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Heart diseases have been responsible for high morbidity and mortality in most
countries worldwide. Acute myocardial infarction is a condition in which coronary artery
cannot provide blood supply to myocardium due to the occlusion of this vessel. This can
lead to fatal cardiac arrhythmia, i.e. ventricular fibrillation, which can kill the patient in a
few minutes if immediate treatment by defibrillation is not provided. Although myocardial
reperfusion has been a successful therapy for acute myocardial infarction, reperfusion
itself is also known to cause myocardial damage, and is known as reperfusion injury.
Since the infarct size has been shown as a good predictor of cardiac function and
mortality after acute myocardial infarction, interventions that can reduce the infarct size as
well as decrease fatal arrhythmia incidence during ischemia-reperfusion can be useful
therapeutic strategies. Currently, several drugs have been shown to provide
cardioprotective effects. These drugs include granulocyte-colony stimulating factor (G-
CSF), antidiabetic drugs rosiglitazone and vildagliptin, and p38 inhibitor. Nevertheless,
the effects of these drugs on the ischemia-reperfused hearts have never been tested.

In the present study, we found that G-CSF, vildagliptin and p38 inhibitor could
decrease the infarct size as well as stabilized cardiac electrophysiology by preventing
cardiac arrhythmias. However, rosiglitazone provided dual effects, i.e. beneficial and
harmful, to the heart. During ischemia-reperfusion, rosiglitazone could decrease the
infarct size, but increase the ventricular fibrillation incidence. At the mitochondria level, G-
CSF, vildagliptin and p38 inhibitor could improve cardiac mitochondrial dysfunction caused
by ischemia-reperfusion injury, and may explain their effects on infarct size reduction.
Recent clinical study investigated the role of incretins in acute myocardial infarction
patients supported our preclinical studies. In contrast, rosiglitazone did not improved
cardiac mitochondrial dysfunction even though the infarct size was decreased. Our
finding indicated that the anti-apoptotic effect of rosiglitazone might be via the
mitochondrial independent pathway.

Regarding thalassemic heart, we have demonstrated for the first time that T-type

calcium channel could be mainly responsible for iron uptake into cardiomyocytes of
thalassemic mice. Normally, T-type calcium channel is not expressed in normal adult
heart except at the electrical conducting pathway inside the heart. However, in some
pathological condition such as myocardial infarction and heart failure it can re-expressed.
We demonstrated that thalassemic hearts also expressed T-type calcium channel ad

played an important role in iron entry into cardiac cells. We also demonstrated that heart
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rate variability (HRV) obtained from 24-hour holter monitoring might be used to detect
cardiac autonomic balance in thalassemic mice and thalassemia patients at the early state
when no cardiac dysfunction was found. These finding could lead to the new strategies
for prevention and treatment in thalassemia to prevent iron overload cardiomyopathy,
which is responsible for many deaths in this group of patients.

In summary, the output of this research project includes 34 articles listed in
PubMed, 42 abstract presentation at national and international scientific meeting, PhD
graduates, 11 MSc graduates, 7 current PhD students, and 13 international and national
research awards. Furthermore, the entire career research support from the Thailand
Research Fund in the past ten years also plays a major role in the Outstanding Scientist

Award that this principal investigator received this year.
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Executive Summary

In this research project, two main aims including the pharmacological intervention
to attenuate the severity of cardiac ischemia-reperfusion injury and the mechanism of iron
entry in thalassemic hearts for iron-overload cardiomyopathy prevention have been
extensively investigated. We found that several drugs including the granulocyte-colony
stimulating factor (G-CSF), anti-diabetic drug vildagliptin, and a new compound SB203580
that inhibits the action of p38 MAPK could decrease the infarct size as well as stabilized
cardiac electrophysiology by preventing cardiac arrhythmias caused by ischemia-
reperfusion injury. However, anti-diabetic drug rosiglitazone provided both beneficial and
harmful effects to the heart, by decreasing the infarct size, but increasing the ventricular
fibrillation incidence. The beneficial effects of G-CSF, vildagliptin and p38 inhibitor could
be due to their protection on cardiac mitochondrial function.

Regarding thalassemic heart, we have demonstrated for the first time that T-type
calcium channel could be mainly responsible for iron uptake into cardiomyocytes of
thalassemic mice. Normally, T-type calcium channel is not expressed in an adult heart
except at the electrical conducting pathway inside the heart. However, in some
pathological condition such as myocardial infarction and heart failure it can re-expressed.
We demonstrated that thalassemic hearts also expressed T-type calcium channel ad
played an important role in iron entry into cardiac cells. We also demonstrated that heart
rate variability (HRV) obtained from 24-hour holter monitoring might be used to detect
cardiac autonomic balance in thalassemic mice and thalassemia patients at the early state
when no cardiac dysfunction was found. These finding could lead to the new strategies
for prevention and treatment in thalassemia to prevent iron overload cardiomyopathy,
which is responsible for many deaths in this group of patients.

In summary, the output of this research project includes 34 articles listed in
PubMed, 42 abstract presentation at national and international scientific meeting, PhD
graduates, 11 MSc graduates, 7 current PhD students, and 13 international and national
research awards. Furthermore, the entire career research support from the Thailand
Research Fund in the past ten years also plays a major role in the Outstanding Scientist

Award that this principal investigator received this year.
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1.1 la¥inmsAnsfionaved G-CSF da cardiac electrophysiology quﬂiﬁLﬁ@ﬂ’l’Jz
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Effects of granulocyte colony-stimulating factor (G-CSF) on cardiac
electrophysiology during ischemic/reperfusion (I/R) period are unclear. We
hypothesized that G-CSF stabilizes cardiac electrophysiology during I/R injury by
prolonging the effective refractory period (ERP), increasing the ventricular
fibrillation threshold (VFT) and decreasing the defibrillation threshold (DFT). In
this study, 30 pigs were used. In intact heart protocol, pigs were infused with
either G-CSF or vehicle (n=7 each group) without I/R induction. In I/R protocol,
pigs were infused with G-CSF (0.33ug/kg/min) or vehicle (n=8 each group) for 30
minutes prior to a 45-minute left anterior descending artery occlusion and at
reperfusion.  Diastolic pacing threshold (DPT), ERP, VFT and DFT were
determined in all pigs before and during I/R period.

We found that neither G-CSF nor vehicle altered any parameter in intact-
heart pigs. During ischemic period, G-CSF significantly increased the DPT, ERP
and VFT without altering the DFT. In the vehicle group, only the DPT was
increased during ischemia. During reperfusion, G-CSF continued to increase the
DPT without altering other parameters. Systolic and diastolic pressures were
significantly decreased from the baseline in both groups during I/R period.
Although the area at risk was not different between the two groups, the infarct
size was significantly decreased in the G-CSF group, compared to the vehicle.

All of these findings indicate that G-CSF increases the DPT, ERP and VFT
and reduces the infarct size, which may help stabilizing the myocardial
electrophysiology, thus preventing fatal arrhythmia in ischemic myocardium.
However, G-CSF does not improve defibrillation efficacy during I/R injury.

NWIYTITRUAEAL AT 9 LA TUNTAN NN 1T TN TEA LW TIALED
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1.2 la¥inmsAneie navas G-CSF @ann3iladnu mitochondrial damage 31N H,0,-
induced oxidative stress 1w isolated cardiac mitochondria mamwl,azﬂa"lﬂmsaaﬂm%;
289 G-CSF Uw cardiac mitochondria s3zdndtypasswisoiiasil

Ischemic heart disease is one of the major causes of death in most
nations. Ischemic heart disease/myocardial infarction causes the increase of
reactive oxygen species (ROS), leading to oxidative stress in cardiomyocytes. In
the heart, it is known that mitochondria are the principal source of ROS
production. Previous studies suggested that ischemic heart disease could cause
mitochondrial dysfunction, leading to increased oxidative stress. Recently,
granulocyte-colony stimulating factor (G-CSF) has been reported that it has a
protective effect on cardiomyocytes following ischemic heart disease. G-CSF was
demonstrated to improve doxorubicin-induced mitochondrial damage in cultured
cardiomyocytes. However, the effects of G-CSF in isolated cardiac mitochondria
have never been investigated.

In the present study, we determined whether G-CSF can improve
mitochondrial damage in hydrogen peroxide (H,O,)-induced oxidative stress in
isolated cardiac mitochondria. In the present study, isolated mitochondria from rat
hearts were randomly assigned into eight treatment groups: H,O, (2mM), 50 or
200 ng/ml G-CSF, H,O, pre-treated with G-CSF (25, 50, 100 or 200 ng/ml) and
control (n=6 each). All isolated mitochondria were measured for mitochondrial
swelling, mitochondrial membrane potential changes (A\Pm) and ROS production.

Our results demonstrated that in H,O, pre-treated with G-CSF groups, G-CSF
significantly reduced mitochondrial swelling, A¥m and ROS production under H,O,-
induced oxidative stress condition in isolated cardiac mitochondria. However, the
dose-dependent effect was not observed in this study. G-CSF alone did not cause
any changes in isolated cardiac mitochondria. In conclusion, G-CSF can directly
protect mitochondrial damage under H,O,-induced oxidative stress condition in
isolated cardiac mitochondria.

INWIYTIRUAEALAIT 9 LA TUNTANUN LT TIIWI LU TEA LW TIALLED
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1.3 lav¥innsAnefanarad81TN LMY Rosiglitazone dansyinauna i luiala
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Rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist
has been used to treat type Il diabetes. Despite debates regarding its
cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still
unclear. Our study determined the effect of rosiglitazone on ventricular fibrillation
(VF) incidence, VF threshold (VFT), defibrillation threshold (DFT), and
mitochondrial function during ischemia and reperfusion. Twenty-six pigs were
used. In each pig, either rosiglitazone (1 mg/kg) or normal saline solution was
administered intravenously within 60 minutes. Then, the left anterior descending
coronary artery was ligated for 60 minutes and released to promote reperfusion for
120 minutes. The cardiac electrophysiologic parameters were determined at the
beginning of the study and during ischemia and reperfusion period. The heart was
removed then the area at risk and the infarct size in each heart were determined.
Cardiac mitochondria were isolated for determination of mitochondrial function.
Rosiglitazone did not improve the DFT and VFT during ischemia — reperfusion
periods.  In rosiglitazone group, VF incidence was increased (58 vs. 10 %) and
time to the first occurrence of VF was decreased (3 £ 2 vs. 19 = 1 min), as
compared to the vehicle group (P<0.05). However, the infarct size related to the
area at risk in the rosiglitazone group was significantly decreased (P<0.05). In
the cardiac mitochondria, rosiglitazone did not alter the level of reactive oxygen
species production and could not prevent mitochondrial membrane potential
changes. Rosiglitazone increased the propensity for VF, and could neither
increase defibrillation efficacy nor improve cardiac mitochondrial function.

SNWIFTAIRUASNL AT D LA TUNTANUN LI TRI TN TEA L WU TIA LS

1.4 ldvhns@nmnianazasninmiumnudiln Aesnlungdw Dipeptidyl peptidase 4
inhibitor %quj’]ﬁ cardioprotective effect luanwazﬁLﬁ@ acute myocardial infarction
asrdayUI WA Tufiail

Dipeptidyl peptidase-4 (DPP-4) inhibitor is a new antidiabetic drug for type-
2 diabetes mellitus patients. Despite its benefits on glycemic control, the effects of
DPP-4 inhibitor on the heart during ischemia-reperfusion (I/R) periods are not
known. We investigated the effect of DPP-4 inhibitor on cardiac electrophysiology

and infarct size in a clinically relevant I/R model in swine and its underlying
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cardioprotective mechanism. Fourteen pigs were randomized to receive either
DPP-4 inhibitor (vildagliptin) 50 mg or normal saline intravenously prior to a 90-min
left anterior descending artery occlusion, followed by a 120-min reperfusion period.
The hemodynamic, cardiac electrophysiological and arrhythmic parameters, and
the infarct size were determined before and during I/R. Rat cardiac mitochondria
were used to study the protective effects of DPP-4 inhibitor on cardiac
mitochondrial dysfunction caused by severe oxidative stress induced by H,O, to
mimic the I/R condition. Compared to the saline group, DPP-4 inhibitor attenuated
the shortening of the effective refractory period (ERP), decreased the number of
PVCs, increased the ventricular fibrillation threshold (VFT) during the ischemic
period, and also decreased the infarct size. In cardiac mitochondria, DPP-4
inhibitor decreased the reactive oxygen species (ROS) production and prevented
cardiac mitochondrial depolarization caused by severe oxidative stress. During
I/R, DPP-4 inhibitor stabilized the cardiac electrophysiology by preventing the ERP
shortening, decreasing the number of PVCs, increasing the VFT, and decreasing
the infarct size. This cardioprotective effect could be due to its prevention of
cardiac mitochondrial dysfunction caused by severe oxidative stress during I/R.

NWITYIIIUAZ LA LTI laTUNIANNW I TRITINUIL LA LU W TR LA

15 ldvinnsanndonauasaseddelignsgusanmsinnuues p3s oy intracellular
signaling  molecule  lwaadndanilewala %aﬁ%é’ngmﬁmmdwm%zﬁ
cardioprotective effect 'la wansvasgnaaralaluaniziiia acute myocardial
infarction El'wwmm"ff@wua%imﬂ I@]zlmwwzasiw@lmﬂ'ﬁg"uadmiﬁafﬁmwznm
msldaslutianmds g vaeindadewliaden  mszdmdyresnuidod
Gt

p38 mitogen-activated protein kinase (p38) has been shown to play an
important role in facilitating myocardial infarction process in ischemia/reperfusion
(I/R) injury. Inhibition of p38 prior to ischemia has been shown as cardioprotective.
However, the benefit of inhibition of p38 after ischemia or during reperfusion is
unknown. We tested the hypothesis that inhibition of p38 at different times during
I/R can attenuate ventricular fibrillation (VF) incidence and reduce the infarct size.

Adult Wistar rats were subject to 30-min left anterior descending coronary
artery (LAD) occlusion, followed by 120-min reperfusion. A p38 inhibitor,
SB203580, was given intravenously (2-mg/kg) either at 15 minutes before

ischemia (pretreatment group), 15 minutes after LAD occlusion (ischemia group),
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or at onset of reperfusion. Saline was used as a vehicle in each group.
Electrocardiogram was recorded and the arrhythmia score was analyzed based on
the frequency and duration of arrhythmias detected (1 is lowest and 5 was highest
arrhythmia incidence). The infarct size was determined in each heart.

SB203580 given before LAD occlusion and during ischemia significantly
decreased the overall arrhythmia score and the incidence of VT/VF, compared
with the vehicle-treated group (Figure). However, SB203580 given at onset of
reperfusion did not show this benefit. The time to VT/VF onset was not changed
for SB203580 treated at any time, compared to the vehicle. Unlike arrhythmia
incidence, the infarct size was markedly decreased in SB203580-treated rats in all
groups. In summary, Although SB203580 could markedly decrease the infarct size
when administered before or after LAD occlusion, as well as during reperfusion, it
could only effectively attenuate the fatal arrhythmias when given only prior to LAD
occlusion and during ischemia. These findings indicate the crucial role of the

timing of p38 inhibition in preventing fatal arrhythmia in an I/R model.

NWIYTAIRUASALIT DY FATUNTANNNLINITEITIIWILTEALWIUITIALE

1.6 lav¥inmsanendanauad KP extract 68 nitric oxide signaling pathway 1u#alazas
%hl,mﬂuszﬁﬁmﬁmﬁ’s KP extract & positive effect ¢ia nitric oxide signaling
pathway  UAzSNadaNTIANwY8IT=6U cCGMP lwirlavasny sumsdunaluns
0oNNI INAALINL sildenafil citrate sN3zdF LIRS TR

The rhizomes of Krachai-dam (Kaempferia parviflora, KP) is one of the
Thai traditional medicine that has been used for rejuvenation in elderly people,
relieving digestive disorders, gastric ulcer, diuresis, and has been used as anti-
allergy and tonic. The macerated KP rhizome in alcoholic drinking or KP tea are
believed to improve erectile dysfunction. However, this effect of KP has not been
elucidated by scientific research. Recently, the ethanolic extract of KP has been
shown to increase the endothelial nitric oxide (NO) synthase (eNOS) mRNA and
protein expression in primary cell culture of human umbilical vein endothelial cells.
Moreover, the effect of KP extract has shown to vasodilate rat aortic rings in an in
vitro study and decreased mean arterial pressure in an in vivo model. This
vasorelaxation mechanism of KP has been found to regulate via the positive
effect on NO signaling pathway. Despite that, the effect of KP extract on NO

signaling in the heart has never been investigated.
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In the heart, NO signaling has been shown to play an important role in
regulating the cellular ionic concentration, especially Ca2+. It has been shown that
NO can modulate the function of L-type Ca2+ channel by the indirect mechanism
via the production of cGMP and phosphorylation of protein kinase G (PKG).
Moreover, NO also increase the Ca2+ reuptake rate into sarcoplasmic reticulum via
the increased the phosphorylation of phospholamban.

In traditional medicine, KP is believed to improve erectile dysfunction (ED)
similar to the effect of sildenafil citrate, the phosphodiesterase type 5 (PDE-5)
inhibitor. However, there is no scientific study to support this statement. Since
KP has been shown to have positive effect on the NO signaling, which may
resulting in the increased of intracellular cGMP level similar to that of sildenafil
citrate, we further investigated effect of KP extract on PDE-5 in the heart.

We found that KP extract increased cGMP level in the rat hearts, but failed
to increase eNOS and neuronal NOS. In swine study, KP extract at high
concentration significantly decreased defibrillation efficacy and increased
vulnerability to arrhythmia similar to that of the supratherapeutic concentration of
sildenafil citrate. These findings suggest that KP extract could have the PDE-5
inhibitory effect similar to that of sildenafil citrate. Future studies are needed to
clarify the mechanism by which KP extract has an effect on the NO signaling
pathway in addition to the PDE-5 inhibitory effect.
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Iron-overload condition can be found in beta-thalassemic patients with
regular blood transfusion, leading to iron deposition in various organs including the

heart. Elevated cardiac iron causes iron-overload cardiomyopathy, a condition

RTA5280006 15



yanf RTA5280006

which provokes mortality due to heart failure in thalassemic patients. Previous
studies demonstrated that myocardial iron uptake may occur via L-type calcium
channels (LTCCs). However, direct evidence regarding the claimed pathway in
thalassemic cardiomyocytes has never been investigated. Hearts from genetic-
altered beta-thalassemic mice and adult wild-type mice were used for cultured
ventricular cardiomyocytes. Blockers for LTCC, T-type calcium channel (TTCC),
transferin receptor1 (TfR1) and divalent metal transporter1t (DMT1) were used and
quantification of cellular iron uptake under various iron loading conditions was
performed by Calcein-AM fluorescence assay. Microarray analysis was performed
to investigate gene expressions in the hearts of these mice. This study
demonstrated that iron uptake under iron-overload conditions in the cultured
ventricular myocytes of thalassemic mice was greater than that of wild type cells
(p < 0.01). TTCC blocker, efonidipine, and an iron chelator, deferoxamine, could
prevent iron uptake into cultured cardiomyocytes, whereas blockers of TfR1,
DMT1, and LTCC could not. Microarray analysis from thalassemic hearts
demonstrated highly up-regulated genes of TTCC, zinc transporter and transferrin
receptor2.  Our findings indicated that iron uptake mechanisms in cultured
thalassemic cardiomyocytes are mainly mediated by TTCC, suggesting that TTCC
is the important pathway for iron uptake in this cultured thalassemic cardiomyocyte
model.
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Excess plasma iron can lead to iron deposition in many organs including
the heart. In thalassemia, excess cardiac iron deposition can cause cardiac
dysfunction and depressed heart rate variability (HRV). Recently, T-type
calcium channel (TTCC) has been shown as a possible gateway for iron entry
in thalassemic cardiomyocytes. However, the role of TTCC in "in vivo" with iron
overload has never been investigated. We tested the hypothesis that TTCC
blocker can improve impaired cardiac function and attenuate the depressed
HRV, leading to decreased mortality in iron-overloaded mice. C57/BL6 adult
mice were fed with either normal diet (control group) or diet supplemented with
dicyclopentadienyl iron (FE group) for 90 days to induce iron overload
condition. Then, mice in each group were divided into subgroups being treated
with L-type calcium channel (LTCC) blocker, verapamil and nifedipine; TTCC
blocker, efonidipine; or iron chelator deferoxamine (DFO) for 30 days.
Pressure-volume (P-V) conductance catheter system was used for cardiac
function assessment. HRV was determined at baseline and at the end of
treatment in all mice. Iron-overloaded mice demonstrated impaired cardiac
function as shown by decreased stroke volume (SV), cardiac output (CO),
ejection fraction (EF), impaired HRV as indicated by increased LF/HF ratio, with
high mortality rate (Figure). Efonidipine effectively improved cardiac function
impairment, whereas LTCC blockers and DFO did not. Efonidipine and DFO
also significantly improved HRV parameter, whereas LTCC blockers could
improve it at a lower extent. Both efonidipine and DFO markedly decreased
mortality, while LTCC blocker did not, in these mice with iron overload.
Impaired cardiac function and depressed HRV caused by iron overload were
improved by efonidipine, but not by verapamil and nifedipine, suggesting that
TTCC but not LTCC, plays an important role for iron uptake in the heart of iron-

overloaded mice.
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RENAL-CARDIAC-VASCULAR

Cardioprotective Effects of Metformin and
Vildagliptin in Adult Rats with Insulin Resistance
Induced by a High-Fat Diet

Nattayaporn Apaijai, Hiranya Pintana, Siriporn C. Chattipakorn,
and Nipon Chattipakorn

Cardiac Electrophysiology Research and Training Center (N.A., H.P., S.C.C., N.C.), Faculty of Medicine;
Faculty of Dentistry (S.C.C.); and Biomedical Engineering Center (N.C.), Chiang Mai University, Chiang
Mai, 50200, Thailand

Insulin resistance has been shown to be associated with cardiac sympathovagal imbalance, myo-
cardial dysfunction, and cardiac mitochondrial dysfunction. Whereas metformin is a widely used
antidiabetic drug to improve insulin resistance, vildagliptin is a novel oral antidiabetic drug in a
group of dipeptidyl peptidase-4 inhibitors in which its cardiac effect is unclear. This study aimed
to determine the cardiovascular effects of metformin and vildagliptin in rats with insulin resistance
induced by high-fat diet. Male Wistar rats were fed with either a normal diet or high-fat diet (n =24
each) for 12 wk. Rats in each group were divided into three subgroups to receive the vehicle,
metformin (30 mg/kg, twice daily), or vildagliptin (3 mg/kg, once daily) for another 21 d. Heart
rate variability (HRV), cardiac function, and cardiac mitochondrial function were determined
and compared among these treatment groups. Rats exposed to a high-fat diet developed
increased body weight, visceral fat, plasmainsulin, cholesterol, oxidative stress, depressed HRV,
and cardiac mitochondrial dysfunction. Metformin and vildagliptin did not alter body weight
and plasma glucose levels but decreased the plasma insulin, total cholesterol, and oxidative
stress levels. Although both metformin and vildagliptin attenuated the depressed HRV, cardiac
dysfunction, and cardiac mitochondrial dysfunction, vildagliptin was more effective in this
prevention. Furthermore, only vildagliptin prevented cardiac mitochondrial membrane depo-
larization caused by consumption of a high-fat diet. We concluded that vildagliptin is more
effective in preventing cardiac sympathovagal imbalance and cardiac dysfunction, as well as
cardiac mitochondrial dysfunction, than metformin in rats with insulin resistance induced by
high-fat diet. (Endocrinology 153: 0000-0000, 2012)

ngestion of food laden with animal fat is the major cause
I of obesity and can lead to an insulin-resistant condition,
a state in which insulin receptor function is impaired, and
is characterized by hyperinsulinemia with euglycemia (1-
3).Ithas been shown previously that insulin resistance was
associated with impaired cardiac function (4). In rats with
insulin resistance induced by a high-fat diet, systolic and
diastolic dysfunction (5), as well as cardiac sympathova-
gal imbalance indicated by depressed heart rate variability
(HRYV) (6). was also reported. In the past decades, several
drugs used to improve insulin sensitivity have been shown
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to cause serious adverse cardiac effects (7, 8). Therefore,
drugs with effective glycemic control and without harmful
effects to the heart are needed for use in diabetic patients.

Metformin is an oral antidiabetic drug that has been used
for decades to reduce plasma glucose, improve insulin sen-
sitivity, increase peripheral glucose uptake, and inhibit he-
patic glucose production (9). Previous studies reported that
metformin could improve cardiac performance in diabetic
rats (10, 11). Furthermore, metformin also improved cardiac
mitochondrial respiration and increased ATP synthesis in a
rat model of heart failure (12). Despite these beneficial

Abbreviations: ECG, Electrocardiogram; EDP, end diastolic pressure; ESP, end systolic pres-
sure; HF, high frequency; HOMA, Homeostasis Model Assessment; HR, heart rate; HRV,
heart rate variation; JC-1, 5,5',6,6'-tetrachloro-1,1",3,3'-tetra ethylbenzimidazolcarbo-
cyanine iodide; LF, low frequency; MDA, malondialdehyde; ROS, reactive oxygen species;
SV, stroke volume; TBA, thiobarbituric acid.
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effects, the cardioprotective effect of metformin in rats
with insulin resistance induced by high-fat diet remains
unknown.

Vildagliptin is a novel oral antidiabetic drug that in-
hibits the action of the dipeptidyl peptidase-4 enzyme,
resulting in an increased level of glucagon-like peptide 1.
Glucagon-like peptide 1 is an incretin hormone released
from intestinal L-cells that causes an increased insulin se-
cretion, decreased glucagon secretion, and improved in-
sulin sensitivity and has been shown to exert direct car-
diovascular effects in both experimental and clinical
studies with or without insulin resistance (13, 14). Al-
though the glycemic control effects of dipeptidyl pepti-
dase-4 inhibitor have been extensively studied, the roles of
vildagliptin on the heart are still unclear (15, 16). Further-
more, the effects of vildagliptin on the heart of rats with
insulin resistance induced by high-fat diet are unknown.

The present study investigated the effects of metformin
and vildagliptin on the heart of rats with insulin resistance
induced by a high-fat diet. Because high-fat diet-induced
insulin-resistant rats are known to have depressed HRV
(6) and mitochondrial and cardiac dysfunction (17), we
hypothesized that metformin and vildagliptin can improve
the insulin-resistant condition, preserve cardiac sympa-
thovagal balance, improve cardiac function, and prevent
cardiac mitochondrial dysfunction in rats with insulin re-
sistance induced by high-fat diet.

Materials and Methods

Animals and diet

All experiments were conducted in accordance with an ap-
proved protocol from the Faculty of Medicine, Chiang Mai Uni-
versity Institutional Animal Care and Use Committee, in com-
pliance with National Institutes of Health guidelines. Male
Wistar rats weighing 180-200 g. were obtained from the Na-
tional Animal Center, Salaya Campus, Mahidol University,
Thailand. Rats were housed in a temperature control witha 12-h
dark, 12-h light cycle. After 7 d of acclimatization, the rats were
divided into two groups to receive either a normal diet or a
high-fat diet (n = 24/group). In the normal diet group, rats were
fed with standard laboratory chow that contained 19.77% en-
ergy from fat, whereas rats in the high-fat diet group were fed
with a diet containing 59.28% energy from fat for 12 wk (3).
Then, rats in each diet group were divided into three treatment
groups (n = 8/group). The first group received 15-mg/kg met-
formin (Glucophage, Merck Serono, Bangkok, Thailand) twice
daily (18). The second group received 3 mg/kg vildagliptin (Gul-
vus, Novartis, Bangkok, Thailand) once daily (19). The third
group (i.e. control group) received normal saline in an equal
volume. All rats were treated by intragastric gavage for 21 d. The
body weight was recorded weekly. Blood samples were collected
from the tail vein at week zero, wk 12, and at the end of 21-d
treatment. The plasma was separated and stored at —85 C until
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use. Heart rate variability (HRV) analysis was performed at
week zero, wk 4, wk 8, wk 12, and at the end of a 21-d treatment.
After being treated with either drugs or saline for 21 d, rats were
anesthetized, and the cardiac function was determined using the
pressure-volume catheter (Scisense, London, Ontario, Canada)
(20). At the end of the study, the heart was rapidly removed and
myocardial tissues were used to determine the cardiac malondi-
aldehyde (MDA) level and cardiac mitochondrial function.

Plasma glucose, cholesterol, and insulin level
determination

Plasma glucose and total cholesterol levels were measured by
colorimetric assay using a commercial kit (Biotech, Bangkok,
Thailand) (2). Plasma insulin levels were measured by a sand-
wich ELISA kit (Linco Research, St. Charles, MO) (2, 3). Insulin
resistance was assessed by Homeostasis Model Assessment
(HOMA) as a mathematical model describing the degree of in-
sulin resistance, calculated from fasting plasma insulin and fast-
ing plasma glucose concentration. A higher HOMA index indi-
cates a higher degree of insulin resistance (2).

Plasma and cardiac MDA level determination

Plasma and cardiac MDA levels were measured using HPLC
based assay (21). Cardiac tissue was homogenized in phosphate
buffer, pH 2.8. Plasma and cardiac tissue were mixed with
H;PO, and thiobarbituric acid (TBA) to create TBA-reactive
substances. The plasma and cardiac TBA-reactive substances
concentration was determined directly from a standard curve
and reported as MDA equivalent concentration (22).

Heart rate variability (HRV) analysis

The electrocardiogram (ECG) lead Il was recorded in each rat
using a PowerLab (ADInstruments, Sydney, Australia) and a
Chart 5.0 program (6). During ECG recording, rats were placed
in a restraint and prohibited from movement (6, 23, 24). The
high frequency (HF, 0.6 -3 Hz) component representing cardiac
parasympathetic activity and low frequency (LF, 0.2-0.6 Hz)
component representing cardiac sympathetic and parasympa-
thetic activity were determined using a MATLAB program (6).
The LE/HF ratio was considered as an indicator of cardiac sym-
pathetic/parasympathetic tone balance (25). Increased LF/HF
ratio (i.e. depressed HRV) indicates the cardiac sympathovagal
imbalance (23).

Cardiac function measurement

Rats were anesthetized with Zoletil (50 mg/kg, Vibbac Labora-
tories, Carros, France) and Xylazine (0.15 mg/kg, Laborato-
riosCalier, S.A., Barcelona, Spain) im injection after which ventral
midline incision of the neck was performed for tracheostomy, and
rats were ventilated with room air. The right carotid artery was
identified,and a pressure-volume loop catheter was inserted into the
carotid artery and advanced into the left ventricle. Rats were sta-
bilized for 5 min, after which the pressure-volume (P-V) loop
(Scisense, Ontario, Canada) was recorded for 20 min. Cardiac func-
tion parameters including heart rate, end-systolic and end-diastolic
pressure, maximum and minimum dP/dt, and stroke volume were
determined using the analytical software program (Labscribe, Do-
ver, NH).
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TABLE 1. Metabolic parameters of normal diet-fed and high-fat diet-fed rats at baseline and wk 12
Baseline Wk 12
Metabolic parameters ND HF ND HF

Body weight (g) 191 = 10 192 £+ 9 462 = 6° 567 + 132
Food intake (g) 21 =1 20+ 5 27 =3 24 + 1
Plasma insulin (ng/ml) 2.15+0.29 2.14 £ 0.26 2.19 £0.19 3.50 + 0.50%°
Plasma glucose (mg/dl) 131.69 = 8.79 140.11 = 7.52 138.00 + 9.95 139.08 + 4.46
HOMA index 16.80 = 2.26 16.76 = 2.03 17.95 = 1.56 24.26 + 4.65%°
Plasma total cholesterol (mg/dl) 82.75 = 5.63 83.15 = 7.48 83.07 = 7.14 132.18 + 8.722
Plasma MDA (umol/ml) 2.28 = 0.10 2.13 £ 0.03 2.77 £0.19 6.79 += 0.072°

ND, Normal diet; HF, high-fat diet.

2 P < 0.05 vs. baseline; 2, P < 0.05 vs. ND wk 12.

Cardiac mitochondrial isolation and mitochondrial Results

function determination

Cardiac mitochondrial isolation was performed as previ-
ously described (26). In brief, the heart of each rat was per-
fused with normal saline solution and removed rapidly after
which the heart was minced and homogenized in ice-cold buf-
fer containing sucrose (300 mmol/liter), N-(Tris(hydroxy-
methyl)methyl)-2-aminoethanesulfonic acid sodium salt (5
mmol/liter), and EGTA (0.2 mmol/liter). Then, the homoge-
nates were centrifuged at 800 X g for 5§ min, and a supernatant
was collected and centrifuged at 8800 X g for 5 min. Protein
concentration was determined using the bicinchoninic acid as-
say (26). In the present study, cardiac mitochondrial function
was determined by measuring the mitochondrial reactive oxygen
species (ROS) production, mitochondrial membrane potential
changes, and mitochondrial swelling (26).

To determine cardiac mitochondrial ROS production, car-
diac mitochondria were incubated with 2 um DCFH-DA dye at
25 C for 20 min. ROS production was detected by fluorescent
microplate reader with A, ;.0 at 485 nm and A irarion at 330
nm (BioTek,Winooski, VT) (26). To determine cardiac mito-
chondrial membrane potential changes, cardiac mitochondria
were incubated with 5 um 5,57,6,6'-tetrachloro-1,1',3,3'-tetra
ethylbenzimidazolcarbocyanine iodide (JC-1) dye at 37 C for 30
min. Mitochondrial membrane potential changes were measured
by fluorescent microplate reader. JC-1 monomer form (green
fluorescent) was detected with A, ;si0on at 485 nm and A
at 590 nm. JC-1 aggregate form (red fluorescent) was detected
with A icsion at 485 nmand A at 530 nm. Mitochondrial
membrane potential changes were calculated as the red/green
fluorescent intensity ratio (26). Decreased red/green fluorescent
intensity ratio indicated cardiac mitochondrial membrane de-
polarization (26).

To determine cardiac mitochondrial swelling, cardiac mito-
chondria were incubated with 1.5 mMm respiration buffer con-
taining 100 mm KCI, 10 mm HEPES, 5 mm KH,PO,, and the
absorbance was measured using a spectrophotometer. Mito-
chondrial swelling was indicated when the absorbance of the
suspension decreased (26).

excitation

excitation

Statistical analysis

All data were expressed as mean = SE. One-way ANOVA
followed by LSD post hoc test was used to determine the differ-
ence between groups. P < 0.05 was considered statistically
significant.

Effects of high-fat diet consumption, metformin,
and vildagliptin on metabolic parameters

At the baseline, the body weight, food intake, plasma
glucose, insulin, total cholesterol, and MDA level did not
differ between the normal diet and the high-fat diet groups
(Table 1). After 12 wk of high-fat diet consumption, rats
in this group had increased body weight and plasma cho-
lesterol. High-fat diet-fed rats also developed insulin re-
sistance that was characterized by an increased plasma
insulin level without an alteration in the plasma glucose
level, and an increase in the HOMA index. The plasma
MDA level, which is an index of oxidative stress, was also
increased in the high-fat group (Table 1). Unlike the high-
fat fed rats, rats fed with a normal diet had no change in
those metabolic parameters, except the increased body
weight (Table 1).

After 21 d of metformin and vildagliptin treatment in
normal diet-fed rats, the metabolic parameters including
body weight, food intake, visceral fat, plasma insulin, glu-
cose, cholesterol, MDA, cardiac MDA level, and HOMA
index were not different from the vehicle-treated rats (Ta-
ble 2). In high-fat-fed rats, metformin and vildagliptin
could significantly decrease the plasma insulin, HOMA
index, plasma cholesterol, plasma MDA, and cardiac
MDA levels, compared with the vehicle-treated rats in the
high-fat-fed group. Metformin and vildagliptin did not
alter the body weight, food intake, visceral fat, and plasma
glucose, compared with the vehicle-treated rats in the
high-fat diet group (Table 2).

Effects of high-fat diet consumption, metformin,
and vildagliptin on HRV

At the baseline, the LF/HF ratio was not different be-
tween the normal diet and high-fat diet groups (Fig. 1).
High-fat diet consumption caused an increased LF/HF ra-
tio beginning at wk 8 and was markedly different at wk 12
(Fig. 1). After 21 d of treatment with metformin and vilda-
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TABLE 2. Effects of metformin and vildagliptin on metabolic parameters in normal diet and high-fat diet rats
Metabolic parameters NDV NDM NDVil HFV HFM HFVil
Body weight (g) 464 £ 8 440 £ 17 448 + 11 544 + 14° 534 + 57 564 + 119
Food intake (g) 22 =1 21+ 2 22 +2 22 +2 22+ 2 23+ 2
Visceral fat (g) 2586 £ 237 2193346 2412 *225 5412 =*3.177 49.20*5.28 50.34 + 4.87°
Plasma insulin (ng/ml) 2.73 = 0.30 2.22 £0.58 2.4+ 0.67 3.87 £ 0.5° 2.69 + 0.57° 2.93 + 063
Plasma glucose (mg/dl) 140.83 = 4.94 137.72 +7.52 13169 + 879 143.11 £7.52 138.00 = 9.95 139.08 = 4.46
HOMA index 16.17 £8.12 13.58 = 8.1 14.05 589 2582 =376 16.50 = 5.67 17.11 £ 2.81
Plasma total cholesterol ~ 83.41 =555 8343 *547 81.31*6.90 160.86 + 6.57 105.6 + 5.60° 103.47 + 3.52°
(mg/dl)
Plasma MDA (umol/ml) 247 +013 262*016 274+006 7.08+0.12° 648 +0.18"° 641 +0.19?°
Cardiac MDA (umol/mg 539 +1.89 551 +1.22 547 £ 246 11.44 =215 7.05 + 1.27%F 7.80 + 1.43%b

protein)

NDV, Normal diet + vehicle; NDM, normal diet + metformin; NDVil, normal diet + vildagliptin; HFV, high-fat diet + vehicle; HFM, high-fat diet +

metformin; and HFVil, high-fat diet + vildagliptin.
3 P < 0.05vs. NDV, ?, P < 0.05 vs. HFV.

gliptin in the high-fat diet group, a significantly decreased
LF/HF ratio could be seen, compared with the vehicle-
treated group (Fig. 2). Although both metformin and
vildagliptin could decrease the LF/HF ratio, it was vilda-
gliptin that brought the ratio back to the baseline level
(Fig. 2).

Effects of high-fat diet consumption, metformin,
and vildagliptin on cardiac function

In the normal-diet group, cardiac function parameters,
including heart rate (HR), end systolic pressure (ESP), end
diastolic pressure (EDP), +dP/dt, —dP/dt, and stroke vol-
ume (SV) were not different among the vehicle-, met-
formin-, and vildagliptin-treated rats (Table 3). In high-fat
diet-fed rats treated with the vehicle, heart rate (HR), EDP,
and —dP/dt were increased, whereas the ESP, +dP/dt, and
SV were decreased, compared with the normal-diet group.
In high-fat diet rats treated with metformin and vildaglip-
tin, the EDP and —dP/dt were decreased, whereas the ESP,

FIG. 1. LF/HF ratio in normal diet fed- and high-fat diet-fed rats. LF/HF
ratio significantly increased during wk 8 (W8) of high-fat diet
consumption, compared with baseline. *, P < 0.05 vs. baseline. ND,
normal diet; HF, high-fat diet; black bar, ND; white bar, HF.

+dP/dt, and SV were increased, compared with the vehi-
cle-treated rats fed with high-fat diet. However, only
vildagliptin could restore EDP, whereas metformin could
only partially improve the EDP in these high-fat diet rats.
Furthermore, decreased HR was observed only in the
vildagliptin-treated rats in the high-fat diet group. Met-
formin did not decrease the HR in these high-fat fed rats
(Table 3).

Effects of high-fat diet consumption, metformin,
and vildagliptin on cardiac mitochondrial function

Cardiac mitochondrial ROS production

In normal diet-fed rats treated with metformin and
vildagliptin, the levels of ROS production were not dif-
ferent from those of the vehicle-treated rats (Fig. 3). How-

FIG. 2. LF/HF ratio in normal diet and high-fat diet rats treated with
vehicle, metformin, and vildagliptin. Vildagliptin completely preserved
cardiac sympathovagal imbalance, compared with vehicle. *, P < 0.05
vs. NDV, ', P < 0.05 vs. HFV. NDV, normal diet + vehicle; NDM,
normal diet + metformin; NDVil, normal diet + Vildagliptin; HFV,
high-fat diet + vehicle; HFM, high-fat diet + metformin; and HFVil,
high-fat diet + vildagliptin; black bar, ND; white bar, HF.
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TABLE 3. Effects of metformin and vildagliptin on cardiac function in normal diet and high-fat diet rats

Cardiac function NDV NDM NDVil HFV HFM HFVil

HR (beats/min) 327 = 27 306 + 24 331 + 30 416 = 137 400 + 18° 347 + 27°
SBP (mm Hg) 130 =1 130 =1 130 £ 2 133 =1 132 =3 131 £2
DBP (mm Hg) 106 = 1 106 = 1 107 =2 110 =1 110 = 3 108 = 2

ESP (mm Hg) 1317 138 7 137 £4 117 = 157 126 = 3¢ 131 = 11°
EDP (mm Hg) 17 =1 16 =1 16 =1 37 =27 24 + 4bc 21 £ 4°
+dP/dt (mm Hg/sec) 8829 *+ 401 8622 + 128 8760 * 231 6896 * 2777 8077 = 334b¢ 8092 + 2824
—dP/dt (mm Hg/sec) —5532 + 316 —6654 + 683 —5751 + 101  —3940 = 499 —5511 = 556*¢ —5666 *+ 858¢
SV (ul/g) 1.04 = 0.03 1.04 = 0.03 1.02 = 0.07 0.81 + 0.06° 0.96 = 0.04¢ 0.98 = 0.05¢

NDV, Normal diet + vehicle; NDM, normal diet + metformin; NDVil, normal diet + vildagliptin; HFV, high-fat diet + vehicle; HFM, high-fat diet +
metformin; and HFVil, high-fat diet + vildagliptin; DBP, diastolic blood pressure; SBP, systolic blood pressure.

2 P<0.05vs. NDV; ?, P < 0.05 vs. NDM; <, P < 0.05 vs. HFV; 9, P < 0.05 vs. NDVil.

ever, the ROS level was significantly increased in the high-
fat diet-fed rats treated with vehicle. Both metformin and
vildagliptin could decrease the ROS level, compared with
the vehicle-treated high-fat diet-fed rats. However, ROS
reduction in the vildagliptin-treated group was greater
than that in the metformin-treated group and was not
different from that in the normal-diet group (Fig. 3).

Cardiac mitochondrial membrane potential
changes (Aysm)

Similar to the ROS level, the vehicle-treated rats in the
high-fat diet group had mitochondrial depolarization as
indicated by a decreased red/green fluorescent intensity
ratio, compared with the vehicle-treated rats in the nor-
mal-diet group (Fig. 4). Both metformin and vildagliptin
could attenuate the cardiac mitochondrial depolarization
in high-fat diet-fed rats, compared with the vehicle-treated

FIG. 3. Cardiac mitochondrial ROS production of normal diet and
high-fat diet rats treated with vehicle, metformin, and vildagliptin.
Vildagliptin markedly reduced ROS production, compared with vehicle
and high-fat diet rats treated with metformin. *, P < 0.05 vs. NDV; T,
P < 0.05vs. HFV; #, P < 0.05 vs. HFM. ROS= Reactive oxygen species;
NDV, Normal diet + vehicle; NDM, normal diet + metformin; NDVil,
normal diet + vildagliptin; HFV, high-fat diet + vehicle; HFM, high-fat
diet + metformin; and HFVil, high-fat diet + vildagliptin; black bar,
ND; white bar, HF.

rats of the high-fat diet group. However, only vildagliptin
could completely prevent cardiac mitochondrial depolar-
ization in the high-fat diet-fed rats (Fig. 4).

Cardiac mitochondrial swelling

In the normal-diet group, no cardiac mitochondrial
swelling was observed in all treated groups (Fig. 5). In
high-fat diet-fed rats treated with the vehicle, the absor-
bance was significantly decreased indicating cardiac mi-
tochondrial swelling. After treatment with metformin or
vildagliptin for 21 d, no cardiac mitochondrial swelling
was observed in either treatment group (Fig. 5).

Discussion

The major findings of this study are as follows. First, met-
formin and vildagliptin improved the metabolic parame-
ters of the insulin-resistant condition and oxidative stress

FIG. 4. Cardiac mitochondrial membrane potential changes (Aym) in
normal diet- and high-fat diet-fed rats treated with vehicle, metformin,
and vildagliptin. Vildagliptin significantly preserved A¢gm, compared
with vehicle. *, P < 0.05 vs. NDV; T, P < 0.05 vs. HFV. NDV, Normal
diet + vehicle; NDM, normal diet + metformin; NDVil, normal diet +
vildagliptin; HFV, high-fat diet + vehicle; HFM, high-fat diet +
metformin; HFVil, high-fat diet + vildagliptin.
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FIG. 5. Cardiac mitochondrial swelling of normal diet-fed and high-fat
diet-fed rats treated with vehicle, metformin, and vildagliptin.
Metformin and vildagliptin completely prevented cardiac mitochondrial
swelling, compared with HFV. *, P < 0.05 vs. NDV; , P < 0.05 vs.
HFV. NDV, Normal diet + vehicle; NDM, normal diet + metformin;
NDVil, normal diet + vildagliptin; HFV, high-fat diet + vehicle; HFM,
high-fat diet + metformin; HFVil, high-fat diet + vildagliptin.

caused by long-term high-fat diet consumption. Second,
both metformin and vildagliptin improved cardiac sym-
pathovagal tone imbalance; however, only vildagliptin re-
stored HRV to normal levels. Third, metformin and vilda-
gliptin attenuated cardiac contractile dysfunction. Fourth,
metformin and vildagliptin improved cardiac mitochon-
drial dysfunction caused by consumption of a high-fat
diet. However, only vildagliptin completely restored car-
diac mitochondrial function.

Long term high-fat diet consumption is known to cause
an insulin-resistant condition (3). In this study, rats fed
with 12 wk of high-fat diet developed an insulin resistance,
characterized by increased insulin and cholesterol levels,
but normal plasma glucose levels (2, 3). Previous studies
reported that both metformin and vildagliptin have ben-
eficial effects on metabolic parameters in type 2 diabetes
patients (27, 28). In this study, metformin and vildagliptin
improved the insulin-resistant condition in high-fat diet-
fed rats by reducing plasma insulin and cholesterol levels
as well as the HOMA index.

Metformin is a widely used antidiabetic drug, which
can reduce plasma insulin and cholesterol levels in nono-
bese insulin-resistant patients (29) and high-fructose diet-
induced diabetic rats (30). However, the effect of vilda-
gliptin, a novel antidiabetic drug, on plasma insulin levels
is still debated. Although Mari et al. (31) reported that
vildagliptin reduced plasma insulin levels in patients with
type 2 diabetes, Ahren et al. (32) found that vildagliptin
did not alter plasma insulin levels in these diabetic pa-
tients. An experimental study demonstrated that the iv
administration of vildagliptin increased the plasma insulin
level in conscious dogs (33). In our study, the plasma in-
sulin level in high-fat diet-fed rats was increased, and
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vildagliptin could reduce plasma insulin as well as plasma
cholesterol levels without altering the plasma glucose lev-
els in these insulin-resistant rats. This finding is consistent
with a previous clinical study showing that vildagliptin
could reduce plasma cholesterol level in diabetic patients
(34, 35). The insulin-resistant condition has also been
shown to be associated with an increase of oxidative stress
levels (36). In this study, we found that plasma and cardiac
MDA levels, a marker of oxidative stress, were increased
in high-fat diet-fed rats. Treatment with metformin and
vildagliptin could attenuate MDA levels in both plasma
and heart tissue in insulin-resistant rats, indicating their
antioxidative effect.

In past decades, HRV has been used to determine car-
diac sympathovagal balance (37). It is well accepted that
the LE/HF ratio is the important indicator of cardiac au-
tonomic balance (37, 38) and that an increased LF/HF
ratio represents depressed HRV or imbalanced cardiac
autonomic tone (23). In this study, depressed HRV was
initially observed at wk 8 of high-fat diet-fed rats and
markedly depressed in wk 12 after high-fat diet consump-
tion. Previous studies in both human and animal models
reported that depressed HRV is associated with the insu-
lin-resistant condition (6, 39). In the present study, met-
formin and vildagliptin improved not only insulin resis-
tance, but also HRV in insulin-resistant rats. Because
insulin resistance and oxidative stress are known to influ-
ence the depressed HRV, our findings that the reduction of
plasma insulin, as well as reduced plasma and cardiac
MDA, could play a crucial role in the protection of the
sympathovagal tone imbalance. Although metformin has
been shown to improve HRV in type 2 diabetes patients
(40), our study demonstrated, for the first time, that vilda-
gliptin had higher efficacy than metformin in preventing
the depressed HRV because it could completely prevent
cardiac sympathovagal imbalance caused by high-fat diet
consumption. One limitation in this HRV study was that
the ECG was recorded while the animal was restrained,
and this could have affected cardiac autonomic control.
However, because all animals were under the same con-
dition during ECG recording, the findings on the effects of
high-fat diet consumption as well as the effects of both
metformin and vildagliptin on the HRV could still be di-
rectly compared.

Previous studies demonstrated that insulin resistance
could raise an incidence of coronary artery disease and
deteriorate cardiac function (41), and that cardiac systolic
dysfunction could be developed after 7 wk of high-fat diet
consumption (42). Consistent with those studies, our re-
sults showed that both cardiac systolic and diastolic dys-
function were observed in high-fat diet-fed rats treated
with the vehicle. Although metformin has been shown pre-
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viously to protect cardiac contractile dysfunction in dia-
betic mice, diabetic rats, and nondiabetic rats (10,43-45),
the cardiac effect of vildagliptin is still unclear. In the pres-
ent study, we demonstrated that although both metformin
and vildagliptin could attenuate the impairment of cardiac
function in these obese high-fat diet-induced insulin-re-
sistant rats, only vildagliptin that could restore the EDP
and decrease the heart rate in these rats.

Cardiac mitochondria are known as a power house to
supply energy for the heart to maintain its daily electrical
and mechanical events. Insulin resistance has been shown
to be associated with impaired cardiac mitochondrial
function, leading to cardiac contractile dysfunction (46).
Oxidative stress is known as an important factor to cause
cardiac mitochondrial dysfunction. Cardiac mitochon-
drial dysfunction can be characterized by increased car-
diac mitochondrial ROS production, mitochondrial mem-
brane depolarization, and mitochondrial swelling (26,47,
48). Consistent with a previous report (2), high-fat diet
consumption for 12 wk in our study caused cardiac mi-
tochondrial dysfunction. Both metformin and vildagliptin
were also effective in attenuating cardiac mitochondrial
dysfunction caused by long-term high-fat diet consump-
tion. Although both metformin and vildagliptin could at-
tenuate cardiac mitochondrial ROS production, only
vildagliptin that could completely prevent ROS produc-
tion caused by high-fat diet consumption. Furthermore,
despite the fact that both metformin and vildagliptin could
attenuate cardiac mitochondrial membrane depolariza-
tion, vildagliptin was more effective in preventing mito-
chondrial depolarization in rats exposed to a high-fat diet.
These benefits of vildagliptin in preventing cardiac mito-
chondrial dysfunction as well as oxidative stress could be
responsible for the improved cardiac function and HRV
observed in this study.

