Abstract

Various advanced processing strategies and technologies were applied to produce high-quality foods, food ingredients and other functional bio-based materials. In the first part, which is also the major part, of the Project, selected physical and chemical pretreatments were applied to treat and transform agricultural and food residues as well as postharvest fruits and vegetables into value-added products. Rice straw was used to prepare cellulose-based biosorbent hydrogel for heavy-metal ions adsorption. The hydrogel exhibited good performance for Cu²⁺, Pb²⁺ and Fe³⁺ ions removal and could satisfactorily be reused, thus contributing to the alleviation of environmental problems caused by discarded rice straw and water contaminated with heavy-metal ions. Alternative means to produce functional dietary fiber and nanofiber from citrus residues were next identified. Orange residues exhibit potential to be used as a starting material for dietary fiber possessing good hydration properties, oil-holding capacity, glucose dialysis retardation index, as well as alpha-amylase inhibitory activity and aflatoxin B₁ adsorption capacity if appropriate pretreatment and drying methods are employed to produce the fiber. Lime residues have noted to exhibit potential to be processed into nanofibrillated cellulose (NFC) with superior water redispersibility (i.e., reconstituted dried NFC with properties similar to its parent fiber suspension) via the use of a novel chemical-free method. NFC can also be produced from cabbage residues, which are also widely and inexpensively available, via the same chemical-free method. Such an NFC was noted to exhibit a similar behavior to that prepared by the conventional chemical pretreatment method. Besides the production of NFC, cabbage residues were also extracted for a substrate (glucoraphanin) that can later be converted into anticarcinogenic compound (sulforaphane). A novel strategy involving the use of combined ultrasound-assisted extraction and vacuum microwave-assisted extraction in combination with simple physical pretreatment (steaming) of the residues prior to extraction to maximize the recovery of glucoraphanin is proposed. Another separate strategy involving exogenous hydrolysis of the obtained substrate to maximize its conversion into sulforaphane is also proposed. Finally, a means to domestically prepare cabbage into a meal component with high sulforaphane bioaccessibility upon consumption is proposed. Through the use of a novel in vitro rat stomach digestion model, simple microwave heating of the vegetable for a short period of time (i.e., 15 s)

has noted to increase the sulforaphane content in the heated vegetable by more than 6 times compared with that in the fresh sample.

In terms of postharvest produce, tomato and okra were pretreated by lowvoltage direct current electricity to increase their contents of carotenoids and phenolics, respectively. In addition to monitoring the changes in the contents of the bioactive compounds, more detailed fundamental studies were also conducted. In the case of tomato, reference genes for quantitative real-time PCR (RT-qPCR) to reveal the molecular mechanisms of how electricity-induced stresses can enhance the secondary metabolites production have been identified. A combination of two reference genes (PP2Acs and TIP41) is recommended to be used for the normalization of the gene expression levels during RT-qPCR analysis of tomato undergoing electric treatment. In the case of okra, calcium-dependent protein kinase was quantified and found to be related to the increased phenolics content upon the treatment. Free and bound phenolics contents were measured and the results were used to confirm that the increased phenolics was indeed due to the applied electricity and not only as a result of the possibly more damaged structure of the samples. Appropriate physical and chemical pretreatments were also applied to selected plant materials to produce natural colorants. Pennyworth (or Centella asiatica L.) was the first tested candidate for the production of natural green colorant. Chemically induced molecular structure modification was noted to result in the colorant with high stability against the changes in pH and temperature. The colorant was successfully used to give color to some common food products, i.e., bread and syrup. Production of other colorants from other plant materials is underway.

This first part of the Project also investigated the use of various schemes to improve the mechanical properties of biopolymeric food packaging films from chitosan, which is derived from chitin that is in turn produced from the residues of the seafood processing industry. A novel scheme involving the combined use of inexpensive plasticizer (glycerol) and charge-modifying agent (NaCl) was applied to treat a film-forming solution prior to its casting and drying into the final films. Percent elongation could be increased to as high as 47, which is the highest value reported so far in the literature for this type of bio-based films.

