บทคัดย่อ

โรคนิ่วในไตเป็นโรคที่พบบ่อยและอยู่คู่กับมวลมนุษยชาติมายาวนาน โดยมีหลักฐานพบก้อนนิ่วในไตของมัมมี่ อายุราว 7,000 ปี และปัจจุบันยังคงเป็นปัญหาสาธารณสุขที่สำคัญทั่วโลก แสดงให้เห็นว่าเรายังไม่สามารถป้องกันโรคนี้ ได้ ทั้งนี้เนื่องมาจากการขาดความรู้ความเข้าใจถึงกลไกการเกิดโรคที่ดี ดังนั้นการศึกษาถึงกลไกการเกิดก้อนนิ่วในไต ในระดับโมเลกุลโดยละเอียดอย่างถูกต้องและแม่นยำ รวมทั้งการหาเป้าในการรักษาและป้องกันโรคใหม่ จึงมีความ จำเป็นอย่างยิ่งในการนำมาสู่การรักษาและการป้องกันโรคนิ่วในไตให้มีประสิทธิภาพมากยิ่งขึ้น โดยโปรตีโอมิกส์เป็น หนึ่งในเครื่องมือวิทยาศาสตร์ใช้สำหรับการศึกษาวิจัยทางด้านชีววิทยาทางการแพทย์ที่มีศักยภาพสูงและมีการ ประยุกต์ใช้ในการศึกษาโรคไตอย่างกว้างขวางทั่วโลกในช่วงระยะเวลาสิบปีที่ผ่านมา ดังนั้นโครงการนี้จึงได้นำเอา เทคโนโลยีทางด้านโปรตีโอมิกส์มาประยุกต์เข้ากับเทคนิคทางชีววิทยาของเซลล์ระดับโมเลกุลเพื่อศึกษากลไกการเกิด โรคนิ่วในไต โดยเฉพาะอย่างยิ่งผลของผลึกแคลเซี่ยมอ๊อกซาเลทที่เป็นองค์ประกอบส่วนใหญ่ของก้อนนิ่วต่อเซลล์ท่อไต ส่วนปลาย

<u>คำหลัก</u>

กลไกการเกิดโรค / แคลเซี่ยมอ๊อกซาเลท / โปรตีโอมิกส์ / โปรตีน / โรคนิ่วในไต

Abstract

Nephrolithiasis or kidney stone disease is an ancient and common affliction. It has been recognized for a long time with evidence of stone found in ~7,000-year-old mummies and remains a common problem worldwide, indicating ineffective prevention in the past, most likely due to incomplete or poor understanding of pathogenic mechanisms of the disease. Thus, precise pathogenic and molecular mechanisms of kidney stone formation should be further elucidated. Also, identification of novel therapeutic targets for better therapeutic outcome and successful prevention of the occurrence and recurrence of the stone is crucially required. One of the most promising tools for current and future biomedical research is proteomics, which has been extensively and widely applied to the nephrology field during the past decade. Its capability holds a great promise also to kidney stone research. This proposed study will apply proteomics together with molecular cell biology to address pathogenic mechanisms of kidney stone disease, particularly effects of calcium oxalate (CaOx) crystals on distal renal tubular cells.

Keywords

Calcium oxalate / Kidney stone disease / Pathogenic mechanism / Proteins / Proteomics