In summary, our study demonstrates that long-term
high-fat diet-fed rats could develop insulin resistance, de-
pressed HRV, cardiac contractile dysfunction, and cardiac
mitochondrial dysfunction. Although both metformin
and vildagliptin could attenuate these impairments, vilda-
gliptin demonstrated a better efficacy in preventing car-
diac dysfunction, depressed HRV, and impaired cardiac
mitochondrial function caused by consumption of food
containing a high proportion of fat.
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Effects of Curcuminoids on Frequency of Acute Myocardial
Infarction After Coronary Artery Bypass Grafting

Wanwarang Wongcharoen, MD®"*_ Sasivimon Jai-aue, MD¢, Arintaya Phrommintikul, MD#®,
Weerachai Nawarawong, MD€, Surin Woragidpoonpol, MD®, Thitipong Tepsuwan, MD¢,
Apichard Sukonthasarn, MD? Nattayaporn Apaijai, BSc®, and Nipon Chattipakorn, MD, PhD®

It is well established that myocardial infarction (MI) associated with coronary artery
bypass grafting (CABG) predicts a poor outcome. Nevertheless, cardioprotective therapies
to limit myocardial injury after CABG are lacking. Previous studies have shown that
curcuminoids decrease proinflammatory cytokines during cardiopulmonary bypass surgery
and decrease the occurrence of cardiomyocytic apoptosis after cardiac ischemia/reperfu-
sion injury in animal models. We aimed to evaluate whether curcuminoids prevent MI after
CABG compared to placebo. The 121 consecutive patients undergoing CABG were ran-
domly allocated to receive placebo or curcuminoids 4 g/day beginning 3 days before the
scheduled surgery and continued until 5 days after surgery. The primary end point was
incidence of in-hospital MI. The secondary end point was the effect of curcuminoids on
C-reactive protein, plasma malondialdehyde, and N-terminal pro-B-type natriuretic pep-
tide levels. Baseline characteristics were comparable between the curcuminoid and placebo
groups. Mean age was 61 = 9 years. On-pump CABG procedures were performed in 51.2%
of patients. Incidence of in-hospital MI was decreased from 30.0% in the placebo group to
13.1% in the curcuminoid group (adjusted hazard ratio 0.35, 0.13 to 0.95, p = 0.038).
Postoperative C-reactive protein, malondialdehyde, and N-terminal pro-B-type natriuretic
peptide levels were also lower in the curcuminoid than in the placebo group. In conclusion,
we demonstrated that curcuminoids significantly decreased MI associated with CABG. The
antioxidant and anti-inflammatory effects of curcuminoids may account for their cardio-
protective effects shown in this study. © 2012 Elsevier Inc. All rights reserved. (Am J

Cardiol 2012;xx:xxx)

Curcuminoids, the polyphenols responsible for the yel-
low color of the curry spice turmeric, have been used to treat
a variety of diseases in traditional Chinese and Indian med-
icine. The major curcuminoids present in turmeric are cur-
cumin (curcumin I), demethoxycurcumin (curcumin II), and
bisdemethoxycurcumin (curcumin IIT)." Modern scientific
research has confirmed the good therapeutic effects of the
curcuminoid complex and its pharmacologic safety has been
well established.” A previous study has shown that curcumi-
noids suppress proinflammatory cytokines during cardiopul-
monary bypass surgery and decrease the occurrence of car-
diomyocytic apoptosis after cardiac ischemia/reperfusion
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injury in an animal model.’ Furthermore, a histopathologic
study has demonstrated that curcuminoid treatment decreases
the degree of myocardial necrosis in isoproterenol-adminis-
tered rats.* The well-known anti-inflammatory, antioxidant,
and membrane-stabilizing effects of curcuminoids may help
preserve cellular viability during cardiopulmonary bypass sur-
gery.>® Therefore, curcuminoids may have a potential role in
the limitation of myocardial ischemia/reperfusion injury after
coronary artery bypass grafting (CABG). The present study
evaluated whether curcuminoids prevent myocardial infarction
(MI) after CABG compared to placebo.

Methods

The present study was a randomized, prospective, dou-
ble-blinded, placebo-controlled trial performed at Maha-
raj Nakorn Chiang Mai Hospital, Chiang Mai University.
We prospectively studied 121 consecutive patients un-
dergoing CABG without valve surgery from September
2009 to December 2011. Informed consent was obtained
from each patient to participate in the study. Patients
were excluded if they had emergency cardiac surgery or
any increase in creatine kinase-MB above the upper limit
of the normal range at time of randomization. Because
curcuminoids are mainly metabolized by the liver, pa-
tients with cholesteric jaundice (total bilirubin higher
than twofold the upper normal limit) or severe liver
disease (aspartate aminotransferase or alanine amino-
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Table 1
Demographic data and clinical features
Characteristics Curcuminoid Placebo p Value
(n = 61) (n = 60)

Age (years) 61.0 +9.1 61.1 = 8.2 0.966
Men 34 (55.7%) 35 (58.3%) 0.917
Body mass index (kg/m?) 24.1 £34 248 £ 4.8 0.290
New York Heart Association class 1.9*05 20=*05 0.224
Canadian Cardiovascular Society class 1.9+ 0.6 20x05 0.194
Serum creatinine (mg/dl) 1304 1.4 *£0.6 0.380
Preoperative creatine kinase-MB (ng/ml) 45*41 55*6.38 0.308
Preoperative C-reactive protein (mg/dl) 04 £0.5 0.5*09 0.313
Preoperative malondialdehyde (mmol/ml) 74*14 74 1.1 0.908
Preoperative N-terminal pro—B-type natriuretic peptide (pg/ml)* 4109 = 577.2 533.4 = 1,529.7 0.219
Diabetes mellitus 23 (37.7%) 30 (50.0%) 0.238
Hypertension® 55 (90.2%) 54 (90.0%) 1.000
Dyslipidemia* 55 (90.2%) 52 (86.7%) 0.751
Previous myocardial infarction 17 (27.9%) 15 (25.0%) 0.879
Current smoker 8 (13.1%) 4(6.7%) 0.378
Heart failure 5(8.3%) 6 (10.0%) 1.000
Previous coronary angioplasty 4 (6.6%) 1 (1.7%) 0.371
Left ventricular ejection fraction (%) 548 = 14.4 51.6 = 15.1 0.483
Preoperative medications

Aspirin or clopidogrel 55 (90.2%) 59 (98.3%) 0.125

B blocker 48 (78.7%) 48 (80.0%) 0.891

Statin 56 (91.8%) 56 (93.3%) 1.000

Angiotensin-converting enzyme inhibitor or angiotensin II 42 (68.9%) 44 (73.3%) 0.732

receptor blocker

* Median =* interquartile range.

" Blood pressure =140/90 mm Hg or currently treated with antihypertensive drugs.

* Low-density lipoprotein cholesterol >100 mg/dl, high-density lipoprotein cholesterol <40 mg/dl, or triglyceride >150 mg/dl.
Table 2
Perioperative features of patients in curcuminoid and placebo groups
Characteristics Curcuminoid Placebo p Value

(n = 61) (n = 60)

Vessel involvement

Left main coronary artery stenosis 12 (20.3%) 17 (28.3%) 0.422

3-Vessel disease 45 (76.3%) 49 (81.7%) 0.619
Off-pump coronary artery bypass grafting 32 (52.5%) 27 (45.0%) 0.523
On-pump coronary artery bypass grafting 29 (47.5%) 33 (55.0%)

On-pump with beating heart 14 (23.3%) 17 (28.3%)

On-pump with cardioplegic arrest 15 (24.6%) 16 (26.7%)
Cardiopulmonary bypass duration (minutes) 108.5 = 48.1 106.6 = 43.0 0.872
Cross-clamp duration (minutes) 80.0 = 27.7 71.4 +26.3 0.379
Temporary ventricular pacing 24 (39.3%) 19 (31.8%) 0.231
Number of bypass grafts 35%13 3710 0.374
Myocardial infarction after coronary artery bypass grafting 8 (13.1%) 18 (30.0%) 0.028

Non-Q-wave myocardial infarction 8 (13.1%) 15 (25.0%)

Q-wave myocardial infarction 0 (0%) 3 (5.0%)

transferase higher than threefold the upper normal limit)
were not included in the study.

Curcuminoids and placebo used in the present study
were provided in caplet form by the Research and Devel-
opment Institute, the Government Pharmaceutical Organi-
zation, Bangkok, Thailand. One curcuminoid capsule con-
tained curcuminoids 250 mg, which consisted of curcumin,
demethoxycurcumin, and bisdemethoxycurcumin, in a ratio
of 1.0:0.6:0.3, respectively, confirmed by high-performance
liquid chromatography/mass spectrometry.

Enrolled patients were randomly allocated to receive

placebo or curcuminoids 4 capsules 4 times/day (4 g/day) in
addition to standard therapy beginning 3 days before the
scheduled surgery and patients continued to receive the
assigned treatment until 5 days after surgery. To assign
patients to curcuminoids or placebo, a block randomization
sequence was obtained by a statistical consultant who was
not involved in the study. Assigned therapy was fully blind-
ed; surgeons and investigators performing postoperative as-
sessment were not aware of the randomization assignment.

All patients undergoing CABG were treated with stan-
dard therapy according to their physicians. Three surgeons
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performed CABG in the present study. The surgical tech-
niques were determined at the discretion of the individual
surgeons. On-pump CABG procedures were performed in
62 patients (51.2%), of whom 31 (25.6%) underwent on-
pump CABG with the heart beating and 31 (25.6%) under-
went on-pump CABG with conventional cardioplegic ar-
rest. Myocardial protection was done with antegrade and
retrograde cold blood cardioplegia. Off-pump CABG was
performed in the remaining patients. The conduits used in
patients in this study included the internal mammary arter-
ies, radial arteries, and saphenous veins.

Twelve-lead electrocardiograms were recorded before
surgery, 24, 48, and 72 hours after surgery, and 30-day
follow-up visit. Serial creatine kinase-MB levels were as-
sessed before surgery, at 8, 16, 24, 48, and 72 hours after
intensive care unit arrival, and whenever an ischemic event
was suspected. N-terminal pro—B-type natriuretic peptide
(NT-pro-BNP) level was assessed before surgery and on the
5th postoperative day.

To examine the effects of curcuminoids on inflammatory
response and oxidative stress after surgery, C-reactive pro-
tein (CRP) level was assessed before surgery and on post-
operative days 3 and 5. In addition, plasma malondialde-
hyde (MDA) level, a marker for oxidative stress, was
assessed before surgery and on postoperative day 5 using
the high-performance liquid chromatographic method.

The primary end point of the study was to demonstrate
that curcuminoids decrease the incidence of in-hospital MI
compared to placebo. The secondary end point was to ex-
amine the effects of curcuminoids on CRP, MDA, and
NT-pro-BNP levels after surgery.

The diagnosis of Q-wave MI was determined by the
presence of new pathologic Q waves according to Minne-
sota Code criteria or new-onset left bundle branch block and
creatine kinase-MB increase more than fivefold the upper
normal limit of the investigators’ local laboratory within 24
hours of CABG. In the absence of the aforementioned
electrocardiographic findings, creatine kinase-MB increase
>10-fold the upper normal limit within 24 hours of CABG
was considered indicative of non-Q-wave ML’ If MI was
suspected >24 hours after CABG, a creatine kinase-MB
increase >2 times the upper normal limit with chest pain or
an increase >3 times the upper normal limit was considered
indicative of MI®

All analyses were done on an intention-to-treat basis.
Demographic and perioperative variables were compared
between groups with ¢ test for normally distributed values;
otherwise the Mann—Whitney U test was used. Proportions
were compared by chi-square test or Fisher’s exact test
when appropriate. Continuous variables are presented as
mean =SD or median * interquartile range when appropri-
ate. Categorical variables are displayed as percentages. Haz-
ard ratios and 95% confidence intervals to assess the risk of
the primary end point according to potential confounding
variables were determined by logistic regression. Multivar-
iate analyses were performed for variables with a p value
<<0.1 in univariate analysis using the logistic regression
procedure. A p value <0.05 (2-tailed) was considered sta-
tistically significant.

Table 3
Multivariable logistic regression for myocardial infarction after coronary
artery bypass grafting

Risk Factor OR (95% CI) p Value

Curcuminoid therapy 0.35 (0.13-0.95) 0.038
On-pump coronary artery bypass grafting  5.23 (1.92-14.28) 0.001

CI = confidence interval; OR = odds ratio.

Figure 1. C-reactive protein levels before and after coronary artery bypass
grafting in curcuminoid and placebo groups. C-reactive protein level on
postoperative day 3 (D3) was significantly lower in the curcuminoid group
compared to the placebo group. “p <0.05 versus placebo. D5 = postop-
erative day 5.

Figure 2. Levels of plasma malondialdehyde before (Pre-op) and after
(Post-op) coronary artery bypass grafting in curcuminoid and placebo
groups. Plasma malondialdehyde level increased after coronary artery
bypass grafting in the placebo group but decreased significantly after
coronary artery bypass grafting in the curcuminoid group. “p <0.05 versus
preoperatively.

Results

Demographic and perioperative variables are presented
in Tables 1 and 2, respectively. From September 2009 to
December 2011, 121 consecutive patients who met the
inclusion criteria were randomly divided to a curcuminoid
group (n = 61) or a control group (n = 60). Baseline
characteristics of patients in the 2 treatment groups were
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Table 4

Adverse events and study drug discontinuation

Characteristics Curcuminoid Placebo p Value

(n = 61) (n = 60)

Adverse events
Nausea 8 (13.1%) 5 (8.3%) 0.559
Diarrhea 2 (3.3%) 2 (3.3%) 1.000
Abdominal pain 3 (4.9%) 1 (1.7%) 0.619
Dizziness 2 (3.3%) 1 (1.7%) 1.000
Sore throat 1 (1.6%) 1 (1.7%) 1.000
Serious adverse events of special interest
Serum creatinine increase* 4 (6.6%) 2 (3.3%) 0.691
Liver function

Alanine aminotransferase or aspartate aminotransferase >3X upper limit of normal range 0 (0%) 2 (3.3%) 0.469
Alanine aminotransferase or aspartate aminotransferase >3X upper limit of normal range 0(0%) 1 (1.7%) 0.993
with concurrent bilirubin >2X upper limit of normal range

Inotrope requirement 43 (70.5%) 44 (73.3%) 0.884
Intra-aortic balloon pump usage 0(0%) 4 (6.7%) 0.057
Severe postoperative hemorrhage required reoperation to stop bleeding 1(1.6%) 1 (1.7%) 1.000
Stroke/transient ischemic attack 2 (3.3%) 1 (1.7%) 1.000
Death 1(1.6%) 1 (1.7%) 1.000

Premature study drug discontinuation
Overall 14 (22.9%) 11 (18.3%) 0.654
Owing to adverse drug events 6 (9.8%) 4 (6.7%) 0.743
By subject’s request 7 (11.5%) 6 (10.0%) 1.000

For other reasons 1 (1.6%) 1 (1.7%) 1.000

* Increase in serum creatinine of =50%.

comparable including age, gender, co-morbidities, and pre-
vious percutaneous coronary revascularization (Table 1).
Perioperative features were not different between the cur-
cuminoid and placebo groups (Table 2).

Incidence of the primary outcome (in-hospital MI) was
decreased from 30.0% in the placebo group to 13.1% in the
curcuminoid group (unadjusted hazard ratio 0.35, 0.14 to
0.89, p = 0.028). Most MI events were non—Q-wave MI
(Table 2). Apart from curcuminoid treatment, other predic-
tors of in-hospital MI were identified. We found that on-
pump CABG was significantly associated with a higher
incidence of MI compared to off-pump surgery (35.5%, 22
of 62, vs 6.8%, 4 of 59, respectively, p <0.001). After
multivariate analysis, we found that curcuminoid therapy
remained the independent protective factor of in-hospital
MI and that on-pump CABG was the independent predictive
factor of in-hospital MI (Table 3). Of 121 patients, 57
patients underwent echocardiography 1 month after surgery.
Incidence of postoperative left ventricular dysfunction (left
ventricular ejection fraction <40%) was significantly higher
in the placebo group than in the curcuminoid group (25.9%,
7 of 27, vs 3.3%, 1 of 30, respectively, p = 0.021).

Baseline preoperative CRP, MDA, and NT-pro-BNP
levels were not different between the curcuminoid and pla-
cebo groups. However, mean increase in CRP level on
postoperative day 3 compared to baseline level was signif-
icantly greater in the placebo group than in the curcuminoid
group (difference +161.8 = 54.1 vs +128.6 = 60.5 mg/dl,
respectively, p = 0.031; Figure 1). Plasma MDA level was
increased after CABG in the placebo group but was de-
creased significantly after CABG in the curcuminoid group
(difference +0.8 = 1.4 vs —5.7 £ 1.5 mmol/ml, respec-
tively, p <0.001; Figure 2). Furthermore, mean increase in

postoperative NT-pro-BNP level compared to preoperative
level was greater in the placebo group than in the curcumi-
noid group (difference +2,542.2 £ 2,631.2 vs +1,822.1 =
2,102.9 pg/ml, respectively, p = 0.015).

Incidence of drug-related adverse events was not differ-
ent between the curcuminoid and placebo groups (Table 4).
The main drug-related adverse events were gastrointestinal
symptoms. Incidences of serious adverse events and drug
discontinuation did not differ between the 2 groups.

Discussion

Adequate myocardial protection during CABG is crucial
in preventing myocardial injury after surgery.”’ Previous
studies have shown that an increase of cardiac enzymes
after CABG is associated with increased long-term mortal-
ity.'” Nevertheless, some interventions reported to be car-
dioprotective in experimental models of ischemia/reperfu-
sion injury have failed to translate their protective effects
into clinical studies."' Until recently, only few clinical stud-
ies have shown promising results.”'>"'* Mangano et al'*
recently examined the efficacy of the adenosine-regulating
agent acadesine in patients undergoing CABG. They dem-
onstrated that acadesine improved long-term survival in this
group of patients. Furthermore, cariporide, the sodium-hy-
drogen exchange inhibitor, has been shown to decrease the
incidence of MI associated with CABG, although the neu-
rologic complications observed with the high dose preclude
its clinical use.’

Preclinical data have shown that curcuminoids have car-
diovascular protective effects in experimental models of
various cardiac conditions.'® In the present study, we dem-
onstrated that curcuminoids decreased the incidence of in-
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hospital MI after CABG significantly. In addition, curcumi-
noids attenuated postoperative NT-pro-BNP levels and
decreased the incidence of postoperative left ventricular
dysfunction. Accumulating evidence has suggested that cur-
cuminoids have a diverse range of molecular targets and
influence numerous biochemical and molecular cascades.”
We propose that the beneficial effects of curcuminoids in
the decrease of MI may be exerted by several mechanisms.
First, it has been suggested that oxidative stress and sys-
temic inflammatory response during cardiopulmonary by-
pass may account for ischemia/reperfusion injury occurring
in patients receiving CABG. Curcuminoids have been
shown to possess striking antioxidant and anti-inflammatory
properties and to inhibit such mediators of inflammation as
nuclear factor-«B, cyclooxygenase-2, lipoxygenase, and in-
ducible nitric oxide synthase.'® Correspondingly, in the
present study, we demonstrated that curcuminoids de-
creased postoperative CRP and MDA levels significantly.
Therefore, the anti-inflammatory and antioxidative effects
of curcuminoids may attenuate myocardial injury associated
with cardiac surgery. Second, curcuminoids may protect
against cardiac injury through a membrane-stabilizing ef-
fect.'”?° Nirmala and Puvanakrishnan*?' demonstrated
that curcuminoids significantly attenuated increased lyso-
somal hydrolase activity in serum and myocardial tissue in
isoproterenol-induced MI in rats. Histopathologic findings
also showed that the curcuminoid treatment decreased the
degree of myocardial necrosis in isoproterenol-administered
rats.* The membrane-stabilizing effect of curcuminoids may
protect cells from autolytic and heterolytic damage and may
attenuate the tissue damage owing to myocardial ischemia.
Third, additional evidence from in vitro studied has shown
that curcuminoids inhibit human platelet activation.”'** The
antiplatelet property of curcuminoids may potentially de-
crease the occurrence of myocardial ischemia.

Because of the relatively small studied population, our
results need to be confirmed in larger studies. Apart from
the anti-inflammatory and antioxidant effects of curcumi-
noids shown in this study, other mechanisms of cardiopro-
tective effects of curcuminoids are not clearly elucidated.
Furthermore, the effect of curcuminoids on long-term out-
come after CABG is unknown. Future studies are warranted
to clarify this issue.
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Calcium-induced Cardiac Mitochondrial Dysfunction Is Predominantly
Mediated by Cyclosporine A-dependent Mitochondrial Permeability
Transition Pore But Not Mitochondrial Calcium Uniporter
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Background and Aims. Cardiac mitochondrial Ca®" overload plays a critical role in
mechanical and electrical dysfunction leading to cardiac cell death and fatal arrhythmia.
Because Ca’" overload is related to mitochondrial permeability transition, reactive
oxygen species (ROS) production and membrane potential (AWm) dissipation, we probed
the mechanistic association between Ca>' overload, oxidative stress, mitochondrial
permeability transition pore (mPTP) and mitochondrial calcium uniporter (MCU) in
isolated cardiac mitochondria.

Methods. Various concentrations of Ca®" (5—200 uM) were used to induce mitochon-
drial dysfunction. Cyclosporin A (CsA, an mPTP blocker) and Ru360 (an MCU blocker)
were used to test its protective effects on Ca*"-induced mitochondrial dysfunction.

Results. High concentrations of Ca*" (=100 uM) caused overt mitochondrial swelling
and A¥m collapse. However, only slight increases in ROS production were detected.
Blocking the MCU by Ru360 is less effective in protecting mitochondrial dysfunction.

Conclusions. A dominant cause of Ca®*-induced cardiac mitochondrial dysfunction was
mediated through the mPTP rather than MCU. Therefore, CsA could be more effective
than Ru360 in preventing Ca®'-induced cardiac mitochondrial dysfunction. © 2012

IMSS. Published by Elsevier Inc.

Key Words: Cardiac mitochondria, Calcium, Permeability transition, Reactive oxygen species,

Membrane potential.

Introduction

Intracellular Ca>™ overload of cardiomyocytes can lead to
both electrical and mechanical dysfunction (1). Mitochon-
dria play a crucial role in buffering cytosolic Ca®" for
maintaining physiological Ca®" signals (2). When mito-
chondrial Ca®" uptake exceeds a certain threshold level,
the mitochondria can no longer regulate the intramitochon-
drial Ca”", resulting in the opening of mitochondrial
permeability transition pore (mPTP) (3,4). Opening of
mPTP allows the influx of water and solutes (<1500 Da)

Address reprint requests to: Nipon Chattipakorn, MD, PhD, Cardiac
Electrophysiology Research and Training Center, Faculty of Medicine,
Chiang Mai University, Chiang Mai 50200, Thailand; Phone: +66-53-
945329; FAX: +66-53-945368; E-mail: nchattip@gmail.com

into the matrix causing mitochondrial swelling, mitochon-
drial membrane potential (AWm) collapse, and eventually
cell death (2). However, the mechanism by which Ca’"
mediates the mPTP opening in cardiac cells is still contro-
versial and varies in different models (5). Ca>" overload
also leads to the increase in reactive oxygen species
(ROS) production (6—8). However, the relationship
between Ca®" overload, mPTP opening, A®¥m change
and oxidative stress is still elusive.

Cyclosporin A (CsA) is regarded as a potent inhibitor of
mPTP by preventing the interaction of cyclophilin D and
adenine nucleotide translocator (ANT). It has long been
used to identify mPTP activity in various tissues (9,10)
and has been proven to be a cardioprotective agent (11).
Therefore, in this study we investigated the mechanistic
association between Ca’"  overload, mitochondrial

0188-4409/$ - see front matter. Copyright © 2012 IMSS. Published by Elsevier Inc.
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dysfunction, oxidative stress and the mPTP opening in
cardiac mitochondria. Moreover, because the mitochondrial
calcium uniporter (MCU) has been proposed as a principal
portal for Ca®" influx (12—14), we also investigated the
effect of Ru360, a selective MCU blocker, against mito-
chondrial dysfunction. In the present study we tested the
hypotheses that the mechanism of Ca®"- induced cardiac
mitochondrial dysfunction is mainly via the mPTP and
the MCU.

Materials and Methods
Ethics Approval

This study was approved by the Institutional Animal Care
and Use Committee at the Faculty of Medicine, Chiang
Mai University.

Animals

Male Wistar rats (n = 18, 350—400 g) were obtained from
the National Laboratory Animal Center, Mahidol Univer-
sity, Bangkok, Thailand. All animals were housed in a room
with controlled temperature maintaining between 22 and
25°C with a constant 12 h light/dark cycle. Rats were fed
with standard rat pellet diet and water ad libitum.

Experimental Protocols

Isolated cardiac mitochondria were used in all experiments.
Various doses of CaCl, (5, 10, 100, 200 uM) were applied
to isolated cardiac mitochondria for 10 min before the
measurement of mitochondrial swelling, ROS production
and AWm dissipation. In addition, the effect of the mPTP
blocker (CsA) and the MCU blocker (Ru360) on attenu-
ating Ca®"induced mitochondrial dysfunction was also
investigated. Isolated cardiac mitochondria were pretreated
with CsA at the concentration of 5 pM for 30 min before
the application of CaCl, (15) or with Ru360 10 uM for
5 min (16).

Isolation of Cardiac Mitochondria

Cardiac mitochondria were isolated according to the
method described previously (17,18). Male Wistar rats
weighing 350—400 g were anesthetized by isoflurane and
thiopental (80 mg/kg), and the hearts were perfused with
ice-cold normal saline. The heart was then removed,
minced with razors, and homogenized in ice-cold isolation
buffer containing sucrose 300 mM, TES 5 mM and EGTA
0.2 mM, pH 7.2 (4°C). The homogenate was centrifuged at
800 g for 5 min. The supernatant was collected and centri-
fuged at 8800 g for 5 min. The mitochondrial pellet was re-
suspended in ice-cold isolation buffer and finally
centrifuged at 8800 g for 5 min. The mitochondrial pellet
was suspended in 2 ml of respiration buffer containing

100 mM KCl, 50 mM sucrose, 10 mM HEPES, and
5 mM KH,PO4, pH 7.4, at 37°C. Mitochondrial protein
concentration was measured using bicinchoninic acid
(BCA) assay (19).

Identification of Cardiac Mitochondria with Electron
Microscopy

Electron microscopy was used to identify the morphology
of cardiac mitochondria (20). Isolated mitochondria were
fixed overnight by mixing 2.5% glutaraldehyde in 0.1 M ca-
codylate buffer, pH 7.4, at 4°C. The pellet was then rinsed
in cacodylate buffer and postfixed in 1% cacodylate-
buffered osmium tetroxide for 2 h at room temperature.
Next, the mitochondrial pellet was dehydrated in a graded
series of ethanol and embeded in Epon-Araldite. The pellet
was then cut into ultrathin sections (60—80 nm thick) using
a diamond knife, placed on copper grids and stained with
uranyl acetate and lead citrate. Finally, mitochondria were
observed with a transmission electron microscope.

Measurement of Cardiac Mitochondrial Swelling

Mitochondria suspension was added with respiration buffer
to a final concentration of 0.4 mg/ml. Cardiac mitochon-
drial swelling was determined by the decrease of light
absorbance at 540 nm using a microplate reader (18—21).

Measurement of ROS Production

Cardiac mitochondria (0.4 mg/mL) were incubated with
2 puM dichlorohydro-fluorescein diacetate (DCFDA) at
25°C for 20 min. In the presence of ROS, DCFDA was
oxidized to DCF and the fluorescence increased. Fluores-
cence was determined at 485 nm for excitation and 530
for emission. The ROS level was expressed in arbitrary
units of fluorescence intensity of DCF (18).

Measurement of Mitochondrial Membrane Potential
Change (4%m)

The mitochondrial membrane potential change of isolated
cardiac mitochondria were evaluated by using the dye
5,5',6,6'- tetrachloro-1,1’,3,3'-tetraethylbenzimidazolcarbo-
cyanine iodide (JC-1) (22,23). JC-1 is a lipophilic, cationic
dye which can pass into mitochondria. When mitochondria
have high AWm, JC-1 is in the aggregate form, which
shows red fluorescence. With low AWm (i.e., depolarized
state), it remains in monomeric form showing green fluores-
cence. The isolated mitochondria (0.4 mg/mL) were incu-
bated with 310 nM JC-1 at 37°C for 30 min (18).
Fluorescence intensity was measured using a fluorescent
microplate reader. The green fluorescence of JC-1 mono-
mer was excited at 485 nm and the emission was noticed
at 530 nm. The red fluorescence of J-aggregates was
excited at 485 nm and the emission was detected at 590
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nm. The mitochondrial depolarization was indicated by
a decrease in red/green fluorescence intensity ratio.

Statistical Analysis

Data were presented as mean £ SEM. Evaluation of the
differences was made by two-way ANOVA followed by
the Fisher post-hoc test. Statistical significance was consid-
ered at p <0.05.

Chemicals

All reagents used in this study were purchased from Sigma
(St. Louis, MO).

Results
Effects of Ca®" on Cardiac Mitochondrial Swelling

When exposed with Ca’tat5and 10 uM, cardiac mitochon-
drial swelling was not observed, whereas when exposed with
Ca”* at 100 pM and 200 pM, cardiac mitochondrial swelling
was obviously seen as indicated by markedly decreased
absorbance (Figure 1A). At 30 min after Ca®" incubation,

Figure 1. Cardiac mitochondrial swelling in response to increasing concen-
tration of Ca®*. (A) Kinetic study of cardiac mitochondrial swelling. (B)
Effect of Ca®"on morphological change of cardiac mitochondria. Isolated
cardiac mitochondria without Ca®" (left) and with 200 pM Ca" (right),
Magnifications: 1:15,000. Control: isolated cardiac mitochondria without
Ca*" exposure. Ca5, Cal0, Cal00, Ca200: Ca*"-treated mitochondria at
5, 10, 100, and 200 pM, respectively. *p <0.05 vs. control.

only the absorbance in the cardiac mitochondria exposed to
100 and 200 uM Ca>" was significantly decreased, indicating
cardiac mitochondrial swelling, compared to the control
(Figure 1A). Data from the decrease in absorbance were
confirmed by the morphology of mitochondria taken
from the electron microscope. Ca®" at 200 uM caused
severe morphological change of cardiac mitochondria,
evidenced by matrix expansion and unfolding of the cristae
(Figure 1B).

Effect of Ca®" on Cardiac Mitochondrial ROS Production
and AYm Change

At low doses of Ca>" (5 and 10 uM), the ROS level was not
different from the control (Figure 2A). When the cardiac
mitochondria were exposed to high doses of Ca*" (100
and 200 uM), a small but significant increase of ROS level
was observed. However, data from AWm showed that
10 uM Ca?" could trigger mitochondrial membrane
depolarization without the change in ROS production
(Figure 2B). Further, a high concentration of Ca*" (100
and 200 pM) induced more AWm dissipation than the
low concentration (Figure 2B).

Figure 2. Effects of Ca®>" on cardiac mitochondrial ROS production (A)
and A¥m change (B). Control: isolated cardiac mitochondria without
Ca** exposure, Ca5, Cal0, Cal00, Ca200: Ca**-treated mitochondria at
5, 10, 100, and 200 uM, respectively. *p <0.05 vs. control, #p <0.05
vs. CalO.
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Effects of CsA and Ru360 on Mitochondrial Dysfunction

From the kinetic curve of the absorbance, it was found that
CsA could apparently protect cardiac mitochondrial swelling
especially in early Ca®-overloaded time points, i.e., the first
15 min (Figure 3A). However, Ru360 could modestly
protect cardiac mitochondria from Ca®'-induced swelling
(Figure 3A). At 15 min after 200 uM Ca®" loading, CsA
could completely protect cardiac mitochondrial swelling,
whereas Ru360 provided only partial protection
(Figure 3B). Nevertheless, at 30 min after Ca** exposure,
CsA could only partially protect mitochondrial swelling
and Ru360 could no longer mitigate the swelling
(Figure 3C). CsA and Ru360 alone did not alter mitochon-
drial ROS and membrane potential (Figure 4). CsA, as well
as Ru360, could completely prevent Ca®'-induced ROS
production of cardiac mitochondria. However, the level of
ROS attenuation by CsA is larger than Ru360 (Figure 4A).
For the mitochondrial membrane potential, both CsA and
Ru360 could only partially attenuate A¥m collapse in
cardiac mitochondria (Figure 4B). When the concentration
of CsA and Ru360 was decreased in half, it was still effective
in attenuating mitochondrial dysfunction (Figure 4).
However, CsA at a lower dose had lower effectiveness in
preventing mitochondrial depolarization.

Discussion

In the present study the major findings are that in cardiac
mitochondria overloaded with Ca®": 1) mitochondrial
swelling, elevated ROS production and mitochondrial
membrane depolarization were observed; 2) CsA pretreat-
ment could completely prevent cardiac mitochondrial
swelling in the first 15 min after Ca>" exposure, protect
ROS production, and partially alleviate AWm dissipation;
and 3) Ru360 pretreatment could not completely avert
mitochondrial swelling, although it could attenuate ROS
production and partially block A®m collapse.

In the heart under physiological condition, Ca®" plays an
important part in mitochondrial oxidative-phosphorylation
which enhances ATP production to support contractile
activity and ion transport systems of myocardium (24).
However, excessive Ca>" loading occurring during cardiac
ischemia/reperfusion can trigger mPTP opening and lead to
apoptotic cell death (25,26). In the present study we found
that Ca®" at 5 pM did not cause cardiac mitochondrial
swelling, ROS production, and AWm collapse. However,
10 uM Ca*" could induce slight mitochondrial depolariza-
tion. This finding may represent the role of low-dose
Ca”" in physiological process. Depolarization of cardiac
mitochondria following 10 uM Ca*" may be due to Ca®"
influx down a potential gradient (27) and be related to Ca%*
uptake through the MCU, which occurs only when the
concentration of Ca>" reaches 10 uM (28). With exposure
of high concentrations of Ca’" (100 and 200 uM), cardiac

Figure 3. Effects of CsA and Ru360 on cardiac mitochondrial swelling.
(A) Kinetic study of cardiac mitochondrial swelling. (B) Mitochondrial
swelling at 15 min after 200 pM Ca*" exposure. (C) Mitochondrial
swelling at 30 min after 200 pM Ca*" exposure. Control: isolated cardiac
mitochondria without Ca>* exposure, Ca200: Ca**-treated mitochondria
at 200 uM, CsA + Ca: mitochondria pretreated with CsA followed by
200 uM Ca®" application, Ru + Ca: mitochondria pretreated with
Ru360 followed by 200 uM Ca®' application. *p <0.05 vs. control,
#p <0.05 vs. Ca200.
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Figure 4. Effects of CsA and Ru360 on cardiac mitochondrial ROS produc-
tion. (A) AWm dissipation (B) and mitochondrial swelling. (C) Neither CsA
nor Ru360 alone altered any determined parameters. CsA at 2.5 and 5 pM,
and Ru360 at 5 and 10 uM provided similar results on ROS production
and mitochondrial swelling. *p <0.05 vs. control, fp <0.05 vs. Ca®"
treatment, 1p <0.05 vs. 5 uM CsA+Ca”", #p <0.05 vs. CsA+Ca "

mitochondria became more depolarized and obviously
swelling, observed by the decreasing of absorbance and
severe morphological changes in electron microscopy. These
high concentrations of Ca*" could also induce oxidative
stress by increasing ROS production. However, in cardiac
mitochondria, Ca’*-induced ROS production was observed
in the condition in which complex IIT in the electron transport
chain was inhibited (29). The increase in ROS production,
which enhanced by Ca®" alone, has been shown to be due
to the loss of cytochrome c or glutathione-antioxidant
enzymes through the mPTP (30,31). Our findings supported
the hypothesis of Ca*" threshold for the mPTP opening (32).

For the protective effects of CsA, our results demon-
strated that within 15 min after Ca®* exposure, CsA could
completely prevent cardiac mitochondria from swelling,

consistent with the effect on protecting ROS production.
Therefore, it could be implied that the opening of mPTP
plays a critical role in cardiac mitochondrial dysfunction
in conditions of early Ca’" overload. However, CsA could
only partially prevent AWm collapse because inhibition of
mPTP did not block Ca®" influx and, therefore, did not
prevent alteration of the electron gradient across the inner
membrane. The protective effect of CsA was attenuated in
the next 15 min after Ca®" exposure when the extent of
mitochondrial swelling was so large that CsA no longer
prevented mitochondrial swelling. Because the CsA could
not inhibit Ca®>" influx into the mitochondria, high Ca’t
accumulation occurred in late Ca®" exposure and could
competitively interfere with the effect of CsA at mPTP, re-
sulting in partial mPTP opening and later mitochondrial
swelling (33,34).

As mitochondrial Ca®" overload is a key factor of mPTP
opening and the MCU has been proposed as a dominant
portal of Ca?" influx (12—14), we also further investigated
the effect of Ru360, a selective MCU blocker against
cardiac mitochondrial dysfunction. We found that Ru360
could decrease ROS production, although to a lesser extent
than CsA. Moreover, Ru360 could not prevent mitochon-
drial swelling from Ca®" overload in both early and late
Ca”" exposure. Considering the partial effect of Ru360
on inhibition of AWm collapse, this finding suggested that
Ca®*" may possibly enter the matrix through alternative
pathways other than the MCU. Recently, growing bodies
of evidence of other mechanisms related to mitochondrial
Ca”" influx have been reported. These mechanisms include
mitochondrial ryanodine receptor (35,36), a rapid mode of
Ca”" uptake (36), mitochondrial uncoupling proteins (37),
and leucine zipper EF hand-containing transmembrane
protein 1 (LETM1) Ca®>™H™ antiporter (38). Ca*" influx
through these alternative Ca*" uptake channels could also
trigger mPTP opening. Therefore, Ru360 may not be
a promising agent for protecting cardiac mitochondrial
dysfunction from calcium overload. Nevertheless, because
this was an in vitro study performed in isolated cardiac
mitochondria, there may be some limitations in that iso-
lated mitochondria lack the effects of the cellular environ-
ment, which can interfere with the biological response.
Also, direct intracellular calcium measurement, as well as
calcium retention capacity, was not investigated in the
present study. Future in vivo studies are needed to confirm
the efficacy of both agents as well as to seek for the roles of
those possible alternative portals for calcium entry to
warrant their possible therapeutic use.

In conclusion, our finding suggested that Ca*"-induced
cardiac mitochondrial swelling, ROS production and
AWm dissipation is due to mPTP opening. Moreover,
MCU may not be the principal pathway for cardiac mito-
chondrial Ca** uptake. CsA but not Ru360, was shown to
be an effective agent against calcium-induced cardiac mito-
chondrial dysfunction.
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Aims: Since variety in response to Ca?>*-induced mitochondrial dysfunction in different neuronal mitochon-
drial populations is associated with the pathogenesis of several neurological diseases, we investigated the ef-
fects of Ca2* overload on synaptic (SM) and nonsynaptic mitochondrial (NM) dysfunction and probed the
effects of cyclosporin A (CsA), 4’-chlorodiazepam (CDP) and Ru360 on relieving mitochondrial damage.
Main methods: SM and NM mitochondria were isolated from rats' brains (n = 5/group) and treated with var-
ious concentrations (5, 10, 100, and 200 uM) of Ca?*, with and without CsA (mPTP blocker), CDP (PBR/TSPO
blocker) and Ru360 (MCU blocker) pretreatments. Mitochondrial function was determined by mitochondrial
swelling, ROS production and mitochondrial membrane potential changes (A¥m).

Key findings: At 200-uM Ca™, SM presented mitochondrial swelling to a greater extent than NM. At 100 and
200-uM Ca®*, the ROS production of SM was higher than that of NM and AWm dissipation of SM was also
larger. CsA, CDP and Ru360 could reduce ROS production of SM and NM with exposure to 200-uM Ca?*. How-
ever, only Ru360 could completely inhibit ROS generation in both SM and NM, whereas CsA and CDP could
only partially reduce the ROS level in SM. Moreover, CsA and CDP pretreatments were not able to restore
A¥m. However, Ru360 pretreatment could protect AWm dissipation in both SM and NM, with complete pro-
tection observed only in NM.

Significance: Our findings suggested that mitochondrial calcium uniporter is a possible major pathway for cal-
cium uptake in both mitochondrial populations. However, SM might have additional pathways involved in

the calcium uptake.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Mitochondria are critical regulators of neuronal cell survival and
cell death (Boitier et al., 1999; Hyder et al., 2006; Murchison and
Griffith, 2007; Yuan and Yankner, 2000). The pathophysiology of nu-
merous neurological disorders, such as ischemic-reperfusion injury
(Blomgren et al., 2003; Pandya et al., 2011), traumatic brain injury
(Friberg and Wieloch, 2002; Norenberg and Rao, 2007) and neurode-
generative diseases (Reddy and Reddy, 2011; Reeve et al., 2008), is
related to mitochondrial dysfunction, which leads to neuronal apo-
ptosis. The most important factor inducing mitochondrial dysfunction
is Ca®™ overload, which primarily occurs during neuroexcitotoxicity
(Duchen, 2004; Nicholls, 2009; Starkov et al., 2004). Ca®>* overload
is involved with mitochondrial membrane potential depolarization
(AWm dissipation), which has been proposed as an initiator as well
as a consequence of mitochondrial transition pore (mPTP) opening

* Corresponding author at: Department of Oral Biology and Diagnostic Science, Faculty
of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand. Tel.: +66 53 945329;
fax: +66 53 945368.

E-mail address: s.chat@chiangmai.ac.th (S. Chattipakorn).

0024-3205/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
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(Ly et al., 2003; Wadia et al., 1998). Reactive oxygen species (ROS)
are also crucial players in neuronal mitochondrial dysfunction
(Wangetal., 2011). However, the relationship between Ca®™ overload
and ROS in brain mitochondria is diverse depending on experimental
conditions (Gyulkhandanyan and Pennefather, 2004; Komary et al.,
2008; Panov et al., 2007; Petrosillo et al., 2004; Schonfeld and Reiser,
2007; Votyakova and Reynolds, 2005). Moreover, the correlation be-
tween Ca?*-induced mitochondrial damage, A¥m dissipation, and
ROS production is still controversial (Adam-Vizi and Starkov, 2010).
Brain mitochondria are classified into two groups, the synaptic mi-
tochondria (SM) and the nonsynaptic mitochondria (NM). The prop-
erties of these two types of mitochondria especially in Ca?>* handling
are different (Guo et al., 2005; Li et al., 2004). SM, which are located
around the synapse, are exposed to extensive Ca®* fluctuations and
are at high risk for oxidative stress and Ca?™ accumulative damages
(Banaclocha et al., 1997; Martinez et al., 1996). A previous study
reported that the difference in the Ca?*-induced mPTP opening
could be due to the higher level of cyclophilin D (CypD) in SM
(Naga et al., 2007). However, direct inhibition of CypD by cyclospor-
ine A (CsA) cannot increase the Ca?* accumulation capacity in SM
(Brown et al., 2006), suggesting that additional mechanisms are likely
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responsible for the differences in Ca®>* handling in SM and NM. The
main portal pathway for Ca?* uptake of neuronal mitochondria pro-
posed by previous studies is the mitochondrial calcium uniporter
(MCU). However, subsequent studies of other tissues have discovered
additional Ca®* uptake mechanisms such as the rapid mode of Ca?*
uptake (RAM) (Buntinas et al., 2001; Sparagna et al., 1995), and the
mitochondrial ryanodine receptor (mRYR) (Altschafl et al., 2007;
Beutner et al., 2001; Beutner et al., 2005). Moreover, the Ca®>* uptake
mechanism of SM and NM in the Ca®>* overload condition has not
been investigated and whether Ca?™ entry via MCU in the SM and
NM is different is not known. Therefore, in this study, we tested the
hypothesis that 1) SM respond to Ca®>* overload conditions in a dif-
ferent way from NM, and 2) the mechanisms for Ca®* entry via
MCU in the SM and NM are different.

Materials and methods
Reagents

All of the reagents used in this study were purchased from Sigma
(St. Louis, MO., USA), except Ru360, which was purchased from Cal-
biochem (San Diego, CA., USA).

Bovine serum albumin (BSA) and pyruvic acid were purchased
from Amresco (Solon, OH., USA). CsA and CDP were prepared in
DMSO and further diluted to final concentrations by 2% DMSO.
Ru360 was prepared in deionized water.

Animal preparation

This study was approved by the Institutional Animal Care and Use
Committee at the Faculty of Medicine, Chiang Mai University. Wistar
rats (300-400 g) were obtained from the National Laboratory Animal
Center, Mahidol University, Bangkok, Thailand. All animals were
housed in a controlled room temperature maintained between 22
and 25 °C in a constant 12-h light/dark cycle. They were fed with
standard pellet rat diet and water ad libitum.

Experimental protocols

Isolated mitochondria from synaptosomes and nonsynaptosomes
of rat cortical brains were used as in a previous study (Chelli et al.,
2001; Novalija et al., 2003; Thummasorn et al., 2011; Tong et al.,
2005). The first protocol was to investigate the effect of Ca>"-induced
mitochondrial dysfunction on synaptic versus nonsynaptic mitochon-
dria in the morphological aspects of mitochondrial swelling, ROS

production and AWm dissipation. In this study, CaCl, at concentra-
tions of 5, 10, 100 and 200 uM were used (n= 6/group for ROS and
A¥Ym measurements). Various doses of CaCl, were applied for
10 min to isolated mitochondria before the assessment of all parame-
ters. In the second protocol, the mechanism underlying the differ-
ences in Ca®" responses of SM and NM was investigated by several
pharmacological interventions: cyclosporine A (CsA), 4’-chlorodiaze-
pam (CDP) and Ru360 (as shown in Fig. 1). CsA is known as a mito-
chondrial permeability transition pore blocker, CDP is the specific
peripheral benzodiazepine receptor (or presently known as translo-
cator protein; TPSO) antagonist, and Ru360 is the mitochondrial cal-
cium uniporter blocker. In the second protocol, both SM and NM
were randomly assigned into eight groups: control (vehicle), CsA
(5uM), CDP (100 pM), Ru360 (10 uM), CaCl, (200 uM), CaCl, pre-
treated with CsA, CaCl, pretreated with CDP and CaCl, pretreated
with Ru360 (n=5/group). CsA and CDP were applied to the mito-
chondria for 30 min prior to exposure to Ca?* or vehicle for 30 min,
while Ru360 was added at 3 min before Ca®* exposure. Doses of all
blockers were used according to those reported previously
(Thummasorn et al., 2011; Zhang et al., 2006).

Isolation of nonsynaptic brain mitochondria

Nonsynaptic brain mitochondria were isolated from 300-350 g
male Wistar rats using a method modified from that described in a
previous study (Lai and Clark, 1979; Clark and Nicklas, 1970;
Krasnikov et al., 2005). Following decapitation, brains were rapidly
removed and placed in ice-cold isolation buffer containing 320 mM
sucrose, 10 mM HEPES, and 0.5 mM EGTA at pH 7.4. All homogeniza-
tion and centrifugation steps were carried out at 4 °C. The cortices
were chopped into small pieces with razors. Then, the brains were
homogenized by the homogenizer containing 10 ml of isolation buff-
er. The homogenate was centrifuged at 1300 g for 3 min. The super-
natant was centrifuged at 1300 g for 3 min. The supernatant was
collected and centrifuged at 17,000 g for 8 min. The pellets obtained
from this step were suspended in 3 ml of isolation buffer and applied
to the top of 3 ml of 10% (w/v) Ficoll overlaid by 3 ml of 7.5% (w/v)
Ficoll. After centrifugation at 99,000 g for 20 min, aliquots were re-
moved. The nonsynaptic mitochondria-containing pellets at the bottom
of the tube were resuspended in isolation buffer and recentrifuged at
12,000 g for 8 min. The pellet was resuspended in an isolation buffer
supplemented with 0.5 mg/ml BSA and centrifuged at 12,000 g for
8 min. Protein concentration was determined using a Bicinchoninic
Acid (BCA) assay with bovine serum albumin used as a concentration
standard (Walker, 1994).

Fig. 1. Study protocol to determine the effects of cyclosporine A (CsA), 4'-chlorodiazepam (CDP) and Ru360 on Ca?"-induced mitochondrial dysfunction.
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Isolation of synaptic brain mitochondria

Brain synaptic mitochondria from male Wistar rats (300-350 g)
were isolated according to the method described in a previous
study (Kudin et al., 2004; Pallotti and Lenaz, 2007; Berman et al.,
2000; Gangolf et al., 2010; Rosenthal et al., 1987) using 0.02% digito-
nin to free mitochondria from the synaptosomal fraction. After decap-
itation, the brain was transferred to ice-cold MSE solution (225 mM
mannitol, 75 mM sucrose, 1 mM EGTA, 5 mM HEPES, 1 mg/ml BSA,
pH 7.4), minced and transferred to 10 ml of MSE solution containing
0.05% nagarse for homogenizations. Then, the homogenate was cen-
trifuged at 2 000 g for 4 min. The supernatant was centrifuged at
12,000 g for 9 min. The synaptosome-enriched pellets were resus-
pended in MSE containing 0.02% digitonin and centrifuged at
12,000 g for 11 min.

Identification of mitochondria with electron microscopy

Isolated mitochondria were fixed overnight in 2.5% glutaralde-
hyde in 0.1 M cacodylate buffer, pH 7.4 at 4 °C, postfixed with 1%
cacodylate-buffered osmium tetroxide for 2 h at room temperature.
Then, the pellets were dehydrated in a graded series of ethanol and
embedded in Epon-Araldite as described in a previous study (Chelli
et al,, 2001).

After being cut with a diamond knife, ultrathin sections were
placed on copper grids, stained with uranyl acetate and lead citrate,
and observed with a transmission electron microscope.

Mitochondria were classified into two categories; intact mitochon-
dria and damaged mitochondria. Intact mitochondria were character-
ized by condensed cristae and an uninterrupted outer membrane.
Conversely, damaged mitochondria or mitochondrial swelling is de-
scribed as fragmented cristae or an interrupted outer membrane and
expanding matrix (Lifshitz et al., 2003).

Measurement of mitochondrial ROS production

ROS production in mitochondria was determined spectrofluorome-
trically, using dichlorohydro-fluorescein diacetate (DCFDA) (Novalija
et al., 2003). Synaptic or nonsynaptic mitochondria (0.4 mg/ml) were
incubated with 2 pM DCFDA at 25 °C for 20 min. Fluorescence was de-
termined at 485 nm for excitation and 530 nm for emission. The ROS
level was manifested as arbitrary units of fluorescence intensity of
DCF as described in a previous study (Thummasorn et al., 2011).

Measurement of mitochondrial membrane potential (A¥m)

The dye 5,5',6,6’-tetrachloro-1,1/,3,3’-tetraethylbenzimidazolcar-
bocyanine iodide (JC-1) was used to assess the change in A¥m as de-
scribed in a previous study (Tong et al., 2005). Decreased red/green
fluorescent intensity ratio indicates mitochondrial depolarization
(Perry et al., 2011). The isolated mitochondria (0.4 mg/ml) were in-
cubated with 310 nM JC-1 at 37 °C for 30 min.

