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Abstract. Five species members of the Korean Hyrcanus Group, i.e., Anopheles 

pullus, Anopheles sinensis, Anopheles kleini, Anopheles belenrae and Anopheles 

lesteri were tested for susceptibility to Brugia malayi. They were allowed to feed 

artificially on blood containing B. malayi microfilariae, and dissected 14 days after 

feeding. The susceptibility rates were 60%, 65%, 90%, 100% and 100% in An. 

pullus, An. sinensis, An. kleini, An. belenrae and An. lesteri, respectively. As 

determined by levels of susceptibility, results indicated that An. pullus was a 

moderate potential vector, while An. sinensis, An. kleini, An. belenrae and An. lesteri

were high potential vectors, when compared with the 90-95% susceptibility rates of 

an efficient control vector, Ochlerotatus (= Aedes) togoi. An introgressive study of 

B. malayi-susceptible/-refractory genes was performed intensively by hybridization 

experiments between a high (Korean strain) and a low (Thailand strain) potential An. 

sinensis vectors, and the susceptibility rates of F1-hybrids and backcross progenies 

were compared with parental stocks. The results revealed that the B. malayi-

susceptible genes could be introgressed from a high to low potential An. sinensis

vector by increasing the susceptibility rates from 0-5% in the parental stocks to 55% 

and 70% in F1-hybrids and backcross progenies, respectively. The increase of 

susceptibility rates related clearly to the increase of normal larval development in the 

thoracic muscles of F1-hybrids and backcross progenies.  

Keywords: Anopheles, Hyrcanus Group, Brugia malayi, susceptibility level, 

hybridization, susceptible/refractory genes, Korea
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INTRODUCTION 

Anophelines of the Hyrcanus Group comprises at least 27 species members 

and has have a wide distribution extending from Iberia in Europe to East and 

Southeast Asian regions, including some of the off-lying islands of the Indian and 

Pacific oceans (Harrison and Scanlon, 1975; Tanaka et al, 1979; Harbach, 2013). It 

is well known that some species members of the Hyrcanus Group are involved in the 

transmission of human diseases (e.g., malaria: Plasmodium vivax, filariasis: Brugia 

malayi and Japanese encephalitis virus), particularly in the Oriental Region and 

contiguous parts of the eastern Palaearctic Region (Sasa, 1976; Zhang, 1990; Ree et 

al, 2001; Kanojia et al, 2003; Lee et al, 2007; Rueda et al, 2010; Joshi et al, 2011). 

In the Republic of Korea (ROK), at least 6 species members (An. belenrae,

An. kleini, An. lesteri, An. pullus, An. sinensis and An. sineroides) of the Hyrcanus 

Group have been recognized (Tanaka et al, 1979; Rueda, 2005). Among these, An. 

sinensis was incriminated as a natural vector of lymphatic filariasis due to B. malayi 

in mainland ROK, whereas An. sinensis and An.  lesteri were reported as natural 

vectors of this filarial parasite in China (Sasa, 1976). Regarding control measures in 

the ROK, the reduction of microfilariae in the peripheral blood of carriers interrupts 

the mosquito-transmitted cycle by using mass, combined with selective, treatments 

with a microfilaricide (diethylcarbamazine: DEC) to microfilaria positive persons. 

These measures were started firstly in 1964 together with remarkable economic 

growth followed by improved living standards, including environmental and 

personal hygiene. This filarial control program brought about complete elimination 

of this lymphatic filariasis in 2007 (Cheun et al, 2009). Despite complete success of 

the program, re-emergence at any time of this endemic disease should be kept in 

mind, even in thoroughly controlled endemic regions, where the environmental 
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factor (s) favors suitable conditions for the transmission-cycle. This was reported 

recently in other mosquito-borne diseases, e.g., re-emergence of malaria due to 

Plasmodium vivax in the ROK (Chai et al, 1994; Park et al, 2000; Shim and Shin, 

2002).   

Regarding the information mentioned above, details of the natural vectors of 

B. malayi have been documented in only An. sinensis among 6 species members of 

the Korean Hyrcanus Group. Therefore, this information clearly emphasizes lack of 

knowledge on the vector competence to B. malayi of these anopheline mosquitoes. 

However, the information could be used as a robust primary guideline for a field 

control approach, when suspecting any anopheline species of being a transmitting 

vector in endemic areas of Brugian filariasis. Hence, this study reports the 

susceptibility to B. malayi of 5 species members of the Korean Hyrcanus Group (An.

belenrae, An. kleini, An. lesteri, An. pullus and An. sinensis). In addition, this paper 

reported that an introgressive study of B. malayi-susceptible/-refractory genes 

between high (Korean strain) and low (Thailand strain) potential An. sinensis vectors 

was performed by hybridization experiments and comparison of susceptibility levels 

of F1-hybrids and backcross progenies with parental stocks.  

   MATERIALS AND METHODS 

Mosquito species: wild-caught, fully engorged females of An. belenrae, An. 

kleini, An. pullus and An. sinensis were collected from Paju City, Gyeonggi-do 

Province, while An. lesteri was collected from So-Rae District, Incheon City, ROK. 

Species identification of wild caught-females followed standard illustrated keys 

(Tanaka et al, 1979; Rueda, 2005). Subsequently, morphological identification 

(using intact morphology of eggs, larvae, pupal skins and adult females) and 
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molecular investigation (Joshi et al, 2010) were performed in F1-progenies of iso-

female lines in order to guarantee the exact identification of species. Then, the 

laboratory colonies of the 5 anopheline species were established by pooling 5 iso-

female lines of each anopheline species, using the techniques described by (Kim et 

al, 2003). These colonies were used for studies on susceptibility to B. malayi 

throughout the experiments. Regarding an introgressive study of B. malayi-

susceptible/-refractory genes, the parental stocks of An. sinensis Korean strain: a 

high potential vector for B. malayi (results obtained from this study), An. sinensis

Thailand strain: a low potential vector for B. malayi (Saeung et al, 2013), and their 

F1-hybrids and backcross progenies were used. As for the control vector, autogenous 

Ochlerotatus (= Aedes) togoi (Chanthaburi Province, eastern Thailand strain) was 

selected as a proven efficient laboratory vector for a wide-range of genera and 

species of filarial nematodes, including B. malayi (Jumkum et al, 2003).       

Filarial B. malayi: this filarial parasite originated from a 20-year-old woman, 

who was a resident of Narathiwat Province, southern Thailand. Domestic cats were 

later infected experimentally with the parasite, which was maintained at the 

Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol 

University, Bangkok, Thailand, from 1982 to 1986, when it was transferred to 

Mongolian jirds (Meriones unguiculatus) and then maintained at the animal house of 

the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand (Choochote

et al, 1986).

Blood containing B. malayi microfilariae: preparation of blood containing B.

malayi microfilaria was followed the details as described recently (Saeung et al,

2013). Briefly, the jirds were intraperitoneally inoculated for at least 3 months with

infective larvae of B. malayi and anesthetized deeply with ethylene ether. The 
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microfilariae were collected by injecting 3 ml of Hank’s Balanced Salt Solution 

(HBSS, pH 7.2-7.4) into the peritoneal cavity before withdrawing by peritoneal 

washing. The 0.05 ml of peritoneal-washed-rich microfilariae was mixed with 5 ml 

of human-heparinized blood (10 units of heparin/ml of blood), taken from human 

volunteers who had signed the consent form. Then, the adjusted microfilarial density 

ranged from approximately 250 to 350 microfilariae (mf)/20 μl by using the human-

heparinized blood for artificially feeding all of all the mosquito species.  

Infection of mosquitoes with B. malayi microfilariae: five-day-old adult 

female Oc. togoi, An. belenrae, An. kleini, An. lesteri, An. pullus and An. sinensis

fasted for 24 hrs and then were allowed artificial feeding simultaneously on blood-

containing B. malayi microfilariae (microfilarial density = 305 and 297 mf/20 μl in 

experiment I and II, respectively), using the techniques and apparatus previously 

described (Chomcharn et al, 1980). Likewise, 5-day-old female An. sinensis Korean 

and Thailand strains, and their F1-hybrids and backcross progenies fasted for 24 hrs 

and then were allowed artificial feeding simultaneously on blood-containing B.

malayi microfilariae (microfilarial density = 323 and 346 mf/20 μl in experiment I 

and II, respectively), using similar procedures as mentioned above. Fourteen days 

after feeding, all infected mosquitoes were dissected in normal saline solution and 

examined under a dissecting microscope. The number of mosquitoes with one or 

more infective stage larvae in any part of the body (head, thorax or abdomen) was 

recorded.  

Determination of the possible factor (s) affecting the level of susceptibility: 

the thorax of infected An. sinensis Korean and Thailand strains, and their F1-hybrids 

and backcross progenies were torn in a drop of normal saline solution and examined 

under a compound microscope 4 days after feeding. The first stage (L1) larvae were 
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counted and scored as normal L1 larvae if alive with intact morphology. The larvae 

were scored as melanized L1 larvae if they had evidence of a retained stage and 

melanotic encapsulation; and scored as degenerated L1 larvae if they demonstrated 

vacuolated internal organs without any evidence of melanotic encapsulation.  

 Ethical clearance: the protocols were approved by the Animal Ethics 

Committee of Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. 

RESULTS

Details of the infective rates and parasite loads of Oc. togoi, An. belenrae,

An. kleini, An. lesteri, An. pullus and An. sinensis 14 days after feeding on blood 

containing B. malayi microfilariae are shown in Table 1. The 95% and 90% infective 

rates corresponded to an average of 16.74 and 13.06 infective (L3) larvae per 

infected Oc. togoi in experiment I and II, respectively, which indicated that all 

feeding experiments were under conditions of appropriate B. malayi microfilarial 

densities in infected blood. The infective rates and average number of L3 larvae per 

infected mosquito of An. pullus, An. belenrae and An. lesteri in experiment I, were 

60% and 8.50, 100% and 8.85, and 100% and 10.90, respectively; and those in An.

kleini and An. sinensis in experiment II, were 90% and 5.39, and 65% and 4.23, 

respectively. Comparative statistical analyses of the infective rates and average 

number of L3 larvae per infected mosquito were carried out between Oc. togoi and 5 

An. hyrcanus species. The results revealed that the infective rates differed 

significantly (P < 0.05) only between Oc. togoi and An. pullus, whereas the average 

number of L3 larvae per infected mosquito did not differ significantly (P < 0.05) only 

between Oc. togoi and An. leteri. Notably, all infective larvae that recovered from 

the 2 experimental feedings were very active and found to distribute in all regions of 
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the head, thorax and abdomen. Also, their behavior was similar, with more than 65% 

of infective larvae migrating from the thorax to the head and proboscis.   

 Details of the infective rates and parasite loads of parental, F1-hybrids and 

backcross progenies of An. sinensis Korean and Thailand strains, 14 days after 

feeding on blood containing B. malayi microfilariae, are shown in Table 2. The 65% 

and 60% infective rates corresponded to an average of 3.62 and 4.33 L3 larvae per 

infected An sinensis Korean strain in experiment I and II, respectively, which 

indicated that all feeding experiments were under conditions of suitable B. malayi 

microfilarial densities in infected blood. The infective rates and average number of 

L3 larvae per infected mosquito of An. sinensis Korean strain, An. sinensis Thailand 

strain, and their 2 F1-hybrids [(female An. sinensis Korean strain x male An. sinensis

Thailand strain)F1 and (female An. sinensis Thailand strain x male An. sinensis

Korean strain)F1] in experiment I, were 65% and 3.62, 5% and 1, 65% and 3.92, and 

55% and 5.27,  respectively. Comparative statistical analyses of the infective rates 

and average number of L3 larvae per infected mosquito were carried out between An. 

sinensis Korean strain and (female An. sinensis Korean strain x male An. sinensis

Thailand strain)F1, and An. sinensis Thailand strain and (female An. sinensis

Thailand strain x male An. sinensis Korean strain)F1. The results revealed that the 

infective rates and average number of L3 larvae per infected mosquito differed 

significantly (P < 0.05) only between An. sinensis Thailand strain and (female An. 

sinensis Thailand strain x male An. sinensis Korean strain)F1. The infective rates and 

average number of L3 larvae per infected mosquito of An. sinensis Korean strain and 

An. sinensis Thailand strains, and their backcross progenies [(female An. sinensis

Korean strain x male An. sinensis Thailand strain)F1 x male An. sinensis Thailand 

strain], and [(female An. sinensis Thailand strain x male An. sinensis Korean 
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strain)F1 x male An. sinensis Korean strain] in experiment II, were 60% and 4.33, 

0%, 45% and 4.22, and 70% and 5.50, respectively. Comparative statistical analyses 

of the infective rates and average number of L3 larvae per infected mosquito were 

carried out between An. sinensis Korean strain and [(female An. sinensis Korean 

strain x male An. sinensis Thailand strain)F1 x male An. sinensis Thailand strain], and 

An. sinensis Thailand strain and [(female An. sinensis Thailand strain x male An. 

sinensis Korean strain)F1 x male An. sinensis Korean strain]. The results revealed 

that the infective rates and average number of L3 larvae per infected mosquito 

differed significantly (P < 0.05) only between An. sinensis Thailand strain and 

[(female An. sinensis Thailand strain x male An. sinensis Korean strain)F1 x male An. 

sinensis Korean strain].  

  Parasite loads dissected 4 days after feeding on blood containing B. malayi

microfilariae in parental, F1-hybrids and backcross progenies of An. sinensis Korean 

and Thailand strains are detailed in Table 3 and Fig. 1. A satisfactory average 

number of 19.40, 21.60, 23.20 and 18.20 L1 larvae recovered from the thoracic 

muscles of An. sinensis Korean strain, An. sinensis Thailand strain, (female An.

sinensis Korean strain x male An. sinensis Thailand strain)F1, and (female An. 

sinensis Thailand strain x male An. sinensis Korean strain)F1, respectively, in 

experiment I; and 24.60, 23.80, 20.40 and 25.60 L1 larvae obtained from the thoracic 

muscles of An. sinensis Korean strain, An. sinensis Thailand strain, [(female An. 

sinensis Korean strain x male An. sinensis Thailand strain)F1 x male An. sinensis

Thailand strain], and [(female An. sinensis Thailand strain x male An. sinensis

Korean strain)F1 x male An. sinensis Korean strain], respectively, in experiment II, 

indicated that all of the mosquito species were successful in taking a considerable 

number of microfilariae from infected blood, and subsequently they invaded the cells 
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of thoracic muscles. However, low degrees of normal L1 and high degrees of 

abnormal L1 (melanized and degenerated L1) larval development in the thoracic 

muscles of An. sinensis Thailand strain (normal L1: 16.67-23.53%, abnormal L1:

76.47-83.33%) clearly were different from those of  An. sinensis Korean strain 

(normal L1: 48.45-56.10%, abnormal L1: 43.90-51.55%), and their F1-hybrids 

(normal L1: 48.35-52.59%, abnormal L1: 47.41-51.65%) and backcross progenies 

(normal L1: 45.10-56.25%, abnormal L1: 43.75-54.90%) of both directions. 

    DISCUSSION 

In order to delineate a mosquito vector in an endemic area of filariasis, it is 

necessary to confirm the following evidence for a species of mosquitoes. Firstly, 

naturally caught specimens of a mosquito species contain infective stages of a 

parasite. Secondly, the same forms of infective stages develop in a laboratory-bred, 

clean colony of the same mosquito species after being fed on carrier blood 

containing parasites, and thirdly, the same mosquito species fed on human blood in 

an endemic area (Sasa, 1976). Therefore, from these criteria the susceptibility test in 

an experimental laboratory is a useful procedure for incriminating a potential vector 

of a certain species. Nevertheless, susceptibility alone does not imply an important 

role in the transmission of disease in nature, while a refractory one can rule out its 

significance entirely. 

 Vector competence to B. malayi of 5 species of the Korean An. hyrcanus

group (An. pullus, An. sinensis, An. kleini, An. belenrae and An. lesteri), as 

determined by susceptibility tests using a laboratory-bred, clean mosquito colony, 

had not been performed and/or reported until now. The results of this investigation 

revealed that An. sinensis, An. kleini, An. belenrae and An. lesteri were high potential 
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vectors, whereas An. pullus was a moderate potential vector. Therefore these present 

results confirm the natural vector status of An. sinensis in the ROK, and An. sinensis 

and An. lesteri in China, as documented by (Sasa,( 1976). Beneficial results reported 

herein emphasize the potential role of An. pullus, An. sinensis, An. kleini, An.

belenrae and An. lesteri in transmitting B. malayi in the ROK, and An. sinensis and 

An. lesteri in China, where these anopheline species and B. malayi were found 

sympatrically. However, it is noteworthy that An. sinensis, An. belenrae and An. 

kleini were cryptic morphologically and only a molecular-based assay could be used 

robustly to recognize them (Rueda, 2005; Joshi et al, 2010). Remarkably, it is 

possible that previous identification of An. sinensis was based only on pure 

morphological characteristics, particularly in using traumatic scales of wild-caught 

adult females from endemic areas of Brugian filariasis, in which epidemiological and 

control approaches might be mixtures of 2 or 3 species depending upon the locations 

studied.  

 It has been known that the fm (filarial susceptibility, B. malayi) in Aedes

species was controlled by simple sex-linked genes with refractoriness being 

dominant to susceptibility. The experiments of reciprocal and backcrosses between 

B. malayi-susceptible/-refractory strains of Stegomyia (= Aedes) aegypti, and B.

pahangi-susceptible Ae. polynesiensis/-refractory Ae. malayensis produced refractory 

progeny-females, suggesting that refractoriness is dominant to susceptibility 

(MacDonald and Ramachandran, 1965; MacDonald, 1976). However, those results 

are contrary to this study’s experiments of reciprocal and backcrosses between B.

malayi-susceptible (Korean strain)/-refractory (Thailand strain) An. sinensis by 

yielding susceptible progeny-females of both directions, indicating that susceptibility 

is dominant to refractoriness. The decrease in melanized and degenerated of L1 (2 
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main refractory mechanisms in the thoracic muscles of the Thai An. sinensis)

(Saeung et al, 2013) from 39.81-46.22% melanization and 30.25-43.52% 

degeneration in parental An. sinensis (Thailand strain) to 21.98% melanization and 

29.67% degeneration in F1-hybrids (female An. sinensis Thailand strain x male An. 

sinensis Korean strain) and 21.09% melanization and 22.66% degeneration in 

backcross progenies [(female An. sinensis Thailand strain x male An. sinensis

Korean strain)F1 x male An. sinensis Korean strain], when compared to 24.74-

26.83% melanization and 17.07-26.81% degeneration of An. sinensis (Korean strain) 

were good supportive evidence. These results elucidated on a promising model of a 

B. malayi-anopheline-system for further investigations of various aspects concerning 

susceptibility/refractoriness mechanisms.  
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Fig 1-L1 larvae recovered from thoracic muscle of Anopheles sinensis strains 4

days after infected blood meal. An. sinensis Korean strain: (A) Normal live 

larva with intact cuticle and internal organs (small arrow: protuberance of anal 

plug at the anal pore). An. sinensis Thailand strain: (B) Incomplete melanotic 

encapsulated larva. (C) Completely melanotic encapsulated larva. (ED)

Degenerated and vacuolated internal organs (small arrow) larva. 



1 

 

Ta
bl

e 
1 

In
fe

ct
iv

e 
ra

te
s a

nd
 p

ar
as

ite
 lo

ad
s o

f 5
 sp

ec
ie

s i
n 

th
e 

K
or

ea
n 

An
op

he
le

s h
yr

ca
nu

s g
ro

up
 a

fte
r f

ee
di

ng
 o

n 
bl

oo
d 

co
nt

ai
ni

ng
 B

ru
gi

a 
m

al
ay

i

m
ic

ro
fil

ar
ia

e 
(m

ic
ro

fil
ar

ia
l d

en
si

ty
 =

 3
05

  a
nd

 2
97

 m
f/2

0 
μl

 in
 e

xp
er

im
en

t I
 a

nd
 II

, r
es

pe
ct

iv
el

y)
, w

ith
 a

ll 
m

os
qu

ito
es

 d
is

se
ct

ed
 1

4 
da

ys
 

af
te

r f
ee

di
ng

.

M
os

qu
ito

 sp
ec

ie
s 

In
fe

ct
iv

e 
ra

te
s

(%
) (

N
o.

)*
 

A
ve

ra
ge

 N
o.

 L
3 p

er
 

in
fe

ct
ed

 m
os

qu
ito

   

(r
an

ge
)+

L 3
-d

is
tri

bu
tio

n 

%
 h

ea
d 

(N
o.

) 
%

 th
or

ax
 (N

o.
) 

%
 a

bd
om

en
 (N

o.
) 

Ex
pe

rim
en

t I
 

 
 

 
 

 

O
c.

to
go

i
95

 (1
9/

20
) 

16
.4

7 
(1

-3
7)

 
61

.6
6 

(1
93

) 
20

.1
3 

(6
3)

 
18

.2
1 

(5
7)

 

An
.p

ul
lu

s 
60

 (1
2/

20
)a  

8.
50

 (1
-1

6)
f  

65
.6

9 
(6

7)
 

15
.6

8 
(1

6)
 

18
.6

3 
(1

9)
 

An
. b

el
en

ra
e 

10
0 

(2
0/

20
)b  

8.
85

 (1
-2

1)
g  

75
.7

1 
(1

34
) 

15
.2

5(
27

) 
9.

04
 (1

6)
 

An
.l

es
te

ri
 

10
0 

(2
0/

20
)c  

10
.9

0 
(2

-2
4)

h  
68

.3
5 

(1
49

) 
11

.0
1 

(2
4)

 
20

.6
4 

(4
5)

 

   



2 

 

Ta
bl

e 
1 

(c
on

tin
ue

d)

M
os

qu
ito

 sp
ec

ie
s 

In
fe

ct
iv

e 
ra

te
s

(%
) (

N
o.

)*
 

A
ve

ra
ge

 N
o.

 L
3 p

er
 

in
fe

ct
ed

 m
os

qu
ito

   

(r
an

ge
)+

L 3
-d

is
tri

bu
tio

n 

%
 h

ea
d 

(N
o.

) 
%

 th
or

ax
 (N

o.
) 

%
 a

bd
om

en
 (N

o.
) 

Ex
pe

rim
en

t I
I 

 
 

 
 

 

O
c.

to
go

i
90

 (1
8/

20
) 

13
.0

6 
(1

-3
1)

 
66

.8
1 

(1
57

) 
14

.8
9 

(3
5)

 
18

.3
0 

(4
3)

 

An
.k

le
in

i 
90

 (1
8/

20
)d  

5.
39

 (1
-1

0)
i  

76
.2

9 
(7

4)
 

11
.3

4 
(1

1)
 

12
.3

7 
(1

2)
 

An
. s

in
en

si
s

65
 (1

3/
20

)e  
4.

23
 (1

-1
7)

j  
81

.8
2 

(4
5)

 
12

.7
3 

(7
) 

5.
45

 (3
) 

 *F
is

he
r’

s e
xa

ct
 te

st
: b

, c
, d

, e
 v

s. 
co

nt
ro

l, 
P 

> 
0.

05
; a

 v
s. 

co
nt

ro
l, 

P 
< 

0.
05

 

+  t-
te

st
 (t

w
o-

si
de

d)
:  

h 
vs

. c
on

tro
l, 

P 
> 

0.
05

; f
, g

, i
, j

 v
s. 

co
nt

ro
l, 

P 
< 

0.
05

 



3 

 

Ta
bl

e 
2 

In
fe

ct
iv

e 
ra

te
s a

nd
 p

ar
as

ite
 lo

ad
s i

n 
pa

re
nt

al
, r

ec
ip

ro
ca

l a
nd

 b
ac

kc
ro

ss
 p

ro
ge

ni
es

 o
f A

no
ph

el
es

 si
ne

ns
is

 st
ra

in
s f

ro
m

 K
or

ea
 a

nd
 T

ha
ila

nd
 

af
te

r f
ee

di
ng

 o
n 

bl
oo

d 
co

nt
ai

ni
ng

 B
ru

gi
a 

m
al

ay
i m

ic
ro

fil
ar

ia
e 

(m
ic

ro
fil

ar
ia

l d
en

si
ty

 =
 3

23
 a

nd
 3

46
 m

f/2
0 
μl

 in
 e

xp
er

im
en

t I
 a

nd
 II

, 

re
sp

ec
tiv

el
y)

, w
ith

 a
ll 

m
os

qu
ito

es
 d

is
se

ct
ed

 1
4 

da
ys

 a
fte

r f
ee

di
ng

. 

An
.s

in
en

si
s s

tra
in

s 

(F
em

al
e 

x 
m

al
e)

 

In
fe

ct
iv

e 
ra

te
s 

(N
o.

)*

A
ve

ra
ge

 N
o.

 L
3 p

er
 

in
fe

ct
ed

 m
os

qu
ito

   

(r
an

ge
)+

L 3
-d

is
tri

bu
tio

n 

%
 h

ea
d 

(N
o.

) 
%

 th
or

ax
 (N

o.
) 

%
 a

bd
om

en
 (N

o.
) 

Ex
pe

rim
en

t I
 

 
 

 
 

 

Pa
re

nt
al

 c
ro

ss
es

 
 

 
 

 
 

SK
 

65
 (1

3/
20

)a  
3.

62
 (1

-1
3)

e  
72

.3
4 

(3
4)

 
10

.6
4 

(5
) 

17
.0

2 
(8

) 

ST
5 

(1
/2

0)
b  

1 
(1

)f  
10

0 
(1

) 
- 

- 

R
ec

ip
ro

ca
l c

ro
ss

es
  

 
 

 
 

 

(S
K

 x
 S

T)
F 1

 
65

 (1
3/

20
)a  

3.
92

 (1
-1

6)
e  

80
.3

9 
(4

1)
 

11
.7

6 
(6

) 
7.

84
 (4

) 

(S
T 

x 
SK

)F
1 

55
 (1

1/
20

)b  
5.

27
 (1

-1
6)

f  
48

.2
7 

(2
8)

 
31

.0
3 

(1
8)

 
20

.7
0 

(1
2)

 

 



4 

 

Ta
bl

e 
2

(c
on

tin
ue

d)

An
.s

in
en

si
s s

tra
in

s 

(F
em

al
e 

x 
m

al
e)

 

In
fe

ct
iv

e 
ra

te
s 

(N
o.

)*

A
ve

ra
ge

 N
o.

 L
3 p

er
 

in
fe

ct
ed

 m
os

qu
ito

   

(r
an

ge
)+

L 3
-d

is
tri

bu
tio

n 

%
 h

ea
d 

(N
o.

) 
%

 th
or

ax
 (N

o.
) 

%
 a

bd
om

en
 (N

o.
) 

Ex
pe

rim
en

t I
I 

 
 

 
 

 

Pa
re

nt
al

 c
ro

ss
es

 
 

 
 

 
 

SK
 

60
 (1

2/
20

)c  
4.

33
 (1

-1
1)

g  
88

.4
6 

(4
6)

 
9.

62
 (5

) 
1.

92
 (1

) 

ST
0 

(0
/2

0)
d  

- 
- 

- 
- 

B
ac

k 
cr

os
se

s  
 

 
 

 
 

(S
K

 x
 S

T)
F 1

x 
ST

 
45

 (9
/2

0)
c  

4.
22

 (1
-9

)g  
76

.3
1 

(2
9)

 
10

.5
3 

(4
) 

13
.1

6 
(5

) 

(S
T 

x 
SK

)F
1

x 
SK

 
70

 (1
4/

20
)d  

5.
50

 (1
-1

8)
 

64
.9

4 
(5

0)
 

18
.1

8 
(1

4)
 

16
.8

8 
(1

3)
 

SK
:A

n.
 si

ne
ns

is
 (K

or
ea

n 
st

ra
in

); 
ST

: A
n.

 si
ne

ns
is

 (T
ha

ila
nd

 st
ra

in
) 

*C
hi

-s
qu

ar
e 

te
st

: a
, c

 v
s. 

co
nt

ro
l, 

P 
> 

0.
05

; b
, d

 v
s. 

co
nt

ro
l, 

P 
< 

0.
05

 

+  t-
te

st
 (t

w
o-

si
de

d)
: e

, g
 v

s. 
co

nt
ro

l, 
P 

> 
0.

05
; f

 v
s. 

co
nt

ro
l, 

P 
< 

0.
05

 



5 

 

Ta
bl

e 
3 

Pa
ra

si
te

 lo
ad

s i
n 

pa
re

nt
al

, r
ec

ip
ro

ca
l a

nd
 b

ac
kc

ro
ss

 p
ro

ge
ni

es
 o

f A
no

ph
el

es
 si

ne
ns

is
 st

ra
in

s f
ro

m
 K

or
ea

 a
nd

 T
ha

ila
nd

 d
is

se
ct

ed
 4

 d
ay

s 

af
te

r f
ee

di
ng

 o
n 

bl
oo

d 
co

nt
ai

ni
ng

 B
ru

gi
a 

m
al

ay
i m

ic
ro

fil
ar

ia
e 

 

(m
ic

ro
fil

ar
ia

l d
en

si
ty

 =
 3

23
 a

nd
 3

46
 m

f/2
0 
μl

 in
 e

xp
er

im
en

t I
 a

nd
 II

, r
es

pe
ct

iv
el

y)
. 

An
.s

in
en

si
s s

tra
in

s 

(F
em

al
e 

x 
m

al
e)

 

A
ve

ra
ge

 N
o.

 L
1 p

er
 in

fe
ct

ed
 

th
or

ax
 (r

an
ge

)+

%
 n

or
m

al
 L

1 (
N

o.
) 

%
 m

el
an

iz
ed

 L
1 (

N
o.

) 
%

 d
eg

en
er

at
ed

 L
1 (

N
o.

) 

Ex
pe

rim
en

t I
 

 
 

 
 

Pa
re

nt
al

 c
ro

ss
es

 
 

 
 

 

SK
 

19
.4

0 
(5

-2
3)

 
48

.4
5 

(4
7)

 
24

.7
4 

(2
4)

 
26

.8
1 

(2
6)

 

ST
21

.6
0 

(8
-3

1)
 

16
.6

7 
(1

8)
 

39
.8

1 
(4

3)
 

43
.5

2 
(4

7)
 

R
ec

ip
ro

ca
l c

ro
ss

es
  

 
 

 
 

(S
K

 x
 S

T)
F 1

 
23

.2
0 

(1
0-

36
) 

52
.5

9 
(6

1)
 

22
.4

1 
(2

6)
 

25
.0

0 
(2

9)
 

(S
T 

x 
SK

)F
1 

18
.2

0 
(6

-1
9)

 
48

.3
5 

(4
4)

 
21

.9
8 

(2
0)

 
29

.6
7 

(2
7)

 



6 

 

Ta
bl

e 
3 

(c
on

tin
ue

d)

An
.s

in
en

si
s s

tra
in

s 

(F
em

al
e 

x 
m

al
e)

 

A
ve

ra
ge

 N
o.

 L
1 p

er
 in

fe
ct

ed
 

th
or

ax
 (r

an
ge

)+

%
 n

or
m

al
 L

1 (
N

o.
) 

%
 m

el
an

iz
ed

 L
1 (

N
o.

) 
%

 d
eg

en
er

at
ed

 L
1 (

N
o.

