

Final Report

Research on Sustainable Technologies in Geotechnical and Pavement Engineering

Ву

Prof. Suksun Horpibulsuk

Grant No: RTA5980005

Final Report

Research on Sustainable Technologies in Geotechnical and Pavement Engineering

Prof. Suksun Horpibulsuk Suranaree University of Technology

Financial Support from The Thailand Research Fund

Abstract

This research is composed of four main areas: Sustainable Construction Materials, Advanced Geotechnical Engineering, Ground Improvement Techniques and Sustainable Road Engineering. In the Sustainable Construction Materials, the recycled materials such as mud flood soil, water treatment sludge and recycled asphalt pavement were used as aggregates to develop cement based construction materials. Advanced laboratory testing, constitutive modeling and numerical analysis of geotechnical problems are included in the Advanced Geotechnical Engineering. The Cam Clay model was extended to predict shear and compression behavior of natural clay inside and on the yield surface. The application of numerical simulation to examine geotechnical failure mechanism of earth structure was also reported. Research into chemical stabilization and earth reinforcement is included in Ground Improvement Techniques. The success of various types of cementing agents such as lime, cement, gypsum and geopolymer on the problematic soils in both low and high water contents was reported to understand the factors controlling the strength gain. Results of physical model tests on the Kenaf geotextile reinforced soft clay ground, interface shear tests on the geogrid reinforced recycled concrete aggregates, and full-scale tests on the bearing reinforcement earth wall were reported to illustrate the effectiveness of both extensible and inextensible earth reinforcements in solving geotechnical problems. The practical design method was moreover suggested, which is useful in term of engineering and economical perspectives. In Sustainable Road Engineering, innovative technologies with recycled waste materials for road structure (base, subbase and subbase) including industrial by-products and Construction and Demolition (C&D) materials were presented, which has significant environmental, social and economic benefits. Industrial byproducts included Fly Ash (FA), Rice Husk Ash (RHA), Granulated Blast Furnace Slag (GBFS), Calcium Carbide Residue (CCR), Lime Kiln Dust (LKD), Cement Kiln Dust (CKD), Recycled Tire Crumb (RTB), and Melamine Debris (MD). The recycled C&D materials included Waste Foundary Sand (WFS), Recycled Asphalt Pavement (RAP), Recycled Concrete Aggregate (RCA), Recycled Crushed Brick (CB), Recycled Plastic Granules (RPG), and Recycled Glass (RG). The application of polyvinyl alcohol to improve the flexural behavior of rigid pavement and of fibers to improve dynamic response of flexural pavement is also reported.

Keywords: cement, geopolymer, pozzolan, fly ash, slag, calcium carbide residue, recycled concrete aggregate, recycled crushed brick, recycled asphalt concrete, recycled glass, fiber, compressive strength, flexural strength, resilient modulus, microstructure, bearing reinforcement, prefabricated vertical drains, consolidation, constitutive model, rigid pavement, flexural pavement, base, subbase, subgrade

บทคัดย่อ

งานวิจัยนี้ประกอบด้วย 4 ส่วนหลัก ได้แก่ การพัฒนาวัสดุก่อสร้างอย่างยั่งยืน วิศวกรรมปฐพีขั้นสูง เทคนิคการปรับปรุงดิน และวิศวกรรมถนนอย่างยั่งยืน ในส่วนของการพัฒนาวัสดุก่อสร้างอย่างยั่งยืน วัสดุเหลือ ทิ้ง เช่น ดินโคลน ดินตะกอนประปา และเศษผิวทางแอสฟัลต์คอนกรีต ได้ถูกนำมาประยุกต์ใช้ในการพัฒนาวัสดุ ประสานรับแรงและไม่รับแรง งานวิจัยด้านวิศวกรรมปฐพีขั้นสูงประกอบด้วยการทดสอบวัสดุขั้นสูง การพัฒนา แบบจำลองทางคณิตศาสตร์ และการวิเคราะห์เชิงตัวเลข เพื่อการแก้ปัญหาทางวิศวกรรมปฐพี เช่น การจำลอง พฤติกรรมเฉือนและการเสียรูปของดินภายใต้สภาวะก่อนครากและสภาวะคราก และการวิเคราะห์หาสาเหตุและ แนวทางแก้ปัญหาการวิบัติของโครงสร้างดิน งานวิจัยด้านเทคนิคการปรับปรุงดินประกอบด้วยการประยุกต์ใช้ สารเคมีและการเสริมแรงในดิน ความสำเร็จของการประยุกต์ใช้สารเคมีประเภทต่างๆ เช่น ปูนขาว ปูนซีเมนต์ ยิปซัม และจีโอโพลิเมอร์ ในการปรับปรุงคุณภาพของดินทั้งในสภาวะความชื้นต่ำและสูง ได้นำเสนอในรูปของ บทความวิจัย งานวิจัยในส่วนนี้ยังรวมถึงการประยุกต์ใช้วัสดุสังเคราะห์จากใบบอในการเสริมแรงของดินเหนียว อ่อน การศึกษาปฏิสัมพันธ์ระหว่างเศษคอนกรีตและจีโอกริด และการประยุกต์ใช้กำแพงกันดินเหล็กเสริมแบกทาน ในดินถมที่มีปริมาณดินเม็ดละเอียดสูง ผลการศึกษาทั้งหมดนำมาซึ่งแนวทางการคำนวณออกแบบทางวิศวกรรมที่มี ความคุ้มค่าทางเศรษฐศาสตร์ งานวิจัยในส่วนของงานถนนอย่างยั่งยืนเป็นการนำเสนอเทคโนโลยีการประยุกต์ใช้ วัสดุเหลือทิ้งเพื่อทำโครงสร้างถนน (ชั้นทาง ชั้นพื้นทาง และชั้นรองพื้นทาง) ซึ่งประกอบด้วยวัสดุเหลือทิ้งจาก ภาคอุตสาหกรรมและจากขบวนการก่อสร้าง วัสดุเหลือทิ้งจากภาคอุตสาหกรรม ประกอบด้วยเถ้าลอย เถ้าแกลบ ตะกรันเหล็ก กากแคลเซียมคาร์ไบด์ ฝุ่นเตาเผาปูนขาว ฝุ่นเตาเผาปูนซีเมนต์ เศษยางรีไซเคิล และเศษเมลามีน เศษวัสดุจากขบวนการก่อสร้างประกอบด้วยเศษทรายจากโรงหล่อ เศษผิวทางแอสฟัลต์คอนกรีต เศษคอนกรีต เศษอิฐ เศษเม็ดพลาสติก และเศษแก้ว งานวิจัยนี้ยังปรับปรุงคุณสมบัติด้านความยืดหยุ่นของผิวทางคอนกรีตที่วัสดุ เหลือทิ้งเป็นมวลรวมด้วยการเติมโพลิไวนิลแอลกอฮอล์ และปรับปรุงคุณสมบัติด้านความยืดหยุ่นของผิวทาง แอสฟัลต์คอนกรีตด้วยการเติมเส้นใยไฟเบอร์

คำสำคัญ: ปูนซีเมนต์ จีโอโพลิเมอร์ สารปอซโซลาน เถ้าลอย ตะกรันเหล็ก กากแคลเชียมคาร์ไบด์ เศษคอนกรีต เศษอิฐ เศษแอสฟัลต์คอนกรีต เศษแก้ว ไฟเบอร์ กำลังอัดแกนเดียว กำลังดัด โมดูลัสคืนตัว โครงสร้างจุลภาค เหล็กเสริมแบกทาน แผ่นระบายน้ำแนวดิ่ง การอัดตัวคายน้ำ แบบจำลองคณิตศาสตร์

EXECUTIVE SUMMARY

This research consists of 4 areas: Sustainable Construction Materials, Advanced Geotechnical Engineering, Ground Improvement Techniques and Sustainable Road Engineering. The summary of the research output is presented in the following sections.

1. SUSTAINABLE CONSTRUCTION MATERIALS

In this part, mud flood soil, water treatment sludge and recycled asphalt pavement were used as aggregates to develop cement based construction materials. A biomass silica stabilizer, commercially called as SH85, was successfully used to enhance the engineering properties of the mud flood soil to be non-bearing masonry unit. The SH585 could increase the soil strength up to 10 times (1330 kPa) of the unstabilized strength but was still lower than the strength requirement specified by British Standard Institute. An addition of 2% of cooking salt with 105°C curing could significantly improve the unconfined compression strength (UCS). The additional cooking salt with heat curing caused the aggregation and enhanced the chemical reaction of the SH85 stabilized soil. The aggregation and C-S-H and C-A-H products resulted in the dense and strong soil structure and strength development.