Fluorescence intensity was measured by a fluorescence microplate
reader using 485- and 530-nm (green) wavelengths for the excitation
and 485- and 590 nm (red) for the emission.

Measurement of mitochondrial swelling

Mitochondrial swelling was assessed by measuring changes in the
absorbance of the suspension at the 540-nm wavelength using a
microplate reader. SM or NM (0.4 mg/ml) were incubated in a 2-ml
respiration buffer (containing 150 mM KCl, 5 mM HEPES, 5 mM
K;HPO4.3H50, 2 mM L-glutamate, 5 mM pyruvate sodium salt). De-
creased absorbance indicated mitochondrial swelling (Thummasorn
etal, 2011).

Data analysis

All data were expressed as means + SEM. Comparisons were made
by one-way ANOVA followed by the Fisher post-hoc test. Results were
statistically significant with P<0.05.

Results

Ca?*-induced oxidative stress and mitochondrial membrane
depolarization in SM and NM

At baseline, there was no significant difference between the ROS
level in the SM (137.194+21.53 au) and NM (155.48+23.60 au),
and the A¥m between SM (1.12 £ 0.20) and NM (0.67 £ 0.22). Ca%?™
at 5uM did not cause any changes in ROS production in either SM
or NM (Fig. 2). However, Ca?™ at 10 uM increased the mitochondrial
ROS production in NM, but not SM (Fig. 2). Ca®* at 100 and 200 uM
increased ROS production in a dose-dependent manner in both SM
and NM (Fig. 2). We also found that SM generated significantly higher
levels of ROS in response to 200-uM Ca?™ than did NM (Fig. 2). Low
concentrations of Ca®™ (5, 10 uM) did not change the A¥m in either
SM or NM (Fig. 3). When Ca?* concentration was increased to 100
and 200 pM, the SM encountered mitochondrial depolarization in a
dose dependent manner, as shown by an obvious decrease in A¥m
dissipation. In NM, however, mitochondrial depolarization occurred
only when treated with 200-uM Ca®* (Fig. 3). Moreover, when ap-
plied with 100 and 200-uM Ca™, the level of SM A¥m dissipation
was greater than that of NM (Fig. 3). In the swelling assay, we
found that 5, 10 and 100-uM Ca?* did not cause NM swelling, while
the 100-uM Ca®™ started to cause SM swelling (Fig. 4). However,
the 200-uM Ca®* could cause both SM and NM swelling (Fig. 4). Consis-
tent with the morphology changes (as shown in Fig. 5), the exposure of
200-uM Ca* in both SM and NM caused severe mitochondrial swelling.
However, SM exhibited greater swelling and morphological changes
than those from NM (Figs. 4 and 5).

Effects of CsA, CDP, and Ru360 on SM and NM ROS production

The levels of ROS production were not altered in either SM or NM
applied with CsA, CDP or Ru360, alone (Fig. 6). The ROS levels were dra-
matically increased in both SM and NM treated with 200-uM Ca™

Fig. 2. ROS production in response to increasing concentration of Ca?* in mitochondria
isolated from synaptosomes and nonsynaptosomes (n=8/group). 0, 5, 10, 100, and
200 = control group and CaCl,-treated mitochondria at 5, 10, 100, and 200 pM, respec-
tively. SM: synaptic mitochondria, NM: nonsynaptic mitochondria, *P<0.05 compared
to the control group for SM, #P<0.05 compared to the control group for NM, fP<0.05
differences between different calcium concentrations at the same group, 1P<0.05 dif-
ferences between different groups at the same calcium concentration.
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Fig. 3. Ca’"-induced AWm dissipation rates of mitochondria isolated from synapto-
somes and nonsynaptosomes (n=8/group). SM: synaptic mitochondria, NM: nonsy-
naptic mitochondria, *P<0.05 compared to the control group for SM, #P<0.05
compared to the control group for NM, {P<0.05 differences between different calcium
concentrations in the same group, 1P<0.05 differences between different groups at the
same calcium concentration.

(Fig. 6). The ROS level, however, was increased to a much higher level in
SM, than in NM. When CsA, CDP and Ru360 were applied to SM and NM
prior to 200-uM Ca®™ application, the ROS levels were significantly re-
duced, compared to the Ca®*-treated group. However, the ROS level
in CsA and CDP pretreatment groups of SM was still greater than that
in the control group, whereas the ROS level in NM was reduced to the
same levels as the control group. In addition, the ROS levels in Ru360
pretreatment of both SM and NM were at the same levels as in the con-
trol group (Fig. 6).

Effects of CsA, CDP, and Ru360 on SM and NM membrane potential
dissipation (A¥m)

At the baseline, CsA and CDP caused a significant decrease of
AW¥m, but Ru360 did not (Fig. 7). With exposure to 200-uM Ca®*,
both SM and NM underwent mitochondrial depolarization. As
shown in Fig. 7, CsA and CDP pretreatment did not help in attenuating

Fig. 4. Ca>*-induced mitochondrial swelling of SM and NM (N = 8/group) after 10-min
of Ca?* application. SM: synaptic mitochondria, NM: nonsynaptic mitochondria,
*P<0.05 compared to the control group for SM, #P<0.05 compared to the control
group for NM, fP<0.05 differences between different calcium concentrations in the
same group, {P<0.05 differences between different groups at the same calcium
concentration.

the A¥m collapse in either SM or NM. However, Ru360 pretreatment
completely restored the membrane potential of NM to the normal
level, whereas it only partially prevented A¥m collapse in SM (Fig. 7).

Effect of CsA, CDP, and Ru360 on SM and NM swelling

CsA, CDP and Ru360 alone did not alter the absorbance in both SM
and NM, compared to the control group. Among all pharmacological
interventions, only Ru360 could completely prevent both SM and
NM swelling following a 200-uM Ca?* application (Fig. 8). For CsA
and CDP, they could completely prevent mitochondrial swelling
only in NM. In SM, both CsA and CDP could only partially prevent mi-
tochondrial swelling (Fig. 8).

Discussion

Mitochondrial Ca®* overload is a crucial pathogenesis of numer-
ous neurological disorders including neurodegenerative diseases, is-
chemic brain injury, inflammatory processes and epilepsy (Zundorf
and Reiser, 2010). Previous studies in isolated mitochondria have
shown that excessive Ca®" triggered mitochondrial permeability
transition (mPT) evidenced by mitochondrial membrane potential
(A¥m) collapse, ROS production, mitochondrial swelling, and outer
membrane rupture leading to apoptotic cascade activation (Pivovarova
and Andrews, 2010). In the CNS, differences in Ca?>* handling have
been observed in different brain regions and neuronal mitochondrial
populations. Synaptic mitochondria are at high risk for accumulative mi-
tochondrial perturbation and consequently become more challenging to
therapeutic interventions (Du et al., 2010). Mitochondrial swelling is
one of the most important markers of the mPTP opening (Bernardi,
1996; Friberg and Wieloch, 2002). In the present study, we demonstrat-
ed that morphological changes in SM exposed to 200-uM Ca’* were
greater than those in the NM which reflected that SM underwent
more mPTP opening as compared to the NM during Ca®>* exposure.
This finding is consistent with that of a previous study which reported
that SM had less capacity for Ca®>™ accumulation than did NM prior to
mitochondrial permeability transition (mPT), suggesting that Ca%*-in-
duced mPT in SM is more intense than in NM (Brown et al., 2006).

Ca®* overload can also give rise to oxidative stress. Several mech-
anisms have been proposed to be involved in Ca?*-induced ROS pro-
duction. Under physiologic conditions, Ca?™ may be both a stimulator
for oxidative-phosphorylation and a partial inhibitor of the electron
transport chain, each of which actions leads to ROS production
(Brookes et al., 2004). Another mechanism is the Ca®*-triggered
mPTP-opening when intramitochondrial Ca?* reaches a threshold
level (Ow et al., 2008). Opening of the mPTP leads to cytochrome c re-
lease causing an increase in ROS production (Starkov et al., 2004).
According to the critical ROS threshold hypothesis, ROS at a certain
level could trigger mitochondrial membrane depolarization (Zorov
et al., 2006). Hence, it is possible that Ca?*, which surges to the
threshold level, might induce an increase of the ROS level high
enough to cause AWm dissipation.

In this study, we demonstrated that 100-uM Ca®™ or higher
caused ROS production, A¥m dissipation, and mitochondrial swelling
in SM. This finding implies that ROS level caused by 100-uM Ca2*
could reach the threshold level of SM to cause SM dysfunction. How-
ever, in NM, 10-uM and 100-uM Ca®™ triggered ROS production with-
out causing A¥m dissipation or mitochondrial swelling, while
200-uM Ca?™ triggered both ROS generation, A¥m collapse, and mi-
tochondrial swelling in NM. This finding suggests that the ROS levels
caused by 10-uM and 100-uM Ca®* were not high enough to induce
A¥m collapse and mitochondrial swelling. Nevertheless, the ROS
level caused by 200-uM Ca®" reached the critical threshold of NM
to undergo NM dysfunction. Therefore, from the data of ROS, A¥m
and mitochondrial swelling, it may be concluded that the critical



812 C. Yarana et al. / Life Sciences 90 (2012) 808-814

Fig. 5. Effect of Ca>* overload on mitochondrial morphology of SM and NM. SM or NM (0.4 mg/ml) was incubated with respiration buffer (A, B) or with respiration buffer plus
200 uM Ca?* (C, D) for 10 min before fixation. SM: synaptic mitochondria, NM: nonsynaptic mitochondria, magnification: 1:15,000 (A-D).

threshold levels of Ca?* induced mitochondrial dysfunction in NM
were higher than that in SM.

Since the heterogeneity of mitochondrial membrane channel prop-
erties of different mitochondrial populations might determine diverse
sensitivities to Ca®>* insult and underlie pathogenesis of neuronal dys-
function, we examined the pharmacological effects on ROS production,

Fig. 6. Effects of CsA (5 M), CDP (100 uM) and Ru360 (10 pM) on synaptic and nonsy-
naptic mitochondrial ROS production (n=5/group). CsA, CDP, and Ru: mitochondria
treated with 5-puM CsA, 100-uM CDP, and 10-pM Ru360, respectively. Ca200: mitochon-
dria treated with CaCl, 200 pM. CsA + Ca, CDP + Ca, Ru + Ca: mitochondria pretreated
with 5uM CsA, 100 uM CDP, and 10 uM Ru360 followed by CaCl, application, respec-
tively. SM: synaptic mitochondria, NM: nonsynaptic mitochondria, *P<0.05 compared
to the control group for SM, #P<0.05 compared to the control group for NM, 7P<0.05
compared to 200 uM Ca** in the same group, $P<0.05 compared to SM at the same
pretreatment group.

AW¥m dissipation, and mitochondrial swelling. In the present study, we
found that pretreatment with CsA or CDP greatly reduced ROS levels of
NM to the normal levels but only partially decreased ROS levels of SM.
Since CsA and CDP directly interact with the mPTP components, the dif-
ferences in response to these agents suggest the possibility that the
quantity of both CypD and TSPO or their susceptibility to Ca?* on the

Fig. 7. Effects of CsA, CDP, and Ru360 on synaptic and nonsynaptic mitochondrial A¥m
dissipation (n = 5/group). CsA, CDP, and Ru: mitochondria treated with 5-uM CsA, 100-
uM CDP, and 10-uM Ru360, respectively. Ca200: mitochondria treated with CaCl,
200 pM. CsA+Ca, CDP + Ca, Ru + Ca: mitochondria pretreated with 5-uM CsA, 100-
UM CDP, and 10-uM Ru360 followed by CaCl, application, respectively. SM: synaptic
mitochondria, NM: nonsynaptic mitochondria, *P<0.05 compared to the control
group for SM, #P<0.05 compared to the control group for NM, fP<0.05 compared to
200 uM Ca®* in the same group, $P<0.05 compared to SM at the same pretreatment
group.
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Fig. 8. Effects of CsA, CDP, and Ru360 on synaptic and nonsynaptic mitochondrial
swelling (n=>5/group). CsA, CDP, and Ru: mitochondria treated with 5-uM CsA, 100-
UM CDP, and 10-uM Ru360, respectively. Ca200: mitochondria treated with 200-puM
CaCl,. CsA+Ca, CDP + Ca, Ru+ Ca: mitochondria pretreated with 5-uM CsA, 100-uM
CDP, and 10-puM Ru360 followed by CaCl, application, respectively. SM: synaptic mito-
chondria, NM: nonsynaptic mitochondria, *P<0.05 compared to the control group for
SM, #P<0.05 compared to the control group for NM, {P<0.05 compared to 200 uM
Ca”" in the same group, P<0.05 compared to SM of the same treatment group.

mitochondrial membranes of SM might be greater than on NM. This
finding was consistent with that of a recent study which reported the
larger amount of CypD in SM compared with NM (Naga et al., 2007).
That finding and our findings may be a major factor underlying the dif-
ferences in Ca®*-induced mitochondrial dysfunction between SM and
NM. However, pretreatment with higher concentrations of CsA and
CDP did not decrease the ROS levels in SM to the normal level (data
not shown), suggesting that other mechanisms besides mPTP might
be responsible for ROS production in SM. The findings that CsA and
CDP could completely prevent mitochondrial swelling in NM, but not
SM, support this hypothesis.

In the present study, a specific MCU inhibitor Ru360 could decrease
ROS production and mitochondrial swelling caused by excess Ca®* in
both SM and NM to normal levels, suggesting that Ca?™ influx could
occur directly via MCU. By inhibiting MCU, extramitochondrial Ca®*
could not influx into the matrix, leading to the blockage of Ca®"-in-
duced ROS production processes. These finding suggested that MCU
could play a key role in increased ROS production induced by Ca%™ in
both SM and NM. Furthermore, our results on the pharmacological inter-
ventions on mitochondrial membrane potential changes demonstrated
that only Ru360 can attenuate the Ca?"-induced mitochondrial depolar-
ization in both SM and NM, whereas CsA and CDP could not. Although
both CsA and CDP could reduce ROS production, they did not prevent
mitochondrial depolarization. Mitochondrial depolarization due to ex-
cess Ca®™ could also involve the mechanism unrelated to the mPTP
opening. Excess Ca™ influx via the MCU could cause mitochondrial de-
polarization directly since Ca>* uptake through MCU occurs down a po-
tential gradient, thus allowing a large amount of positive charges into
the mitochondria (Gunter and Pfeiffer, 1990). Although CsA and CDP di-
rectly inhibited mPTP opening and prevented loss of cytochrome c and
ROS production, they could not prevent Ca%* entry via MCU. Instead,
Ru360 (MCU blocker), which directly inhibited Ca™ influx, could pro-
tect mitochondrial depolarization. The findings that Ru360 could reduce
ROS production greater than that by CsA and CDP could be another rea-
son for the effect of Ru360 on relieving A¥m dissipation. Since Ca?™"
entry into the mitochondria is the main cause of increased ROS produc-
tion in this case, inhibiting Ca®™ influx could directly prevent excess ROS
production as observed in the present study. However, the effect of
Ru360 on A¥m in SM and NM was not similar. Ru360 could completely
prevent AWm dissipation in NM but partially prevent AWm dissipation
in SM, suggesting that MCU can be defined as a key pathway of Ca™ se-
questration in NM, but the additional alternative channels such as mito-
chondrial RyR or RAM may also take part in the Ca>* uptake mechanism
of SM.

Limitation of the study

Although the methods for NM and SM isolation we used in the
present study have been used previously, they were different buffer
systems, and may in part affect the mitochondrial physiological func-
tion. Therefore, the responses of SM and NM to the pharmacological
interventions could be similar or different if the NM and SM were isolated
with the same buffer system. Future studies are needed to investigate
the effects of the buffer systems on mitochondrial responses to the
drugs.

Conclusion

The findings in this study established that isolated mitochondria
derived from synaptosomes presented more severe mitochondrial
dysfunction in response to Ca®>* overload than did mitochondria de-
rived from nonsynaptosomes. This divergence is not only the result
of differences in mPTP components but also the differences in the
Ca®™ uptake mechanism. Finally, the MCU may be the major portal
for Ca?* entry in NM. However, both MCU and other pathways such
as RyR or RAM could be portals of Ca?>* entry in SM.

Although alternative mechanisms are still undiscovered, our re-
sults provided additional insights and explanation for the susceptibil-
ity of synaptic mitochondria, which could be useful for further
therapeutic approach in numerous neuronal disorders, particularly
disorders due to the calcium overload condition.
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Abstract

Objectives: Iron-overload cardiomyopathy is a major cause of morbidity and mortality in patients with thal-
assemia. However, the precise mechanisms of iron entry and sequestration in the heart are still unclear.
Our previous study showed that Fe?* uptake in thalassemic cardiomyocytes are mainly mediated by T-type
calcium channels (TTCC). Nevertheless, the role of TTCC as well as other transporters such as divalent
metal transporter1 (DMT1) and L-type calcium channels (LTCC) as possible portals for iron entry into the
heart in in vivo thalassemic mice under an iron-overload condition has not been investigated. Methods: An
iron-overload condition was induced in genetically altered f-thalassemic mice and adult wild-type mice by
feeding them with an iron diet (0.2% ferrocene w/w) for 3 months. Then, blockers for LTCC (verapamil
and nifedipine), TTCC (efonidipine), and DMT1 (ebselen) as well as iron chelator desferoxamine (DFO)
were given for 1 month with continuous iron feeding. Results: Treatment with LTCC, TTCC, DMT1 block-
ers, and DFO reduced cardiac iron deposit, cardiac malondialdehyde (MDA), plasma non-transferrin-bound
iron, and improved heart rate variability and left ventricular (LV) function in thalassemic mice with iron over-
load. Only TTCC and DMT1 blockers and DFO reduced liver iron accumulation, liver MDA, plasma MDA,
and decreased mortality rate in iron-overloaded thalassemic mice. Conclusions: DMT1, LTCC, and TTCC
played important roles for iron entry in the thalassemic heart under an iron-overloaded condition. Unlike
LTCC blocker, TTCC blocker provided all benefits including attenuating iron deposit in both the heart and
liver, reduced oxidative stress, and decreased mortality in iron-overloaded mice.
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Beta-thalassemia is an inherited hemoglobin disorder,
resulting in chronic hemolytic anemia, which is typically
required for regular blood transfusion (1, 2). It is
prevalent in people of Mediterrancan origin, Middle
East, North India, and Southeast Asia (3, 4). The
iron-overload condition in thalassemia can lead to iron
accumulation in various organs, especially in the heart
(5, 6), leading to iron-overload cardiomyopathy, which is
the major cause of mortality in patients with thalassemia
(7, 8). However, the mechanisms of iron uptake into the
heart leading to abnormal left ventricular (LV) function
are still unclear. A previous study showed that the
L-type calcium channels (LTCC) played a role for iron

© 2012 John Wiley & Sons A/S

uptake into the heart of the isolated perfused rat heart
(9) and in an in vivo rat model of iron overload (10).
However, inconsistent findings were reported in cultured
cardiomyocyte studies (11, 12). Recently, using the thal-
assemic mouse model, our study demonstrated for the
first time that T-type calcium channels (TTCC) were
reexpressed in thalassemic mouse hearts (11). We also
demonstrated that the TTCC blocker (efonidipine), but
not the LTCC blocker (verapamil), prevented Fe®"
uptake into thalassemic cardiomyocytes (11).

Normally, iron can enter the cell such as enterocyte,
hepatocyte, and cardiomyocyte via the divalent metal
transporter]l (DMTI1) and transferrin receptorl (TfR1)
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(13-15). However, under iron-overload conditions, previ-
ous studies demonstrated that TfR1 and DMTI mRNA
and protein expressions in the heart were suppressed (16,
17), suggesting that they may not be major transporters
for iron uptake into the hearts under this condition.
Moreover, it has been shown that TfR1 and DMT1 did
not play important roles in Fe>" uptake in cultured thal-
assemic cardiomyocytes (11). Nevertheless, the role of
TTCC, LTCC, and DMTI as iron transporters in ‘in
vivo’ thalassemic mice under iron-overload conditions
has never been investigated.

Heart rate variability (HRV) is a measure of variation
in the heart rate. Variation in the beat-to-beat interval is
a physiological phenomenon, involving the sympathetic
and parasympathetic nervous system (18, 19). HRV has
been proposed as a new risk stratifier in postmyocardial
infarction and heart failure patients (20). In patients with
thalassemia, several studies demonstrated that the HRV
was depressed indicating cardiac autonomic imbalance in
these patients (18, 19). Similar findings, that is, depressed
HRYV, were also demonstrated in a mouse model of
p-thalassemia (21). However, the effects of TTCC,
LTCC, and DMTI blockers on HRV as well as on LV
function in iron-overloaded thalassemic mice have never
been investigated.

In this study, we tested the hypothesis that pharmaco-
logical interventions with TTCC, LTCC, and DMTI
blockers and iron chelator desferoxamine (DFO) attenu-
ate cardiac iron accumulation, improve HRV and LV
function, and reduce cardiac oxidative stress in iron-
overloaded thalassemic mice.

Materials and methods

Animal models

Two types of adult C57/BL6 mice (3—6 months old):
wild type (mup*’", WT) and heterozygous pX° type
(mup™™¥* HT), were used in this study (11, 21). All
animal studies were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) of the Faculty
of Medicine, Chiang Mai University, and conformed to
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NTH
Publication No. 85-23, revised 1996). All animals were
housed in controlled temperature and humidity rooms
with 12-h light—-dark cycles.

Iron treatment and pharmacological interventions

Iron overload was induced by feeding WT and HT mice
(FE group) with FE diet (0.2% ferrocene w/w), whereas
WT and HT mice in the control group were fed with a
normal diet for 90 d. Then, the mice in the FE group
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were randomly divided into six subgroups (n = 8 each)
and were treated with drugs while being fed an FE diet
for another 30 d. Group I (FE) mice were given intra-
peritoneal (IP) injections with 0.5% DMSO daily. Group
IT (FE/DFO) mice were injected with deferoxamine
(DFO, 42 mg/kg) in 0.5% DMSO IP daily (22). Group
IIT (FE/verapamil) mice were injected with verapamil
(10 mg/kg) in 0.5% DMSO twice daily (alternating sub-
cutaneous and IP) (23). Group IV (FE/nifedipine) mice
were injected with nifedipine (5 mg/kg) in 0.5% DMSO
IP daily (24). Group V (FE/efonidipine) mice were
injected with efonidipine (4 mg/kg) in 0.5% DMSO IP
daily (25). Group VI (FE/ebselen) mice were injected
with ebselen (5 mg/kg) in 0.5% DMSO IP daily (26).
Mice in the control group were injected with 0.5%
DMSO IP daily and fed with the normal diet. Each
group of mice were injected with drug at 6 pm each day
except Fe/verapamil group, which were injected twice
daily at 6 am and 6 pm each day. At the end of treat-
ments (i.e., 4 months after iron-loading and treatment),
the LV function, HRV, and cardiac iron deposition were
assessed in all mice. The mortality rate was also deter-
mined in all groups.

Quantification of plasma non-transferrin-bound iron

The non-transferrin-bound iron (NTBI) concentration
was measured using the NTA chelation/HPLC method
established by Singh et al. (27) with the aluminum block-
ing step. Plasma was incubated with NTA solution (a
final concentration of 80 mm) pH 7.0 for 30 min at room
temperature to produce an Fe’ "-(NTA), complex. After-
ward, the Fe’"-(NTA), was separated from the plasma
proteins by spinning the plasma mixture through a mem-
brane filter (NanoSep®, 30-kDa cut off, polysulfone type;
Pall Life Sciences, Ann Arbor, MI, USA). The concen-
tration of the Fe’"-(NTA), representing NTBI in the
ultrafiltrate was determined using a non-metallic HPLC
system. The analytes were fractionated onto a glass ana-
lytical column (ChromSep-ODSI, 100 x 3.0 mm, 5 pm)
and eluted with mobile-phase solvent (3 mm CP22 in
19% acetronitrile’/MOPS buffer pH 7.0) at a flow rate of
1.0 mL/min. The effluents were monitored at 450 nm
using a flow cell detector (SpecMonitor2300; LDC
Milton-Roy Inc., Riviera Beach, FL, USA) and con-
ducted with BDS software (BarSpec Ltd., Rehovot,
Isracl). The NTBI concentration was calculated from a
calibration curve made with different iron concentrations
Fe’ "-(NTA), in 80 mm NTA, pH 7.0 ranging 0-16 um.

Measurement of heart rate variability

Cardiac autonomic nervous activity was evaluated by
spectral analysis of the RR interval variability. All mice
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underwent measurement of HRV at month 0 (MO),
three (M3), and four (M4). The lead II electrocardio-
gram (ECG) was recorded using needle electrodes (21)
and recorded continuously using Power Lab with chart
5.0 (21). During the recording of the ECG, mice were
placed in a familiar environment with unnecessary noise,
put to calm, and prohibited from movement. The ECG
data were analyzed using MATLAB program (21). The
RR interval was determined using the peaks of QRS
complex and stored as an interval tachogram. From the
section of tachogram of at least 300 consecutive interval
values, the standard deviation of all RR intervals
(SDNN) and root mean square of successive difference
(rMSSD) were calculated. The power spectra of RR
interval variability were obtained using fast Fourier
transform algorithm, and the high-frequency (HF: 0.6—
3 Hz) and the low-frequency (LF: 0.2-0.6 Hz) compo-
nents were determined (21). The power below 0.2 Hz is
considered as a very low frequency (VLF). Each spectral
component was calculated by determining the area
under the respective part of the power spectral density
function and was presented in absolute unit (ms?). To
minimize the effect of changes in total power on the LF
and HF components, LF and HF were expressed as
normalized units (LFnu and HFnu) by dividing the LF
and HF by the total power minus VLF (19, 21). The
LF/HF ratio is considered an index of autonomic
balance (19, 21).

Left ventricular pressure-volume loops (P-V loops)
analysis

The WT and HT mice were anesthetized and maintained
under physiological conditions. Anesthesia was induced
with zoletil (20 mg/kg body weight), injected intraperito-
neally (28). The endotracheal tube was inserted, and
respiration was maintained by the Harvard rodent venti-
lator model 683 (Harvard Apparatus, Holliston, MA,
USA), which started immediately with room air using a
volume of 200-250 uL and ventilator rate at 110—
130 breaths/min to maintain PCO,, PO,, and pH param-
eters (29). The abdomen was opened subcostally. The
diaphragm was incised by a transverse substernal
approach leaving the pericardium intact. The left ventri-
cle was entered through an apical stab with a 23 1/2 G
needle, followed immediately by the pressure-volume
conductance catheter (SciSense, ON, Canada) for mea-
suring the LV pressure and volume (29). The end-systolic
pressure (ESP) and end-diastolic pressure (EDP),
maximum pressure (Ppay) and minimum pressure (Ppin),
maximum and minimum dP/d¢ (dP/dtypmax, dP/dtmin),
stroke volume (SV), cardiac output (CO), and stroke
work (SW) were measured using the P-V conductance
catheter system (29, 30).

© 2012 John Wiley & Sons A/S
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Percent of organ weight index

The heart, liver, spleen, and kidney were removed and
weighed. The weight index was determined by using
the equation: weight index (%) = (organ weight/body
weight) x 100 (31). All organs were remained frozen at
—80°C for further analysis.

Prussian blue staining for iron tissue

Iron deposition in HT heart and liver tissues was deter-
mined by fixing the dissected tissues in 10% neutral
buffer formalin, embedding in paraffin boxes, cutting
with a sliding microtome (5-um-thick section), and
staining with Prussian blue dye solution. Prussian blue—
stained tissue slides were examined under a light micro-
scope (Olympus Corporation, Philadelphia, PA, USA)
(40x magnification objective lens) and recorded with a
digital camera (Sony Corp., Minato-ku, Japan).

Cardiac iron determination

At the end of the PV loop determination, the hearts were
removed and homogenated in deionized water 1: 10
(w/v). Then, 100 uL of heart tissue homogenates were
precipitated in precipitation solution (1 N HCI and 10%
trichloroacetic acid) and heated at 95°C for 1 h. Then,
the tubes were cooled down at room temperature for
2 min, vortex mixed, and then centrifuged at 8200 g for
10 min. The supernatants (50 puL) were mixed with 50 uL
of chromogen solution [0.508 mm ferrozine, 1.5 M
sodium acetate and 0.1% or 1.5% (v/v) thioglycolic acid]
and incubated at room temperature for 30 min. After
incubation, the absorbance was measured at 562 nm, and
the cardiac iron concentration was compared with the
iron standard curve (32).

Hepatic iron content determination

The hepatic iron content (HIC) was determined using a
colorimetric technique (33) and expressed in milligrams
of non-heme iron per gram of dry weight. The liver
tissue was dried at 120°C for 24 h and weighed. The
tissue was digested with the acid mixture (concentrated
sulfuric acid : concentrated nitric acid = 1:1, v/v) at
room temperature and adjusted to the final volume of
10 mL with deionized water. The tissue hydrolysate
(50 puL) was incubated with hydroxylamine hydrochloride
solution (50 pL) to reduce the ferric ion to ferrous ion at
room temperature for 10 min. The pH of the mixture was
adjusted to 5.0 with 0.1 M acetate buffer pH 5.0 solution,
and the Fe?" present in the solution was allowed to react
with a 2.4,6-tripyridyl-s-triazine (TPTZ) solution to form
a violet-colored product. The OD of the product was mea-
sured at 593 nm against the reagent blank. The hepatic
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iron concentration was calculated from a calibration curve
made from different concentrations of ferrous ammonium
sulfate ranging from 12.5 to 200 um. Data of HIC were
expressed as mg/g dry weight.

Determination of malondialdehyde concentration

The heart, liver, and plasma malondialdehyde (MDA) con-
centrations were measured by using the HPLC method
(34). The dry liver tissues (100 mg) or heart tissues (30 mg)
were homogenized in the solution containing 50 mM phos-
phate buffer pH 2.8 (0.8 mL), methanol (0.1 mL) and
butyrated hydroxytoluene (BHT) (50 ppm) in an ice bath.
A 0.5-mL aliquot of the homogenate or plasma was mixed
with 1.1 mL of 10% (w/v) trichloroacetic acid (TCA) con-
taining BHT (50 ppm), heated at 90°C for 30 min and
cooled down to room temperature. The mixture was centri-
fuged at 3300 g for 10 min to achieve a clear supernatant.
The supernatant (0.5 mL) was mixed with 0.44 M H3POy,
(1.5 mL) and 0.6% (w/v) thiobarbituric acid (TBA) solu-
tion (1.0 mL) and incubated at 90°C for 30 min to produce
pink-colored products called thiobarbituric acid-reactive
substances (TBARS). The solution was passed through a syr-
inge filter (polysulfone type membrane, pore size 0.45 um;
Whatman International, Maidstone, UK) and analyzed with
the HPLC system. The TBARS were fractionated on the
adsorption column (Water Spherosorb ODS2 type,
250 x 4.3 mm, 5 um), eluted with mobile-phase solvent of
50 mm KH,PO, : methanol (65 : 35 v/v) at flow rate of
1.0 mL/min and on-line detected at 532 nm. Data were col-
lected and analyzed with the BDS software (BarSpec Ltd.).

A standard curve was constructed from the peak height
of standard 1,1,3,3-tetramethoxypropane (standard
reagent for MDA) at different concentrations (0-100 um).
Tissues and plasma TBARS concentration were deter-
mined directly from the standard curve and reported as a
MDA equivalent concentration (34). The MDA concen-
trations were expressed in umM/mg protein for heart and
liver tissues and in uM for plasma samples.

RNA isolation for microarray analysis

The heart samples of WT (n = 3) and HT (Fe group)
(n = 3) mice were used for RNA isolation and micro-
array analysis. The method was similar to that described
previously (11).

Real-time reverse-transcriptase polymerase chain reac-
tion (real-time RT-PCR)

Real-time RT-PCR was used to assess mRNA transcript
levels (35-37). Total RNA was extracted from the ventri-
cles of all HT groups (n = 3-4), using purelink RNA
mini purification kit (Invitrogen Corp., Grang Island,
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NY, USA) according to the manufacturer’s instructions.
RNA samples were treated with DNasel (Invitrogen
Corp.,) to eliminate genomic DNA contamination, and
cDNA was synthesized using iScript cDNA synthesis kit
(Bio-Rad Lab Ltd, Hercules, CA, USA) according to the
manufacturer’s instructions. The cDNA samples were
prepared with SsoFast EvaGreen Supermix (Bio-Rad Lab
Ltd.), and real-time PCR was performed in 96-well plates
in triplicate and were cycled for 45 cycles with Chromo4
Real-time PCR detector (Bio-Rad). The cycling conditions
included in a hot start at 95°C for 30 s, followed by 45
cycles at 95°C for 5 s, and 60°C for 10 s. To detect LTCC,
TTCC and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA expression, the gene-specific primers for
these genes were used. Sense and antisense primers (10 nM)
were forward (F) 5-TCTGCCTCTCTAGGTCGAA-3’
and reverse (R) 5-GGGAATGTGGTAGGAGAATG-3’
for LTCC(«1C) (38), forward (F) 5-TGTGGAAATGG-
TGGTGAAGA-3" and reverse (R) 5-ACTGCGGAG-
AAGCTGACATT-3" for TTCC(x1G) (38), forward (F) 5’
TGTGTCCGTCGTGGATCTGA-3" and reverse (R) 5'-
TTGCTGTTGAAGTCGCAGGAG-3’ for GAPDH (39).
The fluorescent amplification curve of the product was
determined, and the cycle at which the fluorescence reached
a threshold was recorded (C)) in triplicate and averaged.
To control for variability in RNA quantity, the measured
abundances of marker genes were normalized to that of
GAPDH using the formula AC, = C; (Detected Gen-
es) — C; (GAPDH). GAPDH mRNA was used as an inter-
nal control.

Statistical analysis

Data were reported as the mean + standard error of
mean (SEM) and were processed using the SPSS (Statis-
tical Package for Social Sciences, Chicago, IL, USA)
release 13.0 for Windows. One-way ANOVA analyses and
Student’s 7-test were performed for group comparisons.
Chi-square test was used for mortality rate comparisons
between groups. P-value < 0.05 was considered statisti-
cally significant.

Results

Effect of iron administration on plasma
non-transferrin-bound iron level

At the baseline (MO0), the levels of plasma NTBI were
not detected both in wild-type and in thalassemic mice
(Fig. 1A). After exposing both types of mice (WT, HT)
to a diet enriched with iron for 1 (M1), 2 (M2), 3 (M3),
or 4 (M4) months, NTBI levels were significantly higher
and followed a cumulative dose-dependent relationship
(Fig. 1A).
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Figure 1 Effect of iron overload on plasma non-transferrin-bound iron (NTBI) level (A) and heart rate variability (HRV) (B-D) in wild-type (WT) and
thalassemic mice (HT) without any pharmacological interventions at baseline (M0), 1 month (M1), 2 months (M2), 3 months (M3), and 4 months
(M4) after iron feeding (n = 8-10/group). *P < 0.05 vs. MO, P < 0.05 vs. M1, 1P < 0.05 vs. M3. Normalized low-frequency power (Lfnu) (B), nor-
malized high-frequency power (Hfnu) (C) and Lf/Hf ratio (D). *P < 0.05 vs. WT, *P < 0.05 vs. MO.

Effect of iron administration on heart rate variability

At the baseline (MO0), thalassemic mice had a higher Lfnu
(Fig. 1B), lower Hfnu (Fig. 1C), and higher Lf/Hf ratio
(Fig. 1D) than those in the WT mice. After iron was
administered for 3 and 4 months, both types of mice
(WT, HT) showed a significantly increased Lfnu and
Lf/Hf ratio and decreased Hfnu, compared with those at
month 0 (Fig. 1). The heart rate, mean RR, SDNN, and
rMSSD in both the WT (Table 1) and HT (Table 2) were
not significantly different throughout the experiment
(MO0, M3, M4).

Table 1 Effect of iron administration on heart rate variability
wild-type mice

n

Effects of pharmacological interventions on organ
weight index

In the control group, the liver weight indexes were not
different between the WT and HT (Fig. 2A). After
4 months of iron feeding, both types of mice (WT, HT)
showed a significantly increased liver weight index.
Pharmacological interventions did not prevent elevation
of liver weight index (Fig. 2A). The spleen weight index
of the HT mice was significantly larger than the WT
in the control group (Fig.2B). After 4 months of
iron feeding, both types of mice (WT, HT) showed a

Table 2 Effect of iron administration on heart rate variability in
thalassemic mice

Parameters Month 0 Month 3 Month 4 Parameters Month O Month 3 Month 4
RRmax 103 = 2 105 + 3 102 = 2 RRmax 108 = 3 103 = 4 102 =2
RRmin 84 + 1 85 + 1 85+ 1 RRmin 85+ 1 87 +1 85 + 1
Mean RR 92 + 1 95 + 1 93+ 1 Mean RR 92 +1 95 + 1 93 +1
SDNN (ms) 2.92 + 0.19 2.97 £ 0.31 3.00 + 0.50 SDNN (ms) 3.69 £ 0.30 3.04 £ 0.54 3.00 £ 0.50
rMSSD (ms) 2.70 + 0.19 2.61 £0.34 2.54 £ 0.57 rMSSD (ms) 3.39 £ 0.32 3.38 + 0.70 2.54 £ 0.57
HRmax (beats/min) 708 = 4 710 £ 5 709 £ 9 HRmax (beats/min) 701 = 4 703 £ 9 709 =9
HRmin (beats/min) 589 + 9 586 + 15 591 + 14 HRmin (beats/min) 584 + 15 587 + 18 591 + 14
Mean HR (beats/min) 647 =7 637 +7 644 + 7 Mean HR (beats/min) 654 + 6 635 + 8 644 + 7

SDNN, standard deviation of all RR intervals; rMSSD, root mean
square of successive difference of RR; HR, heart rate; Hfnu, normal-
ized high-frequency power; Lfnu, normalized low-frequency power.
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SDNN, standard deviation of all RR intervals; rMSSD, root mean
square of successive difference of RR; HR, heart rate; Hfnu, normal-
ized high-frequency power; Lfnu, normalized low-frequency power.
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Figure 2 Effects of pharmacological interventions on percentage of organ weight index [i.e., liver (A), spleen (B), heart (C), kidney (D)] in wild-type
(WT) and thalassemic mice (HT) (n = 8-10/group). *P < 0.05 vs. control, TP < 0.05 vs. WT.

significantly increased spleen weight index, and none of
the pharmacological interventions prevented or attenu-
ated it (Fig. 2B). The heart weight index of the HT
mice was significantly larger than the WT in the control
group (Fig. 2C). After 4 months of iron feeding and
pharmacological interventions, the heart weight index in
both types of mice (WT, HT) was not significantly dif-
ferent from the control group (Fig. 2C). Kidney weight
indexes were not different in both types of mice (WT,
HT) and in all groups throughout the experiment
(Fig. 2D).

Effect of pharmacological interventions on heart rate
variability

Wild-type mice in the FE group had increased Lf/Hf
ratio, Lfnu and decreased Hfnu, suggesting that iron-
overloaded conditions impaired cardiac autonomic regu-
lation of heart rate compared with the control group
(Table 3). In the treatment groups, verapamil, nifedipine,
efonidipine, DMT1 blocker and iron chelator signifi-
cantly decreased the Lf/Hf ratio, Lfnu and increased the
Hfnu (Table 3). The results of the heart rate, RR,
SDNN and rMSSD in WT mice after pharmacological

Table 3 Effects of pharmacological interventions on heart rate variability in wild-type mice

Parameters Control FE FE/DFO FE/Verapamil FE/Nifedipine FE/Efonidipine  FE/Ebselen
RRmax 100 £ 3 102 £ 2 104 + 4 101 £7 106 £ 3 101 £ 3 101 £ 2
RRmin 83 1 85 + 1 86 + 1 83 1 85 + 1 85 + 1 85 + 1
Mean RR 90 + 1 93 + 1 93 + 1 92 +2 93 + 2 94 + 1 92 + 1
SDNN (ms) 2.92 + 0.46 3.00 = 0.50 2.74 + 0.63 2.83 + 0.69 2.65 + 0.44 2.73 + 0.61 213+ 0.43
rMSSD (ms) 2.85 + 0.56 2.54 + 0.57 2.55 + 0.81 2.58 £ 0.73 2.45 + 0.56 2.53 + 0.56 2.34 + 0.62
HRmax (beats/min) 714 + 8 709 + 9 702 £ 9 709 + 8 704 + 7 709 + 8 710 10

HR min (beats/min) 602 + 15 591 + 14 605 + 19 601 + 25 608 + 12 606 + 24 603 + 16
Mean HR (beats/min) 662 + 8 644 + 7 646 + 9 652 + 17 648 + 15 645 + 7 653 + 8
Lf/Hf ratio 0.232 + 0.021 0.707 + 0.049* 0.224 + 0.030* 0.294 + 0.019* 0.317 + 0.018* 0.263 + 0.033* 0.283 + 0.036"
Hfnu 0.812 + 0.014 0.585 + 0.017* 0.821 = 0.021% 0.774 + 0.012* 0.760 + 0.012* 0.798 + 0.020" 0.783 = 0.023*
Lfnu 0.188 + 0.014 0.415 + 0.017* 0.179 = 0.021% 0.226 + 0.012* 0.240 + 0.012* 0.202 + 0.020* 0.218 + 0.023*

SDNN, standard deviation of all RR intervals; rMSSD, root mean square of successive difference of RR; HR, heart rate; Hfnu, normalized

high-frequency power; Lfnu, normalized low-frequency power.
*P < 0.05 vs. control, #*P < 0.05 vs. FE.
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interventions were not different from the control group
throughout the experiment (Table 3).

Similar results were found in FE group of thalassemic
mice. Increased Lf/Hf ratio and Lfnu, and decreased
Hfnu were observed, suggesting that iron-overload condi-
tions are associated with progressive deterioration of the
already impaired cardiac autonomic function, compared
with the control group (Table 4). Treatment with verapa-
mil, nifedipine, efonidipine, DMT1 blocker and iron che-
lator decreased Lf/Hf ratio, Lfnu and increase Hfnu,
which were back to the level observed in the control
group (Table 4). The heart rate, RR, SDNN and rMSSD
in thalassemic mice after pharmacological interventions
were not significantly different from the control group
throughout the experiment (Table 4).

Effect of pharmacological interventions on LV function

Wild-type mice in the FE group showed significantly
decreased ESP, P,,.x, maximum dP/d¢, SV, CO and SW,
compared with the control group (Table 5). Treatment

Calcium channel blocker and cardiac iron

with verapamil, nifedipine, efonidipine, DMT1 blocker
and iron chelator showed significantly increased ESP,
Poax, SV, CO and SW, which were back to the level in
the control group (Table 5). The heart rate, EDP, P,
and minimum dP/d¢ in WT mice after pharmacological
interventions were not significantly different from the
control group throughout the experiment (Table 5).
Similar results were found in the FE group of thalasse-
mic mice, in which significantly decreased ESP, Py,
maximum dP/dz, SV, CO and SW were found, compared
with the control group (Table 6). Treatment with verapa-
mil, nifedipine, efonidipine, DMT1 blocker and iron che-
lator showed significantly increased ESP, P, SV, CO
and SW, which were back to the level in the control
group (Table 6). Moreover, in thalassemic mice with iron
overload, treatment with efonidipine significantly
increased the maximum dP/d¢ compared with the FE
group (Table 6). The heart rate, EDP, P;, and mini-
mum dP/ds in thalassemic mice after pharmacological
interventions were not significantly different from the
control group throughout the experiment (Table 6). The

Table 4 Effects of pharmacological interventions on heart rate variability in thalassemic mice

Parameters Control FE FE/DFO FE/Verapamil FE/Nifedipine FE/Efonidipine  FE/Ebselen
RRimax 103 + 3 110 + 3 105 + 5 110 + 7 103 + 6 106 + 6 108 + 7
RRmmin 84 £ 1 87 + 1 86 + 2 87 £ 1 85 + 1 86 + 1 87 + 1
Mean RR 91 +1 94 + 2 94 + 2 94 + 1 95 + 2 93 + 1 93 + 1
SDNN (ms) 3.48 + 0.51 3.53 + 0.51 3.44 +0.77 3.55 + 0.56 3.03 + 0.70 313+ 0.77 3.11 + 0.51
rMSSD (ms) 3.37 £0.72 3.03 + 0.85 3.89 + 1.27 3.64 + 0.84 3.68 + 0.97 3.59 + 1.09 3.36 £ 0.79
HRmax (beats/min) 693 + 7 677 + 13 689 + 8 688 + 7 693 + 6 696 + 8 686 + 9
HRmin (beats/min) 580 + 18 570 + 7 576 + 27 562 + 19 571 + 37 580 + 15 593 + 15
Mean HR (beats/min) 645 + 11 615+ 5 626 + 12 646 + 8 638 + 7 641 + 7 647 + 7
Lf/Hf ratio 0.366 + 0.027 0.673 + 0.078* 0.324 + 0.068" 0.316 = 0.037% 0.355 + 0.059" 0.346 = 0.044* 0.334 + 0.055*
Hfnu 0.734 + 0.015 0.605 + 0.027* 0.766 + 0.035* 0.763 + 0.021% 0.749 + 0.028* 0.751 + 0.024* 0.759 + 0.031*
Lfnu 0.266 + 0.015 0.395 + 0.027* 0.234 + 0.035% 0.237 + 0.021* 0.251 + 0.028" 0.249 + 0.024% 0.241 = 0.031*

SDNN, standard deviation of all RR intervals; rMSSD, root mean square of successive difference of RR; HR, heart rate; Hfnu, normalized high-fre-
quency power; Lfnu, normalized low-frequency power.

*P < 0.05 vs. control, *P < 0.05 vs. FE.

Table 5 Effects of pharmacological interventions on left ventricular function in wild-type mice

Hemodynamic parameters Control FE FE/DFO FE/Verapamil ~ FE/Nifedipine  FE/Efonidipine FE/Ebselen
HR (beats/min) 328 + 21 327 + 26 321 + 15 334 + 16 335 + 12 329 + 16 332 +24
ESP (mmHg) 112+ 5 82 + 3* 118 + 9* 111 + 8% 121 + 10* 114 + 6* 116 + 6%
EDP (mmHg) 47 + 4 41 +3 48 + 3 45 + 3 38=+3 42 + 4 41 + 4
Prax (MmMHg) 18+5 90 =+ 4* 123 + 8% 117 + 8% 130 + 6% 17 + 6% 121 + 5%
Prin (MmMHg) 45 + 4 38=+3 44 + 4 41 +3 35+3 40 + 4 384
dP/dtmax (MMHg/s) 7957 + 2160 5282 + 1893* 8112 + 2156" 7154 + 1433 6217 + 2197 6996 = 2196 6701 + 2386
dP/dtmin (mmHg/s) —4740 + 176 —4972 + 448 5484 + 736  -5908 + 824  —6312 + 688  -5944 + 362 5142 + 906
Stroke volume (ul) 16 + 1 10 + 1* 19 + 3* 18 + 1* 17 + 1% 19 + 2% 21 + 3%
Cardiac output (uL/min) 5.07 + 0.38 3.15 + 0.20* 5.42 + 0.96" 6.22 + 039" 543 +027" 564 +056" 597+ 0.69"
Stroke work (mmHg/uL) 1721 = 211 683 = 82* 1480 + 145* 1287 + 93* 1671 + 334* 1314 = 153* 1699 + 287*

HR, heart rate; ESP, EDP, end-systolic and end-diastolic pressure; Prax, Pmin, Maximum and minimum pressure; dP/dtmayx, dP/dtmin, maximum

and minimum dP/dt.
*P < 0.05 vs. control, *P < 0.05 vs. FE.
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Table 6 Effects of pharmacological interventions on left ventricular function in thalassemic mice
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Hemodynamic parameters Control FE FE/DFO FE/Verapamil ~ FE/Nifedipine  FE/Efonidipine FE/Ebselen
HR (beats/min) 334 + 13 322 + 21 336 + 13 320 = 20 318 + 18 323 = 11 335 + 26
ESP (mmHg) 122+ 6 82 + 6* 118 + 6% 111 + 2% 116 + 6% 115 + 3% 12 + 6%
EDP (mmHg) 42 +1 39 1 36 + 1 38+ 1 40 + 2 41 £ 1 39=+2
Prax (MmHg) 125 + 6 88 + 6* 122 + 6% 115 + 1% 119 + 6% 120 + 3% 122 + 6%
Prin (MmMHg) 38«1 36+ 1 33«1 34+ 1 36 +2 37 1 35+ 1
dP/dtmax (MMHg/s) 8335 + 2229 5957 x 1156* 6158 + 2267* 5105 = 1840* 6516 + 1080* 7753 = 1999% 5456 + 1523*
dP/dtmin (mmHg/s) —-6552 + 822 -6878 + 1362 7536 + 394  -6938 + 464  -6176 + 414  -5976 + 506  —7594 + 638
Stroke volume (ul) 36 +9 14 + 2% 33 + 5% 31 x 4% 32 + 5% 31+ 3% 31+ 6*
Cardiac output (uL/min) 985+ 068 3.93+035* 966+ 1.58* 7.77 + 0.62% 9.42 + 0.93* 852 + 0.64"  9.88+2.01*
Stroke work (mmHg/uL) 2432 + 363 1061 = 142* 2010 + 284* 2069 + 283 2315+ 366% 2098 + 247% 2792 + 406*

HR, heart rate; ESP, EDP, end-systolic and end-diastolic pressure; Pmax, Pmin, Maximum and minimum pressure; dP/dtmay, dP/dtmin, Maximum

and minimum dP/dt.
*P < 0.05 vs. control, *P < 0.05 vs. FE.

CO in HT mice was higher than that in WT mice, indi-
cating the high-output state in HT mice, which is similar
to that found in patients with thalassemia (3).

Prussian blue iron staining in the heart and liver of
thalassemic mice

Prussian blue iron staining showed increased iron
accumulation in heart and liver tissues in HT/Fe group,
compared with the control HT group (Fig. 3B). DFO,
verapamil, nifedipine, efonidipine and ebselen decreased
the cardiac iron accumulation in HT heart under iron-
overload condition (Fig. 3). Only DFO, efonidipine and
ebselen decreased the liver iron accumulation in HT
under iron-overload condition (Fig. 3).

Effects of pharmacological interventions on cardiac
iron concentration and cardiac MDA content

At 4 months of iron administration, increased cardiac
iron was significantly higher in the FE group (WT, HT),
compared with the control group (Fig. 4A,B). DFO,
verapamil, nifedipine, efonidipine and ebselen decreased
the cardiac iron concentration in both types of mice,
compared with the FE group, and were not different
among groups of treatment (Fig. 4A.B). Similar results
were found in cardiac MDA content, in which both types
of mice in the FE group (WT, HT) had a significantly
increased cardiac MDA content, compared with the
control group (Fig. 4C,D). All of pharmacological inter-
ventions decreased the cardiac MDA concentration in
both types of mice, compared with the FE group, and were
not different among groups of treatment (Fig. 4C,D).