) 

Ex
pe

rim
en

t I
I 

 
 

 
 

Pa
re

nt
al

 c
ro

ss
es

 
 

 
 

 

SK
 

24
.6

0 
(1

4-
25

) 
56

.1
0 

(6
9)

 
26

.8
3 

(3
3)

 
17

.0
7 

(2
1)

 

ST
23

.8
0 

(9
-4

4)
 

23
.5

3 
(2

8)
 

46
.2

2 
(5

5)
 

30
.2

5 
(3

6)
 

B
ac

k 
cr

os
se

s  
 

 
 

 

(S
K

 x
 S

T)
F 1

x 
ST

 
20

.4
0 

(7
-3

8)
 

45
.1

0 
(4

6)
 

30
.3

9 
(3

1)
 

24
.5

1 
(2

5)
 

(S
T 

x 
SK

)F
1

x 
SK

 
25

.6
0 

(1
1-

27
) 

56
.2

5 
(7

2)
 

21
.0

9 
(2

7)
 

22
.6

6 
(2

9)
 

 *
 D

is
se

ct
ed

 fr
om

 5
 th

or
ax

es
 

  



1 

 

Cytogenetic, crossing and molecular evidence of two cytological forms 1 

of Anopheles argyropus and three cytological forms of Anopheles 2 

pursati (Diptera: Culicidae) in Thailand 3 

 4 

Thongsahuan, S.1, Otsuka, Y.2, Baimai, V.3, Saeung, A.4, Hempolchom, C.4, Taai, K.4, 5 

Srisuka, W.5, Dedkhad, W.4, Sor-suwan, S.4, Choochote, W.4* 6 

 7 

1Faculty of Veterinary Science (Establishment Project), Prince of Songkla University, 8 

Songkhla 90110, Thailand 9 

2Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, 10 

879-5593, Japan 11 

3Department of Biology and Centre for Vectors and Vector-Borne Diseases, Faculty of 12 

Science, Mahidol University, Bangkok 10400, Thailand  13 

4Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 14 

50200, Thailand 15 

5Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai, 50180, 16 

Thailand 17 

               18 

*Corresponding author e-mail: choochote.wej@gmail.com  19 

 20 

 21 

 22 

 23 

 24 



2 

 

Abstract.1 

Nine and 11 isolines of Anopheles argyropus and Anopheles pursati, respectively, were 2 

established from individual females collected from cow-baited traps, and the 3 

characteristics of metaphase chromosomes were investigated in their F1-progenies. As 4 

determined by the different amounts of extra heterochromatin on sex chromosomes, 2 5 

types of  X (X1, X2)  and Y (Y1,Y2), and 2 types of  X (X1, X2) and 3 types of Y (Y1, Y2, 6 

Y3) chromosomes were obtained from An. argyropus and An. pursati, respectively. 7 

These types of sex chromosomes comprised 2 [Forms A (X1, Y1) and B (X1, X2, Y2)] 8 

and 3 [Forms A (X1, X2, Y1), B (X1, X2, Y2) and C (X2, Y3)] karyotypic forms of An. 9 

argyropus and An. pursati, respectively. All karyotypic forms acquired from An. pursati 10 

are new one that were discovered in this study, of which Forms A, B and C were found 11 

generally in Chiang Mai Province, while only 1 isoline of Form B was obtained in 12 

Ratchaburi Province. Form A was recovered from An. argyropus only in Ubon 13 

Ratchathani Province, whereas Form B from that species was found commonly in both 14 

Ubon Rathchathani and Nakhon Si Thammarat Provinces. Crossing experiments among 15 

the 2 and 3 isolines representing 2 and 3 karyotypic forms of An. argyropus and An. 16 

pursati, respectively, indicated genetic compatibility in yielding viable progenies and 17 

synaptic salivary gland polytene chromosomes through F2-generations. The conspecific 18 

natures of these karyotypic forms in both species were further supported by very low 19 

intraspecific sequence variations (average genetic distance: An. argyropus = 0.003-20 

0.007, An. pursati = 0.000-0.005) of ribosomal DNA (ITS2) and mitochondrial DNA 21 

(COI and COII). 22 

23 

 24 
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INTRODUCTION 1 

Anopheles argyropus and Anopheles pursati belong to the subgenus Anopheles of the 2 

Hyrcanus Group and Myzorhynchus Series. An. argyropus is distributed widely in 3 

Thailand and other countries in Asia, i.e., India (Assam), Vietnam, Cambodia, Malaysia 4 

(Malaysian Peninsular) and Indonesia (Java and Sumatra). Regarding An. pursati, the 5 

distribution of this anopheline species has been recorded so far from Thailand, Vietnam, 6 

Cambodia and Malaysia (Malaysian Peninsular) (Reid, 1968; Scanlon et al., 1968; 7 

Harrison & Scanlon, 1975; Rattanarithikul et al., 2006; Harbach, 2013). With regard to 8 

medical importance, these 2 anopheline species have never been incriminated as natural, 9 

suspected or potential vectors of any human diseases. However, An. pursati was 10 

reported recently as a high potential vector for nocturnally subperiodic Brugia malayi, 11 

as determined by a 60% susceptibility rate and 3.83 (1-11) parasite load (Saeung et al., 12 

2013). Furthermore, these 2 anopheline species are considered as economic pests of 13 

livestock, due to their vicious and massive biting behavior when taking blood meals 14 

from cattle (Reid et al., 1962; Reid, 1968; Harrison & Scanlon, 1975). 15 

Regarding metaphase chromosome investigations, two karyotypic forms of An. 16 

argyropus, i.e., Forms A (X1, X2, Y1) and B (X1, X2, Y2), were first reported from 17 

Chiang Mai and Phrae Provinces (northern Thailand), and Chiang Mai Province and 18 

Chanthaburi Province (eastern Thailand), respectively (Baimai et al., 1993). These 2 19 

karyotypic variants clearly appeared to result from a gradual increase in the extra 20 

heterochromatin on X and Y chromosomes. The genetic variation at the chromosomal 21 

level, within the taxon Anopheles species, potentially results in the existence of species 22 

complex and causes difficulty in identifying sibling species (isomorphic species) and/or 23 

subspecies (cytological forms/races) members of the complex that results from identical 24 
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morphology or minimal morphological distinction. Additionally, those members of each 1 

complex may differ in biological characteristics (e.g., microhabitats, resting and biting 2 

behavior, sensitivity or resistance to insecticides, susceptible or refractory to pathogens, 3 

etc.), which can be used to determine their vectorial capacity (Subbarao, 1998; 4 

Choochote & Saeung, 2013). Thus, inaccurate identification of individual members 5 

within the taxon Anopheles species complex may result in failure to distinguish between 6 

a vector and non-vector species, and lead to complications and/or unsuccessful vector 7 

control-approaches. A recent good example was reported on Anopheles barbirostris 8 

complex in Thailand, which emphasized on the significance of Anopheles species 9 

complex status. These reports comprised 5 sibling species members (Anopheles 10 

campestris-like and An. barbirostris species A1, A2, A3 and A4), all of which exhibited 11 

identical morphology at the adult stage, and only the branch summation of seta 2-VI of 12 

pupal skins could be used to separate An. campestris-like from An. barbirostris species 13 

A1, A2, A3 and A4 (average summation of seta 2-VI: An. campestris-like = 22.4014 

24.50 branches; An. barbirostris species A1, A2, A3 and A4 = 9.2 16.40 branches) 15 

(Harrison & Scanlon, 1975; Saeung et al., 2007, 2008; Suwannamit et al., 2009; 16 

Thongsahuan et al., 2009). Regarding distribution and biting behavior, An. campestris-17 

like was found mostly in flat plain localities and it chose to bite humans, while An. 18 

barbirostris species A1, A2, A3 and A4 were rather confined in mountainous areas and 19 

they preferred to bite on cattle. Furthermore, An. campestris-like was a high potential 20 

vector for Plasmodium vivax, whereas An. barbirostris species A1, A2, A3 and A4 were 21 

very low potential vectors (Thongsahuan et al., 2011). 22 

Regarding the above information, very little is known about the genetic 23 

proximities among 2 karyotypic variants of An. argyropus, and there is a complete lack 24 



5 

 

of karyotypic information of An. pursati in a systematic direction. Therefore, this study 1 

is the first to report, 3 new karyotypic forms [Forms A (X1, X2, Y1), B (X1, X2, Y2) and 2 

C (X2, Y3)] of An. pursati, and determine the genetic proximity among 2 and 3 3 

karyotypic variants of An. argyropus and An. pursati, respectively, by crossing 4 

experiments related to comparative DNA sequencing of the second internal transcribed 5 

spacer (ITS2) of ribosomal DNA (rDNA), cytochrome c oxidase subunit I (COI) and 6 

cytochrome c oxidase subunit II (COII) of mitochondrial DNA (mtDNA). 7 

 8 

MATERIALS AND METHODS 9 

Field collections and establishment of isoline colonies  10 

Wild-caught, fully engorged female mosquitoes of An. argyropus and An. pursati were 11 

collected from cow-baited traps. The An. argyropus mosquitoes were obtained from 12 

Ubon Rathchathani Province in the northeastern region and Nakhon Si Thammarat 13 

Province in the southern region of Thailand. The An. pursati mosquitoes were acquired 14 

from Chiang Mai Province in the northern region and Ratchaburi Province in the 15 

western region of Thailand. A total of 9 and 11 isolines of An. argyropus and An. 16 

pursati, respectively, were established successfully and maintained in our insectary, 17 

using the techniques described by Choochote & Saeung (2013). Exact species 18 

identification was performed using intact morphology of egg, larval, pupal and adult 19 

stages from the F1-progenies of isolines, by following the standard keys (Reid, 1968; 20 

Harrison & Scanlon, 1975; Rattanarithikul et al., 2006). These isolines were used for 21 

studies on the metaphase karyotype, crossing experiment and molecular analysis. 22 

 23 

 24 
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Metaphase karyotype preparation 1 

Metaphase chromosomes were prepared from 10 samples of the early fourth-instar 2 

larval brains of F1-progenies of each isoline in An. argyropus and An. pursati, using the 3 

techniques described by Choochote & Saeung (2013). Identification of karyotypic forms 4 

followed the standard cytotaxonomic systems of Baimai et al. (1993). 5 

 6 

Crossing experiment  7 

The 2 and 3 laboratory-raised isolines of An. argyropus and An. pursati, respectively, 8 

were selected arbitrarily from the stock isoline colonies. They were Form A (X1, Y1; 9 

Ur1A) and B (X2, Y2; Ns5B) of An. argyropus, and Form A (X1, Y1; Cm1A), B (X2, Y2; 10 

Rt1B) and C (X2, Y3; Cm7C) of An. pursati (Table 1). These isolines were used for 11 

crossing experiments in order to determine post-mating barriers by employing the 12 

techniques reported by Choochote & Saeung (2013). 13 

 14 

DNA extraction and PCR amplification  15 

Total genomic DNA was isolated from individual F1-progeny adult female of each 16 

isoline of An. argyropus and An.  pursati (Table 1) using DNeasy® Blood and Tissue 17 

Kit (QIAGEN, Japan). Primers for amplification of ITS2, COI, and COII regions were 18 

followed previous studies by Saeung et al. (2007). The ITS2 region of the rDNA was 19 

amplified using primer ITS2A (5’-TGT GAA CTG CAG GAC ACA T-3’) and ITS2B 20 

(5’-TAT GCT TAA ATT CAGGGGGT-3’) (Beebe & Saul, 1995). Amplification of the 21 

709 bp fragment of mitochondrial COI barcoding region was conducted using the 22 

LCO1490 (5 -GGT CAA CAA ATC ATA AAG ATA TTG G-3 ) and HCO2198 (5 -23 

TAA ACT TCA GGG TGA CCA AAA AAT CA-3 ) primers of Folmer et al. (1994). 24 
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The mitochondrial COII region was amplified using primers LEU (5 -TCT AAT ATG 1 

GCA GAT TAG TGC A-3 ) and LYS (5 -ACT TGC TTT CAG TCA TCT AAT G-3 ) 2 

(Sharpe et al., 2000). Each PCR reaction was carried out in total of 20 μl volume 3 

containing 0.5 U Ex Taq (Takara, Japan), 1X Ex Taq buffer, 2 mM of MgCl2, 0.2 mM 4 

of each dNTP, 0.25 μM of each primer, and 1 μl of the extracted DNA. For ITS2, PCR 5 

program consisted of initial denaturation at 94oC for 1 minute, 30 cycles at 94oC for 30 6 

seconds, 55oC for 30 seconds, and 72oC for 1 minute, and a final extension at 72oC for 5 7 

minutes. The amplification profile of COI and COII comprised initial denaturation at 8 

94oC for 1 minute, 30 cycles at 94oC for 30 seconds, 50oC for 30 seconds, and 72oC for 9 

1 minute, and a final extension at 72oC for 5 minutes. The amplified products were 10 

electrophoresed in 1.5% agarose gels and stained with ethidium bromide. Finally, the 11 

amplicons were purified using the QIAquick® PCR Purification Kit (QIAGEN, Japan). 12 

The PCR products were sequenced in both directions using the BigDye® V3.1 13 

Terminator Cycle Sequencing Kit and 3130 genetic analyzer (Applied Biosystems of 14 

Life Technologies, Japan).  15 

 16 

Sequencing alignment and phylogenetic analysis 17 

Sequences were aligned using the CLUSTAL W multiple alignment program 18 

(Thompson et al., 1994) and edited manually in BioEdit version 7.0.5.3 (Hall, 1999). 19 

All positions containing gaps and missing data were excluded from the analysis. The 20 

Kimura two-parameter (K2P) model was employed to calculate genetic distances 21 

(Kimura, 1980). Using the distances, construction of neighbor-joining trees (Saitou & 22 

Nei, 1987) and the bootstrap test with 1,000 replications were performed with the 23 

Molecular Evolutionary Genetics Analysis (MEGA) version 4.0 program (Tamura et24 
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al., 2007). Bayesian analysis was conducted with MrBayes 3.2 (Ronquist et al., 2012) 1 

by using two replicates of 1 million generations with the nucleotide evolutionary model. 2 

The best-fit model was chosen for each gene separately using the Akaike Information 3 

Criterion (AIC) in MrModeltest version 2.3 (Nylander, 2004). The general time-4 

reversible (GTR) with gamma distribution shape parameter (G) was selected for ITS2, 5 

whereas the GTR+I+G was the best-fit model for COI and COII. Bayesian posterior 6 

probabilities were calculated from the consensus tree after excluding the first 25% trees 7 

as burn-in. Available sequences of the Hyrcanus Group were retrieved from GenBank 8 

using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) for performing the phylogenetic 9 

analysis with our sequences. 10 

 11 

RESULTS 12 

Metaphase karyotypes 13 

Cytogenetic observations of F1-progenies of the 9 isolines of An. argyropus revealed 14 

different types of sex chromosomes, due to the addition of extra heterochromatin. There 15 

were 2 types of X (metacentric X1 and submetacentric X2) and 2 types of Y 16 

chromosomes (metacentric Y1 and large submetacentric Y2), which comprised 2 forms 17 

of metaphase karyotypes on the basis of Y chromosome configurations, i.e., Forms A 18 

(X1, Y1) and B (X1, X2, Y2) (Table 1, Fig. 1a-f). Form A was recovered only in Ubon 19 

Ratchathani Province, northeastern region, whereas Form B was found commonly in 20 

both Ubon Rathchathani and Nakhon Si Thammarat Provinces, southern region. 21 

Likewise, 2 types of X (metacentric X1 and submetacentric X2) and 3 types of Y 22 

(metacentric Y1, small submetacentric Y2 and large submetacentric Y3) chromosomes of 23 

An. pursati were recovered from a total of 11 isolines. These types of X and Y 24 
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chromosomes were designated as Forms A (X1, X2, Y1), B (X1, X2, Y2) and C (X2, Y3) 1 

(Fig. 2a-i). All karyotypic forms were found generally in Chiang Mai Province, while 2 

only 1 isoline obtained in Ratchaburi Province, western region, was X2, Y2 of Form B. 3 

 4 

Crossing experiments 5 

Table 2 shows details of hatchability, pupation, emergence and adult sex-ratio of 6 

parental, reciprocal and F1-hybrid crosses between the 2 isolines of An. argyropus 7 

representing Forms A and B. Table 3 shows these details on crossing experiments 8 

among the 3 isolines of An. pursati representing Forms A, B and C. All crosses yielded 9 

viable progenies through the F2-generations. No evidence of genetic incompatibility or 10 

post-mating reproductive isolation was observed among these crosses. The salivary 11 

gland polytene chromosomes of the 4th instar larvae of F1-hybrids from all crosses 12 

showed complete synapsis, without inversion loops along the whole length of all 13 

autosomes and of X chromosome (Fig. 3a-c). 14 

15 

DNA sequences and phylogenetic analysis  16 

The ITS2, COI and COII sequences were available in the DDBJ/EMBL/GenBank 17 

nucleotide sequence database under accession numbers AB826053-AB826112 (Table 18 

1). The length of ITS2 was 472 bp and 499 bp in An. argyropus and An. pursati, 19 

respectively. No intraspecific ITS2 sequence variation was observed among the 11 20 

isolines of An. pursati, whereas 4 base substitutions (A G at position 242 and 289, 21 

C T at position 388, A C at position 435) were found among the 9 isolines of An. 22 

argyropus. The analysis of COI (658 bp) among the 9 isolines of An. argyropus 23 

revealed 13 base substitutions, while 7 base substitutions were obtained among the 11 24 
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isolines of An. pursati. The analysis of COII (685 bp) among the 9 isolines of An.1 

argyropus showed 8 base substitutions, whilst 2 base substitutions derived from the 11 2 

isolines of An. pursati. All the substitutions were not specific to karyotypic forms. The 3 

evolutionary relationships among the karyotypic forms of An. argyropus and An. pursati 4 

were determined using neighbor-joining (NJ) and Bayesian analysis (BA). Both 5 

phylogenetic methods showed the same tree topologies, therefore, only the Bayesian 6 

tree result was shown for all DNA regions (Fig. 4-6). The 9 isolines of An. argyropus 7 

were grouped as a monophyletic clade, with high branch support in all DNA regions 8 

(100% in NJ, 98-100% in BA). Likewise, all 11 isolines of An. pursati were placed 9 

within the same clade, with high branch support in all DNA regions (99-100% in NJ, 10 

100% in BA). The average genetic distances within 2 and 3 karyotypic forms of An. 11 

argyropus and An. pursati were 0.003 and 0.000, 0.007 and 0.005, and 0.004 and 0.001, 12 

based on ITS2, COI and COII sequences, respectively. The phylogenetic tree revealed 13 

that An. pursati was more closely related to Anopheles nitidus and Anopheles 14 

nigerrimus than to An. argyropus based on ITS2 and COI sequences. However, both 15 

species were well separated from other species members of the Hyrcanus Group in all 16 

DNA regions. 17 

 18 

DISCUSSION 19 

Cytogenetic investigations of 17 An. argyropus isolines from 3 different localities in 20 

Thailand (Chiang Mai and Phrae Provinces, northern region; Chanthaburi Province, 21 

eastern region) were performed firstly by Baimai et al. (1993). The results demonstrated 22 

that this anopheline species exhibited karyotypic variation via a gradual increase of 23 

extra heterochromatin on X and Y chromosomes, and forming 2 karyotypic forms 24 
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[Forms A (X1, X2, Y1) and B (X1, X2, Y2)]. In the present study, similar results of 2 1 

karyotypic forms have been obtained by examining 9 isolines from 2 different locations 2 

(Ubon Ratchatani Province, northeastern region; Nakhon Si Thammarat Province, 3 

southern region). Remarkably, the Form A (X2, Y1), reported by Baimai et al. (1993), 4 

was not detected in any isoline colonies, as the limitation in number of samples 5 

appeared to be used in the current study. Regarding An. pursati, the 3 new karyotypic 6 

forms [Forms A (X1, X2, Y1), B (X1, X2, Y2) and C (X2, Y3)] were recovered from 11 7 

isolines in 2 different localities (Chiang Mai Province, northern region; Ratchaburi 8 

Province, western region). Apparently, these distinct karyotypic forms were caused by 9 

the gradual addition of extra heterochromatin on sex chromosomes. 10 

According to the genetic diversity at the chromosomal level of the An. 11 

argyropus [Forms A (X1, Y1) and B (X1, X2, Y2)] and An. pursati [Forms A (X1, X2, 12 

Y1), B (X1, X2, Y2) and C (X2, Y3)] found in this study, crossing experiments among the 13 

karyotypic variants of An. argyropus and An. pursati were performed intensively by 14 

following robust systematic procedures as documented by Choochote & Saeung (2013). 15 

The results showed no post-mating reproductive isolation. All crosses yielded viable 16 

progenies through F2-generations and synaptic salivary gland polytene chromosomes, 17 

suggesting the conspecific nature of these karyotypic variants, which comprised 2 and 3 18 

cytological forms within the taxon An. argyropus and An. pursati, respectively. The low 19 

intraspecific sequence variations [average genetic distance = 0.003-0.007 (An. 20 

argyropus) and 0.000-0.005 (An. pursati)] of the nucleotide sequences in ribosomal 21 

DNA (ITS2) and mitochondrial DNA (COI and COII), and all isolines of An. argyropus 22 

and An. pursati were placed within each monophyletic clade and well separated from 23 

the other 10 species members (Anopheles belenrae, Anopheles crawfordi, An. 24 
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nigerrimus, An. nitidus, Anopheles kleini, Anopheles lesteri, Anopheles paraliae, 1 

Anopheles peditaeniatus, Anopheles pullus and Anopheles sinensis) of the Hyrcanus 2 

Group. This was based on neighbor-joining (NJ) and Bayesian analyses (BA), which 3 

acted as good supportive evidence. It is interesting to note that the differences in the 4 

amount and distribution of heterochromatin observed from both anopheline species 5 

were not resulted in the evolution divergence as in, for example, Drosophila kikkawai 6 

complex, Anopheles dirus complex, Anopheles maculatus complex and Bactocera 7 

dorsalis complex, as stated by Baimai (1998). The present results are in accordance 8 

with crossing experiments among karyotypic forms of other Anopheles species, i.e., 9 

Anopheles vagus Forms A and B (Choochote et al., 2002), An. pullus (= Anopheles 10 

yatsushiroensis) Forms A and B (Park et al., 2003), An. sinensis Forms A and B 11 

(Choochote et al., 1998; Min et al., 2002; Park et al., 2008b), Anopheles aconitus  12 

Forms B and C (Junkum et al., 2005), An. barbirostris species A1 (Forms A, B and C) 13 

and A2 (Forms A and B) (Saeung et al., 2007, Suwannamit et al., 2009), An. 14 

campestris-like Forms B, E and F (Thongsahuan et al., 2009), An. peditaeniatus Forms 15 

A, B, C, D, E and F (Choochote, 2011; Saeung et al., 2012), An. nigerrimus Forms A, 16 

B, C and D (Songsawatkiat et al., 2013) and An. paraliae Forms A, B, C, D and E (Taai 17 

et al., 2013b). 18 
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Figure legends 1 

2 

Figure 1 Metaphase karyotypes of Anopheles argyropus. (a) Form A (X1, Y1: Ubon 3 

Ratchathani Province); (b) Form B (X1, Y2: Nakhon Si Thammarat Province); (c)  Form 4 

B (X2, Y2: Nakhon Si Thammarat Province); (d) Form B (homozygous X2, X2: Nakhon 5 

Si Thammarat Province); (e) Diagrams of representative metaphase karyotype of Forms 6 

A; (f) Diagrams of representative metaphase karyotype of Forms B. 7 

 8 

Figure 2 Metaphase karyotypes of Anopheles pursati. (a)  Form A (X1, Y1: Chiang Mai 9 

Province); (b) Form A (X2, Y1: Chiang Mai Province); (c) Form B (X1, Y2: Chiang Mai 10 

Province); (d) Form B (X2, Y2: Ratchaburi Province); (e)  Form C (X2, Y3: Chiang Mai 11 

Province); (f) Form B (heterozygous X1, X2: Chiang Mai Province); (g) Diagrams of 12 

representative metaphase karyotype of Forms A; (h) Diagrams of representative 13 

metaphase karyotype of Forms B; (i) Diagrams of representative metaphase karyotype 14 

of Form C.  15 

 16 

Figure 3 Synapsis in all arms of salivary gland polytene chromosome of F1-hybrids 4th 17 

larvae of Anopheles argyropus and An. pursati. (a) An. argyropus: Ur1A female x Ns5B 18 

male. (b) An. pursati: Cm1A female x Rt1B male; (c) An. pursati: Cm1A female x 19 

Cm7C male. 20 

 21 

 22 

 23 
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Figure 4 Bayesian phylogenetic relationships among the 9 isolines of Anopheles 1 

argyropus and 11 isolines of An. pursati based on ITS2 sequences compared with 10 2 

species members of the Hyrcanus Group. Numbers on branches are bootstrap values 3 

(%) of NJ analysis and Bayesian posterior probabilities. Only the values higher than 4 

70% both on bootstrap values and posterior probabilities are shown. Branch lengths are 5 

proportional to genetic distance (scale bar). 6 

 7 

Figure 5 Bayesian phylogenetic relationships among the 9 isolines of Anopheles 8 

argyropus and 11 isolines of An. pursati based on COI sequences compared with 8 9 

species members of the Hyrcanus Group. Numbers on branches are bootstrap values 10 

(%) of NJ analysis and Bayesian posterior probabilities. Only the values higher than 11 

70% both on bootstrap values and posterior probabilities are shown. Branch lengths are 12 

proportional to genetic distance (scale bar). 13 

14 

Figure 6 Bayesian phylogenetic relationships among the 9 isolines of Anopheles 15 

argyropus and 11 isolines of An. pursati based on COII sequences compared with 8 16 

species members of the Hyrcanus Group. Numbers on branches are bootstrap values 17 

(%) of NJ analysis and Bayesian posterior probabilities. Only the values higher than 18 

70% both on bootstrap values and posterior probabilities are shown. Branch lengths are 19 

proportional to genetic distance (scale bar). 20 



21
 

 Ta
bl

e 
1 

Lo
ca

tio
ns

, c
od

e 
of

 is
ol

in
es

, k
ar

yo
ty

pi
c 

fo
rm

s o
f A

no
ph

el
es

 a
rg

yr
op

us
 a

nd
 A

n.
 p

ur
sa

ti,
 a

nd
 th

ei
r G

en
B

an
k 

ac
ce

ss
io

n 
nu

m
be

rs
 

 
 

Lo
ca

tio
n 

(G
eo

gr
ap

ic
al

 c
oo

rd
in

at
e)

 

 
C

od
e 

of
 

is
ol

in
ea  

 
K

ar
yo

ty
pi

c 
fo

rm
 

 
G

en
B

an
k 

ac
ce

ss
io

n 
nu

m
be

r 
 

R
ef

er
en

ce
 

IT
S2

 
C

O
I 

C
O

II
 

 

An
. a

rg
yr

op
us

 
 

 
 

 
 

 
U

bo
n 

R
at

ch
at

ha
ni

 
(1

5°
 3

1
 N

, 1
05

° 3
5

 E
) 

U
r1

A
a  

A
 (X

1, 
Y

1)
 

A
B

82
60

53
 

A
B

82
60

73
 

A
B

82
60

93
 

Th
is

 st
ud

y 

 
U

r2
B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
54

 
A

B
82

60
74

 
A

B
82

60
94

 
Th

is
 st

ud
y 

 
U

r4
B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
55

 
A

B
82

60
75

 
A

B
82

60
95

 
Th

is
 st

ud
y 

N
ak

ho
n 

Si
 T

ha
m

m
ar

at
 

(0
8°

 2
9

 N
, 1

00
° 0

 E
) 

N
s5

B
a  

B
 (X

2, 
Y

2)
 

A
B

82
60

56
 

A
B

82
60

76
 

A
B

82
60

96
 

Th
is

 st
ud

y 

 
N

s8
B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
57

 
A

B
82

60
77

 
A

B
82

60
97

 
Th

is
 st

ud
y 

 
N

s1
2B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
58

 
A

B
82

60
78

 
A

B
82

60
98

 
Th

is
 st

ud
y 

 
N

s1
9B

 
B

 (X
1, 

Y
2)

 
A

B
82

60
59

 
A

B
82

60
79

 
A

B
82

60
99

 
Th

is
 st

ud
y 

 
N

s2
1B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
60

 
A

B
82

60
80

 
A

B
82

61
00

 
Th

is
 st

ud
y 

 
N

s2
4B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
61

 
A

B
82

60
81

 
A

B
82

61
01

 
Th

is
 st

ud
y 



22
 

 Ta
bl

e 
1 

(c
on

tin
ue

d)
  

 
 

Lo
ca

tio
n 

(G
eo

gr
ap

ic
al

 c
oo

rd
in

at
e)

 

 
C

od
e 

of
 

is
ol

in
ea  

 
K

ar
yo

ty
pi

c 
fo

rm
 

 
G

en
B

an
k 

ac
ce

ss
io

n 
nu

m
be

r 
 

R
ef

er
en

ce
 

IT
S2

 
C

O
I 

C
O

II
 

 

An
. p

ur
sa

ti 
 

 
 

 
 

 
 

C
hi

an
g 

M
ai

   
(1

8°
 4

7
 N

, 9
8°

 5
9

 E
) 

C
m

1A
a  

A
 (X

1, 
Y

1)
 

A
B

82
60

62
 

A
B

82
60

82
 

A
B

82
61

02
 

Th
is

 st
ud

y 

 
   

C
m

2C
 

C
 (X

2, 
Y

3)
 

A
B

82
60

63
 

A
B

82
60

83
 

A
B

82
61

03
 

Th
is

 st
ud

y 

 
   

C
m

4A
 

A
 (X

2, 
Y

1)
 

A
B

82
60

64
 

A
B

82
60

84
 

A
B

82
61

04
 

Th
is

 st
ud

y 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  
  C

m
6B

 
B

 (X
2, 

Y
2)

 
A

B
82

60
65

 
A

B
82

60
85

 
A

B
82

61
05

 
Th

is
 st

ud
y 

 
C

m
7C

a  
C

 (X
2, 

Y
3)

 
A

B
82

60
66

 
A

B
82

60
86

 
A

B
82

61
06

 
Th

is
 st

ud
y 

   
C

m
9A

 
A

 (X
1, 

Y
1)

 
A

B
82

60
67

 
A

B
82

60
87

 
A

B
82

61
07

 
Th

is
 st

ud
y 

 
C

m
10

A
 

A
 (X

1, 
Y

1)
 

A
B

82
60

68
 

A
B

82
60

88
 

A
B

82
61

08
 

Th
is

 st
ud

y 

C
m

11
B

 
B

 (X
1, 

Y
2)

 
A

B
82

60
69

 
A

B
82

60
89

 
A

B
82

61
09

 
Th

is
 st

ud
y 

C
m

14
C

 
C

 (X
2, 

Y
3)

 
A

B
82

60
70

 
A

B
82

60
90

 
A

B
82

61
10

 
Th

is
 st

ud
y 

 
C

m
15

C
 

C
 (X

2, 
Y

3)
 

A
B

82
60

71
 

A
B

82
60

91
 

A
B

82
61

11
 

Th
is

 st
ud

y 
 

R
at

ch
ab

ur
i  

(1
3°

 2
1

 N
, 9

9°
 2

2
 E

) 
R

t1
B

a  
B

 (X
2, 

Y
2)

 
A

B
82

60
72

 
A

B
82

60
92

 
A

B
82

61
12

 
Th

is
 st

ud
y 

 
  



23
 

 Ta
bl

e 
1 

(c
on

tin
ue

d)
  

 
 

Lo
ca

tio
n 

(G
eo

gr
ap

ic
al

 c
oo

rd
in

at
e)

 

 
C

od
e 

of
 

is
ol

in
ea  

 
K

ar
yo

ty
pi

c 
fo

rm
 

 
G

en
B

an
k 

ac
ce

ss
io

n 
nu

m
be

r 
 

R
ef

er
en

ce
 

IT
S2

 
C

O
I 

C
O

II
 

 

An
. b

el
en

ra
e 

- 
- 

EU
78

97
94

 
- 

- 
Pa

rk
 e

t a
l.,

 2
00

8a
 

An
. c

ra
w

fo
rd

i 
Sk

1B
 

B
 (X

3, 
Y

2)
 

A
B

77
91

52
 

A
B

77
91

81
 

A
B

77
92

10
 

Sa
eu

ng
 e

t a
l.,

 u
np

ub
l. 

da
ta

 

An
. k

le
in

i 
- 

- 
EU

78
97

93
 

- 
- 

Pa
rk

 e
t a

l.,
 2

00
8a

 

An
. l

es
te

ri
 

- 
- 

EU
78

97
91

 
- 

- 
Pa

rk
 e

t a
l.,

 2
00

8a
 

ilG
1 

- 
- 

A
B

73
30

28
 

A
B

73
30

36
 

Ta
ai

 e
t a

l.,
 2

01
3a

 

An
. n

ig
er

ri
m

us
 

U
r2

6A
 

A
 (X

3, 
Y

1)
 

A
B

77
87

78
 

A
B

77
87

91
 

A
B

77
88

04
 

So
ng

sa
w

at
ki

at
 e

t a
l.,

 2
01

3 

An
. n

iti
du

s 
U

r2
D

 
D

 (X
3, 

Y
4)

 
A

B
77

77
82

 
A

B
77

78
03

 
A

B
77

78
24

 
So

ng
sa

w
at

ki
at

 e
t a

l.,
 u

np
ub

l. 
da

ta
 

An
. p

ar
al

ia
e 

Sk
1B

 
B

 (X
1, 

Y
2)

 
A

B
73

34
87

 
A

B
73

35
03

 
A

B
73

35
19

 
Ta

ai
 e

t a
l.,

 2
01

3b
 

An
. p

ed
ita

en
ia

tu
s 

C
m

7B
 

B
 (X

2, 
Y

2)
 

A
B

71
49

90
 

A
B

71
50

43
 

A
B

71
50

96
 

Sa
eu

ng
 e

t a
l.,

 2
01

2 

An
. p

ul
lu

s 
- 

- 
EU

78
97

92
 

- 
- 

Pa
rk

 e
t a

l.,
 2

00
8a

 

- 
- 

- 
A

Y
44

43
48

 
A

Y
44

43
47

 
Pa

rk
 e

t a
l.,

 2
00

3 

 



24
 

 Ta
bl

e 
1 

(c
on

tin
ue

d)
  

 
 

Lo
ca

tio
n 

(G
eo

gr
ap

ic
al

 c
oo

rd
in

at
e)

 

 
C

od
e 

of
 

is
ol

in
ea  

 
K

ar
yo

ty
pi

c 
fo

rm
 

 
G

en
B

an
k 

ac
ce

ss
io

n 
nu

m
be

r 
 

R
ef

er
en

ce
 

IT
S2

 
C

O
I 

C
O

II
 

 

An
. s

in
en

si
s 

i2
A

C
M

 
A

 (X
, Y

1)
 

A
Y

13
04

73
 

- 
- 

M
in

 e
t a

l.,
 2

00
2 

- 
- 

- 
A

Y
44

43
51

 
- 

Pa
rk

 e
t a

l.,
 2

00
3 

i1
B

K
R

 
B

 (X
, Y

2)
 

- 
- 

A
Y

13
04

64
 

M
in

 e
t a

l.,
 2

00
2 

a  u
se

d 
in

 c
ro

ss
in

g 
ex

pe
rim

en
ts

.  
   

