเพื่อการศึกษาเป็นมาตรการกระตุ้นเศรษฐกิจ ในบทความเรื่อง “มาตรการกระตุ้นเศรษฐกิจด้วยวิธีใหม่กันเถอะ” หนังสือมติชน คอลัมน์คุลยภาพดุลยพินิจ (วันที่ 14 มกราคม พ.ศ. 2552)

(3) ศ. ดร.มิ่งสระพ์ ขาวсадад นำเสนอประเด็นที่ต้องพิจารณาในการจัดการท่องเที่ยวเชิงสุขภาพ ในบทความเรื่อง “การท่องเที่ยวเชิงสุขภาพ: ใครได้ใครเสีย” หนังสือพิมพ์มติชน คอลัมน์คุลยภาพดุลยพินิจ (วันที่ 4 มีนาคม พ.ศ. 2552)

(4) ศ. ดร.มิ่งสระพ์ ขาวсадад นำเสนอมาตรการกระตุ้นเศรษฐกิจในอุตสาหกรรมท่องเที่ยวทั้งด้านอุปสงค์และอุปทาน ในบทความเรื่อง “ท่องเที่ยวไทย: โอกาสในวิกฤตซ้อนวิกฤต?” หนังสือพิมพ์มติชน คอลัมน์คุลยภาพดุลยพินิจ (วันที่ 22 เมษายน พ.ศ. 2552)

(5) ศ. ดร.มิ่งสระพ์ ขาวсадад นำเสนอผลการศึกษาของโครงการที่ชี้ว่าวิกฤตทางการเมืองส่งผลกระทบต่อการท่องเที่ยว นำเสนอผ่านบทความเรื่อง “การท่องเที่ยว VS วิกฤตการเมือง (อีกแล้ว)” หนังสือพิมพ์มติชน คอลัมน์ กระแสที่รรศน์ (วันที่ 15 มีนาคม พ.ศ. 2553)

(6) ศ. ดร.มิ่งสระพ์ ขาวсадад นำเสนอแนวทางการจัดทำยุทธศาสตร์ของการท่องเที่ยวไทย ภายใต้สถานการณ์ทางการเมืองที่ยังไม่คลี่คลายผ่านบทความเรื่อง “สื่อนามิ โรคระบาด การชุมนุมทางการเมือง กับบาดแผลของการท่องเที่ยว” หนังสือพิมพ์มติชน คอลัมน์ กระแสที่รรศน์ (วันที่ 31 มีนาคม พ.ศ. 2553)

(7) ศ. ดร.มิ่งสระพ์ ขาวсадад นำเสนอผลการศึกษาของโครงการที่ชี้ว่าวิกฤตทางการเมือง ส่งผลกระทบต่อการท่องเที่ยว นำเสนอผ่านบทความเรื่อง “จะเยี่ยวยาการท่องเที่ยวจากวิกฤตได้อย่างไร” หนังสือพิมพ์มติชน คอลัมน์กระแสที่รรศน์ (วันที่ 7 กันยายน พ.ศ. 2553)

10. การนำผลงานจากโครงการไปใช้ประโยชน์

จำนวน 11 ครั้ง คือ

(1) ศ. ดร. มิ่งสราพร ขาวสอาด ได้เสนอมาตรการท่องเที่ยวแก่รัฐมนตรีกรน์ จัดกิจกรรม ในการประชุมเรื่อง “อกเศรษฐกิจกับร.ม.ต.กรน์” ที่กระทรวงการคลัง เมื่อวันที่ 23 มกราคม พ.ศ. 2552

(2) ดร.อนันต์ วัฒนกุลจารัส ได้เสนอผลงานเรื่อง “ผลกระทบของภัยนักท่องเที่ยวแบบเจิน ก้อนเหมาจ่ายคงที่ในประเทศไทย” ให้กับสำนักงานเศรษฐกิจการคลัง กระทรวงการคลัง ผ่านงานสัมมนา เวทีสำนักงานเศรษฐกิจการคลัง (FPO Forum) หัวข้อ “เครื่องมือทางเศรษฐศาสตร์ที่ใช้ในการจัดการ สิ่งแวดล้อม” ณ โรงแรมมิราเคิล แกรนด์ คอนเวนชั่น กรุงเทพฯ เมื่อวันที่ 30 มิถุนายน พ.ศ. 2552

(3) ศ. ดร. มิ่งสราพร ขาวสอาด ได้รับเชิญให้เป็นผู้อภิปรายร่วมในหัวข้อสัมมนาเรื่อง “ภาคเหนือ กับ Eco Hub: ใกล้ความฝันหรือไกลความจริง” ภายในงาน Northern Eco & Adventure Travel Mart 2009 ที่จัดโดยการท่องเที่ยวแห่งประเทศไทย (ททท.) ร่วมกับสมาคมไทยท่องเที่ยวเชิงอนุรักษ์และ พฤษภาคม สถาบันเดลิมพระเกิรติฯ ราชพฤกษ์ จังหวัดเชียงใหม่ เมื่อวันที่ 6-8 พฤษภาคม พ.ศ. 2552

(4) นายอัครพงษ์ อันทอง ได้นำเสนอผลงานวิจัยเรื่อง “การเปลี่ยนแปลงประสิทธิภาพในการ จัดการของโรงแรมในจังหวัดเชียงใหม่” ให้กับคณะตัวแทนภาคอุตสาหกรรมโรงแรมในจังหวัดเชียงใหม่ ณ ห้องประชุม 1 อาคารรวมวิจัยและบัณฑิตศึกษา มหาวิทยาลัยเชียงใหม่ เมื่อวันที่ 19 กันยายน พ.ศ. 2552

(5) รศ. ดร. อุดมศักดิ์ ศิลปประชารักษ์ ได้นำเสนอผลงานวิจัยเรื่อง “การใช้มาตรการเก็บ ค่าธรรมเนียมเข้าชุมชนอุทิ扬นแห่งชาติเข้าแหล่งท่องเที่ยว-หมู่เกาะเสม็ด จังหวัดระยอง” ให้กับนักศึกษาและ ผู้สนใจ ห้องประชุม 1 อาคารรวมวิจัยและบัณฑิตศึกษา มหาวิทยาลัยเชียงใหม่ เมื่อวันที่ 8 กุมภาพันธ์ พ.ศ. 2553

(6) ศ. ดร. มิ่งสราพร ขาวสอาด ให้สัมภาษณ์ผ่านสื่อทีวี ในช่วงบ่ายศิลปวัฒนธรรมบันเทิง ช่อง ทีวีไทย ในหัวข้อเรื่อง “ผลกระทบการท่องเที่ยวจากสถานการณ์การเมือง” ออกอากาศในวันพุธที่ 18 มีนาคม 2553 เวลา 07.15 น.

(7) ศ. ดร. มิ่งสราพร ขาวสอาด ได้รับเชิญให้เป็นผู้อภิปรายในหัวข้อเรื่อง “การปรับตัวของ ผู้ประกอบการด้านอุตสาหกรรมการท่องเที่ยวของจังหวัดเชียงใหม่ และภาคเหนือตอนบนให้สอดคล้องกับ ภาวะวิกฤตด้านการท่องเที่ยว รวมทั้งการเตรียมตัวรับการเปลี่ยนแปลงกรอบการค้าเสรี และแนวโน้มการ เปลี่ยนแปลงของโลก” ภายในงาน “พื้นฟูกการท่องเที่ยวจังหวัดเชียงใหม่ เพื่อสร้างความเชื่อมั่นให้ นักท่องเที่ยว” ที่จัดโดย สถาบันปรีกษาเศรษฐกิจและสังคมแห่งชาติ โดยคณะทำงานเศรษฐกิจภาคบริการและ การท่องเที่ยว ร่วมกับสถาบันอุตสาหกรรมท่องเที่ยวจังหวัดเชียงใหม่ ณ ห้องรอยัล ออคิด บลูรูม โรงแรม เชียงใหม่ ออคิด เมื่อวันที่ 5 สิงหาคม พ.ศ. 2553

(8) ผศ. ดร.อนันต์ วัฒนกุลจรัส นำเสนอผลงานเรื่อง “ผลของการจัดเก็บภาษีนักท่องเที่ยว ต่างชาติแบบเงินก้อนในประเทศไทย” (Impacts of Tourist Lump Sum Tax in Thailand) ณ ห้องแคนนา โรงแรมรามาการ์เด้นส์ กรุงเทพฯ เมื่อวันพุธที่ 11 สิงหาคม พ.ศ. 2553

(9) ศ. ดร.มิ่งสรรพ ขาวสอดา ดร.กุลดา เพ็ชรรุณ และนายอัครพงศ์ อั้นทอง ประชุมร่วมกับ ภาคเอกชน และหน่วยงานราชการที่เกี่ยวข้อง เรื่อง “การเตรียมรับมือกับโครงการพัฒนาพื้นที่ชายฝั่งทะเลภาคใต้ (Southern Seaboard)” ณ โรงแรมคานบูรี รีสอร์ท อำเภอเกาะสมุย จังหวัดสุราษฎร์ธานี เมื่อ วันอังคารที่ 18 มกราคม พ.ศ. 2554 เวลา 08.45 - 13.30 น.

(10) ผศ. ดร.อนันต์ วัฒนกุลจรัส นักวิจัยในโครงการให้สัมภาษณ์ผ่านสื่อทีวีผ่านรายการ Money Channel เรื่อง “การจ้างงานในภาคการท่องเที่ยว” ออกอากาศวันพุธที่ 25 สิงหาคม พ.ศ. 2553 เวลา 07.00–07.15 น.

(11) ผศ. ดร.อนันต์ วัฒนกุลจรัส นักวิจัยในโครงการให้สัมภาษณ์ผ่านสื่อหนังสือพิมพ์เรื่อง “การจ้างงานในภาคการเดินทางและท่องเที่ยว” อดีตมั่นทันเศรษฐกิจ นสพ. โพสต์ทูเดย์ วันจันทร์ที่ 24 มกราคม พ.ศ. 2554

11. การจัดประชุมพัฒนาศักยภาพให้นักวิจัยในโครงการ

จำนวน 3 ครั้ง คือ

(1) จัดประชุมเชิงปฏิบัติการอบรมการใช้โปรแกรม Lisrel สำหรับการวิเคราะห์ความสัมพันธ์ เชิงโครงสร้าง ให้กับนักวิจัยในโครงการ จำนวน 2 ครั้ง เป็นระยะเวลา 4 วัน ได้แก่

ครั้งที่ 1 วันที่ 20 – 21 มิถุนายน พ.ศ. 2552

ครั้งที่ 2 วันที่ 8 – 9 สิงหาคม พ.ศ. 2552

(2) จัดอบรมเชิงปฏิบัติการเรื่อง “Multiple Classification Analysis” โดยมี นายอัครพงศ์ อั้น ทอง เป็นวิทยากร ณ ห้องประชุมเล็ก สถาบันศึกษาไทยภาษาศาสตร์และ มหาวิทยาลัยเชียงใหม่ เมื่อวันที่ 19 สิงหาคม พ.ศ. 2552

(3) จัดอบรมให้กับนักวิจัยรุ่นใหม่เรื่อง “การวิเคราะห์อุปสงค์ของการท่องเที่ยว ด้วยโปรแกรม Eviews” โดยมี นายอัครพงศ์ อั้นทอง เป็นวิทยากร ณ ห้องประชุม 1 อาคารรวมวิจัยและบันทิดศึกษา มหาวิทยาลัยเชียงใหม่ ระหว่างวันที่ 26-27 ธันวาคม พ.ศ. 2552

12. การจัดประชุมนำเสนอผลงานของโครงการ

จำนวน 6 ครั้ง คือ

(1) จัดประชุมเผยแพร่ผลงานประจำปีครั้งที่ 1 ร่วมกับสำนักงานคณะกรรมการวิจัยแห่งชาติ เรื่อง “วิกฤตเศรษฐกิจ การเมือง กับภาคลักษณ์ท่องเที่ยวไทย” ในวันที่ 9 กันยายน 2552 ณ มหาวิทยาลัยเชียงใหม่ เสรีจสินแล้า มีผู้เข้าร่วมงานประมาณ 70 คน

(2) การสัมมนาในหัวข้อเรื่อง “การวิเคราะห์เชิงปริมาณเพื่อจัดทำนโยบายสาธารณะด้านการท่องเที่ยว” ในวันที่ 26 มีนาคม พ.ศ. 2553 ณ ห้องแคนนา โรงแรมรามา การ์เด้นส์ กรุงเทพมหานคร

(3) การเสวนาทางวิชาการเรื่อง “สำรวจว่าด้วยเรื่องท่องเที่ยวและการประเมินผลกระทบด้านสิ่งแวดล้อม” ในวันที่ 25 สิงหาคม พ.ศ. 2553 ณ หอประชุมอาคารรวมวิจัยและบันทึกศึกษา มหาวิทยาลัยเชียงใหม่

(4) การประชุมสัมมนาเรื่อง “โอกาสหลังวิกฤตท่องเที่ยวไทย” ในวันที่ 13 กันยายน 2553 ณ โรงแรมมิราเคิล แกรนด์ คونเวนชั่น กรุงเทพมหานคร มีผู้เข้าร่วมงานจำนวน 400 คน

(5) การประชุมสัมมนาเรื่อง “ปฏิรูปประเทศไทย ปฏิรูปการท่องเที่ยว” กำหนดจัดวันที่ 9 มีนาคม พ.ศ. 2554 ณ ห้องประชุมอาคารรวมวิจัยและบันทึกศึกษา สถาบันศึกษานโยบายสาธารณะ มหาวิทยาลัยเชียงใหม่ (ภาคผนวกที่ 4.3 กำหนดการประชุมนำเสนอใน CD-Rom)

(6) การประชุมใหญ่ประจำปีของโครงการท่องเที่ยวไทย: จากนโยบายสู่ภาคปฏิบัติ หนังสือซึ่งเป็นผลผลิตภายใต้โครงการ “ท่องเที่ยวไทย: ถ้าอย่างอย่างไรเพื่ออนาคตที่ยั่งยืน” วันศุกร์ที่ 27 มกราคม 2555 เวลา 08.00-16.30 น. โรงแรม รามาการ์เด้น กรุงเทพฯ

13. นักวิจัยที่สร้างจากโครงการ

13.1 สถาบันเดียวกัน (มหาวิทยาลัยเชียงใหม่) จำนวน 5 คน คือ

- | | |
|---|--------------------------|
| (1) นายอัครพงศ์ อันthon | สถาบันศึกษานโยบายสาธารณะ |
| (2) รองศาสตราจารย์ พฤทธิพย์ เอียรธีริวิทัย | คณะเศรษฐศาสตร์ |
| (3) ผู้ช่วยศาสตราจารย์ ดร.ปิยะลักษณ์ พุทธวงศ์ | คณะเศรษฐศาสตร์ |
| (4) นายจักรี เดชัวรี | คณะเศรษฐศาสตร์ |
| (5) นายไพรัช พิมูลรุ่งโรจน์ | คณะเศรษฐศาสตร์ |

13.2 ต่างสถาบัน จำนวน 7 คน คือ

- | | |
|--|--|
| (1) รองศาสตราจารย์ ดร.อุ่นศักดิ์ ศิลประชารวงศ์ | สถาบันบัณฑิตพัฒนบริหารศาสตร์ |
| (2) ผู้ช่วยศาสตราจารย์ ดร.อนันต์ วัฒนกุลจรัส | สถาบันบัณฑิตพัฒนบริหารศาสตร์ |
| (3) ผู้ช่วยศาสตราจารย์ ดร.กุลดา เพ็ชรaruณ | มหาวิทยาลัยสงขลานครินทร์
วิทยาเขตภูเก็ต |

- | | |
|---------------------------------|----------------------------|
| (4) ดร.ปวีณา คำพุกกะ | มหาวิทยาลัยอุบลราชธานี |
| (5) ดร.พนินต์ เครือไทย | มหาวิทยาลัยราชภัฏอุตรดิตถ์ |
| (6) นายนุกูล เครือฟู | |
| (7) นายเพิ่มศักดิ์ ยะเรียมพันธ์ | |

ภาคผนวก 1

ผลผลิตภายนอกโครงการ

1.1 ตำแหน่ง

จำนวน 4 เล่ม ประกอบด้วย

- (1) เศรษฐศาสตร์ว่าด้วยการท่องเที่ยวโดย ศาสตราจารย์ ดร.มิ่งสระบพ ขาวสอด
ดร.อัครพงษ์ อันทอง
รองศาสตราจารย์ พรทิพงษ์ เชียรธีริวิทย์
ผู้ช่วยศาสตราจารย์ ดร.กุลดา เพ็ชรaruณ
- (2) เศรษฐศาสตร์การประเมินมูลค่าสถานที่ท่องเที่ยวโดย รองศาสตราจารย์ ดร.อุดมศักดิ์ ศีลประชารักษ์
- (3) เศรษฐกิจการท่องเที่ยวมหาวิทยาลัยโดย ผู้ช่วยศาสตราจารย์ ดร.อนันต์ วัฒนกุลจารัส
- (4) เศรษฐกิจว่าด้วยการท่องเที่ยวโดย ดร.อัครพงษ์ อันทอง

เมืองสรรพิ ขาวส่าด และ ถนน

เศรษฐศาสตร์ ว่าด้วยการท่องเที่ยว

TOURISM ECONOMICS

โครงการเบื้องหลังอาชีวะ
การท่องเที่ยวไทย จากนโยบายสู่รากเหง้า

อุดมศักดิ์ สีลประshawศ

เศรษฐศาสตร์ การประเมินมูลค่า สถานที่ท่องเที่ยว

ECONOMIC VALUATION
OF TOURISM DESTINATIONS

โครงการเนือวจัยอาวุโส
สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

ອນນຕ ວັນນກຸລຈັສ

ເສດຖະກິຈ[†] ກາຣທ່ອງເກີຍວິມຫາຄ

TOURISM: AN ECONOMY-WIDE
PERSPECTIVE

ໂຄຮງກາຣນເນື້ອຈັຍອາວຸໄສ
ສໍານັກງານກອງຖຸນສັນບັນສຸນບກາຣວັຈີຍ (ສກວ.)

อัครพงศ์ อั้นท่อง

เศรษฐมิติ ว่าด้วยการท่องเที่ยว

ECONOMETRICS OF TOURISM

โครงการเนื้อวิจัยอาวุโส
สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

1.2 หนังสือ

จำนวน 3 เล่ม ประกอบด้วย

(1) ศักยภาพของอุตสาหกรรมโรงเรนในจังหวัดท่องเที่ยวหลักของประเทศไทย

โดย ศาสตราจารย์ ดร.มิ่งสรรพ ขาวสอาด

นายนุกูล เกรีอฟู

ดร.อัครพงศ์ อันทอง

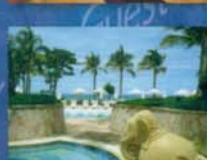
นายนิมิต นิมิตรเกียรติไกล

(2) การท่องเที่ยวไทย จากนโยบายสู่รากหญ้า

โดย ศาสตราจารย์ ดร.มิ่งสรรพ ขาวสอาด

(3) ภาพลักษณ์การท่องเที่ยวไทย

โดย นายจักรี เที่ยววารี


ศาสตราจารย์ ดร.มิ่งสรรพ ขาวสอาด

นายสุเมธ พฤกษ์ฤทธิ์

ศักยภาพของอุตสาหกรรมโรงแรม ในจังหวัดท่องเที่ยวหลักของประเทศไทย

มีชื่อเรียก ขาวสะอาด และค่านะ

มิ่งสรรพ ขาวสะอาด

การท่องเที่ยวไทย จากนโยบายสู่รากหญ้า

โครงการเบนซ์วิจัยอาชีวะ

สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

จักรี เทวีวารี
สุเมธ พฤกษาภรณ์ | มั่งสรรพ ขาวสอด

ภาพลักษณ์ การท่องเที่ยวไทย

THAILAND TOURISM IMAGE

โครงการเบื้องหลังอาชญากรรม
การท่องเที่ยวไทย จากนโยบายสู่รากเหง้า

1.3 รายงานวิจัย

จำนวน 2 เรื่อง ประกอบด้วย

(1) อุปสงค์การเดินทางท่องเที่ยวต่างประเทศของนักท่องเที่ยวชาวไทย

โดย ผู้ช่วยศาสตราจารย์ ดร.ปิยะลักษณ์ พุทธวงศ์

(2) การท่องเที่ยวเชิงเทศกาล

โดย ผู้ช่วยศาสตราจารย์ ดร.กุลดา เพ็ชรaruณ

ปีงบประมาณ พุทธศักราช

อุปสงค์การท่องเที่ยว ต่างประเทศ ของนักท่องเที่ยวไทย

OUTBOUND TOURISM DEMAND
OF THAI TOURISTS

โครงการเนื้อวิจัยอาวุโส
สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

กุลดา เพ็ชรบุรุษ

การท่องเที่ยว เชิงเทศกาล

FESTIVAL TOURISM

โครงการเบื้องจัยอาวุโส
การท่องเที่ยวไทย จากนโยบายสู่รากเหง้า

ภาคผนวก ๒

บทความตีพิมพ์ในวารสาร

1. บทความตีพิมพ์ในวารสารระดับนานาชาติ

จำนวน 2 เรื่อง คือ

- (1) Akrapong Untong, Professor Vicente Ramos, Professor Javier Rey-Maqueira and Professor Mingsarn Kaosa-ard. 2554. **“Change in managerial efficiency and managerial technology of hotels: an application to Thailand”**. *Tourism Economics* 17 (3): 565–580.
- (2) Phanin Khrueathai, Akrapong Untong, Professor Mingsarn Kaosa-ard and Penato Andrin Villano. 2555. **“Measuring Operation Efficiency of Thai Hotels Industry: Evidence from Meta-Frontier Analysis.”** *Journal of European Economy* 11(Special issue): 202-217.

Change in the managerial efficiency and management technology of hotels: an application to Thailand

AKARAPONG UNTONG AND MINGSARN KAOSA-ARD

Public Policy Studies Institute, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand. E-mail: akarapong_un@hotmail.com; mingsarn@chiangmai.ac.th.

VICENTE RAMOS AND JAVIER REY-MAQUIEIRA

*Department of Applied Economics, University of the Balearic Islands, Edifici G.M. de Javellanos, Cra. De Valldemossa, Km 7.5, Palma 07122, Spain.
E-mail: vicente.ramos@uib.es; javier.rey@uib.es.*

This article estimates the change in managerial efficiency and management technology of a sample of hotels in Chiang Mai, Thailand, during 2002–2006. The study applies the data envelopment analysis (DEA) methodology proposed by Bunker *et al* (1984) to examine managerial efficiency in 2002 and 2006. The Malmquist productivity approach developed by Färe *et al* (1992) is employed to evaluate the change in managerial efficiency and management technology over the same period. The results show that medium-sized and small hotels tend to be more managerially efficient than large hotels. The total factor productivity declined slightly owing to a lack of investment in management technology. Instead, the hotels in the sample concentrated on improving managerial effort. This shortfall in technology investment could hamper productivity in the longer term.

Keywords: hotel management; hotel technology; data envelopment analysis; Malmquist productivity approach; Thailand

Chiang Mai, located in the north of Thailand, is one of the major tourist cities in the country due to the richness of its resources in terms of history, culture, tradition, lifestyle, nature and infrastructure. In 2006, approximately 5.29 million visitors travelled to Chiang Mai (being the third destination in Thailand after Bangkok and Pattaya, and the most popular destination in the northern

This paper is part of the 'Thailand Tourism: From Policy to Grassroots' project (Prof Dr Mingsarn Kaosa-ard), which is supported by the Thailand Research Fund (TRF) under TRF Research-Team Promotion Grant (TRF Senior Research Scholar).

region). Tourism generated nearly 40,000 million Baht (about US\$1,055 million), 52% of which came from international tourists and 48% from domestic tourists (Tourism Authority of Thailand [TAT], 2008).

The majority of hotels in Chiang Mai are 3-star or less, which can be explained by the fact that over the past 20 years the hotel and tourism infrastructure in Chiang Mai has developed to meet the needs of mainly two tourist segments, backpacker and domestic lower- to middle-income tourists (Mingsarn *et al*, 2005). Hence, hotel competitive strategy was based on low prices (following TAT, 54.55% of hotels in Chiang Mai charged a rate below US\$26/night in 2006), rather than improving the quality of their services (Mingsarn and Akarapong, 2005).