Water Treatment Sludge (WTS)-Calcium Carbide Residue (CCR) geopolymers were evaluated as a sustainable masonry non-bearing unit. The WTS was a by-product from a water treatment plant while CCR was a by-product from an acetylene gas factory in Thailand. Sodium hydroxide solution (NaOH) and sodium silicate solution (Na₂SiO₃) were used for the geopolymerization process. The UCS, water absorption and durability of WTS-CCR geopolymer were studied. The test results indicated that the optimal liquid alkaline activator (L)/CCR ratios provided the maximum unit weight decrease with CCR contents for all the Na₂SiO₃/NaOH ratios evaluated. The optimal L/CCR ratios were found to be 16, 8, 5.33, 4, 3.2 and 2.67 for CCR contents of 5, 10, 15, 20, 25 and 30%, respectively. The Na₂SiO₃/NaOH ratio of 70:30 was found to give the highest maximum unit weight and UCS amongst all the WTS/CCR ratios tested. Three zones of UCS development with CCR content were evident being the active, inert and

deterioration zones. In the active zone, the UCS increased significantly as the CCR content increased and the maximum UCS was attained at 10% CCR. In the inert zone, the UCS development was gradual. When the CCR content > 20% in the deterioration zone, subsequent strength decrease was observed. The wetting-drying (w-d) cycle strength, UCS_(w-d) depends primarily on the initial soaked strength, UCS₀. A UCS_(w-d) predictive equation was proposed for assessment of the initial strength to attain required wetting-drying strengths. Based on the UCS and water absorption requirements, an optimum ingredient comprising 10% CCR and 70:30 Na₂SiO₃/NaOH with room temperature curing can be recommended for non-bearing masonry units.

The strength development of cement mortar (CM) containing recycled asphalt pavement (RAP) as fine aggregate replacement for natural sand was investigated by means of strength, X-ray diffraction and scanning electron microscopy tests. The effect of the RAP replacement ratio, water to cement ratio (w/C) and curing time on strength development was evaluated. RAP had noticeably higher water absorption at saturated surface dry (SSD) state and slower rate of absorption than sand. The additional water to be compensated for the SSD state remained as the free water in the mix after hardening. RAP replacement at an optimum ratio of 25% increased the production of cementitious products and compressive strength for low w/C of less than 0.5, which was insufficient for cement hydration. While RAP replacement caused larger porosity and the production of lower cementitious products and compressive strength for high w/C of more than 0.5. Based on the critical analysis of the test results, the combined water (w*) parameter was defined as the sum of reacted water (w) and after-hardening unabsorbed water (ww). This parameter was used to generate the extended water to cement ratio law for prediction of strength development in RAP-CM.

2. ADVANCED GEOTECHNICAL ENGINEERING

In this part, the general constitutive model for clay at low and high stress state level was developed and the use of numerical simulation to solve geotechnical problems was illustrated. The Modified Cam Clay model (MCC) is extended based on S-shaped compression so that the quantitative inaccuracies and the qualitative errors of the model associated with both low and high stress levels can be removed. The following modifications are made: (i) a material constant

r, the spacing ratio, is introduced; (ii) the yield surface is modified with so $r \neq 2$; (iii) the ratio of the elastic compression index to the virgin compression index is assumed to be constant. The compression and shearing behavior of reconstituted clays for $p' < \infty$ and sands at high stress can be successfully described. Following the same method, the proposed complete S-shaped compression curve can be implemented to many existing models, removing errors of the models at the extremities of stress level and improving the performance of the models for different stress levels with one set of values of the model parameters.

The numerical analysis to solve the real-world problem on a collapsed riverbank protection structure, located in the curvature of the watershed along the Pasak river in Saraburi province, Thailand is presented as an example. The site investigation and finite element analysis indicated that the failure occurred due to natural disaster events. During the rainy season, water flows into the river from upstream farmlands by crossing the backfill of the retaining wall which acts as a riverbank protection structure. Seepage forces were thus developed in the direction of inflows, which resulted in reduced stability of the riverbank protection structure. Furthermore, the strong currents in the river continuously scoured the banks, undermining the natural slope in front of this riverbank protection structure, resulting in soil erosion in the passive zone and instability of the protection structure. Based on these two causes of failure, a remedial solution was devised using a new bored pile riverbank protection structure with the usage of geocomposites. Ripraps were installed at the back and front of the bored pile walls to relieve the structure from seepage forces and to prevent soil erosion. An adequate factor of safety against the external and internal failure of the new riverbank protection structure was verified by finite element modelling.

3. GROUND IMPROVEMENT TECHNIQUES

3.1 Earth Reinforcement

Bearing reinforcement is an inextensible reinforcement type, which is manufactured by welding strongly between a longitudinal member and a set of transverse members. The pullout capacity of the bearing reinforcement comprises both friction and bearing components. The test results of residual red clay and previously published test results were analyzed to develop rational pullout predictive equations. The pullout friction resistance can be calculated by utilizing

the soil-reinforcement interaction factor, α , which reduces linearly with fines content (F). The bearing pullout resistance is controlled in the failure plane of transverse member (β) and transverse members interference factor (IF). The water content to optimum water content ratio, w/w_{OWC} and F were found to be dominant factors controlling both β and IF. The β reduced from $\pi/2$ to $\pi/3$ with the increase in w/w_{OWC} and F. The transverse members interference zone was larger for lower w/w_{OWC} and F. Equations for predicting β and IF, in terms of the fines content and water content, were proposed in this paper.

A Bearing Reinforcement Earth (BRE) wall with a residual clay stone backfill was successfully implemented as an alternative truck ramp support for an on-site crusher plant in the Mae Moh mine, Thailand. The performance of the BRE wall during and after the end of construction as well as during the service state was evaluated in terms of, settlement, bearing stress, lateral movement, lateral earth pressure and tension force in the reinforcements. Bearing reinforcement is a cost-effective inextensible earth reinforcement, which is composed of a longitudinal member and transverse members. The maximum settlement at the end of construction (20 days) was about 5 mm. The installation of the truck ramp (10 days after the end of construction) resulted in an immediate settlement of about 2 mm. The final settlement due to the backfill, truck ramp and truck load after 270 days was found to be uniform due to the contribution of bearing reinforcement and was approximately 25 mm. The bearing stress which was uniformly distributed was found to increase rapidly with construction time, which was in agreement with the relatively uniform settlements. The lateral wall movement at the front and lateral sides at the end of construction was very small with the maximum movement (at the top of the wall) found to be less than 10 mm. As such, the ratio of lateral movement to height (δ/H) was found to be approximately 0.12%, which was lower than the allowable value of 0.4%. With this low δ/H and the insignificant change in the measured settlement and lateral movement during service, the BRE wall was considered to have a very high stability. The coefficients of lateral earth pressure, K and depth relationship were proposed based on the analysis of measured maximum tensile force in the reinforcements. The maximum tension plane of the BRE wall could be represented by the coherent gravity hypothesis. Using the proposed K and maximum

tension plane, the internal stability of the BRE wall was furthermore examined. A proposed method of designing the BRE wall with claystone backfill was also proposed.

Due to a lack of high quality natural materials, the usage of recycled concrete aggregate (RCA) in pavement applications is a sustainable approach for future infrastructure development, given the significant environmental benefits. Geogrid reinforcement of RCA can improve the tensile and flexural strengths of the pavement structure to sustain high traffic loadings. The effect of aperture size, tensile strength of geogrids, normal stress and gradation on shear interaction between geogrids and RCA was investigated in this research, with the usage of a large-scale direct shear test (LDST) apparatus. Three types of biaxial geogrids, with different aperture sizes and tensile strengths, and two RCA samples with different gradations were used in this study. The interface shear strength was found to be highly dependent upon the aperture width of the geogrids, D, as well as the RCA particles finer than the aperture width of geogrid, F_D . Based on the analysis of test results, a linear relationship between interface shear strength coefficient, α , the ratio of interface shear strength of geogrid/RCA and shear strength of RCA was proposed, with respect to the D/F_D ratio. The proposed relationship will be useful for a rapid assessment of the interface shear strength coefficient of geogrid reinforced RCA based on the aperture size of geogrids and RCA gradation properties.

Besides the bearing reinforcement, the natural Kenaf geotextile can be used in geotechnical application. The performance of the short-term bearing capacity on soft clay soil treated by Kenaf geotextile under vertical loading via a small-scale modelling test at unit gravity was investigated. The ground model was formulated by consolidating kaolin in a rigid testing compartment. In the loading test, the strip footing was represented by a rigid footing. For the treated case, a series of tests were performed to examine the effects of the burial depth of the Kenaf geotextile on the bearing capacity of the soft soil. The Kenaf geotextile was laid beneath the rigid footing (at the ground surface) and at 50 mm, 75 mm and 100 mm depth from the soil surface. All the measured results of the Kenaf geotextile treated ground were compared with the untreated ground. The incorporation of Kenaf fibre geotextile was observed to enhance the bearing capacity of soft cohesive clay up to 281% depending upon the depth of the installed geotextile. The geotextile at the surface provided the highest bearing capacity and sustained the highest displacement at failure.

2.2 Chemical Stabilization

The success of various types of cementing agents such as lime, cement, gypsum and geopolymer on the problematic soils in both low and high water contents was reported to understand the factors controlling the strength gain. Following presents the application of various cementing agent in geotechnical and pavement engineering.