The second part of the Project involved the design, development and testing of novel processing technologies, including the superheated steam roasting and superheated steam spray drying processes for oxygen-sensitive materials. Superheated steam roasting is a readily available technology but was tested here for the first time as

a means to mitigate deteriorative oxidation reactions (in particular lipid oxidation reaction) that usually occur during conventional hot-air roasting. Rice was roasted in superheated steam and found to exhibit better oxidation-related properties, e.g., peroxide value, thiobarbituric acid (TBA) value and free fatty acid profiles, which are related to a longer product shelf life, than the sample roasted in a hot-air environment. Superheated steam spray drying is, on the other hand, under development but has nevertheless shown significant potential for producing particulate food materials at a higher yield. For simplicity, in this Project, only conventional hot-air spray drying was tested as an alternative means to produce micro-size salt particles. Such particles exhibit enhanced saltiness intensity, which implies that less amount of salt can be used to yield a similar level of saltiness when compared with the use of typically larger salt particles. This should lead in turn to the ability to reduce the use of salt in some foods, especially dry snacks (e.g., potato chips, nuts, crackers). Use of superheated steam spray drying to perform a similar task will be done in the future.

High-pressure processing (HPP), which is another readily available technology, was tested as an alternative means for precooking tuna meat prior to sterilization; this study was performed in collaboration with Thai Union Public Co., Ltd. HPP has demonstrated clear potential as a replacer of a conventional steam pre-cooker; enhanced yield and improved quality are among the major benefits of HPP for tuna meat precooking. The study is also among the first to establish relationships between protein denaturation and microstructure as well as yield, moisture content, water holding capacity, color, texture, histamine content, TBA value, volatile compounds and microbial inactivation of tuna loins undergone HPP.

The third part of the Project is the development and application of computer algorithms to aid the processing of foods and biomaterials. The first developed algorithm is the one that can be used to monitor non-uniform deformation of highly shrinkable foods and biomaterials in either two or three dimensions. The algorithm is capable of distinguishing between the periods of uniform and non-uniform deformation. This is of importance as such an ability allows an operator to appropriately adjust the processing condition to minimize the undesirable non-uniform deformation. An algorithm that can be used to aid sensory evaluation of food materials has also been developed. Such an algorithm, which is based on particle swarm optimization (PSO), is capable of identifying the optimum production condition of low-sodium fish sauce, which was used as the test food material, by using only the instrumental analysis data. Independent sensory test

confirmed the validity of the prediction. This implies that the number of tedious and expensive sensory evaluation experiments could possibly be reduced via the use of this algorithm. PSO-based algorithm also requires smaller number of training data and less exhaustive computational resource than the previously employed artificial neural network and genetic algorithm.

The Project also contained some miscellaneous studies involving the design and testing of a novel microreactor for heterogeneous catalytic reactions for the conversion of natural gas or biogas into synthesis gas. Novel bimetallic catalysts with added metal promoters for such a conversion were also tested and found to exhibit superior performance to the existing catalysts. Novel process combining hot air with far-infrared radiation and high-voltage electric field for drying highly heat-sensitive aloe vera has also been developed and was successfully tested for its validity. Finally, a novel strategy involving the use of superheated-steam fluidized bed drying has been proposed for stabilization of rice bran. Such a process was noted to result in the lower levels of all oxidative stability parameters and to the higher phenolics and oil extraction yield. Shelf life of the product was also noted to be longer.

Keywords: Agricultural residues; Bioactive compounds; Computer algorithms; Drying; Edible films; Extraction; Fiber; Fruits and vegetables; High-pressure processing; Hydrogel; Image analysis; Lipid oxidation; Microreactor; Molecular structure modification; Optimization; Natural colorants; Pretreatment; Roasting; Salt; Superheated steam; Value-added products