However, in recent years, the northern region of Thailand, and Chiang Mai in particular, has been experiencing remarkable changes from both tourism supply and demand. There has been a continuous effort to increase the amount of tourism attractions (Chiang Mai Zoo, Chiang Mai Night Safari and the Royal Flora Exhibition) and an increasing demand of middle/high-end markets in this region. These have encouraged the growth of tourist arrivals and attracted investment in tourism facilities offering higher-quality standards.

Table 1 presents a summary of the main changes experienced by Chiang Mai hotels during the past decade. The number of establishments increased from 199 hotels in 2002 to 341 hotels in 2006, while rooms grew by around 39.76%. Interestingly, this increase in accommodation supply has not harmed the business indicators of the companies; in fact, revenue per room rose by 140.70%, the occupancy rate increased from 48.15% in 2002 to 53.56% in 2006, while the average daily rate (ADR) and revenue per available room (RevPar) shot up by 54.83% and 72.22%, respectively.

In Chiang Mai, the last decade has been characterized by the development of three new types of establishments with regards to the composition of accommodation capacity. First, there are small boutique hotels, which have unique architecture and services (Nobles and Thompson, 2001). The small size of this kind of establishment implies that they can be built quickly and do not require much investment. At the beginning of 2009, Chiang Mai had more than 15 hotel establishments of this type, attracting both domestic and foreign tourists.

Second, several 5-star hotels have been built by both domestic and foreign investors. In 2007 Chiang Mai had five 5-star hotels, adding up to approximately 510 rooms – Four Seasons Chiang Mai, Mandarin Oriental Dhara Dhevi Chiang Mai, Sofitel Riverside Chiang Mai, The Chedi Chiang Mai and D2 Chiang Mai (Vorapong, 2007) – and during 2008–2009 four more 5-star hotels opened with 169 rooms. In 2010, the Shangri-la Hotel and Spa Chiang Mai (281 rooms) and Le Meridian Chiang Mai (384 rooms) were opened. So, in 2010 Chiang Mai had eleven 5-star hotels, with a total of 1,344 rooms.

Finally, service apartments have also grown in Chiang Mai during the last decade. This type of accommodation provides similar services as hotels and focuses mainly on long-stay tourists.

All the above quantitative and qualitative changes in Chiang Mai's accommodation supply, together with the different shocks that have affected tourism in the region and the emergence of new destinations in the South Asian area, lead to a remarkable toughening in the competitive environment for hotel

Table 1. Basic information on hotels in Chiang Mai between 2002 and 2006.

Item	2002	2006	Change (%)
Number of hotels	199	341	71.36
Number of guest rooms	13,466	18,820	39.76
<i>Number of tourist stays in hotels (million)</i>	1.91	2.76	44.55
Domestic	0.93	1.40	50.99
International	0.98	1.36	38.47
<i>Accommodation expenses^a (US\$/person/day)</i>	14.34	17.48	21.89
Domestic	13.73	14.67	6.91
International	14.98	20.44	36.42
Average length of stay (day/person)	1.73	2.72	57.23
Room sale revenue ^b (US\$ million)	47.6	114.7	140.70
Occupancy rate (%)	48.15	53.56	11.24
Average daily rate (ADR) (US\$/room)	20.13	31.17	54.83
Revenue per available room (RevPar) (US\$/room)	9.69	16.70	72.22

Notes: ^aExchange rate in 2002 = 43.00 and 2006 = 37.93 Baht/US\$; ^badjusted with general consumer price index of Chiang Mai (2002 as base year).

Source: TAT (2002 and 2006).

establishments. In a globalized and highly technological market, competitive pressure must be countered by improvements in productivity and quality (Barros, 2006). In order to achieve advances in the former strategy, hotels must improve managerial efficiency or operational efficiency, or both. Hotels with higher efficiency will have higher competitiveness (Anderson *et al*, 1999; Hwang and Chang, 2003).

In this context, this article assesses the change in both the managerial efficiency and management technology of a sample of hotels in Chiang Mai. The study applies Banker *et al* (1984) data environment analysis (DEA) and the Malmquist productivity approach proposed by Färe *et al* (1992) to measure the managerial efficiency of 43 hotels in 2002 and 2006, and to estimate the change in both managerial efficiency and management technology of 43 hotels during 2002 and 2006.

The results of the study are used to assess the competitive potential of these hotels across various characteristics. Policy makers and private companies might use the results to identify the weaknesses of current business patterns and to formulate appropriate guidelines to enhance the short- and long-run competitiveness of various hotel groups under present and future market conditions.

Literature review

The analysis of hotel efficiency is restricted to a small number of studies (Barros, 2005b). This may be due to limitation of the data available, as well as to difficulties in defining the output and input variables of a hotel. There are different methodologies used to measure hotel efficiency. Baker and Riley (1994) suggested the use of ratios to analyse the performance of the lodging

industry, while Wijeyesinghe (1993) recommended the application of break-even analysis to appraise tourism management effectiveness. Other studies put forward the use of yield management for analysing hotel management efficiency (Brotherton and Mooney, 1992; Donaghy *et al*, 1995).

Data envelopment analysis (DEA) was first used by Morey and Dittman (1995) to study the managerial efficiency of hotels. This technique is suitable as it enables a comparative study of managerial efficiency at firm level and provides useful economic information; for example, the way in which each firm uses resources to maximize output.

The stochastic frontier approach (SFA) has also been used to study hotel managerial efficiency (Anderson *et al*, 1999). The main limitation of this methodology is in determining the appropriate functional forms (Akarapong, 2004; Barros and Athanassiou, 2004; Barros and Dieke, 2008). Moreover, cost function is often used instead of production function because it is easier to obtain cost function variables for the hotel industry. These shortcomings explain why DEA is normally preferred for hotel managerial efficiency studies.

If the DEA technique is applied, it is not necessary to determine which economic model or functional form should be used. However, one common problem of studies that use DEA, and this paper is no exception, is the specification of the business operation's input and output variables. Input variables used in several studies of hotel managerial efficiency, such as Hwang and Chang (2003), Barros and Mascarenhas (2005) and Bo and Liping (2004), include: number of employees, number of guest rooms, total operating expenses, total costs, etc. Output variables used in the literature include: total revenue, sales, number of guests, etc (Anderson *et al*, 2000; Bo and Liping, 2004; Önüt and Soner, 2006). In empirical applications, input and output variables are determined depending on the limitations of data and the objective of each specific study.

The Malmquist productivity approach has been developed from the DEA technique and the Malmquist productivity index to measure productivity change over time, which includes change in managerial efficiency, management technology and total factor productivity (Färe *et al*, 1990; Hjalmarsson *et al*, 1992; Price and Weyman-Jones, 1996). A number of studies on hotels, such as those by Hwang and Chang (2003), Barros and Alves (2004) and Barros (2005a), have used this approach combined with the above technique.

There have been several studies conducted in Thailand on hotel operational efficiency at the national, regional and provincial levels, employing either the DEA technique (Akarapong, 2004; Pharatee, 2005) or the SFA technique, such as the study by Mingsarn *et al* (2005). However, as far as these authors are aware, there is no research that differentiates between the change in the managerial efficiency and management technology of hotels.

Table 2 summarizes the main studies on hotel efficiency, their methodology and the sample size that is applied.

Conceptual framework and methodology

Managerial efficiency is the proportion of total organizational resources that contributes to productivity during the production process. A change in

Table 2. Main studies on the efficiency frontier methods in the hotel business.

Author	Methodology used	Sample size
<i>International</i>		
Morey and Dittman (1995)	DEA (CRS)	54 hotels in the USA
Anderson <i>et al</i> (1999)	SFA (error component)	48 hotels in the USA
Hwang and Chang (2003)	Malmquist index	45 hotels in Taiwan
Bo and Liping (2004)	DEA two-stage approach	242 hotels in California, USA
Barros and Mascarenhas (2005)	DEA (VRS) (TE, AE, EE)	43 hotels in Portugal
Sigala (2004)	DEA stepwise	93 hotels in the UK
Shang <i>et al</i> (2008)	DEA (three-stage)	87 hotels in Taiwan
Barros <i>et al</i> (2009)	DEA (Luenberger index)	15 hotels in Portugal
Song <i>et al</i> (2009)	DEA the game cross-efficiency	23 hotels in Taiwan
<i>Thailand</i>		
Akarapong (2004)	DEA (VRS) two-stage approach	477 hotels in Northern Thailand
Mingsarn <i>et al</i> (2005)	SFA (TE effect model)	1,752 hotels throughout Thailand

Note: TE = technical efficiency; AE = allocative efficiency; EE = total economic efficiency.

managerial efficiency reflects the ability of businesses to compete in a market economy (Hwang and Chang, 2003).

The assessment of relative efficiency according to the Farrell concept (1957) is measured by comparing actual performance with efficient performance at the frontier. The main quantitative techniques proposed in the literature for measuring efficiency include DEA (using linear programming methods) and SFA (based on econometrics methods) applying the error components model (Anderson *et al*, 1999; Barros, 2004) and the technical efficiency effect model (Mingsarn *et al*, 2005).

The DEA technique can be used under the assumption of constant returns to scale (CRS), commonly known as the CCR model (Charnes *et al*, 1978), or under the assumption of variable returns to scale (VRS), commonly called the BCC model, which adds an additional constant variable in order to permit VRS (Banker *et al*, 1984; Sohn and Moon, 2004).

There are several limitations of DEA compared with SFA: it has no error term (hence, errors in the variables would be included in the efficiency scores), there are no distributional assumptions for the inefficiency term, and DEA scores have no statistical significance. Finally, DEA is sensitive to outliers (Coelli *et al*, 1998; Barros, 2006; Barros and Dieke, 2008). However, DEA also has some advantages over SFA: it permits multiple inputs and outputs, does not include a functional form that restricts the data and it does not need large data sets (Barros and Athanassiou, 2004; Barros and Dieke, 2008). Even if both DEA and SFA are useful for analysing efficiency, most studies choose the DEA methodology (Coelli *et al*, 1998; Akarapong, 2005; Barros and Dieke, 2008).

DEA, as formulated by Banker *et al* (1984), and the Malmquist productivity approach, developed by Färe *et al* (1992), are used in this study instead of SFA, due to uncertainty regarding the determination of input and output variables

for hotels, as well as in determining the appropriate economic model and functional form to be used in evaluating change in hotel managerial efficiency. These two techniques will be discussed briefly below.

Measurement of managerial efficiency using data envelopment analysis

Charnes *et al* (1978) developed a mathematical model following the concept proposed by Farrell (1957) for measuring the efficiency of a firm. The methodology is applied to n firms and each is regarded as a decision-making unit, or DMU, which uses m inputs to produce s outputs.

DMU_o consumes the amount x_{io} of input i ($x_{io} \geq 0$) and produces y_{ro} of output r ($y_{ro} \geq 0$). The ratio of output to input is used to measure the relative efficiency of the DMU_o, to be evaluated relative to the ratios of all firms (DMU_j; $j = 1, 2, \dots, n$; Cooper *et al*, 2004).

Each DMU efficiency can be obtained by maximizing the ratio of total weighted output over total weighted input for all units, subject to the constraint that all such ratios of the firms in the sample, including DMU_o, are less than or equal to one. The mathematical programming problem may thus be represented as (Cooper *et al*, 2004):

$$\begin{aligned} \max \ b_o(\mu, v) &= \frac{\sum_r \mu_r y_{ro}}{\sum_i v_i x_{io}} \\ \text{subject to: } \frac{\sum_r \mu_r y_{rj}}{\sum_i v_i x_{ij}} &\leq 1; j = 1, \dots, n; \text{ and } \mu_r, v_i \geq 0; \forall i, r \end{aligned} \quad (1)$$

where x_{ij} is the amount of input i of DMU_j, y_{rj} is the amount of output r from DMU_j, μ_r is the weight given to output r , v_i is the weight given to input i , n is the number of firms, s is the number of outputs and m is the number of inputs.

One problem with this particular formulation is that it has an infinite number of solutions: if (μ^*, v^*) is optimal, $(\alpha\mu^*, \alpha v^*)$ is also optimal for any $\alpha > 0$. To avoid this limitation the constraint, $\sum_{i=1}^m v_i x_{io} = 1$, is imposed (Coelli *et al*, 1998):

$$\begin{aligned} \max \ z &= \sum_{r=1}^s \mu_r y_{ro} \\ \text{subject to } \sum_{r=1}^s \mu_r y_{rj} - \sum_{i=1}^m v_i x_{ij} &\leq 0; \quad \sum_{i=1}^m v_i x_{io} = 1 \text{ and } \mu_r, v_i \geq 0. \end{aligned} \quad (2)$$

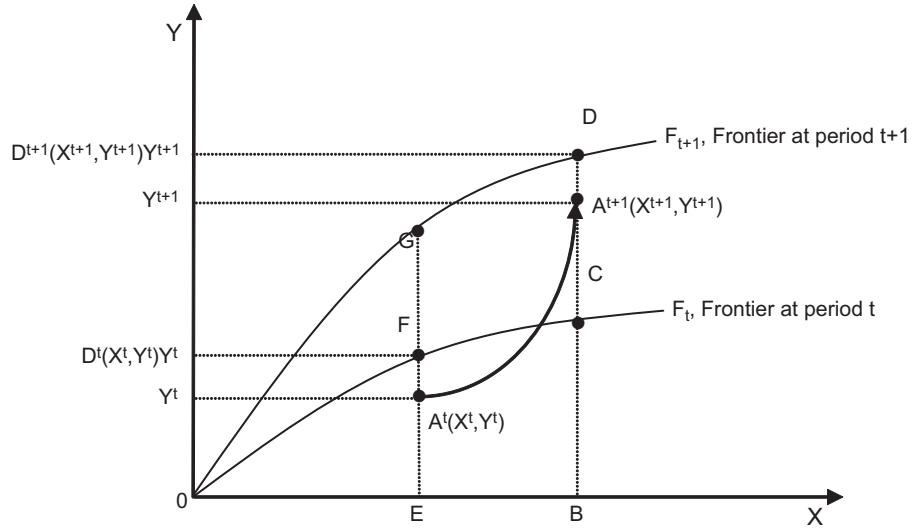
The above model is in 'multiplier form' and we can formulate the problem as:

$$\begin{aligned} \min \theta - \varepsilon (\sum_{i=1}^m s_i^- + \sum_{r=1}^s s_r^+) \\ \text{subject to } \sum_{j=1}^n x_{ij} \lambda_j + s_i^- &= \theta x_{io} \quad i = 1, 2, \dots, m; \quad \sum_{j=1}^n y_{rj} \lambda_j - s_r^+ = y_{ro} \quad r = 1, 2, \dots, s; \\ \text{and} \\ \lambda_j, s_i^-, s_r^+ &\geq 0 \quad \forall i, j, r \end{aligned} \quad (3)$$

where the s_{ro}^+ and s_{ro}^- are slack variables. θ is the efficiency score of each DMU with values ranging from 0 to 1 ($0 \leq 1$). A value θ equal to 1 indicates a point on the frontier; hence, the DMU is efficient according to the Farrell (1957) definition. Thus, the performance of DMU_o is efficient if $\theta_o^* = 1$, $s_{io}^{-*} = s_{io}^{+*} = 0$, where the asterisk denotes optimal values, their efficiency score should be equal to 1 and DMU_o is on its frontier line. If $\theta_o^* < 1$, the DMU_o is inefficient; this can be derived from $x_{ij}' = \theta^* x_{io} - s_{io}^{-*}$ and $y_{rj}' = y_{ro} + s_{ro}^{+*}$, where s_{io}^{-*} imply input surpluses and slacks, while s_{ro}^{+*} imply output shortfalls of DMU_o (Hwang and Chang, 2003).

The above version of the model, generally called the CCR model, is the appropriate one if every DMU operates at its optimal scale of production, as it assumes CRS. However, it is not appropriate under imperfect competition or if the firms do not operate at their optimal scale of production. Therefore, Banker *et al* (1984) proposed another model under the assumption of VRS. This alternative model (BCC) adds a convexity constraint ($\sum_{j=1}^n \lambda_j = 1$), which essentially ensures that an inefficient firm is only 'benchmarked' against DMUs of a similar size.

In a further development of the model, the constraint $\sum_{j=1}^n \lambda_j = 1$ is replaced by $\sum_{j=1}^n \lambda_j \leq 1$, so that the values of efficiency score under non-increasing returns to scale (NIRS) can also be derived. Finally, the model under the assumption of VRS that is used preferably to estimate efficiency is:


$$\begin{aligned} \min \theta - \varepsilon (\sum_{i=1}^m s_i^- + \sum_{r=1}^s s_r^+) \\ \text{subject to } \sum_{j=1}^n x_{ij} \lambda_j + s_i^- = \theta x_{io} \quad i = 1, 2, \dots, m; \\ \sum_{j=1}^n y_{rj} \lambda_j - s_r^+ = y_{ro} \quad r = 1, 2, \dots, s; \text{ and } \sum_{j=1}^n \lambda_j \leq 1, \lambda_j, s_i^-, s_r^+ \geq 0 \quad \forall i, j, r \end{aligned} \quad (4)$$

If any firm does not operate at its optimal scale of production, the efficiency score under the assumption of CRS (θ_{CRS}) and the efficiency score under the assumption of VRS (θ_{VRS}) would not be equal. The ratio of $\theta_{CRS}/\theta_{VRS}$, called scale efficiency (SE), measures the impact of scale size on the productivity of a DMU (Thanassoulis, 2001). θ_{CRS} , θ_{VRS} and SE take values between 0 and 1 and $\theta_{CRS} = \theta_{VRS} \times SE$.

Measurement of managerial efficiency change using the Malmquist productivity approach

The Malmquist index was first suggested by Malmquist (1953) as a quantitative index for analysing the consumption of inputs. Färe *et al* (1992) combined both the measurement of efficiency from Farrell (1957) and the measurement of productivity from Caves *et al* (1982) to construct a Malmquist productivity index using input and output data obtained from DEA. This DEA-based Malmquist productivity index has proven itself to be a good tool for measuring the productivity change of DMUs (Hosseinzadeh Lotfi *et al*, 2007). A basic conceptual framework of its application is shown in Figure 1.

From Figure 1, F_t is the frontier line at period t and F_{t+1} is the frontier line at period $t + 1$ (the frontier line is the maximum amount of outputs that can be achieved by each amount of inputs), while $A^t(x^t, y^t)$ and $A^{t+1}(x^{t+1}, y^{t+1})$

Figure 1. Measurement of managerial efficiency changes, output-oriented.
Source: Adapted from Hwang and Chang (2003).

represent input and output vectors of a DMU A at t and $t + 1$, respectively. Thus, the shift in efficiency (SIE) from period t to $t + 1$ can be described by:

$$SIE_{t,t+1} = \left[\frac{BD}{BC} \cdot \frac{EG}{EF} \right]^{\frac{1}{2}}$$

The catching-up in efficiency (CIE) from period t to $t + 1$, which represents the ratio between the relative efficiency of a DMU A at $t + 1$ compared with t , can be represented by:

$$CIE_{t,t+1} = \frac{BA^{t+1}}{BD} \cdot \frac{EA^t}{EF}$$

Therefore, the total efficiency change (TEC) of a DMU A from t to $t + 1$ is:

$$TEC_{t,t+1} = CIE_{t,t+1} \times SIE_{t,t+1}$$

From the above concept, Caves *et al* (1982) and Färe *et al* (1992) applied the geometric meaning of the aforementioned distance function to measure the SIE from period t to $t + 1$, which can be represented as:

$$SIE_{t,t+1} = \left[\frac{BD}{BC} \cdot \frac{EG}{EF} \right]^{\frac{1}{2}} = \left[\frac{D^{t+1}(x^{t+1}, y^{t+1})}{D^t(x^{t+1}, y^{t+1})} \cdot \frac{D^{t+1}(x^t, y^t)}{D^t(x^t, y^t)} \right]^{\frac{1}{2}}. \quad (5)$$

While CIE from period t to $t + 1$ can be represented as:

$$CIE_{t,t+1} = \left[\frac{BA^{t+1}}{BD} \cdot \frac{EA^t}{EF} \right] = \left[\frac{D^{t+1}(x^{t+1}, y^{t+1})}{D^t(x^t, y^t)} \right]^{-1} = \left[\frac{D^t(x^t, y^t)}{D^{t+1}(x^{t+1}, y^{t+1})} \right], \quad (6)$$

TEC of DMU A from period t to $t + 1$ can be represented as:

$$\begin{aligned} TEC_{t,t+1} &= CIE_{t,t+1} \times SIE_{t,t+1} = \frac{D^t(x^t, y^t)}{D^{t+1}(x^{t+1}, y^{t+1})} \cdot \left[\frac{D^{t+1}(x^{t+1}, y^{t+1})}{D^t(x^{t+1}, y^{t+1})} \cdot \frac{D^{t+1}(x^t, y^t)}{D^t(x^t, y^t)} \right]^{\frac{1}{2}} \\ &= \left[\frac{D^t(x^t, y^t)}{D^{t+1}(x^{t+1}, y^{t+1})} \cdot \frac{D^{t+1}(x^t, y^t)}{D^{t+1}(x^{t+1}, y^{t+1})} \right]^{\frac{1}{2}} \end{aligned} \quad (7)$$

Equation (7), which is a Malmquist productivity index, can be used as a measure of efficiency change of DMU A from t to $t + 1$. Applying this equation, we can use model (4) to estimate efficiency at period t and at period $t + 1$ from the two distance functions $D^t(x^t, y^t)$ and $D^{t+1}(x^{t+1}, y^{t+1})$.

In order to define the distance function $D^{t+1}(x^t, y^t)$, we must use the efficient frontier at period $t + 1$ as the reference set for measuring the efficiency of a certain DMU at period t . This can be derived from the following model:

$$\begin{aligned} D^{t+1}(x^t, y^t) &= \min_{\theta, \lambda} \theta \\ \text{subject to } &\sum_{j=1}^n x_{ij}^{t+1} \lambda_j^{t+1} - \theta x_{io}^t \leq 0, \quad i = 1, 2, \dots, m; \\ &\sum_{j=1}^n y_{rj}^{t+1} \lambda_j^{t+1} - y_{ro}^t \geq 0, \quad r = 1, 2, \dots, s; \text{ and } \sum_{j=1}^n \lambda_j^{t+1} \leq 1; \quad \lambda_j^{t+1} \geq 0, \quad j = 1, 2, \dots, n \end{aligned} \quad (8)$$

Similarly, $D^t(x^{t+1}, y^{t+1})$ can be defined using the efficient frontier at period t as the reference set for measuring the efficiency of a certain DMU at period $t + 1$:

$$\begin{aligned} D^t(x^{t+1}, y^{t+1}) &= \min_{\theta, \lambda} \theta \\ \text{subject to } &\sum_{j=1}^n x_{ij}^t \lambda_j^t - \theta x_{io}^{t+1} \leq 0, \quad i = 1, 2, \dots, m; \\ &\sum_{j=1}^n y_{rj}^t \lambda_j^t - y_{ro}^{t+1} \geq 0, \quad r = 1, 2, \dots, s; \text{ and } \sum_{j=1}^n \lambda_j^t \leq 1; \quad \lambda_j^t \geq 0, \quad j = 1, 2, \dots, n \end{aligned} \quad (9)$$

Description of data

The main objective of this study is to estimate managerial efficiency and the change in managerial efficiency and management technology of a representative sample of hotels in Chiang Mai for the period between 2002 and 2006.

Data used in the study. The data used in this study have a panel data structure. They were collected from the financial balance sheets of profit and loss statements of Chiang Mai's hotels as reported to the Department of Trade

Table 3. General financial information on hotel samples in Chiang Mai, 2002 and 2006.

Item	2002	2006	Change (%)
Number of hotels	43	43	—
Type of business registration (%)	100	100	—
Partnership limited	23	23	—
Limited company	77	77	—
Average revenue (US\$ million) ^a	0.65	0.74	13.48
Registered capital stocks (US\$ million) ^a	1.42	1.68	18.19
Liability (US\$ million) ^a	0.91	1.17	29.23
Total cost of sales (US\$ million) ^a	0.28	0.31	11.05
Selling and administrative expenses (US\$ million) ^a	0.22	0.26	15.51
Total assets (US\$ million) ^a	2.58	2.20	-14.43
Shareholders' equity (US\$ million) ^a	1.06	1.88	76.25
Occupancy rate (%)	35.05	44.64	27.36

Note: ^aExchange rate in 2002 = 43.00 and 2006 = 37.93 Baht/US\$ and adjusted with general consumer price index of Chiang Mai (2002 as base year).

Source: Financial balance sheets and profit and loss statements, Department of Trade Promotion in 2002 and 2006.