This research examines the characteristics of uncontaminated and copper-contaminated clays stabilized by gypsum. Two clay types including bentonite (with predominantly montmorillonite mineralogy) and kaolin (with predominantly kaolinite mineralogy) were tested representing high swelling and low strength clays, respectively. The UCS test results showed that 7% and 9% gypsum content were optimal for uncontaminated bentonite and kaolin, respectively. The microstructural tests delineated that the added gypsum modified the porous network of the stabilized clays. The level of Cu concentration was found to have a considerable influence on the engineering properties, phases of hydration products formed, and microstructural characteristics of the stabilized clays. These changes are attributed to the retardant effect of Cu on the hydration and pozzolanic reactions, which in turn alter the phases of hydration products and cementation structure – bonding of the clays. The findings suggest that gypsum can offer an economic and effective additive for clays stabilization.

Pavement rehabilitation and reconstruction generate large quantities of reclaimed asphalt pavement (RAP). Improvement of the engineering properties of RAP is required to enable it to be used as an environmentally friendly alternative construction material in road pavements. The durability of RAP when blended with crushed rock (CR) and stabilized with Portland cement was investigated. The CR replacement was found to improve the compactability and durability of the stabilized RAP/CR material. For a particular RAP:CR ratio, the compaction curves of cement stabilized RAP/CR blends were found to be essentially the same for all cement contents, but different for the unstabilized blends; i.e., the maximum dry unit weight of cement stabilized RAP/CR blends is higher than that of unstabilized RAP-CR blends. The wetting-drying (w-d) cycles led to a weight loss on cement stabilized RCA/CR blends and led to subsequent strength reduction. The w-d cycle strengths ($q_{u(w-d)}$) for a state of compaction (dry side or wet side or optimum water content) at any w-d cycle could be approximated from the corresponding initial

soaked strength (prior to w-d test) (q_{u0}). The q_{u0} of cement stabilized RAP/CR blends increased with increasing CR replacement and cement content. Assuming that the CR replacement results in a similar manner to an increase in cement content, the $w/[C(1+kCR_c)]$ was proposed as a critical parameter in developing q_{u0} and $q_{u(w-d)}$ predictive equations where w is water content at optimum water content, C is cement content, C is replacement efficiency and CR_c is CR content. Based on the $q_{u(w-d)}$ predictive equations developed, a laboratory mix design procedure for cement stabilized RAP/CR blends was proposed, which would be valuable for an accurate determination of the required mix ingredients (RAP:CR ratio and cement content) to attain the required strength at the design service life.

Traditionally, Portland cement and/or lime are the most popular binders for DSM application, however the ground improvement industry has been keen to explore environmentally friendly alternatives with low carbon dioxide emission. This research aims at investigating the use of stockpiled industrial waste by-products, namely fly ash (FA) and slag (S), as alternative green binders in ground improvement projects, hence reducing the carbon footprint of these projects. Combinations of FA and S activated by liquid alkaline activator (L) were evaluated for the ground improvement of a soft marine clay, named Coode Island Silt (CIS). The performance of the FA + S geopolymers were compared with traditional cement and lime control binders. The soil moisture content was set at 0.75, 1.0 and 1.25 of the liquid limit (LL) of the soil to replicate field conditions. 10, 20 and 30% binders, by dry soil mass, were added to the soil, and samples were cured for 7 and 28 days. UCS, flexural beam and SEM imaging tests were conducted to evaluate the changes in engineering behavior and microstructure of the mixtures. The strength and stiffness of the soft clay were significantly increased by using these new FA + S binders, which substantiated them as alternatives to traditional cement or lime binders. The optimum binder content was found to be 20%, while CIS + 5%FA+ 15%S was found to be the optimum mixture. Correlations between UCS and modulus of elasticity (E₅₀), as well as between UCS and modulus of rupture (R) for the geopolymer mixtures were furthermore proposed, which would be valuable for ground improvement designers and practitioners alike.

4. SUSTAINABLE ROAD ENGINEERING

The innovative technologies with recycled waste materials for road structure (base, subbase and subbase) including industrial by-products and Construction and Demolition (C&D) materials were presented, which has significant environmental, social and economic benefits. Industrial by-products included Fly Ash (FA), Rice Husk Ash (RHA), Granulated Blast Furnace Slag (GBFS), Calcium Carbide Residue (CCR), Lime Kiln Dust (LKD), Cement Kiln Dust (CKD), Recycled Tire Crumb (RTB), and Melamine Debris (MD). The recycled C&D materials included Waste Foundary Sand (WFS), Recycled Asphalt Pavement (RAP), Recycled Concrete Aggregate (RCA), Recycled Crushed Brick (CB), Recycled Plastic Granules (RPG), and Recycled Glass (RG). The application of polyvinyl alcohol to improve the flexural behavior of rigid pavement and of fibers to improve dynamic response of flexural pavement is also reported.

The waste coarse-grained materials can be used to improve the engineering of problematic soils with fine contents. For instance, the improvement of physical and mechanical properties of marginal lateritic soil (LS) by MD replacement was evaluated to ascertain the LS/MD blends as a sustainable engineering fill material. The MD replacement of lateritic soil reduces the fine content and increases the abrasion resistance of the soil particles, hence the reduction in liquid limit, plasticity index, LA abrasion and particle breakage. This physical property improvement leads to superior mechanical properties (soaked CBR and swelling) with increasing MD replacement ratio as compared to the soil alone. The proposed empirical equations for predicting soaked CBR and swelling of blends at different MD replacement ratios and compaction energy levels are useful in the selection of the suitable MD replacement to attain targeted mechanical property requirements. The physical and mechanical properties of the 20% MD replacement blend were found to meet the requirement of local road authority for engineering fill materials while the 50% MD replacement blend was at the borderline for a subbase course material.

The density, UCS and durability against wetting and drying (w-d) cycles of cement stabilized LS/MD blends, at various cement contents and MD replacement ratios was evaluated for stabilized pavement applications. The density and UCS of stabilized LS/MD blends decrease significantly with the MD replacement ratio. Even with the decrease in UCS, the soaked CBR and durability against w-d cycles are improved by MD replacement. The optimum MD replacement ratio was found to be 20%, which corresponds with the highest soaked CBR and w-

d cycled UCS. The 3% cement LS/MD blend at 20% MD can be used as a stabilized subgrade material, while 5% cement LS/MD blends at 40% MD and 20% MD can be used as stabilized subbase and base materials, respectively based on the specification of Department of Highways, Thailand. These stabilized materials were found to sustain up to 3 w-d cycles.

สรุปผลงานทุนส่งเสริมกลุ่มวิจัยของศาสตราจารย์ ดร.สุขสันติ์ หอพิบูลสุข

1. รายชื่อนักวิจัยและผู้ช่วยวิจัย

โปรดดูเอกสารแนบ (Excel file)

- 2. output จากท่านและนักวิจัยในโครงการที่ acknowledge สกว. โดยแบ่งเป็นผลงานตีพิมพ์ใน วารสารวิชาการนานาชาติ / วารสารวิชาการในประเทศ/ หนังสือ / สิทธิบัตร (กรุณาตัวหนาชื่อของท่านและ ทีมวิจัย) ทั้งนี้หากมี outcome หรือ impact กรุณาระบุด้วย
- 2.1 ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ที่มี acknowledgement สกว. และระบุเลขที่สัญญา)
- 1) Arulrajah, A., Yaghoubi, E., Monzur, I. and **Horpibulsuk, S.** (2016), "Recycled waste foundary sand as a sustainable subgrade fill and pipe-bedding construction material: engineering and environmental evaluation", *Sustainable Cities and Societies*, Vol.28, pp.343-349 (SCI, SCOPUS) (IF2018 = 4.624)
- 2) Arulrajah, A., Mohammadinia, A., **Horpibulsuk, S.** and **Samingthong, W.** (2016), "Influence of class F fly ash and curing temperature on strength development of fly ash-recycled concrete aggregate blends", *Construction and Building Materials*, Vol.127, pp.743-750 (SCI, SCOPUS) (IF2018 = 4.046)
- 3) Bo, M.W., Choa, V., Chu, J., Arulrajah, A. and **Horpibulsuk, S.** (2016), "Laboratory investigation on compressibility of Singapore marine clay", *Marine Georesources & Geotechnology*, doi: 10.1080/1064119X.2016.1256922 (SCI, SCOPUS) (IF2018 = 1.166)
- 4) Yubonchit, S., Chinkulkijniwat, A., Horpibulsuk, S., Jothityangkoon, C., Arulrajah, A., Suddeepong, A. (2016) "Influence factors involving rainfall-induced shallow slope failure: A numerical study", *International Journal of Geomechanics*, doi: 10.1061/(ASCE)GM.1943-5622.0000865 (SCI, SCOPUS) (IF2018 = 2.450)
- 5) Chinkulkijniwat, A., Horpibulsuk, S., Bui Van, D., Udomchai, A., Goodary, R., and Arulrajah, A. (2016), "Influential factors affecting drainage design considerations for mechanical stabilized earth walls using geocomposites", *Geosynthetics International*, doi: 10.1680/jgein.16.00027 (SCI, SCOPUS) (IF2018 = 2.890)
- 6) Maghool, F., Arulrajah, A., Du, Y.J., **Horpibulsuk, S.**, and **Chinkulkijniwat, A.** (2016), "Environmental impact of utilizing waste steel slag aggregates as recycled road construction