 

        



25
 

 Ta
bl

e 
2 

C
ro

ss
in

g 
ex

pe
rim

en
ts

 a
m

on
g 

2 
is

ol
in

es
 o

f A
no

ph
el

es
 a

rg
yr

op
us

  

C
ro

ss
es

 

(F
em

al
e 

x 
M

al
e)

 

To
ta

l e
gg

s 

(n
um

be
r)

a  

Em
br

yo
na

tio
n 

ra
te

b  

H
at

ch
ed

 

n 
(%

) 

Pu
pa

tio
n 

n 
(%

) 

Em
er

ge
nc

e 

n 
(%

) 

To
ta

l e
m

er
ge

nc
e 

  n
 (%

) 

Fe
m

al
e 

M
al

e 

Pa
re

nt
al

 c
ro

ss
 

 
 

 
 

 
 

 

U
r1

A
x 

U
r1

A
 

39
8 

(2
45

, 1
53

) 
81

 
31

4 
(7

8.
89

) 
27

3 
(8

6.
94

) 
26

8 
(9

8.
17

) 
12

3 
(4

5.
90

) 
14

5 
(5

4.
10

) 

N
s5

B
 x 

 N
s5

B
 

27
9 

(1
01

, 1
78

) 
77

 
20

1 
(7

2.
04

) 
19

3 
(9

6.
02

) 
18

9 
(9

7.
93

) 
79

 (4
1.

80
) 

11
0 

(5
8.

20
) 

R
ec

ip
ro

ca
l c

ro
ss

 
 

 
 

 
 

 
 

U
r1

A
 x

 N
s5

B
 

  4
16

 (2
40

, 1
76

) 
   

   
   

 8
3 

29
5 

(7
0.

91
) 

  2
92

 (9
8.

98
) 

27
2 

(9
3.

15
) 

13
5 

(4
9.

63
) 

   
13

7 
(5

0.
37

) 

N
s5

B
 x

 U
r1

A
 

26
7 

(1
47

, 1
20

) 
80

 
20

0 
(7

4.
91

) 
19

2 
(9

6)
 

18
0 

(9
3.

75
) 

76
 (4

2.
22

) 
10

4 
(5

7.
78

) 

F 1
- h

yb
ri

d 
cr

os
s 

 
 

 
 

 
 

 

(U
r1

A
 x

 N
s5

B
)F

1 x
 (U

r1
A

 x
 N

s5
B

)F
1 

30
8 

(1
62

, 1
46

) 
88

 
24

3 
(7

8.
90

)  
 

23
8 

(9
7.

94
) 

23
1 

(9
7.

06
) 

11
4 

(4
9.

35
) 

11
7 

(5
0.

65
) 

(N
s5

B
 x

 U
r1

A
)F

1 
x 

(N
s5

B
 x

 U
r1

A
)F

1 
32

4 
(1

30
, 1

94
) 

84
 

26
6 

(8
2.

10
) 

26
6 

(1
00

) 
26

6 
(1

00
) 

12
5 

(4
6.

99
) 

14
1 

(5
3.

01
) 

a  tw
o 

se
le

ct
iv

e 
eg

g-
ba

tc
he

s o
f i

ns
em

in
at

ed
 fe

m
al

es
 fr

om
 e

ac
h 

cr
os

s. 
b  d

is
se

ct
io

n 
fr

om
 1

00
 e

gg
s;

 n
 =

 n
um

be
r. 

 



26
 

 Ta
bl

e 
3 

C
ro

ss
in

g 
ex

pe
rim

en
ts

 a
m

on
g 

3 
is

ol
in

es
 o

f A
no

ph
el

es
 p

ur
sa

ti 

C
ro

ss
es

 

(F
em

al
e 

x 
M

al
e)

 

To
ta

l e
gg

s 

(n
um

be
r)

a  

Em
br

yo
na

tio
n 

ra
te

b  

H
at

ch
ed

 

n 
(%

) 

Pu
pa

tio
n 

n 
(%

) 

Em
er

ge
nc

e 

n 
(%

) 

To
ta

l e
m

er
ge

nc
e 

  n
 (%

) 

Fe
m

al
e 

M
al

e 

Pa
re

nt
al

 c
ro

ss
 

 
 

 
 

 
 

 

C
m

1A
 x

 C
m

1A
 

25
4 

(1
32

, 1
22

) 
81

 
19

9 
(7

8.
35

) 
17

2 
(8

6.
43

) 
16

7 
(9

7.
09

) 
76

 (4
5.

51
) 

91
 (5

4.
49

) 

R
t1

B
 x

 R
t1

B
 

23
7 

(1
28

, 1
09

) 
78

 
18

4 
(7

7.
64

) 
16

5 
(8

9.
67

) 
15

8 
(9

5.
76

) 
78

 (4
9.

37
) 

80
 (5

0.
63

) 

C
m

7C
 x

 C
m

7C
 

24
9 

(1
13

, 1
36

) 
75

 
18

7 
(7

5.
10

) 
18

3 
(9

7.
86

) 
18

1 
(9

8.
91

) 
92

 (5
0.

83
) 

89
 (4

9.
17

) 

R
ec

ip
ro

ca
l c

ro
ss

 
 

 
 

 
 

 
 

C
m

1A
 x

  R
t1

B
 

23
6 

(1
10

, 1
26

) 
82

 
19

4 
(8

2.
20

) 
16

5 
(8

5.
05

) 
15

9 
(9

6.
36

) 
70

 (4
4.

03
) 

89
 (5

5.
97

) 

R
t1

B
 x

 C
m

1A
 

24
2 

(1
24

, 1
18

) 
72

  
17

2 
(7

1.
07

) 
16

3 
(9

4.
77

) 
14

8 
(9

0.
79

) 
78

 (5
2.

70
) 

70
 (4

7.
30

) 

C
m

1A
 x

 C
m

7C
 

22
1 

(1
13

, 1
08

) 
86

 
18

8 
(8

5.
07

) 
16

9 
(8

9.
89

) 
16

0 
(9

4.
67

) 
81

 (5
0.

63
) 

79
 (4

9.
37

) 

C
m

7C
 x

 C
m

1A
 

26
1 

(1
19

, 1
42

) 
88

 
20

6 
(7

8.
93

) 
20

2 
(9

8.
06

) 
19

6 
(9

7.
03

) 
97

 (4
9.

49
) 

99
 (5

0.
51

) 

R
t1

B
 x

 C
m

7C
 

23
4 

(1
04

, 1
30

) 
92

 
21

1 
(9

0.
17

) 
19

8 
(9

3.
84

) 
19

0 
(9

5.
96

) 
93

 (4
8.

95
) 

97
 (5

1.
05

) 

C
m

7C
 x

 R
t1

B
 

28
4 

(1
67

, 1
17

) 
87

 
23

3 
(8

2.
04

) 
22

6 
(9

7.
00

) 
22

1 
(9

7.
79

) 
11

2 
(5

0.
68

) 
10

9 
(4

9.
32

) 

 



27
 

 Ta
bl

e 
3 

co
nt

in
ue

d 

C
ro

ss
es

 

(F
em

al
e 

x 
M

al
e)

 

To
ta

l e
gg

s 

(n
um

be
r)

a  

Em
br

yo
na

tio
n 

ra
te

b  

H
at

ch
ed

 

n 
(%

) 

Pu
pa

tio
n 

n 
(%

) 

Em
er

ge
nc

e 

n 
(%

) 

To
ta

l e
m

er
ge

nc
e 

  n
 (%

) 

Fe
m

al
e 

M
al

e 

F 1
- h

yb
ri

d 
cr

os
s 

 
 

 
 

 
 

 

(C
m

1A
 x

  R
t1

B
)F

1 x
 (C

m
1A

 x
  R

t1
B

)F
1 

26
4 

(1
12

, 1
52

) 
81

 
21

4 
(8

1.
06

) 
21

4 
(1

00
) 

20
1 

(9
3.

93
) 

90
 (4

4.
78

) 
11

1 
(5

5.
22

) 

(R
t1

B
 x

 C
m

1A
)F

1 x
 (R

t1
B

 x
 C

m
1A

)F
1 

22
0 

(1
18

, 1
02

) 
94

 
20

5 
(9

3.
18

) 
20

5 
(1

00
) 

20
1 

(9
8.

05
) 

94
 (4

6.
77

) 
10

7 
(5

2.
23

) 

(C
m

1A
 x

 C
m

7C
)F

1 x
 (C

m
1A

 x
 C

m
7C

)F
1 

25
5 

(1
31

, 1
24

) 
90

 
21

7 
(8

5.
10

) 
17

4 
(8

0.
18

) 
17

0 
(9

7.
70

) 
94

 (5
5.

29
) 

76
 (4

4.
71

) 

(C
m

7C
 x

 C
m

1A
)F

1 x
 (C

m
7C

 x
 C

m
1A

)F
1 

 2
31

 (1
03

, 1
28

)
85

 
18

9 
(8

1.
82

) 
15

7 
(8

3.
07

) 
15

1 
(9

6.
18

) 
72

 (4
7.

68
) 

79
 (5

2.
32

) 

(R
t1

B
 x

 C
m

7C
)F

1 x
 (R

t1
B

 x
 C

m
7C

)F
1 

28
6 

(1
09

, 1
77

) 
89

 
24

9 
(8

7.
06

) 
24

2 
(9

7.
19

) 
24

0 
(9

9.
17

) 
11

0 
(4

5.
83

) 
13

0 
(5

4.
17

) 

(C
m

7C
 x

 R
t1

B
)F

1 x
 (C

m
7C

 x
 R

t1
B

)F
1 

21
2 

(1
03

, 1
09

) 
93

 
19

7 
(9

2.
92

) 
17

7 
(8

9.
85

) 
17

5 
(9

8.
87

) 
80

 (4
5.

71
) 

95
 (5

4.
29

) 

a  tw
o 

se
le

ct
iv

e 
eg

g-
ba

tc
he

s o
f i

ns
em

in
at

ed
 fe

m
al

es
 fr

om
 e

ac
h 

cr
os

s. 
b  d

is
se

ct
io

n 
fr

om
 1

00
 e

gg
s;

 n
 =

 n
um

be
rs

.



28 

 

 1 



                             Elsevier Editorial System(tm) for Comptes rendus Biologies 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Cytogenetic, crossing and molecular evidence of four cytological races of Anopheles crawfordi 
(Diptera: Culicidae) in Thailand and Cambodia  
 
Article Type: Article original / Full Length Article 
 
Section/Category: Molecular biology and genetics 
 
Keywords: Anopheles crawfordi, metaphase karyotypes, crossing experiments, ITS2, COI, COII  
 
Corresponding Author: Dr. Atiporn Saeung,  
 
Corresponding Author's Institution:  
 
First Author: Atiporn Saeung 
 
Order of Authors: Atiporn Saeung; Visut  Baimai ; Sorawat  Thongsahuan; Yasushi  Otsuka; Wichai  
Srisuka; Kritsana  Taai; Pradya  Somboon; Wannapa  Suwonkerd; Tho  Sochanta; Wej Choochote 
 
Abstract: Twenty-nine isolines of Anopheles crawfordi were established from wild-caught females 
collected from cow-baited traps in Thailand and Cambodia. Three types of X (X1, X2, X3) and 4 types of 
Y (Y1, Y2, Y3, and Y4) chromosomes were identified, according to differing amounts of extra 
heterochromatin. These sex chromosomes were formed 4 metaphase karyotypes, i.e., Forms A (X1, X2, 
X3, Y1), B (X1, X2, X3, Y2), C (X2, Y3) and D (X2, Y4). Forms C and D were new metaphase karyotypes 
that confined to Thailand, while Forms A and B appeared to be common in both Thailand and 
Cambodia. Crossing experiments among 4 karyotypic forms indicated genetic compatibility in yielding 
viable progenies and synaptic salivary gland polytene chromosomes. The results suggested the 
conspecific nature, comprising 4 cytological races, which further supported by very low intraspecific 
variations (genetic distance = 0.000-0.018) of the nucleotide sequences in ribosomal DNA (ITS2) and 
mitochondrial DNA (COI, COII). 
 
Suggested Reviewers: Dr. Bruce A Harrison 
Taxonomist/Public Health Entomologist, 661 Drumheller Road, Clemmons, NC 27012 
skeeterdoc@gmail.com 
    
 
Dr. Claire Garros 
Cirad, UMR Contrôle des maladies, F-34398 Montpellier Cedex 5, France. 
claire.garros@cirad.fr 
    
 
Professor Dr. Hiroyuki  Takaoka 
Institute of Biological Sciences, Faculty of Science, University of Malaya 
takaoka@oita-u.ac.jp 
        
 
 



Opposed Reviewers:  
 
 



1 

 

Cytogenetic, crossing and molecular evidence of four cytological races 1 

of Anopheles crawfordi (Diptera: Culicidae) in Thailand and Cambodia 2 

Atiporn Saeunga,*, Visut Baimaib, Sorawat Thongsahuanc, Yasushi Otsukad,  3 

Wichai Srisukae, Kritsana Taaia, Pradya Somboona, Wannapa Suwonkerdf,  4 

Tho Sochantag, Wej Choochotea 5 

 6 

aDepartment of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 7 

50200, Thailand. 8 

bDepartment of Biology and Centre for Vectors and Vector-Borne Diseases, Faculty of 9 

Science, Mahidol University, Bangkok 10400, Thailand.  10 

cFaculty of Veterinary Science (Establishment Project), Prince of Songkla University, 11 

Songkhla 90110, Thailand.                 12 

dDepartment of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, 13 

879-5593, Japan. 14 

eEntomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai, 50180, 15 

Thailand.  16 

fOffice of Disease Prevention and Control 10, Chiang Mai, 50200, Thailand. 17 

gNational Center for Malaria Control, Parasitology and Entomology, Phnom Penh, 18 

Cambodia. 19 

          *Corresponding author: Dr. Atiporn Saeung 20 

    Department of Parasitology, Faculty of Medicine,  21 

    Chiang Mai University,  22 

    Chiang Mai 50200, Thailand  23 

    E-mail: atsaeung@mail.med.cmu.ac.th  24 

Manuscript / Manuscrit



2 

 

ABSTRACT  25 

Twenty-nine isolines of Anopheles crawfordi were established from wild-caught 26 

females collected from cow-baited traps in Thailand and Cambodia. Three types of X 27 

(X1, X2, X3) and 4 types of Y (Y1, Y2, Y3, and Y4) chromosomes were identified, 28 

according to differing amounts of extra heterochromatin. These sex chromosomes were 29 

formed 4 metaphase karyotypes, i.e., Forms A (X1, X2, X3, Y1), B (X1, X2, X3, Y2), C 30 

(X2, Y3) and D (X2, Y4). Forms C and D were new metaphase karyotypes that confined 31 

to Thailand, while Forms A and B appeared to be common in both Thailand and 32 

Cambodia. Crossing experiments among 4 karyotypic forms indicated genetic 33 

compatibility in yielding viable progenies and synaptic salivary gland polytene 34 

chromosomes. The results suggested the conspecific nature, comprising 4 cytological 35 

races, which further supported by very low intraspecific variations (genetic distance = 36 

0.000-0.018) of the nucleotide sequences in ribosomal DNA (ITS2) and mitochondrial 37 

DNA (COI, COII).38 

 39 

Keywords: Anopheles crawfordi, metaphase karyotypes, crossing experiments, ITS2, 40 

COI, COII    41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 
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1. Introduction 49 

 Anopheles (Anopheles) crawfordi belongs to the Lesteri Subgroup and Hyrcanus 50 

Group of the Myzorhynchus Series. So far, the distribution of this anopheline species 51 

has been recorded from India (Assam), Thailand, Cambodia, Vietnam, Malaysia 52 

(Malaysian Peninsular) and Indonesia (Sumatra) [1-3]. Even though An. crawfordi 53 

could be found abundantly as a proven outdoor-biter of humans in certain localities of 54 

eastern and southern Thailand, its status as a vector of any human-diseases  remains 55 

obscure and needs to be investigated more intensively [2]. However, our recent 56 

experiments indicated that this anopheline species could serve as a high potential vector 57 

of the filarial nematode, nocturnally subperiodic Brugia malayi, as determined by 80-58 

85% susceptibility rates and 6.06-6.24 average number of L3 larvae per infected 59 

mosquito [4]. These results were in agreement with previous investigators in that An. 60 

crawfordi could provide satisfactory susceptibility to periodic B. malayi in Malaysia [5-61 

6]. Additionally, An. crawfordi is considered an economic pest due to its vicious biting-62 

behavior on cattle [1-2,5]. 63 

Regarding cytogenetic aspects, investigations of An. crawfordi from 2 different 64 

localities in Thailand (eastern region: Chanthaburi Province; southern region: Phang 65 

Nga Province) were performed by Baimai et al. [7]. The results of their studies 66 

demonstrated that this anopheline species exhibited genetic diversity at the 67 

chromosomal level, via a gradual increase in extra heterochromatin on X and Y 68 

chromosomes. This resulted in 2 karyotypic variants (cytological forms) namely Form 69 

A (X1, Y1) and B (X2, Y2). The marked genetic variations on X and Y chromosomes 70 

within the taxon Anopheles potentially results in the existence of species complex. The 71 

identical morphology or minimal morphological distinction among sibling species 72 
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(isomorphic species) and subspecies (cytological races) members within each complex 73 

leads to difficulty in exactly identifying individual members. Furthermore, those 74 

members may differ in biological characteristics (e.g., microhabitats, resting and biting 75 

behaviors, sensitivity or resistance to insecticides, susceptible or refractory to 76 

pathogens, etc.), which can be used to determine their vectorial capacity. Thus, 77 

inaccurate identification of individual members within the taxon Anopheles species 78 

complex may result in the failure to recognize between a vector and non-vector species, 79 

and cause of complicated vector control-approach [8]. Although marked genetic 80 

variations at the chromosomal level of An. crawfordi have been illustrated apparently, 81 

little is known about their genetic proximities. Thus, this paper reports 2 new karyotypic 82 

forms of An. crawfordi [Form C (X2, Y3) and D (X2, Y4)], and performed their genetic 83 

proximities by crossing experiments among 4 karyotypic forms and comparing DNA 84 

sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA), 85 

and cytochrome c oxidase subunit I (COI) and cytochrome c oxidase subunit II (COII) 86 

of mitochondrial DNA (mtDNA).  87 

 88 

2. Materials and methods 89 

2.1 Field collections and establishment of isoline colonies 90 

 Wild-caught, fully engorged female mosquitoes of An. crawfordi were collected 91 

from cow-baited traps at 6 allopatric locations in Thailand (Chiang Mai and Nan 92 

Provinces, northern region; Chumphon, Phang Nga, Trang and Songkhla Provinces, 93 

southern region), and 2 allopatric locations in Cambodia (Ratanakiri and Mondulkiri)  94 

(Fig. 1, Table 1). A total of 29 isolines were established successfully and maintained in 95 

our insectary using the techniques described by Choochote and Saeung [9]. Exact 96 
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species identification was performed by using intact morphology of egg, larval, pupal 97 

and adult stages from the F1-progenies of isolines, following standard keys [1-2,10]. 98 

These isolines were used for studies on the metaphase karyotype, crossing experiment 99 

and molecular analysis. 100 

 101 

2.2 Metaphase karyotype preparation 102 

Metaphase chromosomes were prepared from 10 samples of the early fourth-103 

instar larval brains of F1-progenies of each isoline, using techniques previously 104 

described by Saeung et al. [11]. Identification of karyotypic forms followed the standard 105 

cytotaxonomic systems of Baimai et al. [7]. 106 

 107 

2.3 Crossing experiment 108 

 The 10 laboratory-raised isolines of An. crawfordi were selected arbitrarily from 109 

the 29 isoline colonies, which were representative of 4 karyotypic forms, i.e., Form A 110 

[Cm1A (X1, Y1), Tg3A (X3, Y1), Pg5A (X2, Y1), Rt1A (X1, Y1)], B [Nn1B (X1, Y2), 111 

Tg1B (X3, Y2), Sk1B (X3, Y2), Mr1B (X2, Y2)], C [Tg2C (X2, Y3)] and D [Tg4D (X2, 112 

Y4)] (Table 1). These isolines were used for crossing experiments in order to determine 113 

post-mating barriers by employing the techniques previously reported by Saeung et al. 114 

[11]. 115 

 116 

2.4 DNA extraction and PCR amplification 117 

 Total genomic DNA was isolated from individual F1-progeny adult female of 118 

each isoline of An. crawfordi (Table 1) using DNeasy® Blood and Tissue Kit 119 

(QIAGEN). Primers for amplification of ITS2, COI, and COII regions were followed 120 
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previous studies by Saeung et al. [11]. The ITS2 region of the rDNA was amplified 121 

using primer ITS2A (5’-TGT GAA CTG CAG GAC ACA T-3’) and ITS2B (5’-TAT 122 

GCT TAA ATT CAGGGGGT-3’) [12]. Amplification of the 709 bp fragment of 123 

mitochondrial COI barcoding region was conducted using the LCO1490 (5’-GGT CAA 124 

CAA ATC ATA AAG ATA TTG G-3’) and HCO2198 (5’-TAA ACT TCA GGG TGA 125 

CCA AAA AAT CA-3’) primers of Folmer et al. [13]. The mitochondrial COII region 126 

was amplified using primers LEU (5’-TCT AAT ATG GCA GAT TAG TGC A-3’) and 127 

LYS (5’-ACT TGC TTT CAG TCA TCT AAT G-3’) [14]. Each PCR reaction was 128 

carried out in total of 20 μl volume containing 0.5 U Ex Taq (Takara), 1X Ex Taq 129 

buffer, 2 mM of MgCl2, 0.2 mM of each dNTP, 0.25 μM of each primer, and 1 μl of the 130 

extracted DNA. For ITS2, PCR program consisted of initial denaturation at 94oC for 1 131 

min, 30 cycles at 94oC for 30 sec, 55oC for 30 sec, and 72oC for 1 min, and a final 132 

extension at 72oC for 5 min. The amplification profile of COI and COII comprised 133 

initial denaturation at 94oC for 1 min, 30 cycles at 94oC for 30 sec, 50oC for 30 sec, and 134 

72oC for 1 min, and a final extension at 72oC for 5 min. The amplified products were 135 

electrophoresed in 1.5% agarose gels and stained with ethidium bromide. Finally, the 136 

amplicons were purified using the QIAquick® PCR Purification Kit (QIAGEN). The 137 

PCR products were sequenced in both directions using the BigDye® V3.1 Terminator 138 

Cycle Sequencing Kit and 3130 genetic analyzer (Applied Biosystems).  139 

 140 

2.5 Sequencing alignment and phylogenetic analysis 141 

Sequences were aligned using the CLUSTAL W multiple alignment program 142 

[15] and edited manually in BioEdit version 7.0.5.3 [16]. All positions containing gaps 143 

and missing data were excluded from the analysis. The Kimura two-parameter (K2P) 144 
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model was employed to calculate genetic distances [17]. Using the distances, 145 

construction of neighbor-joining trees [18] and the bootstrap test with 1,000 replications 146 

were performed with the Molecular Evolutionary Genetics Analysis (MEGA) version 147 

4.0 program [19]. Bayesian analysis was conducted with MrBayes 3.2 [20] by using two 148 

replicates of 1 million generations with the nucleotide evolutionary model. The best-fit 149 

model was chosen for each gene separately using the Akaike Information Criterion 150 

(AIC) in MrModeltest version 2.3 [21]. The general time-reversible (GTR) with gamma 151 

distribution shape parameter (G) was selected for ITS2, whereas the GTR+I+G was the 152 

best-fit model for COI and COII. Bayesian posterior probabilities were calculated from 153 

the consensus tree after excluding the first 25% trees as burnin. Available sequences of 154 

the Hyrcanus Group were retrieved from GenBank using BLAST 155 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) for performing the phylogenetic analysis with 156 

our sequences. 157 

 158 

3. Results 159 

3.1 Metaphase karyotypes 160 

Cytological observations of F1-progenies of 29 isolines of An. crawfordi 161 

demonstrated distinct types of sex chromosomes due to the addition of extra 162 

heterochromatin. There were 3 types of X (metacentric X1, submetacentric X2 and large 163 

submetacentric X3) and 4 types of Y chromosomes (small telocentric Y1, large 164 

subtelocentric Y2, small subtelocentric Y3 and submetacentric Y4) (Fig. 2). These types 165 

of X and Y chromosomes comprised 4 forms of metaphase karyotypes on the basis of Y 166 

chromosome configurations, designated as Form A (X1, X2, X3, Y1), B (X1, X2, X3,Y2), 167 

C (X2,Y3) and D (X2, Y4). The number of isolines of these karyotypic forms occurring 168 
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in different localities in 5 and 2 provinces of Thailand and Cambodia, respectively, are 169 

illustrated in Fig. 1 and Table 1. Forms C and D were new metaphase karyotype 170 

discovered in the present study.  Forms A and B appeared to be common in both 171 

Thailand and Cambodia, while Forms C and D were found confine to Trang Province, 172 

southern Thailand.   173 

 174 

3.2 Crossing experiments 175 

Details of hatchability, pupation, emergence and adult sex ratio of parental, 176 

reciprocal and F1-hybrid crosses among the 10 isolines of An. crawfordi representing 177 

Forms A-D are shown in Table 2. All crosses yielded viable progenies through the F2-178 

generations. No evidence of genetic incompatibility and/or post-mating reproductive 179 

isolation was observed among these crosses. The salivary gland polytene chromosomes 180 

of the 4th instar larvae of F1-hybrids from all crosses showed synapsis without inversion 181 

loops along the whole lengths of all autosomes and the X chromosome (Fig. 3). 182 

 183 

3.3 DNA sequences and phylogenetic analysis 184 

 All sequences were generated from 29 isolines of the Thai and Cambodian An. 185 

crawfordi populations and available in the DDBJ/EMBL/GenBank nucleotide sequence 186 

database under accession numbers AB779131-AB779217 (Table 1). The length of the 187 

ITS2 region ranged from 446 to 449 bp in 7 and 22 isolines from Cambodia and 188 

Thailand, respectively. An. crawfordi from both Provinces of Cambodia differed from 189 

that in Thailand by a deletion of T, C and T at position 21, 280 and 292, respectively. 190 

However, they all showed the same length for COI (658 bp, excluding primers) and 191 

COII (685 bp) sequences. The evolutionary relationships among the 4 karyotypic forms 192 
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were determined using neighbor-joining (NJ) and Bayesian analysis. Both phylogenetic 193 

methods showed similar tree topologies, thus, only the Bayesian tree was shown for all 194 

regions (Figures 4-6). All 29 isolines were placed within the same cluster and well 195 

separated from other species members of the An. hyrcanus group (An. belenrae, An. 196 

kleini, An. lesteri, An. paraliae, An. peditaeniatus, An. pullus and An. sinensis).  The 197 

mean intra-specific sequence divergences within (0.000-0.018) and between (0.000-198 

0.016) the 4 karyotypic forms exhibited no significant difference in these DNA regions 199 

(Table 3). 200 

 201 

4. Discussion 202 

Investigations on the metaphase karyotypes of An. crawfordi from 2 different 203 

locations (eastern region, Chanthaburi Province; southern region, Phang Nga Province) 204 

in Thailand were reported first by Baimai et al. [7]. The results demonstrated that An. 205 

crawfordi exhibited karyotypic variation via a gradual increase of extra heterochromatin 206 

on X (X1, X2) and Y (Y1, Y2) chromosomes, leading to the formation of 2 karyotypic 207 

forms [Form A (X1, X2, Y1) and B (X1, X2, Y2)]. These metaphase karyotypes could be 208 

distinguished on the basis of size, shape, amount and distribution of constitutive 209 

heterochromatin on sex chromosomes.  Likewise, 4 distinct karyotypic forms [Form A 210 