บทคัดย่อ

โครงการวิจัยนี้ศึกษาการประยุกต์ใช้กระบวนการและเทคโนโลยีขั้นสูงหลากหลายกระบวนการเพื่อ ผลิตอาหาร ส่วนประกอบอาหาร ตลอดจนวัสดุชีวภาพที่มีคุณภาพสูง โดยในส่วนแรกของโครงการ ซึ่งเป็น ส่วนงานหลัก เป็นการประยุกต์ใช้การเตรียมวัสดุ ทั้งโดยวิธีการทางกายภาพและเคมี เพื่อช่วยในการแปรรูป เศษเหลือทิ้งทางการเกษตรและอาหาร ตลอดจนผักผลไม้หลังการเก็บเกี่ยว ไปเป็นผลิตภัณฑ์มูลค่าเพิ่ม ทั้งนี้ รวมถึงการนำฟางข้าวมาผลิตเป็นไฮโดรเจลเพื่อการดูดซับโลหะหนักในน้ำเสีย ไฮโดรเจลที่ได้มี สมรรถนะดีในการกำจัด Cu^{2+} , Pb^{2+} and Fe^{3+} และยังสามารถนำกลับมาใช้ใหม่ได้ จึงช่วยลดปัญหา สิ่งแวดล้อมที่มีสาเหตุมาจากการทิ้งฟางข้าวและปล่อยน้ำเสียที่ปนเปื้อนโลหะหนัก จากนั้น ได้ศึกษาวิธีการ ใหม่ที่อาจใช้ในการผลิตเส้นใยอาหารเชิงหน้าที่และเส้นใยนาโนจากกากของผลไม้ตระกูลส้ม เส้นใยจากกาก ส้มที่ผ่านกระบวนการเตรียมวัสดุและอบแห้งที่เหมาะสมมีสมบัติการดูดน้ำดี มีความสามารถในการอุ้มน้ำมัน และมีค่าดัชนีการยับยั้งการดูดซึมกลูโคสสูง ตลอดจนสามารถยับยั้งกิจกรรมของเอนไซม์แอลฟาอะไมเลส และดูดซับ aflatoxin B₁ ได้ดี นอกจากนี้ ยังได้แปรรูปกากมะนาวให้เป็น nanofibrillated cellulose (NFC) โดยใช้กระบวนการแบบใหม่ที่ไม่ใช้สารเคมี และได้ไฟเบอร์ที่มีความสามารถในการกระจายตัวได้ใหม่ในน้ำ สูง (กล่าวอีกนัยหนึ่ง คือ NFC ที่ผ่านการอบแห้งแล้ว เมื่อนำมาคืนรูปในน้ำ จะมีสมบัติต่าง ๆ ใกล้เคียงกับ ไฟเบอร์ตั้งต้น) และยังได้ทดสอบการใช้เศษเหลือทิ้งจากกะหล่ำปลี ซึ่งเป็นวัสดุเหลือใช้ที่หาได้ง่ายและมี ราคาไม่แพงมาใช้ในการผลิต NFC โดยใช้กระบวนการที่ไม่ใช้สารเคมีเช่นกัน NFC ที่ผลิตได้มีสมบัติ ใกล้เคียงกับเส้นใยที่เตรียมโดยกระบวนการที่ใช้สารเคมีแบบดั้งเดิม นอกจากกระบวนการผลิต NFC แล้ว ยังสามารถนำเศษกะหล่ำปลีมาสกัดสารกลูโคราฟานิน ซึ่งเป็นสารตั้งต้นของสารต้านมะเร็งที่มีชื่อว่าซัลโฟ ราเฟน โดยสกัดเศษกะหล่ำปลีที่ผ่านการนึ่งด้วยคลื่นเสียงความถี่สูงร่วมกับการสกัดด้วยไมโครเวฟภายใต้ สภาวะสุญญากาศ เพื่อให้ได้ปริมาณกลูโคราฟานินสูงสุด นอกจากนี้ ยังได้ทดสอบกระบวนการที่สามารถ เปลี่ยนสารตั้งต้นที่สกัดได้ไปเป็นซัลโฟราเฟนได้อย่างมีประสิทธิภาพกว่ากระบวนการที่มีอยู่เดิม งานวิจัย เรื่องสุดท้ายที่เกี่ยวข้องกับกะหล่ำปลีเป็นการศึกษาการเตรียมกะหล่ำปลีให้มีปริมาณซัลโฟราเฟนที่เข้าถึงได้ ทางชีวภาพสูงสุด โดยใช้วิธีการที่สามารถกระทำได้ในครัวเรือน จากการทดสอบผลการเตรียมตัวอย่างด้วย วิธีต่าง ๆ ในระบบย่อยอาหารนอกกาย ซึ่งจำลองมาจากกระบวนการย่อยในกระเพาะหนู พบว่า การเตรียม กะหล่ำปลีด้วยคลื่นไมโครเวฟเป็นเวลา 15 วินาที ช่วยเพิ่มปริมาณซัลโฟราเฟนได้ถึง 6.23 เท่า เมื่อเทียบ กับค่าที่วัดได้ในตัวอย่างสด