- materials", Clean Technologies and Environmental Policy, doi: 10.1007/s10098-016-1289-6 (SCI, SCOPUS) (IF2018 = 2.277)
- 7) **Hoy, M.**, **Horpibulsuk, S.**, **Rachan, R.**, **Chinkulkijniwat, A.**, and Arulrajah, A. (2016), "Recycled asphalt pavement-fly ash geopolymers as a sustainable pavement base material: Strength and toxic investigations", *Science of the Total Environment*, Vol.573, pp.19-26. (SCI, SCOPUS) (IF2018 = 5.589)
- 8) Rashid. A.S.A., Shahrin, M.I., **Horpibulsuk, S.**, Hezmi, M.A., Yunus, Z.M. and Borhamdin, S. (2017), "Development of sustainable masonry units from mud flood soil: strength and morphology investigations", *Construction and Building Materials*, Vol.131, pp.682-689 (SCI, SCOPUS) (IF2018 = 4.046)
- 9) Kua, T.A., Arulrajah, A., Mohammadinia, A., **Horpibulsuk, S.**, and Mirzababei, M. (2017), "Stiffness and deformation of spent coffee ground based geopolymers", *Construction and Building Materials*, Vol.138, pp.79-87 (SCI, SCOPUS) (IF2018 = 4.046)
- 10) Mohommadinia, A., Arulrajah, A., Haghighi, H. and **Horpibulsuk, S.** (2017), "Effect of lime stabilization on mechanical and micro-scale properties of recycled demolition materials", *Sustainable Cities and Societies*, Vol.30, pp.58-65 (SCI, SCOPUS) (IF2018 = 4.624)
- 11) Yaghoubi, E., Arulrajah, A., Wong, Y., and **Horpibulsuk, S.** (2017), "Stiffness properties of recycled concrete aggregate/polyethylene plastic granules in unbound pavement applications", *Journal of Materials in Civil Engineering*, pp.04016271(1-7) (SCI, SCOPUS) (IF2018 = 1.984)
- 12) Arulrajah, A., Mohammadinia, A., D' Amico, A. and **Horpibulsuk, S.** (2017), "Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials", *Construction and Building Materials*, Vol.152, pp.999-1007 (SCI, SCOPUS) (IF2018 = 4.046)
- 13) Arulrajah, A., Kua, T.A., **Suksiripattanapong, C.**, **Horpibulsuk, S.**, and Shen, S.L. (2017), "Compressive strength and microstructural properties of spent coffee grounds-bagasse based geopolymers with slag supplements", *Journal of Cleaner Production*, Vol.162, pp.1491-1501 (SCI, SCOPUS) (IF2018 = 6.395)

- 14) Arulrajah, A., Kua, T.A., **Horpibulsuk, S.**, Mirzababaei, M., and **Chinkulkijniwat, A.** (2017), "Recycled glass as a supplementary filler material in spent coffee grounds geopolymers", *Construction and Building Materials*, Vol.151, pp.18-27 (SCI, SCOPUS) (IF2018 = 4.046)
- 15) Arulrajah, A., Yaghoubi, E., Wong, Y. and **Horpibulsuk, S**. (2017), "Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics", *Construction and Building Materials*, Vol.147, pp.639-647 (SCI, SCOPUS) (IF2018 = 4.046)
- 16) Mohammadinia, A., Arulrajah, A., Horpibulsuk, S. and Chinkulkijniwat, A. (2017), "Effect of fly ash on geotechnical properties of crushed brick and reclaimed asphalt pavement for base/subbase application", *Journal of Hazardous Materials*, Vol.313, pp.547-556, doi: 10.1016/j.hazmat.2016.09.039 (SCI, SCOPUS) (IF2018 = 7.650)
- 17) Udomchai, A., Horpibulsuk, S., Suksiripattanapong, C., Mavong, N., Rachan, R. and Arulrajah, A. (2017), "Performance of the bearing reinforcement earth wall as a retaining structure in the Mae Moh mine", *Geotextiles and Geomembranes*, Vol.45, pp.350-360 (SCI, SCOPUS) (IF2018 = 3.972)
- 18) **Suksiripattanapong, C.**, Kua, T.A., Arulrajah, A., Maghood, F. and **Horpibulsuk, S.** (2017), "Strength and microstructure properties of spent coffee grounds stabilized with rich husk ash and slag geopolymers", *Construction and Building Materials*, Vol.146, pp.312-320 (SCI, SCOPUS) (IF2018 = 4.046)
- 19) **Hoy, M., Rachan, R., Horpibulsuk, S.**, Arulrajah, A. and Mirzababaei, M. (2017), "Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement-fly ash geopolymer", *Construction and Building Materials*, Vol.144, pp.624-634 (SCI, SCOPUS) (IF2018 = 4.046)
- 20) Arulrajah, A., Mohammadinia, A., D' Amico, A. and **Horpibulsuk, S.** (2017), "Cement kiln dust and fly ash blends as an alternative binder for stabilization of demolition aggregates", *Construction and Building Materials*, Vol.145, pp.218-225 (SCI, SCOPUS) (IF2018 = 4.046)
- 21) Jamsawang, P., Jamnam, S., Jongpradist, P., Tanseng, P. and Horpibulsuk, S. (2017), "Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay", *Computers and Geotechnics*, Vol.88, pp.174-181 (SCI, SCOPUS(IF2018 = 3.345)

- 22) Suksiripattanapong, C., Horpibulsuk, S., Phetchuay, C., Suebsuk, J., Phoo-ngernkham, T. and Arulrajah, A. (2017), "Water treatment sludge-calcium carbide residue geopolymer as non-bearing masonry units", *Journal of Materials in Civil Engineering*, Vol.29, No.9, pp. 04017095(1-9) (SCI, SCOPUS) (IF2018 = 1.984)
- 23) Yoobanpot, N., Jamsawang, P. and Horpibulsuk, S. (2017), "Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue", *Applied Clay Science*, Vol.141, pp.141-151 (SCI, SCOPUS) (IF2018 = 3.890)
- 24) Bo, M.W., Arulrajah, A., Choa, V., **Horpibulsuk, S.** and **Samingthong, W.** (2017), "Research oriented ground investigation project Changi East, Singapore", *Geotechnical Research* doi: 10.1680/jgere.16.00018 (SCOPUS)
- 25) Yaowarat, T., Horpibulsuk, S., Arulrajah, A., Mirzababaei, M. and Rashid, A.S.A. (2017), "Compressive and flexural strength of polyvinyl alcohol modified pavement concrete using recycled concrete aggregates", *Journal of Materials in Civil Engineering*, doi: 10.1061/(ASCE) 20 MT.1943-5533.0002233 (SCI, SCOPUS) (IF2018 = 1.984)
- 26) Mirzababaei, M., Mohamedm M., Arulrajah, A., **Horpibulsuk, S.**, and Anggraini, V. (2017), "Practical approach to predict the shear strength of fibre-reinforced clay", *Geosynthetics International*, doi: 10.1680.jgein.17.00033 (SCI, SCOPUS) (IF2018 = 2.890)
- 27) Chinkulkijniwat, A., Horpibulsuk, S., Bui Van, D., Udomchai, A., Goodary, R. and A. Arulrajah, A. (2017), "Influential factors affecting drainage design considerations for mechanical stabilised earth walls using geocomposites", *Geosynthetics International*, Vol.24, No.3, pp.224-241 (SCI, SCOPUS) (IF2018 = 2.890)
- 28) **Bui Van, D., Chinkulkijniwat, A., Horpibulsuk, S., Limrat, I.**, Arulrajah, A. and Jothityagkoon, C. (2017), "Steady flow in mechanically stabilised earth walls using marginal lateritic soil with geocomposites", *Geosynthetics International*, Vol.24, No.6, pp.590-606 (SCI, SCOPUS) (IF2018 = 2.890)
- 29) Xu, K.J., Liu, M.D., Indraratna, B., and **Horpibulsuk, S.** (2017), "Explicit stress-strain equations for modelling friction materials", *Marine Georesources & Geotechnology* doi: 10.1080/1064119X.2017.1384872 (SCI, SCOPUS) (IF2018 = 1.166)
- 30) Siriphun, S., Horpibulsuk, S., Chotisakul, S., Suddeepong, A., Chinkulkijniwat, A. and Arulrajah, A. (2017), "Effect of cumulative traffic and statistical predictive modeling of field