Promotion (Ministry of Commerce) in 2002 and 2006. Only those hotels with balance sheets for both years and those without deficit were selected for the sample. The sample included 43 hotels, of which 77% were registered as limited companies and 23% as limited partnership (see Table 3 for details).

The empirical analysis includes five input variables. In order to capture the capital investments of the hotels, there are three variables which measure the physical capital: number of guest rooms (Hwang and Chang, 2003), total assets and shareholder's equity. The total cost of sales represents the cost of providing the services; hence, total cost of goods sold. Finally, selling and administrative expense is the sum of all direct and indirect selling expenses and all general and administrative expenses of a hotel, such as advertising expense, franchise expense, tax, interest, etc.

The output variable is the total revenue of hotels, which is used to represent the output of the managerial process (Morey and Dittman, 1995; Anderson *et al*, 1999). Regarding output, hotel production is a composite of different units with different ratios of revenue as catering, souvenir shop, guest rooms, restaurant and some others. Normally, 30–50% of total hotel revenue in Chiang Mai is non-guest room revenue (Mingsarn *et al*, 2005).

Results of the study

The empirical analysis provided below assumes VRS and imperfect competition; thus, each production unit may not be able to operate at its optimal scale (Mingsarn *et al*, 2005). To minimize the potential problem derived from the presence of outliers, the data have been transformed into natural logarithms.

The results are divided into two major parts. The first corresponds to the

Table 4. Managerial efficiency of hotel samples in Chiang Mai 2002 and 2006 (%).

Item	Number of hotels	2002	2006
Average managerial efficiency	43	0.7660	0.7678
<i>Type of business registration</i>		<i>t-statistic = 1.798</i> (<i>df</i> = 41; <i>Sig</i> = 0.080)	<i>t-statistic = 1.588</i> (<i>df</i> = 41; <i>Sig</i> = 0.120)
Partnership limited	10	0.8432	0.8349
Limited company	33	0.7427	0.7475
<i>Number of guest rooms</i>		<i>F-statistic = 10.803</i> (<i>df</i> = 2,40; <i>Sig</i> = 0.000)	<i>F-statistic = 11.988</i> (<i>df</i> = 2,40; <i>Sig</i> = 0.000)
Fewer than 60	15	0.8223	0.8070
60–150	14	0.8294	0.8576
More than 150	14	0.6325	0.6359
<i>Total revenue (2006)</i>		<i>F-statistic = 15.820</i> (<i>df</i> = 2,40; <i>Sig</i> = 0.000)	<i>F-statistic = 16.993</i> (<i>df</i> = 2,40; <i>Sig</i> = 0.000)
Less than 5 million Baht	16	0.8991	0.8991
5–10 million Baht	9	0.7238	0.7336
Higher than 10 million Baht	18	0.6689	0.6682
<i>Room rates</i>		<i>t-statistic = 2.893</i> (<i>df</i> = 41; <i>Sig</i> = 0.006)	<i>t-statistic = 3.023</i> (<i>df</i> = 41; <i>Sig</i> = 0.004)
Less than 1,000 Baht/night	28	0.8134	0.8157
Higher than 1,000 Baht/night	15	0.6777	0.6783

evaluation of the managerial efficiency of hotels in Chiang Mai in 2002 and 2006. The second part presents the results of the estimation of managerial efficiency and technological change of 43 hotel samples in Chiang Mai.

Managerial efficiency of hotels in Chiang Mai

Evaluation of managerial efficiency for 2002 and 2006 is presented in Table 4. Out of the sample of 43 establishments, only 6 hotels in 2002 and 7 in 2006 (hence, around 15%) were managerially efficient (the managerial efficiency index of these establishments was equal to 1). The average managerial efficiency was 76.60% in 2002 and 76.78% in 2006.

As can be seen in Table 4, some of the characteristics of the hotels influence the results on managerial efficiency for both periods. In particular, the size of hotel (measured as number of guest rooms or total revenue) and the room rates (the sample is split at a rate of US\$25 with an exchange rate of 40 Baht/US\$) affected managerial efficiency. As can be seen from the table, the smaller hotels and those with cheaper rates have higher managerial efficiency than the larger hotels, with statistical significance at the 99% level of confidence. This is an unexpected result. However, the analysis of the characteristics of the establishments and the reality give some insights on the economics behind this result. Smaller hotels may have higher managerial efficiency than larger hotels because those who own and manage the business are often the same people. As was

Table 5. Change in managerial efficiency and management technology of hotel samples in Chiang Mai, 2002–2006.

Item	Managerial efficiency	Management technology	Total factor productivity
Average values	1.0049	0.9755	0.9871
Type of business registration	<i>t-statistic</i> = -0.631 (<i>df</i> = 41; <i>Sig</i> = 0.531)	<i>t-statistic</i> = -2.157 (<i>df</i> = 41; <i>Sig</i> = 0.037)	<i>t-statistic</i> = -0.480 (<i>df</i> = 9.61; <i>Sig</i> = 0.642)
Partnership limited	0.9944	0.9566	0.9745
Limited company	1.0080	0.9812	0.9909
Number of guest rooms	<i>F-statistic</i> = 1.818 (<i>df</i> = 2,40; <i>Sig</i> = 0.176)	<i>F-statistic</i> = 3.089 (<i>df</i> = 2,40; <i>Sig</i> = 0.057)	<i>F-statistic</i> = 2.555 (<i>df</i> = 2,40; <i>Sig</i> = 0.090)
Fewer than 60	0.9834	0.9632	0.9608
60–150	1.0242	0.9724	1.0046
More than 150	1.0085	0.9917	0.9976
Total revenue (2006)	<i>F-statistic</i> = 0.217 (<i>df</i> = 2,40; <i>Sig</i> = 0.806)	<i>F-statistic</i> = 4.419 (<i>df</i> = 2,40; <i>Sig</i> = 0.018)	<i>F-statistic</i> = 0.421 (<i>df</i> = 2,40; <i>Sig</i> = 0.659)
Less than 5 million Baht	1.0022	0.9608	0.9764
5–10 million Baht	1.0167	0.9700	0.9917
Higher than 10 million Baht	1.0013	0.9913	0.9943
Room rates	<i>t-statistic</i> = 0.111 (<i>df</i> = 41; <i>Sig</i> = 0.912)	<i>t-statistic</i> = -2.135 (<i>df</i> = 33.60; <i>Sig</i> = 0.040)	<i>t-statistic</i> = -1.437 (<i>df</i> = 37.71; <i>Sig</i> = 0.159)
Less than 1,000 Baht/night	1.0056	0.9696	0.9797
Higher than 1,000 Baht/night	1.0035	0.9864	1.0008

Note: Coefficients with a value greater than 1 indicate change in a good direction; those with a value less than 1 indicate change in a declining direction; those with a value equal to 1 indicate no change.

described in the introduction, many of these establishments concentrate on a price competitiveness strategy that requires a strict control of costs, which can be gained through improvements in managerial efficiency. Smaller hotels are normally family run, and therefore more flexible and more managerially mobile than larger hotels. In contrast, large hotels may have difficulties in reducing operation costs. Finally, a significant proportion of the large hotels do not belong to international chains, therefore missing some of the benefits that may be gained from the economies of scale derived from the international network.

Change in total factor productivity, managerial efficiency and management technology of hotels in Chiang Mai

The results of applying the Malmquist productivity approach are presented in Table 5. This table provides critical information on understanding the evolution of Chiang Mai's hotels, providing a close look at total factor productivity. In particular, the table distinguishes between managerial efficiency and management technology. During the period from 2002 to 2006, 23 hotels in the sample were found to have improved their managerial efficiency and nearly half

of the sample (21 hotels) were found to have higher total factor productivity, while only 5 hotels were found to have higher management technology (all of them were medium-size and large hotels).

Comparison of the average values for 2002 and 2006 shows a slightly better managerial efficiency and a decrease in management technology and total factor productivity. Hence, interpretation of the results indicates that the hotels were able to maintain aggregate managerial efficiency in order to retain their competitiveness, but they failed to improve their management technology (due to a lack of investment). From a long-run perspective, these results may lead to losses in hotel competitiveness in the future.

Both managerial efficiency and management technology performed worse in smaller hotels, in partnership companies and in hotels charging lower room rates, with statistical significance at the 90% level of confidence. A closer look at the table indicated that during the period analysed the medium-size and large hotels were able to catch up slightly on managerial efficiency. On the other hand, small hotels should pay more attention to improving management technology in order to maintain their competitiveness.

The results of the study reveal that more than half of the hotels did maintain their managerial efficiency, but a few hotels improved their management technology to strengthen their competitiveness (such as improving their computer system to adapt to online purchases). Increasing managerial efficiency is obviously important, but it only helps to strengthen competitiveness in the short run. Hotels should also improve their management technology in order to sustain their competitiveness in the long run.

Based on the results, the hotels can be classified into groups showing the relationship between managerial efficiency in 2006 and the change in managerial efficiency (modified from Hwang and Chang, 2003, and Barros, 2005a):

- (1) *Hotels with a high competitiveness and better management.* Hotels having managerial efficiency in 2006 and which have also increased their managerial efficiency with respect to that in 2002. Eleven hotels fall into this category, with a high potential to compete.
- (2) *Hotels with a high competitiveness but with no improvement in their management.* The managerial efficiency score of these hotels was higher than average in 2006, but they had lower managerial efficiency compared to that of 2002. These hotels, nine establishments fall into this group, still retain competitiveness but they may lose their potential to compete in the long run if they do not improve their managerial efficiency. With the appropriate strategy, they could develop into a group with a high potential to compete.
- (3) *Hotels with low competitiveness but with better management.* Establishments with a managerial efficiency score lower than the average of the sample in 2006, but they have increased their managerial efficiency. In the future, this group, composed of 12 hotels, may be able to develop and move themselves up into the group with a high potential to compete.
- (4) *Hotels with low competitiveness and lack of improvement.* In 2006 11 hotels had a managerial efficiency score lower than the average, and they were also

below their own score in 2002. Hence, they have a low ability to compete and show no success in improving their managerial efficiency. In a highly competitive environment, these hotels have to change their strategy or they may go out of business.

Conclusion

In earlier studies in Thailand (Akarapong, 2004, and Mingsarn *et al*, 2005), the efficiency of hotels tended to be low. This article investigates the change in total factor productivity of hotels in Chiang Mai, Thailand, during 2002–2006. The DEA technique was used to evaluate managerial efficiency, while a Malmquist productivity approach was used to distinguish between the change in managerial efficiency and management technology.

The results from the Malmquist productivity approach allow the researchers to estimate a decline of the total factor productivity of accommodation establishments in Chiang Mai between 2002 and 2006 and to explain the contribution of its different components. While the results prove that the hotels in the sample were successful in maintaining their managerial efficiency, the lack of investment in management technology caused a decline in total factor productivity.

The paper also presents estimates of the impact of some hotel characteristics on the level and variation of managerial efficiency, management technology and total factor productivity. The most remarkable is the effect of the size (measured by number of rooms) and the room rate of the establishment. In particular, the level of managerial efficiency was higher for smaller establishments. While this may seem a surprising result, the distinction between total factor productivity and managerial efficiency must be clear. In the case of the latter, the authors consider the greater flexibility of smaller establishments to be the main explanation. In particular, larger establishments tend to implement standard processes and technologies that introduce some rigidity and that may not always provide appropriate environments for different cultures, human resources and labour relations. Regarding managerial technological change, the larger hotels performed better than the smaller hotels.

Hence this study, which separated total productivity into managerial efficiency and management technology, pointed out that the firms in the sample were indeed successful in maintaining managerial efficiency but failed to invest sufficiently in management technology. The results suggest some policy recommendations for the region's private and public stakeholders, but which probably could be extended to other regions. First, some caution must be exercised when applying standard processes and technologies to different areas. In particular, the labour force must be trained to adopt new technologies, some processes may have to be adapted to the characteristics of the people who are going to implement them, and flexibility can be important for managerial efficiency in the short run. Second, a shortfall in investment in technology could hamper productivity in the long term. Hence, maintaining an acceptable level of managerial efficiency is not a substitute for improving management technology or for endeavouring continuously to raise service quality in order to adapt to customers' preferences.

References

- Akarapong Untong (2004), *Efficiency of Hotel and Guesthouse in Upper North of Thailand*, Documentation of special lectures, Faculty of Management and Information Sciences, Naresuan University [in Thai].
- Akarapong Untong (2005), *Manual of Using Program DEAP 2.1 for Analyzing Efficiency of Data Envelopment Analysis*, Social Research Institute, Chiang Mai University, Chiang Mai [in Thai].
- Anderson, R.I., Fish, M., Xia, Y., and Michello, F. (1999), 'Measuring efficiency in the hotel industry: a stochastic frontier approach', *International Journal of Hospitality Management*, Vol 18, No 1, pp 45–57.
- Anderson, R.I., Fok, R., and Scott, J. (2000), 'Hotel industry efficiency: an advanced linear programming examination', *American Business Review*, Vol 18, No 1, pp 40–48.
- Baker, M., and Riley, M. (1994), 'New perspectives on productivity in hotels: some advances and new directions', *International Journal of Hospitality Management*, Vol 13, No 4, pp 297–311.
- Banker, R.D., Charnes, A., and Cooper, W.W. (1984), 'Some models for estimating technical and scale inefficiencies in data envelopment analysis', *Management Science*, Vol 30, No 9, pp 1078–1092.
- Barros, C.P. (2004), 'A stochastic cost frontier in the Portuguese hotel industry', *Tourism Economics*, Vol 10, No 2, pp 177–192.
- Barros, C.P. (2005a), 'Evaluating the efficiency of a small hotel chain with a Malmquist productivity index', *International Journal of Tourism Research*, Vol 7, No 3, pp 173–184.
- Barros, C.P. (2005b), 'Measuring efficiency in the hotel sector', *Annals of Tourism Research*, Vol 32, No 2, pp 456–477.
- Barros, C.P. (2006), 'Analysing the rate of technical change in the Portuguese hotel industry', *Tourism Economics*, Vol 12, No 3, pp 325–346.
- Barros, C.P., and Alves, P. (2004), 'Productivity in tourism industry', *International Advances in Economic Research*, Vol 10, No 3, pp 215–225.
- Barros, C.P., and Athanassiou, M. (2004), 'Efficiency in European seaports with DEA: evidence from Greece and Portugal', *Maritime Economics and Logistics*, Vol 6, No 2, pp 122–140.
- Barros, C.P., and Dieke, P.U.C. (2008), 'Technical efficiency of African hotels', *International Journal of Hospitality Management*, Vol 27, No 3, pp 438–447.
- Barros, C.P., and Mascarenhas, M.J. (2005), 'Technical and allocative efficiency in a chain of small hotels', *International Journal of Hospitality Management*, Vol 24, No 3, pp 415–436.
- Barros, C.P., Peypoch, N., and Solonandrasana, B. (2009), 'Efficiency and productivity growth in hotel industry', *International Journal of Tourism Research*, Vol 11, No 4, pp 389–402.
- Bo, A.H., and Liping, A.C. (2004), 'Hotel labor productivity assessment: a Data Envelopment Analysis', *Journal of Travel and Tourism Marketing*, Vol 16, No 2/3, pp 27–38.
- Brotherton, B., and Mooney, S. (1992), 'Yield management progress and prospects', *International Journal of Hospitality Management*, Vol 11, No 1, pp 23–32.
- Caves, D.W., Christensen, L.R., and Diewert, W.E. (1982), 'The economic theory of index numbers and the measurement of input, output and productivity', *Econometrica*, Vol 50, No 6, pp 1393–1414.
- Charnes, A., Cooper, W.W., and Rhodes, E. (1978), 'Measuring the efficiency of decision making units', *European Journal of Operational Research*, Vol 2, No 6, pp 429–444.
- Coelli, T., Prasada Rao, D.S., and Battese, G.E. (1998), *An Introduction to Efficiency and Productivity Analysis*, Kluwer Academic Publishers, Boston, MA.
- Cooper, W.W., Seiford, L.M., and Zhu, J. (2004), *Handbook on Data Envelopment Analysis*, Kluwer Academic Publishers, Boston, MA.
- Donaghy, K., McMahon, U., and McDowell, D. (1995), 'Yield management: an overview', *International Journal of Hospitality Management*, Vol 14, No 2, pp 1339–1350.
- Färe, R., Grosskopf, S., Yaisawarng, S., Li, S., and Wang, Z. (1990), 'Productivity growth in Illinois Electric Utilities', *Resources and Energy*, Vol 12, No 4, pp 383–398.
- Färe, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992), 'Productivity change in Swedish pharmacies 1980–1989: a non-parametric Malmquist approach', *Journal of Productivity Analysis*, Vol 3, No 1, pp 85–101.
- Farrell, M.J. (1957), 'The measurement of productive efficiency', *Journal of the Royal Statistical Society, Series A (General)*, Vol 120, No 3, pp 253–290.
- Hjalmarsson, L., Veiderpass, A., and Mork, K.A. (1992), 'Productivity in Swedish electricity retail distribution', *Scandinavian Journal of Economics*, Vol 94, Supplement, pp S193–S205.

- Hosseinzadeh Lotfi, F., Jahanshahloo, G.R., Shahverdi, R., and Rostamy-Malkhalifeh, M. (2007), 'Cost efficiency and cost Malmquist productivity index with interval data', *International Mathematical Forum*, Vol 2, No 9, pp 441–453.
- Hwang, S.N., and Chang, T.Y. (2003), 'Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan', *Tourism Management*, Vol 24, No 3, pp 357–369.
- Malmquist, S. (1953), 'Index numbers and indifference surfaces', *Trabajos de Estadística*, Vol 4, No 2, pp 209–242.
- Mingsarn Kaosa-ard, and Akarapong Untong (2005), 'Benchmarking the hotel industry of Thailand', *Proceeding of Asia Pacific Tourism Association 11th Annual Conference New Tourism for Asia-Pacific*, 7–10 July 2005, at Korea International Exhibition Center Goyang, Gyeonggi Province, Korea.
- Mingsarn Kaosa-ard, Nukul Kruefoo, and Akarapong Untong (2005), *The Hotel Industry in Thailand*, Social Research Institute, Chiang Mai University, Chiang Mai [in Thai].
- Morey, R., and Dittman, D. (1995), 'Evaluating a hotel GM's performance: a case study in benchmarking', *Cornell Hotel Restaurant and Administration Quarterly*, Vol 36, No 5, pp 30–35.
- Nobles, H., and Thompson, C. (2001), *What Is a Boutique Hotel?* (http://www.hotelonline.com/News/PR2001_4th/Oct01_BoutiqueAttributes.html, accessed 6 September 2009).
- Önüt, S., and Soner, S. (2006), 'Energy efficiency assessment for the Antalya Region hotels in Turkey', *Energy and Buildings*, Vol 38, No 8, pp 946–971.
- Pharatee Kraosit (2005), 'Structure, conduct and performance of tourism industry in Chiang Mai Province', Master Thesis, Faculty of Economics, Chiang Mai University, Chiang Mai [in Thai].
- Price, C.W., and Weyman-Jones, T. (1996), 'Malmquist indices of productivity change in the UK gas industry before and after privatization', *Applied Economics*, Vol 28, No 1, pp 29–39.
- Shang, J., Hung, W., Lo, C., and Wang, F. (2008), 'Ecommerce and hotel performance: three-stage DEA analysis', *The Service Industries Journal*, Vol 28, No 4, pp 529–540.
- Sigala, M. (2004), 'Using Data Envelopment Analysis for measuring and benchmarking productivity in the hotel sector', *Journal of Travel and Tourism Marketing*, Vol 16, No 2/3, pp 39–60.
- Song, H., Yang, S., and Wu, J. (2009), *Measuring Hotel Performance Using the Game Cross-efficiency Approach*, the Second Biennial Conference of IATE 2009, 11–13 December 2009, Chiang Mai.
- Sohn, S.Y., and Moon, T.H. (2004), 'Decision tree based on data envelopment analysis for effective technology commercialization', *Expert Systems with Application*, Vol 26, No 2, pp 279–284.
- TAT [Tourism Authority of Thailand] (2003), *Annual Statistic 2002*, TAT, Bangkok [in Thai].
- TAT [Tourism Authority of Thailand] (2007), *Annual Statistic 2006*, TAT, Bangkok [in Thai].
- TAT [Tourism Authority of Thailand] (2008), *Tourist Statistic 2007* (http://www2.tat.or.th/stat/web/static_index.php, accessed 30 December 2008) [in Thai].
- Thanassoulis, E. (2001), *Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software*, Kluwer Academic Publishers, Norwell, MA.
- Vorapong Muchaotai (2007), 'Situation and trends of tourism and hotels in Chiang Mai' [in Thai], paper presented at the 'Benchmarking the hotel industry of Chiang Mai' meeting held at the Public Policy Studies Institute, Chiang Mai University, Chiang Mai, 19 September 2009.
- Wijeyasinghe, B.S. (1993), 'Breakeven occupancy for hotel operation', *Management Accounting*, Vol 71, No 2, pp 23–33.

Phanin KHRUEATHAI,
Akarapong UNTONG,
Mingsarn KAOSA-ARD,
Renato Andrin VILLANO

MEASURING OPERATION EFFICIENCY OF THAI HOTELS INDUSTRY: EVIDENCE FROM META-FRONTIER ANALYSIS

Abstract

This paper utilizes a unique hotel-level dataset to examine operational efficiency and technology gap in Thailand's hotels. This paper classifies the hotels in Thailand into five groups with distinctive levels of operational technologies. A meta-frontier analysis is applied to evaluate the operational efficiency scores of the hotels in same groups and between groups. The result show that, the hotels in the five groups differ in the use they make of input operational efficiency. Meanwhile, the mean efficiency of the hotels with room rate between 300–900 baht per night and total revenue lower than 1 million baht per year is particularly low. This study suggests to transferring knowledge about operational management from the hotels with higher operational efficiency to the hotels that had low operational efficiency. This might help to improve operational efficiency and competitiveness in long run.

© Phanin Khruethai, Akarapong Untong, Mingsarn Kaosa-ard, Renato Andrin Villano, 2012.

Khruethai Phanin, Faculty of Management Science, Uttaradit Rajabhat University, Thailand.
Untong Akarapong, Student of Tourism and Environmental Economics, The University of the Bale-
aric Islands, Spain.

Kaosa-ard Mingsarn, Public Policy Studies Institute Chiang Mai University, Thailand.
Villano Renato Andrin, School of Business, Economics and Public Policy, University of New England,
Armidale, NSW Australia.

Key words:

Thai's hotels industry, operational efficiency, stochastic meta-frontier.

JEL: D240.

1. Introduction

The operational efficiency of the hotel industry in Thailand has been extensively analyzed using advanced efficiency methods such as DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) (Akarapong, 2004; Mingsarn and Akarapong, 2005; Akarapong and Mingsarn, 2009). However, these methods assume homogenous technology and the same environmental characteristics, making the results not strictly comparable across different groups of hotels (Assaf, Barros and Josiassen, 2009). To assess more accurately the impact of different technologies and environmental characteristics, this study applies the concept of meta-frontier analysis developed by Rao, O'Donnell and Battese (2003) and O'Donnell, Rao and Battese (2007) to estimate the envelope of possible frontiers that might arise from the heterogeneity between groups of hotels.

Moreover, most of previous studies of hotel efficiency focused on the estimation of managerial or operational efficiencies by using a limited data set and restrictive functional form. They also assumed that technologies are similar across hotels and industrial environment. But in fact, the different groups of hotel use a different managerial or operation technology. Such as the foreign investment hotels had to use the standard managerial technology from the hotels chain while the local hotels didn't have these and manage the hotel on their own. In order to examine the patterns and differences in performance in these different categories of hotels, the purpose of this paper is to estimate the operational efficiencies of the Thai's hotel industry using Cobb-Douglas functional form, a larger data set and a methodology that would be similar to the hotel environment and technology across different groups of hotels.

The main objective of this study is to use meta-frontier analysis to assess the operating efficiency of five different hotel types in Thailand. There are 1) foreign investment 2) room rate more than 900 baht per night (or more than 30 US\$ per night) 3) room rate less than 300 baht per night (or less than 10 US\$ per night) 4) room rate between 300–900 baht per night (or between 10–30 US\$ per night) and 5) total revenue less than 1 million baht per year (less than 300 thousand US\$) and room rate between 300–900 baht per night and total

revenue more than 1 million baht per year. The study focuses on the potential of different types of ownership to raise operating efficiency through foreign investment. In addition, the question of whether higher room rates price are more productive than lower rates is analyzed. Greater productivity gains are expected at higher levels of cooperation at large hotels because they should open up a broader range of opportunities to improve operational efficiency.