Effects of pharmacological interventions on liver iron
concentration and liver MDA content

In the control group, the liver iron (0.74 + 0.05 vs.
0.28 + 0.04 mg/g dry weight) and liver MDA
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(8.87 £ 1.04 vs. 546 = 0.47 um/mg protein) of HT
mice were significantly higher than WT mice (P < 0.01)
(Fig. 5A,B). At 4 months of iron administration,
increased liver iron in the FE group (WT, HT) was dem-
onstrated, compared with the control group (Fig. SA,B).
Only DFO, efonidipine and ebselen decreased the liver
iron concentration in both types of mice, compared with
the FE group (Fig. 5A,B). Similar results were found in
the liver MDA content, in which mice in the FE group
(WT, HT) had significantly increased liver MDA con-
tent, compared with the control group (Fig. 5C,D). Only
DFO, efonidipine and ebselen decreased the liver MDA
concentration in both types of mice, compared with the
FE group (Fig. 5C,D).

Effects of pharmacological interventions on plasma
non-transferrin-bound iron and plasma IVIDA level

In the control group, the levels of plasma NTBI were
not detected both in wild-type and in thalassemic mice
(Fig. 6A,B). At 4 months of iron administration, both
types of mice in the FE group (WT, HT) had signifi-
cantly increased plasma NTBI, compared with the con-
trol group (Fig. 6A,B). DFO, verapamil, nifedipine,
efonidipine and ebselen decreased plasma NTBI in both
types of mice, compared with the FE group, and was not
different among groups of treatment (Fig. 6A,B). At
4 months of iron administration, increased plasma MDA
in the FE group (WT, HT) was demonstrated compared
with the control group (Fig. 6C,D). In both types of
mice (WT, HT), only DFO, efonidipine and ebselen
decreased the plasma MDA, compared with the FE
group (Fig. 6C,D).

Effect of pharmacological intervention on mortality
rate

Iron-overloaded wild-type mice had an increased mortal-
ity rate, compared with the control group (Fig. 6E).
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Figure 3 Prussian blue iron staining in the heart (x200) and liver (x100) of thalassemic mice. Control (A), Fe group (B), Fe/DFO (C), Fe/Verapamil
(D), Fe/Nifedipine (E), Fe/Efonidipine (F), Fe/Ebselen (G). Arrow indicated iron staining in blue color.

Figure 4 Effects of pharmacological interventions on cardiac iron concentration and cardiac malondialdehyde (MDA) content in wild-type (WT)
and thalassemic mice (HT) (n = 8-10/group). *P < 0.05 vs. control, *P < 0.05 vs. FE.
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Figure 5 Effects of pharmacological interventions on liver iron concentration and liver malondialdehyde (MDA) content in wild-type (WT) and
thalassemic mice (HT) (n = 8-10/group). *P < 0.05 vs. control, *P < 0.05 vs. FE.

Figure 6 Effects of pharmacological interventions on plasma non-transferrin-bound iron (NTBI) level (A, B), plasma malondialdehyde (MDA)
content (C, D) and mortality rate (E, F) in wild-type (WT) and thalassemic mice (HT) (n = 8-10/group). *P < 0.05 vs. control, #P < 0.05 vs. FE.

Treatment with iron chelator (DFO), TTCC blocker
(efonidipine) and DMT1 blocker (ebselen) decreased the
mortality rate. However, the LTCC blockers verapamil
and nifedipine did not decrease the mortality rate
(Fig. 6E).
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In iron-overloaded thalassemic mice, an increased
mortality rate was found in the iron-loaded group, com-
pared with the control group (Fig. 6F). Treatment with
iron chelator (DFO), TTCC blocker (efonidipine) and
DMTI1 blocker (ebselen) decreased the mortality rate.
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However, the LTCC blocker verapamil and nifedipine
did not decrease the mortality rate (Fig. 6F). TTCC
blocker (efonidipine) could reduce the mortality rate
from 43% to 8% in WT and 53% to 9% in HT, whereas
LTCC blocker did not provide this benefit (Fig. 6E,F).

Microarray study on LTCC and TTCC gene expressions
in thalassemic heart

Microarray analysis showed that in the heart of
iron-overload HT mice (HT/Fe group), calcium channel,
voltage-dependent, T-type, alpha 1G subunit (Cacnalg)
(NM_009783.1) was up-regulated (1.560263 fold),
whereas calcium channel, voltage-dependent, L-type,
alpha 1C subunit (Cacnalc) (NM_009781.1) was not
altered, compared with the heart of HT mice without
iron overload.

Real-time RT-PCR study on TTCC and LTCC mRNA
expression

In iron-overloaded HT mice, an increased TTCC mRNA
expression was found in the iron-loaded group, com-
pared with the control group (Fig. 7A). Treatment with
DFO, verapamil, nifedipine, efonidipine and ebselen did
not alter TTCC mRNA expression. In contrast, LTCC
mRNA expression was not changed in all groups of HT
mice (Fig. 7B).

Discussion

The major findings in this study are that (i) iron-over-
load conditions are associated with increased Lf/Hf
ratio, cardiac and liver iron, cardiac and liver MDA,
plasma NTBI and plasma MDA, mortality rate and
impaired LV function; (ii) treatment with LTCC, TTCC,
DMT]1 blocker and iron chelator (DFO) decreased the
Lf/Hf ratio, cardiac iron and MDA, plasma NTBI and
improved cardiac dysfunction in both types of mice
(WT, HT), compared with the FE group; (iii) only
TTCC and DMTI blockers and iron chelator (DFO)
decreased liver iron, liver MDA, plasma MDA and mor-
tality rate in both types of mice (WT, HT), compared
with the FE group, whereas LTCC blocker could not;
(iv) in HT mice, only the TTCC blocker efonidipine
increased EDP, P;, and maximum dP/d¢; (v) in HT/Fe
group, TTCC was up-regulated compared with HT, and
all of treatment did not changed TTCC expression.

In this study, the development of LV systolic dysfunc-
tion was observed in iron-overloaded mice as indicated
by decreased ESP, P..x, SV, CO and SW. LTCC block-
ers, verapamil and nifedipine, prevented this harmful
effect of cardiac iron overload in both types of mice
(WT, HT), which is consistent with a previous study in

© 2012 John Wiley & Sons A/S
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Figure 7 Real-time RT-PCR quantitation of TTCC and LTCC mRNA
expression in the heart of thalassemic mice (HT). *P < 0.05 vs. con-
trol. LTCC, L-type calcium channels.

which the LTCC blockers, verapamil and amlodipine,
improved cardiac dysfunction in iron-overloaded mice
(10). Moreover, our results demonstrated that TTCC
and DMT1 blockers as well as the iron chelator (DFO)
could also attenuate cardiac dysfunction caused by iron
overload in both WT and HT mice. In cultured thalasse-
mic cardiomyocytes, a previous study demonstrated that
treatment with the TTCC blocker, efonidipine, signifi-
cantly reduced the cardiac iron uptake (11). In this
study, our ‘in vivo’ iron-overload model demonstrated
similar benefits of the TTCC blocker, emphasizing that
TTCC could play an important role on cardiac iron
uptake under iron-overload conditions. As the improve-
ment of LV function was also observed in conjunction
with the improved HRV following these pharmacological
interventions, these findings suggested that LTCC, TTCC
and DMTI could play an important role in cardiac iron
uptake.

It has been shown that chronic iron overload can lead
to increased plasma NTBI, which can catalyze the pro-
duction of highly toxic free hydroxyl radicals via Haber—
Weiss and Fenton reactions (40, 41). The excess of free
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radicals can damage cellular lipids, proteins, and DNA
(40, 41), causing increased lipid peroxidation and leading
to the increased cytotoxic aldehyde products such as
4-hydroxynonenal (HNE) and MDA (40, 41). The alde-
hyde products can form covalent links to proteins lead-
ing to the loss of cellular protein function (42). In this
study, the increased cardiac iron concentrations in both
types of mice under iron-overload conditions were
associated with the increased cardiac MDA content, indi-
cating the cardiac cellular damage caused by iron overload.
This similar benefit of all pharmacological interventions in
this study could be responsible for improved LV function
and HRYV found in these iron-overloaded mice.

Although all pharmacological interventions in this
study could similarly reduce the cardiac iron concentra-
tion in both types of mice, the effects on MDA reduction
in the plasma and liver were not the same. The TTCC
blocker and DMT]1 blocker as well as the DFO could
reduce the liver iron concentration, liver MDA and
plasma MDA to a greater extent than the LTCC block-
ers could in both WT and HT mice. In this study, LTCC
blockers did not decrease liver iron, liver MDA and
plasma MDA, suggesting that LTCC did not play an
important role in iron uptake in the liver. These findings
are consistent with previous studies which showed that
efonidipine and ebselen could have an antioxidant effect
(43, 44), whereas the LTCC blockers verapamil and am-
lodipine did not decrease liver iron in iron-overloaded
mice as hepatocytes did not express LTCC (10). Our
findings indicated that in addition to a beneficial cardiac
effect, a TTCC blocker could also provide systemic pro-
tective effects, at least for plasma MDA and liver iron
and MDA reduction, whereas an LTCC blocker did not.
Considering all of these protective benefits, this could be
the reason for the higher mortality rate observed in the
LTCC blocker groups.

T-type Ca®" channels are abundantly expressed in the
embryonic cardiomyocytes, but their expression is sup-
pressed in the adult cells (45). In addition, T-type Ca®"
channel current has been shown to reappear in ventricu-
lar myocytes under some pathological conditions such as
ventricular hypertrophy (46, 47) and postmyocardial
infarction (48). Our findings indicated that iron-overload
conditions increased TTCC mRNA expression in HT
mice. Although all of pharmacological treatment did not
effect on gene expression, it might inhibit TTCC
function, thus leading to improved LV function. These
findings suggested that under pathologic conditions such
as iron overload, TTCC expression was reexpressed in
adult hearts and could play an important role in iron-
overload cardiomyopathy.

In conclusion, as the TTCC blocker, efonidipine, could
provide broader beneficial effects including the heart,
liver, and plasma, and antioxidant in iron-overload
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condition in both WT and HT mice, it is possible that
efonidipine could be another drug of choice, in addition
to an iron chelator and DMT1 blocker, for the treatment
of the iron-overload condition. It is important to note
here that although efonidipine is not a specific TTCC
blocker as it could also block LTCC, its efficacy in
blocking TTCC is much greater than that of LTCC (11,
49). Our findings conclude that efonidipine provided bet-
ter protective effects than the LTCC blocker, indicating
that the TTCC blocker effect of efonidipine could play
an important role in the present study. Future clinical
studies are also needed to validate the clinical signifi-
cance for its use in iron-overload patients.

Study limitation

Although our findings indicated that TTCC expression
was up-regulated, while LTCC was not altered in iron-
overload hearts, the function of TTCC was not directly
explored. Future studies are needed to investigate the
TTCC current and the role of pharmacological interven-
tions in iron-overload cardiomyocytes. Moreover, genetic
manipulation of TTCC is needed to directly study its
impact on iron uptake under iron-overload condition.
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ARTICLE INFO ABSTRACT

Background: Dipeptidyl peptidase-4 (DPP-4) inhibitor is a new anti-diabetic drug for type-2 diabetes mellitus
patients. Despite its benefits on glycemic control, the effects of DPP-4 inhibitor on the heart during ischemia-
reperfusion (I/R) periods are not known. We investigated the effect of DPP-4 inhibitor on cardiac electro-
physiology and infarct size in a clinically relevant I/R model in swine and its underlying cardioprotective
mechanism.

Methods: Fourteen pigs were randomized to receive either DPP-4 inhibitor (vildagliptin) 50 mg or normal
saline intravenously prior to a 90-min left anterior descending artery occlusion, followed by a 120-min reper-
fusion period. The hemodynamic, cardiac electrophysiological and arrhythmic parameters, and the infarct
size were determined before and during I/R. Rat cardiac mitochondria were used to study the protective
effects of DPP-4 inhibitor on cardiac mitochondrial dysfunction caused by severe oxidative stress induced
by H,0, to mimic the I/R condition.

Results: Compared to the saline group, DPP-4 inhibitor attenuated the shortening of the effective refractory
period (ERP), decreased the number of PVCs, increased the ventricular fibrillation threshold (VFT) during
the ischemic period, and also decreased the infarct size. In cardiac mitochondria, DPP-4 inhibitor decreased
the reactive oxygen species (ROS) production and prevented cardiac mitochondrial depolarization caused
by severe oxidative stress.

Conclusions: During I/R, DPP-4 inhibitor stabilized the cardiac electrophysiology by preventing the ERP short-
ening, decreasing the number of PVCs, increasing the VFT, and decreasing the infarct size. This cardioprotec-
tive effect could be due to its prevention of cardiac mitochondrial dysfunction caused by severe oxidative
stress during I/R.
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1. Introduction

Diabetes mellitus has been an important health problem in most
nations with the number of patients dramatically soaring and expected
to reach 366 million by the year 2030 [1]. Patients with type-2 diabetes
mellitus (T2DM) have been shown to have a 2- to 4-fold higher risk
in coronary heart disease and stroke mortality [2-6], and have a worse
prognosis after cardiovascular events [7-9]. Although several new anti-
diabetic drugs have been discovered in the past decades, the therapies
have been limited by their adverse effects such as weight gain, hypogly-
cemia, fluid retention [10], and an unexpected cardiovascular risk
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[11-13]. Therefore, new anti-diabetic drugs that could control hypergly-
cemia and reduce the risk of cardiovascular events are of potential ben-
efits to T2DM patients.

In the past few years, a potent dipeptidyl peptidase-4 (DPP-4)
inhibitor, which is a novel anti-diabetic drug, has been shown to be
effective in treating T2DM patients. Its action is to inhibit the proteo-
lytic enzyme DPP-4 activity, resulting in postponing the degradation
of glucagon-like peptide-1 (GLP-1), thus improving glycemic control
[14,15]. Although previous studies demonstrated the cardioprotective
actions of GLP-1 in an ischemic heart model of ex vivo isolated rodent
Langendorff heart [16,17], in vivo rats, rabbits, canine, and swine
[18-21], as well as in acute myocardial infarction patients [22],
reports on the cardioprotective effect of DPP-4 inhibitor are scant
and controversial [23-26]. Furthermore, the effect of DPP-4 inhibitor
on cardiac electrophysiology during ischemia-reperfusion (I/R) has
never been investigated.
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The purpose of this study was to investigate the effect of vilda-
gliptin, a DPP-4 inhibitor, on cardiac electrophysiology and infarct
size in a clinically relevant I/R model in swine. We hypothesized
that vildagliptin can attenuate the occurrence of cardiac arrhyth-
mias, increase the ventricular fibrillation threshold (VFT), improve
defibrillation efficacy by lowering the defibrillation threshold
(DFT), and reduce the infarct size during I/R in the swine heart. To
study the cardioprotective mechanism, we determined the effect
of vildagliptin in isolated rat's cardiac mitochondria. We tested the
hypothesis that the cardioprotective mechanism of vildagliptin is
via its prevention of cardiac mitochondrial dysfunction caused by
severe oxidative stress during I/R.

2. Materials and methods
2.1. Animal preparation

All experiments were approved by the Institutional Animal Care and Use Commit-
tees of the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. Pigs were
anesthetized by intramuscular injection of a combination of atropine (0.04 mg/kg),
zoletil® (4.4 mg/kg) and xylazine (2.2 mg/kg). After endotracheal intubation, anesthe-
sia was maintained by 1.5-3.0% isoflurane delivered in 100% oxygen. Surface electro-
cardiogram (lead II), femoral arterial blood pressure (BP), heart rates (HR), core
body temperature as well as blood gases and electrolytes were continuously monitored
to maintain a normal physiological condition. Platinum coated titanium coil electrodes
(34- and 68-mm) were advanced into the right ventricular apex (RV) and junction
between right atrium and superior vena cava, respectively, to deliver electrical stimu-
lus during VFT and DFT determinations [27]. After a median sternotomy, two pacing
electrodes were attached to the epicardium at the right ventricular outflow tract
(RVOT) and left ventricular apex (LV) to evaluate the effective refractory period
(ERP) and diastolic pacing threshold (DPT) at each site. The electrode at the tip of
the endocardial RV apex catheter was also used to determine the ERP and DPT at this
site.

2.2. Experimental protocols

Fourteen domestic pigs (25 to 30 kg) were randomly divided into 2 groups (n=7/
group). The first group was assigned to receive 30 ml of normal saline solution and the
second group received vildagliptin (prepared by dissolving 50-mg vildagliptin in 30-ml
saline solution). Both normal saline solution and vildagliptin (2 mg/Kg) were adminis-
tered intravenously at a rate of 1.0 ml/min prior to the left anterior descending artery
(LAD) occlusion. Hemodynamic and cardiac electrophysiological parameters including
HR, systolic (SBP) and diastolic blood pressure (DBP), DPT, ERP, corrected QT interval
(QTc), VFT and DFT were determined at the beginning of the study as a baseline. Myo-
cardial ischemia was induced by LAD occlusion at 5 cm above the distal end [28]. Dur-
ing the first 60 min of occlusion, if spontaneous ventricular fibrillation (VF) occurred,
the defibrillation shock was delivered to determine the DFT. On the other hand, if VF
did not occur, it was electrically induced with 50-Hz alternating current. Both VFT and
DFT were determined using a three-reversal up/down protocol [28]. After 90 min of occlu-
sion, LAD ligation was released to promote reperfusion for 120 min. All parameters were
determined again at the end of the reperfusion. Ventricular arrhythmia, e.g. ventricular
premature contractions (PVCs), ventricular tachycardia (VT) and spontaneous VF, was
recorded throughout the experiment.

2.3. Diastolic pacing threshold (DPT) determination

A train of 10 S1 stimuli was delivered via the electrode at the tip of RV catheter.
Current strength was begun with 0.1 mA and was increased in 0.1-mA steps until all
stimuli in a train elicited a ventricular response (capture) [28]. The minimum current
strength which captures ventricular response was defined as the DPT.

2.4. Effective refractory period (ERP) determination

An S2 stimulus (2x DPT strength) was introduced in late diastole of the last
S1 beat of a train of 10 S1 to elicit a capture. S1-S2 coupling interval was decreased
in 10-ms steps until S2 failed to elicit a capture. ERP was defined as the longest S1-
S2 interval which S2 stimulus failed to capture [28].

2.5. Ventricular fibrillation threshold (VFT) determination

The interval between the last S1 and the mid T-wave was determined for 3 times.
An average was used as a coupling interval between the last S1 and S2 shock. VFT
was performed by delivering S2 shocks starting at 100 V. If this shock induced VF,
the decrement of 10-V step was used for each successive shock until VF was no longer
induced. If the 100-V S2 shock did not induce VF, the increment of 10-V step was used
for each successive shock until VF was induced. VFT was defined as the lowest shock
strength that successfully induced VF [28].

2.6. Defibrillation threshold (DFT) determination

Defibrillation shock was delivered after 10 s of VF to determine the DFT using a
three-reversal up/down protocol [28]. However, if the tested shock failed to defibril-
late, a rescue shock (600-700 V) was delivered to successfully defibrillate the heart.
The DFT was defined as the lowest shock strength required for successful defibrillation.
A 4-minute interval was allowed between each VF induction episode to set the heart
back to physiologic condition [28].

2.7. Infarct size determination

The infarct size was assessed with 0.5% Evans Blue and 1.0% Triphenyltetrazolium
Chloride (TTC) staining as previously described [28]. In brief, at the end of the study,
the LAD was re-occluded at the exact same location as during ischemia. Evans Blue
was infused into the left and right coronary arteries to evaluate the area at risk
(AAR). After being frozen overnight, the heart was cut into 5-mm thick slices perpen-
dicular to the LAD from apex to the occlusion site. Each slice was incubated in TTC for
15 min to discriminate the infarct tissues from the viable myocardium. After overnight
fixation with 4% paraformaldehyde, each slice was photographed with a digital camera.
An area measurement was performed using Image Tool software version 3.0.

2.8. Histological analysis

Both infarct and normal myocardium were fixed with 4% neural buffered formal-
dehyde for 24 h at room temperature, followed by embedding in paraffin wax, and
slicing into 5-um slices for subsequent Hematoxylin-Eosin staining [29,30]. The infarct
tissues were evaluated for microscopic changes using the Lodge-Patch classification
[31-33].

2.9. Isolated cardiac mitochondria study protocol

Male Wistar rats (300-350 g) were used for cardiac mitochondrial isolation as de-
scribed previously [34]. H,0, (2 mM, incubated for 5 min) was used to induce oxidative
stress in cardiac mitochondria to mimic I/R condition [34]. Isolated cardiac mitochon-
dria were divided into 6 groups (n=5/group): 1) Control, 2) Mitochondria treated
with H0,, 3) Mitochondria treated with vildagliptin for 30 min, 4) Mitochondria
pretreated with vildagliptin for 5 min followed by H,0, treatment, 5) Mitochondria
pretreated with vildagliptin for 15 min followed by H,0, treatment, 6) Mitochondria
pretreated with vildagliptin for 30 min followed by H,0, treatment. Vildagliptin at
doses of 0.33 mM, and 3.30 mM were used in this study.

The measurement of cardiac mitochondrial reactive oxygen species (ROS) produc-
tion and mitochondrial membrane potential changes (AW)y) was determined in all
groups as previously described [34]. In short, dichlorohydro-fluorescein diacetate dye
was used to determine the level of ROS production in cardiac mitochondria. The ROS
level was expressed as arbitrary units of fluorescence intensity determined at Nexcitation
485 nm and Nemission 530 nm [34]. JC-1 was used to determine the change of cardiac
mitochondrial membrane potential at Nexcitation 485 Nm and Nemission 530 nm for
green and Nemission 590 nm for red [34]. Cardiac mitochondrial depolarization was
indicated by a decrease in the red/green fluorescence intensity ratio.

2.10. Statistical analysis

Data were expressed as mean4 SEM. Statistical comparison of cardiac electro-
physiological, hemodynamic, and arrhythmic parameters as well as cardiac mitochon-
dria results was performed with the Student's ¢ test. Chi-square test was performed to
compare VT/VF incidence, and comparison of the infarct size was analyzed using
Mann-Whitney's U test. All statistical analysis was performed with SPSS version
10.0. A p-value less than 0.05 was considered significant.

3. Results

The hemodynamic parameters including HR, SBP, DBP and cardiac
electrophysiological parameters including QT¢, QRS complex, and DPT
were not significantly different between the saline-treated group and
the vildagliptin-treated group during baseline, ischemia, and reperfu-
sion periods (Table 1). Pretreatment with vildagliptin significantly
increased both VFT energy and VFT voltage at ischemic period com-
pared with the saline-treated group (Fig. 1). However, there was no
difference between the DFT of the vildagliptin-treated group and
the saline-treated group at any time period (Fig. 2). For the ERP, no
differences were found among ERPs recorded at three sites at baseline
and reperfusion periods in both saline and vildagliptin treated groups
(Fig. 3A and 3C). However, during ischemia the ERP at the LV epicar-
dium (i.e. ischemic site) was significantly shortened, compared to
the other two sites in the saline-treated group (Fig. 3B), thus creating
the dispersion of the ERP in the heart during this period. In the
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Table 1
Basic electrophysiological and hemodynamic parameters.

Parameters Baseline Ischemia 60 min Reperfusion
NSS Vil NSS Vil NSS Vil
HR (beat/min) 884452 98.0+5.7 913436 95.344.6 102.7£8.5 107.6+4.2
SBP (mm Hg) 101.1+74 102.9+5.1 87.1+6.1 84.6 +6.1 86.1+34 85.6 4.7
DBP (mm Hg) 63.3+54 64.04+3.9 55.64+4.1 52.0+4.6 544423 539429
QTc (ms) 466.7+7.1 466.1+14.0 4512+17.2 459.2 +18.5 441.7+15.8 43524203
QRS (ms) 64.4+2.0 58.0+5.0 59.6+2.0 57.6+45 60.8 +£3.2 58.0+2.2
DPT RV (mA) 0.20+0.02 0.21+0.01 0.294+0.03 0.314+0.05 0.33+£0.05 0.36 +0.04
DPT RVOT (mA) 0.1940.04 0.17 4 0.02 0.14+0.02 0.16 +0.03 0.40+40.13 0.2340.07
DPT LV (mA) 0.114+0.01 0.1440.02 0.2240.08 0.18 +0.04 0.42+0.20 0.214+0.04

NSS = Normal saline solution; Vil = Vildagliptin; HR = Heart rate; SBP = Systolic blood pressure; DBP = Diastolic blood pressure; QTc = Corrected QT interval; QRS = QRS
complex; DPT = Diastolic pacing threshold; RV = Right ventricle; RVOT = Right ventricular outflow tract; LV = Left ventricle.

vildagliptin-treated group, the ERP from all 3 sites were not different
during the ischemic period, indicating less dispersion of the ERP
during ischemia in this group.

Regarding the occurrence of arrhythmias, the number of PVCs
was markedly decreased in pigs treated with vildagliptin during
90 min of ischemia, compared to the saline-treated group (Fig. 4A).
The number of PVCs during reperfusion was also smaller in the vilda-
gliptin group, but it did not reach statistical significance (Fig. 4A). The
VT/VF incidence (Fig. 4B) and the number of VT/VF episodes (Fig. 4C)
were also smaller in the vildagliptin-treated group, but were not
statistically significant. The time to the first VT/VF onset was not
different between the vildagliptin and the saline treated groups
(Fig. 4D). The area at risk (AAR) was not different between the saline
(36.8 +2.7%) and the vildagliptin treated groups (33.4 + 3.2%). How-
ever, the infarct size in the vildagliptin-treated group was significantly
smaller than that in the saline-treated group (Fig. 5A), accounting for a

Fig. 1. Effect of vildagliptin on the VFT. During the ischemic period, vildagliptin signif-
icantly increased both VFT energy (panel A) and voltage (panel B) compared to normal
saline group. * p<0.05 vs. NSS at ischemic period; T p<0.05 vs. vildagliptin at baseline.

17% reduction in the infarct size. To determine stages of myocardial
damage caused by I/R injury, myocardial tissues were obtained and
evaluated based on microscopic changes. In the infarct area, thinning
and waviness of myocardial fibers with distinct nuclei were observed
(Fig. 5B).

In cardiac mitochondria, vildagliptin alone at doses 0.1 mg/ml
(0.33 mM) and 1.0 mg/ml (3.30 mM) did not affect the mitochondrial
ROS production and the mitochondrial membrane potential change
(Fig. 6). H,0, caused a markedly increased ROS level and decreased
the red/green fluorescent intensity ratio (i.e. an indication of mitochon-
drial depolarization). Vildagliptin at 0.1 mg/ml neither attenuated
cardiac mitochondrial ROS production nor prevented mitochondrial
depolarization caused by H,0, (Fig. 6A and 6B). However, treatment
with 1.0 mg/ml of vildagliptin for 5, 15, and 30 min ameliorated cardiac
mitochondrial dysfunction caused by H,0,, as indicated by lower ROS
production (Fig. 6C) and less mitochondrial membrane potential changes
(Fig. 6D), compared to those in H,0,-treated cardiac mitochondria.

Fig. 2. Effect of vildagliptin on the DFT. Both vildagliptin and normal saline did not
change the DFT energy (panel A) and DFT voltage (panel B).
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Fig. 3. Effect of vildagliptin on the ERP. ERP at baseline was not different among all 3 re-
cording sites in both normal saline and vildagliptin groups (panel A). During ischemia,
LV ERP was decreased compared to the other two recorded sites in the normal saline
group (panel B), whereas the LV ERP was not different from the other two recorded
sites in the vildagliptin treated group (panel B), indicating that vildagliptin prevented
the ERP dispersion among all recording sites at ischemic period. At reperfusion,
the ERPs were not different among all three recorded sites in both normal saline and
vildagliptin treated groups (panel C). * p<0.05 vs. RV; 7 p<0.05 vs. RVOT. RV = Right
ventricle; RVOT = Right ventricular outflow tract; LV = Left ventricle.

4. Discussion

In this study, we assessed the cardioprotective effects of vildaglip-
tin in a clinically relevant swine I/R model. The major findings of this
study were as follows. Vildagliptin demonstrated its cardioprotective
effects by 1) attenuating ERP shortening caused by myocardial ische-
mia, thus decreasing the ERP dispersion in the heart during ischemia,
2) increasing the VFT, 3) reducing the number of PVCs, 4) decreasing

the infarct size, and 5) attenuating cardiac mitochondrial dysfunction
due to oxidative stress caused by H,0,.

In the present study, we demonstrated for the first time the
cardiac electrophysiological effects of DPP-4 inhibitor, vildagliptin,
in the I/R heart. Our study demonstrated that vildagliptin could atten-
uate the ERP shortening in the ischemic myocardium, thus decreasing
the degree of the dispersion of refractoriness caused by cardiac ische-
mia. Since dispersion of refractoriness plays an important role in
facilitating arrhythmias [35], prevention of the ERP dispersion in the
heart during ischemia could attenuate the occurrence of arrhythmia
in this study. Our study also demonstrated the decreased number of
PVCs and the reduced VFT in the vildagliptin treated pigs, suggesting
that vildagliptin could stabilize cardiac electrophysiology during
ischemia, thus attenuating myocardial vulnerability to arrhythmia
during ischemia.

In the present study, the AAR in both saline and vildagliptin trea-
ted groups was not different, indicating the similar extent of ischemic
myocardium caused by an LAD occlusion in both groups. However,
vildagliptin significantly decreased the infarct size, compared with
that in the saline-treated group. The histological appearance of the
infarct tissues represented an early myocardial infarction (stage 1)
according to Lodge-Patch classification [31,33], which was consistent
with the duration of I/R in this study. The beneficial effect on the in-
farct size reduction of vildagliptin in the swine I/R model as shown
in our study was consistent with previous reports in I/R model in
mice using DPP-4 inhibitor sitagliptin [24], and in pre-diabetic insulin
resistance rat using vildagliptin [23]. Since a reduced infarct size has
been shown to be associated with a decreased myocardial vulnerabil-
ity to arrhythmias during I/R, the reduction of infarct size and de-
creased ERP dispersion caused by vildagliptin could help attenuate
arrhythmia and reduce the VFT as found in this study. However, not
all reports on the effects of DPP-4 inhibitors on the infarct size are
consistent. In ischemic study of DPP-4 gene deleted mice and DPP-4
inhibitor treated mice, no infarct size reduction was observed in
that study [26]. Furthermore, treatment with vildagliptin or valine
pyrrolidide did not reduce the infarct size in rat I/R model [18,23].
This discrepancy in results could be due to the difference in animal
models. Nevertheless, our study is the first study to demonstrate the
infarct limiting effect of DPP-4 inhibitor in the swine I/R model. This
finding suggests that the effect of DPP-4 inhibitor on the infarct size
reduction could differ in different animal species. In the clinically
relevant swine I/R model, the augmentation of GLP-1 level by GLP-1
analog could also reduce infarct size [21]. However, Kavianipour
et al. [36] and Kristensen et al. [37] failed to show infarct size limiting
profit. This inconsistent finding could be due to different type of drug,
routes, and the timing of drug administration. In a swine study that
showed infarct limiting benefit, exendin-4 (GLP-1 analog) was given
at 10 ug subcutaneously and intravenously prior to reperfusion and
10 pg subcutaneously twice daily until day 3 of reperfusion [21].
However, in two swine studies that failed to show infarct limiting
benefit, liraglutide (GLP-1 analog) was given at 10 pg/kg/day subcuta-
neously for 3 days prior to the I/R conduction [37], and recombinant
GLP-1 was given at 3 pmol/kg/min intravenously starting at 15 min
before ischemia to the end of reperfusion [36]. All of these findings in-
dicate the importance of species, type of drug, routes, and timing of
drug administration in I/R models.

The present study further demonstrated the protective effect of
vildagliptin on cardiac mitochondria. We demonstrated for the first
time that DPP-4 inhibitor could effectively attenuate cardiac mito-
chondrial dysfunction caused by severe oxidative stress as found in
the heart during I/R, suggesting that this mitochondrial protection
could play a crucial role in the cardioprotective effect of vildagliptin.
During I/R, it has been shown that the level of ROS could be marked-
ly increased [38], resulting in the deterioration of the electron trans-
port chain [39] and activation of the apoptotic pathway [40], and
eventually myocardial death. In addition, the elevation of ROS level
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Fig. 4. Vildagliptin and the occurrence of cardiac arrhythmia. PVCs were markedly decreased in the vildagliptin treated group at the ischemic period and tended to decrease at
reperfusion period, compared with normal saline group (panel A). Ventricular tachycardia (VT) and ventricular fibrillation (VF) incidence (panel B), VT/VF episode (panel C)
and time to the first VT/VF onset (panel D) were not significantly different between vildagliptin and normal saline groups. * p<0.05 vs. baseline.

Fig. 5. Effect of vildagliptin on the infarct size. Panel A: The AAR was not different
between the vildagliptin and normal saline treated groups. Vildagliptin could attenuate
the infarct size by 17%, compared with normal saline treated group. Panel B: a micro-
scopic appearance of the myocardium from the remote area (left) and infarct area
(right). Thinning and waviness of myocardial fibers with distinct nuclei were found
in the infarct area. * p<0.05 vs. NSS. AAR = Area at risk.

could cause cardiac mitochondrial membrane depolarization, a con-
dition that has been shown to be responsible for cardiac arrhythmias
[41]. In our study, administration of vildagliptin at 3.30 mM to cardi-
ac mitochondria could attenuate cardiac mitochondrial dysfunction
caused by H,0,, as indicated by the reduction of ROS production
and attenuation of mitochondrial membrane potential changes.
These effects could be a mechanism responsible for reduced myocar-
dial vulnerability to arrhythmia and decreased infarct size found in
the present study [42].

5. Conclusions

A DPP-4 inhibitor vildagliptin stabilized cardiac electrophysiology
by attenuating ERP shortening and reducing the infarct size, resulting
in decreasing myocardial vulnerability to cardiac arrhythmia during
I/R. The cardioprotective effect of vildagliptin could be due to its
ability to prevent cardiac mitochondrial dysfunction caused by severe
oxidative stress during I/R.
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Fig. 6. Effect of vildagliptin on cardiac mitochondria. H,0, caused markedly increased ROS level and decreased red/green florescent ratio. Vildagliptin at 0.1 mg/ml could not reduce
ROS level (panel A) or prevent the red/green florescent ratio reduction (panel B) caused by H,0,. However, 1.0-mg/ml vildagliptin treated for 5, 15, and 30 min could significantly
decrease ROS level (panel C) and attenuate mitochondrial depolarization (panel D) caused by H,0,. * p<0.05 vs. M; { p<0.05 vs. MH. M = Mitochondria; MV = Mitochondria +
Vildagliptin; MH = Mitochondria + H,0,; MV5H = Mitochondria + Vildagliptins min + H20-.; MV15H = Mitochondria + Vildagliptins min +H>0,; MV30H = Mitochondria +

Vildagliptinsg min + H202.
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Abstract The p38 mitogen-activated protein kinases (p38s)
are Ser/Thr kinases that are activated as a result of cellular
stresses and various pathological conditions, including myo-
cardial ischemia/reperfusion. p38 activation has been shown
to accentuate myocardial injury and impair cardiac function.
Inhibition of p38 activation and its activity has been pro-
posed to be cardioprotective by slowing the rate of myocar-
dial damage and improving cardiac function. The growing
body of evidence on the use of p38 inhibitors as therapeutic
means for responding to heart problems is controversial,
since both beneficial as well as a lack of protective effects
on the heart have been reported. In this review, the outcomes
from studies investigating the effect of p38 inhibitors on the
heart in a wide range of study models, including in vitro, ex
vivo, and in vivo models, are discussed. The correlations of
experimental models with practical clinical usefulness, as
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well as the need for future studies regarding the use of p38
inhibitors, are also addressed.

Keywords p38 Mitogen-activated protein kinase -
Myocardial ischemia/reperfusion - p38 Inhibitors - Therapy

Introduction

Ischemic heart disease is considered to be the leading cause
of death worldwide and is predicted to be the major cause of
deaths in the future [1]. Myocardial ischemia exists when
the reduction of the coronary flow is so severe that the
supply of oxygen to the myocardium is inadequate for the
oxygen demands of the tissue [2], resulting in the accumu-
lation of metabolites in the ischemic region [2]. Severe and
prolonged ischemia ultimately results in cellular necrosis.
Currently, the most efficient method of reducing mortality in
such patients experiencing ischemia is to achieve rapid
reperfusion by thrombolysis or mechanical disruption of
the occlusion. The mortality from acute myocardial infarc-
tion under these circumstances is inversely related to the
amount of myocardial salvage achieved by reperfusion [3].
However, reperfusion itself can also be harmful, since it can
damage the myocardium, a process known as “reperfusion
injury” [4]. Different intracellular signaling pathways are
considered to play a crucial role in the myocardial response
to ischemia/reperfusion injury and consequent pathological
remodeling. Many highly conserved serine/threonine
mitogen-activated protein kinases (MAPK) are activated in
response to myocardial ischemia/reperfusion [5]. In particular,
the p38 MAPK has been widely studied.

A growing body of evidence from preclinical investiga-
tions indicates that the inhibition of p38 activation could
reduce myocardial injury [6], suggesting the therapeutic
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potential of p38 inhibitors in ischemic heart disease. How-
ever, the findings of not all studies consistent, and these
inconsistencies raise the question of whether p38 inhibition
is truly cardioprotective. Only a few published reports on
clinical trials with p38 inhibitor in cardiovascular disorders
are currently available [7-10]. The aim of this article is,
therefore, to comprehensively review the findings of
relevant studies regarding the use of p38 inhibitors in
the cardiac ischemia/reperfusion model, including in
vitro, ex vivo, and in vivo models in both animal and
clinical studies. Findings both consistent and inconsis-
tent with the therapeutic potential of p38 inhibition are
discussed, and the future direction of p38 inhibitor therapy
in the cardiac ischemia/reperfusion model is addressed in the
hope of elucidating the possible usefulness of p38 inhibitors in
patients in the future.

Biological and biochemical properties of p38

The p38 MAPK is a family of serine/threonine protein
kinases that plays an important role in cellular responses to
external stress signaling and also functions in many cellular
processes, including inflammation, cell differentiation, cell
growth and death [11]. The human p38 was originally
isolated as a 38-kDa protein that is rapidly tyrosine phos-
phorylated in response to lipopolysaccharide stimulation in
human monocytes [11]. It was also identified as a target of a
pyridinyl imidazole drug that blocked the production of
tumor necrosis factor-alpha (TNFx), and was consequently
called cytokine-suppressive anti-inflammatory drug-binding
protein [11], and as a reactivating kinase for MAP kinase-
activated protein (MAPKAP) kinase-2 [12], Human p38
cDNA cloning revealed that the amino acid sequence of
human p38 is 94% identical to mouse p38 [13, 14].

The activity of p38 is controlled by the dual phosphory-
lation of the Thr'*-Gly'®!-Tyr'®* motif within the activa-
tion loop/lip [15]. The traditional view is that this dual
phosphorylation event is achieved by upstream, dual spec-
ificity MAPK kinases (MAPKKs) or MKKs. The major
activators of p38 in vivo are MKK3, MKKG®6 [16, 17], and
MKK4 [18]. This serial phosphorylation relay from MKKK
to MKK3/6 to p38, and finally to substrates is termed the
“transphosphorylation” mechanism due to the transfer of the
phosphate group from ATP to downstream signaling mole-
cules. The pharmacological inhibitor, SB203580, inhibits
p38 activity and attenuates the phosphorylation processes
downstream of p38 [19, 20]. Although it is unlikely that
SB203580 will inhibit dual phosphorylation of p38 itself,
growing evidence demonstrates that the inhibitory effect of
SB203580 and of structurally related compounds acts on
p38 phosphorylation [21]. These findings could possibly be
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explained by the finding that p38 can phosphorylate itself, a
mechanism called “autophosphorylation” [22-24].

There are four isoforms of p38 that have been identified,
including p38 «, 3, v, and 8. Sequence comparisons have
revealed that each p38 isoform has more than 69% identity
within this group, but only 40—45% to the other MAP kinase
family members [25]. Among all isoforms, p38c and {3 are
highly homologous [26] and sensitive to pyridinyl imidazole
molecules, such as SB203580 [27], but they have only 60%
homology with p38y and &, which are resistant to
SB203580 [27]. p38« is ubiquitously expressed in several
tissues and is the best characterized and perhaps the most
physiologically relevant kinase involved in inflammatory
responses [26, 28]; it is also the isoform predominantly
involved in myocardial ischemic injury [24].

p38 MAPK activation in myocardial
ischemia/reperfusion

Myocardial ischemia is a potent stimulant of p38 activation,
which is an important pro-apoptotic kinase in cardiomyo-
cytes [29]. Evidence has been accumulating from preclinical
investigations that the inhibition of p38 during prolonged
ischemia slows the rate of infarction/death and inhibits the
production of inflammatory cytokines, such as TNFa,
interleukin-1 (IL-1), and IL-8, which are known to aggra-
vate ischemic injury [6, 30]. In the clinical context, prompt
reperfusion following coronary artery occlusion remains the
most effective intervention to re-establish arterial patency
and reduce ischemic myocardial injury [29]. However,
reperfusion can re-activate p38, perhaps in response to stim-
uli such as reactive oxygen species (ROS) and osmotic
stress [29]. Although this field of research is still evolving,
compelling evidence supports a causative role of p38 in
myocardial injury and dysfunction following ischemia/
reperfusion [29, 31-33]. Many studies have elucidated the
mechanisms, such as apoptosis and inflammation, through
which p38 activation might contribute to ischemia/reperfu-
sion injury [29]. Bogoyevitch et al. were the first to demon-
strate that p38c and 3 isoforms are activated in response to
ischemia/reperfusion in the heart [34]. Later studies using
ectopic gene expression found that the o« isoform is impli-
cated in cardiomyocyte apoptosis and that this isoform alone
is sufficient to cause cell death following ischemia [24,
34-36].

Study models of p38 inhibitors on myocardial
ischemia/reperfusion

The pro-apoptotic role of p38 in cardiomyocytes during
ischemic injury has been highlighted in many studies using
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a selective p38 inhibitor [34, 37]. These studies demon-
strated that the inhibition of p38, using pharmacological
inhibitors, could reduce the infarct size [38—43] and improve
cardiac function [40, 42, 44-48] after myocardial infarction.
However, there are some inconsistent findings indicating that
treatment with p38 inhibitor neither reduced the infarct size
nor improved cardiac function and that it abolished the
beneficial effect ofischemic preconditioning [49-53]. These
studies were performed in various model systems, including
multiple in vitro, ex vivo (isolated whole heart), and in vivo
animal models.

Reports of p38 inhibitor in an in vitro model
of ischemia/reperfusion

Reports from in vitro experiments on the p38 inhibitor in the
model of ischemia/reperfusion injury, either a cardiac cell
line or isolated cardiomyocytes from many species, are
summarized in Table 1. In vitro treatment with a p38 inhib-
itor, mainly SB203580, prior to ischemia at concentrations
ranging from 1 to 15 puM was found to protect the cardiac
cells from ischemia/reperfusion injury, suggesting an unde-
sired effect of p38 activation in myocardial ischemia/reper-
fusion [36, 50, 54-63]. However, there have been some
reports of beneficial effects following p38 activation, in
which its activation could lead to the protection against
injury rather than a harmful effect. Nagarkatti et al. [50]
and Weinbrenner et al. [53] showed that the inhibition of
p38 activation before ischemic preconditioning abolished
the protective effect of preconditioning. Interestingly, in
the same published work, applications with the same inhib-
itor and at a similar concentration before and during ische-
mia showed protection of the cardiac cell from ischemic
injury [50]. These inconsistent findings could be due to the
conditions of the heart at the time of p38 inhibition. The
signal transduction cascade of ischemia can be divided into
triggers and mediators. Triggers are important during the
episode of preconditioning ischemia and reperfusion, while
mediators are important during the prolonged index ischemia
[64]. More importantly, the different signal transduction
pathways and the consequences can possibly be due to differ-
ences in p38 downstream signalings or even end-effectors,
which are specifically and differently activated according to
prolonged ischemia or ischemic preconditioning (IPC). Iden-
tification of these specific targets of p38 is a challenge, as this
information could prove helpful in understanding the com-
plexity of p38 signaling, such as cross-talk between kinase
pathways, desensitization to stimulation, and signal amplifi-
cation, and ultimately lead to the discovery of powerful
therapeutic agents with less harmful side effects.

Despite the fact that the in vitro model provides some
valuable mechanistic information, which is also crucial to a
better understanding of the mechanism of p38 activation

during ischemia/reperfusion, and in the hope that this will
allow circumstance-specific inhibition and/or the identifica-
tion of the harmful downstream pathways, it is important to
note that the major limitation of in vitro studies is that they
determine cell viability based on the release of metabolic
enzymes as outcome measures and do not provide sufficient
information on cardiac function. Therefore, studying the
role of p38 in the whole heart would provide much insight
into the function of the heart as an organ in the body.

Reports of p38 inhibitors in an ex vivo model
of ischemia/reperfusion

A summary of ex vivo studies with cardiac ischemia/reper-
fusion is shown in Table 2. Studies of the inhibitory effect of
p38 inhibitors in an ex vivo model were performed with
concentrations of the inhibitor ranging from 1 to 10 puM,
similar to most in vitro experiments. The pre-treatment of
SB203580 and other p38 inhibitors prior to the ischemic
period had a protective effect by reducing infarct size
[38-43] and improving left ventricular (LV) function [40,
42, 44-48]. However, inconsistent findings were also
reported in which inhibitor treatment in low-flow ischemia
failed to reduce the infarct size [65] or abolished the protec-
tive effect of preconditioning [49, 66], which can also be
seen in some in vitro data [50, 53]. There are many factors
that possibly explain these inconsistent findings, such as
dose of the inhibitor, timing of the treatment, study protocol
of ischemia, and the specific animal model. For example,
Gorog et al. [65] demonstrated that treatment with 1 uM of
p38 inhibitor for S min before low-flow ischemia in a mouse
model could not reduce the size of the infarct, whereas
treatment with the same type and concentration of inhibitor
in the same animal model for 10—15 min prior to the onset of
ischemia did limit infarct size [43, 67]. However, treatment
with 1 uM of p38 inhibitor for 5 min before ischemia was
able to reduce infarct size in the rabbit model [38], suggest-
ing different effects of the inhibitor in different species. The
timing of the administration of p38 inhibitor in these experi-
ments could be one of the major factors that should be
considered. The concentration of p38 inhibitor used in most
of these studies ranged from 1 to 10 uM, but the outcomes
were apparently inconsistent. Some studies using either 1 or
10 uM p38 inhibitor showed that the therapy was protective
[24, 38-41, 43, 4548, 65, 67], whereas others reported no
effect [42, 46, 49, 51]. These results suggest that timing of
p38 inhibition is crucial for its cardioprotective effects dur-
ing cardiac ischemia/reperfusion injury.

Similar to the findings in in vitro studies, inhibition of
p38 activation prior to ischemic preconditioning also abol-
ished the protective effect of preconditioning in an ex vivo
model. In one study using the isolated rat heart model, 10 uM
of p38 inhibitor given 5 min before the first precondition cycle
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prevented the cardioprotective effect of preconditioning [49].
However, treatment with a tenfold lower concentration of the
same inhibitor for 10 min before ischemia, which is known to
reduce infarct size in a similar animal model, could not abolish
the subsequent protective effect of ischemic preconditioning
[67]. These findings suggest that, in the ischemic precondi-
tioning model, the dosage of the inhibitor has more influence
on the cardioprotection effect than the timing of administra-
tion of the inhibitor. Similar to the finding in the heart of small
rodents, infusion of p38 inhibitor in the isolated rabbit heart
model also exerted a significant cardioprotective effect during
sustained ischemia [38, 46], although this same inhibitor again
blocked the cardioprotective effect of ischemic precondition-
ing [51]. Therefore, it may be concluded that p38 activation
only during sustained ischemia appears to be proapoptotic,
whereas its activation in ischemia preconditioning seemed to
be more anti-apoptosis. Again, this inconsistency could pos-
sibly be explained by p38 activation playing different roles,
namely, as a trigger or mediator, when subjected to different
stimuli.

Reports of p38 inhibitors in an in vivo model
of ischemia/reperfusion

The cardioprotective effect of p38 inhibitor that was dem-
onstrated in in vivo studies was similar to the findings from
both in vitro and ex vivo models. The in vivo study model
provides valuable functional information which is closely
related to the pathophysiology of myocardial ischemia/
reperfusion. To date, in vivo studies on the use of p38
inhibitors have been reported with different doses, modes
of treatment, duration of treatment, and animal species
(Table 3).

Many studies have demonstrated the benefit of p38 inhib-
itors in the in vivo model of sustained ischemia, either in the
small animal or large animal model, where p38 inhibitors
were found to reduce the infarct size [21, 32, 68, 69] and
improve LV function [33, 69-74]. Nevertheless, inconsis-
tent reports do exist, mostly from studies performed in the
large animal model. It is noticeable that, in large animal
models such as pigs or dogs, p38 activation does not appear
to be as clearly proapoptotic as found in rodents [32]. Kaiser
et al. reported that SB239063 reduced the infarct size in the
mouse model, but failed to protect the pig heart from ische-
mic injury [32]. The failure of the p38 inhibitor to protect
the pig heart from ischemic injury was also reported in
another study using different p38 inhibitors, such as BIX-
645 and SB203580 [75]. The potential explanation for these
inconsistent findings could be species, which can be
explained by the concept that signal transduction varies
among species. The findings in the large animal model also
showed some inconsistencies.

@ Springer

The mode of drug administration and degree of coronary
occlusion have been shown to play important roles in the
cardioprotective effects of p38 inhibitor in a large animal
model [75, 76]. Intracoronary infusion of SB203580 in low-
flow ischemia failed to reduce the infarct size and limited
the beneficial effect of IPC [75], whereas an intramyocardial
injection of SB203580 in the ischemic area in complete
coronary occlusion was able to reduce infarct size and did
not abolish the IPC effect [76]. These findings emphasize
the importance of the intensity of the ischemic stimuli
that may cause variable degrees of signal transduction
activation and responses. Nevertheless, in a dog model, the
intracoronary infusion of SB203580 prior to ischemia/reper-
fusion or during IPC failed to reduce the infarct size and
abrogated the protective effect of IPC, whereas the continuous
treatment of SB203580 during sustained ischemia had a car-
dioprotective effect [52]. This report again emphasizes the
importance of the timing and duration of p38 inhibitor admin-
istration in terms of its cardioprotective effect during ische-
mia/reperfusion.

It is widely accepted that an in vivo model is the best
study model to determine the long-term effect of both drugs
and physiological responses. Chronic studies investigating
the long-term (1-14 weeks) effect of p38 inhibitor in ische-
mia/reperfusion have been reported. Most of these studies
demonstrated that long-term treatment with p38 inhibitors
following the induction of myocardial infarction had bene-
ficial effects, such as improved cardiac function [33, 7074,
77], inhibited infarct expansion [33], reduced scar size [77],
and suppressed myocardial fibrosis [74].

p38 inhibitor: where do we go from here?