- skid resistance", *Road Materials and Pavement Design*, doi: 10.1080/14680629.2017.138551 (SCI, SCOPUS) (IF2018 = 1.980)
- 31) **Sukmak, P., Sukmak, G., Horpibulsuk, S.,** Setkit, M., Kassawat, S. and Arulrajah, A. (2017), "Palm oil fuel ash-soft soil geopolymer for subgrade applications: Strength and microstructural evaluation", *Road Materials and Pavement Design*, doi: 10.1080/14680629.2017.1375967 (SCI, SCOPUS) (IF2018 = 1.980)
- 32) Hassan, W.H.W., Rashid, A.S.A, Latifi, N., **Horpibulsuk, S.** and Borhamdin, S. (2017), "Strength and morphological characteristics of organic soil stabilized with magnesium chloride", *Quarterly Journal of Engineering Geology and Hydrology*, Vol.50, 454-459 (SCI, SCOPUS) (IF2018 = 1.171)
- 33) Du, Y.J., Zhou, M., Wang, F., Arulrajah, A. and **Horpibulsuk, S.** (2017), "Earth pressure on the trenched HDPE pipes in fine-grained soils during construction phase: Full-scale field trial and finite element medeling", *Transportation Geotechnics*, Vol.12, pp.56-69 (SCI, SCOPUS)
- 34) **Limkatanku, S.**, Sae-long, W., **Horpibulsuk, S.**, Prachasaree, W. and Damrongwiriyanupap, N. (2018), "Flexural responses of nanobeams with coupled effects of nonlocality and surface energy", *ZAMM Zeitschrift für Angewandte Mathematik und Mechanik*, doi: 10.1002/zamm.201700311 (SCI, SCOPUS) (IF2018 = 1.467)
- 35) Arulrajah, A., Imteaz, M., **Horpibulsuk, S.**, Du, Y.J. and Shen, S.L. (2018), "Recycled concrete aggregate/municipal glass as a low-carbon resource material for footpaths", *Road Materials and Pavement Design*, Vol.19, No.3, pp.727-740, doi: 10.1080/14680629.2016.1262786 (SCI, SCOPUS) (IF2018 = 1.980)
- 36) Latifi, N., Vahedifard, F., Ghazanfari, E., **Horpibulsuk, S.**, Marto, A., and Williams, J. (2018), "Sustainable improvement of clays using low-carbon non-traditional additive", *International Journal of Geomechanics*, Vol.13, No.3, pp. 04017162(1-10) (SCI, SCOPUS) (IF2018 = 2.450)
- 37) **Phummiphan, I., Horpibulsuk, S., Rachan, R.**, Arulrajah, A., Shen, S.L. and Chindaprasirt, C. (2018), "High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material", *Journal of Hazardous Materials*, Vol.341, pp.257-267 (SCI, SCOPUS) (IF2018 = 7.650)

- 38) Yoobanpot, N., Jamsawang, P., Krairan, K., Jongpradist, P. and Horpibulsuk, S. (2018), "Reuse of dredged sediments as pavement materials by CKD and lime treatment", *Geomechanics and Engineering*, Vol.15, No.4, doi: 10.12989/gae.2018.15.4.000 (SCI, SCOPUS) (IF2018 = 2.594)
- 39) Takaikaew, T., Tepsriha, P., Horpibulsuk, S., Hoy, M., Kaloush, K.E. and Arulrajah, A. (2018), "Performance of fiber-reinforced asphalt concretes with various asphalt binders in Thailand", *Journal of Materials in Civil Engineering*, Vol.30, No.8, pp. 04018193(1-11) (SCI, SCOPUS) (IF2018 = 1.984)
- 40) **Udomchai, A.**, **Hoy, M.**, **Horpibulsuk, S.**, **Chinkulkijniwat, A.**, and Arulrajah, A. (2018) "Failure of riverbank protection structure and remedial approach: A case study in Suraburi Province, Thailand", *Engineering Failure Analysis*, Vol.91, pp. 243-254 (SCI, SCOPUS) (IF2018 = 2.203)
- 41) Al-Bared, M.A.M., Marto, A., Latifi, N., and **Horpibulsuk, S.** (2018), "Sustainable improvement of marine clay using recycled blended tiles", *Geotechnical and Geological Engineering*, Vol.35, pp.2613-2623, doi: 10.1007/s10706-018-0525-8 (ISI, SCOPUS).
- 42) Suddeepong, A., Sari, N., Horpibulsuk, S., Chinkulkijniwat, C. and Arulrajah, A. (2018), "Interface shear behaviors between recycled concrete aggregate and geogrid for pavement applications", *International Journal of Pavement Engineering*, doi: 10.1080/10298436.2018.1453609 (SCI, SCOPUS) (IF2018 = 2.298)
- 43) **Hoy, M., Horpibulsuk, S.**, Arulrajah, A. and Mohajerani, A. (2018), "Strength and microstructural study of recycled asphalt pavement-slag geopolymer as a pavement base material", *Journal of Materials in Civil Engineering*, Vol.30, No.8, pp.04018177(1-11) (SCI, SCOPUS) (IF2018 = 1.984)
- 44) Moradi, R., Marto, A., Rashid, A.S.A., Moradi, M.M., Ganiyu, A.A. and **Horpibulsuk, S.** (2018), "Bearing capacity of soft soil model treated with end bearing bottom ash columns", *Environmental Earth Sciences*, Vol.77, doi: 10.1007/s12665-018-7287-8 (SCI, SCOPUS) (IF2018 = 1.871)
- 45) **Suddeepong, A., Intra, A., Horpibulsuk, S., Suksiripattanapong, C.**, Arulrajah, A. and Shen, S.L. (2018), "Durability against wetting and drying of cement stabilized reclaimed asphalt

- pavement blended with crushed rock", *Soils and Foundations*, Vol.58, No.2, pp.333-343 (SCI, SCOPUS) (IF2018 = 1.673)
- 46) Kou, H., Diao, W.Z., Liu, T., Yang, D. and **Horpibulsuk, S.** (2018), "Field performance of open-ended prestressed high-strength concrete pipe pile jacked into clay", *Sensors*, doi: 10.3390/s18124216 (SCI, SCOPUS) (IF2018 = 3.031)
- 47) Mohammadinia, A., Arulrajah, A., D'Amico, A. and **Horpibulsuk, S.**, (2018), "Alkali activation of lime kiln dust and fly ash blends for the stabilization of demolition wastes", *Road Materials and Pavement Design*, doi: 14680629.2018.1555095 (SCI, SCOPUS) (IF2018 = 1.980)
- 48) Arulrajah, A., Yaghoubi, M., Difani, M.M., **Horpibulsuk, S.**, Bo, M.W. and Leong, M. (2018), "Evaluation of fly ash and slag based geopolymers for the improvement of a soft marine clay by deep soil mixing", *Soils and Foundations*, Vol.58, pp.1358-1370 (SCI, SCOPUS) (IF2018 = 1.673)
- 49) Latifi, N., Vahedifard, F., **Horpibulsuk, S.**, and Siddiqua, S. (2018), "Solidification-stabilization of heavy metal contaminated clay using gypsum: Multi-scale assessment", *International Journal of Geomechanics*, Vol.18, No.11, pp.04018150(1-13) (ISI, SCOPUS) (IF2018 = 2.450)
- 50) Imteaz, M., Arulrajah, A., **Horpibulsuk, S.** and Ahsan, A. (2018). "Environmental suitability and carbon footprint savings of recycled tyre crumbs for road applications", *International Journal of Environmental Research*, doi: 10.1007/s41742-018-0126-7 (SCI, SCOPUS) (IF2018 = 1.488)
- Donrak, J., Horpibulsuk, S., Arulrajah, A., Kao, H., Chinkulkijniwat, A. and Hoy, M. (2018), "Wetting-drying cycles durability of cement stabilized marginal lateritic soil/melamine debris blends for pavement applications", *Road Materials and Pavement Design*, doi: 10.1080/14680629.2018.1506816 (SCI, SCOPUS) (IF2018 = 1.980)
- 52) Haghighi, H., Arulrajah, A., Mohammadinia, A., and **Horpibulsuk, S.** (2018), "A new approach for determining resilient moduli of marginal pavement base materials using the staged repeated load CBR test method", *Road Materials and Pavement Design*, Vol.19, No.8, pp.1848-1867 (SCI, SCOPUS) (IF2018 = 1.980)