The paper is organized as follow. Section 2 contains method of analysis, and is followed by the results and discussion in section 3. In section 4, concluding comments are presented.

2. Method of analysis

2.1. Analytical Framework

Operational efficiency is an important factor in managerial business. The estimation of technical efficiency represents to the ability of competitiveness (Hwang and Chang, 2003). Relative efficiency (Farrell, 1957) has been extended and modified to Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). Both approaches are popular in the efficiency literature, however; DEA has some restrictions such as inability to take into account error term in the output and stochastic element of production, no assumption about distribution efficiency, No significant test of the technical efficiency (Barros, 2006; Barros and Dieke, 2008). On the other hand, the advantage of the stochastic frontier approach is that it allows for random disturbances, such as the effect of quality of inputs, and measurement errors in the output variables (Barros, 2006; Barros and Dieke, 2008). According to these advantages, this study used the stochastic frontier (SFA) approach with emphasis on the parametric model, and then calculated the efficiency scores for individual hotel units.

2.1.1. Stochastic Frontier Analysis (SFA)

The stochastic frontier framework in this study is a parametric specification of econometric models to estimate the production frontier and measure efficiency scores. The basic stochastic frontier production function is defined as:

$$Y_i = f(X_i, \beta) \exp(\varepsilon_i) \quad (1)$$

where Y_i is the output of i -th ($i = 1, 2, \dots, N$) firm; X_i is the corresponding matrix of inputs; β is the vector of parameters to be estimated; and ε_i is the error term that consists of two independent elements, V_i and U_i , such that $\varepsilon_i \equiv V_i - U_i$. The V s are assumed to be symmetric, identically and independently distributed errors

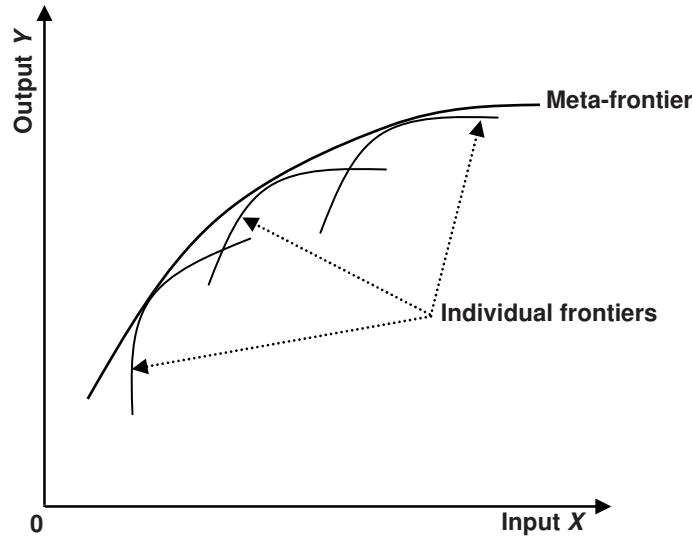
that represent random variations in output, as a result of factors outside the control of the decision-making unit, as well as the effects of measurement error in the output variable, variables excluded from the model and statistical noise. They are assumed to be normally distributed with mean zero and variance σ_v^2 [$V_i \sim N(0, \sigma_v^2)$]. The U_i s are non-negative random variables that represent the stochastic shortfall of outputs from the most efficient production. U_i is defined by truncation of the normal distribution with mean $U_i = \delta_0 + \sum_{j=1}^J \delta_j Z_{ji}$ and variance σ_u^2 , where Z_{ji} is the value of the j -th explanatory variable associated with the technical inefficiency effect of firm i ; and δ_0 and δ_j are unknown parameters to be estimated (Battese and Coelli, 1995). The maximum likelihood method is used to estimate the parameters of both the stochastic frontier model and the inefficiency effects model. The variance parameter of the likelihood function is estimated in terms of $\sigma^2 \equiv \sigma_v^2 + \sigma_u^2$ and $\gamma \equiv \sigma_u^2/\sigma^2$. The technical efficiency of a firm can be defined by the ratio of the observed output to the corresponding stochastic frontier output by

$$TE_i = \frac{Y_i}{f(X_i; \beta) \exp(V_i)} = \exp(U_i). \quad (2)$$

2.1.2. Meta-frontier Approach

The meta-frontier production is a production function that covers individual frontier of groups. A graph of the meta-frontier function is presented in figure 1. Several studies are used to estimate technical efficiency in different regions, environmental, and technologies of agricultural production. To begin with the stochastic meta-frontier framework was done by Battese and Rao (2002), Battese, Rao and O'Donnell (2004), and O'Donnell, Rao and Battese (2008). Then, Vil-lano, Fleming and Fleming (2008) proposed that other studies, such as latent class model (Greene, 2004), and state-contingent frontier (O'Donnell and Griffiths, 2006) still have biased estimators of the parameters of the frontier and technical inefficiency because the results reveal that lack of success in accounting for environmental variables. Therefore, meta-frontier analysis was used to estimate the technology gap ratio and estimate parameters of frontier and technical inefficiencies.

From figure 1, the estimation of the standard stochastic frontier model for R different groups within the industry defined as:


$$Y_{i(j)} = f(X_{i(j)}, \beta_{(j)}) e^{V_{i(j)} - U_{i(j)}} \quad (3)$$

$$i = 1, 2, \dots, N_j, \quad t = 1, 2, \dots, T, \quad j = 1, 2, \dots, R,$$

Suppose that, for the j th group, there are sample data on N_j firms that produce one product from the various inputs.

Figure 1

Meta-frontier and Individual Frontiers

Source: (Battese *et al.*, 2004)

Where $Y_{i(j)}$ is the output for the i th firm for the j th group.

$X_{i(j)}$ is a vector of values of functions of the input used by the i th firm for the j th group.

$\beta_{(j)}$ is the parameter vector associated with the x -variables for the stochastic frontier for the j th group involved.

$\nu_{i(j)}$ is statistical noise assumed to be independently and identically distributed as $N(0, \delta_{\nu(j)}^2)$ random variables.

$u_{i(j)}$ is non-negative random variables assumed to account for technical inefficiency in production and assumed to be independently distributed as truncations at zero of the $N(\mu_{i(j)}, \delta_{(j)}^2)$ distribution, where $\mu_{i(j)}$ is some appropriate inefficiency model, defined by Battese and Coelli (1992) and (1995).

In simplified version, the model is presented as:

$$Y_i = f(X_i, \beta_{(j)}) e^{\nu_{i(j)} - u_{i(j)}} \equiv e^{X_i \beta_{(j)} + \nu_{i(j)} - u_{i(j)}} \quad (4)$$

Assumed that exponent of frontier production function is linear in the parameter vector, $\beta_{(j)}$, so that X_i is a vector of function of the input for the i th firm.

The meta-frontier production function model is expressed by

$$Y_i^* = f(X_i, \beta^*) = e^{X_i \beta^*}, \quad i = 1, 2, \dots, N. \quad (5)$$

Where β^* is the vector of parameters for the meta-frontier function such that:

$$X_i \beta^* \geq X_i \beta_{(j)}, \quad j = 1, 2, \dots, J. \quad (6)$$

Equation 6, the meta-frontier production function is solved the optimization problem by Battese, Rao and O'Donnell (2004). The optimization problem is defined as:

$$\begin{aligned} \text{Min } \beta & \sum_{i=1}^N [\ln f(X_i, \beta^*) - \ln f(X_i, \beta_{(j)})] \\ \text{s.t. } & \ln f(X_i, \beta^*) \geq \ln f(X_i, \beta_{(j)}) \end{aligned} \quad (7)$$

where $\beta_{(j)}$ is the estimated coefficient vector associated with the group- j stochastic frontier

The observed output defined by the stochastic frontier for the j th group in equation 4 and it is alternatively expressed in term of the meta-frontier function in equation 5, such that:

$$Y_i = e^{-U_{i(j)}} * \frac{f(X_i, \beta_{(j)})}{f(X_i, \beta^*)} * f(X_i, \beta^*) e^{V_{i(j)}} \quad (8)$$

where the first term on the right-hand side of equation 10.6 is the same as technical efficiency relative to stochastic frontier for the j th group (Battese, Rao and Prasado, 2002).

$$TE_{i(j)} = \frac{Y_{i(j)}}{f(X_{i(j)}, \beta_{(j)}) e^{V_{i(j)}}} = e^{-U_{i(j)}} \quad (9)$$

The second term on the right-hand side of equation 9 is the technology gap ratio (TGR) (Battese, Rao and Prasado, 2002) or the metatechnology ratio (MTRs) (O'Donnell et al, 2007) or environment-technology gap ratio (ETGR) (Villano, Fleming and Fleming, 2008), which is expressed as:

$$TGR = ETGR = \frac{f(X_i, \beta_{(j)})}{f(X_i, \beta^*)} \quad (10)$$

The TGR or ETGR measure the ratio of the output for the frontier production function for j th group relative to the potential output that is defined by the meta-frontier function, given the observed input (Battese, Rao and Prasado,

2002) and (Battese, Rao and O'Donnell, 2004). The TGR or MTR or ETGR has values between zero and one.

The technical efficiency of i th firm, relative to the meta-frontier, is denoted by TE_i^* , is defined in a similar way to equation 9, TE_i^* can be expressed as:

$$TE^* = \frac{Y_i}{f(X_i, \beta^*) e^{V_{i(j)}}} \quad (11)$$

From equation 11, it is the ratio of the observed output relative to the last term on the right-hand side of equation 6, which is the meta-frontier output, adjusts for the corresponding random error.

Equation 8, 9, 10 and 11 imply that an alternative expression for the technical efficiency relative to the meta-frontier can be expressed by

$$TE^* = \frac{Y_i}{f(X_i, \beta^*) e^{V_{i(j)}}} = e^{-U_{i(j)}} * \frac{f(X_i, \beta_{(j)})}{f(X_i, \beta^*)} \\ TE^* = TE_i * TGR \quad (12)$$

O'Donnell, Rao and Battese (2008) presented the extensions to the basic meta-frontier framework, such as multiple-output; technological change (Coelli *et al.*, 2005); time-invariant inefficiency effects can be found in (O'Donnell, Rao and Battese, 2008); alternative orientations and identifying groups (Orea and Kumbhakar, 2004) and (O'Donnell and Griffiths, 2006).

2.2. Analytical Framework

2.2.1. The Empirical Model

The stochastic frontier analysis model defined by equation 1 and 2. They were estimated assuming the Cobb-Douglas functional form. The inputs are defined as the number of rooms, room rate per night, number of employees, operational expenses and assets. The output is total revenue. The specification of the functional form is defined by

$$\ln(Y_{i(k)}) = \beta_{0(k)} + \beta_{1(k)} \ln(X_{1i(k)}) + \beta_{2(k)} \ln(X_{2i(k)}) + \beta_{3(k)} \ln(X_{3i(k)}) + \\ + \beta_{4(k)} \ln(X_{4i(k)}) + \beta_{5(k)} \ln(X_{5i(k)}) + V_{i(k)} + U_{i(k)} \quad (13)$$

Where Y_i is total revenue (in baht);

X_{1i} is the number of rooms (in room);

X_{2i} is room rate per night (in baht);

X_{3i} is the number of employees (in person);

X_{4i} is operational expenses (in baht);

X_{5i} is assets (in baht);

$\beta_0 - \beta_5$ are unknown parameters to be estimated;

k is 5 groups of the hotel groups.

The $V_{i(k)}$ are assumed to be independently and identically distributed with mean zero and variance, $\sigma_{V_{i(k)}}^2$; and the u s are technical efficiency effects that are assumed to be half-normal and independently distributed such that $U_{i(k)}$ is defined by the truncation at zero of the normal distribution with known variance, $\sigma_{U_{i(k)}}^2$.

The inputs are implied inputs in that they are measured as costs, assuming all groups faced the same input prices and no changes occurred in input prices during the period when the survey was undertaken. Similarly, outputs are implied outputs in that they are measured as revenue assuming all groups faced the same output prices.

The technical inefficiency model is defined following Battese and Coelli (1995) as:

$$U_{i(k)} = \delta_{0(k)} + \delta_{1(k)} Z_{1i(k)} + \delta_{2(k)} Z_{2i(k)} + \delta_3 Z_{3i(k)} \quad (14)$$

Where Z_{1i} is ratio of workers per room;

Z_{2i} is period of operation;

Z_{3i} is ratio of foreign guest;

$\delta_0 - \delta_3$ are unknown parameters to be estimated.

Many variables were tested for inclusion in the inefficiency model. They are discussed in this section and reasons are given for the expected direction of their relations with the level of operational efficiency of hotel industry in Thailand. The coefficient of the ratio of workers per room is expected to be positive because lower number of workers should have lower cost of labour. The other inefficiency variables, the signs on the coefficients of period of operation are expected to be negative because longer period of operation should have accumulated more revenues. Finally, the coefficient of ratio of foreign guest is expected to have a negative sign because a higher number of foreign guests would help the hotels to manage more effectively. If firms can control the quality of service, they can better control service prices.

2.2.2. Variables

The study uses 1,799 samples of hotels and guesthouses from the 2008 Survey Database of the National Statistical Office, Thailand. The statistics for input and output variables in the operating efficiency of hotel are reported in Table 1. We divided the hotels into five groups by considering the impact of different

technologies: (foreign investment, room rate more than 900 baht per night, room rate less than 300 baht per night, room rate between 300–900 baht per night and total revenue less than 1 million baht per year and room rate between 300–900 baht per night and total revenue more than 1 million baht per year).

Table 1

Summary Statistics for Data on the hotels of Thailand

Variables	Units	Min	Max	Mean	SD
Total					
• Total revenues	Million baht	0.0098	2,148.69	20.49	97.11
• Total rooms	room	2	760	62	84
• Room rate	baht/night	60	54,893	707	1,816
• Employees	person	1	859	38	89
• Operational expenses	Million baht	0.0044	1,444.70	10.86	62.39
• Assets	Million baht	0.0010	5,493.44	54.14	255.85
1. Foreign investment					
• Total revenues	Million baht	0.22	2,148.69	299.76	422.73
• Total rooms	room	7	734	239	197
• Room rate	baht/night	129	19,086	3,470	3,696
• Employees	person	4	859	246	251
• Operational expenses	Million baht	0.06	1,444.70	173.34	281.58
• Assets	Million baht	0.002	5,493.44	629.93	1,245.27
2. Room rate more than 900 baht per night					
• Total revenues	Million baht	0.10	1,161.35	72.41	126.12
• Total rooms	room	2	760	145	136
• Room rate	baht/night	905	54,893	2,483	4,166
• Employees	person	2	713	135	145
• Operational expenses	Million baht	0.043	956	37.47	85.85
• Assets	Million baht	0.002	2,127.54	172.05	299.71
3. Room rate less than 300 baht per night					
• Total revenues	Million baht	0.010	19.32	0.98	1.43
• Total rooms	room	4	316	29	26
• Room rate	baht/night	60	299	206	56
• Employees	person	1	101	7	8
• Operational expenses	Million baht	0.040	8.75	0.37	0.64
• Assets	Million baht	0.001	219.24	9.74	17.40
4. Room rate between 300–900 baht per night and total revenue less than 1 million baht per year					
• Total revenues	Million baht	0.035	0.99	0.52	0.25
• Total rooms	room	2	72	18	11
• Room rate	baht/night	300	889	415	131

Variables	Units	Min	Max	Mean	SD
• Employees	person	1	16	5	3
• Operational expenses	Million baht	0.0067	1.01	0.22	0.16
• Assets	Million baht	0.0020	68.15	8.42	9.68
5. Room rate between 300–900 baht per night and total revenue more than 1 million baht per year					
• Total revenues	Million baht	1.00	148.43	8.55	14.59
• Total rooms	room	3	456	73	57
• Room rate	baht/night	300	900	493	158
• Employees	person	2	431	34	45
• Operational expenses	Million baht	0.047	56.32	3.91	7.14
• Assets	Million baht	0.001	915.38	31.99	69.38

Source: the National Statistical Office 2009.

2.3. The empirical finding

The stochastic frontier analysis-group and stochastic frontier analysis-pool estimates were obtained using FRONTIER 4.1 (Coelli, 1996) in order to formulate the technical efficiency (TE) effects model (Battese and Coelli, 1995). The stochastic frontier analysis /meta-frontier estimates were obtained using SHAZAM.

2.3.1. Hypothesis Testing

A likelihood-ratio (LR) test, for the group's stochastic frontier model is the same for all the operational efficiency of the hotel industry in Thailand. For testing of the null hypothesis, we can decide that it would be a good reason or not for estimating the efficiency level of firms to a meta-frontier operational function.

Following Battese, Rao and O'Donnell (2004), we test the null hypothesis by calculating LR statistic. The LR statistic is defined by:

$$\lambda = -2\{\ln[L(H_0)/L(H_1)]\} = 2\{\ln[L(H_0)] - \ln[L(H_1)]\} \quad (15)$$

where $\ln[L(H_0)]$ is the value of the log likelihood function for the stochastic frontier estimated by pooling the data for all groups.

$\ln[L(H_1)]$ is the sum of the value of the log likelihood function for the 5 groups operational function.

2.3.2. The Estimation of the meta-frontier function

The operational efficiency is computed using three approaches. First, a standard operation stochastic frontier (like production) was employed using pooled cross-section data. Second, group stochastic frontier functions were estimated. Finally, meta-frontier analysis was used given differences in operation environments and technologies between the five groups of hotels studied. The gamma parameters are significant for the five groups, suggesting the presence of operational inefficiency, and the LR test = 134.34, with a *p*-value of 0.00 (using a Chi-square distribution with 52 degrees of freedom). Therefore, the null hypothesis that different groups have the same stochastic frontier models can be rejected. All inputs are associated with total revenues and the high ratio of foreigner guests improves in operation efficiency (Table 2).

The estimates of the parameters of the inefficiency effects model are presented in Table 2. Estimates of the coefficients of the variables explaining differences in group efficiency provide interesting results. First, the coefficient of the variable denoting the ratio of foreign guest is significant at the 1 and 5 per cent level and has both negative and positive coefficients for all groups of hotels. This result indicates that a higher number of foreign guests is associated with greater operational efficiency in large hotels (group 1 and 2). It was initially surprising to find that the number of years of operation has a positive association with operational inefficiency in small hotels (group 3 and 4). On the other hand, the longer-operated hotels tend to be more efficient in only large hotels (group 1). Finally, the ratio of workers per room has positive association with operational inefficiency. This result suggests that the higher the number of workers, the lower the level of efficiency in only large hotels (group 1).

Estimated operational efficiencies with respect to the group frontiers and the meta-frontier, together with estimated MTRs, are presented in Table 3. Hotels differ in operational efficiency, MTRs, and the use they make of inputs. The value of MTRs ranges from 0.56 to 0.86, which explains that on average, hotels in Thailand operate between 56–86 percent of the potential total revenue given the technology available to the industry as a whole. As expected, estimated operational efficiencies are lower and dispersed in the meta-frontier model. The average MTR were found to be significantly different for five groups¹. However, the meta-frontier analysis provides a more consistent and homogenous efficiency comparison. Mean MTRs vary considerably between hotels and across groups whereas mean operational efficiency with respect to the pooled frontier are reasonably similar across groups but differ in the operational efficiency with respect to group frontiers. Hotels with the lowest total revenue and room rate per night have the lowest (Group 4) MTR (0.56) due to a lack of operating technology, few foreigners, and their small size that precludes labour-saving technologies.

¹ We test the sampling distribution of the difference means by using a *t* test. The value of the test statistic is 3.56, which falls in the rejection region, thus, we reject H_0 .

Table 2

Estimates for parameters of the stochastic frontier model.

Variables	Group 1	Group 2	Group 3	Group 4	Group 5	Pooled frontier	Meta-frontier
Frontier model							
Constant	5.196 (0.980)	4.956 (0.480)	5.327 (0.382)	8.588 (0.683)	6.679 (0.993)	4.994 (0.118)	5.421
Total rooms (rooms)	0.220 (0.217)	0.192 (0.732)	0.272*** (0.045)	0.076 (0.052)	0.034 (0.213)	0.149*** (0.027)	0.074
Room rate (baht per night)	0.169* (0.128)	0.193*** (0.072)	0.117** (0.066)	-0.140* (0.089)	0.170 (0.366)	0.163*** (0.033)	0.124
Employees (persons)	0.218 (0.227)	0.285*** (0.072)	0.308*** (0.043)	0.410*** (0.059)	0.406 (0.294)	0.403*** (0.014)	0.429
Operational expenses (baht)	0.561*** (0.103)	0.530*** (0.029)	0.504*** (0.025)	0.362*** (0.033)	0.424* (0.218)	0.517*** (0.045)	0.548
Assets (baht)	0.003 (0.023)	0.015** (0.009)	0.004 (0.008)	0.022 (0.017)	0.015 (0.028)	0.008 (0.006)	0.017
Inefficiency effect model							-
Constant	0.968 (0.766)	0.577*** (0.149)	-9.992*** (3.558)	-11.035*** (7.281)	0.090** (0.039)	0.101*** (0.036)	-
Ratio of workers per room (%)	1.115* (0.701)	-0.121 (0.116)	-1.864 (1.198)	-1.254 (1.744)	0.016 (0.113)	0.034 (0.032)	-
Period of operation (day)	-0.127* (0.097)	0.004 (0.004)	0.076*** (0.030)	0.102* (0.069)	0.002 (0.006)	0.0008 (0.0015)	-
Ratio of foreign guest (%)	-0.033* (0.022)	-0.083*** (0.001)	0.014** (0.008)	0.045** (0.026)	0.002** (0.001)	-0.0018*** (0.0004)	-
Variance parameter							-
Sigma-squared	0.895 (0.593)	0.190** (0.017)	2.080*** (0.612)	2.459* (1.545)	0.200*** (0.021)	0.243*** (0.008)	-
Gamma	0.802 (0.179)	0.302 (0.083)	0.902 (0.029)	0.957 (0.030)	0.00004 (0.00001)	0.000007*** (0.000003)	-
Log-L	-34.47	-116.19	-494.34	-131.60	-363.38	-1274.32	-

Note : *** denote significance at the 1% level. ** denote significance at the 5% level. * denote significance at the 10% level.

: The numbers in parentheses are standard errors.

Source: Author's calculation.

Table 3

Estimates of Technical efficiency (TEs) and Technology Gap Ratios (MTRs)

Groups	Min	Max	Mean	SD
Total				
• Pool frontier	0.6464	0.9999	0.9074	0.0473
• Group frontier	0.1742	0.9999	0.8376	0.0995
• Technology gap ratio (MTR)	0.3526	1.0000	0.6417	0.1066
• Meta-frontier	0.1109	0.9966	0.5354	0.1016
1. Foreign investment (group 1)				
• Pool frontier	0.8295	0.9999	0.9722	0.0463
• Group frontier	0.2372	0.9300	0.7822	0.1408
• Technology gap ratio (MTR)	0.6353	1.0000	0.8371	0.0969
• Meta-frontier	0.1660	0.9109	0.6543	0.1379
2. Room rate more than 900 baht per night (group 2)				
• Pool frontier	0.6464	0.9999	0.9381	0.0585
• Group frontier	0.4116	0.9719	0.7634	0.1304
• Technology gap ratio (MTR)	0.5041	1.0000	0.7149	0.0908
• Meta-frontier	0.3554	0.8537	0.5415	0.0966
3. Room rate less than 300 baht per night (group 3)				
• Pool frontier	0.8312	0.9999	0.8952	0.0392
• Group frontier	0.1742	0.9406	0.8208	0.0743
• Technology gap ratio (MTR)	0.4365	0.8621	0.6543	0.0605
• Meta-frontier	0.1109	0.7496	0.5367	0.0671
4. Room rate between 300–900 baht per night and total revenue less than 1 million baht per year (group 4)				
• Pool frontier	0.8490	0.9999	0.9027	0.0370
• Group frontier	0.2109	0.9315	0.7988	0.1106
• Technology gap ratio (MTR)	0.3721	0.9600	0.5620	0.0979
• Meta-frontier	0.1260	0.7977	0.4475	0.0948
5. Room rate between 300–900 baht per night and total revenue more than 1 million baht per year (group 5)				
• Pool frontier	0.7945	0.9999	0.9062	0.0457
• Group frontier	0.7622	0.9999	0.9061	0.0489
• Technology gap ratio (MTR)	0.3526	1.0000	0.6173	0.1169
• Meta-frontier	0.3126	0.9966	0.5592	0.1107

Source: Author's calculation.