The important questions that still need to be clarified are
whether p38 inhibitors really do have therapeutic potential
in real clinical settings and if so, is the background infor-
mation sufficient to ensure that the p38 inhibitor can be used
effectively in real clinical treatment? It is noticeable that the
majority of the experimental findings that initially indicated
the efficiency of p38 inhibitors in reducing myocardial
injury and impaired cardiac function were associated with
pre-ischemic treatment. Prevention of p38 activation by the
inhibitor prior to ischemia seems to be impractical in the
actual clinical setting, as myocardial ischemia is an unpre-
dictable episodic condition. Therefore, the timing of treat-
ment and its therapeutic potential are critical issues that need
to be addressed. It will be clinically more useful if the
inhibition of p38 activation at the postischemic state, which
includes the reperfusion period, can provide a cardioprotec-
tive effect. Nevertheless, the roles of p38 activation and the
consequences of its inhibition in postischemic and reperfu-
sion periods, especially in an in vivo model, have not been
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intensively investigated. Studies in an in vivo model, either
acute or long-term treatment, are essential and will provide
significant and clinically useful information, which may be
used to develop therapeutic strategies during the actual
pathophysiological events that occur in humans.

In addition to the timing of drug administration, another
important issue is the effect of p38 inhibition on potentially
fatal cardiac arrhythmia during myocardial ischemia/reper-
fusion. Although a number of ischemia/reperfusion stud-
ies reported the incidence of fatal arrhythmias during
ischemia/reperfusion [78, 79], no in vivo study has yet
investigated the effect of p38 inhibitors on a lethal
arrhythmia during ischemia/reperfusion. Similar to the
postischemic mortality rate, no work has presented mor-
tality data in animals treated with p38 inhibitors, which
would support the long-term effect of using a p38 inhib-
itor. This crucial information needs to be obtained if the effect
of p38 inhibitors in myocardial ischemia/reperfusion is to be
of significant relevance.

The small molecule inhibitors of p38 have been
studied for almost 20 years, predominantly in terms of
the anti-inflammatory effect of the inhibitors [80]. How-
ever, most of the outcomes of using the p38 inhibitors
in clinical trials have been disappointing as a result of
adverse events stemming from drug toxicity [81]. Al-
though many studies of the p38 inhibitor in myocardial
ischemia seem to support the benefit of the p38 inhib-
itor in reducing myocardial injury and improving cardi-
ac function, the majority of clinical trials with p38
inhibitors have been mainly aimed at studying its anti-
inflammatory effect, not for myocardial infarctions.
Therefore, at this point do we still have faith in the
p38 inhibitor for attenuating cardiac damage in ischemic
heart disease? Although there have been some clinical
trials on a p38 inhibitor in cardiovascular disease
[7-10], only one study has focused on the acute coro-
nary syndrome [82], namely, the first clinical study of the
p38 inhibitor GW856553 or Losmapimod (NCT00910962;
GlaxoSmithKline, London, UK). In this trial, changes in high-
sensitivity C-reactive protein and cardiac biomarkers are be-
ing measured as primary outcomes, as well as the infarct size
and cardiac functions based on magnetic resonance imaging
data in the sub-study [82]. This study is still ongoing, and the
primary outcome data are expected to be available in April
2012 [82]. At the same time, it is necessary to look back to the
pre-clinical data set derived from p38 inhibitors during myo-
cardial ischemia/reperfusion in order to determine whether
there are still some crucial gap(s) of information as these
should be filled in an attempt to obtain useful information.
This is an essential prerequisite to the exploitation of the
wealth of pre-clinical data which suggests that the inhibition
of p38 activation will benefit patients with ischemic heart
disease.
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Abstract

Suwanchai A, Theerapiboon U, Chattipakorn N, Chat-
tipakorn SC. Nay1.8, but not Nay1.9, is upregulated in the
inflamed dental pulp tissue of human primary teeth. Interna-
tional Endodontic Journal, 45, 372-378, 2012.

Aim To investigate alterations in Nay1.8 and Nay1.9
expression within inflamed dental pulp tissue of human
primary teeth.

Methodology Dental pulp tissue obtained from
both normal and inflamed pulps in primary teeth as
well as pulps from normal and inflamed permanent
teeth was used. The quantity of Nay1.8 and Nay1.9
expression in the dental pulp tissue was investigated
using Western blot analysis. General neuron marker
(PGP9.5) was used to quantify for neural density,
and an increase in metalloproteinase-9 was used to
indicate pulpal inflammation in inflamed teeth. Sta-
tistically significant differences for each determined

parameter between normal and inflamed teeth of
both primary and permanent teeth were tested using
the Mann—Whitney rank sum test.

Results There was no significant difference in neural
density of normal and inflamed dental pulp tissue,
although degrees of inflammation were increased in the
inflamed dental pulp of both permanent and primary
teeth (P < 0.05). Nayl.8 and Nayl.9 expression in
inflamed pulps of permanent teeth increased signifi-
cantly compared with normal permanent teeth
(P < 0.05). However, only Nayl.8 expression was
increased significantly in the inflamed dental pulp of
primary teeth (P < 0.05).

Conclusions Nay1.8 alone may be the therapeutic
target for treatment of painful pulpitis in primary teeth.

Keywords: dental pulp, inflammation, Nay1.8,
Nay1.9, primary teeth.
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Introduction

Voltage-gated sodium channels (VGSCs) are transmem-
brane ion channels involved in the initiation and
propagation of action potentials, and the spontaneous
activity of VGSCs can lead to spontaneous pain. VGSCs
are found in excitable cells, including neurons and
muscle cells (Goodman 2008). VGSCs can be catego-
rized into two groups according to their resistance to
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Dentistry, Chiang Mai University, Chiang Mai 50200,
Thailand (Tel.: 011 66 53 944 451; fax: 011 66 53 222
844; e-mail: s.chat@chiangmai.ac.th).
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the blocker, tetrodotoxin (TTX): TTX-sensitive (TTX-S)
and TTX-resistant (TTX-R) channels (Cummins et al.
2007). Nayl.8 and Nay1.9 are a subfamily of TTX-R
VGSCs, which are dominantly found in unmyelinated C
fibres, the largest group of sensory nerve fibres inner-
vating dental pulp tissue (Amir et al. 2006). Nay1.8,
with its slow inactivation kinetics and high activation
threshold, is involved in the electrogenesis of action
potentials in C-type peripheral neurons (Renganathan
et al. 2001), whereas Nay1.9 is responsible for the
generation of persistent action potentials (Dib-Hajj et al.
2002). Both Nayl.8 and Nayl.9 are believed to be
involved in prolonged action potentials during painful
stimuli (Cummins et al. 2007). Several previous studies
have shown that Nay1.8 and Nay1.9 are upregulated

© 2011 International Endodontic Journal
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in several chronic inflammatory pain models (Amaya
et al. 2006, Joshi et al. 2006, Strickland et al. 2008).

Dental pulp innervation consists mostly of nocicep-
tive nerve fibres that originate from the trigeminal
ganglion, peripherally pass through the apical foramen,
and terminate in the dental pulp as free nerve endings
(Hildebrand et al. 1995). Dynamic changes in the
density of pulpal innervation during pulpal inflamma-
tion have been found to be changed depending on the
severity and timing of the inflammation (Byers et al.
1990). These changes can be either sprouting or
degeneration of nerve fibres. Thus, the innervation
density of dental pulp tissue may be either increased or
decreased following inflammation. For example, a
study by Rodd & Boissonade (2001) using immunohis-
tochemistry revealed that neural density at the pulpal
horn of inflamed dental pulp of human primary and
permanent teeth increased with the depth of dental
caries. In contrast, Western blot analysis indicated no
significant difference in neural density of the dental
pulp of inflamed human permanent teeth compared
with normal teeth (Warren et al. 2008). In the dental
pulp of permanent teeth with pulpitis, the upregulation
of matrix metalloproteinase-9 (MMP-9), which is an
enzyme responsible for extracellular matrix remodelling
and degradation, was also found (Tsai et al. 2005). This
finding indicates that MMP-9 is a marker for pulpal
inflammation. The expression of Nay1.8 and Nayl.9
has been found at nerve endings in the dental pulp of
permanent teeth (Renton et al. 2005, Wells et al.
2007), and the upregulation of those VGSC isoforms,
Nay1.8 and Nayl.9, has been demonstrated during
painful pulpitis of human permanent teeth (Renton
et al. 2005, Wells et al. 2007, Warren et al. 2008). A
recent study in rat dental pulp tissue found increased
Nayl.8 mRNA expression in association with an
increased degree of pulpal inflammation (Esmaeili et al.
2011). In spite of the strong evidence for Nay1.8 and
Nay1.9 expression in permanent human dental pulp
tissue, no evidence of those sodium channel isoforms in
the dental pulp of human primary teeth has been
demonstrated. The innervation in primary teeth and in
permanent teeth is different because the density of the
dental nerve supply is lower in primary teeth (Rodd &
Boissonade 2001, 2002). Therefore, the aim of this
study was to investigate whether Nay1.8 and Nay1.9
expression is altered in human dental pulp of inflamed
primary teeth compared with normal teeth. The
hypothesis that the expression of Nay1.8 and Nay1.9
are altered following pulpal inflammation in primary
teeth was tested.

© 2011 International Endodontic Journal

Materials and methods

Subjects

The use of human subjects was approved by the
Human Experimentation Committee, Faculty of Den-
tistry, Chiang Mai University. Informed consent was
obtained from all the subjects or accompanying
guardians, in the case of subjects under the age of 20.

Teeth from subjects were divided into four groups:
intact premolars extracted for orthodontic purposes
(n = 18), permanent teeth diagnosed with irreversible
pulpitis that required extraction (n = 7), intact primary
teeth diagnosed with prolonged retention that required
extraction (n = 7) and primary teeth diagnosed with
reversible or irreversible pulpitis that required extrac-
tion (n = 16). Teeth with deep caries or mechanical
pulp exposures with a history of pain on stimulation
that rapidly disappeared or no history of pain and no
radiographic periapical changes were diagnosed with
reversible pulpitis. Teeth with irreversible pulpitis had
deep caries and/or restorations with spontaneous pain.
Normal or enlarged periodontal space was detected on
the radiograph of teeth with irreversible pulpitis. All
primary teeth had physiologic root resorption of not
more than 2/3 root length. All teeth had no history of
trauma, and all teeth with inflamed pulps were from
deep caries. The subjects were interviewed for their
history of pain before extraction. The information
related to history of dental pain included sites of dental
pain, duration, stimulating factors and severity of
maximum pain was obtained using visual analogue
scales (VAS).

Pulpal tissue collection

Immediately after extraction, a vertical groove almost
to the depth of the pulp chamber was cut along the
buccal surface of each tooth from the incisal edge to the
apex in anterior teeth, and to the furcation in molar
teeth. Then, the teeth were split open along the groove
using an elevator. Pulpal tissues were removed and
stored in 1.5 mL Eppendorf tubes in liquid nitrogen,
before being transferred to a freezer and stored at
—80 °C for further investigation.

Western blot analysis

The method for Western blot analysis was modified
from that of Warren et al. (2008). Frozen pulp tissue
was weighed before being crushed with a plastic pestle

International Endodontic Journal, 45, 372-378, 2012
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in a homogenization buffer at a ratio of 1 mg of pulpal
tissue to 10 pL of buffer. The buffer consisted of RIPA
(50 mmol L' of Tris-Cl pH7.5, 150 mmol L' of
sodium chloride, 1 mmol L™' of EDTA, 1% Triton X-
100 and 0.1% SDS), two cocktails, of protease and
phosphatase inhibitors (Roche Applied Science, Mann-
heim, Germany), and 1% of sodium deoxycholate. The
protein concentration of each sample was determined
using a Bio-Rad protein assay kit (Bio-Rad Laborato-
ries, Hercules, CA, USA). The proteins were denatured
by being boiled at 95 °C for 5 min and were detected
via 10% sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE), transferring of proteins
from gels to nitrocellulose membranes, and incubation
of the membranes in primary antibody overnight. The
primary antibodies used in this study were rabbit
polyclonal antibody to PGP9.5, a general neuronal
marker (1 :400 in 0.1% TBST with 10% nonfat dry
milk, ab10404; Biomed Diagnostics, Cambridge, MA,
USA), rabbit polyclonal antibody to MMP-9, used as a
marker of inflammation (1 : 200 in 0.1% TBST with
5% nonfat dry milk, ab38904; Biomed Diagnostics),
rabbit polyclonal antibody to Nay1.8 (1 : 200 in 0.1%
TBST with 5% bovine serum albumin, S2071; Sigma
Aldrich Inc, St. Louis, MO, USA) and rabbit polyclonal
antibody to Nay1.9 (1 : 200 in 0.1% TBST with 5%
bovine serum albumin; S2196, Sigma Aldrich Inc). The
membranes were then incubated in a secondary goat
anti-rabbit antibody, conjugated with horseradish
peroxidase (1 : 5000 in 0.1% TBST; Bio-Rad Labora-
tories). The proteins were visualized via a chemilumi-
nescent detection system (Amersham ECL Western
blotting detection reagents; GE Healthcare, Piscataway,
NJ, USA). Band intensity was quantified by the Scion
Image program (Scion Corporation, Frederick, MD,
USA). The data were normalized with f$-actin to control
for the amount of protein loading and transfer.

Data analysis

Data were shown as mean + SE. Statistically significant
differences for each determined parameter between
normal and inflamed teeth of both primary and
permanent teeth were tested using the Mann—Whitney
rank sum test. Significance levels were set at P < 0.05.

Results

Mean ages of subjects with permanent teeth with
normal pulps, permanent teeth with inflamed pulps,
primary teeth with normal pulps and primary teeth

International Endodontic Journal, 45, 372-378, 2012

with inflamed pulps were 17.3 £ 1.1, 354 % 6.3,
9.4 £ 0.9 and 6.1 £ 0.7 (mean * SE) years, respec-
tively. The average duration of pain was 56 + 51 days
in the subjects with permanent teeth with inflamed
pulps and 15 £ 6 days in subjects with primary teeth
with inflamed pulps. No pain was reported in subjects
with normal primary and normal permanent teeth. All
permanent teeth with inflamed pulps were diagnosed
with irreversible pulpitis. Of 16 inflamed primary teeth,
eight were clinically diagnosed with irreversible pulpi-
tis, whereas another eight were clinically diagnosed
with reversible pulpitis.

To quantify the amount of nerve fibres in the dental
pulp, the levels of PGP9.5 compared with f-actin in
each dental pulp were measured. There was no
significant difference in the relative amount of
PGP9.5 between normal and inflamed dental pulp of
either primary or permanent teeth (Fig. 1). The aver-
age levels of inflammation were represented by the
ratio of MMP-9 to f-actin. The relative amounts of
MMP-9 were significantly higher in inflamed primary
teeth (P < 0.05) and inflamed permanent teeth
(P < 0.05) than in normal teeth (Fig. 2). The expression

Figure 1 Relative amounts of PGP9.5 expression. PGP9.5, the
neural marker, was detected in the dental pulp of permanent
and primary teeth as indicated by the arrow. The band
intensity of each sample was normalized with f-actin and
shown as mean + SE. The data show that the relative amount
of PGP9.5 in dental pulp of inflamed permanent (n = 7) and
primary teeth (n = 16) was not significantly different from
that in normal permanent (n = 18) and primary (n = 7) teeth.

© 2011 International Endodontic Journal
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Figure 2 Relative amounts of metalloproteinase-9 (MMP-9)
expression. The expected molecular weight of MMP-9 is
indicated by the arrow. The band intensity of each sample
was normalized with f-actin and shown as mean * SE. There
was a significant increase in MMP-9 in inflamed pulp
compared with normal pulp of both permanent (n = 7 and
18, for inflamed and normal pulp, respectively) and primary
teeth (n = 16 and 7, for inflamed and normal pulp, respec-
tively) (*P < 0.05).

of Nay1.8 and Nay1.9 in the dental pulp of permanent
teeth with inflamed pulps was significantly greater
than in normal permanent teeth (P < 0.05, as shown
in Figs 3 and 4). In primary teeth, only Nayl.8
expression was significantly higher in the inflamed
dental pulp than in normal dental pulp (P < 0.05,
Fig. 3). However, no significant difference between the
amount of Nay1.9 expression in inflamed and normal
pulp tissues in primary teeth was observed (Fig. 4).

Only Nayl.8 was correlated with maximum pain
intensity in the group with permanent teeth (P < 0.05,
r = 0.674), However, no correlation between all pro-
tein expression and pain intensity in groups with
primary teeth was found (P > 0.05).

Discussion

The present study is the first to demonstrate the
expression of Nay1.8 and Nay1.9 in dental pulp tissue
of human primary teeth. Nay1.8 was upregulated in
the inflamed dental pulp of both permanent and
primary teeth, whereas Nay1.9 was upregulated only

© 2011 International Endodontic Journal

Figure 3 Relative amounts of Nay1.8 expression. The ex-
pected molecular weight of Nay1.8 is indicated by the arrow.
The band intensity of each sample was normalized with f-
actin and shown as mean + SE. The data indicate a significant
increase of Nay1.8 in the inflamed dental pulp of permanent
(n=5) and primary teeth (n =9) compared with normal
dental pulp (n = 6 and 6, for normal permanent and primary
teeth, respectively) (*P < 0.05).

in the inflamed dental pulp of permanent teeth. The
results also showed that there was no change in the
overall amount of nerve fibres in inflamed pulps
compared with normal pulps in both permanent and
primary teeth.

Changes in pulpal innervation during inflammation
by sprouting of nerve fibres have been reported (Byers
et al. 1990). However, the depth of carious lesions and
degrees of pulpal inflammation resulting in the degen-
erative changes of pulpal tissues may explain the
findings with no change in the overall amount of
innervation in teeth with and without pulpitis. The
comparability of overall innervation between inflamed
and normal dental pulp tissue may also suggest a
similarity in the number of potential sites of sodium
channel expression. Therefore, the increased expression
of Nay1.8 in primary and permanent teeth with pulpitis
and of Nay1.9 in permanent teeth with pulpitis results
not only from an increase in the number of potential
sites of their expression, but may also result directly
from the upregulation of the Nayl.8 and Nayl.9
expression itself. The increased expression of Nay1.8
and Nayl.9 in human permanent dental pulp with
painful pulpitis, as in the present study, has previously

International Endodontic Journal, 45, 372-378, 2012
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Figure 4 Relative amounts of Nayl.9 expression. The
expected molecular weight of Nayl1.9 is indicated by the
arrow. The band intensity of each sample was normalized with
f-actin and shown as mean * SE. There was a significant
increase of Nay1.9 in the inflamed dental pulp of permanent
teeth (n = 5) compared with normal permanent teeth (n = 8)
(*P < 0.05). However, there was no significant difference in
Nayl.9 expression between normal (n=5) and inflamed
(n = 9) dental pulp of primary teeth.

been reported (Renton et al. 2005, Wells et al. 2007,
Warren et al. 2008), but the altered expression of
Nay1.8 and Nay1.9 in primary teeth with pulpitis has
never been investigated. Despite the dominant expres-
sion of Nay1.8 and Nay1.9 in nociceptive neurons, the
localized expression of both sodium channel subtypes
may not be similar. Nay1.8 is remarkably localized in
unmyelinated and small myelinated sensory neurons,
whereas Nayl.9 is located only in unmyelinated
neurons (Amaya et al. 2000). The possible explanation
for no upregulation of the Nayl.9 expression in
inflamed primary teeth could be due to the insufficient
degree of pulpal inflammation in inflamed primary
teeth to activate the upregulation of Nay1.9 expression.
Previous studies demonstrated that the expression of
Nay1.8 may be more sensitive to inflammatory pain
stimuli, suggesting that the threshold for upregulation
of Nayl.8 may be lower than that of Nay1.9 (Benn
et al. 2001, Yu etal. 2011). As the inflammatory
mediators secreted following injuries, such as prosta-
glandin E, (PGE2), serotonin and adenosine, are capa-
ble to modulate TTX-R currents, contributing to
hyperalgesia (Gold 1999), and that inflammatory

International Endodontic Journal, 45, 372-378, 2012

mediators have been found to be increased with age
(Briitinsgaard & Pedersen 2003), it is possible that the
levels of inflammatory mediators could be higher in the
group with permanent teeth than the group with
primary teeth.

Axonal demyelination is a common event in the
inflamed dental pulp that causes a dynamic change in
the proportion of myelinated and demyelinated fibres
(Henry et al. 2009). The study of Henry et al. (2009)
in human permanent inflammatory dental pulp
showed that there was an increase in the atypical
nodal sites, representing axonal demyelination. That
study also found the accumulation of sodium channels
at the atypical nodal sites but there was no overall
upregulation of sodium channel expression (Henry
et al. 2009). That finding suggested that pulpal
inflammation can upregulate sodium channels at only
some specific sites without changes in total sodium
channel expression. The upregulation of Nay1.8, but
not Nayl.9, expression in the inflamed primary teeth
found in this study suggests that Nay1.8, rather than
Nay1.9, should have a significant role in primary
tooth pulpal inflammatory pain. However, the finding
that Nay1.9 did not increase in primary teeth with
pulpitis does not mean that there was no change in
Nayl.9 expression, but there may be changes in
specific sites of Nay1.9 accumulation without overall
quantitative changes. Further investigations to localize
the sites of Nay1.8 and Nay1.9 expression and studies
in the field of stimulating pathways of Nayl.8 and
Nay1.9 are still required. It was also demonstrated
that only Nay1.8 expression in permanent teeth was
correlated with pain score; therefore, the findings may
emphasize that only Nay1.8, but not Nay1.9, plays a
role in chronic pulpal inflammatory pain. However,
the reasons for the absence of correlation between
Nayl.8 and pain scores in the group with
primary teeth may be a result of the difference in
their ability to recall previous pain between adults and
children.

Conclusions

Evidence exists to support the concept that Nayl.8
plays an important role in chronic inflammatory pain
(Amaya et al. 2000, Joshi et al. 2006, Strickland et al.
2008). In contrast, the evidence for the involvement of
Nay1.9 in inflammatory pain is controversial (Porreca
et al. 1999, Coggeshall et al. 2004, Amaya et al. 2006,
Strickland et al. 2008). In the present study, there was
an increase in both Nay1.8 and Nay1.9 expression in

© 2011 International Endodontic Journal
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permanent teeth with inflamed pulps compared with
permanent teeth with normal pulps, and there was an
increase of only Nay1.8, but not Nay1.9, expression in
primary teeth with inflamed pulps compared with
normal primary teeth. This suggests that, in permanent
teeth, both Nay1.8 and Nay1.9 may be the targets for
the development of novel analgesic drugs and novel
anaesthetic agents for the treatment of pulpal inflam-
matory pain, whereas, in primary teeth, only Nay1.8
may be the target for the treatment of pulpal inflam-
matory pain.
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Abstract

Incretin is a gut derived peptide hormone secreted in the intestine after food ingestion, and is degraded rapidly after
secretion by dipeptidyl peptidase (DPP)-4. Incretin-based therapy, such as glucagon-like peptide (GLP)-I and the DPP-4
inhibitor, has been proposed as a new therapeutic approach for the treatment of type 2 diabetic patients. In the past
few years, growing evidence also demonstrated the cardioprotective effects of incretin-based therapy, especially during
ischaemia-reperfusion (I/R) injury in both the animal models and in clinical studies. However, inconsistent reports exist
regarding the use of these pharmacological interventions. In this article, a comprehensive review regarding both basic
and clinical studies reporting the effects of GLP-1 and DPP-4 inhibitors on I/R hearts is presented and discussed. The
consistent findings as well as controversial results are summarised, focusing on the effects of incretin on the infarct size,

left ventricular function and haemodynamic improvement during an I/R injury.

Keywords

Incretin, GLP-1, DPP-4 inhibitor, ischaemia-reperfusion injury, heart

Introduction

Diabetes mellitus (DM) has become a significant health
problem in most nations with the number of patients dra-
matically soaring and expected to reach 366 million by the
year 2030.! It has been shown that patients with type 2 dia-
betes mellitus (T2DM) have a two- to four-fold higher risk
of coronary disease and stroke mortality.2¢ Although sev-
eral new anti-diabetic drugs have been discovered in the
past decades, the therapies have been limited by their
adverse effects such as weight gain, hypoglycaemia, fluid
retention and an unexpected cardiovascular risk.”10
Therefore, new anti-diabetic drugs that could control hyper-
glycaemia and reduce the risk of cardiovascular events are
of potential benefit to T2DM patients.

Incretin is a gut derived peptide hormone which enhances
endogenous insulin secretion and reduces glucagon secre-
tion, resulting in reduced blood glucose after food consump-
tion.!!"14 Its secretion is greatly influenced by ingestion.!s
The incretin hormone has been classified into glucose-
dependent insulinotropic peptide (GIP) and glucagon-like
peptide (GLP)-1. GIP is secreted by the enteroendocrine K
cell of the proximal intestine, while GLP-1 is released from
the enteroendocrine L cell of the distal intestine. GLP-1 is
responsible for the majority of the incretin effect on pancre-
atic B-cell function. The secretion of GLP-1 is lower in
patients with T2DM than normal, suggesting that this hor-
mone contributes to the pathogenesis of the disease.!

The circulating GLP-1 has two isotypes: GLP-1 (7-36)
and GLP-1 (7-37), in which GLP-1 (7-36) is responsible for
80% of active GLP-1.!17 GLP-1 has insulinotropic, insulino-
mimetic and glucagonostatic effects.!® GLP-1 binds to
GLP-1 receptors (GLP-1Rs) leading to regulatory actions
which are an enhancement of B-cell function and prolifera-
tion, enhancement of glucose-dependent insulin secretion
from B-cell, activation of insulin biosynthesis, suppression
of elevated glucagon secretion, suppression of food intake
and slowing of gastric emptying.!!!® However, the thera-
peutic drawback is that the circulating GLP-1 level
decreases rapidly, i.e. less than two minutes, after secre-
tion due to being degraded by dipeptidyl peptidase
(DPP)-4 enzymes and renal clearance.?*-23 DPP-4 enzyme
degrades GLP-1 (7-36) by removing an N-terminal
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dipeptide, resulting in its metabolite, GLP-1 (9-36), which
has 1000-fold lower affinity to GLP-1Rs.2! It has been
shown that the inhibition of DPP-4 could enhance the level
of intact GLP-1 and prolong its action time.?* Thus, two
classes of drugs have been recently used for incretin
enhancement in T2DM, including GLP-1 analogues and
DPP-4 inhibitors. While GLP-1 analogues (i.c. exenatide,
liraglutide and albiglutide) increase the GLP-1 level to a
supraphysiological level, DPP-4 inhibitors (i.e. vildaglip-
tin, sitagliptin and saxagliptin) conserve and prolong intact
GLP-1 availability within a physiological level.

Although the primary physiological function of GLP-1
is related to the control of plasma glucose, GLP-1Rs have
been ubiquitously found in a variety of extra-pancreatic tis-
sues including the central and peripheral nervous system,
kidney, lung, gastrointestinal tract, blood vessel and heart
both in rodents and humans.'3? Since GLP-1Rs in the heart
are similar to in the pancreas,? it has been suggested that
drugs targeting incretin enhancement may potentially affect
the heart.

DM has been shown to increase cardiovascular risk
including increased incidence of myocardial infarction.?
With the undesirable effects of several anti-diabetic drugs
such as those in the thiazolidinedione group, i.e. rosiglita-
zone, that increased the cardiovascular morbidity and mor-
tality,®° it is essential that any new anti-diabetic drug be
investigated for both beneficial and harmful effects on the
cardiovascular system. In this review, reports from basic
and clinical studies regarding the effects of GLP-1 and
DPP-4 inhibitor on cardiac function and infarct size in an
ischaemic-reperfused heart are comprehensively summa-
rised. Key results are critically discussed with emphasis
placed on consistent findings. Inconsistent results are also
highlighted to more fully explore what is known and what
remains to be discovered.

Effects of GLP-1 on the infarct size

GLP-1 has been shown to have an infarct limiting effect in
both in vitro and in vivo models of ischaemia-reperfusion
(I/R) injury (Table 1). GLP-1 co-administered with DPP-4
inhibitor, valine pyrrolide (VP), could reduce the infarct
size ranging from 39% to 58% in isolated Langendorff rat
hearts whether given prior to ischaemia or during the reper-
fusion period.26-2° However, the administration of GLP-128
or DPP-4 inhibitor?¢-28 alone failed to reduce the infarct
size. These studies suggested the synergistic effect of
DPP-4 inhibition and exogenous GLP-1 on the infarct lim-
iting effect in which DDP-4 inhibitor enhanced endogenous
GLP-1 level and reduced exogenous GLP-1 degradation.
Another line of drug that has been used to enhance an
incretin effect is a DPP-4 resistant GLP-1R agonist.
Exendin-4, a hormone found in the saliva of the Gila mon-
ster, at 0.03 and 0.3 nM has been shown to reduce the infarct
size, while 3.0 nM exendin-4 could not show this benefit,

suggesting a biphasic infarct limiting effect.?* Human trans-
ferrin (Tf) was also demonstrated to prolong the GLP-1
action. Administration of GLP-1-Tf could effectively
reduce the infarct size in rabbits, given either before or after
coronary occlusion.’! Recently, albiglutide, another GLP-1
analogue, has been shown to increase cAMP in an ischae-
mic myocardium and improve cardiac metabolic efficiency
by increasing glucose metabolism and reducing fat oxida-
tion, which results in 26% reduction of infarct size.32

In a pig model, exenatide has been shown to reduce the
infarct size,?3 whereas the other two studies with a shorter
period of I/R using recombinant GLP-1 (rGLP-1)3 or lira-
glutide® could not demonstrate any improvement in infarct
size (Table 2). This discrepancy could be due to a different
duration and site of occlusion, therapeutic drugs and drug
concentrations. This hypothesis is supported by a report by
Noyan-Ashraf and colleagues, demonstrating that the opti-
mal time and dose of liraglutide, GLP-1 analogue, played
an important role in infarct size reduction, improved sur-
vival rate and contractile function in both normoglycaemic
and diabetic mice.3

Several mechanisms underlying the infarct limiting
effect of GLP-1 have been proposed to be independent of
weight loss.3¢ First, GLP-1 has been shown to activate the
cAMP-PKA pathway,?6-323¢ the pro-survival kinase associ-
ated with reperfusion injury signalling kinase (RISK) path-
way,’” including the following: PI3K, Akt, MAPK,
PPARP/S, Nrf-2, HO-1 and Akt-p70s6K-BAD path-
ways.1826.27.33.36.38 Second, GLP-1 has been shown to reduce
oxidative stress and increase antioxidants, leading to
decreased apoptosis.?6-3133:36 Third, since proinflammatory
cells such as neutrophils (PMNs) play an important role
during the time of blood return to the heart,’**% GLP-1 has
been shown to attenuate the PMN activation and accumula-
tion in the myocardium, thus reducing injuries caused by
reperfusion.*! Recent studies demonstrated that the infarct
limiting effects were diminished with the administration of
either GLP-1 metabolite, i.e. GLP-1 (9-36),°3% or when
giving GLP-1 with the GLP-1R antagonist, namely GLP-1
(9-39).26:2930.36 Moreover, the administration of liraglutide
failed to activate cardioprotective kinase in the GLP-1R
depleted mice. Taken together, the effect of GLP-1 on the
infarct size reduction is proposed to be a GLP-1R depend-
ent mechanism.

Effects of GLP-I1 on left ventricular
function

Besides its infarct limiting effect, GLP-1 has been shown to
improve left ventricular (LV) recovery from ischaemic
myocardial stunning after reperfusion (Table 3). The
administration of GLP-1 as a post-conditioning agent,
which demonstrated a higher plasma GLP-1 level, could
improve LV performance by decreasing the wall motion
abnormality, and increasing the ejection fraction and LV
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Table 2. Summary of the neutral effects of GLP-1 on the infarct size.

Animal Study model Drug/dose/route Major findings Interpretation References

species

Pig I/R rGLP-1, I. rGLP-1 did not reduce rGLP-1 did not Kavianipour
LAD ligation 3 pmol/kg per min, 120 min infarct size. reduce infarct et al.3
60-min ischaemia before experiment + rGLP-1, 2. rGLP-I increased plasma  size, but altered
120-min reperfusion 3 pmol/kg per min, IV perfusion insulin level. myocardial glucose

during I/R 3. rGLP-1| lowered blood utilisation, which
rGLP-1, glucose level. was associated with
3 pmol/kg per min, IV perfusion 4. rGLP-1 decreased insulin level.
during I/R interstitial levels of

pyruvate and lactate.

Pig I/R Liraglutide |. Liraglutide did not reduce Liraglutide did not  Kristensen
Balloon LAD Pretreatment 10 pg/kg, SC, once infarct size. reduce infarct size. et al.®
occlusion daily for 3 days 2. VF incidence and time to VF
40-min ischaemia was not different between
I 50-min reperfusion liraglutide and vehicle.

Isolated /R GLP-1 0.3 nM in perfusion buffer, GLP-1 alone did not reduce GLP-1 alone could  Bose

rat heart Left main coronary throughout experiment infarct size. not reduce infarct et al.?®
artery ligation size.

(regional ischaemia) DPP-4 inhibitor

35-min ischaemia was important for

120-min reperfusion exogenous GLP-|
function to reduce
infarct size.

Isolated  I/R VP 40 uM + GLP-I (9-36) 0.3 GLP-I (9-36) + VP did not ~ GLP-1 metabolite =~ Ossum

rat heart  35-min global no nM, during |5 min of reduce infarct size. with DPP-4 inhibitor et al.?®
flow ischaemia reperfusion did not reduce
120-min reperfusion infarct size.

Isolated I/R GLP-1 (9-36) GLP-1 (9-36) did not reduce GLP-1 metabolite Sonne

rat heart 45-min global no 0.03, 0.3, 3.0 nM, during 15 min infarct size. did not reduce et al.3°

flow ischaemia
120-min reperfusion

of reperfusion

infarct size.

I/R: ischaemia-reperfusion; LAD: left anterior descending coronary artery; rGLP-1: recombinant GLP-I; IV: intravenous route; SC: subcutaneous
route; VP: valine pyrrolide; VF: ventricular fibrillation; DPP-4: dipeptidyl peptidase-4.

developed pressure, 23! compared with giving GLP-1 as a
pre-conditioning agent, which has a lower plasma GLP-1
level.3! Nevertheless, it is possible that the time for which
GLP-1 was given as a preconditioning treatment in those
studies was too short, thus allowing insufficient time for its
action. This is supported by a report by Noyan-Ashraf and
colleagues which demonstrated that the GLP-1 analogue
required the optimal pre-treatment time and dose for the
activation of the cardiac gene and protein to promote LV
enhancement.’¢ Other possible factors including routes and
times of drug administration during I/R could also play an
important role in this finding. Interestingly, like the infarct
limiting effect, exendin-4 also improved the mechanical
function in a biphasic manner.?® In a clinically relevant
swine model, exenatide improved regional and global sys-
tolic function.?® In coronary artery disease patients with
good LV function, a continuous infusion of rGLP-1 for 30
minutes before dobutamine stress echocardiography dem-
onstrated an improved ejection fraction and LV regional
wall function as well as mitigated post-ischaemic stunning,

predominantly in the ischaemic wall segment.*? The benefi-
cial effect of a 72-hour GLP-1 infusion on the post-
infarction recovery, including an increased ejection fraction
and improvement of both global and regional wall motion
was also observed in acute myocardial infarction patients
with LV ejection fraction of less than 40% after successful
primary percutaneous coronary intervention.** Long-term
GLP-1 infusion also improved myocardial stunning, which
was characterised by enhanced LV wall motion and relaxa-
tion in I/R dogs.**

Surprisingly, the benefit of exenatide and GLP-1 on LV
function was also observed in the presence of GLP-1R
antagonist and in GLP-1R deleted mice, suggesting that the
improved LV function of GLP-1 may be mediated inde-
pendent of GLP-1R.303% However, a recent study demon-
strated that GLP-1 co-administered with sitagliptin, DPP-4
inhibitor, could not improve contractile functional recovery
in GLP-1R deleted mice, whereas this treatment provided
the benefit in wild-type mice.?® Taken together, unlike the
infarct limiting effect, the LV function amelioration of
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Table 3. (continued)

References

Interpretation

Major findings

Drug/dose/route

Study model

Animal species

Nikolaidis

Infusion of GLP-1 improved

I. rGLP-1 improved LV ejection fraction.

rGLP-1|

After successful

primary

Acute Ml

regional and global LV function et al.#?

in patient after successful
primary angioplasty.

2. rGLP-I decreased global and regional wall motion score

1.5 pmol/kg per min

patients with
EF<40%

index.

72 h after angioplasty

angioplasty

Read

GLP-1 improved both global
and regional LV performance

in response to stress and

|. GLP-1 level was increased after GLP-1 administration.

2. GLP-I lowered plasma glucose level.

Coronary artery  GLP-I

Patients

et al.®?

1.2 pmol/kg per min, intravenous

normal resting LV infusion starting at 30 min

disease with

3. Insulin level was increased in GLP-| treated group during

also reduced post-ischaemic

stunning.

dobutamine stress.
4. Free fatty acid level was lowered in GLP-| treated group.

before dobutamine stress
echocardiography

function

5. GLP-1 improved ejection fraction and regional wall function

during peak dobutamine stress and 30 min of recovery.
6. GLP-I had a greater beneficial effect on ischaemic than on

non-ischaemic segments.

I/R: ischaemia-reperfusion; LCX: left circumflex coronary artery; GLP-1-Tf: glucagon-like peptide- | -transferrin; SC: subcutaneous route; IV: intravenous route; LV: left ventricle; LAD: left anterior de-

scending coronary artery; IP: intraperitoneal route; LVDP: left ventricular developed pressure; VP: valine pyrrolide; GLP-1R: GLP-I receptor; GLUT: glucose transporter; MnSOD: manganese superoxide

dismutase; HWV: heart weight; BW: body weight; EF: ejection fraction; rGLP-1: recombinant GLP-I.

GLP-1 was mediated by both GLP-1R dependent and inde-
pendent pathways. Although the administration of GLP-1
(9-36) could not reduce the infarct size,?-30 it exerts a func-
tional recovery benefit which might mediate through the
GLP-1 (9-36)-cGMP-NO pathway, independent of GLP-1R
activation.’%-3¥ However, the inotropic effect of GLP-1
(9-36) is still questionable.?®

Enhanced myocardial glucose uptake by up-regulation
of glucose transporter (GLUT)-1 and GLUT-4 may be one
of the underlying mechanisms to explain the beneficial
effect of GLP-1 on LV functional improvement.'$32 In a
normal physiological condition, the heart mainly uses fatty
acid as a fuel in maintaining its function. Reduced availa-
bility of oxygen during low-flow ischaemia reduces the
heart’s ability to produce energy from fatty acid oxidation
and carbohydrates. The enhancement of glycolysis through
diverse mechanisms or pharmacologic interventions can
delay and prevent ischaemic damage and improve the
recovery of the contractile function.#4¢6 GLP-1 has been
shown to increase myocardial glucose uptake, which ame-
liorates the post-ischaemia myocardial dysfunction.!832
This action of GLP-1 might be used as a therapeutic target
for high risk cardiovascular disease patients, especially in
insulin resistant T2DM. The long-term effect of GLP-1
analogue has been demonstrated in neonatal rats receiving
exenatide once daily for six days.4” This persistent benefi-
cial effect is mediated by an altered mitochondrial pheno-
type which decreased the cardiac mitochondria calcium
uptake and reduced oxidative phosphorylation, resulting in
improved functional recovery after ischaemia reperfusion
injury. Surprisingly, the cardioprotective effect of GLP-1
and GLP-1 analogue was not associated with any improve-
ment in haemodynamic parameters (Table 4),2031-35.:44.47

Unlike GLP-1, information regarding the effects of
DPP-4 inhibitor on the I/R heart is scarce and controver-
sial.#8-50 DPP-4 inhibitors inhibit the enzyme activity of
DPP-4, resulting in decreasing degradation rate, thereby
maintaining higher GLP-1 levels.?43152 Although growing
evidence demonstrated the infarct limiting effect of DPP-4
inhibitors (Table 5), many studies suggested that the physi-
ological level of GLP-1 may not be sufficient to reduce the
infarct size (Table 6). Besides the infarct limiting effect, the
beneficial effect of DPP-4 inhibitors on LV function after
I/R injury has also been documented (Table 7).

Effects of DPP-4 inhibitor on the
infarct size

As DM increases cardiovascular risk including myocardial
infarction, pretreatment with vildagliptin, DPP-4 inhibitor,
has been shown to attenuate the infarct size in insulin resist-
ant rats.>? This cardioprotective effect was also observed in
normoglycaemic rats with pretreatment of sitagliptin.*® A
longer period of pre-treatment with sitagliptin resulted in
smaller infarct size, suggesting that the plasma drug level
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Table 5. Summary of the beneficial effects of DPP-4 inhibitor on infarct size.

Animal  Study model  Drug/dose/ Major findings Interpretation References
species route
Diet- I/IR Vildagliptin I Vildagliptin reduced infarct size in diet induced Vildagliptin reduced Huisamen
induced LAD ligation Pretreatment obesity rat by 38%. infarct size in et al.??
obesity,  35-min 10 mg/kg per 2. Vildagliptin increased plasma GLP-I level to normal insulin resistance
insulin ischaemia day, PO, for 4 in diet-induced obesity rat. rat by increased
resistant  30-min weeks 3. Vildagliptin increased beta cell/alpha cell ratio to phosphorylation
rat reperfusion normal in diet-induced obesity rat. of Akt and ERK at
4. Vildagliptin increased phosphorylation of Akt and serine 42.
ERK at serine 42.

Rat I/R Sitagliptin |. Pretreatment with sitagliptin for 3 and [4 days Protective effect of Ye et al.*®

LAD ligation  Pretreatment reduced infarct size by 47% and 64%, respectively. sitagliptin was via

30-min 300 mg/kg per 2. Using PKA inhibitor completely abolished infarct cAMP-dependent

ischaemia day, PO, for 3 limiting effect of sitagliptin. PKA activation.

4-hour or 14 days 3. Sitagliptin increased cAMP level.

reperfusion

I/R: ischaemia-reperfusion; LAD: left anterior descending coronary artery; PO: per oral; GLP-1: glucagon-like peptide-|; ERK: extracellular regulated

kinase; PKA: protein kinase A.

might influence its cardioprotective effect. The infarct lim-
iting mechanism of DPP-4 inhibitor in these studies was
proposed to be due to the activation of Akt and cAMP-PKA
pro-survival kinase in RISK pathway as observed in GLP-1
administration.*33 However, some studies demonstrated
that prolonged availability of intact GLP-1 caused by a
DPP-4 inhibitor failed to demonstrate the infarct limiting
effect.26-28.54 Moreover, inhibition or reduction of DPP-4
activity using DPP-4 deleted mice or pretreatment with sit-
agliptin before ischaemia in high fat diet-induced diabetic
mice could not reduce the infarct size, but improved the
survival rate by activation of cardioprotection kinase such
as GSK3p, ANP and Akt.* These discrepant results suggest
that the different animal models, the duration of ischaemia
in the heart models and the minimal dose for a specific time
may play a pivotal role in the reduction of the infarct size.
Tables 5 and 6 summarise significant effects of DPP-4
inhibitors on the infarct size.

Effects of DPP-4 inhibitor on left
ventricular function

DPP-4 inhibitors also exert a cardioprotective effect by
the improvement of post-ischaemia myocardial stunning.
Table 7 summarises the effects of DPP-4 inhibitors on LV
function. In DPP-4 deleted mice and mice pretreated with
sitagliptin for 12 hours prior to aortic occlusion, improved
LV developed pressure after I/R injury was observed.*
However, acute treatment with sitagliptin for 20 minutes
prior to I/R insult failed to improve ventricular perfor-
mance.*” The discrepancy in these findings could be due
to the differences in the time of drug administration as
well as study models (in vivo versus ex vivo), and might

suggest that the benefit of DPP-4 inhibitor required an
optimal time and an intact cardiovascular system process.
However, a recent report in rats with ischaemic heart
failure demonstrated that early or late treatment with vild-
agliptin had no beneficial effect on ventricular perfor-
mance.>* In a clinical study, single dose treatment with
sitagliptin improved regional and global wall function,
which improved post-ischaemic stunning in patients with
coronary artery disease awaiting revascularisation.’®
These improvements are independent of insulin®® or
haemodynamic parameter alterations.*%->0-3 Table 8 sum-
marises the effect of DPP-4 inhibitors on haemodynamic
parameters.

Conclusion

Growing evidence suggests that incretin exerts a cardio-
protective effect during I/R injury. The infarct limiting
effect is mediated through GLP-1R, while LV function
improvement is mediated through both GLP-1R depend-
ent and independent (via GLP-1 (9-39)) pathways. The
underlying mechanisms were due to the activation of pro-
survival kinase, increased antioxidant and myocardium
glucose utilisation, reduction of oxidative stress and pro-
apoptotic kinase, and attenuation proinflammatory cell
activation and accumulation in the myocardium. Although
many mechanisms have been proposed, the exact mecha-
nisms have never been fully elucidated. Therefore, further
investigations are required to determine the cardioprotec-
tive mechanisms of incretin. Ultimately, large clinical tri-
als are the essential step to validate those effects reported
in animal studies and to warrant their clinical use in the
I/R condition.
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Table 6. Summary of the neutral effects of DPP-4 inhibitor on infarct size.

Animal species Study model Drug/dose/route Major findings Interpretation References
Normoglycaemic I/R Vildagliptin Vildagliptin did not reduce Vildagliptin did not reduce Huisamen
rat LAD ligation Pretreatment 10 mg/ infarct size in normal rat.  infarct size in normal rat. et al.>?
35-min ischaemia kg per day, PO, for 4
30-min reperfusion  weeks

DPP-4"- mice Ml DPP-4- mice |. DPP-4"- mice had DPP-4-- did not reduce Sauve
LAD ligation for improved survival rate.  infarct size, but improved et al.#
4 weeks 2. DPP-4" mice did not survival rate after Ml in

have reduced infarct size. normoglycaemia.

3. pGSK3p, pANP, pAkt The mechanism could
were increased in be due to activation of
DPP-4-- mice. pGSK3, pANP and pAkt.

High fat diet with Ml Sitagliptin |. Sitagliptin improved Sitagliptin did not reduce  Sauve

streptozotocin-  LAD ligation for Pretreatment survival rate. infarct size, but improved et al.®

induced diabetic 4 weeks 250 mg/kg per day, 2. Sitagliptin did not reduce survival rate after Ml in

mice PO, 12 weeks infarct size. diabetic mice.

3. Sitagliptin increased GLP- The mechanism could be
| (7-36) amide level. due to activation of HO-I,
4. Sitagliptin lowered ANP, pAkt and improved
HbAlc level. blood glucose.
5. HO-I, ANP, pAkt
increased in sitagliptin
group.
6. pGSK3 tended to
increase in sitagliptin-
treated group.

Rat I/R VP VP did not reduce infarct  Intact GLP-| alone did not Bose
LAD ligation 20 mg/kg, SC, 30 min size. reduce infarct size. et al.26
30-min ischaemia before ischaemia
120-min reperfusion

Rat Ischaemic heart Vildagliptin I Vildagliptin increased Early or late vildagliptin Yin et al.>*
failure 15 mg/kg per day, active plasma GLP-1 level treatments had no infarct
I2-week LAD PO, 2 days prior to and decreased DPP-4 limiting effect on ischaemic
occlusion LAD occlusion activity. cardiac remodelling.

I5 mg/kg per day, 2. Vildagliptin did not mitigate

PO, beginning after the Ml-induced decrease in

LAD occlusion for 3 capillary density.

weeks 3. Vildagliptin could not
reduce cardiomyocyte size.

Isolated rat heart /R VP VP did not reduce infarct  Intact GLP-| alone did not Bose
Left main coronary  Pretreatment size whether given as reduce infarct size. et al.?
artery ligation 20 mg/L preconditioning or at
(regional ischaemia) VP reperfusion.
35-min ischaemia 20 mg/L
120-min reperfusion at reperfusion

Isolated rat heart /R VP VP alone did not reduce Intact GLP-I alone did not Bose
Left main coronary 20 mg/L, in perfusion infarct size. reduce infarct size. etal.?8

artery ligation

buffer, throughout

(regional ischaemia) experiment

35-min ischaemia
120-min reperfusio

n

I/R: ischaemia-reperfusion; LAD: left anterior descending coronary artery; PO: per oral; MI: myocardial infarction; pGSK: phosphorylated glycogen
synthase kinase; pANP: phosphorylated atrial natriuretic peptide; pAkt: phosphorylated Akt; GLP-1: glucagon-like peptide-1; HbA | c: haemoglobin
Alc; HO-I: heme oxygenase-|; VP: valine pyrrolide; SC: subcutaneous route; DPP-4: dipeptidyl pepetidase-4.
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Table 7. Summary of the effects of DPP-4 inhibitor on left ventricular function.

Animal  Study Drug/dose/route Major findings Interpretation References

species model

Rat Ischaemic Vildagliptin I. Vildagliptin did not improve ejection Early and late treatment  Yin et al.>*
heart failure |15 mg/kg per day, PO fraction and fractional shortening. with vildagliptin had no
12-week for 2 days prior to LAD 2. Progressive LV dilatation and wall beneficial effect on LV
LAD occlusion thinning after Ml was attenuated in function.
occlusion I5 mg/kg per day, PO vildagliptin-treated groups.

for 3 weeks after LAD 3. Vildagliptin did not improve dP/dt,,,,
occlusion and dP/dt,;,.

Isolated I/R Sitagliptin I Sitagliptin improved LVDP in Genetic deletion and Sauve

mice 30-min 20 mg/kg, IP, 12 h and | normoglycaemic mice. pharmacological inhibition et al.®

heart  global no h prior to heart excision 2. LVDP was increased in DPP-4’- mice ~ of DPP-4 activity
flow DPP-4-- mice compared with DPP-4*"* mice. improved LV function.
ischaemia Sitagliptin 3. Administration of sitagliptin immediately ~ Acute reduction of
40-min 5 pmol/L, in perfusion before I/R injury failed to improve LVDP  cardiac DPP-4 activity was
reperfusion  buffer, for 20 min before  in normoglycaemic mice. not sufficient to improve
I/R insult LV function.

Patients Coronary Sitagliptin I Sitagliptin increased plasma GLP-| level. Sitagliptin improved both Read
artery 100 mg, single PO 2. Sitagliptin lowered plasma glucose level.  global and regional LV et al.>0
disease and 3. Insulin level was comparable between  performance in response
preserved LV groups. to stress and also
function 4. Free fatty acid level was comparable reduced post-ischaemic

between groups.
5. Sitagliptin improved ejection fraction
and regional wall function during peak
dobutamine stress and 30 min of recovery.
6. Sitagliptin had a greater beneficial effect on
ischaemic than on non-ischaemic segments.

stunning.

LAD: left anterior descending coronary artery; PO: per oral; LV: left ventricle; Ml: myocardial infarction; I/R: ischaemia-reperfusion; IP: intraperito-
neal route; LVDP: left ventricle developed pressure; DPP-4: dipeptidyl pepetidase-4; GLP-1: glucagon-like peptide-1.

Table 8. Summary of the effects of DPP-4 inhibitor on haemodynamic parameters.

Animal Study Drug/dose/route Major findings Interpretation References

species  model

Mice MI DPP-4"- mice Aortic flow and mitral Genetic inhibition of DPP-  Sauve
LAD ligation for flow were comparable 4 activity did not alter etal®
4 weeks between DPP-4-- mice and haemodynamic parameters.

DPP-4** mice.