- 53) **Sudla, P.**, **Horpibulsuk, S.**, **Chinkulkijniwat, A.**, Arulrajah, A, Liu, M.D. and Hoy, M. (2018), "Marginal lateritic soil/crushed slag blends as sustainable engineering fill material", *Soils and Foundations*, Vol.58, No.4, pp.786-795 (SCI, SCOPUS) (IF2018 = 1.673)
- 54) Mohammadinia, A., Arulrajah, A., D'Amico, A. and **Horpibulsuk, S.** (2018), "Alkali-activation of fly ash and cement kiln dust mixtures for stabilization of demolition aggregates" *Construction and Building Materials*, Vol.186, pp.71-78 (SCI, SCOPUS) (IF2018 = 4.046)
- 55) Yaghoubi, M., Arulrajah, A, Disfani, M.M., **Horpibulsuk, S.**, Bo, M.W. and Darmawan, S. (2018), "Effects of industrial by-product based geopolymers on the strength development of a soft soil", *Soils and Foundations*, Vol.58, No.3, pp.716-728 (SCI, SCOPUS) (IF2018 = 1.673)
- 56) Chaidachatorn, K., Suebsuk, J., Horpibulsuk, S. and Arulrajah, A. (2019), "Extended water/cement ratio law for cement mortar containing recycled asphalt pavement", Construction and Building Materials, Vol.196, pp.457-467 (SCI, SCOPUS) (IF2018 = 4.046)
- 57) Mohammadinia, A., Arulrajah, A., **Phummiphan, I.**, **Horpibulsuk, S.** and Mirzababaie, M. (2019), "Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue", *Construction and Building Materials*, Vol.119, pp.115-123 (SCI, SCOPUS) (IF2018 = 4.046)
- 58) Siriphun, S., Horpibulsuk, S., Chotisakul, S., Suddeepong, A., Chinkulkijniwat, A. and Arulrajah, A. (2019), "Effect of cumulative traffic and statistical predictive modeling of field skid resistance", *Road Materials and Pavement Design*, Vol.20, No.2, pp.426-439 (SCI, SCOPUS) (IF2018 = 1.980)
- 59) Arulrajah, A., Mohammadinia, A., Maghool, F. and **Horpibulsuk, S.** (2019), "Tyre derived aggregates and waste rock blends: resilient moduli characteristics", *Construction and Building Materials*, Vol.201, pp.207-217 (SCI, SCOPUS) (IF2018 = 4.046)
- 60) Suebsuk, J., Horpibulsuk, S., Suksan, A., Suksiripattanapong, C., Phoo-ngernkham, T. and Arulrajah, A. (2019), "Strength prediction of cement stabilised reclaimed asphalt pavement and lateritic soil blends", *International Journal of Pavement Engineering*, Vol.20, No.3, pp.332-338 (SCI, SCOPUS) (IF2018 = 2.298)
- 61) Mohammadinia, A., Arulrajah, A. and **Horpibulsuk, S.** and Shourijeh, P.T. (2019), "Impact of potassium cations on the light chemical stabilization of construction and demolition wastes", *Construction and Building Materials*, Vol.203, pp.69-74 (SCI, SCOPUS) (IF2018 = 4.046)

- 62) Al-Taie, A., Disfani, M., Evans, R., Arulrajah, A., and **Horpibulsuk, S.**, (2019), "Volumetric behavior and soil water characteristic curve of untreated and lime stabilized reactive clay", *International Journal of Geomechanics*, Vol.19, No.2, pp.04018192(1-13) (SCI, SCOPUS) (IF2018 = 2.450)
- 63) Liu, M.D., Airay, D.W., Indraratna, B., Zhuang, Z. and **Horpibulsuk, S.** (2019), "An extended modified Cam Clay model for improved accuracy at low and high-end stress levels", *Marine Georesource and Geotechnology*, doi: 10.1080/1064119X.2019.1581309 (ISI, SCOPUS) (IF2018 = 1.166)
- 64) Arulrajah, A., Kua, T.A., **Suksiripattanapong, S.**, and **Horpibulsuk, S.** (2019), "Stiffness and strength properties of spent coffee grounds-recycled glass geopolymers", *Road Materials and Pavement Design*, Vol.20, No.3, pp.623-638 (SCI, SCOPUS) (IF2018 = 1.980)
- 65) Shirazi, M.G., Rashid, A.S.A., Nazir, R.B., Rashid, A.H.A., Kassim, A. and **Horpibulsuk, S.** (2019), "Investigation of tensile strength on alkaline treated and untreated geotextile under dry and wet conditions", *Geotextiles and Geomembranes*, doi: 10.1016/j.getexmem.2019.01.016 (SCI, SCOPUS) (IF2018 = 3.972)
- 66) Yaowarat, T., **Horpibulsuk, S.**, Arulrajah, A., Mohammadinia, A. and **Chinkulkijniwat, C.** (2019), "Recycled concrete aggregate modified with polyvinyl alcohol and fly ash for concrete pavement applications", *Journal of Materials in Civil Engineering*, Vol.31, No.7, pp.04019140(1-12) (SCI, SCOPUS) (IF2018 = 1.984)
- 67) **Poltue, T., Suddeepong, A., Horpibulsuk, S., Samingthong, W.,** Arulrajah, A., and Rashid, A.S.A. (2019), "Strength development of recycled concrete aggregate stabilized with fly ashrice husk ash based geopolymer as pavement base material", *Road Materials and Pavement Design*, doi: 10.1080/1468069.2019.1593884 (SCI, SCOPUS) (IF2018 = 1.980)
- 68) Arulrajah, A., Mohammadinia, A., Maghool, F. and **Horpibulsuk, S.** (2019), "Tire derived aggregates as a supplementary material with recycled demolition concrete for pavement applications", *Journal of Cleaner Production*, doi: 10.1016/j.jclepro.2019.05.084 (SCI, SCOPUS) (IF2018 = 6.395)
- 69) Rashid, A.S.A., Shirazi, M.G., Nazir, R., Mohamad, H., Sahdi, F. and **Horpibulsuk, S.** (2019), "Bearing capacity performance of soft cohesive soil treated by kenaf limited life geotextile", *Marine Georesources and Geotechnology*, doi: 10.1080/1064119X.2019.1616861 (ISI, SCOPUS) (IF2018 = 1.166)

- 70) **Sukprasert, S., Hoy, M., Horpibulsuk, S.**, Arulrajah, A., Rashid, A.S.A. and Nazir, R. (2019), "Fly ash geopolymer stabilization of silty clay/blast furnace slag for subgrade applications", *Road Materials and Pavement Design*, doi: 10.1080/14680629.2019.1621190 (SCI, SCOPUS) (IF2018 = 1.980)
- 71) **Sukmak, P.**, Kunchariyakun, K., **Sukmak, G.**, **Horpibulsuk, S.**, Kassawat, S. and Arulrajah, A. (2019), "Strength and microstructure of palm oil fuel ash-fly ash-soft soil geopolymer masonry units", *Journal of Materials in Civil Engineering*, Vol.31, No.8, pp.04019164(1-13), doi: 10.1061/(ASCE)MT.1943-5533.0002809 (ISI, SCOPUS) (IF2018 = 1.984)
- 72) **Suebsuk, J.**, **Horpibulsuk, S.** and Liu, M.D. (2019), "Compression and shear responses of structured clays during subyielding", *Geomechanics and Engineering*, Vol.18, No.2, pp.121-131, doi: 10.12989/gae.2019.18.2.000 (SCI, SCOPUS) (IF2018 = 2.594)
- 73) Sae-Long, W., Limkatanyu, S., Prachasaree, W., Horpibulsuk, S. and Panedpojaman, P. (2019), "Nonlinear frame element with shear-flexure interaction for seismic analysis of non-ductile reinforced concrete columns", *International Journal of Concrete Structures and Materials*, Vol.13, No.32, doi: 10.1186/s40069-019-0343-2 (SCI, SCOPUS) (IF2018 = 2.111)
- 74) Hassan, H., Hassan, W.H.W., Rashid, A.S.A., Latifi, N., Yunus, N.Z.M. and **Horpibulsuk, S.** (2019), "Microstructural characterstics of organic soils treated with biomass silica stabilizer", *Environmental Earth Sciences*, Vol.78, No.367, doi: 10.1007/s12665-019-8369-y (SCI, SCOPUS) (IF2018 = 1.871)
- 75) Sukontasukkul, P., Chaisakulliet, U., **Jamsawang, P.**, **Horpibulsuk, S.**, Jaturapitakkul, C. and Chindaprasirt, P. (2019), "Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand", *Case Studies in Construction Materials*, Vol.11, doi: 10.1016/j.cscm.2019.e00271 (SCI, SCOPUS)
- 76) Donrak, J., Hoy, M., Horpibulsuk, S., Arulrajah, A., Mirzababaei, M. and Rashid, A.S.A. (2019), "Environmental assessment of cement stabilised marginal lateritic soil/melamine debris for Thailand's pavement", *Environmental Geotechnics*, doi: 10.168/jenge.18.00195 (SCI, SCOPUS) (IF2018 = 1.147)
- 77) Sudla, P., Donrak, J., Hoy, M., Horpibulsuk, S., Arulrajah, A., Rashid, A.S.A., Nazir, R. and Samingthong, W. (2019), "Laboratory investigation of cement stabilized marginal lateritic