In terms of the relationship between efficiency and hotel classification, the efficiency of foreign investment hotels is higher than domestic investment hotels (0.83) and they can earn revenue from the other sources of income, such as entertainment activities, food and beverage. Meanwhile, the MTRs of groups 1, 2,

3 and 5 are lower than group 4, and group 4 has the lowest MTRs. Group 4 has the lowest average MTR ratio hence its average efficiency is reduced from 37.21 percent when compared relative to the frontier within group to 10.66 percent when compared to the meta-frontier.

2.4. Conclusion

This paper has provided some interesting results on the operational efficiency of the hotel industry in Thailand. The meta-frontier analysis is used to develop the traditional frontier analysis because this model enables the calculation of comparable operational efficiency for firms operating under different technologies or locations.

The meat-frontier analysis divides the operational efficiency into two parts: 1) operational efficiency respect to the sub-group; and 2) operational efficiency respect to the meta-frontier by considering the technology gap ratio. Paper shows how group frontier and the meta-frontier can be estimated using a Cobb-Douglas functional form. An empirical example used cross-sectional data of statistics for input and output variables in the operating efficiency of 1,799 hotels. We divide the hotel into five groups.

The finding of the study is that, hotels in the five groups differ in the use they make of input operational efficiency and technology gap ratio (MTRs). Mean MTRs vary substantially between hotels and across groups whereas mean operational efficiency are reasonably similar across groups but differ in the extent of variation among hotels within each group. The mean value of operational efficiency for the pooled frontier, group frontier and meta-frontier models across all groups are 0. 90, 0.83 and 0.53 respectively. Group frontiers show that the mean value of MTR varies from 0.56 in hotels with room rate between 300–900 baht per night and total revenue less than 1 million baht per year to 0.83 in hotels with foreign investment. The low MTR is attributable to a lack of operation management.

The results suggest that transferring knowledge and knowledge management about operation management from higher operational efficiency of hotels to lower operational efficiency of hotels needs to be organized. For example, quality standards from foreign investment would be to improve operational efficiency in small-sized hotels. Furthermore, specific policy initiatives designed to assist hotels groups could be implemented through the difference in technologies. For example, foreign investment hotels should focus on allocate labour efficiency that should be replaced by modern technologies whereas domestic investment hotels or hotels which earn revenue from only one source of income (room rate) could intend to achieve efficiency in asset management. The policies towards small hotels might need to be different from large hotels that enable the government to establish appropriate policies for several types of Thailand hotels.

Bibliography

1. Akarapong Untong. (2004), *Efficiency of hotel and guesthouse in Upper North of Thailand*, Documentation of special lectures, Faculty of Management and Information Sciences, Naresuan University. (In Thai)
2. Akarapong Untong. and Mingsarn Kaosa-ard. (2009), «The managerial efficiency change of hotels in Chiang Mai». *Thammsat Economic Journal*, 27(3): 1–26. (In Thai)
3. Assaf, A., Barros, C.P. and Josiassen, A. (2009), «Hotel efficiency: A bootstrapped metafrontier approach». *International Journal of Hospitality Management* (Article in Press).
4. Barros, C. P. (2006), «Analysing the rate of technical change in the Portuguese hotel industry». *Tourism Economics*, 12(3): 325–346.
5. Barros, C. P. and Dieke, P. U. C. (2008), «Technical efficiency of African hotels». *International Journal of Hospitality Management*, 27(3): 438–447.
6. Battese, G. E. (1992), «Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics». *Agricultural Economics*, 7(3–4): 185–208.
7. Battese, G. E. and Coelli, T. J. (1995), «A model for technical inefficiency effects in a stochastic frontier production function for panel data». *Empirical Economics*, 20: 325–332.
8. Battese, G. E., Rao, D. S. P. (2002), «Technology gap, efficiency, and a stochastic metafrontier function». *International Journal of Business and Economics*, 1(2): 87–93.
9. Battese, G. E., Rao, D. S. P. and O'Donnell, C. J. (2004), «A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies». *Journal of Productivity Analysis*, 21(1): 91–103.
10. Coelli, T. J., Rao, D. S. P., O'Donnell, C. J. and Battese, G. E. (2005), *An Introduction to Efficiency and Productivity Analysis*. Springer, New York.
11. Coelli, T. J. (1996), «A guide to FRONTIER Version 4.1: A computer program for stochastic frontier production and cost function estimation». CEPA Working Papers, No. 7/96, School of Economics, University of New England, Armidale.
12. Farrell, M. J. (1957), «The measurement of productive efficiency». *Journal of the Royal Statistical Society, Series A (General)*, 120(3): 253–290.
13. Greene, W. (2004), «Reconsidering heterogeneity in panel data estimators of the stochastic frontier model». *Journal of Econometrics*, 126(2): 269–303.

14. Hwang S. N. and Chang T. Y. (2003), «Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan». *Tourism Management*, 24(3): 357–369.
15. Mingsarn Kaosa-ard and Akarapong Untong (2005), «Benchmarking the hotel industry of Thailand». Proceeding of Asia Pacific Tourism Association 11th Annual Conference New Tourism for Asia-Pacific, July 7–10, 2005, at Korea International Exhibition Center Goyang, Gyeonggi Province, Korea.
16. O'Donnell C. J. and Griffiths W. E. (2006), «Estimating state-contingent production frontiers». *American Journal of Agricultural Economics*, 88(1): 249–266.
17. O'Donnell, C. J., Rao, D. S. P. and Battese, G. E. (2007), «Metafrontier frameworks for the study of firm- level efficiencies and technology ratios». *Empirical Economics*, 34(2): 231–255.
18. O'Donnell, C. J., Rao, D. S. P. and Battese, G. E. (2008), «Metafrontier frameworks for the study of firm-level efficiencies and technology ratios». *Empirical Economics*, 34(2): 231–255.
19. Orea, L. and Kumbhakar, S. C. (2004), «Efficiency measurement using a latent class stochastic frontier model». *Empirical Economics*, 29(1): 169–83.
20. Rao, D. S. P., O'Donnell, C. J. and Battese, G. E. (2003), «Metafrontier functions for the study of intergroup productivity differences». CEPA Working Paper Series No. 01/2003, School of Economics, University of New England, Armidale.
21. Villano, R., Fleming, E. and Fleming, P. (2008), «Measuring regional productivity differences in the Australian Wool industry: A metafrontier approach». AARES 52nd Annual Conference. February 5–8, 2008, Canberra, Australia.

Acknowledgement

This article is a part of «Thailand Tourism: From Policy to Grassroots» (Prof. Dr. Mingsarn Kaosa-ard) which supported by The Thailand Research Fund (TRF) under TRF Research-Team Promotion Grant (TRF Senior Research Scholar).

การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยว ในประเทศไทยโดยใช้แบบจำลอง SARIMA Intervention Forecasting the Number of International Tourists in Thailand by using the SARIMA Intervention Model

อัครพงศ์ อั้นทอง¹ และปวีณา คำพุกกะ²

1. สถาบันวิจัยสังคม มหาวิทยาลัยเชียงใหม่

2. คณะบริหารศาสตร์ มหาวิทยาลัยอุบลราชธานี

Akarapong Untong¹ and Paweena Khampukka²

1. Social Research Institute, Chiang Mai University

2. Faculty of Management Science Ubon Rajathanee University

บทคัดย่อ

ที่ผ่านมาเกิดวิกฤตการณ์หลายอย่างที่ทำให้จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทยมีความผันผวน ซึ่งการพยากรณ์โดยใช้เทคนิคต่างๆ ทำได้ยากลำบากมากขึ้น หนึ่งในเทคนิคการพยากรณ์ที่นิยมนำมาใช้ในกรณีเช่นนี้ คือ การใช้ Intervention เข้ามาในแบบจำลองพยากรณ์ ดังนั้นในรายงานฉบับนี้มีวัตถุประสงค์ที่จะประยุกต์ใช้เทคนิคการพยากรณ์ที่เรียกว่า SARIMA Intervention มาสร้างสมการพยากรณ์ที่เหมาะสม สำหรับการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทยตั้งแต่ปี พ.ศ. 2550 – 2554 โดยใช้ข้อมูลรายเดือนระหว่างเดือนกรกฎาคม 2528 – ธันวาคม 2548 แบบจำลองที่ได้ให้ผลการพยากรณ์ที่มีค่ารากกำลังสองสองเฉลี่ยของค่าคลาดเคลื่อน (Root Mean Square Error: RMSE) ต่ำ ซึ่งสะท้อนให้เห็นว่าแบบจำลองที่ได้มีความแม่นยำสูง โดยในปี พ.ศ. 2554 ประเทศไทยจะมีนักท่องเที่ยวต่างชาติเข้ามาท่องเที่ยวประมาณ 17 ล้านคน และจะได้รับรายได้จากการขายตั๋ว 6.89 แสนล้านบาท โดยนักท่องเที่ยวจากโอเชียเนียและตะวันออกกลางจะมีอัตราการขยายตัวมากที่สุด รองลงมาได้แก่ ตลาดยุโรป อเมริกา และเอเชียใต้ ล้านตัวเลขเฉียดๆ ตะวันออก และอัฟริกาจะมีอัตราการขยายตัวต่ำที่สุดประมาณร้อยละ 4 – 5 ต่อปี

คำสำคัญ: นักท่องเที่ยวต่างชาติ การพยากรณ์ SARIMA Intervention

อัตราการท่องเที่ยวต่างชาติและการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

Abstract

An assortment of crises has affected the number of international tourists visiting Thailand. Despite having a plethora of measurement techniques, it is still difficult to forecast the uncertain number of future tourists. One of the most well-known techniques that could be used to address this case is the Intervention Model. This study aims to apply the technique called SARIMA Intervention to form a proper equation that could be used to predict the number of international tourists visiting Thailand from 2007 to 2011, based on monthly data from January 1985 to December 2005. Low Root Mean Square Error (RMSE) value gained from this model indicates high precision of the model. This model predicted that in 2011, Thailand will have 17 million international tourists worth Y.89 billion Baht. Of these international tourists, the fastest growing group will be from Oceania and the Middle East, Followed by Europe, America and South Asia respectively. For the tourists from East Asia and Africa, the growth rate will be the lowest at 4 – 5% per year.

Keywords: International Tourism, Forecasting, SARIMA Intervention

บทนำ

ในช่วงศตวรรษที่ผ่านมา มีนักท่องเที่ยวต่างชาติเข้ามาเที่ยวในประเทศไทยเฉลี่ยปีละ ประมาณ 9 ล้านคน ทำให้ประเทศไทยมีรายได้จากการท่องเที่ยวของนักท่องเที่ยวต่างชาติเฉลี่ยปีละ ไม่น้อยกว่า 270,000 ล้านบาท รายงานสถิติประจำปีของการท่องเที่ยวแห่งประเทศไทย เป็นข้อมูลปี พ.ศ. 2528 – 2547 โดยปี พ.ศ. 2548 ประเทศไทยมีนักท่องเที่ยวต่างชาติเข้ามาท่องเที่ยวประมาณ 11.8 ล้านคน มีรายได้ประมาณ 380,000 ล้านบาท เพิ่มขึ้นจากปีก่อนประมาณร้อยละ 18 และ 24 ตามลำดับ (การท่องเที่ยวแห่งประเทศไทย, 2549)

การวางแผนและนโยบายทางด้านการท่องเที่ยวมีความจำเป็นอย่างยิ่งที่ต้องทราบถึงการเพิ่มขึ้นของจำนวนนักท่องเที่ยวในอนาคต เพื่อนำมาใช้ประกอบการวางแผนให้สอดคล้องกับการเพิ่มขึ้นของจำนวนนักท่องเที่ยวในช่วงระยะเวลา 5 ปีที่ผ่านมาพบว่า จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทยมีจำนวนน้อยกว่าที่คาดการณ์เอาไว้หนึ่งในสาเหตุที่สำคัญ ก็คือ ในช่วงที่ผ่านมา มีเหตุการณ์วิกฤตระดับโลกหลาย ๆ เหตุการณ์ที่ทำให้จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทยลดลง เหตุการณ์วิกฤตระดับโลก ที่สำคัญได้แก่ การก่อการร้าย (9-11) วิกฤตการณ์โรคชาร์ส (SARS) และวิกฤตการณ์โรคไข้หวัดนก (Bird Flu) ซึ่งเหตุการณ์ที่ทำให้จำนวนนักท่องเที่ยวต่างชาติลดลงมากที่สุด ได้แก่ เหตุการณ์การระบาดของโรคชาร์ส (SARS) รองลงมาได้แก่ เหตุการณ์การระบาดของโรค

ไข้หวัดนก (Bird Flu) และเหตุการณ์การก่อการร้าย (9-11) นอกจากนี้แล้วเหตุการณ์ยังมีผลต่อตลาดนักท่องเที่ยวที่แตกต่างกัน (Akarapong et al., 2005)

การพยากรณ์โดยการมองข้ามวิกฤตการณ์ต่างๆ ข้างต้น หรือการพยากรณ์โดยไม่ได้คำนึงหรือไม่ได้นำวิกฤตการณ์เหล่านี้เข้ามาร่วมในแบบจำลองการพยากรณ์ย่อมทำให้ผลการพยากรณ์คลาดเคลื่อนจากความเป็นจริง ดังนั้นในรายงานฉบับนี้มีวัตถุประสงค์เพื่อสร้างแบบจำลองในการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางเข้ามาท่องเที่ยวในประเทศไทยที่จะเกิดขึ้นในอีก 5 ปีข้างหน้า (ปี พ.ศ. 2550 – 2554) โดยได้สร้างแบบจำลองพยากรณ์ที่ได้รวมอิทธิพลของวิกฤตการณ์ต่างๆ เข้าไปในแบบจำลอง นอกจานี้ยังได้สร้างแบบจำลองพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทยโดยแยกเป็นรายตลาดที่สำคัญ เนื่องจากแต่ละตลาดได้รับอิทธิพลจากวิกฤตการณ์ระดับโลกแตกต่างกัน

วิธีการ และขั้นตอนการสร้างสมการพยากรณ์

ประโยชน์ข้อนึงของข้อมูลอนุกรมเวลา คือ การนำข้อมูลอนุกรมเวลาในอดีตมาใช้วิเคราะห์เพื่อพยากรณ์ค่าในอนาคต ซึ่งการพยากรณ์ค่าอนุกรมเวลาในอนาคตสามารถทำได้หลายวิธี เช่น วิธีการปรับให้เรียบแบบเอ็กซ์โพเนนเชียล (Exponential Smoothing) วิธีแยกส่วนประกอบ (Decomposition) วิธีการอคตอยเชิงพหุ (Multiple Regression Method) วิธีการ Neural Network และวิธีการบอกซ์แอนด์เจนกินส์ (Box and Jenkins) เป็นต้น สำหรับในการศึกษารั้งนี้จะใช้วิธีการ Box and Jenkins ซึ่งเป็นวิธีการพยากรณ์ค่าในอนาคต ที่พัฒนาและเสนอโดยนักสถิติผู้มีชื่อเสียงสองท่านคือ George E.P. Box และ Gwilym M. Jenkins ในปี ค.ศ. 1970 วิธีนี้เป็นวิธีที่ให้ค่าพยากรณ์ในระยะสั้นที่ดี คือ ให้ค่าเฉลี่ยของความคลาดเคลื่อนกำลังสอง (Mean Square Error : MSE) ของการพยากรณ์ต่ำกว่าวิธีอื่นๆ เหมาะสมกับการพยากรณ์ไปข้างหน้าในช่วงเวลาสั้นๆ และต้องมีอนุกรมเวลาที่ยาวพอสมควร นอกจานี้ยังใช้วิธีการพยากรณ์ SARIMA Intervention Analysis ซึ่งเป็นวิธีการที่ประยุกต์มาจากวิธีการ Box and Jenkins สำหรับรายละเอียดของแต่ละวิธีการสามารถอธิบายพอสั้นๆ ได้ดังนี้

ก. วิธีการพยากรณ์ด้วยวิธี Box and Jenkins

แบบจำลองที่ใช้ในการพยากรณ์ คือ ตัวแบบ ARIMA (p,d,q) ซึ่งมีส่วนประกอบที่สำคัญ 3 ส่วน ได้แก่ AutoRegressive AR : (p), Integrated (I) และ Moving Average MA : (q) สำหรับ AR (p) เป็นรูปแบบที่แสดงว่า ค่าสังเกต y_t ขึ้นอยู่กับค่าของ y_{t-1}, \dots, y_{t-p} หรือค่าสังเกตที่เกิดขึ้นก่อนหน้า p ค่า ส่วนรูปแบบ MA (q) เป็นรูปแบบที่แสดงว่าค่าสังเกต y_t ขึ้นอยู่กับค่าความ

อัตราคงที่ อั้นท่อง และบวมๆ คำพูด กะ การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

ค่าดัชนี $\varepsilon_{t-1}, \dots, \varepsilon_{t-q}$ หรือความคาดเดือนที่อยู่ก่อนหน้า q ค่า ส่วน Integrated (I) เป็นการหาผลต่าง (difference) ของอนุกรมเวลา เหตุผลสำคัญที่ต้องหาผลต่างของอนุกรมเวลา เนื่องจากแบบจำลอง ARIMA จะต้องใช้ในการวิเคราะห์ข้อมูลอนุกรมเวลาที่มีคุณสมบัติก่อที่ (stationary) แต่นั้น ในการณ์ที่ข้อมูลอนุกรมเวลาที่ใช้ในการวิเคราะห์มีคุณสมบัติไม่คงที่ (nonstationary) จะต้องทำการแปลงข้อมูลอนุกรมเวลาดังกล่าวให้มีคุณสมบัติก่อที่ก่อน โดยการหาผลต่างของข้อมูลอนุกรมเวลา หรือการหาค่า natural logarithm ของอนุกรมเวลา ก่อนที่จะนำข้อมูลไปใช้สร้างแบบจำลอง ARIMA

รูปแบบทั่วไปของ ARIMA ที่ใช้ในการประมาณการ คือ

$$\phi(B)\nabla^d y_t = \delta + \theta(B)\varepsilon_t \quad (1)$$

โดยที่

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$$

y_t = ค่าสังเกตในอนุกรมเวลา ณ เวลา t

B = backward shift operation โดยที่ $B_m = \nabla y_{t-m}$

d = จำนวนครั้งของการหาผลต่างเพื่อให้อนุกรมเวลา มีคุณสมบัติก่อที่ (stationary)

p = อันดับของออตอเรียร์สซีฟ (Autoregressive Order)

q = อันดับของค่าเฉลี่ยเคลื่อนที่ (Moving Average)

δ = ค่าคงที่ (Constant Term)

ϕ_1, \dots, ϕ_p = พารามิเตอร์ของ ออตอเรียร์สซีฟ (Autoregressive parameter)

$\theta_1, \dots, \theta_q$ = พารามิเตอร์ของ ค่าเฉลี่ยเคลื่อนที่ (Moving-Average parameter)

ε_t = กระบวนการ white noise ซึ่งก็คือ ค่าความคาดเดือน ณ เวลา t ภายใต้ข้อสมมติว่า ความคาดเดือนที่คงและเวลาเป็นตัวแปรสุ่มที่เป็นอิสระต่อกัน โดยมี การแจกแจงแบบปกติที่มีค่าเฉลี่ย เป็นศูนย์ และความแปรปรวนคงที่ $[\varepsilon_t \sim N(0, \sigma^2)]$

จากสมการที่ (1) อาจเขียนใหม่ได้เป็น

$$\nabla^d y_t = \delta + \phi_1 \nabla^d y_{t-1} + \phi_2 \nabla^d y_{t-2} + \dots + \phi_p \nabla^d y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} - \dots - \theta_q \varepsilon_{t-q} \quad (2)$$

จากรูปแบบทั่วไปตามสมการ (2) นำไปใช้ในการกำหนดรูปแบบที่เหมาะสมและประมาณค่าต่อไป ซึ่งอนุกรมเวลาที่จะนำมาวิเคราะห์ด้วยวิธีของ Box and Jenkins ต้องมีเงื่อนไขบางประการเกี่ยวกับค่าพารามิเตอร์ในตัวแบบเพื่อให้อนุกรมเวลาไม่คุณสมบัติกังที่ (stationary) และคุณสมบัติกัน (invariability) สำหรับคุณสมบัติกังที่ (stationary) เป็นคุณสมบัติของรูปแบบ AR(p) ซึ่งเป็นคุณสมบัติที่ทำให้ $E(y_t)$ และ $V(y_t)$ คงที่ และ $\text{cov}(y_t, \dots, y_{t-k})$ มีค่าคงที่ ขึ้นกับค่า lag k อย่างเดียว ส่วนคุณสมบัติกัน (invertible) เป็นคุณสมบัติของรูปแบบ MA (q) ซึ่งเป็นคุณสมบัติที่ทำให้ค่าคลาดเคลื่อนของการพยากรณ์ ε_t ในเทอมของ y_{t-1} มีค่าคงที่ (ทรงศรี แต่สมบัติ, 2539)

ข. วิธีการพยากรณ์ด้วยวิธี Box and Jenkins กรณีอนุกรมเวลาไม้อิทธิพลของฤดูกาล
การสร้างรูปแบบ ARIMA ของอนุกรมเวลาที่มีอิทธิพลของฤดูกาลเข้ามาเกี่ยวข้อง
สามารถทำได้เช่นเดียวกับรูปแบบ ARIMA ที่ไม่มีฤดูกาล ดังนั้นในรูปแบบ SARIMA
(Seasonal Integrated AutoRegressive and Moving Average) ของอนุกรมเวลาที่มีฤดูกาล มี
ส่วนประกอบที่สำคัญ 3 ส่วน ได้แก่ Seasonal AutoRegressive SAR : (P), Integrated (I) และ
Seasonal Moving Average SMA: (Q) โดย SAR (P) เป็นรูปแบบที่แสดงว่า ค่าสังเกต X_t ขึ้นอยู่
กับค่าของ X_{t-s}, X_{t-ps} ส่วนรูปแบบ MA (Q) เป็นรูปแบบที่แสดงว่าค่าสังเกต X_t ขึ้นอยู่กับ
ค่าความคลาดเคลื่อน $\varepsilon_{t-s}, \varepsilon_{t-ps}$ ส่วน Integrated (I) เป็นการหาผลต่าง (difference) ของ
อนุกรมเวลา ดังนั้น SARIMA (P,D,Q)_s ของอนุกรมเวลาที่มีฤดูกาล ที่มี SAR ระดับ P, SMA
ระดับ Q และมีผลต่าง D ครั้ง จะมีรูปแบบของสมการดังนี้

$$(1 - \Phi_1 B^s - \Phi_2 B^{2s} - \dots - \Phi_p B^{ps}) (1 - B^s)^D X_t = \delta + (1 - \Theta_1 B^s - \Theta_2 B^{2s} - \dots - \Theta_q B^{qs}) \varepsilon_t$$

โดยที่ Φ_1, \dots, Φ_p = พารามิเตอร์ของ ออโตรีเกรสซีฟกรณ์ที่อนุกรมเวลาไม้อิทธิพลฤดูกาล
 $\Theta_1, \dots, \Theta_q$ = พารามิเตอร์ของ ค่าเฉลี่ยเคลื่อนที่กรณ์ที่อนุกรมเวลาไม้อิทธิพลฤดูกาล
รูปแบบ SARIMA (P,D,Q)_s ข้างต้น มีข้อสมมติฐานที่สำคัญ คือ อนุกรมเวลาที่อยู่
ภายในฤดูกาลเดียวกัน ไม่มีสหสัมพันธ์ต่อกันและอนุกรมเวลาจะมีค่าสหสัมพันธ์ตัวเองที่
แตกต่างไปจากศูนย์ เนื่องจากช่วงห่าง $s, 2s, \dots, ps$ เท่านั้น ข้อสมมตินี้เป็นข้อจำกัดที่สำคัญใน
การนำแบบจำลอง SARIMA (P,D,Q)_s มาประยุกต์ใช้งาน เพราะอนุกรมเวลาอาจมี

อัตราคงที่ อันท่อง และปัจจัย ค่าพูดคํา การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

ความสัมพันธ์ต่อ กัน ได้ทั้งภายในฤดูกาลเดียวกันและมีความสัมพันธ์ข้ามฤดูกาล ได้ด้วย ตั้งนี้ Box and Jenkins จึงได้เสนอรูปแบบอนุกรมเวลาที่มีฤดูกาลเชิงคูณ (multiplicative seasonal model) เพื่อใช้ในการวิเคราะห์อนุกรมเวลาที่มีฤดูกาลแบบที่ใช้ได้ทั้งตัวแบบเชิงบวกและเชิงคูณ สามารถเขียนเป็นสมการได้ดังนี้ (วิชิต หล่อจีระชุมห์กุล และคณะ, 2539)

$$(1 - \Phi_1 B^s - K - \Phi_p B^{ps})(1 - \phi_1 B - K - \phi_p B^p)(1 - B^s)^D (1 - B)^d x_t = \delta_t + (1 - \Theta_1 B^s K - \Theta_q B^{qs})(1 - \theta_1 B - K - \theta_q B^q) \varepsilon_t$$