Mice Mi Sitagliptin Aortic flow and mitral Pharmacological inhibition of Sauve
LAD ligation for 250 mg/kg per day, PO, for  flow were comparable DPP-4 activity did not alter et al.#
4 days I'l days between sitagliptin and haemodynamic parameters.

control group.

Rat Ischaemic heart Vildagliptin Vildagliptin did not alter  Vildagliptin had no beneficial Yin
failure 15 mg/kg per day, PO for 2 heart rate, systolic and effect on haemodynamic et al.>
12-week LAD days prior to LAD occlusion diastolic blood pressure,  parameters.
occlusion 15 mg/kg per day, PO for 3 LV systolic and end

weeks after LAD occlusion  diastolic pressure.

Isolated I/R Vildagliptin Vildagliptin did not Vildagliptin did not alter Huisamen

rat heart 45-min global low  Pretreatment 10 mg/kg per  improve basal aortic haemodynamic parameters. et al.>3
flow ischaemia day, PO, for 4 weeks output and basal coronary
30-min reperfusion flow in both normal and

insulin resistant rat.

Patients  Coronary artery Sitagliptin Sitagliptin did not affect  Sitagliptin did not alter Read
disease and 100 mg, single oral dose heart rate, systolic and haemodynamic parameters. et al.>°
preserved LV diastolic blood pressure,
function and rate-pressure product.

MI: myocardial infarction; LAD: left anterior descending coronary artery; DPP-4: dipeptidyl pepetidase-4; PO: per oral; LV: left ventricle; I/R:

ischaemia-reperfusion.
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Effects of Kaempferia parviflora Wall. Ex. Baker and Sildenafil
Citrate on cGMP Level, Cardiac Function, and Intracellular
Ca?* Regulation in Rat Hearts
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Abstract: Although Kaempferia parviflora extract (KPE) and its
flavonoids have positive effects on the nitric oxide (NO) signaling
pathway, its mechanisms on the heart are still unclear. Because our
previous studies demonstrated that KPE decreased defibrillation
efficacy in swine similar to that of sildenafil citrate, the phosphodi-
esterase-5 inhibitor, it is possible that KPE may affect the cardiac
NO signaling pathway. In the present study, the effects of KPE and
sildenafil citrate on cGMP level, modulation of cardiac function, and
Ca?" transients in ventricular myocytes were investigated. In a rat
model, cardiac cGMP level, cardiac function, and Ca?" transients
were measured before and after treatment with KPE and sildenafil
citrate. KPE significantly increased the cGMP level and decreased
cardiac function and Ca®" transient. These effects were similar to
those found in the sildenafil citrate—treated group. Furthermore, the
nonspecific NOS inhibitor could abolish the effects of KPE and
sildenafil citrate on Ca®" transient. KPE has positive effect on NO
signaling in the heart, resulting in an increased cGMP level, similar
to that of sildenafil citrate. This effect was found to influence the
physiology of normal heart via the attenuation of cardiac function
and the reduction of Ca?" transient in ventricular myocytes.

Key Words: Kaempferia parviflora, sildenafil citrate, heart, cGMP,
cardiac function, Ca2" transient
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INTRODUCTION
Kaempferia parviflora Wall. Ex. Baker or Krachai-dam
belongs to the plant in Zingiberaceae family.! The rhizome
has been used in Thai traditional medicine for several
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purposes such as the treatment of allergy, gastrointestinal
disorders and rectifying male impotence.! Various studies
demonstrated that the crude extract of K. parviflora rhizome
and its flavonoids exert a positive effect on the nitric oxide
(NO) signaling pathway both in the in vivo and in vitro
studies.” ® K. parviflora extract (KPE) was shown to increase
the expression of endothelial nitric oxide synthase (eNOS)
mRNA and the protein level in primary cell culture of human
umbilical vein endothelial cells.? Moreover, it has been shown
recently that some flavonoids extracted from K. parviflora
rhizome can inhibit the activity of phosphodiesterase type
5 (PDE-5),® the enzyme that specifically cleaves the NO
mediator cGMP to 5GMP.” These effects of K. parviflora
results in an increased intracellular cGMP level.

Previous studies demonstrated that exposure to KPE
produced vasodilation in both in vivo and ex vivo
studies.**%? similar to the effects of NO on vasculature. It
has been shown that L-NS-nitroarginine methyl ester
(L-NAME), a nonspecific nitric oxide synthase (NOS)
inhibitor, can significantly decrease KPE-induced vasorelax-
ation of the aortic ring.* Moreover, the vasorelaxant effect of
flavonoids extracted from K. parviflora rhizome was found
to be related to NO signaling pathway.>® In addition, KPE
was shown to improve the endothelial dysfunction in strep-
tozotocin-induced diabetic rats.'® This effect was found to
be due to the increase of NO bioavailability by the effect of
K. parviflora."

Our previous study in swine demonstrated that KPE
decreased the defibrillation efficacy and increased the
vulnerability to arrhythmia,'' similar to that of the supra-
therapeutic concentration of sildenafil citrate, the PDE-5
inhibitor.'*!* This finding suggested that KPE may affect
the heart via NO/cGMP-dependent mechanism. However,
the effect of KPE on NO signaling pathway in the heart is
still unknown. In the present study, we hypothesized that
KPE has the positive effect on NO signaling pathway in
the heart via increased cGMP level. Because NO signaling
pathway plays a crucial role in attenuating intracellular Ca?*
concentration [(Ca2+);] via the modulation of L-type Ca®*
channel and Ca?" handling proteins of the heart,'"*"'” the
effects of KPE and sildenafil citrate on Ca?" transient and
cardiac function were also investigated in the present study.
We hypothesized that KPE attenuates cardiac function via
the reduction of Ca?" transient amplitude similar to that of
sildenafil citrate.
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MATERIALS AND METHODS

Preparation of KPE

K. parviflora rhizomes were obtained in the form of
coarsely ground powder from Thanyaporn Co, Ltd., Samut-
prakarn province, Thailand. The preparation of KPE was per-
formed using the protocol as described previously.'' Briefly,
the coarse powder of K. parviflora rhizomes was weighed
for 3000 mg, and extracted with 90°C saline 70 mL for
15 minutes. Then, the solution was filtered with Whatman
filtered paper No.l to collect the extract. The final volume
of the extract was ~50 mL (the concentration of the extract
stock solution was at 60 mg/mL).

In the present study, 2 different concentrations of KPE
were used base on their effects on cardiac electrophysiolog-
ical parameters as previously described.'"' The 100-mg/kg
KPE, the highest concentration from our preclinical study
was found to alter major cardiac electrophysiological param-
eters,'! whereas the 12.5 mg/kg did not change any cardiac
electrophysiological parameters.'!

In an in vivo model, the extract was collected and
diluted with saline for the final concentration of KPE at 12.5
or 100 mg/kg. In an in vitro model, the extract was added into
the bath solution for the final concentrations at 75, 150, or
300 pg/mL.

The Experimental Protocol in an In
Vivo Model

Animal Preparation and Cannulation for
Intravenous Injection

The study was approved by the Institutional Animal
Care and Use Committees of the Faculty of Medicine, Chiang
Mai University. Rats were received standard pelted rat diet
and water ad libitum before the study. Male Wistar rats
(~300 g) were anesthetized with thiopental (100 mg/kg,
intraperitoneally). Rats were operated to expose the left
internal jugular vein and cannulated with polyethylene tubing
(PE-60, Intramedic, Clay Adams, NJ) containing heparinized
saline (40 U/mL) for subsequent infusion of KPE, drugs or
saline vehicle.

The Measurement of cGMP Level in the Heart

The cardiac cGMP level was measured according to the
modified method of Favory et al.'® Briefly, frozen minced
ventricular samples were weighed and homogenized with
6% trichloroacetic acid in deionized water at a ratio of 1 g
wet weight: 3 mL trichloroacetic acid solution. The tissue
suspension was vortexed briefly before centrifuging at
2000g at 4°C for 15 minutes. The supernatant was washed
3 times with water-saturated diethyl ether and the upper ether
layer was discarded after each wash. The aqueous extract was
heated with 70°C in water bath for 5 minutes to discard the
remaining diethyl ether. The final solution was lyophilized
and analyzed for cGMP by a commercial ELISA kit (Param-
eter, R&D Systems, Minneapolis, MN).

Western Blot Analysis for NOS Expression

Frozen minced samples were homogenized with ice-
cold potassium phosphate buffer (pH 8.3) with protease
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inhibitor cocktail, and subsequently centrifuged at 800g for
10 minutes at 4°C. The supernatant was centrifuged at
15,000g for 20 minutes at 4°C, and the protein concentration
in the resultant supernatant was measured. Equal amount of
proteins were subjected to sodium dodecyl sulfate—
polyacrylamide gel electrophoresis. Blots were probed with
primary antibodies against eNOS, nNOS, and iNOS (Santa
Cruz Biotechnology, Inc, Santa Cruz, CA), and secondary
antibodies conjugated with horseradish peroxidase. Bound
antibodies were detected with the ECL detection system
(GE Healthcare Bio-sciences Corp, Piscataway, NJ). Subse-
quent detection of the specific proteins was normalized to
B-actin using Scion Image for Windows.

Experimental Protocol for Studying the Effect of
KPE on ¢cGMP Level and NOS Expression in
the Heart

The rats were divided into 4 groups (n = 8 in each
group). Group 1: saline; group 2: sildenafil citrate (Pfizer;
4 mg/kg, comparable to the supratherapeutic concentration);
groups 3 and 4: KPE (12.5 and 100 mg/kg, respectively).

After cannulation, the solutions including KPE, sildenafil
citrate or saline (1 mL each) were administered (0.5 mL/min,
intravenously (i.v.)). Thirty minutes after the end of the
treatments, the ventricles were rapidly removed, cleaned in
ice-cold saline, and then minced and divided into 2 halves for
cGMP level measurement and Western blot analysis for NOS
expression. The period of the study (30 min) was chosen
because our previous study indicated that the effect of KPE on
cardiac electrophysiology reached a peak 30 minutes after KPE
infusion.'!

Pharmacological Protocol for Studying the Effect of
KPE on the Downstream Cascade From NOS in
the Heart

The rats were divided into 5 groups (n = 8 in each
group). Group 1: saline-treated in combination with NO-donor,
nitroglycerin (NTG, Schwarz, Germany), and nonspecific
NOS inhibitor, L-NAME (Sigma Chemical, St. Louis, MO);
group 2: 12.5-mg/kg KPE with NTG and L-NAME; group 3:
12.5-mg/kg KPE combined with NTG only; group 4: 100-mg/kg
KPE with NTG and L-NAME; and group 5: 100-mg/kg KPE
combined with NTG only.

After internal jugular vein cannulation, rats in groups 1,
2, and 4 received a bolus of L-NAME (10 mg/kg," 0.25 mL,
intravenously). In other groups, saline was administered
instead of L-NAME. After L-NAME or saline injection, the
KPE or saline (1 mL each) were infused (0.5 mL/min). Sub-
sequently, a bolus of NTG (150 pg/kg,* 0.25 mL, intrave-
nously) was administered and maintained (50 pg/kg/min,
intravenously) throughout the experiment in all groups.
Thirty minutes after KPE or saline infusion, the ventricles
were rapidly removed, cleaned in ice-cold saline. and pro-
cessed to assess cGMP levels.

Experimental Protocol for Studying the Effect of
KPE on Cardiac Function

The rats were divided into 6 groups (n = 8 in each
group). Group 1: saline; groups 2 and 3: KPE (12.5 and

© 2012 Lippincott Williams & Wilkins
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100 mg/kg, respectively); groups 4 and 5, sildenafil citrate
(2 and 4 mg/kg, the latter concentration is comparable to the
therapeutic concentration); groups 6: L-NAME (10 mg/kg).
After the surgery for the insertion of the cardiac
pressure-conductance catheter (Scisense Inc, London,
Ontario, Canada), left ventricular (LV) function was assessed.
LV hemodynamic data was digitized and recorded using
a data acquisition system. After each experiment, end-systolic
pressure (ESP), end diastolic pressure, maximum -+dP/dt
and -dP/dt, end-systolic volume (ESV), end-diastolic volume
(EDV), ejection fraction (EF), and heart rate (HR) were
extracted during baseline and after administration of saline,
KPE (12.5 and 100 mg/kg), sildenafil citrate (2 and 4 mg/kg),
or L-NAME (1 mL each, 0.5 mL/min, intravenously) in
groups 1-6, respectively. The LV hemodynamics were mea-
sured again after the end of saline, KPE, or sildenafil citrate
infusion, and the data were compared against baseline.

The Experimental Protocol in an In
Vitro Model

Preparation of Isolated Ventricular Myocytes

Rat ventricular myocytes were isolated using an
enzymatic technique.’’ The rats were injected with 0.2
mL heparin intraperitoneally. After deep anesthesia, the
hearts were excised, and the aortas were cannulated rapidly.
The cannulated hearts were perfused on a Langendorff per-
fusion apparatus with oxygenated normal Tyrode solution
containing (in mM): 130 NaCl, 5.4 KCl, 0.75 CaCl,, 1.4
MgCl,, 0.4 NaH,PO,4, 10 glucose, 4.2 HEPES, 20 taurine,
10 creatine) at 37°C in the first column at constant flow
(~2 mL/min) for 10 minutes. Then, the hearts were
switched to the second column and perfused with oxygen-
ated Ca?*-free Tyrode solution. After 5 minutes, the hearts
were switched to the third column (enzymatic buffer),
where they were digested with the 30-mL normal Tyrode
solution containing 1 mg/mL of collagenase type II (Gibco,
Invitrogen Corporation, CA), for another 7 minutes. After
that, the hearts were cut off the cannula, and the aortas and
atria were removed from the hearts. The remaining ventric-
ular tissues were cut into several pieces with scissors in the
same enzymatic buffer from the third column. Then the
cardiomyocytes in the solution were dispersed gently by
a wide tipped pipette and filtered through nylon mesh into
a plastic tube. After the cardiomyocytes were pelleted by
gravity for ~6 minutes, the supernatant was aspirated and
the cell pellet was resuspended and incubated in the warm
normal Tyrode solution before the use.

The Measurement of Ca?* Transient

The Ca?* transient in rat ventricular myocytes was mea-
sured by a fluorimetric ratio technique.** The fluorescent Ca?*
indicator Fura-2 was loaded by incubating the cardiomyo-
cytes at room temperature for 20-30 minutes with 25 pM
of Fura-2/AM (Sigma Chemical, St. Louis, MO). The back-
ground and cell autofluorescence were cancelled out by zero-
ing the output using cells without Fura-2/AM loading.
Ultraviolet light at the wavelengths of 340 and 387 nm were
used for the excitation of the Fura-2 from a xenon arc lamp

© 2012 Lippincott Williams & Wilkins

controlled by a microfluorometry system (Cell, Olympus,
Tokyo, Japan), and the excitation light beam was directed
into an inverted microscope (IX-81; Olympus). The ratio of
emitted fluorescence signals from the Fura-2/AM loaded car-
diomyocytes at 510 nm were recorded. The Ca®" transient
parameters including the Ca?" transient amplitude, the Ca*
transient rising and decay rate, and the diastolic Ca?" level
were measured during 1-Hz field-stimulation with 10-ms
supramaximal threshold strength square-wave pulses. The
fluorescence ratio data was processed and stored in a computer
using Xcellence imaging software (Olympus).

Experimental Protocol for Studying the Effects of
KPE and Sildenafil Citrate on Ca2+ Transient in
Isolated Ventricular Myocytes

The ventricular myocytes were divided into 6 groups
(n=8-12 in each group). Before the saline, KPE, or sildenafil
citrate superfusion, the Ca®" transient in each group was mea-
sured as the baseline. After that, in group 1, saline was super-
fused to serve as a control group. In groups 2, 3, and 4, KPE
at several concentrations (75, 150, and 300 pg/mL, respec-
tively) was superfused. The 300 wg/mL KPE (approximately
consistent with the 20-mg/kg KPE in our in vivo studies) was
chosen because it decreased the Ca?" transient in isolated
ventricular myocytes within 5 minutes of superfusion. The
concentration of KPE higher than 300 pg/mL was shown to
have the cytotoxic effects; cells displayed obvious shrinkage
within 5 minutes after superfusion of the extract.

In groups 5 and 6, sildenafil citrate (30 and 60 pg/mL,
respectively, approximately comparable with the concentra-
tion of 2 and 4 mg/kg in our in vivo study), were superfused.
The Ca?' transient was measured again at 5 minutes after
sildenafil citrate superfusion and at 5 and 10 minutes after
KPE or saline superfusion.

Experimental Protocol for Studying the Effects of
KPE and Sildenafil Citrate in Combination With
L-Name On Ca?* Transient in Isolated
Ventricular Myocytes

The ventricular myocytes were treated with L-NAME
(1 mM) for 5 minutes, after which the Ca®" transient was
measured as the baseline value. These L-NAME-treated car-
diomyocytes were divided into 6 treatment groups (n = 8—12
in each group): saline, KPE (75, 150, and 300 pg/mL), or
sildenafil citrate (30 and 60 wg/mL). In the sildenafil-treated
groups, Ca?" transients were measured at 5 minutes after
sildenafil superfusion. In saline and KPE-treated groups,
Ca®" transients were measured at 10 minutes (the effective
time obtained from the in vitro protocol) after saline or KPE
superfusion.

Experimental Protocol for Studying the Effects of
KPE and Silenafil Citrate in Combination With
L-NAME and NTG on Ca?" Transient in Isolated
Ventricular Myocytes

The ventricular myocytes were treated with L-NAME
(1 mM) in combination with NTG (10 uM) for 5 minutes,
after which the Ca?* transient was measured as the baseline.
These cardiomyocytes were divided into 3 groups (n = 8—12
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FIGURE 1. Effects of KPE (12.5 and 100 mg/kg), sildenafil
citrate (4 mg/kg), and saline (n = 8 in each group) on the
cGMP level in rat hearts. *P < 0.05 vs. saline; #P < 0.05 vs.
sildenafil citrate; TP < 0.05 vs. KPE12.5.

in each group) as follows: saline, KPE (300 wg/mL), or sil-
denafil citrate (60 wg/mL). Five minutes after sildenafil citrate
superfusion, Ca?" transient was measured again to compare
against baseline. In saline-treated and KPE-treated groups,
Ca?" transients were measured again at 10 minutes after
superfusion of saline or the extract to compare against the
baseline.

Statistical Analysis

Values are expressed as mean =+ SD in all studies. Com-
parisons of variables at baseline and after saline, KPE, silde-
nafil citrate or L-NAME treatment in each group were
performed using the Wilcoxon Signed Ranks test. Compari-
sons of variables between experimental groups were

FIGURE 2. Effects of KPE (12.5
and 100 mg/kg), sildenafil citrate
(4 mg/kg), and saline (n = 8 in each
group) on NOS expression in rat
hearts. A, Proteins by Western blot
analysis in rat hearts; B, eNOS; C,
nNOS; D, iNOS.
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performed using the Mann—Whitney U test. P < 0.05 was
considered statistically significant.

RESULTS

The In Vivo Studies
Effect of KPE on cGMP Level in the Hearts

At 30 minutes after treatment, the intravenous admin-
istration of both 100-mg/kg KPE and 4-mg/kg sildenafil
citrate significantly increased cGMP level in the ventricles
(Fig. 1). The level of cGMP in the sildenafil citrate—treated
group (the positive control) was also higher than that of the
100-mg/kg KPE-treated group. However, the cGMP level in
the 12.5-mg/kg KPE group was not changed compared with
the saline-treated group (Fig. 1).

Effect of KPE and Sildenafil Citrate on NOS
Expression in the Hearts

Figure 2 represents the expression of NOS in the ven-
tricles after KPE, sildenafil citrate, or saline treatment. KPE at
any concentration, sildenafil citrate (4 mg/kg), or saline did
not alter the expression of eNOS and the other 2 types of
NOS, nNOS and iNOS, in the ventricles at 30 minutes after
intravenous administration of the treatment.

Effect of KPE on Downstream Cascade From NOS
in the Hearts

Because we found that the 100-mg/kg KPE increased
cGMP level but did not change the expression of any type of
NOS in rat ventricles, we further hypothesized that KPE
increases cGMP by inhibiting PDE-5, similar to that of
sildenafil citrate. To test this hypothesis, L-NAME, the
nonspecific NOS inhibitor, was used to inhibit all types of
NOS, and NTG, the NO donor, was used as the source of NO
to control the level of exogenous NO in all groups. This

© 2012 Lippincott Williams & Wilkins
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FIGURE 3. Effects of KPE (12.5 and 100 mg/kg) and saline
combination with NO donor, NTG, and NOS inhibitor,
L-NAME, or with NO donor only (n = 8 in each group) on the
cGMP level in rat hearts. *P < 0.05 vs. saline; #P < 0.05 vs.
KPE12.5 + NTG + L-NAME; P < 0.05 vs. KPE12.5 + NTG only;
P < 0.05 vs. KPET0O + NTG + L-NAME.
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would allow us to elucidate whether increased cGMP was
caused by the effect of KPE on NOS or its downstream
cascade. Our results demonstrated that in the group treated
with 100-mg/kg KPE combined with L-NAME and NTG, the
cGMP level in the ventricles was significantly higher than the
control (ie, saline plus L-NAME and NTG) group (Fig. 3).

Moreover, in the group treated with 100-mg/kg KPE com-
bined with NTG only, the cGMP level was significantly
higher than that in the KPE-treated group with L-NAME
and NTG (Fig. 3). The ¢cGMP level of both 12.5-mg/kg
KPE—treated groups (in combination with NTG) with or
without L-NAME was not different from that in the control
group. However, the cGMP level in the group without
L-NAME was significantly higher than that in the group
with L-NAME (Fig. 3).

Effects of KPE and Sildenafil Citrate on
Cardiac Function

Table 1 shows a tabulation of LV hemodynamic
parameters including ESP, end-diastolic pressure, maxi-
mum +dP/dt and —dP/dt, ESV, EDV, EF, and HR after the
treatments of KPE, sildenafil citrate, L-NAME, or saline
compared with baseline. We found that after 30 minutes,
KPE (100 mg/kg) degraded cardiac function as shown
by the significantly decrease of ESP, maximum +dP/dt
and —dP/dt, and ESV compared with baseline of the same
group. Additionally, both concentrations of sildenafil citrate
significantly degraded cardiac function by the same param-
eters as 100-mg/kg KPE—treated group within 5 minutes
after the end of drug administration. In L-NAME—treated
group, ESP, maximum +dP/dt and —dP/dt, ESV, and EDV
were found to increase within 5 minutes after the end of
L-NAME administration. However, EF and HR were not
changed in these groups. KPE at 12.5 mg/kg or saline did
not alter any LV hemodynamic parameters.

TABLE 1. Effects of KPE (12.5 and 100 mg/kg), Sildenafil Citrate (2 and 4 mg/kg), L-NAME (10 mg/kg), and Saline on the Cardiac

Function (n = 8 in Each Group)

Group 1 Group 2 Group 3

Parameters Baseline Saline Baseline KPE (12.5 mg/kg) Baseline KPE (100 mg/kg)
ESP (mm Hg) 176 £ 16 178 + 16 188 + 21 191 £ 21 185+ 12 171 + 8*
EDP (mm Hg) 47 +£4 48 £ 4 50+3 51+2 44 +£3 43 +£2
Maximum +dP/dt (mm Hg/s) 8821 + 767 8839 + 675 8954 + 649 8827 + 845 8424 + 327 7840 + 403*
Maximum -dP/dt (mmHg/s) 4554 + 933 4407 + 980 4698 + 802 4794 + 842 4145 + 538 2963 + 243*
ESV (% of baseline) 100 103 + 14 100 104 + 18 100 98 £ 16
EDV (% of baseline) 100 100 + 4 100 99 +2 100 89 + 6%
EF (% of baseline) 100 98 +£7 100 98 £ 10 100 96 + 10
HR (bpm) 442 + 31 439 £ 35 425 +£43 418 £ 50 420 + 22 417 + 14

Group 4 Group 5 Group 6

Parameters Baseline Sildenafil Citrate (2 mg/kg) Baseline Sildenafil Citrate (4 mg/kg) Baseline L-NAME
ESP (mm Hg) 187 +£9 176 + 14* 181 £6 165 + 8* 186 + 30 224 + 43%
EDP (mm Hg) 52+3 5142 43+5 43 + 4 45+3 49 + 6*
Maximum +dP/dt (mm Hg/s) 8791 + 471 8173 + 337* 8807 + 499 7586 + 603* 8433 £474 9476 + 378*
Maximum -dP/dt (mmHg/s) 4459 + 848 3058 + 309* 4018 + 430 2739 + 697* 4298 + 940 5053 + 891*
ESV (% of baseline) 100 94 £ 17 100 97 + 31 100 183 + 54*
EDV (% of baseline) 100 92 + 8* 100 89 £ 11* 100 138 + 24%
EF (% of baseline) 100 99 £ 6 100 96 + 21 100 86 + 21
HR (bpm) 436 £ 16 444 + 16 434 + 37 439 + 40 434 + 22 416 £ 15

Values are expressed as mean + SD.
*P < 0.05 versus baseline of the same group.
EDP, end diastolic pressure.

© 2012 Lippincott Williams & Wilkins
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group.

The In Vitro Studies

Effects of KPE and Sildenafil Citrate on Ca?*
Transient in Isolated Ventricular Myocytes

Figure 4A represents the Ca?" transient tracings of iso-
lated ventricular myocytes treated with KPE, sildenafil citrate,
and saline. KPE at the concentration of 300 pg/mL signifi-
cantly decreased the Ca?" transient amplitude (Fig. 4B), rising
(Fig. 4C) and decay rate (Fig. 4D) within 5 minutes (19%,
19%, and 22% respectively) and showed the progressive
decrease of these parameters at 10 minutes of KPE superfusion
(33%, 33%, and 34%, respectively). The superfusion of KPE at
150 pg/mL decreased Ca®" transient amplitude, rising and
decay rate at 10 minutes of KPE superfusion (17%, 17%,
and 20%, respectively). KPE at 75 pg/mL did not change
the Ca?* transient amplitude, rising and decay rate.

6 | www.jcvp.org

After the superfusion of sildenafil citrate at 60 and
30 wg/mL for 5 minutes, the Ca®* transient amplitudes were
decreased by 32% and 25%, respectively (Fig. 4B), the Ca"
transient rising rates were decreased by 32% and 25%,
respectively (Fig. 4C), and the Ca®" transient decay rates were
decreased by 36% and 27%, respectively (Fig. 4D). Saline did
not alter Ca?* transient amplitude, rising and decay rate.
Additionally, the diastolic Ca®* level was not altered from its
baseline after being treated with any of the tested concentra-
tions of KPE, sildenafil citrate, and saline (Fig. 4E).

Effects of KPE and Sildenafil Citrate on Ca?*
Transient in Combination With L-Name in Isolated
Ventricular Myocytes

This study was performed to determine whether KPE
and sildenafil citrate modulate Ca?* transient through the

© 2012 Lippincott Williams & Wilkins
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NO/cGMP signaling pathway. It is known that this pathway
attenuates intracellular Ca?* level via the regulation of
L-type Ca?" channel and Ca?" handling proteins."*"'” To
prevent intracellular cGMP production via NO before KPE
or sildenafil citrate was applied to the ventricular myocytes,
all types of NOS were inhibited with nonspecific NOS inhi-
bitor L-NAME in this series of experiment. We hypoth-
esized that the disturbance of c¢cGMP production by
L-NAME could abolish the effects of KPE and sildenafil
citrate on Ca?" transient.

Figure 5 represents the effect of L-NAME on the Ca?"
transient of isolated ventricular myocytes. It was found that
after 5 minutes of L-NAME treatment, the Ca%" transient
amplitude, rising and decay rate or diastolic Ca?" level did
not change compared with the baseline. These effects of
L-NAME-treated cardiomoycytes served as baseline for fur-
ther studying the effects of KPE and sildenafil citrate
treatments.

In L-NAME-treated cardiomyocytes, neither KPE of
any concentrations nor sildenafil citrate altered the Ca?* tran-
sient amplitude, rising or decay rate, compared with the ven-
tricular myocytes treated with L-NAME alone (baseline)
(Fig. 6). Moreover, the diastolic Ca®" level was not altered
in any of these groups. Saline did not alter Ca®* transient after
L-NAME superfusion in isolated ventricular myocytes.

© 2012 Lippincott Williams & Wilkins

Experimental Protocol for Studying the Effects of
KPE and Silenafil Citrate in Combination With
L-NAME and NTG on Ca?* Transient in Isolated
Ventricular Myocytes

In L-NAME-treated cardiomyocytes in combination with
NTG, KPE (300 pg/mL) and sildenafil citrate (6 pg/mL)
decreased the Ca?" transient amplitude, rising and decay rate,
compared with the pretreatment of the extract or sildenafil cit-
rate (Fig. 7). However, the diastolic Ca?* level was not altered
in these groups. Saline did not alter Ca®?" transient after
L-NAME combined with NTG superfusion in isolated ventric-
ular myocytes.

DISCUSSION

The major findings of the present study are as follows:
(1) The 100-mg/kg KPE increased cardiac cGMP level via
downstream cascade from NOS; (2) The 100-mg/kg KPE and
both supratherapeutic and therapeutic concentrations of
sildenafil citrate decreased cardiac function in the normal
rat heart; (3) The 100-mg/kg KPE and both supratherapeutic
and therapeutic concentrations of sildenafil citrate decreased
Ca?" transient via the NO signaling pathway from its down-
stream cascade from NOS; (4) L-NAME increased cardiac
function without the changing of Ca?* transient.

www.jevp.org | 7
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Although various studies demonstrated that KPE and its
bioactive flavonoids have the positive effects on the NO
signaling pathway in the vessels and endothelial cell culture,*
its effect on the heart had not been investigated. Our study is
the first to demonstrate that a high concentration of KPE
(100 mg/kg) also affected the NO signaling pathway in rat
hearts, and that its effect was similar to that of sildenafil citrate
(a PDE-5 inhibitor), the positive control. In the present study,
a high concentration of KPE (100 mg/kg) significantly
degraded cardiac function in vivo at 30 minutes after the end
of KPE infusion. This effect of KPE is possibly due to the
increased cGMP level in the heart. This is supported by our
findings that sildenafil citrate, the PDE-5 inhibitor that
increased cGMP intracellularly and represented the positive
effect of NO signaling pathway on cardiac function in our
study, could decrease the cardiac function in the same manner
of the high concentration of KPE. These results indicate that

8 | www.jcvp.org

NO-cGMP signaling pathway could possibly explain the
mechanism by which KPE modulates cardiac function. In
L-NAME-treated group, the cardiac function was found to
increase compared with baseline. This result suggested that
the inhibition of NO signaling pathway could cause the aug-
mentation of cardiac contractility, whereas the enhancement of
this pathway causes the contrary result.

In the present study, we found that at 30 minutes after
the end of KPE infusion, cGMP level in rat hearts increased,
even though NOS expression in the heart was not changed.
Although the study of Wattanapitayakul et al* in 2007 found
that KPE increased the expression of eNOS mRNA and pro-
tein in human umbilical vein endothelial cells, we did not
observe the change of cardiac eNOS and the other 2 types
of NOS protein expressions in our study. This could be due to
the different organs used, period of the treatment, animal
species, and study protocol. Furthermore, we also found that

© 2012 Lippincott Williams & Wilkins
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when all types of NOS were inhibited by L-NAME, cGMP
level was still increased after the administration of the high
concentration of KPE (ie, saline vs. KPE100 + NTG +
L-NAME, Fig. 3). These results suggest that the increased
cGMP level by KPE in the heart depend on neither the
increasing NOS expression nor NOS activity. Because
K. parviflora has been shown to have many kinds of flavo-
noids,>* ¢ and previous studies demonstrated that some fla-
vonoids and polyphenolic compounds from K. parviflora and
other herbal plants exhibit PDE-5 inhibitory effect.’*"°
Therefore, we hypothesized that KPE used in the present
study could have the PDE-5 inhibitory effect in the heart.
Although we found that the 100-mg/kg KPE can increase
cGMP level in the ventricle, it was found to be much lower
than the effect of 4-mg/kg sildenafil citrate. This finding sug-
gests that KPE could have mild PDE-5 inhibitory effects
compared with that of sildenafil citrate as observed in the
present study. Additionally, we found that cardiac cGMP
level in the KPE-treated groups that NOS was not inhibited
(ie, groups 3 and 5, Fig. 3) were higher than that of the same
KPE-treated groups, and NOS was inhibited by L-NAME
(ie, groups 2 and 4, Fig. 3). These findings suggest that the
endogenous NO from NOS also plays a role in the difference
of cGMP production in these groups.

© 2012 Lippincott Williams & Wilkins

Because KPE was found to cause vasorelaxation
through the NO-cGMP signaling mechanism,* it is possible
that KPE decreased the cardiac function through the direct
effect on the heart via the modulation of excitation—contrac-
tion coupling or the indirect effect via its effect on vascula-
ture. We investigated this hypothesis by studying the effect of
KPE in isolated ventricular myocytes which could provide
evidence for cardiac contractility via the Ca?* induced Ca®"
release and excitation—contraction coupling without the inter-
ference of vascular effect of KPE. It is well recognized that
the NO-cGMP signaling pathway regulates many types of
ions via the modulation of ion channels and ion-handling
proteins in cardiomyocytes.'*'7?°3? Among various types
of ions, Ca?" is the important ion that plays a role in the
regulation of electrical and mechanical function of the heart,
that is the generation of action potential and excitation—
contraction coupling in each cardiac cycle.*® The NO-cGMP
signaling pathway is one of the crucial pathways that attenu-
ate the (Ca?"); via the modulation of L-type Ca?" current
(Ica.r) and Ca?" recycling by the sarcoplasmic reticulum.'*"”
Our results demonstrated that KPE and sildenafil citrate
decreased Ca?" transient amplitude, rising and decay rate, in
isolated ventricular myocytes. When treated with the nonspe-
cific NOS inhibitor L-NAME to completely inhibit the
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generation of cGMP intracellularly, the effects of both KPE
and sildenafil citrate were completely eliminated. These
effects reappeared again when the NO donor NTG was added
to activate the downstream cascade from NOS. These findings
suggest that cGMP is the important mediator of KPE and
sildenafil citrate in the modulation of Ca?* transient in ven-
tricular myocytes. Decreased Ca?" transient amplitude and
rising rate of ventricular myocytes by KPE and sildenafil
citrate may result in the reduction in the cardiac contractility
as shown by the decreased maximum -+dP/dt, whereas the
decreased Ca?' transient decay rate may result in diastolic
dysfunction as shown by the decreased maximum —dP/dt in
our in vivo study. Although KPE and sildenafil citrate de-
creased Ca?* transient decay rate in isolated cardiomyocytes,
the baseline diastolic Ca?" levels were not altered. These
findings suggest that KPE not only decreased the Ca?* influx
but also slowed down the process of getting rid of Ca?* from
the cytoplasm during each cardiac cycle.

Our results also demonstrate that L-NAME alone did
not change Ca?* transient amplitude, rising or decay rate,
and diastolic Ca®" level in isolated ventricular myocytes.
This result suggests that the basal level of cGMP does not
alter Ca?* transient of isolated ventricular myocytes. This
finding is consistent with the previous study that L-NAME
did not change the Ca?* transient in LV-free wall of guinea
pig hearts.** Although our cardiac function study showed
that L-NAME increased cardiac contractility, this finding
does not depend on the direct effect of L-NAME on
intracellular Ca?* regulation. In addition, the other study
in isolated—perfused rabbit hearts also found that the non-
specific NOS inhibitor, L-NC®-nitroarginine, did not change
cardiac contractility.®® Because L-NAME is the drug that
was used to increase the blood pressure in hypertensive
animal model,>® the increase of cardiac function after
L-NAME treatment may be due to the compensatory mech-
anism against hypertensive effect of L-NAME (ie, Frank-
Starling mechanism in response to the increased preload
through the enhanced myocyte distension).?’

CONCLUSIONS

Similar to sildenafil citrate, KPE increased cardiac
cGMP level via the downstream cascade from NOS in the
NO signaling pathway. KPE reduces the Ca®" transient, thus
attenuating L'V performance in rats.

STUDY LIMITATION

The present study measured cGMP levels and NOS
expression in the whole ventricles. It is possible that the cGMP
level, NOS expression, and the effect of KPE vary within the
heart, that is, left and right ventricle or endocardium to
epicardium could be different. Also, the absolute Ca?* concen-
tration in the isolated ventricular myocytes was not known in
the present study because we measured the relative change of
fluorescence intensity of Fura-2 as the Ca®>" transient. More-
over, the effects of KPE on the contractile proteins were not
investigated in the present study. Because NO-cGMP signaling
pathway also modulates the excitation—contraction coupling

10 | www.jcvp.org

via the desensitization mechanism of myofibril to Ca?* in the
heart,*® it is possible that KPE may influence the coupling
between Ca?' and contractility.
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unclear. Several previous studies have revealed the detrimen-
tal effects of low-dose irradiation on cells, such as increases in
reactive oxygen species (ROS) formation,” DNA double-strand
breaks®, chromosomal breakage4. However, some studies
have shown contrasting results of low-dose irradiation. For
example: (1) several studies have suggested that low-dose
irradiation (<50 mGy) induces cell proliferation in various cell
types, such as human lung fibroblasts®, normal human diploid
cells®, Chinese hamster fibroblasts’, neuron cells®, and bone
marrow cells®. (2) Ahmed and colleagues have suggested that
cyclin D1 expression, an important regulator of G1 to S-phase
transition in the cell cycle involving cellular proliferation, is
up-regulated by low-dose ionising radiation (100 mGy) in
human keratinocytes with adaptive radioresistance.’® (3)
Previous in vitro and in vivo studies have reported that low-
dose irradiation (250-500 mGy) can detoxify the deleterious
effects of radiation-induced ROS formation by increasing
intracellular glutathione and superoxide dismutase produc-
tion 3-6 h post-irradiation.***?

Dental irradiation is classified as low-dose irradiation,
since intraoral radiography can produce only 3.9 mGy of
irradiation. Low-dose irradiation may be harmful to oral
tissues, particularly oral bone cells. In addition, a recent
clinical study has demonstrated that extra-oral panoramic
radiography can induce chromosomal damage to oral mucosal
cells 10 days post-irradiation. Branemark and colleagues
have recommended of not performing dental irradiation
procedures immediately after dental implantation due to
the possibility of the detrimental effects of dental irradiation
on the healing and remodelling of bone.” However, the effects
of intra-oral radiography, particularly periapical irradiation of
bone cells, have not yet been studied.

Therefore, in this study, we aimed to determine the effects
of low doses of dental irradiation on osteoblastic cells by
measuring cell viability, ROS production, and the apoptotic
process by using an apoptotic marker (the ratio of Bax and Bcl-
2) as well as cellular proliferation by using a cellular
proliferative marker (cyclin D1).

2. Materials and methods
2.1. Osteoblastic cell culture

Murine osteoblastic MC3T3-E1 cells were cultured in complete
Dulbecco’s modified Eagles medium (DMEM), containing 10%
foetal bovine serum (FBS), Penicillin G (100 U/ml), Streptomycin
sulphate (100 pg/ml), Amphotericin B (25 pg/ml) and r-gluta-
mine (2 mM) at 37 °C in 95% air/5% CO,. When the cells reached
confluence, they were subcultured using 0.025% EDTA trypsin.
The cells were seeded at a density of 5000 cells/well in a 96-well
plate for measurement of intracellular reactive oxygen species
and cell viability, and 400,000 cells/dish in 35 mm tissue culture
dishes for protein extraction. The plates were incubated at 37 °C
in a CO, incubator for 24 h before dental irradiation.

2.2. Cell irradiation

The cultures were irradiated with 0 (the controls), 1, 5 and 10
multiples of a standard dose for a periapical film radiograph,

using a portable dental X-ray machine generator (NOMAD™,
Aribex, Inc., Orem, UT, USA). The radiographic parameters for
one dose were 60 kVp, 2.3 mA, 0.4 s. The focal-object distance
was 7.5in. One-dose periapical irradiation was 1.5 mGy as
measured by an X-ray test device (NERO mAx 8000*, Fluke
Biomedical, Cleveland, OH, USA). Multiples of 1.5 mGy were
delivered acutely and without any time interval between the
fractions. Four hours after irradiation, the cells were collected
for the intracellular reactive oxygen species analysis. Changes
in cell viability and the expression of Bcl-2, Bax and cyclin D1
were determined after irradiation, as described below.

2.3.  Determination of intracellular ROS

The formation of ROS was evaluated using the oxidation-
sensitive dye 2,7-dichlorofluorescein diacetate (DCFH-DA).
The cell cultures that had been exposed to dental radiation
were treated with 5 pmol/l DCFH-DA in de-ionised (DI) water
for 30 min. The fluorescence intensity was determined within
5 min thereafter using a Fluostar Optima microplate spectro-
fluorometer (BMG Lab Technologies, Offenburg, Germany) at
485 nm excitation and 540 nm emission.®

2.4.  MTT assay for cell viability

The viability of the MC3T3-E1 cells was investigated by MTT
conversion after aspiration of the culture supernatants.
Monolayers of MC3T3-E1 cells were replenished with culture
medium and 50 pl MTT reagent [5mg/ml in phosphate
buffered saline (PBS)] were added. Culture plates were then
incubated for 4 h at 37 °C in a humidified atmosphere (5% CO,/
95% air), after which the cells were washed twice with PBS.
After the supernatants were aspirated off again, 200 pl
dimethyl sulfoxide was added, and the optical density was
measured at 570nm using an automated plate reader
(Spectramax 340PC; Molecular Devices, Sunnyvale, CA,
USA). All experiments were performed in triplicate.

2.5.  Bcl-2, Bax, and cyclin D1 expression by western blot
analysis

Cells were suspended in 200 pl lysis buffer [10 mM Tris-HCl,
pH7.4,0.1% (SDS)] and supplemented with a protease inhibitor
cocktail (Roche complete mini-tablets, Roche Molecular
Biochemicals, Indianapolis, IND, USA). Samples were left on
ice for 20 min and centrifuged at 14,000 x g for 10 min at 4 °C,
and the supernatant was collected. Protein concentration was
determined using a bicinchoninic acid (BCA) protein assay kit
(Pierce, Rockford, IL, USA). Proteins were separated by gel
electrophoresis and transferred to nitrocellulose membranes.
Blots were incubated in 5% nonfat dried milk-TBS for 1h at
room temperature, followed by incubation with primary
antibodies to cyclin D1(1:200), Bax(1:400), Bcl-2 (1:200) and B-
actin (1:400) (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
overnight at 4 °C. After washing three times in TBS, the blots
were incubated with horse radish peroxidase (HRP)-conjugat-
ed secondary antibodies for 1h at room temperature. Bands
were detected using the enhanced chemiluminescence kit
(Amersham Biosciences, Piscataway, NJ, USA) and Kodak X-
Omat Blue Film (Eastman Kodak, Rochester, NY, USA). Band
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intensity was quantified by the Scion Image program and the
results were shown as average signal intensity (arbitrary
units).

2.6. Statistical analysis

Data were expressed as mean =+ standard error (SE). The data
were analysed using the Mann-Whitney U test to compare
between all different experimental groups. Significance was
assessed when p < 0.05. Statistical analyses were performed
using the SPSS software, version 13.0 (SPSS Version 13.0, SPSS,
Chicago, IL).

3. Results
3.1.  Dental radiation has no effect on cell viability

Osteoblastic MC3T3-E1 cells were irradiated with 0 (0 mGy), 1
(1.5 mGy), 5 (7.5 mGy), 10 (15 mGy) multiples of a standard dose
for a periapical film radiograph and cell viability was
determined by MTT assay 24 h post-irradiation, since radia-
tion-induced apoptosis begins delayed to a peak and extends
to over about 24 h.'® There were no statistically significant
differences in MTT activity in irradiated osteoblastic cells
between the individual doses and the non-irradiated controls,
as shown in Fig. 1. These findings suggest that dental
irradiation did not affect cell viability 24 h following irradia-
tion.

3.2.  Low-dose dental irradiation reduces ROS production;
however, high dose irradiation increases ROS production

Osteoblastic MC3T3-E1 cells were irradiated with 0, 1, 5, 10
multiples of a standard dose for a periapical film radiograph
and intracellular ROS production was determined by a
fluorescent probe, [2/,7’-dichlorofluorescein diacetate (DCFH-
DA)] 4 h post-irradiation. We determined ROS production 4 h
post-irradiation because it has been shown that the level of
antioxidant is at maximal levels 4 h after irradiation.”® We
found that one dose (1.5 mGy) of dental irradiation signifi-
cantly decreased intracellular ROS production, but, 10 doses
(15mGy) of dental radiation significantly increased ROS
production 4h following irradiation when compared with
the non-irradiated controls, as shown in Fig. 2.

3.3.  Dental irradiation has no effects on the apoptotic
process, but possibly decreases the cellular proliferation in
osteoblastic cells

We investigated the expression of proteins that are linked to
cell proliferation (cyclin D1) and cellular apoptosis (Bax/Bcl-2)
24 h after dental irradiation. We found that 10 doses dental
irradiation significantly decreased cyclin D1 in osteoblastic
cells when compared with the non-irradiated controls, as
shown in Fig. 3. However, the ratio of Bax/Bcl-2 expression
from osteoblastic cells demonstrated no statistical difference
between irradiated cells and the controls. The average ratio of
Bax/Bcl-2 after 0, 1, 5 and 10 doses of dental irradiation were
140.0, 1.052 £+ 0.33, 0.998 + 0.061 and 1.128 + 0.113, respec-

120 4

100 4

e
=]
i

MTT Activity (a.u.)
=

40 4
20 4
0 -
0 1 2 5 10 Doses
0 1.5 3 7.5 15 mGy

Dental Irradiation

Fig. 1 - The effects of dental irradiation on cell viability.
Osteoblastic cells were irradiated with 0, 1, 2, 5, 10
multiples of a standard doses of for a periapical film
radiography (1.5 mGy/dose). Cell viability was assessed
24 h post-irradiation using MTT assay (n = 5). All doses of
dental radiation did not affect the entire population of
osteoblasts. Values represent the mean =+ SE.

tively. These findings suggest that high doses of dental
irradiation impair osteoblastic cell proliferation; however,
the dental irradiation did not induce apoptotic activity in
osteoblastic cells.

140 + |
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Fig. 2 - The effects of dental irradiation on intracellular ROS
production. Osteoblastic cells were irradiated with 0, 1, 5,
10 multiples of a standard dose for a periapical film
radiography (1.5 mGy/dose) (n = 5). ROS production was
assessed 4 four hours post-irradiation using a fluorescent
probe, 2',7'dichlorofluorescein diacetete (DCFH-DA). The
ROS production was significantly reduced after one-dose
of periapical radiography. However, after 10 doses of
periapical radiation ROS production was significantly
increased. Values represent mean * SE. 'p < 0.05
compared to the controls (0 mGy).
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Fig. 3 - The effect of dental irradiation on cyclin D1, Bax and
Bcl-2 expression. (A) A representative western blot
analysis is shown. The western blot analyses were carried
out on total protein lysates from cells irradiated with 0, 1,
5, 10 multiples of a standard dose for a periapical film
radiography (1.5 mGy/dose) (n = 4). B-Actin was used as a
loading control. (B) The levels of protein cyclin D1
significantly decreased when irradiated with 10 doses of
periapical radiography (15 mGy) (n = 4). Values represent
mean + SE. p < 0.05 compared to the controls (0 mGy).

4, Discussion

This is the first in vitro study demonstrating that periapical
doses of irradiation affect osteoblastic cells. A previous clinical
study illustrated that panoramic radiography induces chro-
mosomal damage in oral mucosal cells.* However, that finding
cannot explain the various effects of dental irradiation on
other types of oral cells because radiation responses depend
on several factors, such as cell types, cell radiosensitivity,
radiation dose and radiation dose-rate.”

The present study revealed that one dose of dental
irradiation of about 1.5 mGy to osteoblastic cells significantly
reduces ROS formation 4 h post-irradiation, but ROS produc-
tion is significantly increased by 10 doses of periapical
irradiation (15 mGy). Consistent with our findings, a previous
study showed that after low-dose whole body irradiation
(500 mGy) of mouse splenocytes, the level of glutathione, an
antioxidant agent, increased and reached the maximal levels
4 h post-irradiation.'® Therefore, a decrease in ROS production
following 1.5 mGy irradiation of osteoblastic cells may be

associated with an increase in the intracellular glutathione
level. Several in vitro and in vivo studies have shown that low-
dose irradiation can induce glutathione 3-6h following
irradiation.*>*® In contrast to 1-dose dental irradiation, the
intracellular ROS production significantly increased, accom-
panied by decreased cell proliferation, as determined by
decreasing cyclin D1 expression, when osteoblastic cells were
irradiated with 10 doses of periapical irradiation (15 mGy).
Cyclin D1 plays a regulatory role in cell cycle progression,
especially during the G1 to S transitional phase. It has been
shown that the reduction of cyclin D1 expression is associated
with induction of G1 cell cycle arrest in differentiated
osteoblasts.’ Thus, the 15mGy irradiation may be high
enough to cause arrest of the G1/S cell cycle in osteoblastic
cells and to impair cellular proliferation, as shown by the
reduction of cyclin D1 expression.

Radiation induced-apoptosis is one cellular response to
severe DNA damage resulting from irradiation. The apoptosis
occurs approximately 24 h following irradiation, as indicated
by an increase in the Bax/Bcl-2 ratio.?>*! Our findings indicate
that 15 mGy of dental irradiation is not high enough to induce
osteoblastic cell death through the apoptotic process 24 h
post-irradiation because the ratio of Bax to Bcl-2 and the MTT
activity of irradiated osteoblastic cells did not differ from that
of the controls. However, irradiated cells with DNA damage
may not die immediately but they may undergo several cell
division cycles before reaching a critical genomic instability in
an apparent dose related manner, as shown in a previous
study.? Therefore, our study demonstrated a short term effect
of dental irradiation on osteoblastic cells. The long-term
effects of dental irradiation on osteoblastic cells should be
further investigated.

The deleterious effects of dental irradiation on osteoblastic
cells might be associated with the degree of intracellular ROS
production by irradiation. Hydrogen peroxide is an important
ROS produced from chemical changes in water after exposure
to ionising radiation. Davies proposed that responses to ROS,
particularly hydrogen peroxide, depend on its concentra-
tion.>® Exposure to very low concentrations of hydrogen
peroxide (3-15 uM) causes cellular growth stimulation. One
hundred and twenty to 150 uM of hydrogen peroxide causes a
temporary growth arrest in order to protect cells from excess
energy use and DNA damage. A further increase to 500-
1000 pM of hydrogen peroxide causes cellular apoptosis. Our
findings suggest that the level of hydrogen peroxide generated
from 10 doses of periapical irradiation, 15 mGy, is enough to
cause cell cycle arrest in G1/S in osteoblastic cells but it is
insufficient for the induction of apoptotic cell death.