(X1, X2, X3, Y1), B (X1, X2, X3, Y2), C (X2, Y3) and D (X2, Y4)] of An. crawfordi 211 

recovered from 29 isolines, in 6 and 2 locations in Thailand and Cambodia, 212 

respectively, were due to addition of extra heterochromatin on sex chromosomes. 213 

Obviously, the above information elucidates the possibility of a cytological mechanism 214 

for the karyotypic evolution of the Oriental Anopheles by gradually adding extra 215 

heterochromatin onto the arms of sex chromosomes, which is keeping with Baimai’s 216 
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hypothesis [22]. Additionally, such chromosome distinction is very useful for the 217 

cytotaxonomic study of closely related species, especially sibling species and/or 218 

subspecies members within the taxon Anopheles species, as exemplified in others 219 

groups of Oriental anophelines [8,11,23-32]. Regarding distribution of the 4 karyotypic 220 

forms of An. crawfordi, Forms A and B appear to be common in all locations of both 221 

Thailand and Cambodia, while Forms C and D are confined to Trang Province, southern 222 

Thailand. Remarkably, Form A (10 isolines) was detected only in Phang Nga Province, 223 

whereas all karyotypic forms were obtained from 8 isolines in Trang Province, despite 224 

these 2 provinces being located approximately 190 km away from each another.  This is 225 

the first substantial evidence that supports the richness of ecological diversity in Trang 226 

Province, which seems to be the main key for supporting specific microhabitats that 227 

favor the karyotypic evolution of An. crawfordi.   228 

Crossing experiments using isoline colonies of anopheline mosquitoes, which 229 

relate to results of cytology and molecular analysis to determine post-mating barriers, 230 

have proved to be efficient classical techniques for identifying sibling species and/or 231 

subspecies members within the taxon Anopheles species [8,11,23-32]. Regarding this 232 

matter, crossing experiments among the 4 allopatric karyotypic forms of An. crawfordi 233 

were performed intensively. The results of no post-mating reproductive isolation by 234 

yielding viable progenies through F2-generations and synaptic salivary gland polytene 235 

chromosomes strongly suggest a conspecific nature, comprising 4 cytological races 236 

within this taxon. Low intra-specific sequence divergence (genetic distance = 0.000-237 

0.018) of ITS2, COI and COII of the 4 karyotypic forms provide good supportive 238 

evidence. Thus, our findings are in agreement with the results of crossing experiments 239 

among karyotypic forms of other anophelines previously reported by several 240 
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investigators, i.e., An. vagus [33], An. pullus (= An. yatsushiroensis) [34], An. sinensis 241 

[35-38], An. aconitus [25], An. barbirostris species A1 and A2 [11,29], An. campestris-242 

like taxon [30] and An. peditaeniatus [31-32]. 243 

Up until now, numerous studies have used ribosomal and mitochondrial DNA 244 

markers for phylogenetic analysis in order to determine the relationships among sibling 245 

species and/or subspecies members of Anopheles species complexes [11,27,29-30,39-246 

43]. However, there have been no reports of evolutionary relationships among different 247 

karyotypic forms of An. crawfordi. Thus, our report is the first on the phylogenetic 248 

relationships among 4 karyotypic forms of Thai and Cambodian An. crawfordi 249 

populations. This study provided important information on the distribution of this 250 

species across different geographic regions, and highlighted that all karyotypic forms 251 

represent a single species. In addition, the crossing experiments of An. crawfordi isoline 252 

colonies using cytological markers that relate to the information of molecular 253 

investigation, as a multidisciplinary approach, was reported first in this study.   254 
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Figure legends 417 

Fig. 1. Map of Thailand and Cambodia showing 8 provinces where samples of An. 418 

crawfordi were collected and the number of isolines of the 4 karyotypic forms (A-D) 419 

detected in each location. 420 

 421 

Fig. 2. Metaphase karyotypes of An. crawfordi. (a) Form A (X1, Y1: Chiang Mai);  (b) 422 

Form A (X3, Y1: Chumphon); (c) Form A (X2, Y1: Trang); (d) Form B (X1, Y2: Nan); 423 

(e) Form B (X3, Y2: Trang); (f) Form B (X3, Y2: Songkhla); (g) Form B (X2, Y2: 424 

Ratanakiri); (h) Form C (X2, Y3: Trang); (i) Form D (X2, Y4: Trang); (j) Form B 425 

(homozygous X2, X2: Mondulkiri); diagrams of representative metaphase karyotype of 426 

Form C (k) and Form D (l).  427 

 428 

Fig. 3. Complete synapsis in all arms of salivary gland polytene chromosome of F1-429 

hybrid larvae of An. crawfordi. (a) Cm1A female x Sk1B male; (b) Cm1A female x 430 

Tg2C male; (c) Cm1A female x Tg4D male; (d) Cm1A female x Rt1A male; (e) Cm1A 431 

female x Mr1B male. 432 

 433 

Fig. 4. Phylogenetic relationships among the 29 isolines of An. crawfordi from Thailand 434 

and Cambodia using Bayesian analysis based on ITS2 sequences compared with 7 435 

species of the Hyrcanus Group. Numbers on branches are bootstrap values (%) of NJ 436 

analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both 437 

on bootstrap values and posterior probabilities are shown. Bars represent 0.05 438 

substitutions per site. 439 
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Fig. 5. Phylogenetic relationships among the 29 isolines of An. crawfordi from Thailand 440 

and Cambodia using Bayesian analysis based on COI sequences compared with 5 441 

species of the Hyrcanus Group. Numbers on branches are bootstrap values (%) of NJ 442 

analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both 443 

on bootstrap values and posterior probabilities are shown. Bars represent 0.1 444 

substitutions per site. 445 

 446 

Fig. 6. Phylogenetic relationships among the 29 isolines of An. crawfordi from Thailand 447 

and Cambodia using Bayesian analysis based on COII sequences compared with 5 448 

species of the Hyrcanus Group. Numbers on branches are bootstrap values (%) of NJ 449 

analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both 450 

on bootstrap values and posterior probabilities are shown. Bars represent 0.1 451 

substitutions per site. 452 
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Table 3 

Mean intra-specific sequence divergence using Kimura two-parameter (K2P) model among 

An. crawfordi Forms A, B, C and D from Thailand and Cambodia based on ITS2, COI and COII 

sequences. 

 ITS2 COI COII 

Within Form 
   

A 0.009 0.010 0.008 

B 0.014 0.018 0.012 

C 0.000 0.000 0.000 

D 0.000 0.000 0.000 

Between Forms    

A-B 0.014 0.016 0.011 

A-C 0.005 0.006 0.005 

A-D 0.005 0.006 0.005 

B-C 0.014 0.015 0.011 

B-D 0.014 0.015 0.011 

C-D 0.000 0.000 0.000 
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Abstract20 
Metaphase karyotype investigation on two allopatric strains of Anopheles nitidus21 
Harrison, Scanlon and Reid (Diptera: Culicidae) was conducted in Thailand during 22 
2011-2012. Five karyotypic forms, i.e., Form A (X1, Y1), B (X1,Y2), C (X2, Y3), D (X1,23 
X3, Y4) and E (X1, X2, X3, Y5) were obtained from a total of 21 iso-female lines.  Forms 24 
A, B and C were confined to Phang Nga province, southern Thailand, whereas Forms D 25 
and E were restricted to Ubon Ratchathani province, northeastern Thailand. 26 
Hybridization experiments among the 5 iso-female lines, which were representative of 5 27 
karyotypic forms of An. nitidus, revealed genetic compatibility in providing viable 28 
progenies and synaptic salivary gland polytene chromosomes through F2-generations.29 
This suggested a conspecific nature comprising 5 cytological races within this taxon. 30 
The very low intra-specific sequence variations of the nucleotide sequences in 31 
ribosomal DNA [second internal transcribed spacer (ITS2)] and mitochondrial DNA 32 
[cytochrome c oxidase subunit I (COI) and cytochrome c oxidase subunit II (COII)] 33 
among 5 karyotypic forms were very good supportive evidence.34 
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Introduction 49 
Anopheles (Anopheles) nitidus Harrison, Scanlon and Reid (Diptera: Culicidae) is a 50 
foothill anopheline species that belongs to the Nigerrimus Subgroup and Hyrcanus 51 
Group of the Myzorhynchus Series, and has a wide distribution range extending from 52 
India (Assam) to Vietnam, Cambodia, Thailand (a cosmopolitan species), Malaysia 53 
(Malaysian Peninsular and Sarawak) and Indonesia (Sumatra) (Reid 1968; Harrison and 54 
Scanlon 1975; Rattanarithikul et al. 2006; Harbach 2011). Although  An. nitidus acts as 55 
a vicious biter of humans in some localities of Thailand, it has never been incriminated 56 
as a natural and/or suspected vector of any human-diseases, unlike other species 57 
members of the Thai An. hyrcanus group [e.g., An. nigerrimus, An. peditaeniatus and 58 
An. sinensis that one suspected vectors of Plasmodium vivax (Baker et al. 1987; 59 
Harbach et al. 1987; Gingrich et al. 1990; Rattanarithikul et al. 1996); and An. 60 
nigerrimus, a potentially natural vector of Wuchereria bancrofti in Phang Nga province, 61 
southern Thailand (Division of Filariasis 1998)]. Nevertheless, An. nitidus is considered 62 
an economic pest of cattle because of its vicious biting-behavior (Reid et al. 1962; Reid 63 
1968; Harrison and Scanlon 1975). 64 

65 
Regarding cytogenetic investigations of An. nitidus by Baimai et al. (1993), their results 66 
revealed that at least 2 types of X (X1, X2) and 1 type of Y chromosomes were obtained 67 
in 2 isoline colonies caught from Muang district, Phang Nga province and Sadao 68 
district, Songkhla province, southern Thailand. As emphasized by the above 69 
information, cytogenetic evidence of An. nitidus is obviously lacking, particularly 70 
regarding the knowledge of genetic proximity among the karyotypic variants in a 71 
systematic direction. Thus, this paper reports herein, 5 karyotypic variants of An. nitidus72 
and determine their genetic proximity by performing hybridization experiments among 73 
them relating to DNA sequence analyses of the second internal transcribed spacer 74 
(ITS2) of ribosomal DNA (rDNA), cytochrome c oxidase subunit I (COI) and 75 
cytochrome c oxidase subunit II (COII) of mitochondrial DNA (mtDNA). 76 

77 
Materials and Methods78 

79 
Field collections and establishment of isoline colonies 80 
Wild-caught, fully engorged female mosquitoes of An. nitidus were collected from cow-81 
baited traps at 2 allopatric locations, i.e., Muang district, Phang Nga province and 82 
Nachaluai district, Ubon Ratchathani province in southern and northeastern Thailand, 83 
respectively (Figure 1, Table 1). A total of 21 isolines were established successfully and 84 
maintained in our insectary using the techniques described by Choochote et al. (1983) 85 
and Kim et al. (2003). Exact species identification was performed by using intact 86 
morphology of egg, larval, pupal and adult stages from the F1-progenies of isolines, 87 
following standard keys (Reid 1968; Harrison and Scanlon 1975; Rattanarithikul et al. 88 
2006). These isolines were used for studies on the metaphase karyotype, hybridization 89 
experiment and molecular analysis. 90 

91 
Metaphase karyotype preparation 92 
Metaphase chromosomes were prepared from 10 samples of the early fourth-instar 93 
larval brains of F1-progenies of each isoline, using techniques previously described by 94 
Saeung et al. (2007). Identification of karyotypic forms followed the standard 95 
cytotaxonomic systems of Baimai et al. (1993).   96 
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Hybridization experiment97 
The 5 laboratory-raised isolines of An. nitidus were selected arbitrarily from the 21 98 
isoline colonies as representatives of the 5 karyotypic forms, i.e., Form A (Pg2A), B 99 
(Pg5B), C (Pg4C), D (Ur2D) and E (Ur5E) (Table 1). These isolines were used for 100 
hybridization experiments in order to determine post-mating barriers by employing the 101 
techniques previously reported by Saeung et al. (2007). 102 

103 
DNA extraction and amplification 104 
Molecular analyses of 3 specific genomic loci (ITS2, COI and COII) were performed in 105 
order to determine intraspecific sequence variation within the taxon An. nitidus.106 
Individual F1-progeny adult female of each isoline of An. nitidus (Ur2D, Ur5E, Ur8E, 107 
Ur11D, Ur12D, Ur15D, Ur16E, Ur19D, Ur22E, Ur23E, Ur24D, Ur25D, Ur27D, Ur28E, 108 
Ur30E, Ur31D, Ur33E, Ur34D, Pg2A, Pg4C and Pg5B) was used for DNA extraction 109 
and amplification. Genomic DNA was extracted from each mosquito using DNeasy®110 
Blood and Tissue Kit (QIAgen, www.qiagen.com).  Primers for amplification of ITS2, 111 
COI, and COII regions were followed previous studies by Saeung et al. (2007). The 112 
ITS2 region of the rDNA was amplified using primer ITS2A (5’-TGT GAA CTG CAG 113 
GAC ACA T-3’) and ITS2B (5’-TAT GCT TAA ATT CAGGGGGT-3’) (Beebe and 114 
Saul 1995). The LCO1490 (5’-GGT CAA CAA ATC ATA AAG ATA TTG G-3’) and 115 
HCO2198 (5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-3’) primers of Folmer 116 
et al. (1994) were used to amplify a fragment of mitochondrial COI barcoding region. 117 
The mitochondrial COII region was amplified using primers LEU (5’-TCT AAT ATG 118 
GCA GAT TAG TGC A-3’) and LYS (5’-ACT TGC TTT CAG TCA TCT AAT G-3’) 119 
(Sharpe et al. 2000). Each PCR reaction was carried out in total 20 μl volume 120 
containing 0.5 U Ex Taq (Takara, www.takara.co.jp), 1X Ex Taq buffer, 2 mM of 121 
MgCl2, 0.2 mM of each dNTP, 0.25 μM of each primer, and 1 μl of the extracted DNA. 122 
For ITS2, the conditions for amplification consisted of initial denaturation at 94oC for 1 123 
min, 30 cycles at 94oC for 30 sec, 55oC for 30 sec, and 72oC for 1 min, and a final 124 
extension at 72oC for 5 min. The amplification profile of COI and COII comprised 125 
initial denaturation at 94oC for 1 min, 30 cycles at 94oC for 30 sec, 50oC for 30 sec, and 126 
72oC for 1 min, and a final extension at 72oC for 5 min. The amplified products were 127 
electrophoresed in 1.5% tris-acetate-EDTA (TAE) agarose gels and stained with 128 
ethidium bromide. Finally, the PCR products were purified using the QIAquick® PCR 129 
Purification Kit (QIAgen, www.qiagen.com) and their sequences directly determined 130 
using the BigDye® V3.1 Terminator Cycle Sequencing Kit and 3130 genetic analyzer 131 
(Applied Biosystems, www.appliedbiosystems.com).  The sequence data obtained have 132 
been deposited in the DDBJ/EMBL/GenBank nucleotide sequence database under 133 
accession numbers AB777782-AB777844 (Table 1). The ITS2, COI and COII 134 
sequences obtained from this study were also compared with published sequences 135 
available through GenBank.136 

137 
Sequencing alignment and phylogenetic analysis 138 
Sequences of ITS2, COI and COII were aligned using the CLUSTAL W multiple 139 
alignment program (Thompson et al. 1994) and edited manually in BioEdit version 140 
7.0.5.3 (Hall 1999). Gap sites were excluded from the following analysis. The Kimura 141 
two-parameter (K2P) model was employed to calculate genetic distances (Kimura 142 
1980). Using the distances, construction of neighbor-joining trees (Saitou and Nei 1987) 143 
and the bootstrap test with 1,000 replications were performed with the MEGA version 144 
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4.0 program (Tamura et al. 2007). Bayesian analysis was conducted with MrBayes 3.2 145 
(Ronquist et al. 2012) by using two replicates of 1 million generations with the 146 
nucleotide evolutionary model. The best-fit model was chosen for each gene separately 147 
using the Akaike Information Criterion (AIC) in MrModeltest version 2.3 (Nylander 148 
2004). The general time-reversible (GTR) with gamma distribution shape parameter (G) 149 
was selected for ITS2, whereas, the GTR+I+G was the best-fit model for COI and COII. 150 
Bayesian posterior probabilities were calculated from the consensus tree after excluding 151 
the first 25% trees as burnin.  152 

153 
Results154 

155 
Metaphase karyotype156 
Cytogenetic observations of F1-progenies of the 21 isolines of An. nitidus revealed 157 
different types of sex chromosomes due to the addition of extra block (s) of 158 
heterochromatin. There were 3 types of X (small metacentric X1, submetacentric X2 and 159 
large submetacentric X3) and 5 types of Y chromosomes (small telocentric Y1, small 160 
subtelocentric Y2, large subtelocentric Y3, submetacentric Y4 and small metacentric Y5)161 
(Figure 2-3). The X1 chromosome has a small metacentric shape with one arm 162 
euchromatic, and the opposite one totally heterochromatic. The X2 chromosome is 163 
different from the X1 chromosome in having an extra block of heterochromatin in the 164 
heterochromatic arm, making it a long arm of submetacentric configuration. The X3165 
chromosome has a large submetacentric shape that was slightly different from the X2166 
chromosome in having an extra block of heterochromatin at the distal end of the long 167 
heterochromatic arm. A good comparison of the size and shape between X2 and X3168 
chromosomes could be made easily in heterozygous females (Figure 2I). Similar to the 169 
situation in the X chromosome, the Y chromosome also exhibited extensive variation in 170 
size and shape, due to differing amounts and distribution of heterochromatic block. 171 
Thus the Y1 chromosome is an apparently small telocentric figure, which represents the 172 
simple or ancestral form (Figure 2A). The Y2 chromosome has a small subtelocentric or 173 
acrocentric shape that slightly differs from the Y1 chromosome, which has a very small 174 
portion of the short arm present (Figure 2B). Chromosome Y3 has a large subtelocentric 175 
configuration that obviously differs from the Y2 chromosome in having an extra block 176 
of heterochromatin at the distal end of the long heterochromatic arm (Figure 2C). The 177 
Y4 chromosome is clearly submetacentric figure, with the short arm approximately 1/3 178 
the length of the long arm (Figure 2D-E). It appears to have derived from the Y3179 
chromosome by means of adding an extra block of heterochromatin onto the short arm, 180 
and transferring it to a submetacentric configuration. Chromosome Y5 had a small 181 
metacentric shape, which was quite different from chromosomes Y1, Y2, Y3 and Y4 by182 
having an equal herterochromatiic block on each arm (Figure 2F-G). Based on uniquely 183 
different characteristics of Y chromosome from each isoline colony, they were 184 
designated as Form A (X1, Y1), B (X1, Y2), C (X2, Y3), D (X1, X3, Y4) and E (X1, X2,185 
X3, Y5). Forms A, B and C were found in Phang Nga province, and Forms D and E 186 
were obtained in Ubon Ratchathani province. 187 

188 
Hybridization experiment189 
Details of hatchability, pupation, emergence and adult sex-ratio of parental, reciprocal 190 
and F1-hybrid crosses among the 5 isolines of An. nitidus Forms A, B, C, D and E are 191 
shown in Table 2. All crosses yielded viable progenies through F2-generations. No 192 
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evidence of genetic incompatibility and/or post-mating reproductive isolation was 193 
observed among these crosses. The salivary gland polytene chromosomes of the 4th194 
stage larvae from all crosses showed synapsis without any inversion loops along the 195 
whole length of all autosomes and the X chromosome (Figure 4). 196 

197 
DNA sequences and phylogenetic analysis198 
DNA sequences were determined and analyzed for the ITS2, COI and COII regions of 199 
the 21 isolines of An. nitidus Forms A, B, C, D and E. They showed various lengths of 200 
ITS2, at 480 bp in 18 isolines from Ubon Ratchathani province and 481 bp in 3 isolines 201 
from Phang Nga province. The An. nitidus from Ubon Ratchathani province differed 202 
from that in Phang Nga province by a deletion of T at position 421. They all showed the 203 
same length in COI (658 bp) and COII (685 bp). To reveal the evolutionary relationship 204 
among the 5 karyotypic forms, neighbour-joining (NJ) and Bayesian trees were 205 
constructed in Figures 5-7. Both phylogenetic methods showed similar tree topologies, 206 
thus, only the NJ tree was shown for all regions. The results showed that all An. nitidus207 
Forms A, B, C, D and E sequences were monophyletic in both trees. The average 208 
genetic distances within 5 karyotypic forms were 0.002, 0.008 and 0.006 for ITS2, COI 209 
and COII regions, respectively. The average genetic distances among 5 karyotypic 210 
forms were 0.006, 0.007 and 0.007 for ITS2, COI and COII regions, respectively. 211 
Furthermore, all karyrotypic forms of An. nitidus were different obviously from other 212 
inter-species members of the Hyrcanus Group, with strongly supported bootstrap 213 
probabilities (99-100%) in phylogenetic trees (Figures 5-7). Interestingly, three 214 
published ITS2 sequences (Genbank accession numbers HM488273, HM488272 and 215 
HM488268), which were identified previously as the Hyrcanus Group by Paredes-216 
Esquivel et al. 2011 were placed within the same clade of An. nitidus.217 

218 
Discussion 219 

220 
A cytogenetic investigation of An. nitidus in Thailand was documented first by Baimai 221 
et al. (1993). The results indicated that this anopheline species exhibited genetic 222 
diversity at the chromosomal level via a gradual increase in the extra heterochromatin 223 
block (s) on the X chromosome (X1, X2), whereas this event was not detected in the Y 224 
chromosomes, possibly due to the limited number of isolines used. However, this 225 
investigation of 21 An. nitidus isolines from 2 allopatric locations [Phang Nga province, 226 
southern region; Ubon Ratchathani province, northeastern region] in Thailand revealed 227 
3 types of X (X1, X2, X3) and 5 types of Y (Y1, Y2, Y3, Y4, Y5) chromosomes, which 228 
were designated as Form A (X1, Y1), B (X1,Y2), C (X2, Y3), D (X1, X3, Y4) and E ((X1,229 
X2, X3, Y5), depending upon the uniquely distinct characteristics of  Y chromosomes. 230 
The 5 different karyotypic forms of An. nitidus recovered in this study were due clearly 231 
to addition of the extra heterochromatin block (s) on sex chromosomes (X, Y), and in 232 
keeping with Baimai’s hypothesis, which is an important mechanism in the species 233 
process of Oriental anophelines (Baimai 1998). It could be used robustly as a primary 234 
genetic marker for further identification of sibling species and/or subspecies 235 
(cytological races) within the taxon Anopheles (Kanda et al. 1981; Baimai et al. 1987; 236 
Subbarao 1998; Junkum et al. 2005). Interestingly, investigation of the 18 isolines from 237 
Ubon Ratchathani province, northeastern region, revealed only 2 karyotypic forms 238 
(Form D: 10 isolines; Form E: 8 isolines), whereas that of the 3 isolines from Phang 239 
Nga province, southern region, yielded 3 distinct karyotypic forms (Form A, B and C) 240 
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in each isoline, even though these 2 allopatric locations were placed approximately 800 241 
km apart. This phenomenon appeared to elucidate the difference in ecological diversity, 242 
which favored specific microhabitats for the karyotypic evolution of An. nitidus.243 
However, additional surveys are expected in order to obtain greater numbers of isolines 244 
from both provinces and/or other locations across 6 regions (northern, western, central, 245 
northeastern, eastern and southern) of Thailand. This would bring about understanding 246 
of the population-genetic structure of this anopheline species. Meanwhile, all 247 
experiments are progressing currently.248 

249 
Hybridization experiments using anopheline isoline-colonies, relating to information on 250 
cytology and molecular analysis to determine post-mating barriers, have been proven so 251 
far as an efficient classical technique for recognizing sibling species and/or subspecies 252 
(cytological races) members within the taxon Anopheles (Kanda et al. 1981; Baimai et 253 
al. 1987; Subbarao 1998; Junkum et al. 2005; Somboon et al. 2005; Saeung et al. 2007, 254 
2008; Thongwat et al. 2008; Suwannamit et al. 2009; Thongsahuan et al. 2009; 255 
Choochote 2011). The markedly genetic diversity at the chromosomal level of An.256 
nitidus, via the addition of extra heterochromatin on sex chromosomes (X, Y) in this 257 
study, warrants intensive determination of post-mating barriers by hybridization 258 
experiments among the 5 karyotypic forms. The results of no post-mating reproductive 259 
isolation by yielding viable progenies through F2-generations and synaptic salivary 260 
gland polytene chromosomes, along the entire length of autosomes and the X 261 
chromosome, indicate a conspecific nature comprising 5 cytological races within this 262 
taxon.  The very low intra-specific sequence variations (mean genetic distance = 0.002-263 
0.008) of the nucleotide sequences of ITS2, COI and COII of the 5 karyotypic forms are 264 
good supportive evidence. These results are agreed with previous hybridization 265 
experiments among sympatric and/or allopatric karyotypic forms of other anopheline 266 
species, i.e., An. vagus (Choochote et al. 2002), An. pullus (= An. yatsushiroensis) (Park 267 
et al. 2003), An. sinensis (Choochote et al. 1998; Min et al. 2002; Park et al. 2008b), An.268 
aconitus (Junkum et al. 2005), An. barbirostris species A1 and A2 (Saeung et al. 2007;269 
Suwannamit et al. 2009); An. campestris-like taxon (Thongsahuan et al. 2009) and An.270 
peditaeniatus (Choochote 2011; Saeung et al. 2012). Thus, karyotypic variation based 271 
on extra heterochromatin in sex chromosomes seems to be a general phenomenon 272 
within Oriental Anopheles. This is the first report of hybridization experiment and 273 
molecular investigation of An. nitidus using karyotypic markers. In addition, the present 274 
study incorporated a nuclear and mitochondrial DNA sequence to increase the exact 275 
identification of this species from other inter-species members of the Hyrcanus Group 276 
(Min et al. 2002; Park et al. 2003; Park et al. 2008a; Choochote 2011). It is interesting 277 
to note that the ITS2 sequence of three specimens (TR2, TR3 and TR6) collected from 278 
Trat province, eastern Thailand, and identified as the Hyrcanus group by Paredes-279 
Esquivel et al. 2011, were clustered together with 5 karyotypic forms of An. nitidus in a 280 
phylogenetic tree and presumed to be the same species as that in our study. 281 
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Figure legends 460 

Figure 1. Map of Thailand showing 2 provinces where samples of Anopheles nitidus461 
were collected and the number of isolines of the 5 karyotypic forms (A-E) detected in 462 
each location. 463 

Figure 2. Metaphase karyotypic forms of Anopheles nitidus. Phang Nga province (A-C) 464 
(A) Form A (X1, Y1), (B) Form B (X1, Y2), (C) Form C (X2, Y3); Ubon Ratchathani 465 
province (D-I) (D) Form D (X1, Y4), (E) Form D (X3, Y4), (F) Form E (X1, Y5), (G) 466 
Form E (X2, Y5), (H) Form E (homozygous X2, X2), (I) Form E (heterozygous X2, X3).467 

Figure 3. Diagrams of representative metaphase karyotypes of Forms A, B, C, D and E 468 
of Anopheles nitidus.469 

Figure 4. Synapsis in all arms of salivary gland polytene chromosome of F1-hybrids 4th470 
larvae of Anopheles nitidus. (A) Pg2A female x Pg5B male; (B) Pg2A female x Pg4C 471 
male; (C) Pg2A female x Ur2D male; (D) Pg2A female x Ur5E male. Note: small 472 
common gap of homosequential asynapsis  (arrow) was found on chromosome 2L, 2R 473 
and 3R; 2L and 2R; and 3L from the crosses between Pg2A female x Pg5B male; Pg2A 474 
female x Pg4C male; and Pg2A female x Ur5E male, respectively.  475 

476 
Figure 5. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 477 
analysis based on ITS2 sequences compared with 8 species of the Hyrcanus Group and 478 
3 Hyrcanus-group specimens (Paredes-Esquivel et al. 2011). Numbers on branches are 479 
bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the 480 
values higher than 50% both on bootstrap values and posterior probabilities are shown. 481 
Branch lengths are proportional to genetic distance (scale bar). 482 

483 
Figure 6. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 484 
analysis based on COI barcoding sequences compared with 6 species of the Hyrcanus 485 
Group. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian 486 
posterior probabilities (%). Only the values higher than 50% both on bootstrap values 487 
and posterior probabilities are shown. Branch lengths are proportional to genetic 488 
distance (scale bar). 489 

490 
Figure 7. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 491 
analysis based on COII sequences compared with 6 species of the Hyrcanus Group. 492 
Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior 493 
probabilities (%). Only the values higher than 50% both on bootstrap values and 494 
posterior probabilities are shown. Branch lengths are proportional to genetic distance 495 
(scale bar). 496 
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Figure 1. Map of Thailand showing 2 provinces where samples of Anopheles nitidus
were collected and the number of isolines of the 5 karyotypic forms (A-E) detected in 
each location. 



Figure 2. Metaphase karyotypic forms of Anopheles nitidus. Phang Nga province (A-C) 
(A) Form A (X1, Y1), (B) Form B (X1, Y2), (C) Form C (X2, Y3); Ubon Ratchathani 
province (D-I) (D) Form D (X1, Y4), (E) Form D (X3, Y4), (F) Form E (X1, Y5), (G) Form 
E (X2, Y5), (H) Form E (homozygous X2, X2), (I) Form E (heterozygous X2, X3). 



Figure 3. Diagrams of representative metaphase karyotypes of Forms A, B, C, D and E of 
Anopheles nitidus.



Figure 4. Synapsis in all arms of salivary gland polytene chromosome of F1-hybrids 4th

larvae of Anopheles nitidus. (A) Pg2A female x Pg5B male; (B) Pg2A female x Pg4C 
male; (C) Pg2A female x Ur2D male; (D) Pg2A female x Ur5E male. Note: small 
common gap of homosequential asynapsis  (arrow) was found on chromosome 2L, 2R 
and 3R; 2L and 2R; and 3L from the crosses between Pg2A female x Pg5B male; Pg2A 
female x Pg4C male; and Pg2A female x Ur5E male, respectively.  



Figure 5. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 
analysis based on ITS2 sequences compared with 8 species of the Hyrcanus Group and 3 
Hyrcanus-group specimens (Paredes-Esquivel et al. 2011). Numbers on branches are 
bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the 
values higher than 50% both on bootstrap values and posterior probabilities are shown. 
Branch lengths are proportional to genetic distance (scale bar). 



Figure 6. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 
analysis based on COI barcoding sequences compared with 6 species of the Hyrcanus 
Group. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian 
posterior probabilities (%). Only the values higher than 50% both on bootstrap values and 
posterior probabilities are shown. Branch lengths are proportional to genetic distance 
(scale bar). 