โดยทั่วไปมักนิยมเขียนในรูป SARIMA $(p,d,q)(P,D,Q)_s$ รูปแบบอนุกรมเวลาข้างต้น ประกอบด้วยอนุกรมเวลา 2 ชุด คือ

ชุดแรกเป็นอนุกรมเวลาที่ไม่มีฤดูกาล ที่มีรูปแบบ ARIMA (p,d,q)

$$(1 - \phi_1 B - \phi_2 B^2 - K - \phi_p B^p)(1 - B)^d x_t = \delta_t + (1 - \theta_1 B - \theta_2 B^2 - K - \theta_q B^q) \varepsilon_t$$

ส่วนชุดที่สองเป็นอนุกรมเวลาที่มีฤดูกาล ที่มีรูปแบบ SARIMA $(P,D,Q)_s$

$$(1 - \Phi_1 B^s - \Phi_2 B^{2s} - K - \Phi_p B^{ps})(1 - B^s)^D x_t = \delta_t + (1 - \Theta_1 B^s - \Theta_2 B^{2s} - K - \Theta_q B^{qs}) \varepsilon_t$$

ค. ขั้นตอนการพยากรณ์ด้วยวิธีของ Box and Jenkins

การใช้วิธีของ Box and Jenkins กับอนุกรมเวลาที่ไม่คงที่ (nonstationary) จะต้องแปลงอนุกรมเวลาเดิมให้เป็นอนุกรมเวลาที่คงที่ (stationary) โดยการหาผลต่างของอนุกรมเวลาเดิม จนได้ออนุกรมเวลาใหม่ที่มีลักษณะคงที่ (stationary) ถ้าอนุกรมเวลา มีความแปรปรวนไม่คงที่ ให้แปลงอนุกรมเวลาเดิมเป็นอนุกรมเวลาใหม่ โดยการหา natural logarithm ของอนุกรมเวลา เมื่อ ได้ออนุกรมเวลาที่คงที่ (stationary) แล้วให้ทำการขั้นตอนของวิธีการ Box and Jenkins ดังนี้ (ทรงศิริ แต่สมบัติ, 2539)

1. กำหนดรูปแบบ (identification) เพื่อหารูปแบบที่คาดว่าเหมาะสมให้กับอนุกรมเวลา โดยใช้วิธีพิจารณาเปรียบเทียบจากค่า residual และ r_{kk} ของอนุกรมเวลา

2. ประมาณค่าพารามิเตอร์ (estimation) ในรูปแบบ โดยทั่วไปใช้วิธีการประมาณค่าพารามิเตอร์ โดยวิธีกำลังสองน้อยที่สุดแบบธรรมด้า (Ordinary Least Square Method: OLS)

3. ตรวจสอบรูปแบบ (diagnostic checking) เมื่อกำหนดรูปแบบและประมาณค่าพารามิเตอร์ในรูปแบบแล้ว ต้องตรวจสอบอีกรึว่ารูปแบบที่กำหนดมีความเหมาะสมจริงหรือไม่ โดยการพิจารณาค่าสหสัมพันธ์ในตัวองของค่าความคลาดเคลื่อน (ดูจากราฟคอร์ลส์โกร์น) การทดสอบค่าพารามิเตอร์ในรูปแบบ โดยการพิจารณาจากค่าสถิติ t (t – statistic) และการทดสอบความเหมาะสมของรูปแบบ โดยการทดสอบของ Box and Pierce หรือการทดสอบของ Box and Ljung

4. การพยากรณ์ (forecasting) นำสมการพยากรณ์ที่สร้างจากรูปแบบการพยากรณ์ที่กำหนดและผ่านการตรวจสอบรูปแบบ มาพยากรณ์ค่าในอนาคต โดยสามารถทำได้ทั้งการพยากรณ์แบบจุด (point forecast) และการพยากรณ์แบบช่วง (interval forecast) การพยากรณ์โดยวิธีการของ Box and Jenkins จะให้ค่าพยากรณ์ไปข้างหน้าที่ดีในช่วงเวลาสั้นๆ

4. วิธีการพยากรณ์ด้วยวิธี SARIMA Intervention Analysis

ปกติรูปแบบอนุกรมเวลา มีการเคลื่อนไหวตามแนวโน้ม ถูกตัด วัฏจักร และ/หรือ เหตุการณ์ที่ผิดปกติ แต่ในบางครั้งก็มีเหตุการณ์ที่ทราบลักษณะการเกิด ช่วงเวลาการเกิด และทราบผลกระทบที่มีต่อการเคลื่อนไหวของอนุกรมเวลา ซึ่งเรียกว่า “Intervention” เช่น วิกฤติการณ์โรค SARS เป็นต้น วิธีการ ARIMA Intervention Model ได้รับการพัฒนาขึ้นมาเมื่อ ประมาณปี ค.ศ. 1975 โดย Box and Tiao แบบจำลองดังกล่าว ได้รับความนิยมอย่างสูง ในการนำมาพยากรณ์ในกรณีที่ข้อมูลอนุกรมเวลา มีองค์ประกอบของเหตุการณ์ผิดปกติ ซึ่งผู้พยากรณ์ทราบลักษณะการเกิด ช่วงเวลาการเกิด และทราบผลกระทบที่มีต่อการเคลื่อนไหวของอนุกรมเวลา นอกจากนี้แบบจำลองนี้ ยังเป็นกรณีเฉพาะ (special case) ของ Transfer Function สำหรับ ตัวแบบในการวิเคราะห์ ARIMA Intervention มีองค์ประกอบอยู่ 2 ส่วน ดังนี้

ARIMA Intervention Model = Intervention Function + ARIMA noise Model

$$Y_t = f(I_t) + N_t$$

โดยที่ Y_t = ค่าสังเกตที่เวลา t จากอนุรวมที่เป็น stationary

$f(I_t)$ = เป็นฟังก์ชันของตัวแปร dummy ที่แสดงถึงอิทธิพลของ intervention

ณ เวลาที่ t ถ้า $I_t = 1$ เมื่อเกิด Intervention

$I_t = 0$ เมื่อไม่เกิด Intervention

อัตร旁ศ์ อันทอง และปริญญา คำหยาด **● การพยากรณ์ข้านวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention**

$N_t =$ เป็น noise series ก่อนเกิด Intervention ที่มีรูปแบบ ARIMA
ซึ่งในที่นี้จะใช้รูปแบบ ARIMA $(p,d,q) \times (P,D,Q)_L$

โดยทั่วไปลักษณะของอิทธิพลของ Intervention ที่มีต่ออนุกรมเวลาจะมีผลกระแทกอยู่ 2 ลักษณะ คือ ผลกระแทกที่คงอยู่ตลอดไป (Step Function) และผลกระแทกเฉพาะบางช่วงของเวลาแล้วหมดไป (Pulse Function) ซึ่งอิทธิพลของ Intervention ทั้ง 2 ลักษณะมีการกำหนดรูปแบบของตัวแปร Dummy ที่แตกต่างกันออกไปดังนี้ (Min, J.C.H. and WU, B.W.P., 2006)

ก. Step Function เป็นกรณีที่อิทธิพลของ Intervention เกิดขึ้น ณ เวลาที่ t และคงอยู่ตลอดไป สามารถกำหนดตัวแปร Dummy ที่แสดงถึงอิทธิพลของ Intervention ในลักษณะดังกล่าวได้ดังนี้

$$S_t^T = \begin{cases} 0, & t < T \\ 1, & t \geq T \end{cases}$$

ก. Pulse Function เป็นกรณีที่อิทธิพลของ Intervention เกิดขึ้นแล้วคงอยู่เพียงช่วงเวลาหนึ่ง ในกรณีนี้ ตัวแปร Dummy ที่แสดงถึงอิทธิพลของ Intervention จะอยู่ในรูปแบบดังนี้

$$P_t^T = \begin{cases} 0, & t = T \\ 1, & t \neq T \end{cases}$$

สำหรับขั้นตอนในการวิเคราะห์ SARIMA Intervention ที่ใช้ในการศึกษาครั้งนี้ โดยทั่วไปมีขั้นตอนในการวิเคราะห์ 3 ขั้นตอนดังนี้ (Enders, 2004)

- กำหนดแบบจำลอง SARIMA ให้กับอนุกรมเวลา ก่อนการเกิด Intervention ซึ่งในงานศึกษาชิ้นนี้ได้พิจารณาเหตุการณ์ Intervention 4 เหตุการณ์ คือ เหตุการณ์ 9-11, วิกฤตการณ์โรค寨าร์ส (SARS), วิกฤตการณ์โรคไข้หวัดนก (Bird Flu) และสึนามิ (Tsunami)
- กำหนดแบบจำลอง SARIMA Intervention !! เเล้วทำการประมาณค่าแบบจำลองดังกล่าวด้วยข้อมูลทั้งหมด
- ตรวจสอบความเหมาะสมของแบบจำลอง SARIMA Intervention

การสร้างสมการพยากรณ์

การสร้างสมการพยากรณ์ในการศึกษาครั้งนี้ สร้างมาจากชุดข้อมูลรายเดือนระหว่างเดือนมกราคม 2528 – ธันวาคม 2548 โดยเป็นข้อมูลจำนวนนักท่องเที่ยวต่างชาติที่เดินทางเข้ามาท่องเที่ยวในประเทศไทย แยกเป็น รายตลาดที่สำคัญ ซึ่งจากชุดข้อมูลนี้จะถูกนำมาสร้างสมการพยากรณ์ด้วยวิธี SARIMA Intervention ดังรายละเอียด พอสังเขป ดังนี้

ก. แบบจำลอง SARIMA ก่อน Intervention

แบบจำลอง SARIMA ก่อน Intervention สร้างจากชุดข้อมูลอนุกรมเวลาตั้งแต่เดือนมกราคม 2528 – ธันวาคม 2548 รวม 192 เดือน สำหรับการกำหนดรูปแบบ (Identification) ของแบบจำลอง SARIMA $(p,d,q)(P,D,Q)_s$ (Seasonal Integrated Autoregressive and Moving Average : SARIMA) ที่ใช้ในการศึกษาครั้งนี้ได้มาจากการพิจารณากราฟของค่าสัมประสิทธิ์สหสัมพันธ์ในตัวอง (Autocorrelation Function: ACF) และสัมประสิทธิ์สหสัมพันธ์ในตัวองบางส่วน (Partial Autocorrelation Function: PACF) และรูปแบบดังกล่าวไปตรวจสอบความเหมาะสมด้วยการพิจารณากราฟของค่าสัมประสิทธิ์สหสัมพันธ์ในตัวองของค่าความคลาดเคลื่อน (residual) และจากการทดสอบความเหมาะสมของรูปแบบโดยการทดสอบของ Box and Pierce (Box and Ljung) ด้วยค่าสถิติ Q ในที่สุดแล้วจึงได้รูปแบบของแบบจำลอง SARIMA $(p,d,q)(P,D,Q)_s$ ที่เหมาะสมสำหรับการนำมาใช้ ดังแสดงในตารางที่ 1

ตารางที่ 1 แนวโน้มจำนวนนักท่องเที่ยวต่างชาติในตลาดสำคัญต่างๆ และแบบจำลอง SARIMA

ประเทศ	อัตราการเติบโตเฉลี่ย (ร้อยละ)					แบบจำลอง
	1985 - 1990	1991 - 1995	1996 - 2000	2001 - 2005	1985 - 2005	
รวมทุกประเทศ	16.90	5.78	6.54	4.37	8.40	$(0\ 1\ 1)(0\ 1\ 1)12$
อาเซียน	17.99	8.01	5.84	3.75	8.90	$(0\ 1\ 1)(0\ 1\ 1)12$
มาเลเซีย	8.85	9.50	3.44	7.37	7.29	$(0\ 1\ 1)(0\ 1\ 1)12$
สิงคโปร์	6.92	7.94	-0.16	5.10	4.95	$(0\ 1\ 1)(0\ 1\ 1)12$
จีน	12.44	5.31	8.95	6.17	8.22	$(0\ 1\ 1)(0\ 1\ 1)12$
อ่องกง	21.99	48.49	14.87	2.86	22.05	$(1\ 1\ 1)(1\ 0\ 1)12$
ญี่ปุ่น	25.91	-1.17	7.92	2.80	8.86	$(0\ 1\ 1)(0\ 1\ 1)12$

อัครพงศ์ อินท่อง และบัวยา คำพุกกะ **การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention**

ตารางที่ 1 (ต่อ) แนวโน้มจำนวนนักท่องเที่ยวต่างชาติในตลาดสำคัญต่างๆ และแบบจำลอง

SARIMA

ประเทศ	อัตราการเติบโตเฉลี่ย (ร้อยละ)					แบบจำลอง SARIMA
	1985 - 1990	1991 - 1995	1996 - 2000	2001 - 2005	1985 - 2005	
ไทยแลนด์	44.10	25.57	7.94	14.14	22.94	(1 1 1)(0 1 1)12
ได้หัวน	51.33	0.80	8.38	-10.25	12.57	(0 1 1)(0 1 1)12
ญี่ปุ่น	22.34	5.06	6.84	4.45	9.67	(0 1 1)(0 1 1)12
ศรีลังกา	23.27	0.79	3.98	1.85	7.48	(2 0 0)(1 1 0)12
เยอรมนี	20.50	8.60	0.81	3.28	8.30	(0 1 1)(0 1 1)12
สหเดน	25.33	2.92	22.25	1.44	12.99	(1 1 2)(1 1 0)12
สหราชอาณาจักร	24.18	3.61	12.13	8.34	12.07	(0 1 1)(1 1 1)12
อเมริกา	13.87	-0.32	10.48	4.88	7.23	(0 1 1)(0 1 1)12
มาเลเซีย	18.64	-1.37	8.32	9.49	9.12	(0 1 1)(0 1 1)12
สหรัฐอเมริกา	13.73	0.33	10.79	4.47	7.33	(0 1 1)(0 1 1)12
เอเชียใต้	5.09	0.71	5.41	9.10	5.08	(0 1 1)(0 1 1)12
อินเดีย	1.40	-0.28	10.62	12.10	5.96	(1 1 2)(0 1 1)12
โซเซียนี่	22.57	-4.54	11.60	6.68	9.08	(2 1 1)(0 1 1)12
อสเตรเลีย	21.56	-4.92	11.33	6.96	8.73	(0 1 1)(0 1 1)12
ตะวันออกกลาง	-6.91	8.08	11.42	12.43	6.26	(0 1 3)(0 1 1)12
อฟริกา	22.72	8.84	12.13	-1.20	10.62	(0 1 1)(0 1 1)12

ข. แบบจำลอง SARIMA Intervention

การกำหนดแบบจำลอง SARIMA Intervention ในการศึกษาครั้งนี้ เป็นการพิจารณาจากเหตุการณ์ Intervention 4 เหตุการณ์ คือ เหตุการณ์ 9-11 วิกฤตการณ์โรคชาร์ส (SARS) วิกฤตการณ์โรคไข้หวัดนก (Bird Flu) และสึนามิ (Tsunami) ซึ่งช่วงระยะเวลาของการเกิด Intervention ไม่แต่จะเป็นเหตุการณ์นั้น ได้ใช้วิธีการตามผลงานการศึกษาของ Akarapong et al. (2005) ที่ได้มีการประยุกต์ใช้ X-12-ARIMA มาแยกองค์ประกอบของเหตุการณ์ต่างๆ เมื่อได้ช่วงเวลาของแต่ละ Intervention และของแต่ละตลาดแล้ว จึงนำมาสร้างเป็นตัวแปร Dummy เพื่อนำมาใช้ในแบบจำลอง SARIMA Intervention โดยแต่ละตลาดจะมีได้รับอิทธิพลของ Intervention ในแต่ละเหตุการณ์แตกต่างกันออกไป และ Intervention แต่ละเหตุการณ์ที่มีระยะเวลาของผลกระทบที่แตกต่างกันออกไป ดังแสดงในตารางที่ 2

วารสารวิชาการ ม.อน. • ปีที่ 11 • ฉบับที่ 1 • มกราคม-เมษายน 2552

ตารางที่ 2 ขนาดของผลกระทบของความไม่แน่นอนและระยะเวลาที่ได้รับผลกระทบ

ประเทศ	11-Sep-44		SARS		Bird Flu		Tsunami	
	ขนาด (%)	ระยะเวลา (เดือน)	ขนาด (%)	ระยะเวลา (เดือน)	ขนาด (%)	ระยะเวลา (เดือน)	ขนาด (%)	ระยะเวลา (เดือน)
รวมทุกประเทศ	7.96	2	73.75	3	20.18	2	22.08	4
เอเชียตะวันออก	9.25	2	98.53	3	38.30	2	28.28	4
อาเซียน	13.61	3	101.42	4	30.23	4	4.96	2
มาเลเซีย	9.38	2	107.56	3	42.99	4	4.62	1
สิงคโปร์	33.52	3	128.69	3	29.85	4	10.61	2
จีน	15.03	2	183.22	4	53.28	2	66.08	2
ส่องกง	4.23	1	82.14	3	103.93	2	64.74	2
ฟิลิปปิน	47.15	5	58.37	4	26.13	2	26.40	3
เกาหลีใต้	36.34	5	130.71	3	36.88	3	64.86	4
ไต้หวัน	14.83	3	148.38	3	52.40	3	55.47	2
ญี่ปุ่น	10.03	4	20.75	4	11.85	1	22.95	4
ฟิร์นเศส	5.28	3	50.12	5	19.61	3	10.89	3
เยอรมนี	3.28	1	32.67	2	7.44	1	10.41	2
สเปน	6.41	2	14.03	2	7.66	1	26.93	2
สาธารณรัฐเช็ก	2.07	2	9.13	4	11.49	2	5.64	2
อเมริกา	20.55	3	54.07	4	4.11	1	1.80	2
แคนนาดา	6.97	3	43.84	4	7.44	4	4.11	2
สหรัฐอเมริกา	24.95	3	54.51	5	3.57	2	1.57	2
เอเชียใต้	24.08	2	81.69	3	5.33	1	34.84	2
อินเดีย	37.35	2	93.44	3	8.67	1	36.96	2
โอมานีเย	7.76	2	5.38	4	1.99	1	4.95	2
ออสเตรเลีย	8.94	2	6.63	3	0.52	1	4.54	2
ตะวันออกกลาง	32.73	3	70.02	3	5.84	1	54.38	4
อฟริกา	3.49	2	47.31	3	8.72	2	0.89	1

ภายหลังจากการกำหนดแบบจำลอง SARIMA Intervention ของแต่ละตลาดแล้ว ในขั้นตอนต่อไปจะทำการประมาณค่าสัมประสิทธิ์ของแบบจำลองโดยใช้หลักการของวิธีกำลังสองน้อยที่สุด (Ordinary Least Square Method: OLS) ก่อรากคือ พยายามทำให้ผลรวมของส่วนเบี่ยงเบนระหว่างค่าจริง (y_t) และค่าประมาณของข้อมูลที่นำมาสร้างความสัมพันธ์ (\hat{y}_t) มากที่สุด ซึ่งแบบจำลองในแต่ละตลาดจะมีลักษณะที่แตกต่างกันออกไป และในการศึกษาครั้งนี้ได้มีการประมาณค่าแบบจำลองในแต่ละตลาดออกเป็น 2 แบบจำลอง คือ

อัตราพงศ์ อั้นทอง และปวีณา คำพูดกง ● การพยากรณ์ขันวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

แบบจำลอง SARIMA Intervention และแบบจำลอง SARIMA Intervention & Level Shift เนื่องจากในบางช่วงของอนุกรมเวลา อาจมีการเคลื่อนไหวผิดปกติ หรือมี Outliers

ค. ตรวจสอบความเหมาะสมของแบบจำลอง SARIMA Intervention

จากการตรวจสอบความเหมาะสมของรูปแบบสมการพยากรณ์ ด้วยการพิจารณาค่า Stationary R-squared, R-squared, RMSE และ Ljung – Box (ค่าสถิติ Q) ปรากฏว่า ค่าสถิติ Stationary R-squared และ R-squared ของสมการพยากรณ์ทั้งหมดมีค่าเข้าใกล้หนึ่ง ในขณะที่ค่า RMSE มีค่าเข้าใกล้ศูนย์ สำหรับ ค่าสถิติ Q ที่ได้จากการคำนวณ มีค่าน้อยกว่าค่าวิกฤตของ Chi-square ณ ระดับนัยสำคัญ 0.10 ซึ่งเป็นการยืนยันว่ารูปแบบสมการพยากรณ์ที่เลือกไว้เป็นรูปแบบที่มีความเหมาะสมที่จะใช้ในการอธิบายอนุกรมเวลาของจำนวนนักท่องเที่ยวต่างชาติในแต่ละตลาดที่เดินทางมาท่องเที่ยวในประเทศไทย (รายละเอียดในตารางที่ 3)

ตารางที่ 3 ผลการตรวจสอบความเหมาะสมของแบบจำลอง SARIMA Intervention

แบบจำลองของประเทศไทย	Stationary R-squared	R-squared	RMSE	Ljung-Box Q(18)
รวมทุกประเทศ	0.778	0.985	0.052	8.791 (DF = 16, Sig. = 0.922)
อาเซียน	0.767	0.967	0.081	11.761 (DF = 16, Sig. = 0.760)
มาเลเซีย	0.696	0.906	0.122	18.167 (DF = 16, Sig. = 0.314)
สิงคโปร์	0.647	0.686	0.172	25.067 (DF = 16, Sig. = 0.069)
จีน	0.742	0.912	0.094	22.151 (DF = 16, Sig. = 0.138)
ห่อง Kong	0.723	0.954	0.089	21.825 (DF = 15, Sig. = 0.112)
ญี่ปุ่น	0.736	0.958	0.089	22.766 (DF = 16, Sig. = 0.120)
เกาหลีใต้	0.625	0.970	0.083	21.581 (DF = 16, Sig. = 0.157)
ไต้หวัน	0.753	0.980	0.146	25.575 (DF = 16, Sig. = 0.060)
ยูโรป	0.637	0.873	0.176	16.270 (DF = 16, Sig. = 0.434)
ฝรั่งเศส	0.714	0.986	0.060	22.957 (DF = 16, Sig. = 0.115)
เยอรมนี	0.647	0.951	0.097	24.567 (DF = 15, Sig. = 0.056)
สหสหภาพ	0.772	0.973	0.087	23.037 (DF = 16, Sig. = 0.113)
สเปน	0.752	0.977	0.123	24.925 (DF = 15, Sig. = 0.059)
สาธารณรัฐเช็ก	0.754	0.971	0.098	19.478 (DF = 15, Sig. = 0.193)
อเมริกา	0.808	0.964	0.071	20.308 (DF = 16, Sig. = 0.207)
แคนาดา	0.725	0.941	0.108	18.407 (DF = 16, Sig. = 0.301)

ตารางที่ 3 (ต่อ) ผลการตรวจสอบความเหมาะสมของแบบจำลอง SARIMA Intervention

แบบจำลองของประเทศ	Stationary R-squared	R-squared	RMSE	Ljung-Box Q(18)
สาธารณรัฐอเมริกา	0.815	0.960	0.075	12.540 (DF = 16, Sig. = 0.706)
เอเชียใต้	0.657	0.869	0.101	16.752 (DF = 16, Sig. = 0.402)
อินเดีย	0.665	0.940	0.099	21.515 (DF = 15, Sig. = 0.121)
อาเซียน	0.721	0.961	0.082	22.152 (DF = 16, Sig. = 0.138)
ภาคเศรษฐี	0.711	0.950	0.089	27.711 (DF = 16, Sig. = 0.034)
ตะวันออกกลาง	0.770	0.897	0.055	13.077 (DF = 15, Sig. = 0.596)
อัฟริกา	0.796	0.932	0.048	21.017 (DF = 16, Sig. = 0.178)

ผลการพยากรณ์

นำสมการพยากรณ์ที่ผ่านการตรวจสอบความเหมาะสมไปทำการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติ ที่เดินทางเข้ามาในประเทศไทยทั้งที่เป็นภาพรวมและรายต่อรายที่สำคัญ ในช่วงปี พ.ศ. 2550 – 2554 (จำนวน 5 ปี) ดังมีรายละเอียดพอสังเขปดังนี้

