บทคัดย่อ

โรคระบาดเป็นปัญหาสำคัญของการเลี้ยงกุ้งทั่วโลก ซึ่งมีสาเหตุหลักมาจากไวรัสและแบคทีเรีย เช่น โรคตัวแดง ดวงขาว และโรคที่เกิดจากเชื้อแบคทีเรียกลุ่มวิบริโอ งานวิจัยนี้สนใจศึกษาภูมิคุ้มกันของกุ้งที่ตอบสนองต่อเชื้อแบคทีเรีย Vibrio parahaemolyticus สายพันธุ์ที่มีการสร้างโปรตีนสารพิษ (VP_{AHPND}) ซึ่งเป็นสาเหตุของการระบาดของโรคตาย ด่วน หรือ early mortality syndrome (EMS) หรือเรียกอีกชื่อหนึ่งว่า Acute hepatopancreatic necrosis syndrome (AHPND) และการตอบสนองต่อไวรัส โดยเฉพาะไวรัสจุดขาว หรือ white spot syndrome virus (WSS) ซึ่ง เป็นสาเหตุของโรคระบาดที่รุนแรงในการเพาะเลี้ยงกุ้ง

จากงานวิจัยเราพบแนวทางสำคัญที่ทำให้กุ้งต้านโรค AHPND คือการกระตุ้นด้วยความร้อน หรือการให้กุ้งได้รับ โปรตีนฮีทช็อค (Heat shock proteins; HSPs) เพิ่มขึ้น โดยอุณหภูมิที่เหมาะสม คืออุณหภูมิสูงสุดที่ช่วยกระตุ้น แต่ไม่ทำ ให้ตาย (Non-lethal heat shock; NLHS) ซึ่งกุ้งจะสามารถต้านเชื้อ VP_{AHPND} ได้ โดยสภาวะ NLHS ที่พบ คือ สภาวะที่ให้ ความร้อนต่อเนื่อง (Chronic NLHS) โดยการย้ายกุ้งจากอุณหภูมิ 28°C ไปที่อุณหภูมิ 38°C ทันทีเป็นเวลา 5 นาทีทุกวัน เป็นเวลา 7 วัน หรือการให้กุ้งได้รับโปรตีน LvHSP70 ในปริมาณที่เหมาะสม จะทำให้กุ้งสามารถทนการติดเชื้อ VP_{AHPND} ได้ เพิ่มขึ้น โดยมีอัตราการรอดเพิ่มขึ้นจาก 20% เป็น 60-70% โดย LvHSP70 จะไปกระตุ้นยืนที่สำคัญในระบบภูมิคุ้มกัน ทำ ให้กุ้งมีความต้านทานโรคสูงขึ้น และการศึกษา Transcriptome พบว่ายืนสำคัญที่ตอบสนองต่อความเครียดจากความร้อน ในกุ้งที่ติดเชื้อ VP_{AHPND}เป็นกลุ่มยืนที่อยู่ในวิถี Toll วิถี IMD และระบบ Phenoloxidase ซึ่งเป็นวิถีการส่งสัญญาณที่สำคัญ ในระบบภูมิคุ้มกันของกุ้ง ซึ่งสอดคล้องกับงานวิจัยหลายชิ้นที่ระบุว่าสัตว์น้ำที่ถูกกระตุ้นด้วยความร้อนจะมีความ สามารถ ในการต้านทานแบคทีเรียและไวรัสเพิ่มขึ้น นอกจากนี้เราได้ศึกษาบทบาทของโปรตีนที่ตอบสนองต่อเชื้อ pattern recognition receptors (PRRs) ซึ่งทำหน้าที่จดจำองค์ประกอบของผนังเซลล์ของจุลชีพ ส่งสัญญาณผ่านวิถีการ ส่งสัญญาณ เพื่อกระตุ้นระบบภูมิคุ้มกันในการต้านเชื้อ โดยพบการตอบสนองต่อไวรัส WSSV ในกุ้งกุลาดำ ผ่าน STINGdependent cytosolic DNA sensing pathway และพบปฏิสัมพันธ์ของไวรัสต่อระบบฟินอลออกสิเดสในกุ้ง และการส่ง สัญญานใน 2 วิถีหลัก คือ วิถี Toll และวิถี IMD มีโปรตีนที่มีความสำคัญ ได้แก่ Spätzle และ Relish ตามลำดับ โดยวิถีส่ง สัญญาณทั้ง 2 เกี่ยวข้องกับควบคุมการสร้างเปปไทด์ต้านจุลชีพที่แตกต่างกัน ส่วนโปรตีนในกระบวนการ clathrinmediated endocytosis ที่มีบทบาทสำคัญเมื่อกุ้งติดเชื้อ WSSV และ ไวรัสหัวเหลือง (YHV) และยังคาดว่ากระบวนการนี้ มีความสัมพันธ์กับวิถีการส่งสัญญาณ JAK/STAT ซึ่งเป็น antiviral pathway ที่สำคัญ องค์ความรู้จากงานวิจัยนี้จะนำมา ประมวลเพื่อหาแนวทางการป้องกันและควบคุมโรคระบาดในกุ้ง ซึ่งมีความสำคัญยิ่งต่อความยั่งยืนของอุตสาหกรรมการ เลี้ยงกุ้ง