Figure 7. Phylogenetic relationships among the 21 isolines of Anopheles nitidus by NJ 
analysis based on COII sequences compared with 6 species of the Hyrcanus Group. 
Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior 
probabilities (%). Only the values higher than 50% both on bootstrap values and posterior 
probabilities are shown. Branch lengths are proportional to genetic distance (scale bar). 
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Abstract The mosquito midgut is the first site that vector-
borne pathogens contact during their multiplication, differ-
entiation, or migration from blood meal to other tissues
before transmission. After blood feeding, the mosquitoes
synthesize a chitinous structure called peritrophic matrix
(PM) that envelops the blood meal and separates the food
bolus from the midgut epithelium. In this study, a systematic
investigation of the PM formation and the interaction of
Brugia malayi within the midgut of a susceptible vector,
Ochlerotatus togoi, were performed using scanning electron
microscopy (SEM). SEM analysis of the midguts dissected
at different time points post feeding on a B. malayi-infected
blood meal (PIBM) revealed that the PM was formed from
45 min PIBM and gradually thickened and matured during
8–18 h PIBM. The PM degraded from 24 to72 h PIBM,
when digestion was completed. The invasion process of the
microfilariae was observed between 3 and 4 h PIBM. In the
beginning of the process, only sheathed microfilariae
interacted with the internal face of the PM by its anterior
part, and then the midgut epithelium before entering the
hemocoel, after that they exsheathed. Microfilarial sheaths
lying within the hemocoel were observed suggesting that
they may serve as a decoy to induce the immune systems of
the mosquitoes to respond to the antigens on the sheaths,
thereby protecting the exsheathed microfilariae. These

initial findings would lead to further study on the proteins,
chemicals, and factors in the midgut that are involved in the
susceptibility of O. togoi as a vector of filariasis.

Introduction

The midgut of mosquitoes is the first site that vector-borne
pathogens such as arboviruses, malaria parasites, and filarial
worms contact during their multiplication, differentiation, or
migration from blood meal to other tissues before transmis-
sion to a new vertebrate host. It has been proposed that the
creation and release of genetically modified mosquitoes,
which are refractory to parasite transmission, may be a
promising new method for controlling the transmission of
mosquito-borne diseases (Crampton et al. 1994; Gwadz
1994). The important role of the midgut in disease transmis-
sion implies that more research should focus on the midgut
ultrastructural morphology for interpreting early events in
the mosquito–pathogen interaction, the midgut physiology,
and the way that it interacts with pathogens (Meis and
Ponnudurai 1987; Meis et al. 1989; Syafruddin et al. 1991;
Billingsley 1994; Shahabuddin et al. 1998).

Lymphatic filariasis is one of the tropical diseases targeted
for elimination by the year 2020 by the World Health
Organization, which has spurred vaccine and drug develop-
ment, as well as new methods of vector control (http://
www.who.int/neglected_diseases/NTD_RoadMap_2012).
Brugia malayi, a filarial nematode, is a causative agent of
lymphatic filariasis in humans. B. malayi microfilariae are
transmitted by several mosquitoes in the genus Mansonia,
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Anopheles, Culex, and Aedes (Schacher 1962; Guptavanij et
al. 1978; Trpis 1981; Chang et al. 1991; Bangs et al. 1995;
Kumar et al. 1998; Lek-Uthai and Tomoen 2005;Wada 2011).
Filarial parasites start their life cycle in the vector when female
mosquitoes ingest microfilariae during blood feeding on an
infected host. The ingested microfilariae are stored within the
blood meal in the mosquito midgut in order to cross a
peritrophic matrix (PM) and the midgut epithelium towards
the hemocoel.

In nematoceran Diptera, including mosquitoes, females
produce a type 1 PM which is a chitinous structure that is
composed principally of chitin, a linear N-acetyl-D glucos-
amine polymer (Tellam et al. 1999) and glycoproteins (Tellam
et al. 1999; Terra 2001). The type 1 PM surrounds the blood
meal and is induced by blood ingestion (Jacobs-Lorena and
Oo 1996). PM precursors are stored in apical granules in the
epithelial cells of the mosquito midgut. PM is formed by
delamination from the general surface of the midgut epitheli-
um (Lehane 1997). The major roles of the PM are associated
with the prevention of midgut microvilli from the midgut
contents and against pathogens and abrasion by food particles
and with the compartmentalization of digestive events (Peters
1992; Lehane 1997). In mosquitoes and some hematophagous
insects, the PM performs a central role in heme detoxification
(Pascoa et al. 2002). O’Connor and Beatty (1936) and Iyengar
(1936) have previously suggested that the PM is an efficient
barrier for microfilaria migration across the midgut, by study-
ing the interaction of Wuchereria bancrofti and Brugia
pahangi microfilariae with Mansonia annulifera and Culex
fatigans, respectively. However, the efficiency of the PM as a
barrier depends on the kinetics of its formation and the time
microfilariae takes to invade the midgut epithelium, for ex-
ample, only when the PM is completely formed.

Ochlerotatus togoi (formerly known as Aedes togoi) is a
vector of filariasis in the coastal area of Asia, i.e., China,
Japan, and Taiwan (Ramachandran et al. 1963; Sasa 1976;
Cheun et al. 2011). In Thailand, O. togoi (Chanthaburi
strain) is highly susceptible to the rural strain of nocturnally
subperiodic (NSP) W. bancrofti (Tak and Kanchanaburi
strains), NSP B. malayi (Narathiwat strain), B. pahangi
(Malaysia strain), Dirofilaria immitis (Chiang Mai strain)
(Choochote et al. 1983, 1987) and urban strain or noctur-
nally periodic W. bancrofti (Myanmar strain; unpublished
data). Although, invasions of the midguts of some mosqui-
toes by helminthes have been reported (Christensen and
Sutherland 1984; Perrone and Spielman 1986; Shih and
Chen 1987; Chen and Shih 1988; Santos et al. 2006), a
few data of the interaction of B. malayi microfilariae within
the midgut of a susceptible vector, O. togoi, is available.
Therefore, in this study, details of the PM formation and
the interaction of B. malayi microfilariae within the vector
midgut were systematically investigated using scanning
electron microscopy (SEM). Our finding unveiled features

of the formation of the PM and the invasion of B. malayi
microfilariae in the O. togoi mosquito midgut.

Materials and methods

Mosquito

O. togoi mosquitoes (Koh Nam Sao, Chantaburi Province,
Southeast Thailand) were used in this study. The mosquito
strain has been maintained in the insectary of the
Department of Parasitology, Faculty of Medicine, Chiang
Mai University, since 1983. It has been proven to be highly
susceptible to NSP B. malayi (Choochote et al. 1987). The
method for rearing of mosquitoes was followed the standard
techniques described by Choochote et al. (1987).

Source of NSP B. malayi microfilariae

NSP B. malayi parasite originated from a 20-year-old wom-
an resident of the Bang Paw district, Narathiwat Province,
South Thailand. Domestic cats were then infected experi-
mentally with the parasite, which was maintained at the
Department of Medical Entomology, Faculty of Tropical
Medicine, Mahidol University, Bangkok, Thailand, from
1982 to 1986, when it was transferred to Mongolian jirds
(Meriones unguiculatus) and has since been maintained at
the animal house of the Faculty of Medicine, Chiang Mai
University, Chiang Mai, Thailand (Choochote et al. 1986).

Preparation of blood-containing B. malayi microfilaria

The jirds were deeply anesthetized with ethylene ether and
intraperitoneally inoculated with infective larvae of NSP B.
malayi. After at least 3 months (Choochote et al. 1991), the
microfilariae were collected by injecting 3 ml of Hank’s
Balanced Salt Solution (pH 7.2–7.4) into the peritoneal
cavity before withdrawal by peritoneal washing. The
0.5 ml of peritoneal-washed-rich microfilariae was mixed
with 10 ml of human-heparinized blood (ten units of
heparin/ml of blood), which had been taken from donors.
Then, the adjusted microfilarial density ranged more or less
from 200 to 300 microfilariae (mf/20 μl) by using human-
heparinized blood that was used for artificial feeding of the
mosquito species. The reason for adjusting microfilarial
density in blood to range from 200 to 300 mf/20 μl was
based on several of our proven experiments that yielded
satisfactorily susceptible O. togoi to NSP B. malayi (sus-
ceptibility rates: 70–95 %). This was in agreement with
experiments reporting the susceptibility of Anopheles
sinensis to periodic B. malayi, i.e., using microfilarial den-
sity of 5, 10, 20, and 50 mf/20 μl, with a susceptibility rate
of 30, 65, 93, and 100 %, respectively (Luo and Qu 1990).
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Infection of mosquitoes with B. malayi

Three-day-old adult females of autogenous O. togoi (fasted
for 12 h) were allowed to be artificially fed simultaneously on
blood-containingB.malayimicrofilariae using techniques and
apparatus, as described by Chomcharn et al. (1980). Engorged
mosquitoes were separated and then dissected at different time
points after the blood meal: 15, 30, 45 min, and 1, 2, 3, 4, 5, 6,
8, 12, 18, 24, 36, 48, 72, and 96 h. The samples (ten
samples/time point) were processed for SEM.

Preparation of samples for scanning electron microscopy

Dissected midguts were fixed overnight with a solution of
2.5 % glutaraldehyde mixed in phosphate buffer solution at a
pH of 7.4 at 4 °C to accomplish primary fixation. They were
then rinsed twice with phosphate buffer solution at 10-min
intervals and later postfixed in a solution of 1 % osmium
tetroxide for 2 h. Postfixation was followed by rinsing twice
with phosphate buffer solution and dehydrating with alcohol.
To replace the water in the specimens with alcohol, they were
subjected to the following increasing concentrations of alco-
hol: 30, 50, 70, 80, 90, and 95 %. The specimens were then
placed in absolute alcohol for two 12-h periods. After that,
organ specimens were placed in acetone for 2 h. Finally, the
specimens were subjected to critical point drying, were at-
tached with double-stick tape to aluminum stubs, and were
coated with gold in a sputter-coating apparatus before being
viewed with a scanning electron microscope (JEOL JSM-
5910LV, JEOL Ltd., Japan). To observe the interface between
the midgut surface and the blood meal, some fixed samples
were fractured before being coated with gold, while others
were gently opened and the contents were washed out with
phosphate buffer saline before the fixation.

Ethical clearance

The protocols were approved by the Animal Ethics Committee
of Faculty of Medicine, Chiang Mai University, Chiang Mai,
Thailand.

Results

Peritrophic matrix formation in O. togoi midgut

An analysis of O. togoi midguts dissected at different time
points post feeding on the B. malayi-infected blood meal
(PIBM) allowed the investigation of both the formation of
the PM and the invasion of the microfilariae from the midgut
into hemocoel. Figure 1 shows details of peritrophic matrix
formation. The midgut epithelium from non-blood fedO. togoi
showed numerous long microvilli (Fig. 1a). After the blood

feeding, engorgement caused a great distension of the midgut.
The midguts dissected at 15 min after the blood meal showed a
stretched epithelium with blood cells close to it and no micro-
villus was observed (Fig. 1b). A very thin lamina-forming PM
was visible from 45 min after the blood meal (Fig. 1c). By 1 to
3 h PIBM, an early formed PM was very attached to the blood
meal and the epithelium. It was visualized separating the blood
meal from the midgut epithelium in some part of the midgut
(Fig. 1d, e). By 5 to 6 h after the blood ingestion, the entire
abdominal midgut was uniformly covered by the PM (Fig. 1f).
The PM became thicker and well formed in the 8–18 h mid-
guts, easily separating themselves from the epithelium
(Fig. 1g, h, i, j). The mature PM consisted of one thin fibrillar
layer, close to the epithelium, and another thicker granular
layer in contact with the blood meal (Fig. 1i, j). At 24 h after
the blood feeding, the fibrillar region of the PM facing the
midgut epithelium presented wavy aspects (Fig. 1k). During
36 h PIBM, the blood meal became compact and distant from
the midgut epithelium. The PM looked thinner and the midgut
epithelium with microvilli was observed (Fig. 2l). At 48 h
PIBM, the blood meal was almost completely digested and
absorbed. The PM showed a progressive shrinking in the 48-h
midgut samples (Fig. 2m, n). No PMwas observed in all of the
72-h midgut samples and new epithelial cells were noted
(Fig. 2o). By 96 h PIBM, the midgut epithelium was mature
with numerous microvilli (Fig. 2p) as seen in Figure 1a.

B. malayi microfilariae invasion

In order to observe the microfilariae interacting with the
PM, fractured midguts dissected at different time points
after the infected blood feeding were performed. The
microfilariae were found in approximately 75 % (seven to
eight from ten samples/time point) of the 30 min to 24 h
midgut samples. Microfilariae with sheaths were observed
inside the midgut lumens (Fig. 2a, b, c) or close to or in
contact with the PM, from 30 min to 2 h PIBM. The
invasion of the B. malayi microfilariae were observed be-
tween 3 and 4 h after being ingested (Fig. 2d, e, f, g). In the
beginning of the invasion process, sheathed microfilariae
interacted the internal face of the PM by its anterior part,
and then penetrated across the PM and the midgut epitheli-
um into hemocoel. Some micrographs showed sheathed
microfilariae with their bodies buried inside the PM
(Fig. 2d) and the epithelium (Fig. 2e). Sheathed microfilariae
and microfilarial sheaths were observed on the external sur-
face of the midgut and in the hemocoel (Fig. 2f, g). All B.
malayi microfilariae observed penetrating the midgut epithe-
lium were sheathed microfilariae. Figure 2h,i, j, k demon-
strates the exsheathed microfilariae in the lumens of the 18
and 24 h-midguts. One microfilarial carcass inside the midgut
lumen at 8 h PIBM was observed (Fig. 3). In all 36 to 96 h-
midgut samples, no microfilaria was observed.
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Discussion

The rate of formation and the maturity of the PM seem to be
related to the digestion process of the blood meal and differ

according to temperature, blood source, meal size, species,
and several other factors (Lehane 1997). For example, a
distinct PM is visible in Ae. aegypti at 6 h post-blood meal
(PBM), in Anopheles gambiae at 13 h PBM, in Anopheles

Fig. 1 Fractured midguts and peritrophic matrix (PM) of O. togoi female
post-B. malayi-infected blood meal (PIBM). a A non-blood fed midgut
showing epithelium (Ep) and microvilli (Mv) b At 15 min PIBM, SEM
micrograph indicating the blood meal (Bl) and epithelium. No microvillus
was observed. c At 45 min PIBM, a blood fed midgut showing a very thin
lamina-forming PM covered some part of the blood meal. d One-hour
blood fed midgut showing an early forming PM above the blood meal. e
White line indicates the formed PM between the midgut epithelium and
blood meal at 3 h PIBM. f At 5 h PIBM, SEM micrograph showing an
external face of the PM (PMe). The PM is completely formed and can be
separated from the epithelium. g Eight-hour blood fed midgut showing a
thin fibrillar layer of the PM (arrows) and granular layer (stars). h Twelve-

hour blood fedmidgut showing an external face of the PM. iAt 18 h PIBM,
SEM micrograph showing a thin fibrillar layer (arrows). j Eighteen-hour
blood fed midgut showing an external face of the PM bearing the impres-
sion of the epithelial cells. k At 24 h PIBM, SEM micrograph showing an
external face of the PM with a wavy aspect between the blood meal and
epithelium. lAt 36 h PIBM, SEMmicrograph showing the PM and midgut
epithelium with microvilli.m, n At 48 h PIBM, an internal face of the PM
(PMi) presents marks resulting from shrinking of the PM (Arrows). The
blood meal was almost completely digested. oNo PMwas observed in the
72 h PIBMmidguts.Marks of the format of new epithelial cells were noted.
p At 96 h PIBM, most epithelial cells were mature with normal microvilli.
External surface of the midgut (Ex)
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stephensi at 32 h PBM (Freyvogel and Staubli 1965), and in
Culex tarsalis at 10 h PBM (Houk et al. 1979). Perrone and
Spielman (1988) have demonstrated that the PM of Ae.
aegypti first becomes evident at about 4 to 8 h after blood is
ingested, and the membrane attains a mature texture by 12 h.
The formation of PM is observed at 18 h PBM in Anopheles
darlingi (Okuda et al. 2005). Di Luca et al. (2007) have
showed that formation of PM is clearly complete after 16 h
in the posterior midgut from An. stephensi already fed with
healthy donor bloods. In sandflies, Phlebotomus papatasi starts
the production of PM 4 h after a blood meal (Blackburn et al.
1988) whereas Phlebotomus perniciosus and Lutzomyia
longipalpis start the PM synthesis as soon as 1 h after a blood

meal (Walters et al. 1993; Secundino et al. 2005). In
Phlebotomus duboscqi, the PM matures in less than 12 h
(Sadlova and Volf 2009). A peritrophic membrane of Ixodes
ricinus females is found at no later than 18 h after their place-
ment on rabbits (Zhu et al. 1991).

This study presented details of the PM formation in O.
togoi mosquito for the first time. The mature PM of O. togoi
mosquito consisted of two layers, a thin fibrillar layer and a
thick granular layer. Based on the data of PM formation in
several mosquito species (Hegedus et al. 2009), we attribute
the thin fibrillar layer to chitin, while the condensed granular
layer presumably represents proteins and glycoproteins.
Wrinkled, thin, and wavy phenomenon of the PM by 24 h

Fig. 1 (continued)
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PIBM might be due to the degradation of the PM as pressure
from the midgut distension was decreased. In addition, the
absorption of digested blood meal might begin from this
time. The PM disappeared in all 72 h-midgut samples
suggesting that the digestion of the blood meal was

complete. Also, new epithelial cells were mature by 96 h
PIBM suggesting that the absorption of the products of the
blood digestion was complete. The PM formation and deg-
radation in O. togoi is in agreement with observations in
molecular levels in several mosquitoes and sandflies. In Ae.

Fig. 2 SEM micrographs of fractured abdominal midguts showing the
invasion process of microfilariae (mf) from the midgut lumen into
hemocoel. a Sheathed microfilariae at 30 min PIBM, b Sheathed
microfilariae at 1 h PIBM. One of the microfilariae showing its anterior
portion in the process of losing its sheath (arrow). c Sheathed
microfilariae at 2 h PIBM. d A sheathed microfilaria during invasion
on the internal face of the PM (PMi). e At 3 h PIBM, SEM showing a
sheathed microfilaria penetrating across the internal face of the PM and
epithelium (Ep) into hemocoel in the final stage of invasion. f Sheathed
microfilariae at 4 h PIBM lining on the external surface of the midgut

(Ex). g Higher magnification of boxed region in (f) displaying the
posterior portion of a microfilaria retaining contact with the sheath
(arrow). The sheath projecting from the lesion on the external surface
of the midgut produced by the penetrating microfilaria was observed
(arrowheads). h An unsheathed microfilaria at 18 h PIBM. i Higher
magnification of boxed region in (h) displaying an anterior portion of
the microfilaria protruding from blood meal (Bl). Arrow indicates the
exposed hook. j An unsheathed microfilaria at 24 h PIBM showing its
posterior portion. k Anterior portion of an unsheathed microfilaria at
24 h PIBM
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aegypti, Sanders et al. (2003) used cDNA microarrays to
examine midgut gene expression on a global level in re-
sponse to blood feeding and reported that transcripts of

genes involved in PM formation responded immediately to
blood feeding. The expression of glutamine synthetase, an
enzyme that contributes to PM formation in Ae. aegypti, was
highly induced 3–24 h post-blood meal (Smartt et al. 1998).
Degradation of PM requires the activity of chitinases, which
cleave the chitin microfibril components of the matrix. A
chitinase expressed after a blood meal in An. gambiae has
been proposed to partially degrade the PM (Shen and
Jacobs-Lorena 1997). Villalon et al. (2003) demonstrated
that feeding Ae. aegypti and An. stephensi mosquitoes with
blood-containing chitinase led to accelerated blood diges-
tion and PM degradation.

O’Connor and Beatty (1936) and Iyengar (1936) have
suggested that the PM is an efficient barrier for microfilaria
migration towards the midgut. They reported thatW. bancrofti

Fig. 2 (continued)

Fig. 3 SEM micrograph indicating the posterior portion of a microfi-
laria carcass inside the midgut lumen at 8 h PIBM
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microfilaria invades the midgut of Culex quinquefasciatus, at
a similar time after a blood meal. In fact, the invasion of the
midgut of other mosquito species by W. bancrofti, by other
human microfilaria, such as B. malayi and Brugia patei, and
Litomosoides chagasfilhoi are recognized to occur at 2 to 3 h
after blood feeding (Laurence and Pester 1961; Bain and
Brengues 1972; Petit 1978; Petit and Spitalier-Kaveh 1979;
Santos et al. 2006). However, some species of microfilaria,
such as B. pahangi (Esslinger 1962) andOnchocerca volvulus
(Laurence 1966; Bain and Philippon 1969) can invade the
vector midguts between 5 and 60 min after the blood meal.
Christensen and Sutherland (1984) have suggested that B.
pahangi microfilaria freely traverse the PM of Ae. aegypti
within 150 min post-ingestion, with the majority (60 %) mi-
grating out from 61–105 min. Exsheathment of microfilariae
rarely occurred within the midgut and approximately 75 %
retained their sheaths after midgut penetration (Christensen
and Sutherland 1984).

In the present study, B. malayi microfilariae were able
to cross the developing PM at 3 to 4 h after being
ingested by the O. togoi. It was noted that sheaths were
present on all B. malayi microfilariae observed penetrating
the PM and the midgut epithelium into hemocoel. Our
results were consistent with the results of Yamamoto et al.
(1983), Christensen and Sutherland (1984), Agudelo-Silva
and Spielman (1985), and Perrone and Spielman (1986)
that microfilariae do not exsheath until they penetrate the
midgut wall. Agudelo-Silva and Spielman (1985) studied
the migration of B. malayi microfilariae in susceptible Ae.
aegypti (black-eye strain) mosquitoes using SEM and
concluded that the microfilariae penetrated the midgut
wall of the mosquito vector while still sheathed, and that
the sheath remained protruding from the gut into the
hemocoel. Our present study demonstrated a clear figure
of the invasion process of the B. malayi microfilariae in
the O. togoi mosquito that only sheathed microfilariae
penetrated the PM first and then the midgut epithelium
before entering hemocoel, after that, they exsheathed.
Microfilarial sheaths lying within the hemocoel may serve
as a decoy to induce the immune systems of the mosqui-
toes to respond to the antigens on the sheaths, thereby
protecting the exsheathed microfilariae.

However, some exsheathed microfilariae in the midgut
lumen were observed from 1 to 24 h PIBM. From the
results of our observations of B. malayi microfilariae,
only one microfilaria carcass was observed in the 8-h
midgut lumen. An explanation is that in this study, the
PM of O. togoi midgut became thicker and well-formed
during 8–18 h, therefore, the microfilariae might be
detained in the PM during penetration. Santos et al.
(2006) have suggested that when the entire abdominal
midgut is uniformly covered by the PM, it appears to be
an efficient barrier for the helminthes; and when the PM

becomes thick and well-structured, microfilariae are no lon-
ger able to cross it. They stay in the midgut lumen and end up
dying, probably through the activities of digestive enzymes.

In addition, the results of this study revealed that no mi-
crofilaria or carcass was observed in all 36 to 96 h-midgut
samples. These may suggest that the invasion process of the
sheathed microfilariae was completed during 24–36 h PIBM.
For the exsheathed microfilariae in the midgut lumen, until
now, the degree of exsheathment before emergence into the
hemocoel remains unclear. Chen and Shih (1988) have found
that B. pahangi microfilariae tend to carry their sheaths into
the hemocoel of susceptible (Liverpool) and refractory (Bora-
Bora) strains of Ae. aegypti within 2 h after ingestion and
exsheathed within 24 h post-ingestion. Those remained
microfilariae are most likely to cast off their sheaths in the
midgut more than 2 h after ingestion. The percentage of
microfilariae exsheathed in the midgut progressively increases
to about 91 and 78 % at 24-h post-ingestion in the Bora-Bora
and Liverpool strains, respectively. They have suggested
that the exsheathment of B. pahangi microfilariae occurs
both in the hemocoel and in the midgut of both strains of
Ae. aegypti (Chen and Shih 1988). Santos et al. (2006)
reported that L. chagasfilhoi microfilariae may cross the
midgut epithelium of C. quinquefasciatus with or without
their sheaths, depending on whether they crossed the PM or
not, before reaching the midgut epithelium. Investigation on
whether the exsheathed B. malayi microfilariae inside the
O. togoi midgut lumen would be able to penetrate through
the midgut or not are currently in progress in our labora-
tory. Furthermore, the mechanisms of the microfilarial pen-
etration of the midgut epithelium are unclear if they are
mechanical, enzymatic, or combined processes. As excretory–
secretory products of microfilariae include several enzymes
(Singh and Rathaur 2003;Wu et al. 2008), it might be possible
that they secrete substances that act over the midgut epitheli-
um to allow them to penetrate easily. Further analysis using
TEM and/or immune electron microscopy to describe the B.
malayi microfilarial penetration of the O. togoi midgut epi-
thelium and the pathological processes in the epithelium
caused by the penetration should be performed.

In conclusion, the PM formation and the interaction of B.
malayi microfilariae within the O. togoi vector midgut were
systematically investigated for the first time using SEM. Our
findings unveiled features of the formation of the PM from
45 min PIBM with gradual thickening and maturing during
8–18 h PIBM. The PM degraded from 24 to72 h PIBM,
when digestion completed. The invasion process of the
microfilariae was observed between 3 and 4 h PIBM. Only
sheathed microfilariae interacted with the internal face of the
PM by its anterior part, and then the midgut epithelium
before entering hemocoel, after which they exsheathed.
Microfilarial sheaths lying within the hemocoel were ob-
served suggesting that they may serve as a decoy to induce
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the immune systems of the mosquitoes to respond to the
antigens on the sheaths. Our data may contribute to under-
standing a role of the PM on insect biology and provide
information that might be useful for future midgut-targeted
strategies to control mosquito vector. Moreover, these initial
findings can lead to further study on the proteins, chemicals,
and factors in the midgut that are involved in the suscepti-
bility of O. togoi as a vector of filariasis.

Acknowledgments This work was financially supported by the Thai-
land Research Fund (TRF Senior Research Scholar: RTA5480006 toWC,
subproject to NJ) and the Faculty of Medicine, Chiang Mai University.

References

Agudelo-Silva F, Spielman A (1985) Penetration of mosquito midgut
wall by sheathed microfilariae. J Invertebr Pathol 45:117–119

Bain O, Brengues J (1972) Transmission of wuchereriasis and of bovine
setariasis: histological study of the passage of microfilariae through
the stomach wall of Anopheles gambiae and Aedes aegypti. Ann
Parasitol Hum Comp 47:399–412

Bain O, Philippon B (1969) Mechanism of passing microfilaria
through the stomach wall of a vector: its importance in onchocer-
ciasis. C R Acad Sci Hebd Seances Acad Sci D 269:1081–1083

Bangs MJ, Ash LR, Barr AR (1995) Susceptibility of various mosquitoes
of California to subperiodic Brugia malayi. Acta Trop 59:323–332

Billingsley PF (1994) Approaches to vector control: new and trusted. 2.
Molecular targets in the insect midgut. Trans R Soc Trop Med Hyg
88:136–140

Blackburn K, Wallbanks KR, Molyneux DH, Lavin DR, Winstanley
SL (1988) The peritrophic membrane of the female sandfly
Phlebotomus papatasi. Ann Trop Med Parasitol 82:613–619

Chen CC, Shih CM (1988) Exsheathment of microfilariae of Brugia
pahangi in the susceptible and refractory strains of Aedes aegypti.
Ann Trop Med Parasitol 82:201–206

Cheun HI, Cho SH, Lee HI, Shin EH, Lee JS, Kim TS, Lee WJ (2011)
Seasonal prevalence of mosquitoes, including vectors of Brugian
filariasis, in southern islands of the Republic of Korea. Korean J
Parasitol 49:59–64

Chang MS, Chan KL, Ho BC (1991) Comparative transmission
potential of three Mansonia mosquitoes (Diptera: Culicidae)
for filariasis in Sarawak, Malaysia. Bull Entomol Res 81:437–
444

Chomcharn Y, Surathin K, Bunnag D, Sucharit S, Harinasuta T (1980)
Effect of a single dose of primaquine on a Thai strain of
Plasmodium falciparum. Southeast Asian J Trop Med Public
Health 11:408–412

Choochote W, Chaithong U, Somboon P, Pakdicharoen A, Tookyang
B, Likitvong K, Siriprasert V, Sukontasan K, Thitasut P (1991)
Small laboratory animal model for nocturnally subperiodic Brugia
malayi (Narathiwat province, southern Thailand strain). J Trop
Med Parasitol 14:51–58

Choochote W, Keha P, Sukhavat K, Khamboonruang C, Sukontason K
(1987) Aedes (Finlaya) togoi Theobald 1907, Chanthaburi strain.
A laboratory vector in studies of filariasis in Thailand. Southeast
Asian J Trop Med Public Health 18:259–260

ChoochoteW, Sucharit S, AbeywickremeW (1983) A note on adaptation
of Anopheles annularis Van Der Wulp, Kanchanaburi, Thailand to
free mating in a 30×30×30 cm cage. Southeast Asian J Trop Med
Public Health 14:559–560

Choochote W, Sukhavat K, Somboon P, Khamboonruang C,
Maleewong W, Suwanpanit P (1986) The susceptibility of small
laboratory animals to nocturnally superiodic Brugia malayi in
Thailand. J Parasitol Trop Med Assoc Thailand 9:35–37

Christensen BM, Sutherland DR (1984) Brugia pahangi: exsheathment
and midgut penetration in Aedes aegypti. Trans Amer Microscop
Soc 4:423–433

Crampton JM, Warren A, Lycett GJ, Hughes MA, Comley IP,
Eggleston P (1994) Genetic manipulation of insect vectors as a
strategy for the control of vector-borne disease. Ann Trop Med
Parasitol 88:3–12

Di Luca M, Romi R, Severini F, Toma L, Musumeci M, Fausto AM,
Mazzini M, Gambellini G, Musumeci S (2007) High levels of
human chitotriosidase hinder the formation of peritrophic mem-
brane in anopheline vectors. Parasitol Res 100:1033–1039

Esslinger JH (1962) Behavior of microfilaria of Brugia pahangi
in Anopheles quadrimaculatus. AmJTrop Med Hyg 11:749–
758

Freyvogel T, Staubli W (1965) The formation of the peritrophic mem-
brane in Culicidae. Acta Trop 22:118–147

Guptavanij P, Harinasuta C, Vutikes S, Deesin T, Surathin K (1978)
The vectors of Brugia malayi in southern Thailand. Southeast
Asian J Trop Med Public Health 9:543–548

Gwadz RW (1994) Genetic approaches to malaria control: how long
the road? AmJTrop Med Hyg 50:116–125

Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights
into peritrophic matrix synthesis, architecture, and function. Annu
Rev Entomol 54:285–302

Houk EJ, Obie F, Hardy JL (1979) Peritrophic membrane forma-
tion and the midgut barrier to arboviral infection in the mos-
quito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop
36:39–45

Iyengar MOT (1936) Entry of filaria larvae into the body cavity of the
mosquito. Parasitol 28:190–195

Jacobs-Lorena M, Oo MM (1996) The peritrophic matrix of insects. In:
Beaty J, Marquardt WC (eds) The biology of disease vectors.
University Press of Colorado, Boulder, pp 318–332

Kumar NP, Sabesan S, Panicker KN (1998) Susceptibility status of
Mansonia annulifera to Brugia malayi parasites in Cherthala,
Alappuzha district, Kerala. Indian J Exp Biol 36:829–831