ภาพรวม: เมื่อพิจารณาจำนวนนักท่องเที่ยวที่เข้ามาเที่ยวในประเทศไทยอีก 5 ปี ข้างหน้าตามคาดหวังที่สำคัญพบว่า ในอีก 5 ปี ข้างหน้า ตลาดอาเซียนและตลาดตะวันออกกลางจะเป็นตลาดที่มีอัตราการขยายตัวต่ำที่สุด โดยมีอัตราการขยายตัวเฉลี่ยร้อยละ 11.87 และ 10.80 ต่อปี ตามลำดับ รองลงมาได้แก่ ตลาดยุโรป อเมริกา และเอเชีย โดยมีอัตราการขยายตัวเฉลี่ยร้อยละ 6.95, 6.84 และ 6.78 ต่อปี ตามลำดับ ในขณะที่ตลาดอาเซียนและตะวันออก และอัฟริกา จะเป็นกลุ่มที่มีอัตราการขยายตัวโดยเฉลี่ยต่ำที่สุด โดยมีอัตราการขยายตัวเฉลี่ยร้อยละ 4.85 และ 4.13 ต่อปี ตามลำดับ

ภูมิภาคอาเซียน: จากการพยากรณ์ทั่วไปทราบว่า อีก 5 ปีข้างหน้า (พ.ศ. 2550 – 2554) ประเทศไทยจะมีจำนวนนักท่องเที่ยวจากภูมิภาคอาเซียนเพิ่มขึ้นประมาณร้อยละ 4.85 ต่อปี หรือเพิ่มขึ้นเฉลี่ยปีละ 4 แสนกว่าคนต่อปี โดยเฉพาะนักท่องเที่ยวจากประเทศไทยอาเซียน และภาคใต้ที่มีจำนวนเพิ่มขึ้นมากที่สุดในภูมิภาคนี้ โดยเพิ่มขึ้นเฉลี่ยร้อยละ 6.90 และ 6.79 ต่อปี หรือเพิ่มขึ้นประมาณปีละ 263,000 และ 76,000 คนต่อปี ตามลำดับ นักท่องเที่ยวในกลุ่มประเทศไทยอาเซียนที่เพิ่มขึ้นมากที่สุดได้แก่ นักท่องเที่ยวจากประเทศไทยสิงคโปร์ ซึ่งเพิ่มขึ้นเฉลี่ยร้อยละ 5.94 ต่อปี หรือประมาณปีละ 57,000 คนต่อปี นักท่องเที่ยวกลุ่มนี้อาจจะเป็นนักท่องเที่ยวกลุ่มเยาวชนที่นิยมเดินทางเข้ามาทัศนศึกษาในประเทศไทย ในขณะที่

อัตราพหุค ขั้นทอง และปีศา คำพุกง **● การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention**

นักท่องเที่ยวจากมาเลเซียนือตระการเพิ่มขึ้นเพียงเล็กน้อยเท่านั้น สาเหตุหนึ่งอาจเป็นเพราะเหตุการณ์ความไม่สงบในภาคใต้ของประเทศไทย เนื่องจากนักท่องเที่ยวมาเลเซียนักจะนิยมเดินทางมาท่องเที่ยวผ่านชายแดนทางภาคใต้ของประเทศไทยมากกว่าซ่องทางอื่นๆ สำหรับนักท่องเที่ยวในกลุ่มอื่นๆ ของภูมิภาคเอเชียตะวันออก พบว่า นักท่องเที่ยวจากประเทศไทยจะมีอัตราการขยายตัวรองลงมาจากประเทศไทยให้ โดยมีอัตราการขยายตัวเฉลี่ยร้อยละ 4.73 ต่อปี หรือประมาณปีละ 50,000 คน ส่วนประเทศไทยมีปูนและห่องจะเป็นกลุ่มที่มีอัตราการขยายตัวต่ำขึ้นต่อ คือ ประมาณร้อยละ 3.47 และ 2.77 ต่อปี หรือประมาณ 14,000 และ 48,000 คนต่อปี ตามลำดับ ในขณะที่นักท่องเที่ยวจากประเทศไทยได้หันมืออัตราการขยายตัวลดลงเฉลี่ยร้อยละ 20.81 ต่อปี หรือประมาณ 42,000 คน ต่อปี อาจเป็นเพราะว่า นักท่องเที่ยวจากได้หันมารายได้ที่ดีขึ้น จึงมักนิยมเดินทางไปท่องเที่ยวทั่วประเทศในกลุ่มตะวันตก เช่น ยุโรป หรืออเมริกา เป็นต้น สำหรับในปี พ.ศ. 2554 ประเทศไทยน่าจะมีนักท่องเที่ยวจากภูมิภาคเอเชียตะวันออกเข้ามาเที่ยวประมาณ 9.50 ล้านคน โดยเป็นนักท่องเที่ยวจากอาเซียนประมาณ 4.64 ล้านคน หรือประมาณ ร้อยละ 49 ของนักท่องเที่ยวทั่วหมดจากภูมิภาคเอเชียตะวันออก ส่วนที่เหลือจะเป็นนักท่องเที่ยวจากญี่ปุ่น (1.52 ล้านคน) เกาหลีใต้ (1.37 ล้านคน) และจีน (1.20 ล้านคน) ตามลำดับ

ภูมิภาคยุโรป: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคยุโรปจะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นประมาณร้อยละ 6.95 ต่อปี หรือเพิ่มขึ้นประมาณ 2.46 แสนคนต่อปี นักท่องเที่ยวจากประเทศไทยที่สำคัญอย่างสหราชอาณาจักร และสวีเดน ยังคงเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นไม่ต่ำกว่าร้อยละ 9 ต่อปี โดยเฉพาะนักท่องเที่ยวจากสหราชอาณาจักรจะเข้ามาเที่ยวในประเทศไทยเพิ่มขึ้นเฉลี่ยร้อยละ 13.58 ต่อปี หรือประมาณ 84,000 คนต่อปี ในขณะที่นักท่องเที่ยวจากสวีเดนจะเข้ามาเที่ยวเพิ่มขึ้นเฉลี่ยร้อยละ 9.33 ต่อปี หรือประมาณ 50,000 คนต่อปี ส่วนนักท่องเที่ยวจากฝรั่งเศส และเยอรมนี จะเข้ามาท่องเที่ยวเพิ่มขึ้นร้อยละ 7.83 และ 4.81 ต่อปี หรือประมาณ 27,000 และ 26,000 คนต่อปี ตามลำดับ สำหรับในปี พ.ศ. 2554 นักท่องเที่ยวจากภูมิภาคยุโรปจะเข้ามาเที่ยวประเทศไทยประมาณ 4.30 ล้านคน โดยเป็นนักท่องเที่ยวจากสหราชอาณาจักรมากที่สุดถึง 1.17 ล้านคน หรือประมาณร้อยละ 27 ของนักท่องเที่ยวทั่วหมดจากยุโรป รองลงมาได้แก่ นักท่องเที่ยวจากเยอรมนี (0.61 ล้านคน) สวีเดน (0.53 ล้านคน) และฝรั่งเศส (0.42 ล้านคน) ตามลำดับ

ภูมิภาคอเมริกา: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคอเมริกาจะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นประมาณร้อยละ 6.84 ต่อปี หรือเพิ่มขึ้นประมาณ 63,000 คนต่อปี โดยนักท่องเที่ยวจากแคนาดาจะเพิ่มขึ้นร้อยละ 12.13 ต่อปี ในขณะที่นักท่องเที่ยวจากสหราชอาณาจักรจะเพิ่มขึ้นน้อยกว่านักท่องเที่ยวจากแคนาดา โดยเพิ่มขึ้นประมาณร้อยละ 5.80 ต่อปี โดยในปี พ.ศ. 2554 นักท่องเที่ยวจากภูมิภาคอเมริกาจะเข้ามาเที่ยวประเทศไทยประมาณ 1.11 ล้านคน เป็นนักท่องเที่ยวจากสหราชอาณาจักรถึงร้อยละ 74 ของนักท่องเที่ยวจากภูมิภาคอเมริกาทั้งหมด หรือประมาณ 0.83 ล้านคน รองลงมาได้แก่นักท่องเที่ยวจากแคนาดาซึ่งมีจำนวนประมาณ 250,000 คน

ภูมิภาคเอเชียใต้: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคเอเชียใต้จะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นประมาณร้อยละ 6.78 ต่อปี หรือเพิ่มขึ้นประมาณ 44,000 คนต่อปี โดยนักท่องเที่ยวจากประเทศไทยเดิมมีแนวโน้มเพิ่มขึ้นมากที่สุดถึงร้อยละ 12.68 ต่อปี หรือประมาณ 67,000 คนต่อปี โดยในปี พ.ศ. 2554 ประเทศไทยจะมีนักท่องเที่ยวจากภูมิภาคเอเชียใต้เข้ามาเที่ยวประมาณ 780,000 คน โดยส่วนใหญ่จะเป็นนักท่องเที่ยวจากประเทศไทยเดิมมากกว่าประเทศอื่นๆ

ภูมิภาคโอเชียเนีย: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคโอเชียเนียจะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นมากที่สุด โดยเพิ่มขึ้นประมาณร้อยละ 11.87 ต่อปี หรือเพิ่มขึ้นประมาณ 90,000 คนต่อปี โดยนักท่องเที่ยวจากออสเตรเลียจะมีแนวโน้มเพิ่มขึ้นถึงร้อยละ 12.24 ต่อปี หรือประมาณ 80,000 คนต่อปี โดยในปี พ.ศ. 2554 ประเทศไทยจะมีนักท่องเที่ยวจากออสเตรเลียประมาณร้อยละ 86 ของนักท่องเที่ยวจากภูมิภาคโอเชียเนียทั้งหมด หรือประมาณ 910,000 คน

ภูมิภาคตะวันออกกลาง: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคตะวันออกกลางจะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นประมาณร้อยละ 10.80 ต่อปี หรือเพิ่มขึ้นประมาณ 48,000 คนต่อปี โดยในปี พ.ศ. 2554 ประเทศไทยจะมีนักท่องเที่ยวจากภูมิภาคตะวันออกกลางเข้ามาเที่ยวประมาณ 600,000 คน นักท่องเที่ยวในกลุ่มนี้เป็นกลุ่มที่น่าจับตามองเนื่องจากเป็นกลุ่มตลาดใหม่สำหรับประเทศไทย และเป็นกลุ่มตลาดที่มีกำลังซื้อสูง

ภูมิภาคอฟริกา: ในอีก 5 ปี ข้างหน้า (พ.ศ. 2550 – 2554) นักท่องเที่ยวจากภูมิภาคอฟริกาจะเข้ามาเที่ยวประเทศไทยเพิ่มขึ้นประมาณร้อยละ 4.13 ต่อปี หรือเพิ่มขึ้นประมาณ

อัตราพหุศักร์ อั้นหอง และบีโยนา คำพูด กะ การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

3,400 คนต่อปี โดยในปี พ.ศ. 2554 นักท่องเที่ยวจากอัฟริกาจะเข้ามาที่ยวประเทศไทยประมาณ 93,000 คน

ตารางที่ 4 ผลการพยากรณ์จำนวนนักท่องเที่ยวต่างประเทศ ในตลาดที่สำคัญของประเทศไทย

ภูมิภาค	พ.ศ. 2550	พ.ศ. 2551	พ.ศ. 2552	พ.ศ. 2553	พ.ศ. 2554	หน่วย: ล้านคน
รวมทุกประเทศ	13.72	14.49	15.30	16.16	17.07	
เอเชียตะวันออก	7.86	8.24	8.64	9.06	9.50	
อาเซียน	3.55	3.80	4.06	4.34	4.64	
มาเลเซีย	1.36	1.38	1.41	1.44	1.47	
สิงคโปร์	0.90	0.95	1.01	1.07	1.13	
จีน	1.01	1.06	1.11	1.15	1.20	
จีสองกง	0.48	0.49	0.50	0.52	0.53	
ญี่ปุ่น	1.33	1.38	1.43	1.47	1.52	
เกาหลีใต้	1.05	1.12	1.19	1.27	1.37	
ไต้หวัน	0.24	0.19	0.15	0.12	0.10	
ยุโรป	3.29	3.52	3.76	4.02	4.30	
ฝรั่งเศส	0.31	0.34	0.36	0.39	0.42	
เยอรมนี	0.51	0.53	0.56	0.58	0.61	
สวีเดน	0.32	0.36	0.41	0.47	0.53	
สหราชอาณาจักร	0.82	0.90	0.98	1.07	1.17	
อเมริกา	0.85	0.91	0.97	1.04	1.11	
แคนาดา	0.16	0.18	0.20	0.23	0.25	
สหรัฐอเมริกา	0.66	0.70	0.74	0.78	0.83	
เอเชียใต้	0.60	0.64	0.68	0.73	0.78	
อินเดีย	0.46	0.52	0.59	0.66	0.74	
อาเซียนเนีย	0.67	0.75	0.84	0.94	1.05	
อสเตรเลีย	0.57	0.64	0.72	0.81	0.91	
ตะวันออกกลาง	0.40	0.44	0.49	0.54	0.59	
อัฟริกา	0.08	0.08	0.09	0.09	0.09	

เมื่อนำผลการพยากรณ์ในปี พ.ศ. 2550 มาเปรียบเทียบกับจำนวนนักท่องเที่ยวต่างชาติที่เกิดขึ้นจริง พบว่า ค่าพยากรณ์ที่ได้มีค่าใกล้เคียงกับจำนวนนักท่องเที่ยวต่างชาติที่เกิดขึ้นจริง และเมื่อทำการคำนวณค่าผลรวมของส่วนเบี่ยงเบนระหว่างจำนวนนักท่องเที่ยวต่างชาติที่แท้จริง (y_t) กับค่าพยากรณ์ (\hat{y}_t) ยกกำลังสอง พบว่า ค่าคำนวณดังกล่าวมีค่าวิ่งเข้าใกล้ศูนย์ ซึ่ง

แสดงให้เห็นว่า แบบจำลองพยากรณ์ที่สร้างด้วยวิธีการ SARIMA Intervention ซึ่งได้รวมผลกระบวนการของวิกฤติการณ์ระดับโลกต่างๆ เข้าไว้ในแบบจำลอง มีความเหมาะสมและแม่นยำในการนำมาใช้ในการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทย โดยเฉพาะในกรณีที่มีเหตุการณ์วิกฤติการณ์ต่างๆ เกิดขึ้นดังชั้นในช่วง 5 ปีที่ผ่านมา

ตารางที่ 5 เปรียบเทียบผลการพยากรณ์จำนวนนักท่องเที่ยวต่างประเทศกับจำนวนนักท่องเที่ยวที่แท้จริง ปี 2550

ภูมิภาค หน่วย : ล้านคน	ค่าพยากรณ์ พ.ศ. 2550	จำนวนนักท่องเที่ยวที่ แท้จริง พ.ศ. 2550*	$(y_t - \hat{y}_t)^2$
รวมทุกประเทศ	13.72	14.46	0.5476
เอเชียตะวันออก	7.86	7.98	0.0144
อาเซียน	3.55	3.76	0.0441
มาเลเซีย	1.36	1.55	0.0361
สิงคโปร์	0.90	0.80	0.0100
จีน	1.01	1.00	0.0001
สหภาพ	0.48	0.45	0.0009
ญี่ปุ่น	1.33	1.25	0.0064
เกาหลีใต้	1.05	1.08	0.0009
ใต้หวัน	0.24	0.43	0.0361
ยุโรป	3.29	3.69	0.1600
ฝรั่งเศส	0.31	0.35	0.0016
เยอรมนี	0.51	0.54	0.0009
สเปน	0.32	0.37	0.0025
สาธารณรัฐเช็ก	0.82	0.75	0.0049
อเมริกา	0.85	0.82	0.0009
แคนาดา	0.16	0.15	0.0001
สาธารณรัฐอเมริกา	0.66	0.62	0.0016
เอเชียใต้	0.60	0.69	0.0081
อินเดีย	0.46	0.51	0.0025
โอมาน	0.67	0.73	0.0036
อสเตรเลีย	0.57	0.64	0.0049
ตะวันออกกลาง	0.40	0.45	0.0025
อฟริกา	0.08	0.10	0.0004

ที่มา <http://www2.tat.or.th/stat/download/1207/res-1-12.XLS>

อัครพงศ์ อันทอง และปริญ่า คำพูดกะ การพยากรณ์จำนวนนักท่องเที่ยวต่างชาติโดยใช้แบบจำลอง SARIMA Intervention

สรุปผลการศึกษา

ผลการศึกษา แสดงให้เห็นว่า เมื่อข้อมูลอนุกรมเวลาที่นำมาใช้ในการพยากรณ์มีลักษณะของการเคลื่อนไหวที่ผิดปกติในบางช่วง การใช้แบบจำลองปกติในการพยากรณ์ จะทำให้เกิดความคลาดเคลื่อนสูง ดังนั้น ในรายงานฉบับนี้จึงได้ประยุกต์ใช้ Intervention เข้ามาในแบบจำลอง SARIMA โดยใช้วิธีการ SARIMA Intervention มาสร้างสมการพยากรณ์จำนวนนักท่องเที่ยวต่างชาติที่เดินทางมาท่องเที่ยวในประเทศไทย ซึ่งผลการพยากรณ์ที่ได้จากแบบจำลองดังกล่าวมีค่า RMSE ต่ำ โดยผลการพยากรณ์ที่ได้ พบว่า ในปี พ.ศ. 2554 ประเทศไทยมีจำนวนนักท่องเที่ยวต่างชาติที่เข้ามาที่ยวประเทศไทยประมาณ 17 ล้านคน และจะได้รับรายได้จากการขายตั๋ว 6.89 แสนล้านบาท โดยนักท่องเที่ยวจากโอเชียเนียและตะวันออกกลางจะมีอัตราการขยายตัวมากที่สุด รองลงมาได้แก่ ตลาดยุโรป อเมริกา และเอเชีย ได้ 5% ส่วนตลาดเอเชียตะวันออก และอฟริกาจะมีอัตราการขยายตัว ต่ำที่สุดประมาณร้อยละ 4 – 5 ต่อปี นอกจากนี้เมื่อนำผลการพยากรณ์ในปี พ.ศ. 2550 ไปเปรียบเทียบกับจำนวนนักท่องเที่ยวต่างชาติที่เดินทางเข้ามาท่องเที่ยวในประเทศไทยที่เกิดขึ้นจริง พบว่า ผลการพยากรณ์ที่ได้ ใกล้เคียง กับความเป็นจริง และความคลาดเคลื่อนน้ำหนักต่ำ แสดงให้เห็นว่า ผลการพยากรณ์ที่ได้ มีความแม่นยำสูง

บรรณานุกรม

- การท่องเที่ยวแห่งประเทศไทย. 2549. “สถิตินักท่องเที่ยว 2549”. [Online] เข้าได้ถึงจาก http://www.tat.or.th/stat/web/static_index.php. (25 มกราคม พ.ศ. 2549).
- การท่องเที่ยวแห่งประเทศไทย. 2550. “สถิตินักท่องเที่ยว 2550”. [Online] เข้าได้ถึงจาก <http://www2.tat.or.th/stat/download/1207/res-1-12.XLS>. (15 พฤษภาคม พ.ศ. 2551).
- Akarapong Unthong. 2004. “Impact of international tourists decreasing: using SARIMA Model”. Proceeding paper in The First Conference of Junior Economists Faculty of Economics Chiang Mai University. (in Thai)
- Akarapong Untong, Pairach Piboonrungroj and Mingsarn Kaosa-ard. 2005. “The Impacts of Disasters on The Number of International Tourist Arrivals to Thailand”. Proceeding of the Asia Pacific Tourism Association and 4th APacCHRIE joint Conference June 2Y-29, 200Y. Hualien, TAIWAN.
- Cho, V.. 2003. “A comparison of three different approaches to tourist arrival forecasting.” *Tourism Management*, 24, pp 323 – 330.
- Dharmaratne, G.S.. 1995. “Forecasting tourist arrivals in Barbados”. *Annals of Tourism Research*, 22(4): 804-818.

- Dickey, D. and W. Fuller. 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root" *Econometrica* 49: 1057–1072.
- Enders, W.. 2004 *Applied Econometric Time Series*. Second edition, New York: John Wiley & Sons.
- Gujarati, D. 1995. *Basic Econometrics*. 3rd ed. McGraw–Hill.
- Johnston, J. and J, Dinardo. 1997. *Econometric Methods*. 4th ed. McGraw–Hill.
- Kevin K.F. Wong & Haiyan Song. 2002. *Tourism Forecasting and Marketing*. New York: Haworth Hospitality Press.
- Lim, C., & McAleer, M.. 2000. "A seasonal analysis of Asian tourist arrivals to Australia." *Applied Economics*, 32: 499-509.
- Min, Jennifer C. H. and Bill W.P. Wu. 2005. "The Impact of Severe Acute Respiratory Syndrome (SARS) in Taiwan's Outbound Tourism: A SARIMA With Intervention Model Approach". Proceedings of the Asia Pacific Tourism Association and 4th APacCHRIE joint Conference June 2Y-29, 200Y. Hualien, Taiwan.

ความเอนเอียงของวิธีดิจิทัลแบบสองขั้นตอน*

อัครพงศ์ อันทอง** สถาบันศึกษาโดยบายสาครและ มหาวิทยาลัยเชียงใหม่

บทคัดย่อ บทความนี้ศึกษาถึงความเอนเอียงของการใช้วิธีดิจิทัลแบบสองขั้นตอน โดยขั้นตอนแรกใช้วิธีดิจิทัลแบบสองขั้นตอนที่สองใช้แบบจำลองทิบิตศึกษาอิทธิพลของตัวแปรภายนอกที่มีต่อค่าประสิทธิภาพในการจัดการ และขั้นตอนที่สองใช้แบบจำลองทิบิตศึกษาอิทธิพลของตัวแปรภายนอกที่มีต่อค่าประสิทธิภาพในการจัดการ ข้อมูลที่ใช้ในการวิเคราะห์สร้างขึ้นจากวิธี Monte Carlo โดยกำหนดให้ปัจจัยนำเข้าและตัวแปรภายนอกมีความแปรปรวนและสนสัมพันธ์ ณ ระดับที่แตกต่างกัน ผลการศึกษาพบว่า ความแปรปรวนและขนาดของสนสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกมีผลทำให้ค่าประสิทธิภาพในการจัดการที่คำนวณได้มีค่าสูงหรือต่ำกว่าค่าที่ควรจะเป็น ทั้งยังทำให้อิทธิพลของตัวแปรภายนอกที่มีผลต่อค่าประสิทธิภาพในการจัดการเกิดความเอนเอียงและขนาดความเที่ยงตรง ผู้ศึกษาที่จะใช้วิธีดิจิทัลแบบสองขั้นตอน จึงควรตรวจสอบความแปรปรวนและขนาดของสนสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกเสียก่อน หากพบปัญหาดังกล่าวผู้ศึกษาสามารถแก้ไขได้โดยใช้ตัวแปรผลผลิตขัดอิทธิพลของตัวแปรภายนอก หรือลดความแปรปรวนของข้อมูลโดยใช้ natural logarithm วิธีการเหล่านี้จะช่วยให้ค่าประสิทธิภาพในการจัดการที่คำนวณได้มีความถูกต้องและเที่ยงตรงมากขึ้น

คำสำคัญ: วิธีดิจิทัลแบบสองขั้นตอน ความเอนเอียง ประสิทธิภาพในการจัดการ

* บทความนี้เป็นส่วนหนึ่งของ “โครงการท่องเที่ยวไทย: จากนโยบายสู่รากหญ้า” ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) ภายใต้ทุนส่งเสริมกลุ่มวิจัย (เมธิวิจัยอาชญากรรม สกอ.)

** ติดต่อผู้เขียน: นายอัครพงศ์ อันทอง สถาบันศึกษาโดยบายสาครและ มหาวิทยาลัยเชียงใหม่ 239 ถนนห้วยแก้ว อำเภอเมืองจังหวัดเชียงใหม่ 50200 โทรศัพท์: 053 942593 แฟกซ์: 053 892649 อีเมล: Akarapong_un@hotmail.com

The Bias in the DEA Two-stage Method*

Akarapong Untong** Public Policy Studies Institute, Chiang Mai University

Abstract This paper studies the bias of using DEA two-stage method for measuring managerial efficiency. In using the method, first, the managerial efficiency is measured by a DEA method. Then, a tobit model is employed to examine the influence of an exogenous variable. Data used in this study were obtained with a Monte Carlo technique. The analysis determines the variance and the correlation of inputs and exogenous variable at different levels. The results show that the variance and the degree of correlation between inputs and exogenous variable significantly influenced the managerial efficiency score. This caused the efficiency score to be either too high or too low compared to the actual value. This also distorted the influence of exogenous variable, which thus caused a bias and gave an imprecise managerial efficiency score. The analyst thus should test the variance and correlation between inputs and exogenous variable before applying the DEA two-stage method. If problems are detected, this can be corrected by ridding the influence of exogenous variable from the output or reducing the variance of the data by using natural logarithm. These techniques would improve the precision of estimating managerial efficiency score.