- soil by crushed/fly ash replacement for pavement applications", *Journal of Materials in Civil Engineering*, (Accepted for publication on 28 June 2019) (ISI, SCOPUS) (IF2018 = 1.984)
- 78) Maghool, F., Arulrajah, A., **Suksiripattanapong, C.**, **Horpibulsuk, S.**, and Mohajerani, A. (2019), "Geotechnical properties of steel slag aggregates: shear strength and stiffness", *Soils and Foundations* (Accepted for publication on 29 March 2019) (SCI, SCOPUS) (IF2018 = 1.673)
- 79) Sukmak, G., Sukmak, P., Joonhklang, A., Udomchai, A., Horpibulsuk, S., Arulrajah, A. Yeanyong, C. (2019), "Predicting pullout resistance of bearing reinforcement embedded in cohesive-frictional soils", *Journal of Materials in Civil Engineering*, (Accepted for publication on 29 July 2019) (ISI, SCOPUS) (IF2018 = 1.984)

3. การนำผลงานไปใช้ประโยชน์ในเชิงพาณิชย์ หรือเชิงสาธารณะ หรือเชิงนโยบาย

- ผลงานวิจัยด้านวัสดุสังเคราะห์ได้นำไปประยุกต์ใช้การแก้ปัญหาการวิบัติของกำแพงกันดินของกรม ทรัพยากรน้ำ จังหวัดสระบุรี
- ผลงานวิจัยด้านการปรับปรุงคุณสมบัติของดินด้วยการเสริมวัสดุเสริมกำลังได้นำมาประยุกต์ใช้ในงาน ออกแบบโครงสร้างกันดินของกรมทางหลวง เช่น โครงการก่อสร้างทางหลวงพิเศษระหว่างเมือง สายบาง ประอิน-สระบุรี-นครราชสีมา ช่วง กม.110+900.00 กม.119+000.00 โครงการก่อสร้างสะพานข้าม แยกนิคมอุตสาหกรรมบ่อวิน/อีสเทอร์นซีบอร์ด/อมตะซิตี้ และแยกปากร่วม จังหวัดชลบุรี โครงการ ก่อสร้างทางหลวง ดอยติ จังหวัดเชียงใหม่ และโครงการก่อสร้าง Crusher plant ในเหมืองแม่เมาะ จังหวัดลำปาง
- การพัฒนาชุดทดสอบวัสดุสังเคราะห์ได้นำมาใช้ในการออกแบบและควบคุมคุณภาพของวัสดุสังเคราะห์ ให้กับหน่วยงานของภาครัฐและเอกชน
- ชุดทดสอบ Universal Cyclic Testing Machine ที่พัฒนาขึ้นโดยคณะวิจัย ได้รับรางวัล Silver Award ในงานมหกรรมวิจัยแห่งชาติ 2562 สำนักงานคณะกรรมการวิจัยแห่งชาติ และได้นำมาประยุกต์ใช้ในการ ทดสอบคุณสมบัติทางวิศวกรรมของดินซีเมนต์ผสมปูนซีเมนต์และยางพารา ให้แก่คณะกรรมการพิจารณา รับรองมาตรฐานวัสดุน้ำยางพาราผสมสารผสมเพิ่มและสารผสมเพิ่มสำหรับการก่อสร้างถนนดินซีเมนต์ ปรับปรุงคุณภาพด้วยยางธรรมชาติ
- งานวิจัยด้านดินซีเมนต์ปรับปรุงคุณภาพด้วยยางพารา มีส่วนในการกำหนดข้อกำหนดพิเศษ ที่ สว. พิเศษ
 1/2560 สำหรับดินซีเมนต์ปรับปรุงคุณภาพด้วยยางธรรมชาติ ของกรมทางหลวง

- ผลงานด้านการจัดทำแผนแม่บทพัฒนาทางหลวงชนบทในพื้นที่สำนักงานทางหลวงชนบทที่ 5 และ 7 สามารถนำไปใช้ในการกำหนดลำดับความสำคัญในการจัดสรรงบประมาณก่อสร้างถนน ซ่อมบำรุง
 เครื่องจักรกล อาคารสถานที่ และพัฒนาบุคลากร ของกรมทางหลวงชนบท
- ผลงานวิจัยด้านระบบระบายน้ำแนวดิ่งสามารถนำมาประยุกต์ใช้ในงานถมดิน (Reclamation) ในบ่อดิน โคลนอ่อนมาก

4. วิทยากรรับเชิญในการประชุมที่สำคัญระดับชาติและระดับนานาชาติ

- 1) Horpibulsuk, S., Suksiripattanpong, C., Chinkulkijniwat, A. and Arulrajah, A. (2016), "Engineering properties of water treatment sludge-fly ash lightweight cellular geopolymer", *Proceedings of BIT's 2nd Annual World Congress of Smart Materials 2016*, 4-6 March 2016, pp.235-239 (Invited lecture).
- 2) Horpibulsuk, S., Donrak, J., Phummiphan, I., Arulrajah, A. and Hoy, M. (2016), "Sustainable stabilization of marginal lateritic soil for pavement applications Engineering", *Proceedings of 6th International Conference on Geochinque, Construction Materials and Environment*, Bangkok, Thailand, 14-16 November 2016 (Keynote lecture).
- 3) Horpibulsuk, S., Hoy, M., Witchayaphong, P., Rachan, R. and Arulrajah, A. (2017), "Recycled asphalt pavement-fly ash geopolymer as a sustainable stabilized pavement material", *Proceedings of 12th Annual Concrete Conference*, The Regent Cha Beach Resort, Thailand, 15-17 February 2017 (Keynote lecture).
- 4) **Horpibulsuk, S.** (2017), "Design of bearing reinforcement earth wall using coarase- and fine-grained soil backfills", *International Conference on Infrastructure Transportation and Materials*, Qingdao, China, 9-12 February 2017 (Invited lecture).
- 5) Horpibulsuk, S., Hoy, M., Witchayaphong, P., Rachan, R. and Arulrajah, A. (2017), "Recycled asphalt pavement-fly ash geopolymer as a sustainable stabilized pavement material", *International Conference on Informatics, Technology and Engineering*, Bali, Indonesia, 24-25 August 2017 (Invited lecture).
- 6) Horpibulsuk, S., Hoy, M., Rachan, R. and Arulrajah, A. (2017), "Fly ash geopolymer stabilized asphalt pavement as a sustainable base material", *International Conference on Geochinque, Construction Materials and Environment*, Mie, Japan, 21-23 November 2017, pp.2-9 (Keynote lecture).

- 7) Horpibulsuk, S., Udomchai, A., Hoy, M., and Arulrajah, A. (2018), "Remedy of a collapsed riverbank protection structure in Thailand", 4th International Conference on VIETGEO 2018, Dong Hoi, Quang Binh, Vietnam, 21-22 September 2018 (Keynote lecture).
- 8) **Horpibulsuk, S.** (2019), "Application of Bearing Reinforcement Earth Wall for Mining Activity", 11st International Conference on Geotechnical Engineering in Tropical Regions, Kuala Lumpur, Malaysia, 27-28 November 2019 (Keynote lecture).
- 9) **Horpibulsuk, S.** (2019), "Stabilization of maginal lateritic soil using melamine debris for sustainable geotechnical applications", 1st Himalayan Engineering Geological Congress (HEGC-I), Kathmandu, Nepal, 12-13 May 2019 (Keynote lecture).
- 10) **Horpibulsuk, S.** (2019), "Recycled materials for sustainable geotechnical applications", Southeast Symposium of Recent Developments in Geotechnics, Nanjing, Jiangsu, China, 7-9 July 2019 (Keynote lecture).
- 11) Horpibulsuk, S., Takaikaew, T., Hoy, M. and Rachan, R. (2019), "Performance improvement of asphalt concrete using fiber reinforcement" 2nd International Symposium Construction Innovation Research & PhD Symposium (ISCIR 2019), Walailak University, Nakhon Si Thammarat, Thailand, 18-19 July 2019 (Keynote lecture).
- 12) **Horpibulsuk, S.** (2019), "Cement stabilization with recycled non-plastic materials replacement A sustainable soil improvement", International Symposium on Soft Ground Improvement (SOG), Ramada Plaza, Melaka, Malaysia, 5-6 August 2019 (Keynote lecture).