We conclude that dental irradiation causes various effects
in osteoblastic cells depending on the dose of irradiation. Low-
dose dental irradiation, or 1.5 mGy, seems to have a radio-
adaptive response by detoxifying ROS as indicated by lowering
ROS formation 4 h post-irradiation, whereas high-dose dental
irradiation, or 15 mGy, impairs cellular proliferation. These
results provide further support for the principle of ALARA (As
Low As Reasonably Achievable). However, in vivo findings may
be similar or different from our present study since radiation
intensity is normally absorbed by soft tissues (i.e. skin and
gingival) before reaching the osteoblasts. Furthermore, geno-
typic differences can play a role in this case due to different
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radiosensitivity.?! Future studies in in vivo are needed to
elucidate this hypothesis.
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We previously demonstrated that a high-fat diet (HFD) consumption can cause not only peripheral
insulin resistance, but also neuronal insulin resistance. Moreover, the consumption of an HFD has
been shown to cause mitochondrial dysfunction in both the skeletal muscle and liver. Rosiglita-
zone, a peroxizome proliferator-activated receptor-yligand, is a drug used to treat type 2 diabetes
mellitus. Recent studies suggested that rosiglitazone can improve learning and memory in both
human and animal models. However, the effects of rosiglitazone on neuronal insulin resistance and
brain mitochondria after the HFD consumption have not yet been investigated. Therefore, we
tested the hypothesis that rosiglitazone improves neuronal insulin resistance caused by a HFD via
attenuating the dysfunction of neuronal insulin receptors and brain mitochondria. Rosiglitazone
(5 mg/kg - d) was given for 14 d to rats that were fed with either a HFD or normal diet for 12 wk.
After the 14" week, all animals were euthanized, and their brains were removed and examined
for insulin-induced long-term depression, neuronal insulin signaling, and brain mitochondrial
function. We found that rosiglitazone significantly improved peripheral insulin resistance and
insulin-induced long-term depression and increased neuronal Akt/PKB-ser phosphorylation in re-
sponse to insulin. Furthermore, rosiglitazone prevented brain mitochondrial conformational
changes and attenuated brain mitochondrial swelling, brain mitochondrial membrane potential
changes, and brain mitochondrial ROS production. Our data suggest that neuronal insulin resis-
tance and the impairment of brain mitochondria caused by a 12-wk HFD consumption can be
reversed by rosiglitazone. (Endocrinology 153: 329-338, 2012)

nsulin resistance is a pathological condition, in which
Itarget tissues cannot respond to plasma insulin at the
optimal plasma insulin concentration (1). Several studies
have suggested that peripheral insulin resistance is corre-
lated with cognitive decline (2-5). In addition, a previous
study by our group has shown that a 12-wk high-fat diet
(HFD) consumption caused not only peripheral insulin
resistance, but also neuronal insulin resistance by impair-
ment of insulin receptor (IR) function (6).
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In the central nervous system, brain mitochondria play
an important role in energy-demanding neurotransmis-
sion and in controlling calcium homeostasis (7). Further-
more, mitochondria are important for ATP production via
oxidative phosphorylation. Disruption of electron trans-
port chains can lead to decreased ATP with increased re-
active oxygen species (ROS) production (8, 9). Insulin re-
sistance has been shown to dysregulate both glucose and
lipid metabolisms and decrease the activity of mitochon-

Abbreviations: aCSF, Artificial cerebrospinal fluid; fEPSP, field excitatory postsynaptic po-
tential; HFD, high-fat diet; HFR, HFD with rosiglitazone treatment; HFV, vehicle-treated HFD
subgroup; HOMA, homeostasis model assessment; IR, insulin receptor; LTD, long-term
depression; ND, normal diet; NDR, ND with rosiglitazone treatment; NDV, vehicle-treated
ND subgroup; OGTT, oral glucose tolerance test; PPARy, peroxizome proliferator-activated
receptor vy; ROS, reactive oxygen species; SOD, superoxide dismutase.
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drial oxidative phosphorylation (7,10, 11). Recent studies
have demonstrated that the consumption of a HFD leads
to peripheral insulin resistance and also increases ROS
production in adipocytes and liver (12-15). Those find-
ings suggest that IR dysfunction may correlate with the
dysfunction of mitochondria.

Rosiglitazone, a peroxizome proliferator-activated re-
ceptor y (PPARy) agonist, has been used for the treatment
of type 2 diabetes and insulin resistance by increasing in-
sulin sensitivity (1, 16). PPARYy is not only expressed in
peripheral tissues but also in the central nervous system,
including the hippocampus, an important area for learn-
ing and memory (17). Previous studies have demonstrated
that rosiglitazone might improve learning and memory in
both human and animal models (18-23). For example,
rosiglitazone improved learning and memory as demon-
strated in the Morris Water Maze test of HFD rats (22),
prevented the effect of AB-induced neurodegeneration in
Alzheimer’s disease mouse models (17,23), and promoted
mitochondria biogenesis in mouse brain (24). However,
the effect of rosiglitazone on neuronal insulin resistance
and brain mitochondrial dysfunction induced by a HFD
consumption has not yet been investigated. Therefore, in
this study, we hypothesized that rosiglitazone improves
not only peripheral insulin resistance but also neuronal
insulin resistance via attenuating the dysfunction of neu-
ronal IR, neuronal insulin signaling, and brain mitochon-
dria, caused by HFD consumption.

Materials and Methods

Animals

Male Wistar rats weighing 180-200 g (n = 48) from the
National Laboratory Animal Center, Salaya Campus, Mahidol
University, Thailand, were used for this study. All experiments
were conducted in accordance with an approved protocol from
the Faculty of Medicine, Chiang Mai University Institutional
Animal Care and Use Committee, in compliance with National
Institutes of Health guidelines. The animals were randomized
into two groups: a control group that consumed a normal diet
(ND), standard laboratory chow, which had an energy content
of4.02 kcal/g,and 19.77% of total energy (%E) of the food from
fat (Mouse Food no. 082, C.P. Co., Bangkok, Thailand) and a
high-fat group that received an HFD, which had an energy con-
tent of 5.35 kcal/g and contained fat mostly from lard (59.28%
E) for a period of 12 wk (6). The animals were given free access
to the diet and drinking water. To determine the peripheral in-
sulin resistance, the body weight of each animal was measured
every other week, and blood sampling from a tail vein was per-
formed at wk 12 and 14 after fasting for 5 h to measure glucose,
cholesterol, and insulin levels. Blood samples for glucose assay
were kept onice in NaF microcentrification tubes, whereas blood
samples for cholesterol and insulin assay were kept on ice in
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EDTA microcentrification tubes. All plasma was stored at —80
C for subsequent biochemical analysis.

After 12 wk, rats in both the ND and HFD groups (n =
24/group) were divided into two subgroups (n = 12/subgroup).
Each subgroup received orally either 5 mg/kg - d of rosiglitazone
(Cayman Chemical Co., Ann Arbor, MI) (dissolved in normal
saline 2 ml/kg - d) for 14 consecutive days or a vehicle (normal
saline, 2 ml/kg - d) for 14 consecutive days. At the end of the
experimental period, the animals in each subgroup were killed to
study either neuronal IR function [insulin-induced long-term de-
pression (LTD) protocol and neuronal insulin-signaling protocol
(n = 6)] or brain mitochondrial function (mitochondrial swell-
ing, mitochondrial membrane potential (Ay,,), and mitochon-
drial ROS production) (n = 6). Before death, all animals were
tested for glucose tolerance using the oral glucose tolerance test

(OGTT).

Plasma analysis

Plasma glucose and cholesterol concentrations were deter-
mined using colorimetric assay, using a commercially available
kit (Biotech, Bangkok, Thailand). Plasma insulin level was mea-
sured by Sandwich ELISA (LINCO Research, St. Charles, MO),
with the mean intraassay variation of 1.33% and interassay vari-
ation of 6.71%.

Determination of insulin resistance [homeostasis
model assessment (HOMA) index]

Insulin resistance was assessed by the HOMA index (25, 26),
amathematical model describing the degree of insulin resistance,
calculated from fasting plasma insulin and fasting plasma glu-
cose concentration. A higher HOMA index indicates a higher
degree of insulin resistance. The HOMA index was determined
by the following equation:

[Fasting plasma insulin (wU/ml)] X [fasting plasma glucose
(mmol/liter)]/22.5

OGTT

The OGTT was performed after the rats had been fasting
overnight (12 h). Then the rats received a bolus of glucose (2.0
g/kg body weight) via gavage feeding, and plasma glucose of
blood samples were collected from a tail vein at 0, 30, 60, 90, and
120 min after the administration of glucose in NaF microcen-
trification tubes. Plasma glucose was collected and analyzed us-
ing colorimetric assay (Biotech, Bangkok, Thailand) (6).

Preparation of brain slices and insulin stimulation
Rats were killed with isoflurane and decapitated. The brains
were rapidly removed. After that, the brains were immersed in
ice-cold high-sucrose artificial cerebrospinal fluid (aCSF), con-
taining (in millimolar concentration) NaCl, 85; KCI, 2.5;
MgSQ,, 4; CaCl,, 0.5; NaH,PO,, 1.25; NaHCO3, 25; glucose,
255 sucrose, 75; kynurenic acid, 2; ascorbate, 0.5, saturated with
95% 0O,/5% CO, (pH 7.4). That solution enhanced neuronal
survival during the slicing procedure. Hippocampal slices (400
pwm)were cut using a vibratome (Vibratome Co., Saint Louis,
MO). After a 30-min postslice incubation in high-sucrose aCSF,
the brain slices were transferred to a standard aCSF solution
containing (in millimolar concentration) NaCl, 119; KCl, 2.5;
CaCl,, 2.5; MgSO,, 1.3; NaH,PO,, 1; NaHCO, 26; and glu-
cose, 105 saturated with 95% 0O,/5% CO, (pH 7.4) for an ad-
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ditional 30 min at room temperature (22-24 C). Some brain
slices (n = 5-6 brain slices per animal) were used for extracel-
lular recording. Some brain slices (n = 5-6 brain slices per an-
imal) were used to investigate neuronal insulin signaling. In neu-
ronal insulin-signaling protocols, brain slices with/without
insulin stimulation were used by placing the brain slices into
either aCSF plus insulin 500 nm (Humulin R, Eli Lilly, Giessen,
Germany) or aCSF for 5 min. Then, those slices were homoge-
nated for immunoblotting as described in a previous study (6).

Extracellular recording of hippocampal slices for
insulin-induced LTD

To examine insulin-induced long term depression (LTD) as
described previously, the brain slices were transferred to a sub-
mersion recording chamber and continuously perfused at 3—4
ml/min with standard aCSF warmed to 25-28 C. Field excitatory
postsynaptic potentials (fEPSP) were evoked by stimulating the
Schaffer collateral-commissural pathway with a bipolar tung-
sten electrode, whereas the fEPSP recordings were taken from the
stratum radiatum of the hippocampal CA1 region with micropi-
pettes (3 Mohm) filled with 2 M NaCl. A stimulus frequency of
0.033 Hz was used, and the stimulus intensity was adjusted to
yield a fEPSP of 0.8—1.0 mV in amplitude, which produced less
than 50% of the maximal monophasic response. The brain slices
were perfused with aCSF (to establish a baseline condition) for
10 min, and then perfused with aCSF plus 500 nM insulin (to
produce insulin-induced LTD) for an additional 10 min. There-
after, the slices were perfused with aCSF again for a further 50
min and the fEPSP were recorded. Data were filtered at 3 kHz,
digitized at 10 kHz, and stored in a computer using pClamp 9.2
software (Axon Instruments, Foster City, CA). The initial slopes
of the fEPSP were measured and plotted against time, as de-
scribed in a previous study (6).

Immunoblotting for neuronal insulin signaling

To investigate the expression of IR, Akt/PKB, and insulin-
mediated Akt Ser473 phosphorylation, homogenated brain
slices from each subgroup were boiled at 95 C, for 5 min. Then,
proteins were separated by electrophoresis on 10% polyacryl-
amide gels (SDS-PAGE) (Bio-Rad Laboratories, Inc., Hercules,
CA), and transferred into polyvinylidene difluoride membranes.
After blocking with 5§ % nonfat milk/TBST, immunoblotting was
conducted with IR, Akt, Akt Ser473 antibody, and B-actin (rab-
bit polyclonals, 1:2000 in TBST; Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA) overnight. Membranes were incubated with a
secondary goat antirabbit antibody, conjugated with horserad-
ish peroxidase (1:8000 in TBST, Bio-Rad Laboratories), and the
protein bands were visualized on Amersham hyperfilm ECL us-
ing the Amersham ECL Western blotting detection reagents sys-
tem (GE Healthcare, Buckinghamshire, UK). Band intensity was
quantified by the Scion Image program (Scion Corp., Frederick,
MD), and the results were shown as average signal intensity
(arbitrary units).

Preparation of brain mitochondria

Brain mitochondria were isolated according to the protocol
described in a previous study (27). The whole brain was removed
and putinto an ice-cold MSE solution (225 mMm mannitol; 75 mm
sucrose; 1 mm EGTA; 5 mm HEPES; 1 mg/ml BSA, pH 7.4) to
wash out the blood rapidly. Each brain was transferred to 10 ml
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ice-cold MSE-nagarse solution (0.05% nagarse in MSE solution)
and homogenized at 600 rpm/min using a homogenizer. Next,
the tissues were minced and centrifuged at 2000 X g for 4 min,
and the supernatants were then collected and centrifuged at
12,000 X g for 11 min. Next, brain mitochondrial pellets were
collected and resuspended in a 10-ml ice-cold MSE-digitonin
solution (0.02% digitonin in MSE solution) to break down the
synaptosome fraction, and the resulting brown pellets were
collected. Finally, the pellets were minced with respiration
buffer (150 mm KCI, 5 mm HEPES, 5 mm K,HPO,.3H,0, 2
mM L-glutamate, 5 mM pyruvate sodium salt) (28). Mitochon-
drial proteins were determined by BCA assay as described in
a previous study (29).

Brain mitochondrial swelling assay

Isolated mitochondrial swelling was assessed by measuring
changes in the absorbance of the suspension wavelength at 540
nm using a microplate reader. Brain mitochondria (0.4 mg/ml)
were incubated in 2 ml of respiration buffer (containing 150 mm
KCl, 5 mm HEPES, 5 mm K,HPO,.3H,0, 2 mMm L-glutamate, 5
mM pyruvate sodium salt). Decreasing absorbance represents
mitochondrial swelling.

Brain mitochondrial membrane potential (Ais,,)
assay

The brain mitochondrial membrane potential was measured
by fluorescent dye JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetra-
ethylbenzimidazole carbocyanine iodide), which accumulates in
mitochondria. JC-1 dye, a monomer form, enters mitochondria
and produces a green fluorescence (emission wavelength at 530
nm) at low mitochondrial membrane potential, whereas at high
mitochondrial membrane potential, JC-1 dye changes its form to
be a JC-1 aggregate form, which produces a red fluorescence
(emission wavelength at 590 nm). The depolarization of brain
mitochondrial membrane potential is indicated by a decreased
red/green fluorescence intensity ratio.

The isolated brain mitochondria (0.4 mg/ml) were strained
with JC-1 dye at 37 C for 15 min, after which the fluorescence
intensity was determined using a fluorescence microplate reader.
JC-1 monomer form (green) fluorescence was excited at 485 nm,
and the emission was detected at 530 nm. JC-1 aggregate form
(red) fluorescence was excited at 485 nm, and emission fluores-
cence was detected at 590 nm (29).

Brain mitochondrial ROS assay

Isolated brain mitochondria were stained by 2’,7’-dichloro-
hydro-fluorescein diacetate that can pass through the cell mem-
brane and is hydrolyzed by intracellular esterase. ROS oxidizes
dichlorohydro-fluorescein and converts dichlorohydro-fluores-
cein to 2',7" dichlorodihydro-fluorescein diacetate, which is
highly fluorescent at 485 nm, and the emission was detected at
528 nm. Therefore, ROS production causes an increase in fluo-
rescence intensity. The isolated neuronal mitochondria (0.4 mg/
ml) were stained with 2 um 2',7’ dichlorohydro-fluorescein di-
acetate and incubated at room temperature for 20 min. The
fluorescence intensity was detected using a fluorescence micro-
plate reader as described in a previous study (29).
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TABLE 1. Effect of rosiglitazone on body weight, visceral fat, cholesterol, glucose, insulin, HOMA index, and OGTT

AUC (area under the curve) in rats fed with ND and HFD

HFV

HFR

546.25 + 12.10%

47.94 + 2.88*°
301.45 = 9.812°
140.68 *+ 3.65°

3.85 = 0.18%°

24.06 + 1.26%°

603.3 + 9.86%P¢
61.90 + 3.61%0<
251.55 + 8.24b<
122.01 + 2.14b¢
2.05 =+ 0.08°

10.8 + 0.56°¢

Parameter NDV NDR
Body weight (g) 431.50 = 5.68 460.33 = 4.137
Visceral fat (g) 2522 = 1.11 32.57 £ 1.267
Cholesterol (mg/dl) 234.78 = 6.38 227.67 = 6.82
Glucose (mg/dl) 130.88 = 4.26 101.39 *+ 3.25°
Insulin (ng/ml) 1.72 = 0.13 1.84 =0.14
HOMA index 9.80 + 0.51 8.11 = 0.44
OGTT AUC (a.u.) 45,814 + 789 39,875 *+ 8957

63,020 + 1026° 49,722 + 9359

2P <=0.05vs. NDV; ® P = 0.05 vs. NDR; P = 0.05 vs. HFR.

Data analysis

Data were recorded as mean = SE. For all comparisons, the
significant differences in body weight and peripheral biochem-
ical parameters were calculated using one-way ANOVA fol-
lowed by Fisher’s least significant difference post hoc analysis.
The percentages of insulin-induced LTD and brain mitochon-
drial experiments were calculated using Student’s # test. P < 0.05
was considered to be statistically significant.

Results

Rosiglitazone reduced peripheral insulin resistance
in HFD-fed rats

The effects of rosiglitazone on body weight, visceral fat,
and biochemical parameters in plasma are shown in Table
1. The 14-wk HFD-fed rats had a significantly increased
body weight, visceral fat, plasma cholesterol level, plasma
insulin level, and HOMA index, compared with the ND-
fed rats (P < 0.05). Rats from both dietary groups that
were treated with rosiglitazone (5 mg/kg - d, 14 d) had
significantly increased body weight and visceral fat, com-
pared with the vehicle groups (P < 0.05). Rosiglitazone
significantly decreased plasma cholesterol level, plasma
insulin level, and HOMA index in only HFD-fed rats (P <
0.05), but significantly decreased plasma glucose level in
both dietary groups (P < 0.05).

For the glucose tolerance test, the mean area under the
curve of the vehicle-treated HFD subgroup (HFV) was
significantly greater than that of the vehicle-treated ND
subgroup (NDV) (Table 1). The administration of rosigli-
tazone significantly decreased the area under the curve in
both dietary groups (P < 0.05).

Rosiglitazone improved neuronal IR function in
HFD-fed rats

The characteristics of insulin-induced LTD are shown in
Fig. 1A. Insulin of various concentrations (from 0 to 1000
nm) was applied onto the hippocampal slices from the NDV
rats to determine the effect of insulin-induced LTD. We
found that this effect was dose dependent. In this study, 500

nM insulin was used to investigate the insulin-induced LTD
in the hippocampus because it has been shown previously
that 500 nM insulin is the optimal dose to determine insulin-
induced LTD and to measure the IR function (6, 30, 31).
In the HFV group, an HFD could attenuate insulin-
induced LTD, compared with the NDV group (Fig. 1B). In
both NDV and ND with rosiglitazone treatment (NDR)
groups, the application of insulin led to insulin-induced
LTD, and the phenomenon was stabilized at a level of
74.43% and 80.79% of preinsulin baseline, for the NDV
and NDR, respectively (Fig. 1C). In the HFD groups, the
insulin-induced LTD in the vehicle-treated HFD group
was significantly reduced, with the mean percentage de-
pression of insulin-induced LTD of 5.7 = 4.6% of the
preinsulin baseline (Fig. 1D). However, rosiglitazone
treatment in the HFD rats could completely abolish the
impairment of insulin-induced LTD caused by the HFD
found in the HFD group (insulin-induced LTD: 64.3 =
4.8% of preinsulin baseline, Fig. 1D). These findings sug-
gest that HFD consumption could cause the neuronal IR
dysfunction and ROS could prevent this undesired effect.
To confirm whether rosiglitazone can reverse or en-
hance neuronal insulin signaling of neuronal insulin re-
sistance after HFD, the Ser473 phosphorylation of Akt/
PKB between both dietary groups, either with or without
rosiglitazone treatment, was investigated. The serine 473
phosphorylation of Akt/PKB was used as a marker for the
neuronal IR signaling activity, because we previously
showed that neuronal insulin resistance after HFD con-
sumption led to the reduction of serine 473 phosphoryla-
tion of Akt/PKB (6). In this study, we found that, without
insulin stimulation, the protein levels of IR, Akt/PKB and
the serine phosphorylation of Akt/PKB in all treated sub-
groups, i.e. ND with vehicle treatment (NDV), ND with
rosiglitazone treatment (NDR), HFV, and HFD with
rosiglitazone treatment (HFR), were not significantly dif-
ferent (Fig. 2, A, B, and C, respectively). However, with
insulin stimulation the serine phosphorylation of Akt/PKB
in the HFV subgroup was significantly decreased, com-
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FIG. 1. HFD feeding significantly diminished the ability of insulin to induce LTD in the CA1 hippocampus. Rosiglitazone, 14 d after 12-wk HFD,
significantly improved the ability of insulin to induce LTD in the CA1 hippocampus. A, The phenomenon of insulin-induced LTD in NDV animals

(n = 3/dose). B, Insulin-induced LTD in the brain slices from NDV and HFV subgroup, confirming the impairment of insulin-induced LTD in CA1
hippocampus after HFD feeding. C, Insulin-induced LTD in the brain slices from NDV and NDR subgroup. D, Insulin-induced LTD in the brain slices
from HFV and HFR subgroup. /nset in each panel shows examples of averages of 20 consecutive traces taken from a slice treated with aCSF (basal)
and with 500 nm (insulin). A-D, A summary of averages of normalized fEPSP (fEPSP/fEPSPo with fEPSP being points at which fEPSP slopes
stabilized) from NDV (n = 6—8 independent slices), NDR (n = 6—8 independent slices) brain slices, HFV(n = 6—8 independent slices), and HFR

(n = 6-8 independent slices) brain slices. There were no differences between the insulin-induced LTD in NDV and NDR subgroups. However, the
HFR subgroup showed a significant increase in insulin-induced LTD compared with the HFV subgroup.

pared with the NDV subgroup (P < 0.05, Fig. 2D). The
administration of rosiglitazone significantly increased
Akt/PKB phosphorylation with insulin stimulation in only
the HFD group (P < 0.035, Fig. 2D). All of these findings
indicate that rosiglitazone could attenuate the neuronal
insulin resistance induced by HFD consumption by pre-
serving both neuronal IR function and neuronal IR
signaling.

Rosiglitazone reduced brain mitochondrial
dysfunction from HFD consumption

In addition to the effect of rosiglitazone on improving
the neuronal insulin resistance induced by HFD consump-
tion, we further investigated whether rosiglitazone can
improve brain mitochondrial dysfunction after HFD
consumption. We investigated the dysfunction of brain
mitochondria by measuring brain mitochondrial swell-
ing, brain ROS production, and brain mitochondrial
membrane potentials (Ags,,). We found that brain mito-
chondrial morphology in the HFV subgroup was changed,
with the mitochondria unfolding and swelling, whereas

rosiglitazone treatment did not change the brain mito-
chondrial morphology in the HFD subgroup (Fig. 3A).

To investigate the brain mitochondrial swelling, we
measured the absorbance of brain mitochondria in all four
treatment subgroups (NDV, NDR, HFV, HFR). The ab-
sorbance of brain mitochondria in the HFV subgroup was
decreased compared with that in the NDV subgroup, in-
dicating that brain mitochondria in the HFV subgroup
were swollen (Fig. 3B). In HFD rats, we found that the
absorbance of brain mitochondria in the rosiglitazone-
treated (HFR) subgroup was significantly increased, com-
pared with that in the vehicle-treated (HFV) subgroup
(Fig. 3B). These findings suggest that rosiglitazone can
attenuate brain mitochondrial swelling after HFD con-
sumption. We also demonstrated that the HFV subgroup
had significantly increased ROS levels after H,O, appli-
cation, compared with the NDV subgroup (Fig. 4A).
Rosiglitazone treatment significantly reduced brain mito-
chondrial ROS levels in both dietary groups during oxidative
stress stimulation (Fig. 4A).
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FIG. 2. A and B, There was no change in the protein levels of IR (A) and Akt/PKB (B) in any
group. All immunoblot lanes were loaded with the same amount of protein (30 ng/lane). C,
The Ser4d73 phosphorylation did not change in any group without insulin stimulation.
Rosiglitazone significantly improved insulin-induced phosphorylation of Akt/PKB at Ser473
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mitochondrial dysfunction; and 4)
rosiglitazone reverses the brain mito-
chondrial dysfunction by preventing
mitochondrial swelling, decreasing
ROS production, and attenuating
brain mitochondrial membrane po-
tential changes, particularly during ox-
idative stress stimulation.

Consistent with our previous study
(6), we also found that 14-wk HFD-fed
rats (59.28% energy of fat) exhibited
not only peripheral insulin resistance,
as indicated by excessive body weight
gain and visceral fat, hypercholesterol-
emia, hyperinsulinemia, increased HOMA
index, and the impairment of OGTT,
but also neuronal insulin resistance in-
dicated by decreased insulin-induced
LTD. Previous studies have shown that
HFD consumption can impair neuronal
function, such as the impairment of
spatial learning in both radial arm maze
and Morris Water Maze tests in rats

residue in HFD consumption. Insulin-induced phosphorylation of Akt/PKB at Ser473 residue

was significantly weakened in HFV group (P < 0.05). However, insulin-induced
phosphorylation of Akt/PKB at Ser473 of the HFR subgroup significantly increased compared
with the HFV subgroup (P < 0.05). All immunoblotting lanes were loaded with the same
amount of protein (60 ug/lane). *, P < 0.05 vs. NDV; %, P < 0.05 vs. HFV.

For brain mitochondrial membrane potential change,
we found that the rate of Ay, changes in the HFV sub-
group was greater than that in the NDV subgroup after
H,0, application (Fig. 4B). Rosiglitazone treatment de-
creased the rate of Ays,, changes in both dietary groups
(Fig. 4B). These findings suggest that brain mitochondria
in the HFV subgroup were more depolarized than in the
NDV subgroup during oxidative stress stimulation, and
that rosiglitazone can attenuate the mitochondrial mem-
brane depolarization caused by HFD consumption. All
of these mitochondrial findings suggest that HFD con-
sumption can lead to brain mitochondrial dysfunction
and that rosiglitazone can attenuate the brain mito-
chondrial dysfunction caused by HFD.

Discussion

The major findings of our study are as follows: 1) rosigli-
tazone prevents the impairment of neuronal insulin-in-
duced LTD in neuronal insulin-resistant rats caused by
HFD consumption; 2) rosiglitazone improves IR signaling
dysfunction by increasing ser 473 Akt/PKB phosphoryla-
tion in neuronal insulin-resistant rats caused by HFD
consumption; 3) HFD consumption can cause brain

(22, 32), the reduction of hippocampal
dendritic spines (4), the reduction of
long-term potentiation (4), increased
brain malondialdehyde (33), and de-
creased brain-derived neurotrophic
factor (4). In this study, we have demonstrated, for the first
time, that 14-wk HFD consumption can cause brain mi-
tochondrial dysfunction. Consumption of HFD has been
shown to increase ROS production in kidney, liver, and
skeletal muscle (34, 35), decrease mitochondrial sizes and
numbers in liver and muscle (36), and reduce mitochon-
drial membrane potential in the liver (13, 37). In our
study, HFD consumption disturbs brain mitochondrial
functions, as indicated by mitochondrial morphological
changes, increased swelling, increased ROS production,
and mitochondrial depolarization.

Brain mitochondria are important organelles for main-
taining intracellular Ca** levels and play an important
role in synaptic transmission (38). The dysfunction of
brain mitochondria has been shown to cause the impair-
ment of synaptic plasticity (38). In our study, the brain
mitochondrial dysfunction may be responsible for the im-
pairment of insulin-induced LTD in rats fed with HFD.
Increased brain mitochondrial ROS production caused by
HFD consumption may cause the opening of mitochon-
drial permeability transition, leading to brain mitochon-
drial swelling and the depolarization of mitochondrial
membrane potential (29, 39). These ROS-mediated mi-
tochondrial changes can induce Akt dephosphorylation
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FIG. 3. A, Transmission electron microscopy (original magnification,
X25,000) shows the ultrastructure of brain mitochondria in NDV,
NDR, HFV, and HFR. Rosiglitazone prevented the morphology
change after HFD consumption. Scale bar, 1:100 nm. B, HFD
consumption induced mitochondrial swelling as measured by
absorbance at 540 nm. Rosiglitazone significantly decreased
mitochondrial swelling in both dietary groups. *, P < 0.05 vs. NDV;
t, P < 0.05 vs. NDR; #, P < 0.05 vs. HFV.

at Ser-473 (40), indicating the disruption of down-
stream insulin signaling. Therefore, neuronal insulin re-
sistance induced by HFD consumption might be devel-
oped from the brain mitochondrial dysfunction.

Rosiglitazone has been shown to increase the expres-
sion of IR and stimulate tyrosine phosphorylation of IR in
the brown adipocytes of fetal rats (41). In our study,
rosiglitazone increased Akt/PKB ser-473 phosphorylation
in the HFD subgroup and also tended to increase that in
the NDV subgroup. An increase in the phosphorylation
of Akt/PKB may be responsible for the improvement of
insulin-induced LTD in rosiglitazone-treated HFD rats,
because increased Akt/PKB phosphorylation can lead to
increased intracellular Ca”>" levels, thus restoring the
insulin-induced LTD in the brain (31).

Because rosiglitazone can cross the blood-brain bar-
rier rapidly after ip administration (42), the effect of
rosiglitazone on brain function may be the result of
direct interaction of rosiglitazone with neurons. Several
studies support the direct effects of rosiglitazone on
neurons. First, the administration of rosiglitazone to
HFD rats can improve learning and memory, as dem-
onstrated in the Morris Water Maze test (21, 22). Sec-
ond, rosiglitazone can increase dendritic spine density
in neuronal culture models (43). Third, in the Tg2576
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FIG. 4. A, Brain mitochondrial ROS production was measured by
fluorescent dye during 2 mm H,O, application onto brain
mitochondria. Rosiglitazone significantly reduced ROS production after
H,0O, application in both ND and HFD consumption. B, HFD
consumption induced an increase in mitochondrial membrane
potential change (Ay,,) during 2 mm H,0, application to brain
mitochondria, measured by fluorescent dye. Rosiglitazone significantly
decreased brain mitochondrial membrane potential change (Ay,,,) after
H,0, application in both ND and HFD consumption. *, P < 0.05 vs.
NDV; 1, P < 0.05 vs. NDR; #, P < 0.05 vs. HFV.

mouse model for Alzheimer’s disease, rosiglitazone can
reduce amyloid peptide 42 in the brain (21). Those pre-
vious reports and the findings in this study suggest that
rosiglitazone passes the blood-brain barrier and may act
directly in the brain to improve neuronal IR function as
well as improve peripheral insulin sensitivity.

This study has also shown that rosiglitazone protects
brain mitochondrial dysfunction caused by HFD by pre-
serving conformational changes, preventing mitochon-
drial swelling, attenuating ROS production, and decreas-
ing mitochondrial membrane potential dissipation.
Rosiglitazone has been shown to have neuroprotective ef-
fects (44) and has beneficial effects on brain mitochondria
(45-47). Rosiglitazone increases the production of at least
two antioxidant agents, Cu/Zn-superoxide dismutase
(SOD) and Mn-SOD, in traumatic brain injury, leading to
decreased ROS production (48). It also increases SOD ac-
tivity and decreases lipid peroxidation production (49),
resulting in decreased ROS production. Furthermore,
rosiglitazone, in a dose-dependent manner, increase mi-
tochondrial activity by regulating ATP production and
transcription of mitochondrial structural proteins and cel-
lular antioxidant enzymes, thus attenuating ROS level
(50). Moreover, rosiglitazone prevents the depolarization
of mitochondrial membrane potential in brain oxygen-
glucose deprivation followed by reoxygenation (51, 52).
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Rosiglitazone protects hippocampal and dorsal root gan-
glion neurons against AB-induced mitochondrial damage
and nerve growth factor deprivation-induced apoptosis by
up-regulation of Bcl-2 (46). Those previous findings sug-
gest that the role of PPARYy agonists is to help in mito-
chondrial biogenesis and the repair of mitochondria dur-
ing cellular injury or cell death. Consistent with those
previous studies, our study showed that rosiglitazone can
reduce brain mitochondrial dysfunction caused by 12-wk
HFD consumption by reducing ROS production and de-
creasing mitochondrial membrane depolarization. It has
also been shown that the reduction of ROS production can
prevent the dissipation of mitochondrial membrane po-
tential (48). In addition, keeping ROS production at a low
level has been shown to improve insulin signaling (53).
Therefore, the effects of rosiglitazone in reducing brain
mitochondrial dysfunction may be one of the reasons that
rosiglitazone improves neuronal insulin sensitivity in the
brain. In addition, the improvement of brain mitochon-
drial dysfunction found in the rosiglitazone-treated group
could also improve other metabolic control in the brain
such as the hypothalamic insulin signaling, which plays an
important role in maintaining normal glucose homeosta-
sis (54).

In conclusion, our findings suggest that rosiglitazone
improves not only peripheral insulin resistance but also
neuronal insulin resistance in hippocampal regions caused
by HFD consumption. The improvement of neuronal in-
sulin sensitivity may occur via the effect of rosiglitazone on
attenuating brain mitochondrial dysfunction. Therefore,
PPAR'Yy agonists may be a useful medicine to ameliorate
neuronal insulin resistance.

Limitation of this study

Although the direct evidence whether rosiglitazone
acted directly on the brain to attenuate the neuronal in-
sulin resistance and brain mitochondrial dysfunction in-
duced by HFD consumption was not provided in this
study, it has been clearly shown previously that rosiglita-
zone could pass the blood-brain barrier (42). In that study,
they determined the brain concentration of rosiglitazone
in normal male gerbils receiving ip injection of rosiglita-
zone at a dose of 3 mg/kg. They found that the mean
concentration of rosiglitazone in the brain increased dur-
ing the first 15 min and reached a plateau at 90-120 min,
suggesting that rosiglitazone could pass blood-brain bar-
rier even in a normal condition. Nevertheless, it is possible
that rosiglitazone could also improve the peripheral insu-
lin resistance and other systemic effects, subsequently re-
sulting in improvement of neuronal insulin resistance
caused by a HFD consumption. Furthermore, the change
in the PPARy target gene in the brain was not investigated
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in the present study. Finally, because the function of IR
and the phosphorylation of Akt in response to insulin were
analyzed in the hippocampal slices, the effects on other
neuronal populations could be similar or different accord-
ing to their anatomical areas.
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Abstract Heart rate variability (HRV) has been used as a
reliable method to detect cardiac autonomic nervous system
activity. Peak oxygen uptake (VO, peak) has been a pre-
dictor of death for adults with repaired tetralogy of Fallot
(TOF). This study investigated the correlation between HRV
and exercise capacity in 30 patients with TOF after surgery
for total correction. The median age of the patients was
14 years (range, 9-25 years), and the median follow-up
period was 11.6 months (range, 5.3-20.2 months). Low- and
high-frequency-domain HRV significantly correlated with
VO, peak (r = 0.56, P = 0.001 and r = 0.44, P = 0.02,
respectively). After the 1-year follow-up evaluation, VO,
peak and HRV analysis did not differ from those at entry to
the study. However, low- and high-frequency-domain HRV
still correlated significantly with VO, peak (r = 0.43,
P =0.03 and r = 0.52, P = 0.007, respectively). Left
ventricular early diastolic myocardial velocity was most
closely correlated with the VO, peak (r = 0.51, P = 0.005).
Impaired cardiovascular autonomic control and left
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ventricular diastolic dysfunction may be responsible for
exercise intolerance in patients with repaired TOF. Long-
term follow-up evaluation with exercise testing and 24-h
Holter monitoring are warranted.

Keywords Exercise capacity - Heart rate variability -
Repaired tetralogy of Fallot

The surgical repair of tetralogy of Fallot (TOF) can be
performed with a low mortality rate and an excellent long-
term outcome [1, 3, 6, 8, 15, 16, 19, 22, 25, 26]. However,
some hemodynamic abnormalities may be found after sur-
gery including pulmonary stenosis, pulmonary regurgita-
tion, and myocardial dysfunction. The majority of patients
have no symptoms resulting from these abnormalities.
However, evaluation of exercise capacity shows cardiopul-
monary compromise in some patients with repaired TOF
[5, 17, 24, 27-30, 32].

Peak oxygen uptake (VO, peak) has been an inde-
pendent predictor of death for adults with repaired TOF
[13]. Heart rate variability (HRV) has been used as a
reliable method to detect autonomic nervous system
activity [31]. Ventricular tachycardia, progressive heart
failure, and sudden cardiac death have been the Ilate
complications in the long term [12, 14, 23]. Reduced
HRYV is a predictor of sudden cardiac death after myo-
cardial infraction and chronic heart failure [18, 20].
Previous studies have demonstrated that patients with
TOF after complete repair have a reduction of HRV
[4, 9, 10, 21].

To our knowledge, no previous studies of HRV have
been correlated with exercise capacity in pediatric and
adolescent patients with repaired TOF. The early recogni-
tion of patients at greater risk for exercise intolerance and
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increased morbidity is of clinical relevance for refinement
in management. Therefore, in the current study, echocar-
diography, exercise testing, and a 24-h Holter electrocar-
diography (ECG) were evaluated among patients with
repaired TOF. We hypothesized that heart rate variability is
correlated with exercise intolerance in patients with TOF
after surgical repair.

Methods
Study Patients

We prospectively studied 30 patients with TOF who
underwent total surgical correction at Chiang Mai Uni-
versity Hospital. Electrocardiography, echocardiography,
exercise testing, and a 24-h Holter ECG were performed at
entry to the study and at the 1 year follow-up examination.
The relationship between HRV analysis and exercise
capacity was evaluated during the 1-year follow-up exam.
The study protocol was reviewed and approved by the
Chiang Mai University Review Board. All the patients or
their parents consented to research participation.

HRYV Analysis

A 24-h ECG was recorded for HRV analysis. The record-
ings were reviewed before the HRV was determined by the
analysis software. The HRV analysis included frequency
domain and time domain. The frequency-domain HRV
parameters were low-frequency power (LF), high-fre-
quency power (HF), and the LF/HF ratio. The time-domain
HRYV parameters included the standard deviation of all the
normal sinus R-R intervals in the entire 24-h recording
(SDNN) and the standard deviation of all the average
normal sinus R-R intervals for all the 5-min segments in
the 24-h recordings (SDANN).

Exercise Test

An exercise test was performed using an electric cycle
ergometer (Corival, Lode, Groningen, Netherlands). All
patients performed a maximal exercise test with a 2-min
incremental bicycle protocol with a workload increment of
20 W for females and 25 W for males. The electrocardio-
gram, oxygen saturation, and blood pressure were moni-
tored. The VO, peak, carbon dioxide production (VCO,),
minute ventilation (Vg), and respiratory exchange ratio
(RER) were determined by using the breath-by-breath
technique (Ultima CPX, Medgraphics, St. Paul, MN, USA).
The test was terminated according to American College of
Sports Medicine (ACSM) guidelines [2].

Doppler Echocardiography

Doppler echocardiographic examinations were performed
using Philips Sonos 7500 (Philips Medical Systems, Bot-
hell, WA). Echocardiographic data included left ventricular
fractional shortening, pulse-wave Doppler assessment of
the tricuspid valve and mitral valve, and tissue Doppler
imaging. A tissue Doppler imaging signal was obtained
from an apical four-chamber view at the right ventricular
free wall, the ventricular septum, and the left ventricular
free wall. The tissue Doppler imaging variables included
systolic myocardial velocity (Sm), early diastolic myocar-
dial velocity (Em), and late diastolic myocardial velocity
(Am). The myocardial performance index was calculated
by the atrioventricular valve closing-to-opening time minus
the ventricular ejection time divided by the ejection time.

Statistical Analysis

All statistical calculations were assessed using commer-
cially available software (SPSS Version 16, SPSS Inc.,
Chicago, IL, USA). Linear regression analysis was used to
assess the correlation between the HRV and the VO, peak.
Comparison of parameters between those at study entry and
those at the 1-year follow-up assessment was performed
using the Wilcoxon rank sum. Multiple linear regression
analysis was used for the predictive model of VO,. A P value
less than 0.05 was considered statistically significant.

Results

The study enrolled 30 patients (11 females [37%] and 19
males; median age, 14 years; range, 9-25 years) with
repaired TOF. The median follow-up period was 11.6 months
(range, 5.3-20.2 months). The baseline characteristics are
reported in Table 1. The median time from surgical repair for
tetralogy of Fallot to exercise testing was 9 years (range,
2-16 years). Six patients had a previously modified Blalock-
Taussig shunt. Right ventricular outflow tract reconstruction
with a transannular patch was performed for 14 patients
(47%). Echocardiography, exercise testing, and HRV analysis
at study entry and at the 1-year follow-up assessment are
compared in Table 2. Echocardiographic parameters, VO,
peak, and HRV analysis did not differ during the 1-year fol-
low-up period.

Relationship of Heart Rate Variability to VO, Peak
The results for the relationship between the HRV and the

VO, peak are graphically displayed in Fig. 1. Low- and
high-frequency-domain HRV significantly correlated with
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Table 1 Demographic and baseline characteristics of patients with
repaired tetralogy of Fallot (TOF) (n = 30)

TOF patients

Table 2 Echocardiography, exercise test, and heart rate variability at
entry to the study and at the 1-year follow-up assessment for patients
with repaired tetralogy of Fallot (TOF)

at entry (mean + SD) Parameter At the entry At the 1 year P value

Age (years) 15.8 + 4.4 Echocardiography
Age at operation (years) 6.3 +3.0 LVEF (%) 57+9 60 + 8 NS
Follow-up time from operation (years) 9.5+ 3.0 LVSm (m/s) 0.06 £ 0.01 0.07 £0.01 NS
Female: n (%) 11 (37) LVEm (m/s) 0.13 £ 0.03 0.14 £0.03 NS
BSA (m?) 1.3+02 LVAm (m/s) 0.04 £ 0.01 0.04 £0.01 NS
Heart rate at rest (beats/min) 78 £ 11 RVFAC (%) S51+£7 53+5 NS
Systolic BP (mmHg) 106 £ 13 RVSm (m/s) 0.08 £ 0.02 0.08 £0.02 NS
Diastolic BP (mmHg) 65 + 12 RVEm (m/s) 0.11 £ 0.03 0.12+£0.04 NS
Previous Blalock-Taussig shunt: n (%) 6 (20) RVAm (m/s) 0.04 £ 0.01 0.08 £0.18 NS
Transannular patch: n (%) 14 (47) Exercise test (peak)
QRS duration (ms) 138 4+ 25 Heart rate (bpm) 162 £+ 14 160 £+ 12 NS
Pro-BNP (pg/ml) 198 + 178 VO, peak (ml/kg/min) 33+9 31 £ 10 NS
SD standard deviation, BSA body surface area, BP blood pressure, Minute ventilation (/min) 4x14 Bl NS
BNP brain natriuretic peptide Vg/CO, 29+ 5 2945 NS

Gas exchange ratio 1.14 £ 0.13 1.13+0.16 NS
VO, peak (r = 0.56, P = 0.001 and r = 0.44, P = 0.02, Time domain
respectively). After the 1 year follow-up period, VO, peak SDNN (ms) 132 + 30 139 + 46 NS
and HRV analysis did not differ from those at entry to the SDANN (ms) 122 + 31 128 + 49 NS
study. However, low- and high-frequency-domain HRV  Frequency domain
still correlated significantly with the VO, peak at the 1-year Low frequency (ms?) 20+ 7 21 +£8 NS
follow-up assessment (r = 0.43, P = 0.03 and r = 0.52, High frequency (ms?) 14+6 16 +7 NS
P = 0.007, respectively). LF/HF ratio 1.6 £ 0.4 14 £04 NS

Relationship of Pulse Wave Doppler and Tissue
Doppler Data to VO, Peak

Left ventricular early diastolic myocardial velocity was
most closely correlated with the VO, peak (r = 0.51,
P = 0.005). The ratio of peak early ventricular filling
velocity to early diastolic myocardial velocity (E/Em)
significantly correlated with VO, peak (r = —0.50,
P = 0.000).

Predictors for VO, Peak

Using multiple regression analysis, female, reduced heart
rate variability and the ratio of increased peak early ven-
tricular filling velocity to early diastolic myocardial
velocity were associated with a decreased VO, peak
(R* = 0.61).

Discussion
The current study supports our hypothesis that HRV is
correlated with exercise intolerance in patients with

repaired TOF. Low- and high-frequency-domain HRV
significantly correlated with VO, peak (r = 0.56,

@ Springer

LVEF left ventricular ejection fraction, NS not significant, LVSm left
ventricular systolic myocardial velocity, LVEm left ventricular early
diastolic myocardial velocity, LVAm left ventricular late diastolic
myocardial velocity, RVFAC right ventricular fractional area change,
RVSm right ventricular systolic myocardial velocity, RVEm ventric-
ular early diastolic myocardial velocity, RVAm right ventricular late
diastolic myocardial velocity, VO, peak peak oxygen uptake, V/CO,
minute ventilation and carbon dioxide production ratio, SDNN stan-
dard deviation of all normal sinus R-R intervals in the entire 24-h
recording, SDANN standard deviation of all average normal sinus R-R
intervals for all 5-min segments in the 24-h recording, LF low-fre-
quency power, HF high-frequency power

P =0.001 and r = 0.44, P = 0.02, respectively). The
low- and high-frequency-domain HRV still significantly
correlated with VO, peak at the 1-year follow-up assess-
ment (r =043, P=0.03 and r=0.52, P = 0.007,
respectively). Furthermore, left ventricular early diastolic
myocardial velocity was most closely correlated with the
VO, peak (r = 0.51, P = 0.005). The ratio of peak early
ventricular filling velocity to early diastolic myocardial
velocity significantly correlated with VO, peak (r =
—0.50, P = 0.006). In fact, a decreased early diastolic
myocardial velocity and an increased ratio of early ven-
tricular filling velocity to early diastolic myocardial
velocity are characteristics of left ventricular diastolic
dysfunction. In the females, a reduced HRV and an
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Fig. 1 Linear regression analysis of the correlation between heart rate variability and peak oxygen uptake (VO, peak) at study entry (upper) and
at the 1-year follow-up evaluation (lower) in patients with repaired tetralogy of Fallot. VO, peak, peak oxygen uptake

increased ratio of peak early ventricular filling velocity to
early diastolic myocardial velocity were associated with a
decreased VO, peak.

Several studies have reported that adolescent and adult
patients with repaired TOF had reduced HRV [4, 9, 10, 21].
Reduced HRYV is a predictor of sudden cardiac death after
myocardial infraction and chronic heart failure [18, 20]. To
our knowledge, no previous studies of HRV have corre-
lated with exercise capacity in pediatric and adolescent
patients with repaired TOF. Peak oxygen uptake has been
an independent predictor of death for adults with repaired
TOF [13]. The current study found that low- and high-
frequency-domain HRV significantly correlated with VO,
peak at entry to the study and at the 1-year follow-up
assessment.

McLeod et al. [21], and Davos et al. [9] reported that
reduced HRV was associated with widening of the QRS
complex, which had been identified as a risk factor for
sustained ventricular tachycardia and sudden death [11].
Folino et al. [10], and Butera et al. [4] reported that patients

with ventricular tachycardia had reduced HRV. The current
study did not find an association between the HRV and the
QRS duration in pediatric and adolescent patients with
repaired TOF. No ventricular tachycardia was found in the
24-h Holter monitoring because the patients in the current
study were younger than those in previous studies.
Cheung et al. [7] reported that the impaired global left
ventricular deformation due to right ventricular dilation
was an independent predictor of VO, peak in patients with
repaired TOF. The current study supported this finding that
left ventricular diastolic dysfunction was correlated with
VO, peak. Therefore, reduced HRV and left ventricular
diastolic dysfunction may be responsible for exercise
intolerance in patients with repaired tetralogy of Fallot.

Conclusions

Heart rate variability had a significant correlation with VO,
peak at entry to the study and at the I-year follow-up

@ Springer
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assessment. Left ventricular early diastolic myocardial
velocity was correlated with the VO, peak. Impaired car-
diovascular autonomic control and left ventricular diastolic
dysfunction may be responsible for exercise intolerance in
patients with repaired tetralogy of Fallot. Long-term fol-
low-up exercise testing, echocardiography, and a 24-h
Holter monitoring are warranted.
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Background: Several isoforms of voltage-gated sodium channels (VGSCs) found in peripheral nerves is associated
in the pathogenesis of neuropathic and inflammatory pain. Until now, there are few studies of the distribution of

VGSCs in dental pulp and its relationship to dental pain.

Objective: Perform literature review to provide update information of VGSCs in dental pulp.

Methods: We reviewed and discussed seventy-eight articles listed in MEDLINE (PubMed) database using keywords
including “sodium channels” and “dental pain”. They are articles published in English from 1978 to 2010.
Results: Although several VGSCs isoforms are distributed in dental pulp, only Na, 1.7, Na,,1.8, and Na, 1.9 have

been found to be upregulated in painful pulpitis.

Conclusion: Na, 1.7, Na 1.8, and Na,,1.9 seem to have key roles in inflammatory dental pain. As a result, they

might be the targets to treat dental pulp inflammation.

Keywords: Dental pulp, expression, inflammation, sodium channels
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TTX-R Tetrodotoxin-resistant voltage-gated
sodium channel
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Our review aims to focus on recent information
regarding sodium channels, which are related to dental
pain from both primary and permanent teeth,
information which has not yet been thoroughly
reviewed. We also include information on a variety
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of fields of the pulpodentin complex, particularly the
field of neural reaction to pulpal injury. Therefore, our
review is divided into three parts as follows,
1. The pulpodentin complex
1.1 Innervation in permanent and primary
tooth pulp
1.2 Sensory neuropeptides in dental pulp
1.3 Neural reactions to pulpal injuries
2. The expression of sodium channels in dental
pulp
3. The expression of sodium channels related to
dental pain

1. The pulpodentin complex

The dental pulp is surrounded by the dental hard
tissues, which form a physical barrier against
pathogens and injury. The dental pulp and dentin are
often discussed together as one functional unit, the
pulpodentin complex. Dental pulp is responsible for
dentin formation. The permeable properties of dentin
regulate the diffusion rate of irritants that can initiate
pulpal inflammation. Dental pulp contains a dense
vascularity and nerve supply. The blood vessels in
pulpal tissue are for nutrient supply and cellular
recruitment, while the nerves in pulpal tissue are for



736 A. Suwanchai, et al.

dental sensitivity and defense response following pulpal
injury, from either dental caries or trauma. The dental
pulp has a low capacity for defense or repair responses
because of the lack of an adequate blood supply and
cellular recruitment following dental injury [1]. Several
studies have shown that pulpal innervation plays an
important role in both defense and repair responses
[2-4]. Therefore, this review article focuses on pulpal
innervation in the response to pulpal injury.

1.1 Normal innervation in primary and permanent
tooth pulp

The pulpodentin complex in both primary and
permanent teeth is extremely rich in innervation [5],
and the innervation influences the defense reactions
in the connective tissue of the dental pulp. This
innervation consists of sensory, sympathetic, and
parasympathetic nerve fibers.