Keywords: DEA two-stage method, bias evaluation, managerial efficiency

* This paper is a part of project on "Thailand Tourism: From Policy to Grassroots" supported by The Thailand Research Fund (TRF) under TRF Research-Team Promotion Grant (TRF Senior Research Scholar).

** Corresponding author: Akarapong Untong, Public Policy Studies Institute, Chiang Mai University 239 Huaykaew Road, Muang, Chiang Mai Province, Thailand, 50200. Tel: (+66)53942593, Fax: (+66)53892649, E-mail: Akarapong_un@hotmail.com

บทนำ

ดีอีเอ หรือ data envelopment analysis (DEA) เป็นเครื่องมือหนึ่งที่นักเศรษฐศาสตร์นิยมใช้ศึกษาประสิทธิภาพในการจัดการของหน่วยธุรกิจ เครื่องมือนี้มีความยืดหยุ่นมากกว่าวิธีการเอสเอฟเอ หรือ stochastic frontier approach (SFA) ทั้งนี้วิธีเอสเอฟเอที่เป็นแบบจำลอง technical efficient effect นำเสนอด้วย Battese and Coelli (1993) สามารถถือเป็นปัจจัยที่ทำให้เกิดความไม่มีประสิทธิภาพของหน่วยธุรกิจ โดยอาศัยวิธีการแบบจำลองทางเศรษฐมิติที่เป็นลักษณะของการประมาณค่าสมมติของฟังก์ชันการผลิตและฟังก์ชันความไม่มีประสิทธิภาพไปพร้อมกัน (ลักษณะเป็น simultaneous equation) ส่วนวิธีดีอีเอแบบสองขั้นตอน (DEA two-stage method) สามารถใช้หาค่าตอบในลักษณะเดียวกันได้ เช่นกัน Wang, Weng, and Chang (2001); Loikkanen and Susilo (2002); Mortimer and Peacock (2002); อัครพงศ์ อันทอง (2547); มิงสรพ์ ขาวสอด, นุกุล เครือฟู, และ อัครพงศ์ อันทอง (2548) ได้ประยุกต์วิธีดีอีเอแบบสองขั้นตอน เพื่อวัดประสิทธิภาพในการจัดการ และศึกษาถึงปัจจัยที่มีอิทธิพลต่อความมีประสิทธิภาพหรือความไม่มีประสิทธิภาพในการจัดการของหน่วยธุรกิจ โดยขั้นตอนแรกใช้ผลผลิต (outputs) และปัจจัยนำเข้า (inputs) ประเมินประสิทธิภาพในการจัดการของหน่วยธุรกิจด้วยวิธีดีอีเอ และขั้นตอนที่สองสร้างสมการลดด้อยระหว่างค่าประสิทธิภาพในการจัดการที่ประเมินได้กับตัวแปรภายนอก (exogenous variables) ที่สามารถควบคุมหรือเปลี่ยนแปลงได้¹ ในขั้นนี้เป็นการวิเคราะห์หาปัจจัยที่มีอิทธิพลต่อความมีประสิทธิภาพหรือความไม่มีประสิทธิภาพในการจัดการ เท่าที่ผ่านมา尼ยมประมาณค่าสมมติของวิธีกำลังสองน้อยที่สุด (ordinary least square, OLS) หรือวิธีภาวะความน่าจะเป็นสูงสุด (maximum likelihood estimation, MLE) วิธีหลังใช้ในกรณีของแบบจำลองโทบิต (tobit model) (อัครพงศ์ อันทอง, 2547)

อย่างไรก็ตาม Barnum and Gleason (2008) ได้ชี้ให้เห็นถึงความเอนเอียง (bias) และปัญหาความเที่ยงตรง (precision problem) ในการใช้วิธีดีอีเอแบบสองขั้นตอน งานศึกษาดังกล่าวใช้วิธี OLS ประมาณค่าสมมติของสมการลดด้อยในขั้นตอนที่สอง แต่การใช้วิธี OLS ทำให้ตัวประมาณค่าที่ได้ขาดคุณสมบัติความมีประสิทธิภาพ (efficiency) เนื่องจากตัวแปรตาม (endogenous) ของสมการที่สองเป็นค่าความมีประสิทธิภาพหรือความไม่มีประสิทธิภาพในการจัดการ และมีลักษณะการแจกแจงแบบตัดปลาย (truncated) ที่มีค่าระหว่าง 0-1 ดังนั้นการใช้วิธี OLS อาจเผยแพร่กับปัญหา heteroskedasticity (Greene, 2003) โดยค่าสถิติ t (t-statistic) ที่คำนวณได้มีค่าต่ำหรือสูงกว่าความเป็นจริง และจะทำให้เกิดการตัดสินใจผิดพลาดในการเลือกตัวแปรอิสระของสมการลดด้อยในขั้นตอนที่สอง (Anderson et al., 1999; อัครพงศ์ อันทอง, 2547; อัครพงศ์ อันทอง, 2548; Coelli et al., 2005) กองปรับขนาดของความแปรปรวน (variance) ของปัจจัยนำเข้า

¹ ความไม่มีประสิทธิภาพเกิดขึ้นจากการจัดการหรือการจัดสรรปัจจัยนำเข้าที่ไม่เหมาะสม ดังนั้นการปรับปรุงประสิทธิภาพจึงสามารถดำเนินการได้ภายใต้การเปลี่ยนแปลงการจัดการหรือการจัดสรรปัจจัยนำเข้าให้มีความเหมาะสมขึ้น

ในขั้นตอนแรกย่อว่ามีอิทธิพลต่อการคำนวณหาค่าประสิทธิภาพ ในการจัดการ ทำให้ค่าประสิทธิภาพที่คำนวณได้อาจมีค่าสูงหรือต่ำกว่าความเป็นจริง (อัครพงศ์ อันทอง, 2547; Coelli, et al., 2005) ขณะเดียวกันขนาดของความแปรปรวนของตัวแปรภายนอกและขนาดของสหสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกย่อมมีอิทธิพลและทำให้สมการถดถอยในขั้นตอนที่สองเกิดความเอนเอียงและขาดความเที่ยงตรงได้ (Simar and Wilson, 2005; Barnum and Gleason, 2008)

บทความนี้ศึกษาถึงความเอนเอียงและความเที่ยงตรงในการใช้วิธีดีอีโคแบบสองขั้นตอน โดยขั้นตอนที่สองจะใช้แบบจำลองโถบิตแทนการใช้ OLS ในการประมาณค่าสัมประสิทธิ์ นอกจากนี้ยังได้ศึกษาความเอนเอียงที่เกิดขึ้นเมื่อปัจจัยนำเข้าและตัวแปรภายนอกมีระดับของความแปรปรวนและขนาดของสหสัมพันธ์ที่แตกต่างกัน รวมทั้งเสนอแนะวิธีการแก้ไขปัญหาในการนีดังกล่าว ผลการศึกษานี้นำเสนอข้อมูลที่เป็นประโยชน์แก่ผู้ใช้วิธีดีอีโคแบบสองขั้นตอนว่า ผู้ใช้ควรได้ตระหนักรถึงปัญหาด้านเทคนิคของการใช้วิธีดังกล่าว และควรแก้ไขปัญหาในการนีที่วิธีดังกล่าวเกิดความเอนเอียงและขาดความเที่ยงตรง ตอนต่อไปกล่าวถึงแนวคิดและวิธีการศึกษา แบบจำลองที่ใช้ในการศึกษา และผลการศึกษา จากนั้นเป็นการอภิปรายผลการศึกษา รวมทั้งเสนอแนะวิธีแก้ไขปัญหาในการนีที่ตัวแปรภายนอกมีสหสัมพันธ์กับปัจจัยนำเข้าค่อนข้างสูง ตามด้วยสรุปและข้อคิดเห็นบางประการในการใช้วิธีดีอีโคแบบสองขั้นตอน

แนวคิดและวิธีการศึกษา

บทความนี้ใช้วิธี Monte Carlo ในการสร้างชุดข้อมูลเพื่อทดสอบความ吻合และการเทียบตรงของวิธีดีอีโคแบบสองขั้นตอน ภายใต้ข้อสมมติที่ว่าปัจจัยนำเข้าและตัวแปรภายนอกมีระดับความแปรปรวนและขนาดของสหสัมพันธ์แตกต่างกัน (ข้อสมมตินี้สอดคล้องตามกรณีที่ว่าไปที่มีการนำดีอีโคไปใช้) การศึกษาได้สมมติว่าจำนวนของหน่วยตัดสินใจ (decision making unit, DMU) ที่พิจารณา มีทั้งหมด 100 หน่วย มีผลผลิตจำนวน 1 หน่วย ที่เป็นเขตของจำนวนจริงที่มีค่าเป็นบวก ($y_i \in R_+^1$) มีปัจจัยนำเข้า 2 หน่วย และมีตัวแปรภายนอกเพียง 1 หน่วย ที่เป็นเขตของจำนวนจริงที่มีค่าเป็นบวก ($x_{1i}, x_{2i}, z_i \in R_+^2$) เช่นเดียวกัน กำหนดให้ปัจจัยนำเข้าและตัวแปรภายนอกมีค่าเฉลี่ยคงที่เท่ากับ 100 และมีค่าส่วนเบี่ยงเบนมาตรฐาน 3 ระดับ คือ ณ ระดับที่ 5 25 และ 45 ตามลำดับ นอกจากนี้ได้กำหนดให้ x_{1i} มีสหสัมพันธ์กับ z_i ณ ระดับที่ 0.5 และ 0.9 ทั้งนี้จะได้ชุดข้อมูลของปัจจัยนำเข้าและตัวแปรภายนอกที่ใช้ในการศึกษารวม 9 ชุด (ตารางที่ 1)

ตารางที่ 1 คุณลักษณะเฉพาะของข้อมูลที่ใช้ในการศึกษา

ข้อมูลชุดที่	ρ_{x_1z}	μ_x	σ_x	μ_z	σ_z
1	0.0	100	5	100	5
2	0.0	100	25	100	25
3	0.0	100	45	100	45
4	0.5	100	5	100	5
5	0.5	100	25	100	25
6	0.5	100	45	100	45
7	0.9	100	5	100	5
8	0.9	100	25	100	25
9	0.9	100	45	100	45

ในแต่ละชุดข้อมูลสมมติให้ค่าของผลผลิตเกิดจากความสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกเท่านั้นโดยไม่มีตัวรบกวน (disturbance) อีนๆ หมายอธิผลต่อผลผลิต เพื่อให้ผลผลิตที่เกิดขึ้นได้รับอิทธิพลจากปัจจัยนำเข้าและตัวแปรภายนอกเท่านั้น สำหรับรูปแบบความสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกที่มีต่อผลผลิตได้กำหนดให้มีลักษณะเชิงเส้นตรง (linear) และ Cobb-Douglas ดังนี้

$$y_i = 0.3x_{1i} + 0.3x_{2i} + 0.4z_i$$

$$y_i = x_{1i}^{0.3} x_{2i}^{0.3} z_i^{0.4}$$

โดยที่ y_i คือ ผลผลิตของหน่วยผลิตที่ i

x_{1i} คือ ปัจจัยนำเข้าชนิดที่ 1 ของหน่วยผลิตที่ i

x_{2i} คือ ปัจจัยนำเข้าชนิดที่ 2 ของหน่วยผลิตที่ i

z_i คือ ตัวแปรภายนอกของหน่วยผลิตที่ i

ในที่นี้จะได้ชุดข้อมูลที่ใช้ในการศึกษาจำนวน 18 ชุด เหตุผลของการกำหนดให้ปัจจัยนำเข้าและตัวแปรภายนอกมีขนาดความสัมพันธ์กับผลผลิตในลักษณะดังกล่าว เนื่องจากต้องการให้ตัวแปรภายนอกมีอิทธิพลต่อผลผลิตมากกว่าปัจจัยนำเข้า² เพื่อสะท้อนให้เห็นชัดเจนถึงความเอนเอียงที่เกิดขึ้นจากการที่ตัวแปรภายนอกมีอิทธิพลต่อตัวแปรตาม (เป็นค่าประสิทธิภาพในการจัดการที่ประเมินได้) นอกจากนี้ยังควบคุมให้ปัจจัยนำเข้าทั้ง 2 ชนิด มีความสัมพันธ์ต่อผลผลิตในระดับคงที่ สำหรับรูปแบบความสัมพันธ์ที่เลือกใช้เป็นรูปแบบสมการเชิงเส้นตรงและ Cobb-Douglas ซึ่งเป็นรูปแบบความสัมพันธ์ที่นิยมใช้ในการศึกษาทางด้านเศรษฐศาสตร์

² ในที่นี้กำหนดให้มีเพียงหนึ่งในตัวแปรเท่านั้นและกำหนดให้มีอิทธิพลต่อผลผลิตสูงกว่าปัจจัยนำเข้า แต่ไม่ได้นำมาคิดในการประมาณค่าประสิทธิภาพในการจัดการ เนื่องจากตัวแปรดังกล่าวไม่ได้เป็นปัจจัยนำเข้าที่ก่อให้เกิดผลผลิต เช่น ในการนี้ของการประเมินประสิทธิภาพในการจัดการของโรงเรมพบว่า ขนาดของโรงเรมย่อมมีอิทธิพลต่อรายได้ที่ได้รับ แต่ไม่ได้เป็นปัจจัยที่ก่อให้เกิดรายได้ของโรงเรม

แบบจำลอง

แบบจำลองดีอีโคที่ใช้ในการศึกษาจะพิจารณาทางด้านปัจจัย (input-oriented) ภายใต้ข้อสมมติ constant returns to scale (CRS) และภายใต้ข้อสมมติ variable returns to scale (VRS) โดยมีรายละเอียดแบบจำลองทางคณิตศาสตร์แสดงตามตารางที่ 2 ทั้งนี้กำหนดให้มีปัจจัยนำเข้า 2 ชนิด ผลผลิต 1 ชนิด และหน่วยตัดสินใจ 100 หน่วย และคำนวณค่าปัจจิบทิวภาพในการจัดการจากชุดข้อมูลที่สร้างขึ้น 18 ชุด ด้วยโปรแกรม DEAP 2.1 ที่พัฒนาขึ้นโดย Coelli (1996)

ตารางที่ 2 แบบจำลองดีอีโอดีใช้ในการศึกษา

แบบจำลองภายในได้ข้อสมมติ CRS	แบบจำลองภายในได้ข้อสมมติ VRS
$\text{Min}_{\theta, \lambda} \theta$	$\text{Min}_{\theta, \lambda} \theta$
subject to	subject to
$-y_i + y\lambda \geq 0$	$-y_i + y\lambda \geq 0$
$\theta x_i - x\lambda \geq 0$	$\theta x_i - x\lambda \geq 0$
$\lambda \geq 0$	$N^1 \lambda \leq 1$
	$\lambda \geq 0$

ที่มา: อัครพงศ์ อันthon (2548)

ค่าประสิทธิภาพในการจัดการ (θ) ที่คำนวณได้จากแบบจำลองทั้งสองมีค่าระหว่าง 0-1 (Coelli, 1996) ในขั้นตอนต่อมาจะนำค่าประสิทธิภาพในการจัดการที่ได้ในแต่ละหน่วยผลิตไปสร้างเป็นสมการตัดต่อไปนี้

$$\theta_j = \beta_0 + \beta_1 z_j$$

โดยที่ θ_i คือ ค่าประสิทธิภาพในการจัดการของหน่วยผลิตที่ i

z_j គឺ ត្រូវប្រាយការណ៍របស់ខ្លួនដូចតើ

β_0 และ β_1 คือ ค่าสัมประสิทธิ์

จากแบบจำลองข้างต้น ประมาณค่าสัมประสิทธิ์ของแบบจำลองด้วยวิธีภาวะความน่าจะเป็นสูงสุด หรือ MLE ตามวิธีการของแบบจำลองโพบิต เนื่องจากตัวแปรตามซึ่งเป็นค่าประสิทธิภาพในการจัดการมีลักษณะของการแจกแจงแบบตัดปลายระหว่าง 0-1 ดังนั้นจึงมี lower tail censoring ที่ 0 และ upper tail censoring ที่ 1

การวิเคราะห์ใช้แบบจำลองทิบิต เนื่องด้วยเป็นการวิเคราะห์กรณีที่ตัวแปรตามมีลักษณะการ
แจกแจงแบบตัดปลาย โดยตัวแปรตามมีค่าต่ำกว่า零 แต่ค่าในช่วงปลายหายไป เพราะไม่สามารถวัดค่าหรือ
สังเกตค่าได้ อย่างเช่นกรณีของข้อมูลค่าใช้จ่ายในการบริโภคสินค้าจะมีค่าอยู่ในช่วงค่าบวกเท่านั้น ไม่สามารถ
หาค่าสังเกตของช่วงที่เป็นลบได้ กรณีนี้สอดคล้องกับแบบจำลองที่ใช้ในการศึกษาที่ตัวแปรมีค่าตัดปลายเป็น
ค่าบวกเท่านั้น รูปแบบของแบบจำลองจึงมีลักษณะดังต่อไปนี้ (อัครพงศ์ อั้นทอง, 2550)

สมการแสดงอยของตัวแปรแฝง (latent) คือ

$$y_i^* = \beta' x_i + \varepsilon_i \quad ; \quad \varepsilon_i \sim N(0, \sigma^2)$$

ตัวแปรตามที่สังเกตได้ คือ

$$\text{ถ้า } y_i^* \leq L_i \quad \text{เมื่อ } y_i = L_i \text{ (lower tail censoring)}$$

$$\text{ถ้า } y_i^* \geq U_i \quad \text{เมื่อ } y_i = U_i \text{ (upper tail censoring)}$$

$$\text{ถ้า } L_i < y_i^* < U_i \quad \text{เมื่อ } y_i = y_i^* = \beta' x_i + \varepsilon_i$$

จากข้างต้นสามารถนิยามแบบจำลองโดยบิด ดังนี้

$$y_i = \beta' x_i + \varepsilon_i \quad ; \quad \beta' x_i + \varepsilon_i > 0, \quad \varepsilon_i \sim N(0, \sigma^2)$$

$$y_i = 0 \quad ; \quad \text{else } [\beta' x_i + \varepsilon_i \leq 0]$$

ดังนั้นกรณีที่ $y_i = 0$ ถ้า $\varepsilon_i \leq -\beta' x_i$ จะได้ว่า

$$P|y_i = 0| = P|\varepsilon_i \leq -\beta' x_i|$$

$$P|y_i = y_i^* | y_i > 0|$$

เช่นเดียวกันในกรณีที่ $y_i = 1$ ถ้า $\varepsilon_i > -\beta' x_i$ ก็จะได้ว่า

$$\begin{aligned} P|y_i = y_i^* | y_i > 0| &= P|\varepsilon_i > -\beta' x_i| \\ &= (2\pi\sigma^2)^{-1/2} e^{-(y_i - \beta' x_i)^2/2\sigma^2} \end{aligned}$$

$$\begin{aligned} \text{ดังนั้น } P|y_i = y_i^*| &= P|y_i = y_i^* | y_i > 0|^* P|y_i > 0| \\ &= (2\pi\sigma^2)^{-1/2} e^{-(y_i - \beta' x_i)^2/2\sigma^2} \end{aligned}$$

สมมติว่ามีค่าสังเกต $y_i = 0$ จำนวน n_0 ค่า และค่าสังเกต $y_i > 0$ จำนวน n_1 ค่า ดังนั้น maximum likelihood function คือ

$$L = \prod_{y_i=0} \pi^{(1-F(\beta' x_i))} \prod_{y_i>0} (2\pi\sigma^2)^{-1/2} e^{-(y_i - \beta' x_i)^2/2\sigma^2}$$

จะได้ log-likelihood function คือ

$$\log L = \sum_{y_i=0} \log(1-F(\beta' x_i)) - \frac{1}{2} \sum_{y_i>0} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{y_i>0} (y_i - \beta' x_i)^2$$

จาก log-likelihood function สามารถประมาณค่า β และ σ ได้ด้วยวิธี MLE

ผลการศึกษา

ผลการศึกษาแบ่งเป็นสองส่วน ในส่วนแรกนำเสนอผลลัพธ์ของการประเมินค่าประสิทธิภาพในการจัดการสำหรับกรณีต่างๆ ซึ่งเป็นขั้นตอนแรกของวิธีดีอีโคแบบสองขั้นตอน และอีกส่วนเป็นผลลัพธ์ของขั้นตอนที่สองที่เป็นผลการประมาณค่าสัมประสิทธิ์ของแบบจำลองที่บิดตัวโดยวิธี MLE

ผลลัพธ์จากขั้นตอนแรกพบว่า ไม่ว่าจะใช้ข้อสมมติ CRS หรือ VRS ค่าประสิทธิภาพในการจัดการที่คำนวณได้ภายใต้ข้อสมมติ VRS จะสูงกว่าข้อสมมติ CRS ทุกรอบนี้ เนื่องจากเส้นพร้อมเดนภายในภายใต้ข้อสมมติ CRS เป็นเส้นตรงที่อยู่สูงกว่าหรือเท่ากับเส้นพร้อมเดนภายในภายใต้ข้อสมมติ VRS ดังนั้นค่าประสิทธิภาพในการจัดการที่คำนวณได้ภายใต้ข้อสมมติ CRS จะมีค่าไม่สูงไปกว่าค่าที่ได้จากการเพิ่มขึ้น ขณะเดียวกันการเพิ่มขึ้นของค่าสหสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกมีผลทำให้ค่าประสิทธิภาพในการจัดการมีค่าเพิ่มขึ้น และเป็นที่น่าสังเกตว่าค่าประสิทธิภาพในการจัดการที่ได้จากการกำหนดค่าผลผลิตด้วยสมการเส้นตรงมีค่าต่ำกว่ากรณีที่กำหนดค่าผลผลิตด้วยสมการ Cobb-Douglas เพราะสมการ Cobb-Douglas ให้ค่าผลผลิตที่มีความแปรปรวนต่ำกว่า นอกจากนี้เมื่อพิจารณาค่าส่วนเบี่ยงเบนมาตรฐานของค่าประสิทธิภาพในการจัดการพบว่า เมื่อปัจจัยนำเข้าและตัวแปรภายนอกมีความแปรปรวนเพิ่มขึ้น ค่าประสิทธิภาพที่คำนวณได้มีความแปรปรวนเพิ่มขึ้นด้วยเช่นกัน ขณะที่การเพิ่มขึ้นของสหสัมพันธ์ระหว่างปัจจัยนำเข้าและตัวแปรภายนอกมีผลทำให้ความแปรปรวนของค่าประสิทธิภาพที่คำนวณได้ลดลง (ตารางที่ 3 และ 4)

ตารางที่ 3 ค่าประสิทธิภาพในการจัดการเรียน ณ ระดับความแปรปรวนและสหสัมพันธ์ของปัจจัยนำเข้าและตัวแปรภายนอกที่แตกต่างกัน

$\sigma_x = \sigma_z$		$y_i = 0.3x_{1i} + 0.3x_{2i} + 0.4z_i$						$y_i = \frac{0.3}{x_{1i}} \frac{0.3}{x_{2i}} \frac{0.4}{z_i}$					
		$\rho_{x_1z} = 0$		$\rho_{x_1z} = 0.5$		$\rho_{x_1z} = 0.9$		$\rho_{x_1z} = 0$		$\rho_{x_1z} = 0.5$		$\rho_{x_1z} = 0.9$	
		CRS	VRS	CRS	VRS	CRS	VRS	CRS	VRS	CRS	VRS	CRS	VRS
$\sigma_x = \sigma_z = 5$		0.951	0.958	0.954	0.965	0.965	0.970	0.953	0.960	0.964	0.973	0.975	0.981
$\sigma_x = \sigma_z = 25$		0.687	0.741	0.765	0.813	0.765	0.844	0.738	0.801	0.841	0.884	0.780	0.867
$\sigma_x = \sigma_z = 45$		0.502	0.617	0.601	0.690	0.588	0.713	0.641	0.731	0.764	0.821	0.765	0.866

ที่มา: จากการคำนวณด้วยโปรแกรม DEAP 2.1