คำสำคัญ เปปไทด์ต้านจุลชีพ กุ้งต้านทานโรค โปรตีนฮีทช็อค ภาวะเครียดจากความร้อน ยีนในระบบภูมิคุ้มกัน ภูมิคุ้มกัน ของกุ้ง โรคกุ้ง วิถีส่งสัญญาณ

Abstract

Diseases which are caused mainly by virus and bacteria, are the major concern of shrimp aquaculture worldwide. In this study, we investigate the immune responses of shrimp to major pathogens, particularly to a specific strain of *Vibrio parahaemolyticus* carrying toxin producing plasmid which caused a disease called acute hepatopancreatic necrosis disease (AHPND) and to white spot syndrome virus (WSSV) which is the most severe viral disease in shrimp.

We found that either exposure of shrimp to chronic non-lethal heat shock (NLHS) (from 28°C to 38°C for 5 min every day for 7 days) or direct injection of recombinant heat shock protein 70 (rHSP70) could enhance the resistance of shrimp to VP_{AHPND}. The survival rate of shrimp was increased from 20% in the control non-heated shrimp to 60-70% in the experimental groups and this was due to the induction of shrimp immunity. Subsequently, transcriptome analysis identified a number of heat stress responsive genes followed VP AHPND infection. These genes are involved in Toll and Imd pathways and the prophenoloxidase (proPO) system which are the major immune pathways in shrimp. These results are concordant with the previous studies which reported that NLHS could enhance disease tolerance in aquatic animals. Moreover, we investigate the role of pattern recognition proteins (PRPs) which recognize pathogens and sending signal to the signal transduction pathways to activate the synthesis of several immune-related molecules. In WSSV-infected shrimp, we found DDX41 is a viral sensing PRP and that STING-dependent cytosolic DNA sensing pathway plays a crucial role in viral response. In the proPO system, we found the interaction between PmLGBP and several WSSV proteins as an important anti-melanization mechanism which occurs upon WSSV infection. Furthermore, the two signalling pathways, Toll and IMD pathways, were studied for their role in shrimp immunity. The function of Spätzle และ Relish were revealed by gene silencing which resulted in a decrease of transcription level of several antimicrobial peptides (AMPs). These suggested that the synthesis of shrimp AMPs is specifically regulated under Toll and/or IMD pathways. We also show that clathrin-mediated endocytosis is involved in yellow head virus (YHV) and WSSV infections in shrimp Penaeus monodon and it might interact with JAK/STAT pathway, the crucial antiviral pathway. The knowledge from this study will be used in establishing a new strategy for disease control which will lead to a sustainable shrimp aquaculture.

Keywords Antimicrobial peptide, Disease resistant shrimp, Heat shock protein, Heat stress, Immune-related genes, Shrimp immunity, Shrimp disease, Signal transduction pathway