Abstract

This research is composed of four main areas: Sustainable Construction Materials, Advanced Geotechnical Engineering, Ground Improvement Techniques and Sustainable Road Engineering. In the Sustainable Construction Materials, the recycled materials such as mud flood soil, water treatment sludge and recycled asphalt pavement were used as aggregates to develop cement based construction materials. Advanced laboratory testing, constitutive modeling and numerical analysis of geotechnical problems are included in the Advanced Geotechnical Engineering. The Cam Clay model was extended to predict shear and compression behavior of natural clay inside and on the yield surface. The application of numerical simulation to examine geotechnical failure mechanism of earth structure was also reported. Research into chemical stabilization and earth reinforcement is included in Ground Improvement Techniques. The success of various types of cementing agents such as lime, cement, gypsum and geopolymer on the problematic soils in both low and high water contents was reported to understand the factors controlling the strength gain. Results of physical model tests on the Kenaf geotextile reinforced soft clay ground, interface shear tests on the geogrid reinforced recycled concrete aggregates, and full-scale tests on the bearing reinforcement earth wall were reported to illustrate the effectiveness of both extensible and inextensible earth reinforcements in solving geotechnical problems. The practical design method was moreover suggested, which is useful in term of engineering and economical perspectives. In Sustainable Road Engineering, innovative technologies with recycled waste materials for road structure (base, subbase and subbase) including industrial by-products and Construction and Demolition (C&D) materials were presented, which has significant environmental, social and economic benefits. Industrial byproducts included Fly Ash (FA), Rice Husk Ash (RHA), Granulated Blast Furnace Slag (GBFS), Calcium Carbide Residue (CCR), Lime Kiln Dust (LKD), Cement Kiln Dust (CKD), Recycled Tire Crumb (RTB), and Melamine Debris (MD). The recycled C&D materials included Waste Foundary Sand (WFS), Recycled Asphalt Pavement (RAP), Recycled Concrete Aggregate (RCA), Recycled Crushed Brick (CB), Recycled Plastic Granules (RPG), and Recycled Glass (RG). The application of polyvinyl alcohol to improve the flexural behavior of rigid pavement and of fibers to improve dynamic response of flexural pavement is also reported.

Keywords: cement, geopolymer, pozzolan, fly ash, slag, calcium carbide residue, recycled concrete aggregate, recycled crushed brick, recycled asphalt concrete, recycled glass, fiber, compressive strength, flexural strength, resilient modulus, microstructure, bearing reinforcement, prefabricated vertical drains, consolidation, constitutive model, rigid pavement, flexural pavement, base, subbase, subgrade

บทคัดย่อ

งานวิจัยนี้ประกอบด้วย 4 ส่วนหลัก ได้แก่ การพัฒนาวัสดุก่อสร้างอย่างยั่งยืน วิศวกรรมปฐพีขั้นสูง เทคนิคการปรับปรุงดิน และวิศวกรรมถนนอย่างยั่งยืน ในส่วนของการพัฒนาวัสดุก่อสร้างอย่างยั่งยืน วัสดุเหลือ ทิ้ง เช่น ดินโคลน ดินตะกอนประปา และเศษผิวทางแอสฟัลต์คอนกรีต ได้ถูกนำมาประยุกต์ใช้ในการพัฒนาวัสดุ ประสานรับแรงและไม่รับแรง งานวิจัยด้านวิศวกรรมปฐพีขั้นสูงประกอบด้วยการทดสอบวัสดุขั้นสูง การพัฒนา ้แบบจำลองทางคณิตศาสตร์ และการวิเคราะห์เชิงตัวเลข เพื่อการแก้ปัญหาทางวิศวกรรมปฐพี เช่น การจำลอง พฤติกรรมเฉือนและการเสียรูปของดินภายใต้สภาวะก่อนครากและสภาวะคราก และการวิเคราะห์หาสาเหตุและ แนวทางแก้ปัญหาการวิบัติของโครงสร้างดิน งานวิจัยด้านเทคนิคการปรับปรุงดินประกอบด้วยการประยุกต์ใช้ สารเคมีและการเสริมแรงในดิน ความสำเร็จของการประยุกต์ใช้สารเคมีประเภทต่างๆ เช่น ปูนขาว ปูนซีเมนต์ ยิปซัม และจีโอโพลิเมอร์ ในการปรับปรุงคุณภาพของดินทั้งในสภาวะความชื้นต่ำและสูง ได้นำเสนอในรูปของ บทความวิจัย งานวิจัยในส่วนนี้ยังรวมถึงการประยุกต์ใช้วัสดุสังเคราะห์จากใบบอในการเสริมแรงของดินเหนียว อ่อน การศึกษาปฏิสัมพันธ์ระหว่างเศษคอนกรีตและจีโอกริด และการประยุกต์ใช้กำแพงกันดินเหล็กเสริมแบกทาน ในดินถมที่มีปริมาณดินเม็ดละเอียดสูง ผลการศึกษาทั้งหมดนำมาซึ่งแนวทางการคำนวณออกแบบทางวิศวกรรมที่มี ความคุ้มค่าทางเศรษฐศาสตร์ งานวิจัยในส่วนของงานถนนอย่างยั่งยืนเป็นการนำเสนอเทคโนโลยีการประยุกต์ใช้ วัสดุเหลือทิ้งเพื่อทำโครงสร้างถนน (ชั้นทาง ชั้นพื้นทาง และชั้นรองพื้นทาง) ซึ่งประกอบด้วยวัสดุเหลือทิ้งจาก ภาคอุตสาหกรรมและจากขบวนการก่อสร้าง วัสดุเหลือทิ้งจากภาคอุตสาหกรรม ประกอบด้วยเถ้าลอย เถ้าแกลบ ตะกรันเหล็ก กากแคลเซียมคาร์ไบด์ ฝุ่นเตาเผาปูนขาว ฝุ่นเตาเผาปูนซีเมนต์ เศษยางรีไซเคิล และเศษเมลามีน เศษวัสดุจากขบวนการก่อสร้างประกอบด้วยเศษทรายจากโรงหล่อ เศษผิวทางแอสฟัลต์คอนกรีต เศษคอนกรีต เศษอิฐ เศษเม็ดพลาสติก และเศษแก้ว งานวิจัยนี้ยังปรับปรุงคุณสมบัติด้านความยืดหยุ่นของผิวทางคอนกรีตที่วัสดุ เหลือทิ้งเป็นมวลรวมด้วยการเติมโพลิไวนิลแอลกอฮอล์ และปรับปรุงคุณสมบัติด้านความยืดหยุ่นของผิวทาง แอสฟัลต์คอนกรีตด้วยการเติมเส้นใยไฟเบอร์

คำสำคัญ: ปูนซีเมนต์ จีโอโพลิเมอร์ สารปอซโซลาน เถ้าลอย ตะกรันเหล็ก กากแคลเชียมคาร์ไบด์ เศษคอนกรีต เศษอิฐ เศษแอสฟัลต์คอนกรีต เศษแก้ว ไฟเบอร์ กำลังอัดแกนเดียว กำลังดัด โมดูลัสคืนตัว โครงสร้างจุลภาค เหล็กเสริมแบกทาน แผ่นระบายน้ำแนวดิ่ง การอัดตัวคายน้ำ แบบจำลองคณิตศาสตร์