Laurence BR (1966) Intake and migration of the microfilariae of
Onchocerca volvulus (Leuckart) in Simulium damnosum Theobald.
J Helminthol 50:337–342

Laurence BR, Pester FRN (1961) The behavior and development of
Brugia patei (Buckley, Nelson and Heisch, 1958) in a mosquito
host, Mansonia uniformis (Theobald). J Helminthol 35:285–300

Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev
Entomol 42:525–550

Lek-Uthai U, Tomoen W (2005) Susceptibility of Mansonia uniformis
to Brugia malayi microfilariae from infected domestic cat.
Southeast Asian J Trop Med Public Health 36:434–441

Luo H, Qu FY (1990) Experimental infection index of Anopheles
sinensis and melanization of periodic Brugia malayi. Zhongguo
Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 8:260–
263

Meis JF, Ponnudurai T (1987) Ultrastructural studies on the interaction
of Plasmodium falciparum ookinetes with the midgut epithelium
of Anopheles stephensi mosquitoes. Parasitol Res 73:500–506

Meis JF, Pool G, van Gemert GJ, Lensen AH, Ponnudurai T,
Meuwissen JH (1989) Plasmodium falciparum ookinetes migrate
intercellularly through Anopheles stephensi midgut epithelium.
Parasitol Res 76:13–19

O’Connor FW, Beatty H (1936) The early migrations of Wuchereria
bancrofti inCulex fatigans. Trans R Soc TropMed Hyg 30:125–127

Okuda K, Caroci A, Ribolla P, Marinotti O, de Bianchi AG, Bijovsky
AT (2005) Morphological and enzymatic analysis of the midgut of

Parasitol Res (2013) 112:2431–2440 2439

Author's personal copy



Anopheles darlingi during blood digestion. J Insect Physiol
51:769–776

Pascoa V, Oliveira PL, Dansa-Petretski M, Silva JR, Alvarenga PH,
Jacobs-Lorena M, Lemos FJA (2002) Aedes aegypti peritrophic
matrix and its interaction with heme during blood digestion.
Insect Biochem Mol 32:517–523

Perrone JB, Spielman A (1986) Microfilarial perforation of the midgut
of a mosquito. J Parasitol 72:723–727

Perrone JB, Spielman A (1988) Time and site of assembly of the
peritrophic membrane of the mosquito Aedes aegypti. Cell
Tissue Res 252:473–478

Peters W (1992) Peritrophic membranes. In: Bradshaw D, Burggren W,
Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds)
Zoophysiology. Springer-Verlag, Berlin, pp 1–238

Petit G (1978) The filaria Dipetalonema dessetae: phenomena of
regulation and parasite yield in the Aedes vector. Ann Parasitol
Hum Comp 53:649–668

Petit G, Spitalier-KavehH (1979) The FilariaBreinlia booliati in theAedes
togoi adipose tissue; comparison with the couple Dipetalonema
dessetae-A. aegypti. Ann Parasitol Hum Comp 54:653–663

Ramachandran CP, Wharton RH, Dunn FL, KershawWE (1963) Aedes
(Finlaya) togoi Theobold, a useful laboratory vector in studies of
filariasis. Ann Trop Med Parasitol 57:443–445

Sadlova J, Volf P (2009) Peritrophic matrix of Phlebotomus duboscqi
and its kinetics during Leishmania major development. Cell
Tissue Res 337:313–325

Sanders HR, Evans AM, Ross LS, Gill SS (2003) Blood meal induces
global changes in midgut gene expression in the disease vector,
Aedes aegypti. Insect Biochem Mol Biol 33:1105–1122

Santos JN, Lanfredi RM, Pimenta PF (2006) The invasion of the
midgut of the mosquito Culex (Culex) quinquefasciatus Say,
1823 by the helminth Litomosoides chagasfilhoi Moraes Neto,
Lanfredi and De Souza, 1997. J Invertebr Pathol 93:1–10

Sasa M (1976) Human filariasis: a global survey of epidemiology and
control. Tokyo. University of Tokyo Press, Tokyo, p 819

Schacher JF (1962) Morphology of the microfilaria of Brugia pahangi
and of the larval stages in the mosquito. J Parasitol 48:679–692

Secundino NFC, Eger-Mangrich I, Braga EM, Santoro MM, Pimenta
PFP (2005) Lutzomyia longipalpis peritrophic matrix: formation,
structure, and chemical composition. J Med Entomol 42:928–938

Shahabuddin M, Cociancich S, Zieler H (1998) The search for novel
malaria transmission-blocking targets in the mosquito midgut.
Parasitol Today 14:493–497

Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific
chitinase gene from the human malaria vector Anopheles gambiae. J
Biol Chem 272:28895–28900

Shih CM, Chen CC (1987) Exsheathment of microfilariae of Brugia
pahangi inAnopheles quadrimaculatus andCulex quinquefasciatus.
Southeast Asian J Trop Med Public Health 18:521–525

Singh RN, Rathaur S (2003) Setaria cervi: in vitro released collage-
nases and their inhibition by Wuchereria bancrofti infected sera. J
Helminthol 77:77–81

Smartt CT, Chiles J, Lowenberger C, Christensen BM (1998)
Biochemical analysis of a blood meal-induced Aedes aegypti
glutamine synthetase gene. Insect Biochem Mol Biol 28:935–
945

Syafruddin AR, Kamimura K, Kawamoto F (1991) Penetration of the
mosquito midgut wall by the ookinetes of Plasmodium yoelii
nigeriensis. Parasitol Res 77:230–236

Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins.
Insect Biochem Mol Biol 29:87–101

Terra WR (2001) The origin and functions of the insect peritrophic
membrane and peritrophic gel. Arch Insect Biochem Physiol
47:47–61

Trpis M (1981) Susceptibility of the autogenous group of the
Aedes scutellaris complex of mosquitoes to infection with
Brugia malayi and Brugia pahangi. Tropenmed Parasitol
32:184–188

Villalon JM, Ghosh A, Jacobs-Lorena M (2003) The peritrophic matrix
limits the rate of digestion in adult Anopheles stephensi and Aedes
aegypti mosquitoes. J Insect Physiol 49:891–895

Wada Y (2011) Vector mosquitoes of filariasis in Japan. Trop Med
Health 39:39–45

Walters LL, Irons KP, Guzman H, Tesh RB (1993) Formation and
composition of the peritrophic membrane in the sand fly,
Phlebotomus perniciosus (Diptera: Psychodidae). J Med Entomol
30:179–198

Wu Y, Preston G, Bianco AE (2008) Chitinase is stored and
secreted from the inner body of microfilariae and has a role
in exsheathment in the parasitic nematode Brugia malayi.
Mol Biochem Parasitol 161:55–62

Yamamoto H, Ogura N, Kobayashi M, Chigusa Y (1983) Studies on
filariasis II: exsheathment of the microfilariae of Brugia pahangi
in Armigeres subalbatus. Jpn J Parasitol 32:287–292

Zhu Z, Gern L, Aeschlimann A (1991) The peritrophic membrane of
Ixodes ricinus. Parasitol Res 77:635–641

2440 Parasitol Res (2013) 112:2431–2440

Author's personal copy



MIDGUT ULTRASTRUCTURE OF THE FOURTH INSTAR OF 1

OCHLEROTATUS TOGOI (DIPTERA: CULICIDAE), A VECTOR OF 2

FILARIASIS3

4

Nuchpicha Intakhan, Narissara Jariyapan, Wetpisit Chanmol, Sriwatapron Sor-Suwan, 5

Benjarat Phattanawiboon, Atiporn Saeung and Wej Choochote6

7

Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 8

50200, Thailand9

10

Correspondence: Narissara Jariyapan, Department of Parasitology, Faculty of Medicine, 11

Chiang Mai University, Chiang Mai 50200, Thailand12

E-mail: narsuwan@mail.med.cmu.ac.th, njariyapan@gmail.com13

14



2

Abstract. The midgut is the largest organ in the mosquito larval body sustaining ion 15

transport, biomolecule absorption and an entry site for several pathogens. In this study, 16

the ultrastructure of the midgut of Ochlerotatus togoi fourth instar was investigated by 17

light, scanning and transmission electron microscopy. The fourth instar midgut was 18

approximately 2 mm in length. It consisted of at least three morphologically distinct cell 19

types including epithelial, regenerative, and endocrine cells. The midgut epithelium20

formed by a monolayer of epithelial cells with the plasma membrane showing multiple 21

folding where it adjoined the basement membrane. Regenerative cells were scattered 22

throughout the basal portion of the epithelium, along with endocrine cells. Epithelial23

cells containing large, microvilli-lined apical cavities were identified in most specimens. 24

No evidence of division or differentiation was obtained for any cell types. At least six 25

layers of peritrophic matrix (PM) were observed in the gut lumen. The PM separated 26

foods from the midgut epithelial cells. Cytoplasmic protrusion in many areas of the 27

luminal midgut surface and numerous autophagosomes in the epithelial cells were found 28

in both the early and late fourth instars suggesting that autophagy involved in the 29

degeneration process in the midguts of the fourth instars. This information provided an 30

understanding of the normal larval midgut development for further studies on factors 31

that control the growth and nutritional state of Oc. togoi larvae to reduce adult fecundity 32

and physiological roles in the larval midgut on interaction with biological control 33

organisms.34

Keywords: Ochlerotatus togoi, fourth instar, larva, midgut, mosquito, ultrastructure35

36
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INTRODUCTION37

The midgut is the largest organ in the mosquito larval body sustaining ion 38

transport, biomolecule absorption and an entry site for several pathogens. Factors 39

controlling the growth and nutritional state of mosquito larvae affect the reproductive 40

potential of the adult (Chambers and Klowden, 1994; Soliman et al, 1995; Tu and Tatar,41

2003; Zhou et al, 2004). Small, poorly fed mosquito larvae produce adults with less 42

reproductive potential (Briegel, 1990; Renshaw et al, 1994; Briegel, 2003; Noriega,43

2004; Telang and Wells, 2004; Telang et al, 2006, 2007). Interfering with the normal 44

development of the larval midgut may possibly reduce its ability to absorb, or store, 45

nutrients and, as a consequence, reduce adult fecundity.46

One of several control tools for diseases transmitted by mosquitoes is using 47

larvicides to kill the insect larvae. Larvicides include chemicals, such as temephos, 48

methoprene, oils, and monomolecular films and biological insecticides, such as the 49

microbial larvicides Bacillus thurigiensis ssp. isaraelensis (Bti) and Bacillus sphaericus 50

(Bs). Bti is a naturally occurring soil bacterium found throughout the world. It has been 51

developed for mosquito control. Bti larvicide product is made up of the dormant spore 52

form of the bacterium. When Mosquito larvae eat the product, an associated pure toxin 53

disrupts the gut in the mosquito by binding to receptor cells present in insects, but not in 54

mammals. Bs is also a naturally occurring bacterium that has been used to kill various 55

kinds of mosquito larvae. Mosquito larvae ingest the bacteria, and as with Bti, the toxin 56

disrupts the gut in the mosquito by binding to receptor cells, again only present in 57

insects not in mammals (Baumann et al, 1991; Lacey, 2007). The target spectrum of Bs 58

is more limited and restricted to each mosquito genus. Most Culex species are highly 59

sensitive to Bs, but within the genera Aedes and Anopheles, some species are highly 60
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sensitive, whereas others show minimal sensitivity (Davidson et al, 1984; Delecluse et 61

al, 2000). Although the larval midgut is a target for controlling transmission of many62

vector-borne diseases such as malaria and filariasis, little is known about the 63

morphology and physiological function of the normal midguts of larvae in each 64

mosquito species.65

Ochlerotatus togoi has been reported as a vector of filariasis in the coastal area 66

of Asia including China, Japan, and Taiwan (Ramachandran et al, 1963; Cheun et al,67

2011). This mosquito species breeds year round, overwintering as the fourth stage 68

larvae or eggs, feeds on birds and mammals and is often common enough be a pest to 69

seaside homeowners. In Thailand, Oc. togoi (Chanthaburi strain) is highly susceptible to 70

the rural strain of nocturnally subperiodic Wuchereria bancrofti (Tak and Kanchanaburi 71

strains), nocturnally subperiodic B. malayi (Narathiwat strain), Brugia pahangi72

(Malaysia strain), and Dirofilaria immitis (Chiang Mai strain) (Choochote et al, 1983, 73

1987). Lymphatic filariasis is one of the tropical diseases targeted for elimination by the 74

year 2020 (100 % of all endemic countries), which has spurred vaccine and drug 75

development, as well as new methods of vector control (WHO, 2012).76

Therefore, in this study, the ultrastructure of the midgut epithelium of the early 77

and late fourth instars of Oc. togoi was examined by light, scanning and transmission 78

electron microscopy to provide an understanding of the normal larval midgut 79

morphology.80

81

MATERIALS AND METHODS82

Mosquito83
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Oc. togoi mosquitoes (Koh Nam Sao, Chantaburi Province, Southeastern 84

Thailand) were used in this study. The mosquito strain has been maintained in the 85

insectary of the Department of Parasitology, Faculty of Medicine, Chiang Mai 86

University, since 1983. It has been proven to be highly susceptible to NSP B. malayi87

(Choochote et al, 1987). Methods for rearing of mosquitoes were followed standard 88

techniques described by Choochote et al, (1987). The early fourth instars aged 8-12 h 89

and the late fourth instars aged 92-96 h after molting (ten samples/time point) were 90

processed for LM, SEM, and TEM.91

Preparation of samples for light microscopy92

The midguts of the fourth instar were dissected in PBS and allowed to settle 93

onto slides without drying. Photographs of the glands were taken using a digital camera 94

(Cannon, Tokyo, Japan) attached to a light microscope.95

Preparation of samples for scanning electron microscopy96

Dissected midguts were fixed with a solution of 2.5% glutaraldehyde mixed in 97

phosphate buffer solution at a pH of 7.4 at 4°C for 24 h. The fixed samples were post-98

fixed as described for TEM and dehydrated in a crescent series of acetone. Finally, the 99

specimens were subjected to critical point drying, were attached with double-stick tape 100

to aluminum stubs, and were coated with gold in a sputter-coating apparatus before 101

being viewed with a JEOL JSM-5910 scanning electron microscope (Japan). To observe 102

the interface between the midgut surface and the blood meal, some fixed samples were 103

fractured before coating with gold, while others were gently opened and the contents 104

washed out with phosphate buffer saline before the fixation.105

Preparation of samples for transmission electron microscopy106
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Dissected midguts were fixed overnight with a solution of 2.5% glutaraldehyde 107

mixed in phosphate buffer solution at a pH of 7.4 at 4°C to accomplish primary fixation. 108

They were then rinsed twice with phosphate buffer solution at ten minute intervals and 109

later post-fixed in a solution of 1% osmium tetroxide for 2 h. Post-fixation was followed 110

by rinsing twice with phosphate buffer solution and dehydrating with alcohol. To 111

replace the water in the specimens with alcohol, they were subjected to the following 112

increasing concentrations of alcohol: 30, 50, 70, 80, 90, and 95%. The specimens were 113

then placed in absolute alcohol for two 12-h periods. After that, organ specimens were 114

placed in acetone for 2 h. before transferring into ratios of resin to acetone of 1:3 for 24 115

h, 1:1 for 24 h, and 3:1 for 24 h, sequentially. This was followed by treatment with pure 116

resin twice for 3 h. Each sample was then embedded in Spurr’s resin by placing them 117

into a plastic block and by incubating at 70°C for 24 h. A semithin secti118

each sample was made with a glass knife on an Ultramicrotome (Boeckeler®, USA). 119

This was followed by staining with 1% methylene blue mixed with 1% Azure II (1:1) to 120

view under a light microscope (Olympus®, Japan). The ultrathin sections (90 nm) were 121

stained with uranyl acetate and lead citrate to observe under the ZEISS EM 10 electron 122

microscope (Germany).123

124

RESULTS125

Ultrastructure of the midgut epithelium in the fourth instars126

The fourth instar midgut was approximately 2 mm in length and formed by a 127

monolayer of epithelial cells with the plasma membrane showing multiple folding 128

where it adjoined the basement membrane (Fig 1A). It consisted of at least three 129
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morphologically distinct cell types including epithelial, regenerative, and endocrine 130

cells (Fig 1).131

Epithelial cells were the major cellular component of the midgut epithelium. 132

These cells had morphological characteristics of absorptive cells. TEM analysis 133

revealed that the cytoplasm of the perinuclear region was rich in cisterns of rough 134

(RER) and smooth (SER) endoplasmic reticulum and Golgi complex. In the apical 135

region of the cytoplasm, there was an abundance of mitochondria, cisterns of RER and 136

SER, free ribosomes, and lamellar bodies. The apical membrane was formed by densely 137

numerous microvilli (Fig 1, 2). The basal regions of epithelial cells were rich in 138

mitochondria (Fig 2). The nuclei of the epithelial cells were situated at one third of the 139

cell height. Among the midgut epithelial cells, septate junctions were observed (Fig 1). 140

SEM analysis showed that in the luminal surface of the midgut in the early fourth 141

instars examined, two morphological features of the epithelial cells were found, one142

covered by a thin membrane (Fig 3C, D)and another one with long microvilli, (Fig 3F).143

Figure 3C and D demonstrate the luminal surface of the early fourth instar midgut 144

which consists of a carpet of the epithelial cells being covered with a thin membrane on 145

their surface to hinder microvilli underneath. Figure 3E shows the losing of the thin 146

membrane from their cellular apexes. Only fully formed epithelial cells with long 147

microvilli in almost regions in the midgut of some of the early fourth instar midguts 148

examined were noted (Fig 3F). In the late fourth instars, a mixture of fully formed149

epithelial cells and epithelial cells with cytoplasmic protrusions were observed (Fig 5C, 150

D).151

Regenerative cells were scattered among the epithelial cells, throughout the 152

basal portion of the epithelium, never reaching the lumen (Fig 1B, C). At least 70 to 80 153
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regenerative groups were found in a transverse section through the midgut sections154

studied (Fig 1B). Each group was composed of three to four cells (Fig 1C, D). The 155

cytoplasm of the regenerative cells was poor in organelles, sporadically housing 156

mitochondria and cisternae of RER. The nucleus was oval located near the nuclear 157

envelope and nucleolus was observed in the nucleus of the regenerative cells (Fig 2A, 158

B).159

The endocrine cells were cone-shaped and located basally in the midgut 160

epithelium as single cells. Approximately, 30 to 40 endocrine cells were distributed in a 161

transverse section through the midgut sections studied (Fig 1B). Midgut endocrine cells 162

were smaller than epithelial cells. These cells displayed weakly stained cytoplasm and 163

nuclei, contrasting with the dark digestive cells. No visible folding on the basal 164

membranes of the endocrine cells was observed. Numerous round secretory granules 165

were observed along the lateral and basal plasma membranes. The secretory granules 166

were ranging in size from 60 to 120 nm (Fig 2C, D).167

At least six distinct layers of peritrophic matrix (PM) were observed in the gut 168

lumen. The PM separated foods from the midgut epithelial cells (Fig 1, 2F, 3A, B). The 169

first layer on the luminal side was composed of electron-dense granules and was in 170

close contact with the second layer. The second and fourth layers were very similar in 171

their appearance longitudinally in having relatively electron-dense zones alternating 172

with less dense zones. The second layer was somewhat thicker than the fourth layer. 173

The third and the fifth layers were also similar to one another in consisting of loosely 174

woven, granular strands, although both varied in thickness. The fifth layer was the 175

thickest. Most variation in thickness of the larval PM was due to the thickness of the 176
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fifth layer. The sixth layer appeared as a dark, solid line of varying electron density (Fig177

2F).178

Morphological features of epithelial cell degeneration179

LM observations revealed that in the early fourth instar midgut sections,180

epithelial cells started to prepare for degeneration while fulfilling their functions (Fig181

1C, D). Morphological features attributable to the degenerative process were observed 182

using TEM and SEM (Fig 4, 5). In the early larval midguts, autophagic compartments 183

(autophagosomes) were clearly seen in some epithelial cells. Autophagosomes 184

containing organelle debris were visible in the cytoplasm of cells undergoing 185

degeneration (Fig 4A-D). In addition, lamellar bodies which represent the result of 186

autophagic degradation of membranous cellular components were observed (Fig 4C, D). 187

Autophagy increased in the midgut cells of late fourth instars (Fig 4). The few 188

organelles, such as mitochondria and vesicles near the apical membrane of the 189

degenerated cell were observed (Fig 4E, F). SEM analysis revealed cytoplasmic 190

protrusions of cells undergoing degeneration on the apical surface among epithelial cell 191

borders (Fig 5A). Cytoplasmic protrusions were round and had a smooth surface (Fig192

5A, C). Figure 5B shows breakage of the apical membrane and organelle debris was 193

discharged into the midgut lumen. In the late larval midgut sections, both new epithelial 194

cells and epithelial cells with cytoplasmic protrusions (Fig 5C, D) were found in the 195

luminal surfaces of the midgut of the late fourth instars examined.196

197

DISCUSSION198

This present study represents the first description of the midgut of Oc. togoi199

fourth instar and morphological features of epithelial cell degeneration at the 200
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ultrastructural level. In Diptera, Lepidoptera and Ephemeroptera, the midgut epithelium 201

of the adult stage is always formed by two main types of cells: epithelial and202

regenerative cells, however, in different stages of development in some insect species 203

endocrine and goblet cells are also found (Billingsley, 1990; Billingsley and Lehane,204

1996; Leite and Evangelista, 2001; Silva-Olivares et al, 2003; Baton and Ranford-205

Cartwright, 2007; Fialho et al, 2009). In the fourth instar of Oc. togoi, three types of 206

cells including epithelial, regenerative, and endocrine cells were found in this study but 207

no goblet cell was observed.208

Epithelial cells are predominant in the epithelium of the midgut wall of Oc. 209

togoi fourth instar and show similar morphological aspects to Aedes aegypti (Zhuang et 210

al, 1999). According to Richards and Davies (1994) and Jordao et al (1999), the 211

epithelial cells present numerous and long microvilli and large quantities of 212

mitochondria in the cell apical portion. The well-developed rough endoplasmic 213

reticulum and Golgi complex in the middle portion, and the basal plasma membrane 214

infoldings with associated mitochondria in the basal portion indicate that the columnar 215

cells serve in nutrient absorption; protein synthesis, mainly related to digestive enzyme 216

production; and ion and water transport.217

It is known that regenerative cells are able to proliferate and differentiate,218

therefore, they might be treated as stem cells which, depending on the kind of cells 219

forming distinct tissues, would differentiate into epithelial or even endocrine or goblet 220

cells (Tettamanti et al, 2007a). Regenerative cells are either distributed as isolated cells 221

among epithelial cells, or form regenerative groups which, depending on the shape, are 222

called regenerative nests or crypts (Garcia et al, 2001; Silva-Olivares et al, 2003; Illa-223

Bochaca and Montuenga, 2006; Rost, 2006a, 2006b; Wanderley-Teixeira et al, 2006; 224
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Baton and Ranford-Cartwright, 2007; Rost-Roszkowska et al, 2010a, 2010b). Similar 225

morphological aspects of regenerative cells in Oc. togoi were found. At this stage, no 226

proliferation and/or differentiation of the regenerative cells occurred.227

Billingsley and Lehane (1996) and Levy et al (2004) have proposed that 228

endocrine cells may have functions similar to neurosecretory cells of the vertebrate 229

alimentary tract. A large variety of polypeptide hormones, which are responsible for 230

secretion of appropriate concentrations of specific enzymes after feeding and also 231

control the proliferation and differentiation of the regenerative cells, are synthesized in 232

the endocrine cells (Endo et al, 1982; Andries and Tramu, 1985; Zudaire et al, 1998).233

The endocrine cells, presented as different types based on electron-density of their 234

granules (Raes and Verbeke, 1994; Billingsley and Lehane,1996; Jordao et al, 1999;235

Cristofoletti et al, 2001). In some insects, for example, the desert locust Schistocerca236

gregaria (Forskal), the stingless bee Melipona quadrifasciata anthidioides, and the 237

velvetbean caterpillar moth Anticarsia gemmatalis, glycogen granules have been 238

detected (Montuenga et al, 1989; Neves et al, 2003; Levy et al, 2004). Secretory 239

vacuoles and granules are mainly observed accumulated in the basal cytoplasm (Raes 240

and Verbeke, 1994; Billingsley and Lehane, 1996; Cristofoletti et al, 2001; Levy et al,241

2004). The structure of endocrine cells in the Oc. togoi studied was similar to that 242

described for many insect species; granular structures were observed in the entirely 243

basal cytoplasm. The fourth instars of Oc. togoi are the final stages before the formation 244

of the pupa, and the organisms must be prepared for many changes associated with 245

pupation. The secretory functions of the endocrine cells are probably intensified and 246

new hormones synthesized.247
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Absence of goblet cells in the midgut of Oc. togoi fourth instars is consistent 248

with a previous work in Ae. aegypti larvae (Zhuang et al, 1999). In the midgut of 249

Lepidoptera larvae, goblet cells present a goblet chamber formed by an apical infolding 250

of the plasma membrane. Cell surface basal and lateral projections into this cavity 251

extend cell surface area, similar to the idea of microvilli but filled with mitochondria.252

The presence of mitochondria inside the projections is related to the active transport of 253

potassium ions from the hemolymph to the midgut lumen, and also calcium ions from 254

adjacent columnar cells (Klein et al, 1991; Koch and Moffett, 1995; Moffett et al,255

1995). The presence of these goblet cells may be responsible for alkalization (pH 8.0-256

12.0) in the midgut of Lepidoptera (Dow, 1984). However, alkalization in the midgut 257

lumen of larvae of mosquitoes occurs in the absence of goblet cells. Basolateral V-258

ATPases drive strong luminal alkalinization in the anterior midgut of larval Ae. aegypti 259

(Zhuang et al, 1999; Boudko et al, 2001; Onken et al, 2008). The V-ATPase is not 260

localized in the luminal membrane of the anterior midgut, but instead in the basolateral 261

membrane (Zhuang et al, 1999). The midgut epithelium of Ae. aegypti larvae generates 262

a lumen negative transepithelial voltage instead of the lumen positive voltage observed 263

in Manduca sexta larvae under comparable conditions (Clark et al, 1999).264

Our results with the PM in the fourth instars of Oc. togoi were similar to those of 265

Ae. aegypti in that they consisted of at least six layers (Moncayo et al, 2005). The larval 266

PM was of Type II and formed as a hollow posteriorly moving cylinder that forms from 267

material secreted by a discrete ring of cells located in the larval cardia. The cardia is a 268

distinctive organ in Diptera that encompasses the posterior end of the foregut and 269

anterior end of the midgut. The results of our observations of Oc. togoi larvae show that 270

the PM occurs continuously along the alimentary canal from the cardia to the anus. The 271
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roles of the larval PM in the protection of the midgut epithelium from damage by food 272

particles and also protection against pathogens have both been previously described by 273

Peters (1992) and Lehane (1997).274

Normally, cells continuously synthesize proteins, reconstruct their organelles 275

and cellular components, renew them and take up substances from outside. Autophagy 276

is a cellular mechanism that counteracts and controls this on-going growth of organic 277

matter. It is also treated as a type of cell death that enables degradation of organelles 278

that are no longer needed (Lee et al, 2002; Lockshin and Zakeri, 2004; Debnath et al,279

2005; Levine and Yuan 2005; Giusti et al, 2007; Tettamanti et al, 2007b). In autophagy, 280

two important features in the cells, autophagosome and autolysosome, have been 281

reported (Mizushima et al, 2008; Tettamanti et al, 2011). The autophagic process begins 282

with the formation of a membrane, called a phagophore, an isolation membrane in the 283

cell and it progressively expands and grows to engulf a portion of cytoplasm. Afterward284

this double-membrane structure finally wraps around cellular components targeted for 285

degradation and closes to become an autophagosome. By vesicle fusion, the 286

autophagosome membrane fuses with lysosomes, small organelles surrounded by 287

membranes that contain digestive enzymes. The contents are degraded and the resulting 288

macromolecules are assimilated back into the cytosol (Mizushima et al, 2008).289

Degeneration of the midgut epithelial cells might carry on during digestion and new 290

cells renew them during the entire life of insects depending on various stress and 291

external factors such as harmful or toxic chemical compounds (Evangelista and Leite,292

2003; Rost, 2006b; Baton and Ranford-Cartwright, 2007; Rost-Roszkowska et al,293

2008). In this study, the degeneration of midgut epithelial cells by autophagosomes was 294

observed in both the early and late fourth instars of Oc. togoi. Autophagy proceeded295
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intensively in the midgut epithelium of the late fourth instars of Oc. togoi suggesting 296

that this might be a type of elimination of harmful or toxic substances from the 297

organism. It is known that processes of degeneration, and the following regeneration, of 298

the midgut epithelium might proceed in a cyclic manner that is closely associated with 299

molting periods (Garcia et al, 2001; Takeda et al, 2001; Evangelista and Leite, 2003). In 300

this study, no mitotic activity in regenerative cells or cellular renewal due to the 301

growing digestive tube at each ecdysis was observed. An explanation is that the larvae 302

analyzed were not at a prepupal stage. However, a study on proliferation and 303

differentiation of the regenerative cells in the prepupal and pupal stages is in progress in 304

our laboratory.305

In conclusion, this study described the ultrastructure of the midgut of Oc. togoi306

fourth instar for the first time. Although the cells types found in the midgut epithelium 307

of Oc. togoi larvae were similar to those described for other Aedes or Ochlerotatus308

species, further studies on factors that control the growth and nutritional state of Oc. 309

togoi larvae are required to inform on how to reduce adult fecundity and physiological 310

roles in the larval midgut on interaction with biological control organisms, for example, 311

Bti and Bs.312
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FIGURE LEGENDS509

510

511

Fig 1-Morphological study of the midgut epithelium of the Oc. togoi early fourth instars512

under LM. (A) A representative larval midgut before defecation showing larval 513

food (f) covered by a peritrophic matrix (PM) in the midgut lumen and 514

Malpighian tubules (Mt). (B) Transverse section through the middle region of a 515

representative larval midgut of Oc. togoi showing midgut epithelium composing 516

of columnar epithelial cells (Ep), larval food (f), midgut lumen (Lu), and 517

peritrophic matrix (PM). Arrows indicate microvilli. (C) Higher magnification of 518

square boxed region in (B) displaying basement membrane (B), endocrine cells 519

(En), epithelial cells (Ep), larval food (f), microvilli (mv), peritrophic matrix 520

(PM), and groups of regenerative cells (R). Arrows indicate degenerated 521

organelles and nuclei discharged into the midgut lumen. (D) Higher 522

magnification of rectangular boxed region in (B) displaying basement membrane523
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(B), degenerated epithelial cells (dEp), epithelial cells (Ep), microvilli (mv), and 524

groups of regenerative cells (R). Arrows indicate degenerated organelles and 525

nuclei discharged into the midgut lumen (Lu). Circle indicates a transverse 526

section of an apical membrane of a degenerated epithelial cell protruding into the 527

midgut lumen.528

529
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530

Fig 2-Ultrastructural aspects of the midgut epithelium of the Oc. togoi early fourth 531

instars under TEM. (A) A region of the epithelium showing epithelial cells (Ep), 532

a group of regenerative cells (arrowheads), septate junction (arrows), basement 533

membrane (B), muscle (m), mitochondria (mt), and nucleus of epithelial cell (Nu). 534