The sensory nerve fibers are the major innervation
in the dental pulp of both primary and permanent
teeth. They originate from the trigeminal ganglion, and
peripherally pass through the apical foramen to
innervate the coronal pulp. Into the coronal pulp, they
diverge, branch, and terminate as free nerve endings
in the odontoblast layers, sub-odontoblastic plexus,
predentin, in the inner 0.1 mm of dentin, or along
blood vessels, as shown in Byers’s study [6]. After
stimulation, sensory nerve fibers transmit signals back
via the trigeminal nerves to the trigeminal ganglion.
The signals from trigeminal ganglion provide input
through the spinal trigeminal tract to the spinal
trigeminal nucleus and then, these signals pass
through the spinothalamic tract to terminate in
the somatosensory cortex of brain. There are three
subgroups of sensory nerve fibers in dental pulp.
They are based on size, conduction velocity, and
function. First, the A-B nerve fibers are medium-sized
myelinated fibers. They comprise the smallest
population of sensory nerve fibers and are sensitive
to mechanical stimuli such as hydrodynamic,
percussion, and movement force. Second, it is the
small myelinated A-L] nerve fibers. Finally, the largest
population is the unmyelinated, slow conducting
C fibers. Both A-T1 and C fibers are classified as
nociceptive, which respond to noxious stimuli. The
sensory nerve fibers are also involved in dentinal fluid
dynamics, vasoregulation, and protective reflexes
against dental injuries [7-9]. They provide the vitality
of the dental pulp by interacting with other pulpal
components, such as odontoblasts, immunocompetent
cells, and blood vessels. A previous study in the rat

model indicated that the sensory nerve fibers in dental
pulp play an important role in the survival of pulpal
tissue. In that study, the authors demonstrated that
teeth with sensory denervation had greater loss of
pulpal tissue than those with innervation [4].

Sympathetic nerve fibers are sparse in the dental
pulp of both primary and permanent teeth. They
originate in the superior cervical ganglion, are located
along the blood vessels in the deeper pulp, and are
involved in vasoconstriction.

The parasympathetic nerve fibers play roles in the
regulation of pulpal blood flow but are much less
important than either the sensory or the sympathetic
fibers [10].

During maturation and aging in permanent teeth,
dental pulp chamber becomes narrower with the
deposition of tertiary dentin and dead tracts, which
are normally not innervated. With increasing loss of
primary dentin, tooth innervation decreases, as shown
by the reduction in expression of neuropeptides
and their receptors in the dental pulp [9, 11]. Several
studies have shown the distribution of nerve fibers in
dental pulp by using the expression of protein gene
product 9.5 (PGP9.5), a soluble protein isolated from
brains, as a marker of nerve fibers. PGP9.5 staining
appears to be reliable in reacting with nerve fibers,
in several studies using different techniques: immuno-
histochemistry [12], immunoblotting [13], immuno-
cytochemistry [14-16], and immunofluorescence
[5, 16, 17].

The sensory innervation of permanent teeth is
greater than that of primary teeth [5, 14, 18]. Due to
the prominent function of sensory nerve fibers in pain
transmission, several investigators have hypothesized
that the primary teeth have less sensitivity than the
permanent teeth. This is because the primary teeth
have less sensory innervation. However, another
study revealed different results in sensory innervation
between primary and permanent teeth [19]. In that
study, the sensory nerve supply in human primary teeth
differs from that in permanent teeth in two ways. First,
the distribution of the innervation within the crowns
of primary teeth was highest cervically, while the
permanent teeth were densely supplied in the pulpal
horn. Second, the primary teeth were particularly
innervated at the cervical ends of the roots, but the
roots of permanent dentin were virtually uninnervated.
In addition, physiologic root resorption does not affect
the histological structure [20] or overall innervation
[21] of primary teeth.
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1.2 Sensory neuropeptides in dental pulp

The sensory nerve fibers in dental pulp are
afferent fibers involved predominantly in dental
pain perception. The terminals of sensory nerve fibers
contain neuropeptides, synthesized neurotransmitter
proteins from neurons. These peptidergic neurons are
associated with neurogenic inflammation, caused by
extreme stimuli, such as dental caries, drilling, probing
of the exposed dentin, or percussion of the teeth, in
order to maintain the vitality of dental pulp [22].
Dynamic changes in peptidergic neurons occur during
inflammation by extensive nerve fiber sprouting.
These sprouting result in an increased number of
potential sites of neuropeptide-containing fibers and,
consequently, an increased quantity of neuropeptide
release [3, 14, 15, 23-25]. Neuropeptides cannot cross
cell membranes, so they trigger biological effects by
activating their receptors located on the plasma
membrane of the target cells and they are rapidly
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degraded by the enzymes in pulpal tissue after
exerting the effects [26]. The functions of sensory
neuropeptides are multiple and varied. They can act
as neurotransmitters, growth factors, hormones,
vasoregulators, and immune system signaling
molecules. It is known that neuropeptides contribute
to promoting neurogenic inflammation to the control
of pulpal blood flow and to the pain mechanisms
of the pulpodentin complex [10]. Several studies
demonstrated that neuropeptides could modulate
vascular smooth muscles, increase vascular
permeability, and modulate the immune system
[8, 10, 27]. The sensory neuropeptides in primary and
permanent tooth pulp consist of calcitonin gene-related
peptides (CGRP), substance P (SP) and neurokinin A
(NKA) [10, 28]. The origin, localization, stimulation,
and biological effects of sensory neuropeptides in
dental pulp are summarized in Table 1.

Table 1. Summary of sensory neuropeptides, receptors, and their functions (modified from [26])

Neuropeptide Origin Localization Stimulus for release Biologic effect
Calcitonin gene- Trigeminal Cand Adfibers - Thermal - Vasodilation
related peptide ganglion - Mechanical - Plasma extravasation
- Chemical - Chemotaxis
- Electrical -T lymphocyte
- Caries suppression
- Capsaicin - Hard tissue formation
- Inflammatory mediators - Repair
- Bradykinin - Mitogen for
- Prostaglandins odontoblasts
- Pain
- Resorption control
Substance P Trigeminal CandA fibers - Thermal - Vasodilation
ganglion - Mechanical - Plasma extravasation
- Chemical - Immune system
- Electrical stimulation
- Caries - Chemotaxis
- Capsaicin - Enhances macrophages
- Inflammatory mediators  activity
- Bradykinin - Hard tissue formation
- Prostaglandins - Tissue reparation
- Mitogen for T
lymphocyte
Neurokinin A Trigeminal CandA fibers - Thermal - Vasodilation
ganglion - Mechanical - Plasma extravasation
- Chemical - Chemotaxis
- Electrical - Pain
- Caries
- Capsaicin
- Inflammatory mediators
- Bradykinin

- Prostaglandins
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1.3 Neural reactions to pulpal injuries

When dental pulp is injured, the injury activates
nerve fibers to induce neurogenic inflammation. That
is a process of stimuli-induced neuropeptide release,
change in vascular permeability, and the recruitment
of immunocompetent cells. The neurogenic
inflammation can lead to the healing process [10, 29].
Several studies have demonstrated the neurogenic
inflammation occurring in the dental pulp following
dental injury. For example, sensory [14, 30, 31] and
sympathetic [2] nerve fiber sprouting were found
in inflamed dental pulp. Byers and colleagues [32]
demonstrated that the variable degrees of sensory
nerve fiber sprouting is correlated with various degrees
of pulpal injury in the rat model. In their study, a mild
injury, e.g. shallow cavities, caused an increase in
CGRP-immunoreactive fibers, and those sprouting
CGRP-nerve fibers subsided within 21 days. The
deeper cavities caused more injury to the dental
pulp and led to microabscess formation, with more
numerous branches of sensory nerve fibers sprouting
underneath. The sprouting fibers took a longer time
to subside and reparative dentin was substituted in
the microabscesses. When the dental pulp was
exposed, three defensive reactions could be found,
pulp polyps, coagulation necrosis and liquefying
necrosis. In those severe pulpal injuries, the CGRP-
immunoreactive fibers were found sprouting adjacent
to the borders of defensive reactions and the axons
were found to assemble in the core of surviving pulp.
As we have mentioned before, due to the increased
number of potential sites of neuropeptide release and
the role of sensory neuropeptides in pain transmission,
the sprouting of sensory nerve fibers following
inflammation may alter cytochemical reactions in the
dental pulp and contribute to the altered efficacy of
local anesthesia.

2. The expression of sodium channels in dental
pulp

\oltage-gated sodium channels (VGSCs) are
complex transmembrane pores that are responsible
for depolarization of the membrane potential, or the
rising phase of the action potential in the membrane.
They are found in excitable cells, such as neurons,
myocytes [33], and some types of glial cells [34].
VGSCs open within a millisecond in response to
electrical change across the membrane to allow
sodium ion influx. This causes the increased neuronal
membrane potential. Then, they terminate very fast

to occlude the sodium ion flow. The neurons enter a
repolarization stage by the allowance of potassium
ion influx at the neuronal membrane. After closing,
VGSCs return to the resting state and are available to
reopen in response to new waves of electrical change.
Therefore, VGSCs contribute to the determination of
neuronal excitability and play a role in the propagation
of nerve impulses. During injuries or inflammation,
VGSCs in primary sensory neurons are continuously
activated and the continuous activation of VGSCs
gives rise to an unprovoked, spontaneous action
potential, that finally causes continuous pain [35].

The sodium channel is a selective filter composed
of one large, continuous protein, the B-subunit,
and one or two smaller proteins, the B-subunits. The
B-subunit, a 220-260 kD polypeptide, is a functional
part of the sodium ion channel, and contains a voltage
sensor, an ion pore, and activation and inactivation
gates. The B-subunits modulate the functions of the
o-subunits and stabilize them to the plasma membrane.
In mammals, nine genes have been identified
to encode VGSC B-s ubunits into nine isoforms,
depending on amino acid sequence homology
and genetic location. These isoforms include Na, 1.1,
Na, 1.2, Na, 1.3, Na 1.4, Na 1.5 Na 1.6, Na 1.7,
Na,1.8, and Na, 1.9. Each isoform differs in function,
such as tissue distribution, electrophysiological
properties, pharmacological properties, and response
to nerve injury and inflammation. Moreover,
different isoforms aggregate to form a variety of
macromolecules and to regulate the excitability of
nociceptors. Therefore, there are diversified processes
of nerve impulse propagation such as variation in
opening thresholds, opening time length, amount of
inactivation time, rate of isoform transition from the
closed inactivated state to the resting, or closed state,
depending on the presence of sodium channel
o-subunit isoforms [36].

VGSCs can be functionally classified depending
on the criteria used, as shown in Table 2, and the
properties of each VGSC a-subunit isoform are
summarized in Table 3.

In physiological, rather than pathological,
conditions, the sensory neurons in the dorsal root
ganglion (DRG) and trigeminal ganglion express both
TTX-sensitive (TTX-S) and TTX-resistant (TTX-R)
sodium channels. The population of sensory neurons
is primarily mechanoreceptive, expressing rapidly-
inactivating TTX-S sodium channels, with a small
proportion being nociceptive, expressing a mixture of
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Table 2. Classification of VGSCs depending on function [36]

Criteria

Classification of VGSCs

Threshold of activation
Rate of activation
Rate of inactivation

Sensitivity to tetrodotoxin (TTX), which isa
toxin found in the liver of puffer fish

- Low threshold

- High threshold

- Fast activation

- Slow activation

- Fast inactivation

- Slow inactivation

- TTX-sensitive (TTX-S)
- TTX-resistant (TTX-R)

Table 3. Voltage-gated sodium channel

-subunit isoforms and their properties [35, 36]

a-subunitisoform Site of expression Inactivation rate  Sensitivity to blockade by
TTX

Na,1.1 CNS and DRG sensory neurons Fast Sensitive
Na,1.2 CNS neurons Fast Sensitive
Na,1.3 Immature neurons Fast Sensitive
Na,1.4 Skeletal muscle Fast Sensitive
Na,1.5 Cardiac muscle Slow Intermediately sensitive
Na,1.6 CNS and DRG sensory neurons Fast Sensitive
Na,1.7 DRG sensory neurons and

sympathetic ganglia Fast Sensitive
Na,1.8 DRG sensory neurons Slow Resistant
Na,1.9 Small DRG sensory neurons and

trigeminal ganglia

Very slow (persistent) Resistant

rapidly-inactivating TTX-S and slowly-inactivating
TTX-R sodium channels. Details of studies of the
expression of sodium channels in normal dental pulp
are described in Table 4.

During the inflammatory process, inflammatory
mediators can lower the threshold of activation and
increase the excitability of TTX-R in primary sensory
neurons, contributing to neuronal hyperexcitability [37].
Moreover, several studies have shown the alteration
in the expression of both TTX-S and TTX-R VGSCs
in inflamed peripheral tissues [36, 38]. These changes
may lead to increased pain states.

The rapidly inactivating, TTX-S sodium currents
have been detected in cultured human dental pulp
cells [39]. Davidson suggested that the main source
of these sodium currents is neuronal satellite cells,
not odontogenic cells, because the odontoblastic
processes firmly embed the odontoblasts to the dentin
and do not allow these cells to be explanted. On the
other hand, an in vitro study of Allard and colleagues
[40] found that odontoblasts expressed voltage-gated

TTX-S currents which have the ability to generate
action potential, but TTX-R sodium currents have not
been detected.

Henry and colleagues [41] found no change in
overall sodium channel expression in painful human
dental pulp. However, they found that the quantity of
atypical nodal sites and the expression of sodium
channels at such sites were increased but the quantity
of typical nodal sites and the accumulating sodium
channels at those sites were decreased. That study
showed that inflammation caused the demyelinating
process and the remodeling of the pattern of sodium
channel accumulation. Several studies supported the
study of Henry and colleagues [41], revealing, for
example, an increase in the expression of Na, 1.7 [17],
Na,1.8[12, 13] and Na, 1.9 [42] in permanent human
dental pulp with irreversible pulpitis compared to
permanent dental pulp of non-painful teeth. Na, 1.6
has also been found in the dental pulp of both humans
and rats [43], but its function in pulpal inflammation
remains unclear. The expression of multiple VGSC
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isoforms in inflamed dental pulp suggests the
collaborative roles of various VGSC isoforms in
generating spontaneous action potential, leading to
pulpal pain.

Na,1.1,Na,1.2,Na,1.3,Na,1.4,and Na 1.5 have
not been evidenced in dental pulp. Na, 1.1 and Na, 1.2
are predominantly expressed in adult central nervous
system (CNS) neurons, in combination with Na, 1.6.
In contrast, the expression of Na, 1.3 is particular in
immature neurons. Na, 1.4 has been seen in skeletal
muscle, while Na, 1.5 has been remarkably found in
cardiac muscle [35]. Not only VGSCs isoforms, but
also epithelial sodium channels, which are non-
VGSCs, have been found in dental pulp [44]. The
expression of each sodium channel isoform in
permanent dental pulp is shown in Table 4.

3. The expression of sodium channels related to
dental pain

Na,1.6 is a TTX-sensitive VGSC isoform,
remarkably expressed at the nodes of Ranvier within
the myelinated PNS and CNS neurons [45] and also
expressed along unmyelinated neurons of the PNS
[46] and CNS [45]. Its function has been suggested
to be an electrical conduction in both myelinated

Table 4. Sodium channel expression in normal dental pulp

and unmyelinated axons [45, 46] but the role in
nociception is obscure. The expression of Na, 1.6
in human permanent tooth pulp has been reported
in the study of Luo and colleagues [47] using
immunocytochemistry, in which there was no
significant difference in the expression of Na, 1.6
in normal and painful pulp, despite an increase in
the proportion of atypical nodes of Ranvier and a
decrease in typical nodal sites in painful pulp. Another
study of Na,1.6 in dental pulp, a study in rats,
using immunohistochemistry and double immuno-
fluorescence [43], found that Na,,1.6 was expressed
in non-neuronal cells, such as pulpal immune cells,
dendritic pulpal cells, and odontoblasts. That finding
suggests that Na, 1.6 play a role in those cells.
Furthermore, it might be implicated in neuro-immune
interactions. In contrast to the study of Luo and
colleagues [47], pulpal tissue of injured rat teeth in
Byers and colleagues’ study [43] showed an increase
in Na, 1.6 immunoreactive cells, predominantly around
the injured pulpal tissue and dilated blood vessels. The
increased expression of Na,, 1.6 in non-neuronal dental
pulp cells of injured rats [47], despite the unchanged
expression of Na, 1.6 at the nodes of Ranvier in human
inflammatory pulp [43], may reflect the different

In vitro/In vivo

Models

Major findings

References

In vitro

Whole-cell, patch-clamp
methods

In vitro
Immunohistochemistry

In vitro
Immunocytochemistry

In vitro
Immuno-electron
microscopic methods
In vitro
Immunohistochemistry

In vitro
immunohistochemistry
In vitro
immunocytochemistry

Human dental pulp cells

Human dental pulp

Human dental pulp

Rat dental pulp

Rat dental pulp

Rat dental pulp

Human dental pulp

Detection of TTX-S currentin
human dental pulp cells

Expression of NaV1.8
immunoreactive nerve fibers

in the sub-odontoblastic

layers of dental pulp
Expression of NaV1.8in 16.5%
of nodes of Ranvier in radicular
tooth pulp

Expressionof and ENaCin
mechanoreceptive myelinated
nerve fibers

Expression of NaV1.9in
unmyelinated nerve fibers

and suggested role of NaVv1.9
in thermal pain stimuli
Expression of NaV1.6 in dental
pulp cells and odontoblasts
Prominent expression of NaV1.6
at nodes of Ranvier, particularly
at typical nodal sites

Davidson, 1994 [39]

Renton, etal 2005 [11]

Henry, etal 2005 [61]

Ichikawa, et al 2005
[44]

Padilla, etal 2007 [62]

Byersetal, 2009 [43]

Luoetal, 2010 [47]
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function of Na, 1.6 in different cell types. However,
the difference in the expression and response
mechanism of Na, 1.6 in various species and different
types of pulpal tissue damage should not be ignored.

Na,1.7 is a TTX-sensitive VGSC isoform that
has been widely studied. It has been identified in the
sympathetic neurons and small and medium sized
sensory neurons of the DRG, including nociceptive
neurons. Na, 1.7 is rapidly activated, rapidly inactivated
and slowly recovers from fast activation, so it
plays an important role in setting the threshold for
the generation of action potentials in peripheral
nociceptive neurons [35]. Na,, 1.7 is markedly involved
in perceiving pain sensations, as evidenced in patients
with the loss-of-function mutation in the SCN9A gene,
a gene that encodes Na, 1.7, or meaning that those
who have loss of Na,1.7 function are unable to
experience pain [48, 49]. In addition, patients with
congenital pain syndrome, who have an alteration in
Na, 1.7 function, have increased pain sensitivity
associated with edema, redness, and warmth,
suggesting the role of Na, 1.7 in chronic inflammatory
pain [50]. In the dental pulp of human permanent teeth,
the upregulation of Na,,1.7 expression has also been
reported in painful pulpitis studied using either
immunohistochemistry [51], or immunocytochemistry
[17], demonstrating the increased expression of the
Na, 1.7 isoform at both typical and atypical nodal sites.

The VGSC o-subunit isoform 1.8 (Na,,1.8) and
VGSC o-subunit isoform 1.9 (Na,1.9), the slower
TTX-R components, are remarkably found in small
unmyelinated sensory neurons that have been identified
as nociceptive neurons [36]. Na, 1.8 has a high
activation threshold, slow inactivation kinetics and
contributes to the electrogenesis of an action potential
in C-type peripheral neurons of mice [52]. Na 1.9 is
activated at potentials near resting membrane potential
and generates relatively persistent current [53]. Both
TTX-Risoforms, Na, 1.8 and Na, 1.9, are believed to
be involved in the prolonged duration of the action
potential in response to painful stimuli and have been
found to upregulate during inflammatory pain in rat
[38, 54] and mouse [55] models. Therefore, both
sodium channel isoforms might be new targets for
treatment of inflammatory pain. The different
properties of Na 1.8 and Na,,1.9 are as follows.
Na,1.8 currents have a slow activation and
inactivation rate. The slower inactivation rate of
Na, 1.8 compared to those of other isoforms prolongs
the action potential of neurons and may cause chronic
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pain. The steady-state voltage dependence of
inactivation contributes to generating an action potential
even in the depolarized state. Na, 1.9 currents are
unique. They can be activated at voltages near the
resting membrane potential. Furthermore, they can
generate persistent currents. Na, 1.9 can be easily
activated. It can contribute to the setting of the
threshold of activation. Finally, it can remain opening
foralonger time than Na, 1.8 [36, 56]. Previous studies
in rats, using oligodeoxynucleotides as antisense for
Na, 1.8 [55, 57] and a study in Na,,1.8-null mice have
shown that Na, 1.8 plays a role in inflammatory pain
and neuropathic pain [58]. Na, 1.9 channels also have
arole in inflammatory pain, but not in neuropathic pain
[59, 60].

Localization of Na, 1.8 in human teeth with painful
pulpitis has been investigated using immuno-
histochemistry [12]. It has been found that Na,1.8-
immunoreactive nerve fibers were localized in the
sub-odontoblastic layer of both healthy and inflamed
pulp tissue. However, the detection of Na,,1.8-
immunoreactive fibers was much greater in the
inflamed dental pulp. Moreover, the upregulation of
Na, 1.8 has been reported using the immmunoblotting
method in inflamed human permanent tooth
pulp compared to healthy pulp [13]. An immuno-
cytochemical study has revealed that not only the
predominant Na, 1.6, but also Na, 1.8 has presented
at the nodes of Ranvier in the radicular part of healthy
human permanent tooth pulp [61]. This finding
suggests the coexistence of multiple sodium channel
isoforms in those areas where the levels of expression
may change during the inflammatory period and may
contribute to an increased pain status.

For Na, 1.9, an investigation in rats has revealed
the innervation of Na, 1.9-immunoreactive fibers in the
lip skin and in the dental pulp of non-painful teeth,
suggesting the role of this VGSC isoform in orofacial
pain [62]. As well as the other sodium channel
mentioned above, the immunocytochemical method has
reported the increased expression of Na, 1.9 in the
axons of symptomatic pulpitis of human permanent
teeth [42].

Epithelial sodium channel (ENaC) protein is a
member of the degenerins family (DEG), which is a
large protein family of diverse functions, such as
sodium ion transport, acid sensation, proprioception,
and mechanosensation [63]. Differing from VGSCs,
which consist of o- and - subunits, ENaC consists
of four subunits: o, B, yand [ subunits [64]. Only
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o, B and vy subunits of ENaC have been indicated
in mechanoreceptors in the trigeminal ganglion
of rat models with a possible function in
mechanotransduction [65]. BENaC has been identified
in the terminal Schwann cells associated with the
periodontal Ruffini endings in the periodontal ligament
of rat incisors and is believed to be a key molecule
for mechanosensation in mastication [66]. ENaC
has also been found in rat dental pulp tissue, by using
immunohistochemistry [44]. In that study, the BENaC
and yENaC-immunoreactive fibers have appeared in
trigeminal ganglion neurons, periodontal ligament,
and deep layer of oral mucosa, inferior alveolar nerve
fibers, radicular pulp, and sub-odontoblastic plexus of
rat molars pulp tissue. YENaC in dental pulp was mostly
around myelinated nerve fibers, which are sensitive
to mechanical stimuli, whereas it was mostly absent
around unmyelinated nociceptive axons.

Those studies of changes in sodium channel
expression within painful dental pulp are summarized
in Table 5.

Table 5. Sodium channel expression related to dental pain

There have been attempts to discover new
substances to act as sodium channel blockers for the
treatment of both neuropathic and inflammatory pain.
Lidocaine, a commonly used anesthetic, is a sodium
channel blocker with a non-specific blocking property
that can block TTX-R and TTX-S channels. Scholz
and colleagues reported that TTX-R channels are more
resistant to lidocaine than are TTX-S channels in A-[
and C type neurons from the dorsal root ganglion of
rats [67]. In contrast, other studies reported that
TTX-R channels are more sensitive to lidocaine than
are TTX-S sodium channels in rat models [68] and in
the mammalian dorsal root ganglion neuroblastoma
hybridoma cell line0 [69]. The differences in the results
of these studies may be the result of several factors.
First, the ability of lidocaine to bind sodium channels
depends on the status of the sodium channels.
TTX-R currents were found to be blocked by lidocaine
in the inactivated state more than in the resting state
[67]. It was also found that TTX-S and TTX-R
currents were equally sensitive to lidocaine in the

In vitro/In vivo

Models

Major findings

References

In vitro
Immunohistochemistry

In vitro
immunocytochemistry
In vitro
immunocytochemistry

In vitro

Western blot

In vitro
immunohistochemistry

In vitro
immunocytochemistry

In vitro
immunocytochemistry

In vitro
immunohistochemistry

Inflamed human
permanent tooth pulp

Inflamed human
permanent tooth pulp
Inflamed human
permanent tooth pulp

Inflamed human
permanent tooth pulp
Injured rat dental pulp

Inflamed human dental
pulp

Inflamed human dental
pulp

Inflamed human dental
pulp

Significantincrease in Na, 1.8
immunoreactive nerve fibers in painful
pulpitis

Increase expression of Na,,1.9 in axons of
painful pulp

Increased expression of Na, 1.7 at both
intact and remodeling nodal sites within
the painful human dental pulp

Increase in Na, 1.8 density in inflamed
dental pulp

Increased expression of Na, 1.6 near
dilated blood vessels beneath the
injured site and nearly affected pulp

1. Increased expression of NaCh at
atypical nodal sites, but decreased
expression at typical nodal sites within
painful pulpitis

2. Decrease in density of NaCh
expression in painful pulp but no
significant difference when

compared to normal pulp

3. Accumulation of NaCh at atypical
nodal sites within A-  fibers

No difference in Na, 1.6 expression at
nodal sites of painful and non-painful
pulp

Increase in Na, 1.7 immunoreactive area
within sub-odontoblastic plexus of
painful dental pulp

Renton, etal 2005 [11]

Wells etal, 2007 [42]

Luoetal, 2008 [16]

Warren, etal 2008 [12]

Byersetal, 2009 [43]

Henry, etal 2009 [41]

Luoetal, 2010[47]

Beneng etal, 2010 [51]
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resting state, while in the activated or opened state,
TTX-S currents were more sensitive to lidocaine [69].
Another reason for different findings in the sensitivity
of sodium channels to lidocaine may be the blocking
methods used in the studies. Drug-bound TTX-R
channels have a slower recovery period than do
TTX-S channels [69]. Then, the use of frequency-
dependent and tonic blockade of the channels by
lidocaine leads to dissimilar results in comparing the
sensitivity of TTX-S and TTX-R. Until now, the
specific VGSC isoforms that are the problems in
anesthetic failure are still controversial. The use of a
combination of permanently charged lidocaine
(N-ethyl-lidocaine) and capsaicin, an agonist for
the transient receptor potential vanilloid 1 (TRPV1),
in injured rats has been reported in the study of Kim
and colleagues [70]. Those authors claimed that the
advantage of that regimen over the use of plain local
anesthetic agents is that it does not cause a deficit in
motor and autonomic nerve function, but the authors
claimed that it requires further study for clinical
application. Isoflurane, an inhalation anesthetic agent,
was also proved to block TTX-S and Na, 1.8 currents
inrats [71]. Eugenol, a widely used agent in dentistry,
has an ability to inhibit both TTX-R and TTX-S sodium
ion currents in rats and has effect on nociceptive, as
well as non-nociceptive, fibers [72, 73]. Therefore,
eugenol may be another good choice to be an
analgesic and anesthetic agent in dental treatment. In
addition to the sodium channel blockers mentioned
above, the sodium channel blocking efficacy of variety
opioid derivatives has been studied and it has been
found that tramadol, fentanyl and sufentanil have
sodium channel blocking ability, especially in slow-
activation sodium channel isoforms, while morphine
does not [74]. The specific sodium channel blockers
have been improved but they are limited to specific
Na, 1.8 blockers, suchas O-conotoxin MrVIB from
Conus Marmoreus [75], a small molecule antisense
oligonucleotide (A-803467) [76, 77] and 5-Aryl-2-
furfuramides [78]. Unfortunately, despite much
research on sodium channel blockers, none of the
sodium channel blocking agents is considered to be
effective and safe enough to use in humans. Further
studies on the new generation of pain treatments,
particularly in the field of dentistry, are still needed.

Conclusions
Dental pain is a significant health problem.
Although several voltage-gated sodium channel
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isoforms, as well as an epithelial sodium channel, have
been identified in dental pulp with different location
and function, only Na, 1.7, Na, 1.8, and Na 1.9 play a
key role in inflamed pulp. These sodium channel
isoforms are suggested as potential targets for novel
treatments of pain from pulpal inflammation and as
options for novel anesthetics in the treatment of painful
pulpitis.
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ABSTRACT

Aim: The effects of estrogen on the prevention of impaired insulin-induced long-term depression in the hip-
pocampus and neuronal insulin signaling caused by high-fat diet (HF) were studied in male and female rats.
Main methods: Both male and female rats were fed with a normal diet (ND; 19.7% energy from fat) or a high-
fat diet (HF; 59.3% energy from fat) for 12 weeks. Then, rats were divided into four subgroups: ND, ND + E, HF
and HF + E. The subgroups with + E were given 50 pg/kg estrogen subcutaneously once a day for 30 days. At
the end of the experimental period, blood and brain samples were collected to determine the peripheral in-
sulin resistance and neuronal insulin resistance, respectively.

Key findings: Both male and female rats fed with HF developed peripheral insulin resistance as indicated by
increased body weight, visceral fat, plasma insulin and HOMA index. Estrogen administration decreased
those parameters, indicating improved peripheral insulin sensitivity, in both male and female HF rats. HF
diet consumption also caused impaired insulin-induced long-term depression in hippocampus and impaired
neuronal insulin receptor function and signaling, indicating neuronal insulin resistance, in both male and fe-
male rats. Estrogen treatment could attenuate these neuronal impairments only in HF female rats.
Significance: The activation of the estrogen pathway could preserve insulin sensitivity in the peripheral
tissue in both male and female rats. In neuronal tissue, however, the benefit of estrogen could be found

only in female rats.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Several studies demonstrated that high-fat (HF) feeding in animal
models could cause obesity and insulin resistance in peripheral tis-
sues, which are features of the metabolic syndrome (Cani et al.,
2007; Shoelson, 2006). Our previous study has shown that a 12-
week HF diet consumption in male rats could lead not only to periph-
eral insulin resistance but also to neuronal insulin resistance, indicat-
ing an important role of diet on neuronal insulin sensitivity
(Pratchayasakul et al., 2011). In addition, it is known that the loss of
ovarian hormones, such as estrogen, can cause a significant increase
in visceral fat deposition and insulin resistance, which can then easily
develop into type 2 diabetes (Alonso and Gonzalez, 2008; Asthana et
al., 2001; Asthana et al.,, 1999; Gonzalez et al., 2008). Estrogen has
been shown to contribute to glucose homeostasis (Louet et al.,
2004). The beneficial effect of estrogen on insulin activity has been
found to be greater in women before menopause than in aged-
matched men (Desrocher and Rovet, 2004; Nuutila et al., 1995). A
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number of studies have also demonstrated several beneficial effects
of estrogen replacement on the insulin resistance model, such as the
improvement of peripheral insulin sensitivity, the increase in the
rate of IRS-1 and Akt phosphorylation of insulin receptors in skeletal
muscle, the reduction of central body fat, the lowering of lipid and
cholesterol levels, and the reduced risk of the development of type
2 diabetes (Alonso and Gonzalez, 2008; Godsland, 2005; Palin et al.,
2001). Nevertheless, only two studies have demonstrated those ben-
eficial effects of estrogen on improving insulin sensitivity in peripher-
al tissues induced by HF consumption (Bryzgalova et al., 2008; Riant
et al., 2009). Both studies showed that the estrogen treatment
exerted anti-diabetic and anti-obesity effects in rats which received
a HF diet. Their findings suggest that the pathway of estrogen acts
as an effective target to protect against HF-induced metabolic
imbalance.

Previous studies also demonstrated the beneficial effects of estro-
gen on improving memory function in human and animal models
(Daniel et al.,, 1997; Luine et al.,, 1998; Sherwin, 2005). We have
shown previously that a significant modification of important neuro-
nal insulin receptor signaling can be induced by a fat-enriched diet in
male rats (Pratchayasakul et al., 2011). Being fed the HF diet for
12 weeks, clearly induces neuronal insulin resistance, which is identi-
fied as a significant reduction in the ability of insulin to induce long-
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term depression (LTD), and a reduction in the stimulated phosphotyro-
sine activity of IR, IRS-1 and Akt/PKB in brain slices (Pratchayasakul et
al., 2011). Those findings indicated that the impairment of neuro-
nal insulin resistance was induced by a HF diet. Nevertheless,
the effects of estrogen administration on neuronal insulin signal-
ing in HF-fed rats have never been investigated. In the present
study, we tested the hypothesis that the administration of estro-
gen in both male and female rats can reverse the impairment of
both insulin-induced LTD in the hippocampus and neuronal insu-
lin signaling caused by a 12-week HF diet consumption.

Materials and methods
Animals and dietary protocols

All experiments were conducted in accordance with an approved
protocol from the Faculty of Medicine, Chiang Mai University Institu-
tional Animal Care and Use Committee, in compliance with NIH guide-
lines. Male (n=40) and female (n =40) Wistar rats weighing~180-
200 g were obtained from the National Animal Center, Salaya Campus,
Mahidol University, Thailand. All animals were individually housed in
a temperature-controlled environment with a 12:12 light-dark cycle.
One week after arrival, all rats were randomly assigned to one of the
two dietary groups (n=40 in a HF diet group, 20 male:20 female
and n=40 in a normal diet group, 20 male:20 female). The normal-
diet (ND) group received a standard laboratory chow, in which
19.7% of total energy (%E) was from fat, with energy content calculat-
ed at 4.02 kcal/g (Mouse Feed Food No. 082, C.P. Company, Bangkok,
Thailand). The HF group consumed a fat-enriched diet, containing
fat, mostly from lard (59.3% E), with energy content calculated at
5.35 kcal/g, for 12 weeks. The animals were maintained in individual
cages with unrestricted access to food and water. Body weight and
food intake were recorded daily. Blood samples were collected
from the tail at weeks 0 and 12 after fasting for at least 5 h and
kept at — 80 °C for subsequent biochemical analyses, such as plasma
glucose, triglyceride, and insulin assay. After 12 weeks, each dietary
group was divided into two subgroups and each subgroup was
given either vehicle (90% sesame oil 4+ 10% ethanol) or 17-3 estradiol
(50 pg/kg) subcutaneously for 30 days (Bryzgalova et al., 2008).
This dose and duration were chosen since it has been shown to im-
prove the peripheral insulin resistant condition (Bryzgalova et al.,
2008). At the end of the experimental periods, animals were deeply
anesthetized with isoflurane after fasting for at least 5h and de-
capitated. The brain was rapidly removed for brain slice prepara-
tion. Visceral fat was removed and weighed. Plasma collected
from animals was stored at —80°C for further biochemical
analysis.

Analytical procedure

Fasting plasma glucose and triglyceride were determined by
colorimetric assay using commercially available kits (Biotech,
Bangkok, Thailand). Fasting plasma insulin level and plasma estro-
gen were measured by Sandwich ELISA kits (LINCO Research,
St. Charles, Missouri, USA).

Determination of insulin resistance (HOMA index)

Insulin resistance was assessed by Homeostasis Model Assess-
ment (HOMA) (Appleton et al.,, 2005; Haffner et al., 1997) as a
mathematical model describing the degree of insulin resistance,
calculated from fasting plasma insulin and fasting plasma glucose
concentration.

Brain slice preparation

After decapitation, the brain was removed and immersed in ice-
cold “high sucrose” aCSF containing (mM): NaCl 85; KCl 2.5; MgSO4
4; CaCl, 0.5; NaH,PO4 1.25; NaHCOs; 25; glucose 25; sucrose 75;
kynurenic acid 2; ascorbate 0.5, saturated with 95%0,/5%C0O, (pH
7.4). This solution enhanced neuronal survival during the slicing pro-
cedure (Chattipakorn and McMahon, 2002). Hippocampal slices were
cut using a vibratome (Vibratome Company, St. Louis, Missouri, USA).
Following a 30-minute post-slice incubation in high sucrose aCSF,
slices were transferred to a standard aCSF solution containing
(mM): NaCl 119; KCl 2.5; CaCl; 2.5; MgSO4 1.3; NaH,PO4 1; NaHCO;
26; and glucose 10, saturated with 95% 0,/5%CO, (pH 7.4) for an ad-
ditional 30 min, before being used for the extracellular recordings and
immunoblotting.

Extracellular recording of hippocampal slices

To investigate insulin-induced LTD, the hippocampal slices were
transferred to a submersion recording chamber and continuously
perfused at 3-4 ml/min with standard aCSF warmed to 25-28 °C.
Field excitatory postsynaptic potentials (fEPSPs) were evoked by
stimulating the Schaffer collateral-commissural pathway with a bipo-
lar tungsten electrode, while recordings were gathered from the stra-
tum radiatum of the hippocampal CA1 region with micropipettes
(3 Mohm) filled with 2 M NaCl. Stimulus frequency was 0.033 Hz.
Stimulus intensity was adjusted to yield a fEPSP of 0.8-1.0 mV in am-
plitude. Hippocampal slices were perfused with aCSF (as baseline
condition) for 10 min and then perfused with aCSF plus 500 nM insu-
lin (as insulin stimulation) for 10 min, after which the hippocampal
slices were perfused with aCSF again (wash out) and fEPSPs were
recorded for the next 30 min.

All data were filtered at 3 kHz, digitized at 10 kHz, and stored on a
computer using pClamp 9.2 software (Axon Instruments, Foster City,
California, USA). The initial slope of the fEPSPs was measured and
plotted versus time using Origin 8.0 software.

Preparation of brain homogenates for immunoprecipitation,
immunoblotting, and neuronal estrogen levels

To examine the alteration of neuronal insulin-mediated phosphor-
ylation of the Akt/PKB following vehicle and estrogen treatment of
two dietary regimens, six brain slices per animal were placed into ei-
ther aCSF or aCSF plus 500 nM insulin (Humulin R, Eli Lilly, Giessen,
Germany) for 5 min. Then, three brain slices in each conditioned
group were homogenized in 500 pl of ice-cold brain slice lysis buffer
[1 mM EDTA, 1 mM EGTA, 1% NP-40, 1% Triton X-100 and supplemen-
ted with a protease inhibitor cocktail, Roche complete mini-tablets,
(Roche Molecular Biochemicals, Indianapolis, Indiana, USA)]. Next,
the homogenates were centrifuged at 9000 g for 30 min at 4 °C and
the protein concentration was measured using the Bio-Rad DC Pro-
tein assay kit (Bio-Rad Laboratories, Hercules, California, USA).
These homogenates were then stored at — 80 °C for further biochem-
ical analysis of neuronal estrogen levels and the western blot analysis
of the serine phosphorylation of Akt/PKB.

To determine the level of Akt/PKB protein expression in the brain,
another set of three brain slices in aCSF was homogenized over ice in
non-ionizing lysis buffer containing: 100 mM NaCl, 25 mM EDTA,
10 mM Tris, 1% Triton X-100, 1% NP-40 supplemented with a protease
inhibitor cocktail (Roche Molecular Biochemicals).

Immunoprecipitation and immunoblotting
Akt/PKB at serine 473 kinases phosphorylation was electrophor-

esed and immunoblotted with rabbit antibodies for Akt/PKB at serine
473. Examination of the levels of Akt/PKB protein was conducted with
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homogenates prepared from another set of three brain slices. Both
proteins were resolved by the immunoprecipitation and immunoblot
assay conducted with rabbit anti-Akt/PKB (1:1000 in TBST, Santa Cruz
Biotechnology, Santa Cruz, California, USA). For loading control, im-
munoblotting for each membrane was incubated with anti-B-actin
(1:400; rabbit polyclonal; Sigma, St. Louis, Missouri, USA).

All membranes for visualizing the phosphorylation and the pro-
tein levels of Akt/PKB were incubated with secondary goat anti-
rabbit antibody conjugated with horseradish peroxidase (1:8000 in
TBST, Bio-Rad Laboratories). The protein bands were visualized on
Amersham hyperfilm ECL (GE Healthcare, Buckinghamshire, UK)
using Amersham ECL western blotting detection reagents (GE Health-
care). Band intensities were quantified by Scion Image and the results
were shown in average signal intensity (arbitrary) units.

Statistical analysis

Data were presented as means 4 SE. All statistical analyses were
performed using the program SPSS (version 16; SPSS, Chicago, Ill.,
USA). The significance of the difference between the means was cal-
culated by two way ANOVA and posthoc analysis with Fisher's test
with p<0.05 for the level of phosphorylated Akt/PKB at serine 473
site in all animals. Pearson's correlation analysis was used to deter-
mine the relationship among the plasma parameters, liver triglycer-
ide content, visceral fat, body weight, HOMA index, plasma estrogen
and brain estrogen in all animals.

Results

B-Estradiol (E2) administration improved peripheral insulin sensitivity
in both male and female HF-fed rats

After 12-weeks of HF feeding, both male and female rats demon-
strated the characteristics of peripheral insulin resistance, such as in-
creased body weight, visceral fat, liver triglyceride, fasting plasma
insulin and HOMA index (Table 1). After 1 month of E2 administra-
tion, these parameters were significantly decreased in both male
and female HF-fed rats, compared to the vehicle-treated group.
These parameters were not altered in ND-fed rats (Table 1). Further-
more, the circulating estrogen level in the vehicle-treated female HF-
fed rats was also significantly reduced, compared to the vehicle-
treated female ND rats. This finding is consistent with a previous
study demonstrating that high body fat in female rats was associated
with decreased estradiol levels (Ziomkiewicz et al., 2008). In contrast;

Table 1

the circulating estrogen levels were not significantly changed be-
tween the HF and ND groups that received E2 in either gender
(Table 1).

E2 administration prevented neuronal insulin resistance in female
HF-fed rats

The neuronal insulin receptor function or insulin-induced LTD was
impaired following HF consumption in both male and female rats as
indicated by the disappearance of insulin-induced LTD in the hippo-
campus of HF-fed rats (Fig. 1A). E2 administration could significantly
prevent the impairment of insulin-induced LTD only in female HF rats
(Fig. 1B). In E2-treated female HF-fed rats, the percentage depression
of fEPSPs after insulin administration was 31.18 4- 9.93%, compared to
2.37 4+3.18% from E2-treated male HF-fed rats. These findings indi-
cated that administration of E2 decreased the occurrence of HF-
induced neuronal insulin resistance in female HF-fed rats, but not in
male HF-fed rats. The body weight, fasting insulin level and HOMA
index were also decreased by E2 treatment in both male and female
rats fed with HF (p<0.05, Table 1).

E2 administration improved neuronal insulin signaling in female HF-FED
rats

To study the mechanism of E2 on neuronal insulin resistance,
we determined whether the E2 improves insulin signaling, partic-
ularly Akt/PKB in the brain. As shown in our previous study
(Pratchayasakul et al., 2011), 12-week HF consumption led to del-
eterious effects on insulin receptor signaling, such as phosphory-
lated IR, phosphorylated IRS-1 and phosphorylated Akt/PKB. In
the present study, the impairment of neuronal insulin signaling
was examined using immunoblot Akt/PKB phosphorylation. We
also investigated whether estrogen can improve neuronal insulin
signaling, particularly Akt/PKB phosphorylation to investigate the
mechanism of E2 in neuronal insulin signaling in both male and
female rats. Our results demonstrated that the level of Akt/PKB
protein was not different in both male and female rats receiving
either ND or HF diet. Furthermore, E2 administration did not
alter Akt/PKB protein concentration in the brain of both male
and female rats of either dietary group (Fig. 2A). However, the
amounts of the phosphorylated form of Akt/PKB at the serine
473 site were significantly decreased in both vehicle-treated
male and female rats in the HF group, compared to the vehicle-
treated rats in the ND group (Fig. 2B). However, the amounts of the

The effects of estrogen on peripheral insulin sensitivity parameters in rats fed with normal and high-fat diet.

Parameters Vehicle-treated Estrogen-treated

Normal diet High-fat diet Normal diet High-fat diet

Male Female Male Female Male Female Male Female
Body weight (g) 48250+12.50 282.50-+10.31% 59500+47."  380.00+4.%2 407.50 +14.93"  254.00 +6.00° 514.00 + 6.00%* 340,00 4 17.03%%2
Visceral fat (g) 22.41+£2.72 10.16 4+ 0.42° 4381+7.95" 37.71+2.02" 17.6942.20 13.334+0.83 40.99+3.76" 29.93 +2.09%#
Glucose (mg%) 121.704+4.70 119.78 +£2.54 13436+12.72 130.75+19.11 99.43 +4.89 102.28 +5.86 118.524+9.07 108.58 +9.57
Triglyceride (mg%) 86.99+20.58 47.124+1.29 77.16+17.71 12818 +3.18%* 126.50424.11 53.75+11.43° 79.894+7.19 61.25+8.11%
Free fatty acid (mM) 0.44+0.17 0.47 £0.07 0.4240.07 0.46 +0.04 0.5740.13 0.5340.05 0.5540.10 0.38+0.01
Insulin (ng/ml) 1.61+£0.48 1.32+0.23 4.88+034" 3.40 £0.25% 0.9340.15 1.294+0.13 2.50+0.46* 2.43 4 0.42%*
Liver triglyceride (mg/g 39.31+4.39 24.21+1.80 103.0043.56" 109.28 4 8.42™ 2437 +£3091 23.4343.53 61.61+6.52*%% 75.69 + 6.69%*2

tissue)

HOMA index 11.574+2.87 935+ 1.64 40.044+4.76" 2641 +4.15%° 5.5140.92 7.69 £0.55 16.72 4 2.69** 14.89 + 1.99*#
Plasma estrogen (pg/ml)  56.66+-4.60 13338+10.32% 44.804+6.85 112.914+24.43% 24023+27.91% 266.89+37.87* 247.74+2361%  260.01+12.36%
Brain estrogen (pg/mg 64.87 £14.17  75.334+7.32 65.114+7.74 82.03 +15.44 74.254+6.81 149.06 +£16.78%*  68.80+9.20 128.54 4 22.99%2

protein)

2 p<0.05 from male.
* p<0.05 from diet.
# p<0.05 from vehicle.
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Fig. 1. E2 administration for 30 days significantly improved the impairment of insulin-mediated long term depression (LTD) in the CA1 hippocampus following HF consumption in
female rats. Panel A: A summary of average normalized fEPSPs (fEPSPt/fEPSPo with fEPSPs being points at which fEPSP slopes stabilized) from NDV male and female rats (n=_8-9
independent slices, n=4-5 animals/group) and HFV male and female rats (n=_8-9 independent slices, n=4-5 animals/group) brain slices. It shows that bath application of
500 nM insulin for 10 min produced a depression of fEPSPs in male and female NDV brain slices and the fEPSPs did not fully recover after washout of insulin. However, 500 nM
insulin-mediated LTD was significantly attenuated in both male and female HFV rats. Panel B: summary of average normalized fEPSPs from estrogen-treated ND (NDE) male and
female rats (n=238-9 independent slices, n=4-5 animals/group) and estrogen-treated HF(HFE) male and female rats (n =8-9 independent slices, n=4-5 animals/group) brain
slices. NDV = normal diet group with vehicle treatment, HFV = high-fat diet group with vehicle treatment, NDE = normal diet group with E2 treatment, HFE = high-fat diet

group with E2 treatment.

phosphorylated form of Akt/PKB at the serine 473 site were significantly
increased in the brains of E2-treated female rats compared to the
vehicle-treated female rats in the HF group, suggesting that E2 could
protect neuronal insulin signaling from the deleterious effect of HF
feeding in female rats (Fig. 2B). In male brains, the phosphorylated
form of Akt/PKB at the serine 473 site was still decreased after E2 treat-
ment (Fig. 2B). Furthermore, in the E2 treatment group, the amount of
the phosphorylated form of Akt/PKB at the serine 473 site in the ND
and HF-fed groups was not different in female rats. However, in male
rats that received E2 treatment, the level of phosphorylated Akt/PKB

at the serine 473 site of the HF group was significantly reduced com-
pared to that in the ND group (Fig. 2B).

Discussion

Our study demonstrated that a 30-day administration of estrogen
reduces the occurrence of HF-induced peripheral insulin resistance in
male and female rats. Our findings confirmed the therapeutic effect of
exogenous estrogen on peripheral insulin resistance induced by HF
consumption as shown in previous studies (Kumagai et al., 1993;
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Fig. 2. Insulin-induced serine phosphorylation of neuronal Akt/PKB was decreased in both male and female HFV groups. Panel A: Representative blots of protein level of AKt/PKB in
brain slices harvested from the NDV, NDE, HFV and HFV groups (n=4-5/group) compared between male and female. The densitometric quantitation of blots from all groups was
not different. Panel B: Representative blots of serine 473 kinase of Akt/PKB phosphorylation in brain slices harvested from the NDV, NDE, HFV and HFV groups compared between
male and female rats. Densitometric quantitation of blots from insulin-stimulated Akt/PKB in the female HFE group was significantly greater than in the female HFV group. All im-
munoblotting lanes were loaded with equal amounts of protein (40 pg/lane). *, p<0.05; NDV = normal diet group with vehicle treatment, HFV = high-fat diet group with vehicle
treatment, DE = normal diet group with E2 treatment, HFE = high-fat diet group with E2 treatment; —, no insulin stimulation; +, insulin stimulation.

Riant et al., 2009). Furthermore, the present study was the first to
demonstrate the beneficial effect of exogenous estrogen on neuronal
insulin resistance in ND- and HF-fed rats. Our results demonstrated
that estrogen treatment could attenuate the impairment of neuro-
nal insulin receptors and neuronal insulin signaling dysfunction,
particularly the Akt/PKB phosphorylation, caused by HF diet con-
sumption only in female rats. These findings support the hypoth-
esis that estrogen could exert its beneficial effect on neuronal
insulin receptor function via improved downstream neuronal in-
sulin receptor signaling. Our findings also indicated that estrogen
could enhance Akt/PKB phosphorylation in insulin-stimulated
neuronal tissues, suggesting that estrogen is directly involved in
the insulin signaling pathway in neuronal-sensitive tissues. More-
over, the present study also demonstrated an important role of

estrogen receptor activation in the central nervous system which
could play an important role in the metabolic effect of insulin sig-
naling in the brain.

Estrogen has been shown to play an important role in regulating
neuronal structure and function. Previous studies have demonstrated
that estrogen can either prevent or improve the cognitive deficits of Alz-
heimer's disease (AD) (Shang et al., 2010; Simpkins et al., 1997) that
regulate synaptic density in hippocampal regions (Woolley et al.,
1996). In addition, chronic estradiol (90 days) treatment in female
rats has been shown to induce the activation of the insulin receptor
substrate-1 signaling pathway in the cerebral cortex and diencephalon
of the brain (Alonso and Gonzalez, 2008). Our findings demonstrated
that estrogen could improve the impairment of Akt/PKB phosphoryla-
tion. All of these beneficial effects of estrogen help explain the