(B) TEM micrograph displaying a group of regenerative cells (R), basement 535
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membrane (B), muscle (m), mitochondria (mt), nucleus of regenerative cell (n), 536

and nucleus of epithelial cell (Nu). (C) An endocrine cell with many secretory 537

granules in the basal region (square). (D) Higher magnification of square boxed 538

region in (C) displaying the secretory granules (arrows). (E) An apical part of the 539

midgut epithelial cells (Ep), microvilli (mv), and septate junction (arrows). (F) A540

peritrophic matrix (PM) consisting of at least six layers, peritrophic space (PS), 541

and ingested food and food debris in the lumen of a larval midgut (Lu).542

543

544

Fig 3-Ultrastructural aspects of Oc. togoi epithelium in early fourth instars under SEM. 545

(A) A representative midgut of an early fourth instar with a peritrophic matrix 546



28

(PM). (B) A middle part of a larval midgut showing epithelial cells (Ep) and a 547

peritrophic matrix (PM) separated from the midgut epithelium. (C) A posterior 548

part of a larval midgut a peritrophic matrix (PM) and a group of epithelial cells 549

(rectangle). (D) Higher magnification of boxed region in (C) displaying a group 550

of epithelial cells (Ep) with microvilli covered by a thin membrane. (E) A group 551

of epithelial cells (Ep) after the thin membrane gradually loosen from cellular 552

apexes (arrowheads). (F) A region in the midgut with fully formed epithelial cells.553

554
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555

Fig 4-Autophagy in the midgut epithelium of the Oc. togoi late fourth instars under 556

TEM. (A), (B) TEM micrographs showing epithelial cells (Ep) with apical 557

cytoplasm rich in autophagosomes (au). Arrows indicate septate junction. 558

Microvilli (mv). (C) An autophagosome (au) with degenerated organelles and 559

lamellae of rough endoplasmic reticulum (arrows). Two small autophagosomes 560
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(arrowheads) forms inside the autophagosome (au). (D) Higher magnification of 561

an autophagosome (au) remaining in contact with the cytoplasm (arrow) by 562

lamellae. (E) Protrusion of an apical membrane of a degenerated epithelial cell 563

(Ep) into the midgut lumen (Lu). Microvilli (mv). (F) A transverse section of an 564

apical membrane of a degenerated epithelial cell protruding into the midgut 565

lumen (Lu) showing the accumulation of degenerated organelles inside the cells 566

and two regions of the apical membrane evaginated into the lumen (arrows).567

568

569

Fig 5-Ultrastructural aspects of Oc. togoi epithelium in late fourth instars with 570

peritrophic matrix removed under SEM. (A) Numerous degenerated epithelial 571

cells with cytoplasmic protrusions (arrows) in the midgut lumen were noted. (B)572

An apical membrane of a degenerated epithelial cell broke and organelle debris 573

(arrows) was discharged into the midgut lumen. (C), (D) SEM micrographs 574

showing fully formed epithelial cells (Ep) and epithelial cells with cytoplasmic 575

protrusions (arrows).576
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Abstract. Morphology and protein profiles of female salivary glands of Anopheles 14 

barbirostris species A1 were analyzed. Female glands consisted of a distinctive tri-lobed 15 

structure connected to a main salivary canal, a single medial and two lateral lobes with 16 

proximal and distal portions. Cellular architecture was similar among the lobes, with 17 

secretory material appearing as large masses. Cells of the proximal-lateral lobes contained 18 

secretory masses with a finely filamentous aspect. In the distal-lateral lobes, cells had a dense 19 

secretory product with mottled pattern. Cells of the medial lobe had secretory masses which 20 

were uniformly stained and highly electron dense. Following emergence, the glands 21 

accumulated secretory material rapidly and developed completely within three days. 22 

Degenerative changes including loss of stored secretion and increase of cytoplasmic 23 

vacuolation and concentric lamellar structures were observed from day 16 post emergence 24 

that correlated with total amount of the salivary gland proteins determined during 25 

development. SDS-PAGE, nanoLC-MS, and glycoprotein analysis revealed at least eleven 26 

major protein bands, of which each morphological region contained different major proteins. 27 

Two glycoproteins, apyrase/5’-nucleotidase and D7, were identified. These results form a 28 

basis for further studies on details of cytopathological changes of malarial infected glands 29 

and roles of the proteins in disease transmission.30 

31 

Keywords. Anopheles; mosquito; salivary gland; proteins; morphology32 

33 
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INTRODUCTION34 

Malaria is an ongoing problem for people in the world, especially children. It affects 200 35 

million people worldwide causing up to 500 million clinical cases annually and 1.5 to 2.7 36 

million deaths per year (WHO, 2012; Raghavendra et al., 2011). Malaria is exclusively 37 

transmitted by female Anopheles mosquitoes. Mosquito female salivary glands are being 38 

investigated because of their important role in the transmission of pathogens and assisting 39 

both blood and sugar meal feeding (James & Rossignol, 1991; James, 1994). The saliva of 40 

mosquitoes contains pharmacologically active molecules, such as vasodilators, anti-41 

coagulants, and platelet aggregation inhibitors, to counteract the host’s defense against blood 42 

loss (hemostasis) (Law et al., 1992; Stark & James, 1996). In addition, antigenic and 43 

immunogenic molecules in the mosquito saliva involving immunoglobulin E, 44 

immunoglobulin G and T-lymphocyte mediate hyposensitivity response in the vertebrate host 45 

(Ribeiro & Arca, 2009; Ribeiro et al., 2010).46 

Previous works on the morphological aspects of mosquito salivary glands has been 47 

described for Aedes aegypti, Anopheles stephensi, Culex pipiens, Anopheles darlingi, and 48 

Culex quinquefasciatus (Orr et al., 1961; Wright, 1969; Janzen & Wright, 1971; Barrow et 49 

al., 1975; Moreira-Ferro et al., 1999; da Cunha Sais et al., 2003). However, histological 50 

sections of adult female salivary glands related to the age of mosquitoes have only been 51 

studied in Ae. aegypti and Aedes togoi (Beckett, 1990). Results have shown that the salivary 52 

gland morphology varies from less than one day to 48 days post emergence. For salivary 53 

gland proteins, the following hematophagous mosquitoes have been analyzed: Ae. aegypti54 

(Orr et al., 1961; Janzen & Wright, 1971; Valenzuela et al., 2002), An. stephensi (Suwan et 55 

al., 2002), An. gambiae (Arca et al., 1999; Franceschetti et al., 2002), An. darlingi (Moreira56 

et al., 2001), An. barbirostris complex (Jariyapan et al., 2010), Anopheles cracens, formerly 57 

Anopheles dirus B, (Jariyapan et al., 2007), Anopheles albimanus (Cazares-Raga et al.,58 
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2007), Cx. pipiens (Barrow et al., 1975), Cx. quinquefasiatus (Nascimento et al., 2000), Ae. 59 

togoi (Jariyapan & Harnnoi 2002), Armigeres subalbatus (Siriyasatien et al., 2005), and 60 

Mansonia uniformis (Phumee et al., 2011). These analyses have revealed at least 19 major 61 

polypeptides in the mosquito salivary glands using SDS-PAGE but a few proteins have been62 

identified (Suwan et al., 2002; Jariyapan et al., 2007, 2010). So far, no systematic 63 

investigation on changes in salivary gland morphology and proteins during adult 64 

development has been performed in Anopheles mosquitoes.65 

In Thailand, Anopheles barbirostris species A1, a member of the An. barbirostris66 

complex (Saeung et al., 2007), has been reported as a potential vector for P. vivax67 

(Thongsahuan et al., 2011). However, only preliminary analysis of female salivary gland 68 

proteins of An. barbirostris species A1 has performed using sodium dodecyl sulphate 69 

polyacrylamide gel electrophoresis (SDS-PAGE). Nano-liquid chromatography-mass 70 

spectrometry (nanoLC-MS) analysis has revealed only a major protein band matched with a 71 

protein involved in blood feeding, gSG6, of An. gambiae (Jariyapan et al., 2010). No other 72 

study has been performed in this mosquito species. Therefore, in this study, the ultrastructural 73 

morphology of the salivary glands of female An. barbirostris species A1 mosquitoes and the 74 

total amount of salivary gland proteins during adult development were analyzed. In addition,75 

identification of the major salivary gland proteins using SDS-PAGE followed by nanoLC-MS 76 

and glycoprotein analysis were performed. These results provided information helpful for 77 

further study on the roles of salivary proteins of this mosquito species in disease transmission 78 

and hematophagy.79 

80 

MATERIALS AND METHODS81 

Mosquito82 
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An. barbirostris species A1 colonies (Saeung et al., 2007) successfully maintained for many 83 

consecutive generations in an insectary at the Department of Parasitology, Faculty of 84 

Medicine, Chiang Mai University, Thailand and were utilized in this study. The methods for 85 

rearing mosquitoes described by Choochote et al. (1983) and Kim et al. (2003) were used. 86 

The mosquitoes were reared and maintained in the insectary at 27 2°C with 70 10% relative 87 

humidity, and a photo-period of 12:12 (light/dark) h. Adult mosquitoes were given 88 

continuous access to a 10% sucrose solution and fed on blood from immobilized mice when 89 

required. Mosquitoes aged 0-25 days post emergence and fed on sucrose solution were used 90 

in this study.91 

92 

Salivary gland dissection93 

Salivary gland dissection was performed utilizing the method described by Jariyapan et al.94 

(2010). Adult mosquitoes between three to five days of age were cold anaesthetized on ice 95 

before salivary gland dissection. Salivary glands of the mosquitoes were dissected in 96 

phosphate-buffered saline [PBS; 10 mM Na2SO4, 145 mM NaCl (pH 7.2)] using fine 97 

entomological needles under a stereoscopic microscope at 4X magnification and transferred 98 

to a microcentrifuge tube with a small volume of PBS. The samples were then kept at -80 C99 

until use. Dissection of the various regions of the female salivary glands was performed. The 100 

medial lobes were cut at the junction of the medial lobes and the lateral lobes. The distal-101 

lateral and proximal-lateral lobes were cut at the intermediate region separating the two lobes. 102 

The gland parts were immediately removed to separate tubes to avoid possible protein 103 

contamination between the different sections of the glands. The gland parts were placed in a 104 

small volume of PBS and stored at -80 C until use.105 

106 

Protein quantification107 
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The protein content of each salivary gland pair was determined using a Micro BCA Protein 108 

Assay Kit (Pierce, Rockford, IL) according to the manufacturer’s instruction. The protein 109 

concentration was determined based on a bovine serum albumin (BSA) standard curve.110 

111 

Light microscopy112 

Salivary glands of female mosquitoes were dissected in PBS and allowed to settle onto slides 113 

without drying. Photographs of the glands were taken using a digital camera attached to a 114 

light microscope.115 

116 

Transmission electron microscopy (TEM)117 

Salivary glands were dissected in PBS and fixed for two h at room temperature with 2.5% 118 

glutaraldehyde in PBS buffer (pH 7.4). The glands were then washed twice in buffer and 119 

post-fixed for one h with 1% osmium tetroxide. Thereafter, the glands were dehydrated in a 120 

crescent series of graded ethanol, incubated overnight in an epoxy resin (PolyBed 121 

812)/acetone solution (1:1), and then embedded in pure resin and polymerized for 48 h at 122 

60 C. Ultra-thin sections were stained with uranyl acetate and lead citrate and observed in a 123 

Zeiss EM10C transmission electron microscope, operated at 60 kV.124 

125 

SDS-Polyacrylamide gel electrophoresis126 

Salivary gland samples were thawed on ice and mixed in 1:2 (v/v) 1XSDS gel loading buffer 127 

(50mM Tris-HCl, pH 6.8, 100 mM DTT, 2% SDS, 0.1% Bromphenol blue, 10% glycerol). 128 

Then, the samples were heated for five min in a boiling water bath and loaded on 15% SDS 129 

polyacrylamide gels. Molecular weight markers (Bio-Rad Laboratories; Hercules, CA) were 130 

applied in each gel.131 

132 
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In-gel digestion133 

Protein bands of interest were excised from the SDS-polyacrylamide gels using sterile 134 

surgical blades with aseptic technique. The gel pieces were subjected to in-gel digestion using 135 

an in-house method developed by Proteomics Laboratory, National Center for Genetic 136 

Engineering and Biotechnology (BIOTEC), National Science and Technology Development 137 

Agency (NSTDA), Thailand. The gel plugs were dehydrated with 100% acetonitrile (ACN), 138 

reduced with 10 mM DTT in 10 mM ammonium bicarbonate at room temperature for one h 139 

and alkylated at room temperature for one h in the dark in the presence of 100 mM 140 

iodoacetamide (IAA) in 10 mM ammonium bicarbonate. After alkylation, the gel pieces were 141 

dehydrated twice with 100% ACN for five min. To perform in-gel digestion of proteins, 10 μl 142 

of trypsin solution (10 ng/μl trypsin in 50% ACN/10 mM ammonium bicarbonate) was added 143 

to the gels followed by incubation at room temperature for 20 minutes, and then 20 μl of 30% 144 

ACN was added to keep the gels immersed throughout digestion. The gels were incubated at 145 

37 C for a few hours or overnight. To extract peptide digestion products, 30 μl of 50% ACN 146 

in 0.1% formic acid (FA) was added into the gels, and then the gels were incubated at room 147 

temperature for ten min in a shaker. Peptides extracted were collected and pooled together in 148 

a new tube. The pool extracted peptides were dried by vacuum centrifuge and kept at -80 C149 

for further mass spectrometric analysis.150 

151 

NanoLC-MS analysis and protein identification152 

The protein digest was injected into an Ultimate 3000 LC System (Dionex, Sunnyvale, CA) 153 

coupled to an ESI-Ion Trap MS (HCT Ultra PTM Discovery System, Bruker, Germany) with 154 

electrospray at a flow rate of 300 nl/min to a nanocolumn (Acclaim PepMap 100 C18, 3 μm, 155 

100A, 75 μm id x 150 mm). A solvent gradient (solvent A: 0.1% formic acid in water; 156 

solvent B: 80% of 0.1% formic acid in 80% acetonitrile) was run for 40 min. Mascot from 157 
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Matrix Science Ltd. (London, UK) was used to search all of the tandem mass spectra (Perkins 158 

et al., 1999). The data were sent to the National Center for Biotechnology nonredundant 159 

(NCBInr) protein database. The search was performed taking Other Metazoa as taxonomy. 160 

The other search parameters were enzyme of specificity strict trypsin; one missed cleavage; 161 

fixed modifications of Carbamidomethyl (C); oxidation (Met); peptide tolerance of 100 ppm; 162 

Fragment Mass Tolerance of 0.5 Da; peptide change of 1+; and monoisotopic. Protein 163 

identification was made on the basis of 164 

165 

Coomassie Brilliant Blue (CBB) and glycoprotein staining166 

Following the electrophoresis, the gels were CBB stained. First, the gels were fixed in 50% 167 

methanol and 10% acetic acid for 30 min, then stained with 1% CBB in 10% methanol and 168 

5% acetic acid for 2 h, and finally de-stained in 10% methanol and 5% acetic acid until dark 169 

protein bands were visible. The gels were scanned with the Imagescanner III (GE Healthcare, 170 

UK). For glycoproteins, the gels were stained with Pro-Q Emerald 300 glycoprotein stain 171 

(Invitrogen, OR) according to the manufacturer’s instruction.172 

173 

RESULTS174 

Morphology of female salivary glands of An. barbirostris species A1 mosquitoes175 

An adult female salivary gland of An. barbirostris species A1 consisted of a distinctive tri-176 

lobed structure connected to a main salivary canal, a single medial and two lateral lobes with 177 

proximal and distal secretory portions. The proximal portion of the median lobe was short 178 

and served to link this lobe with the two lateral lobes. A cuticular duct extended through it 179 

from the distal portion and connected to the ducts of the lateral lobes (Figure 1).180 

Ultrastructural analysis revealed that all lobes were acinar structures, organized as a 181 

unicellular epithelium that surrounded a salivary canal and surrounded by a very thin basal 182 
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lamina. In general, cellular architecture was similar among the lobes, with secretory material 183 

appearing as large masses that pushed the cellular structures to the periphery of the organ. In 184 

the cytoplasm of all secretory cells, rough endoplasmic reticulum cisternae with several 185 

mitochondria were observed. Nuclei were also basally located and exhibited a more or less 186 

prominent central nucleolus. In cells of the proximal-lateral lobes, secretory cavities contain 187 

secretory mass with finely filamentous aspect (Figure 2). Numerous short microvilli extended 188 

from the apical cell membrane into the cavities. The secretory cavities opened into a 189 

periductal space and the secretory product seemed to reach the duct lumen through irregular 190 

channels that perforate the cuticular wall of the proximal salivary duct (Figure 2). In the 191 

distal-lateral lobes, cells had secretory cavities filled with a dense secretory product with a 192 

mottled pattern (Figure 3). A large number of mitochondria, rough endoplasmic reticulum, 193 

and free ribosomes were found in the cytoplasm of the cells. The secretory masses of the 194 

distal lateral portion appeared to open directly into the duct, whose cuticle is perforated by 195 

broad channels; the dark secretory product completely filled the duct lumen. The apical cell 196 

membrane forms a very intricate network that surrounds the secretory cavities (Figure 3b).197 

Cells of the medial lobe hold large secretory cavities containing secretory masses uniformly198 

stained and highly electrondense (Figure 4). Short membrane projections protruding from the 199 

apical cell membrane into the secretory cavities were observed. The cytoplasm of the cells 200 

contained abundant cisternae of rough endoplasmic reticulum and mitochondria with large 201 

nucleoli noted (Figure 4). Figure 5 shows non-secretory cells of the proximal portion of the 202 

medial lobe. Seven to eight cells make up the circumference of the proximal portion 203 

epithelium. The apical cell membranes are united by septate desmosomes. A high number of204 

mitochondria and a large nucleus in the basal cytoplasm of each non-secretory cell were 205 

thrown into numerous deep membrane infoldings penetrating into one-fourth to one-third of 206 

the depth of the cells. A very dense and ruffled cuticular wall with no channels limited the 207 
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salivary duct, which had its lumen occupied by a very uniform and electron-dense secretory 208 

material (Figure 5a, b).209 

Following emergence, the glands of newly emerged females were poorly developed 210 

but their growth was progressive from the time of emergence. The glands accumulated 211 

secretory material rapidly and developed completely within three days post emergence. In all212 

lobes, degenerative changes including loss of stored secretion and increase of cytoplasmic 213 

vacuolation and concentric lamellar structures were observed from 16 days post emergence 214 

(Figure 2-5).215 

216 

Total amount of the salivary gland proteins during adult development217 

Total salivary gland protein contents of female An. barbirostris species A1 during adult 218 

development were determined (table 1). The protein content in a newly emerged female was 219 

0.12 ± 0.01 μg/gland pair. After day one post emergence, the total protein content increased 220 

gradually and reached the highest level on day three (1.26 ± 0.04 μg/gland pair) and remained 221 

almost constant for two weeks. The content started to gradually decrease from day 16.222 

223 

Identification of major salivary gland proteins and glycoprotein analysis224 

SDS-PAGE analysis revealed at least 11 major protein bands in the female glands. In newly 225 

emerged females, protein bands of molecular masses higher than 32 kDa were weakly 226 

visualized. Then the number of protein components gradually increased with age (Figure 6a). 227 

The different morphological regions of the female salivary glands displayed different 228 

electrophoretic protein profiles. The major protein bands with molecular masses of 65, 37, 229 

34, 20, 18, and 10 kDa appeared predominantly in the distal portions of the lateral lobes 230 

(Figure 6a, lane D), while protein bands with molecular masses of 45, 39, 35, 33, and 14 kDa 231 

were predominant in the medial lobe (Figure 6a, lane M). As the proximal portions of the 232 
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lateral lobes were very small, 50 proximal portions from 25 females were used to analyze on 233 

a SDS gel. The protein profile shows a number of minor protein bands (Figure 6a, lane P). 234 

Five major proteins were identified by nanoLCMS including 5’ nucletidase/apyrase (65 kDa), 235 

antiplatelet protein (37 kDa), D7 protein (34 kDa), D7r1 (18 kDa), and gSG6 (10 kDa) (Fig. 236 

6a). Glycoprotein analysis showed that at least five major glycoprotein bands were detected 237 

and two were identified as apyrase/5’-nucleotidase (65 kDa) and D7 protein (34 kDa) (Figure238 

6b).239 

240 

DISCUSSION241 

Our morphological studies of adult female An. barbirostris species A1 salivary glands 242 

revealed similarities with the salivary glands of Aedes, Culex and Anopheles species (Orr et 243 

al., 1961; Wright, 1969; Janzen & Wright, 1971; Barrow et al., 1975; Moreira-Ferro et al&244 

1999). As described for Anopheles mosquitoes, the salivary glands of adult female An. 245 

barbirostris species A1 were composed of three identical lobes, one short medial lobe and 246 

two longer lateral ones. However, in the salivary glands of the female Ae. aegypti, Culex 247 

quinquefasciatus and Culex tritaeniorhynchus, the cuticular canal extends throughout the full 248 

length of all the three lobes (Clements, 1992). In An. barbirostris species A1, only the lateral 249 

lobes have a cuticular canal corresponding to the study in An. stephensi and An. darlingi250 

(Wright, 1969; Moreira-Ferro et al., 1999).251 

Although, the cellular architecture was similar among the lobes, the secretory 252 

products of each particular region were different between cells of the portions. The secretory 253 

cavities of the proximal lateral lobes contained secretory mass with finely filamentous aspect, 254 

possibly due to coagulation of a dispersed material (probably protein and carbohydrate 255 

complexes). The secretory products in the distal lateral and medial lobes were uniformly 256 

dense and extremely dark when stained with uranyl/lead, suggesting a high hydration state 257 



 12

and high protein content. A similar pattern of secretory materials in the salivary glands of An. 258 

stephensi and An. darlingi has been reported, respectively (Wright, 1969; Moreira-Ferro et 259 

al., 1999). It was established that the distal lateral and medial lobes are female specific, while 260 

the proximal lateral lobes produce enzymes involved in sugar feeding and are 261 

morphologically and functionally similar to adult male glands (Stark & James, 1996). Short 262 

microvilli extended from the apical cell membrane in the three lobes into the secretory 263 

cavities might be related to surface enlargement as described for Cx. quinquefasciatus, Ae. 264 

aegypti, Ae. albopictus, and An. darlingi (Rossignol et al., 1984; Marinotti & James, 1990; 265 

Marinotti et al., 1996; Moreira-Ferro et al., 1998; Nascimento et al., 2000). Abundant 266 

cisternae of rough endoplasmic reticulum and mitochondria with large nucleoli in cytoplasm 267 

of the cells were related to protein synthesis and high-energy requirement.268 

In addition, non-secretory cells with numerous mitochondria enclosed by cell 269 

membrane infoldings observed in the proximal portion of the medial lobe of An. barbirostris 270 

species A1 is consistent with a previous work by Moreira-Ferro et al. (1999) on the female 271 

salivary glands of An. darlingi. In An. stephensi, Ae. aegypti, and Cx. quinquefasciatus272 

salivary glands, a region without acini in the proximal-medial lobe has been reported with its 273 

proposed role in water and ion transport (Wright, 1969; Janzen & Wright, 1971; Nascimento 274 

et al., 2000).275 

Following emergence, development of the glands of newly emerged An. barbirostris 276 

species A1 females was progressive. The glands accumulated secretory material rapidly and 277 

developed completely within three days which is consistent with previous studies on salivary 278 

gland proteins in Ae. aegypti, An. cracens, and Cx. quinquefasciatus (Beckett, 1990;279 

Nascimento et al., 2000; Jariyapan et al., 2007). Degenerative changes including loss of 280 

stored secretion and increase of cytoplasmic vacuolation and concentric lamellar structures 281 

were observed from 16 days post emergence that correlate with total amount of the salivary 282 
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gland proteins determined during adult development. This result suggests that the cytological 283 

changes in the salivary glands are a natural phenomenon due to aging as reported in Ae. 284 

aegypti and Ae. togoi (Beckett, 1990). However, study on details of morphological and 285 

cytopathological changes of long-term malarial infected salivary glands of An. barbirostris 286 

species A1 using TEM would improve our understanding on the mosquito cellular respond to 287 

malarial infection as they relate to pathogen transmission as a study in Cx. quinquefasciatus288 

infected with West Nile virus (Girard et al., 2005).289 

In most of mosquito species, on the first day post emergence, adult Anopheles spp.290 

females need to feed on sugar to meet the energy demands of basal metabolism and flight. 291 

After the third day of adult life, they must feed on human or animal blood as they require 292 

nutrients in the blood to stimulate growth of ovaries and encourage creation of eggs 293 

(Clements, 1992). The rate of protein accumulation in the salivary glands is highest on day 294 

two of adult development, reaching a peak in week two and then beginning to decline at week 295 

three (Racioppi et al., 1987). For female An. barbirostris species A1, the protein 296 

accumulation in the salivary glands is highest on day three post emergence and then begins to 297 

decline at week two indicating that the salivary glands of this mosquito species became 298 

mature on the third day of adult life. Jariyapan et al. (2012) have demonstrated that proteins 299 

involved in blood feeding in the salivary glands of female An. barbirostris species A2 started 300 

to accumulate from zero hours after emergence and gradually increased and became 301 

predominant within two days.302 

SDS-PAGE analyses of several Anopheles mosquito salivary glands have 303 

demonstrated that approximately 12-15 major and several minor proteins are detected in An. 304 

stephensi (Suwan et al., 2002), An. carcens (formerly An. dirus B) (Jariyapan et al., 2007), 305 

Anopheles albimanus (Cazares-Raga et al., 2007), An. barbirostris species A2 (Jariyapan et 306 

al., 2012), and An. campestris-like (Sor-suwan et al., 2013). For An. barbirostris species A1,307 
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we used SDS-PAGE followed by Nano-LCMS to identify the major proteins in this study. 308 

Results show that at least 11 major proteins were found in the female salivary glands and 309 

each morphological region of the female glands contained different major proteins. Our 310 

results confirm accumulation of proteins involved in blood feeding, i.e., putative 5’-311 

nucleotidase/apyrase, anti-platelet protein, long form D7 salivary protein, D7-related one 312 

protein, and gSG6, in the distal-lateral lobes and/or medial lobes of the female glands. 313 

Specific proteins produced in different parts of the salivary glands of female An. barbirostris314 

species A1 are consistent with previous studies on salivary gland profiles of An. stephensi,315 

Ae. togoi, Ar. subalbatus and An. cracens (Suwan et al., 2002; Jariyapan & Harnnoi, 2002; 316 

Siriyasatien et al., 2005; Jariyapan et al., 2007). Moreover, at least five glycoproteins were 317 

detected in the female salivary glands of An. barbirostris species A1, however, only two were 318 

identified including apyrase/5’-nucleotidase and D7.319 

Secretory proteins that pass through the Golgi apparatus are often glycosylated or 320 

modified by phosphorylation. Glycoproteins contain three major types of oligosaccharides: 321 

N-linked, O-linked, and glycosylphosphatidylinositol (GPI) lipid anchors and are involved in 322 

a wide range of biological functions such as receptor binding, cell signaling, immune 323 

recognition, inflammation, and pathogenicity. In insects, for examples, mucins, which are 324 

found in the sialotranscriptomes of Anopheles funestus (Calvo et al., 2007) and Glossina325 

morsitans morsitans (Alves-Silva et al., 2010), contain many short O-linked glycans. Mucins326 

increase the viscosity of the fluids and are postulated to help maintain the insect mouthparts 327 

(Alves-Silva et al., 2010). For apyrase/5’-nucleotidases, most 5’ nucleotidases are typically 328 

extracellular proteins bound to the membrane by GPI anchors attached to their 329 

carboxyterminal domain. In some insects including the Ae. aegypti, Ae. albopictus, Culex 330 

pipiens quinquefasciatus, L. longipalpis, and G. morsitans morsitans, however, the 5’ 331 

nucleotidases lack the GPI anchor attachment domain, either through mutation or truncation, 332 
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thus inferring that these proteins are secreted (Champagne et al., 1995; Charlab et al., 1999; 333 

Ribeiro et al., 2004; Ribeiro et al., 2007; Alves-Silva et al., 2010; Dong et al., 2012). This 334 

enzyme helps the acquisition of blood meals by the degradation of adenosine diphosphate 335 

(ADP), a mediator of platelet aggregation and inflammation (Ribeiro & Francischetti, 2003) 336 

and prevents neutrophil activation (Sun et al., 2006). Long form D7 proteins contain 337 

glycosylation sites found in An. gambiae, An. stephensi, Anopheles arabiensis, An. funestus,338 

and An. darlingi mosquitoes (Francischetti et al., 2002; Suwan et al., 2002; Valenzuela et al.,339 

2002; Calvo et al., 2007; Calvo et al., 2009). D7 proteins are one of the abundant proteins in 340 

the saliva of female mosquitoes and able to bind biogenic amines and leukotrienes, in 341 

addition to various components of the coagulation cascade, thus interfering with the 342 

hemostatic and host immune responses (Calvo et al., 2006). Structure and specific biological 343 

functions of these glycoproteins in the salivary glands of female mosquitoes should be344 

studied for their involvement in pathogen transmission. In conclusions, morphology and 345 

protein profiles of female salivary glands of An. barbirostris species A1 were analyzed. The 346 

adult female salivary glands revealed similarities with the salivary glands of Aedes, Culex and 347 

Anopheles species. Following emergence, development of the glands of newly emerged 348 

females was progressive. The glands accumulated secretory material rapidly and developed 349 

completely within three days. Degenerative changes including loss of stored secretion and 350 

increase of cytoplasmic vacuolation and concentric lamellar structures were observed from 351 

day 16 post emergence that correlated with total amount of the salivary gland proteins 352 

determined during adult development. SDS-PAGE, nanoLC-MS, and glycoprotein analysis 353 

revealed at least eleven major protein bands, of which each morphological region contained 354 

different major proteins and two were glycoproteins including apyrase/5’-nucleotidase and 355 

D7. From day one post emergence, similar major protein profiles of females were detected in 356 

all ages suggesting that aging may have no effect on the major proteins. Our data indicated 357 
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that the salivary glands of An. barbirostris species A1 present different morphological 358 

aspects, probably reflecting different biochemical compositions and activities. Further 359 

biochemical and molecular studies are needed to demonstrate the real composition and 360 

function of each salivary gland lobe. Furthermore, distinct physiological aspects of the gland 361 

cells must be approached, by using insects with different feeding status. These results are 362 

foundational for further studies on details of morphological and cytopathological changes of 363 

long-term malarial infected salivary glands and roles of the saliva proteins in disease 364 

transmission and hematophagy.365 
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Figure legends530 

531 

532 

533 

Figure 1. Representative adult female salivary glands of the mosquito, An. barbirostris534 

species A1, 7 days post emergence. PL: proximal portion of the lateral lobe; DL: distal 535 

portion of the lateral lobe; ML: medial lobe; PML: proximal portion of medial lobe (arrow);536 

SC: salivary canal (arrowhead)537 

538 
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539 

540 

Figure 2. Electron micrograph of proximal-lateral lobes of adult female glands. (a) TEM 541 

micrograph of a proximal-lateral lobe of an adult female gland of a newly emerged female.542 

The epithelial cells contain rough endoplasmic reticulum (R), mitochondria (arrows) and 543 

nucleus (N) with masses of condensed chromatin. Short microvilli (circles) protrude into a 544 

secretory cavity (Sc). The secretory cavity is filled with finely granular secretion. A thin basal 545 
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laminar (BL) encompasses the cell periphery. Arrowheads indicate septate desmosomes 546 

which unite the lateral cell membranes of the epithelial cells. (b) TEM micrograph showing 547 

the duct and periductal space (Ps) of the proximal-later portion. A filamentous meshwork 548 

surrounding the granular material similar to the secretion product filled the periductal space. 549 

(c, d) TEM micrographs of the proximal-lateral lobes of mosquitoes aged 16 and 21 day post 550 

emergence, respectively, showing degenerative areas (DA) with cytoplasmic vacuoles and 551 

concentric lamellar structures (white arrows)552 

553 

554 
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555 

Figure 3. Electron micrograph of distal-lateral lobes of adult female glands. (a) TEM 556 

micrograph of a newly emerged female. The epithelial cells contain rough endoplasmic 557 

reticulum (R), mitochondria (arrows) and nucleus (N). A nucleoli with large condensed 558 

chromatin masses was noted. Secretory cavities (Sc) were filled with coarsely granulated 559 

material. The secretory material has a mottled pattern. A thin basal laminar (BL)560 

encompasses the cell periphery. Arrowheads indicate septate desmosomes of the epithelial 561 

cells. (b) TEM micrograph showing a salivary duct and periductal space (Ps) of the distal-562 

later portion. The duct surrounds with at least seven epithelial cells. Each cell has a large 563 

secretory cavity. A filamentous meshwork and granular material similar to the secretion 564 

product fills the periductal space. (c) TEM micrographs of an epithelial cell from a mosquito 565 

aged seven days post emergence showing a nucleus (N) with condensed chromatin masses, 566 

secretory cavities (Sc) filled with coarsely granulated material, and a thin basal laminar (BL).567 

(d) Epithelial cells from a mosquito aged 16 days post emergence showing a nucleus (N) with 568 

large condensed chromatin masses, secretory cavities (Sc), and a thin basal laminar (BL). (e, 569 

f) Shrinking epithelial cells with loss of stored secretion and degenerative areas (DA) with 570 

vacuoles and concentric lamellar structures (white arrows) were observed in from the 571 

mosquitoes aged 21 days post emergence572 

573 
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574 

575 

Figure 4. Electron micrograph of cells in the medial lobe of adult female glands. (a) TEM 576 

micrograph of epithelial cells from a mosquito aged three day post emergence. The epithelial 577 

cells contain nucleus (N) and secretory cavities (Sc) filled with dark homogeneous material. 578 

A thin basal laminar (BL) encompasses the cell periphery. (b) TEM micrograph of cells from 579 

a mosquito aged seven day post emergence showing a nucleus (N) with condensed chromatin 580 

masses, rough endoplasmic reticulum (R), secretory cavities (Sc) and a thin basal laminar 581 

(BL). (c) Epithelial cells from a mosquito aged 16 days post emergence showing nucleus (N) 582 

with large condensed chromatin masses, secretory cavities (Sc), and a thin basal laminar 583 

(BL). Degenerative areas (DA) is noted. (d) Shrinking epithelial cells with loss of stored 584 

secretion and degenerative areas (DA) with vacuoles and concentric lamellar structures 585 

(white arrows) were observed in cells from the mosquitoes aged 21 days post emergence586 
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587 

588 

589 

Figure 5. Electron micrograph of the proximal portion of the medial lobe. (a) TEM 590 

micrograph showing the salivary duct (SD) with a ruffled wall. Cells surrounding the duct 591 

display numerous and deep infoldings of membrane extended from the basal region to the 592

periductal space. The infoldings contain a high number of mitochondria (arrows) and almost 593 

no cytoplasm. Arrowheads indicate septate desmosomes. (b) Higher magnification of boxed594 

region in (a) displaying a part of the salivary duct (SD) and infolded apical cell membranes. 595 

(c) A part of a large nucleus (N) and the presence of numerous tubular mitochondria (arrows) 596 

associated with basal membrane invaginations were observed. (d) At 21 days post emergence, 597

degradation of mitochondria (arrows) and vesicles were observed. Basal laminar (BL)598 

599 
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600 

601 

Figure 6. Electrophoretic protein profiles of salivary glands of female An. barbirostris species 602 

A1 mosquitoes. (a) A pair of female salivary glands was dissected from a mosquito kept on a 603 

sugar diet with ages varying from 0 to 21 days post emergence. Lane P: fifty proximal 604 

portions of the lateral lobes; lane D: two distal portions of the lateral lobes; lane M: two 605 

medial lobes. Proteins were analyzed by SDS-PAGE in a 15% polyacrylamide gel and CBB 606 

stained. Molecular mass markers are indicated on the left in kDa. Numbers at the top indicate 607 

age in days post emergence. Arrows indicate major salivary gland proteins of female 608 

mosquitoes. Long arrows indicate proteins identified by nanoLC-MS. (b) representative of 609 

SDS polyacrylamide gels stained with Pro-Q Emerald 300 glycoprotein stain. Arrowheads 610 

indicate salivary gland glycoproteins of female mosquitoes611 

612 
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Table 1. Total salivary gland content in female An. barbirostris species A1 during adult613 

development614 

Day (s) post emergence

0 1 2 3 5 8 16 21 25

Protein 
content 
(μg/gland 
pair)1

0.12 ± 
0.01

0.57 ± 
0.02

0.73 ± 
0.03

1.26 ± 
0.04

1.22 ± 
0.03

1.20 ± 
0.05

0.81 ± 
0.02

0.55 ± 
0.02

0.46 ± 
0.05

1Mean±SD, Number of samples = 30615 

616 
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Abstract 
 
Background: Pyrethroid insecticides, especially permethrin and deltamethrin, 

have been used extensively worldwide for mosquito control. However, 

insecticide resistance can spread through a population very rapidly under 

strong selection pressure from insecticide use. The upregulation of aldehyde 

dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In 

Aedes aegypti, the increase in ALDH activity against the hydrolytic product of 

pyrethroid has been observed in DDT/permethrin-resistant strains. The 

objective of this study was to identify the role of individual ALDHs involved in 

pyrethroid metabolism.   

 

Methodology/Principal Findings: Three ALDHs were identified; two of 

these, ALDH9948 and ALDH14084, were upregulated in terms of both mRNA 

and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. 

Recombinant ALDH9948 and ALDH14084 exhibited oxidase activities to 

catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde 

(PBald), to phenoxybenzoic acid (PBacid).   

 

Conclusions/Significance: ALDHs have been identified in association with 

permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs 

confirmed the role of this protein in pyrethroid metabolism. Understanding the 

biochemical and molecular mechanisms of pyrethroid resistance provides 

information for improving vector control strategies. 

 

 

 

 

 

 

 

Keywords: Aldehyde dehydrogenase, Aedes aegypti, pyrethroid, permethrin, 

metabolism insecticide resistance. 
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Introductions 
  Pyrethroids, synthetic insecticides analogous to natural pyrethrin, have been 

widely used throughout the world for the control of insects. Pyrethroids are divided 

into two groups based on their chemical structures. Type I pyrethroids, such as 

permethrin, lack an -cyano group, whereas type II pyrethroids, such as deltamethrin 

and cypermethrin, contain an -cyano group. However, the extensive use of these 

insecticides has led to insecticide resistance in insect populations [1,2,3]. Resistance 

to pyrethroids can be divided into two main mechanisms: an alteration in the target 

site of the insecticide or increased expression of metabolic detoxification enzymes. 

Pyrethroids act by targeting sodium channels, leading to neurotoxic effects [4]. 

Several point mutations in the voltage-gated sodium channel gene are associated with 

DDT and pyrethroid resistance [5,6,7,8,9].  In metabolic resistance, enhanced activity 

of enzymes in metabolic pathways in insects leads to insecticides being detoxified or 

sequestered before they reach the target site. Overexpression of detoxification 

enzymes such as cytochromes P450 (CYPs), glutathione S-transferases (GSTs) and 

carboxylesterases (CEs) have been well documented in pyrethroid resistance in 

insects [10,11,12]. 

Pyrethroids are mainly metabolised through the hydrolysis of the ester linkage 

followed by the oxidation of their component alcohol and acid moieties [13]. 

Pyrethroids have been extensively studied in humans and rats, indicating that both 

types are mainly hydrolysed by CEs to produce 3-phenoxybenzyl alcohol (PBalc) 

[14,15], whereas they are mainly oxidised by P450s, alcohol dehydrogenases (ADHs) 

and aldehyde dehydrogenases (ALDHs) [16,17]. ALDHs have been investigated as 

enzymes that are important in the oxidation of permethrin in mammals for their 

oxidation of intermediate products of pyrethroid to carboxylic acid [18]. In the 
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mosquito Anopheles gambiae, the up-regulation of ALDH after exposure to 

permethrin has been reported [19]. Enzyme-based metabolite assays also indicated 

that the catalytic activity of P450s, ADHs and ALDHs were increased in microsomal 

fractions of a DDT/permethrin-resistant strain (PMD-R) of Aedes aegypti from 

Thailand [20]. In our preliminary study using a proteomic approach, crude 

homogenates of 4th instar larvae of Aedes mosquitoes were partially purified using 

glutathione agarose columns. Bound fractions were collected, concentrated and 

separated by 2-dimensional gel electrophoresis. The result indicated that a 

detoxification enzyme, ALDH (AAEL014080 in VectorBase), was upregulated in the 

PMD-R strain relative to the laboratory susceptible strain (unpublished data). 

However, the ability of individual ALDHs isoforms to metabolise permethrin in 

mosquito has not yet been investigated.  

 The present study aimed to identify the ALDH genes responsible for 

permethrin resistance in Ae. aegypti. The individual ALDHs that are involved in 

permethrin resistance were characterised, and their expression patterns were analysed. 

Recombinant proteins were produced, and the in vitro metabolism of permethrin and 

its hydrolysis products were determined.  

 

Materials and Methods 
Materials 

Cis/Trans-permethrin was purchased from Chem Service (West Chester, PA). 

Permethrin metabolites, 3-phenoxybenzyl alcohol (PBalc, 98% purity), 3-

phenoxybenzylaldehyde (PBald, 98% purity) and 3-phenoxybenzoic acid (PBacid, 

98% purity) including β-Nicotinamide adenine dinucleotide (NAD+) were purchased 

from Sigma (St. Louis, MO). 
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Mosquito strains 
 The PMD and PMD-R strains originated from Chiang Mai Province, Thailand 

[21]. The PMD strain was resistant to DDT, whereas the PMD-R strain was resistant 

to both DDT and permethrin. The New Orleans strain was an insecticide-susceptible 

laboratory strain of Ae. aegypti. 

 
Database search and sequence alignment   

A preliminary study using 2-dimensional gel electrophoresis demonstrated 

that expression of ALDH (AAEL014080) was increased in the PMD-R strain relative 

to the NO and PMD strains at the larval stage (unpublished data). The protein 

sequence of a known ALDH (AAEL014080) was used as a query for a BLAST 

search of the Aedes aegypti sequences in VectorBase. Deduced amino acid sequences 

of ALDHs were aligned using ClustalW [22].  

 

Identification of ALDH genes  
  The oligonucleotide primers were designed based on the sequences of ALDH 

in VectorBase (Table S1). The full-length cDNAs of ALDH genes from Ae. aegypti 

were amplified using Taq DNA polymerase (Qiagen) as described by the 

manufacturer’s protocol. PCR parameters consisted of 35 cycles of 30 s at 95 °C, 30 s 

at 55 °C, and 1.5 min at 72 °C. PCR products were cloned into the pGEM-T easy 

Vector (Promega) and then transformed into JM109 competent Escherichia coli cells. 

The plasmid DNA was submitted to 1st BASE Laboratories (Malaysia) for sequencing 

to verify the integrity of genes. 

 

Quantitative PCR analysis 
Total RNA was extracted from 3 biological replicate sets (10 mosquitoes per 

replicate) of 4th instar larvae, pupae, and one-day-old adult males or females from 



6 

 
 

 

each of the three strains using the TRIzol plus RNA Purification System 

(Invitrogen). Complementary DNA was synthesised using SuperScript III reverse 

transcriptase (Gibco) as described in the manufacturer’s protocol. Quantitative PCR 

was performed as previously described, using QuantiFast SYBR Kit’s protocol 

(Qiagen) [23].The primers used are shown in Table S2.The PCR parameters 

consisted of 2 steps of 95ºC for 5 min and 35 cycles of 95ºC for 10 s, 60ºC for 35 s, 

followed by a dissociation step.  

 

Construction of plasmids and expression of ALDHs 
Total RNA was extracted from whole mosquitoes of the PMD-R strain using 

Trizol reagent (Sigma). Complementary DNA was synthesised using SuperScript III 

reverse transcriptase (Gibco) as described in the manufacturer’s protocol. PCR 

products generated with ProofStart DNA polymerase (Qiagen) using gene specific 

primers (Table S1) were cloned into the pET 100-D/TOPO vector using the 

Champion pET directional TOPO Expression kit according to the manufacturer’s 

instruction (Invitrogen). The construct was verified by DNA sequencing. The 

plasmids containing the ALDH genes were transformed into E. coli BL21 Star (DE3). 

The recombinant proteins were produced after induction with isopropyl β−D-

thiogalactoside at 37ºC or room temperature for 4 h.     

 

Protein purification 
The pET 100-D/TOPO vector encodes an N-terminal polyhistidine (6xHis) 

fused to the recombinant protein. Protein purification was performed using HisTrap 

Ni affinity column (GE Healthcare) as described previously [23]. The protein purity 

was verified by 12.5% polyacrylamide gel electrophoresis and Coomassie staining.  
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The protein concentration was determined by the Bradford method using the Bio-Rad 

protein-assay dye reagent and bovine serum albumin as a standard [24].  

 

Western Blot analysis 
  Western blot analysis was performed as previously described [21]. The 

membrane was probed with 1:50,000 and 1:100,000 dilutions of polyclonal antibodies 

against ALDH9948 and ALDH14080, respectively. The bound antiserum was 

detected by incubation with a 1:50,000 dilution of Peroxidase-labelled Anti-Rabbit 

Antiserum followed by visualisation using ECL Advanced Blotting Detection Kit 

(Amersham Bioscience). 

 

Enzyme activity  
ALDH activity against PBald was measured as described previously [16]. 

Briefly, the substrate mixture contained 1 mM EDTA, 0.1 mM pyrazole and 2.5 mM 

NAD(P)+ in 33 mM Phosphate buffer, pH 8.2. The enzyme was incubated with the 

substrate mixture at 37ºC, and the reaction rate was determined by the formation of 

NAD(P)H at 340 nm in 4 min. The esterase assay was conducted as described 

previously, by measuring the hydrolysis of p-nitrophenyl acetate (pNPA) to the 

products p-nitrophenol (pNP) and acetate [25]. Kinetic studies were performed by 

varying the concentration of PBald in the presence of NAD+.  The results were 

analysed by non-linear regression analysis using GraphPad Prism 4 software.     

 

PBald oxidation by recombinant ALDHs 
ALDH activity was measured by the oxidation of PBald to PBacid, as 

detected by HPLC. The assay was modified from the method described previously 

[17]. Briefly, 20 μg of recombinant ALDHs were incubated with 0.4 mM PBald in 

the presence of 3 mM NAD+ in 0.1 M Tris-Cl buffer, pH 7.4 at 37°C for 10 min. 
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Pyrene was then added as an internal control. The reaction mixture was extracted 

with 1.5 ml of chloroform. This procedure was repeated in triplicate. The chloroform 

extracts were then pooled, air-dried and analysed with HPLC. 

HPLC was performed with a Shimadzu LC 20-A Series (Shimadzu) using a 

Nova-Pak C18 column (3.9 x 150 mm; Waters). The extract was resuspended in 200 

l of acetonitrile. The mixture (10 μl) was injected into the column at a flow rate of 1 

ml/min. The gradient elution was performed at 35ºC, and the detection wavelength 

was 230 nm. Peaks were integrated into peak area with the LC Solution (Shimadzu). 

ALDH activity was calculated as the formation of PBacid/min/mg protein. The 

concentration of PBacid was determined by comparison with a known concentration 

of PBacid.  

 

Results  
Identification of Ae. aegypti ALDHs 

The DNA sequence of ALDH (AAEL014080) in Ae. aegypti was retrieved 

from VectorBase (http://www.vectorbase.org), and it is located in supercontig 

1.1002. Close paralogues of ALDH (AAEL014080), ALDH (AAEL009948) and 

ALDH (AAEL009029) were included in the experiment to expand for genes of 

interest that were found on supercontigs 1.440 and 1.363, respectively. The deduced 

amino acid sequences of these three ALDHs are shown in Figure 1.    

 

Quantitative PCR analysis 
To determine whether the ALDH genes were overexpressed at the 

transcriptional level, real-time PCR was performed in three Ae. aegypti strains, the 

NO susceptible strain and the PMD and PMD-R strains, at three developmental 

stages. ALDH14080 was significantly upregulated in the larvae and females of the 
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PMD-R strain relative to the NO strain. ALDH9948 and ALDH9029 were also 

overexpressed in almost all developmental stages except in the adult male for 

ALDH9948 (Figure 2). ALDH9948 mRNA levels were significantly upregulated in all 

life stages except the adult male (p< 0.001 in larva and adult female, and p< 0.05 in 

pupa) when compared to the PMD strain. ALDH14080 expression was significantly 

higher in the larval stage of PMD-R only relative to PMD (Table S3). In contrast, 

there is no evidence of upregulation of ALDH9029 mRNA in the PMD-R strain when 

compared to the PMD strain in any life stage (Table S3). These results show that 

upregulation of ALDH9948 and ALDH14080 may confer resistance to permethrin. 

 

Western Blot analysis 
To confirm the expression of ALDHs at the protein level, western blots were 

performed using specific polyclonal antibodies against ALDH9948 and ALDH14080. 

To validate the specificity of these polyclonal antibodies, immuno-cross-reactivity 

between ALDH9948 and ALDH14080 was investigated. The polyclonal antibody for 

ALDH9948 exhibited low-level cross-reactivity with ALDH14080 (Figure 3B), 

whereas the anti-ALDH14080 antibody was observed to have high specificity. Protein 

expression profiles of ALDH were investigated in crude homogenates of four 

developmental stages of three Ae. aegypti strains. Expression levels of ALDH9948 

and ALDH14080 were increased in the PMD-R strain in almost all developmental 

stages (pupae and adult males and females), except for larvae when compared to the 

NO and PMD strains (Figure 3A). In all three strains, no visible bands of ALDHs 

were detected in the larval stage, whereas strong bands were presented in pupae and 

adult males and females. Meanwhile, crude homogenates from the larval stage gave 

no smearing bands when stained with Coomassie blue, indicating no protein 

degradation.  The expression of rat ALDH has been reported to increase with age 
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[26]. This might indicate that early stages express ALDH proteins at low levels that 

could not be detected in the small number of larvae used in this study. 

 

Recombinant protein expression 
To determine whether the Ae. aegypti ALDHs contribute to permethrin 

metabolism, recombinant ALDHs were produced, and the ability of these proteins to 

metabolise permethrin was determined. The full-length sequences of two ALDHs, 

ALDH9948 and ALDH14080, were amplified by PCR using cDNA templates from 

the PMD-R strain and subcloned into the E. coli expression vector pET 100-D/TOPO. 

Expression of His6-tagged ALDHs in E. coli BL21 Star (DE3) yielded soluble 

recombinant proteins at the 37ºC expression temperature. The purity of His6-tagged 

recombinant ALDHs was verified in 12.5% SDS-PAGE and corresponded to the 

predicted size of approximately 65 kDa (data not shown).  

 

Biochemical characterisation of ALDHs 

Both His6-tagged recombinant ALDHs possess ALDH activity to catalyse the 

oxidation of intermediate aldehyde of permethrin, PBald. The ALDH activity was 

measured by spectrophotometry, mediated by the formation of NAD(P)H as products 

of the reaction.  The oxidation reactions of recombinant ALDH9948 and ALDH14080 

required either NAD+ or NADP+ as a cofactor; however, these enzymes prefer NAD+ 

to NADP+ (Table 1). It has been noted that most ALDHs prefer to use NAD+ over 

NADP+ as a cofactor [27]. Generally, ALDHs exhibit esterase activity in vitro [28]. In 

this study, recombinant ALDHs also have esterase activities that catalyse the 

hydrolysis of p-nitrophenyl acetate to produce p-nitrophenol and acetate (Table 1).  

The highest esterase activity belongs to recombinant ALDH14080, with a specific 

activity of 13.11 ± 0.98 mole/min/mg proteins. 
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Kinetic parameters of purified ALDHs were determined using PBald and 

NAD+ as substrate and cofactor, respectively. Michaelis-Menten constants (Km) for 

ALDH9948 and ALDH14080 were 153.8 ± 30.0 and 34.4 ± 6.8 nM, respectively, in 

respect to PBald (Table 2).  The (Vmax/Km PBald) value of ALDH14080 was higher than 

that of ALDH9948, indicating the catalytic efficiency of this enzyme against PBald.  

To determine whether recombinant ALDHs readily oxidised PBald, HPLC 

was performed to identify the product of PBacid. The metabolite profile of trans/cis-

permethrin is shown in Figure S1. Pyrene was spiked as an internal control, given the 

extraction recovery range of 81-97%.  The HPLC results indicated that PBald was 

oxidised by recombinant ALDH9948 and ALDH14080 with specificities of 1192 ± 55 

and 1119 ± 14 nmole PBacid formed/min/mg protein, respectively (Table 3). Because 

recombinant ALDHs exhibit esterase activity, the ability of these enzymes to catalyse 

the hydrolysis of the parent permethrin was investigated. The incubation of 

recombinant ALDHs with trans/cis permethrin did not produce PBalc, suggesting that 

ALDHs are not associated with permethrin hydrolysis (data not shown). The 

incubation of denatured recombinant ALDHs with PBald in the presence of NAD+ did 

not produce PBacid, indicating that the oxidation of PBald was mediated by 

recombinant ALDHs. 

 
Discussion 

Overexpression of detoxification genes has been well documented in 

association with insecticide resistance of many insect species. P450s, GSTs and CEs 

are primarily implicated in the detoxification of insecticides in insects. It has been 

reported that P450s contribute to resistance in all classes of insecticides [29]. The 

upregulation of several P450s, particularly those belonging to the CYP6Z, CYP6M or 
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CYP9J subfamilies, has been reported to be involved in resistance to pyrethroids in 

mosquitoes [30,31,32]. Some species, including Ae. aegypti CYP9J32, An. gambiae 

CYP6M2 and An. gambiae CYP6Z8, have the ability to metabolise pyrethroids 

[32,33,34]. GSTs, especially GSTE2, GSTE4 and GSTE7, were also observed to be 

overexpressed in resistant populations [30,31,35]. Recombinant GSTE2-2 showed 

DDT dehydrochlorinase activity to metabolise DDT, but the recombinant GSTE7-7 

did not appear to metabolise DDT. Therefore, the role of GSTE7 in insecticide 

resistance remains unclear [21]. Many genes encoding CE enzymes were identified to 

be upregulated in organophosphate-, carbamate- and pyrethroid-resistant insects [36].  

However, other genes that are responsible for insecticide resistance cannot be 

excluded. To date, microarray technology has been utilised to expand the number of 

detoxification genes and has identified new relevant genes that might be involved in 

metabolic resistance [19,30,31,37,38,39]. Aside from P450s, GSTs and CEs, 

microarray data also identified secondary detoxification genes that may confer 

insecticide resistance. For example, aldo-ketoreductase, an NAD(P)(H) 

oxidoreductases that catalyse the reduction of  aldehydes to alcohols, was over-

transcribed in temephos-selected strain of Ae. aegypti[40]. UDP-

glucuronosyltransferases (UGTs), phase II detoxification enzymes involved in the 

conjugation of xenobiotics, were also identified as upregulated after permethrin 

exposure and in response to carbamate, respectively. ALDHs were also found to be 

upregulated in insecticide resistance in insects [19,37]. However, the functions of 

these enzymes in insecticide detoxification require further investigation. In mammals, 

the oxidation of pyrethroids was catalysed by ALDH [16]. A recent study in 

insecticide metabolism revealed the important role of ALDH in the detoxification of 

pyrethroid in mosquito [20]. Aldehyde dehydrogenases are a family of enzymes that 
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oxidise a broad range of endogenous, xenobiotic and lipid peroxidation products that 

contain the highly reactive aldehyde to their corresponding carboxylic acid [25]. In 

mammals, ALDHs are involved in both the detoxification of aldehydes and the 

biosynthesis of pheromones [27]. However, few studies of ALDHs have been 

reported in insects. In Drosophila, ALDHs play a vital role in ethanol metabolism by 

mediating the oxidation of acetaldehyde to acetate, which is involved in ethanol 

resistance [28,29,31]. 

In this study, transcript levels for three of the Ae. aegypti ALDH genes were 

quantified. ALDH9948 was significantly overexpressed in the insecticide-resistant 

PMD-R strain in almost all developmental stages, except adult males, when compared 

to the susceptible PMD line. In contrast, ALDH14080 was upregulated relative to the 

PMD strain only in the larval stage. Quantitative PCR results revealed that insecticide 

selection increased the expression of these ALDHs, although the overexpression was 

not observed in all life stages. The altered expression of ALDH9948 and ALDH14080 

was confirmed at the protein level, indicating that the increase in these proteins is 

strongly associated with resistance to permethrin. Inconsistencies between the mRNA 

and protein levels of the same gene may be caused by differences in post-translational 

regulation between the different developmental stages. Although high levels of 

ALDH mRNA were found in the larval stage, there was no protein detected by 

western blot, suggesting that the protein may be expressed at a level below the 

detection limit in early stages. However, low-abundance ALDH was detected by 2D-

gel electrophoresis from a large sample of larvae used in combination with the sub-

proteome approach for the enrichment of low-abundance proteins. The recombinant 

ALDH isoforms exhibited oxidase activity to catalyse the oxidation of aldehyde 

moiety of pyrethroids, but subcellular localisation of individual ALDHs was not 
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investigated further in this study. These experiments support a role for ALDH9948 

and ALDH14080 in conferring resistance to permethrin in the PMD-R strain of Ae. 

aegypti.   

Collectively, in Aedes aegypti, it has been reported that parental permethrin 

can be hydrolysed in vitro. Our previous study demonstrated that the formation of 

PBacid was decreased in the presence of an esterase inhibitor, BNPP, suggesting the 

function of esterases in permethrin metabolism [20]. The importance of particular CEs 

in pyrethroid detoxification has not yet been studied. However, it has been proposed 

that non-specific esterases may be involved in pyrethroid hydrolysis in insects [41]. A 

recent study demonstrated that both PBalc and PBald were oxidised by Aedes aegypti 

CYP6Z8 [32]. In addition, our finding also clearly revealed that recombinant 

ALDH9948 and ALDH14080 have the ability to catalyse the oxidation of PBald. The 

results of this study will improve our ability to detect and hence manage insecticide 

resistance.  

In conclusion, we identified two ALDHs that are upregulated in permethrin-

resistant Ae. aegypti mosquitoes in Thailand. Functional characterisation of 

recombinant ALDHs clearly demonstrates that these enzymes are capable of 

metabolising PBald. This report indicates the importance of Ae. aegypti ALDHs in 

permethrin degradation.   
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Tables 
Table 1. Substrate specificity of Ae. aegypti recombinant ALDH isoforms. 
 
 Substrate/cofactor ALDH 9948 ALDH 14080 
Esterase activity 
( mole/min/mg) 

pNPA 13.11 ± 0.98 0.14 ± 0.02 

ALDH activity PBald/NAD+ 483 ± 9 254 ± 24 
(nmole/min/mg) PBald/NADP+ 58 ± 4 19 ± 2 
ALDH activity was performed in the presence 4 mM PBald and 2.5 mM NAD(P)+. The 
oxidation of PBald was monitored by the formation of NAD(P)H.  

 

Table 2. Kinetic parameter of Ae. aegypti recombinant ALDH isoforms. 
 
Enzyme Vmax (nmole 

NADH/min/mg) 
PBald   NAD+  

 Km (nM) Vmax/ Km  Km (nM) Vmax/ Km 
       
ALDH 9948 627.4 ± 34.0 153.8 ± 30.8 4.1  139.1 ± 27.9 3.2 
ALDH 14080 208.2 ± 9.8 34.4 ± 6.8 6.1  193.8 ± 34.5 1.3 

Kinetic studies were performed by varying the concentration of PBald and cofactor 
NAD+ at fixed saturated concentrations of NAD+ and PBald, respectively. The 
oxidation of PBald to PBacid was monitored by the formation of NADH in the reaction 
at 37ºC for 4 min. Three independent assays were performed. The results are shown 
as the mean± SE. 
 
 
Table 3. Specific activity of Ae.aegypti recombinant ALDH isoforms to oxidise PBald. 
 
Enzyme Specific activity  

(nmole PBacid formed/min/mg protein) 
ALDH 9948 1192 ± 55 
  
ALDH 14080 1119 ± 14 
Recombinant ALDH (5 g) was incubated with 2 mM PBald in the presence of 3 mM 
NAD+ in 0.1 M Tris-Cl buffer, pH 7.4 at 37ºC for 10 min. PBacid formation was 
determined by HPLC as described. Three independent assays were performed. The 
results are shown as the mean± SE. 
 

 



19 

 
 

 

FIGURE LEGENDS 

Figure 1. Deduced amino acid sequences of Ae. aegypti ALDH 9948 and 

ALDH 140809. Sequences shown are from the PMD-R strain. The amino acid 

sequences were aligned using ClustalW. Letters in bold indicate 100% 

conservation between the 3 sequences.  Dashes are used to denote gaps 

introduced for maximum alignment.  

 

Figure 2. Transcription profiles of ALDH9029, ALDH9948 and 

ALDH140809 in three strains of Ae. aegypti. Complementary DNA from 

three different biological replicates (ten mosquitoes each) was used as 

templates. Four life-stages were analysed: larvae (L), pupae (P), adult male 

(M), and adult female (F). Each sample was analysed in duplicate in each 

experiment, and the results were averaged from three independent 

experiments. The mRNA copy numbers were determined by comparison with 

known concentrations of standard plasmids and normalised against the copy 

number of the ribosomal S7 transcript. Error bars indicate standard error of 

the mean. Statistically significant differences were evaluated with ANOVA (p< 

0.001 indicated by **and p< 0.05 as *relative to New Orleans strain.  

 

Figure 3. Western blot analysis of ALDH9948 and ALDH14080. (A) 

Elevated protein of ALDH9948 and ALDH14080 in PMD-R strain. Fifty 

micrograms of protein from New Orleans (NO), PMD and PMD-R strains in 

four life stages (larvae, pupae, and adult males and females) including 

purified recombinant His-tagged ALDH9948 and 14080 (25 ng each) were 

resolved by SDS-PAGE. Proteins were transferred to a nitrocellulose 
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membrane and probed with anti-ALDH9948 and anti-ALDH14080. Peroxidase 

labelled anti-rabbit antibody was used as a secondary antibody. Proteins were 

visualised by enhancing the chemiluminescence using ECL Advanced Blotting 

Detection Kit (Amersham Biosciences).  (B) Determination of antibodies 

specificity by western blot. Fifty nanograms of non-fusion ALDH9948 and 

ALDH14080 (Lane1, 2 and 3, respectively) were resolved in SDS-PAGE. 

Western blotting was performed as described. 