5. รางวัลที่ท่านได้รับระหว่างรับทุนส่งเสริมกลุ่มวิจัย

- พ.ศ. 2559 รางวัล Excellent Paper Award เรื่อง Evaluation of fly ash based geopolymer stabilized recycled asphalt pavement as a sustainable pavement material จากงาน สัมมนา International Conference on Sustainable and Renewable Energy Engineering
- พ.ศ. 2559 รางวัล Best Paper Award เรื่อง Influence of nonwoven geotextile on the hydraulic response of mechanical stabilized earth wall จากงานสัมมนา 6th International Conference on GEOMATE
- พ.ศ. 2559 รางวัล Best Paper Award เรื่อง Geotechnical properties of ladle furnace slag in roadwork applications จากงานสัมมนา 6th International Conference on GEOMATE
- พ.ศ. 2559 เมธีวิจัยอาวุโส สำนักงานกองทุนสนับสนุนการวิจัย (สกว)

- พ.ศ. 2560 Certificate for Highly Cited Research วารสาร Engineering Geology เรื่อง Jet grouting with a new developed technology: The twin jet method (เดือนมกราคม 2560)
- พ.ศ. 2561 รางวัลสภาวิจัยแห่งชาติ : รางวัลผลงานประดิษฐ์คิดค้น จากสำนักงานคณะกรรมการวิจัยแห่งชาติ
- พ.ศ. 2561 Certificate for Highly Cited Research วารสาร Engineering Geology เรื่อง Jet grouting with a new developed technology: The twin jet method (เดือนมกราคม 2560)
- พ.ศ. 2561 Best Paper of the 12th Natural Science of Nanjing City in 2015-2016 เรื่อง "Estimating the compression behaviour of metal-rich clays via disturbed state concept (DSC) model", ที่เผยแพร่ในวารสาร Applied Clay Science ปี ค.ศ. 2016 โดยThe Best Paper Review Committee of Natural Science of Nanjing City สาธารณรัฐประชาชน จีน
- พ.ศ. 2561 Best Paper of the 12th Natural Science of Nanjing City in 2015-2016 เรื่อง "Estimating the compression behaviour of metal-rich clays via disturbed state concept (DSC) model", ที่เผยแพร่ในวารสาร Applied Clay Science ปี ค.ศ. 2016 โดยThe Best Paper Review Committee of Natural Science of Nanjing City สาธารณรัฐประชาชน จีน
- พ.ศ. 2561 พนักงานสายวิชาการดีเด่นด้านการบริการวิชาการ มหาวิทยาลัยเทคโนโลยีสุรนารี
- พ.ศ. 2561 โล่รางวัลเชิดชูเกียรติผลงานที่มีความโดดเด่นทางด้านเทคโนโลยี มูลนิธิส่งเสริมวิทยาศาสตร์และ เทคโนโลยีในพระบรมราชูปภัมภ์
- พ.ศ. 2561 โล่รางวัลเชิดชูเกียรติศิษย์เก่าดีเด่น ด้านวิชาการและนวัตกรรม สมาคมนักเรียนเก่าญี่ปุ่นในพระ บรมราชูปถัมภ์
- พ.ศ. 2561 รางวัล Best Paper Award เรื่อง Industrial by-product-based binders for use in deep soil mixing technique จากงานสัมมนา 8th International Conference on GEOMATE
- พ.ศ. 2562 รางวัลนักวิจัยดีเด่นแห่งชาติ สาขาวิศวกรรมศาสตร์และอุตสาหกรรมวิจัย จากสำนักงาน คณะกรรมการวิจัยแห่งชาติ
- พ.ศ. 2562 รางวัล Silver Award เรื่อง "นวัตกรรมถนนอย่างยั่งยืน" ในงานมหกรรมวิจัยแห่งชาติ 2562 สำนักงานคณะกรรมการวิจัยแห่งชาติ

6. นักวิจัยในโครงการที่ได้รับรางวัลหรือได้รับทุนวิจัยอื่นในระหว่างที่ท่านรับทุนส่งเสริมกลุ่มวิจัย

1) ศาสตราจารย์ ดร.สุขสันติ์ หอพิบูลสุข

- ผู้จัดการโครงการวิจัย เรื่อง "โครงการออกแบบและพัฒนาผิวทางแอสฟัลต์ประเภท AC Duopave เพื่อเพิ่ม ประสิทธิภาพด้านความปลอดภัยบนทางหลวงชนบท" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทาง หลวงชนบท (ทช) เป็นเงิน 4,900,000 บาท พ.ศ. 2559-2559
- 2) ผู้จัดการโครงการวิจัย เรื่อง "โครงการศึกษาความเหมาะสมโครงข่ายทางหลวงชนบทสนับสนุนเมือง ชายแดน" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็นเงิน 5,000,000 บาท พ.ศ. 2559-2559
- 3) ผู้จัดการโครงการวิจัย เรื่อง "โครงการศึกษาแผนแม่บทจราจรและแผนแม่บทพัฒนาระบบขนส่งสาธารณะใน เขตเมืองนครราชสีมา" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสำนักงานนโยบายและแผนการขนส่งและ จราจร (สนข) เป็นเงิน 43,700,000 บาท พ.ศ. 2559-2560
- 4) ผู้จัดการโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 5 ประจำปังบประมาณ พ.ศ. 2560" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 3,000,000 บาท พ.ศ. 2559-2560
- 5) ผู้จัดการโครงการ เรื่อง "โครงการศึกษาการปรับปรุงคุณภาพวัสดุที่ไม่ได้มาตรฐาน มทช เพื่อใช้ในงานทาง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็นเงิน 4,950,000 บาท พ.ศ. 2560-2560
- 6) ผู้จัดการโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 5 ประจำปังบประมาณ พ.ศ. 2561" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 3,000,000 บาท พ.ศ. 2560-2561
- 7) ผู้ร่วมโครงการ "Harnessing renewable energy from low-carbon geothermal pavements" ได้รับ การสนับสนุนเงินอุดหนุนการวิจัยจาก Australian Research Council เป็นเงิน \$354,342 พ.ศ. 2560-2562
- 8) หัวหน้าโครงการ เรื่อง "โครงการการประยุกต์ใช้ระบบระบายน้ำแนวดิ่งสำหรับงานถมบ่อโคลนในเหมืองแม่ เมาะ" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ) เป็นเงิน 9,936,838 บาท พ.ศ. 2561-2562
- 9) ผู้เชี่ยวชาญด้านวิศวกรรมโยธา โครงการ เรื่อง "โครงการศึกษาความเหมาะสมและการออกแบบ (Feasibility Study and Detailed Design) ศูนย์จัดการสิ่งแวดล้อมอย่างยั่งยืนขององค์การบริหารส่วน ตำบลท้ายดง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากองค์การบริหารส่วนตำบลท้ายดง อำเภอวังโป่ง จังหวัดเพชรบูรณ์ เป็นเงิน 1,232,880 บาท พ.ศ. 2561-2561

- 10) หัวหน้าโครงการวิจัย เรื่อง "คุณสมบัติทางวิศวกรรมของแอสฟัลต์คอนกรีตผสมน้ำยางธรรมชาติ" ได้รับการ สนับสนุนเงินอุดหนุนการวิจัยจากโครงการปริญญาเอกกาญจนาภิเษก รุ่น 20 สำนักงานกองทุนสนับสนุน การวิจัย (สกว) เป็นเงิน 2,000,000 บาท พ.ศ. 2561-2563
- 11) หัวหน้าโครงการวิจัย เรื่อง "การศึกษาเพื่อจัดทำมาตรฐาน Para Soil Cement ในงานก่อสร้างทาง" ได้รับ การสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่งประเทศไทย เป็นเงิน 3,500,000 บาท พ.ศ. 2561-2561
- 12) ผู้จัดการโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 4 ประจำปีงบประมาณ พ.ศ. 2561" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 5,000,000 บาท พ.ศ. 2561-2562
- 13) หัวหน้าโครงการวิจัย เรื่อง "การปรับปรุงคุณสมบัติของผิวทางคอนกรีตด้วยน้ำยางพาราผสมสารผสมเพิ่ม" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่งประเทศไทย เป็นเงิน 13,379,575 บาท พ.ศ. 2561-2563
- 14) หัวหน้าโครงการวิจัย เรื่อง "การเปรียบเทียบสมรรถนะและต้นทุนของแอสฟัลต์คอนกรีตที่ปรับปรุงด้วยยาง แห้งและยางน้ำข้น" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่งประเทศไทย เป็นเงิน 20,700,405 บาท พ.ศ. 2561-2563
- 15) หัวหน้าโครงการวิจัย เรื่อง "การออกแบบกำแพงกันดินเหล็กเสริมแบกทานที่มีประสิทธิภาพทางวิศวกรรม และเศรษฐศาสตร์" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากโครงการพัฒนานักวิจัยและงานวิจัยเพื่อ อุตสาหกรรม (พวอ) สำนักงานกองทุนสนับสนุนการวิจัย (สกว) เป็นเงิน 2,000,000 บาท พ.ศ. 2562-2565

2) ศาสตราจารย์ ดร.สุชาติ ลิ้มกตัญญู

- 1) หัวหน้าโครงการวิจัยเรื่อง "กรอบการคำนวณสำหรับการจำลองและวิเคราะห์ปัญหาพหุขนาดในวิศวกรรม โครงสร้างและกลศาสตร์ประยุกต์: จากวิศวกรรมแผ่นดินไหวถึงนาโนเทคโนโลยี" เมธีวิจัยอาวุโส สกว ได้รับ การสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว) เป็นเงิน 7,500,000 บาท พ.ศ. 2562-2565
 - 3) รองศาสตราจารย์ ดร.อวิรุทธิ์ ชินกุลกิจนิวัฒน์

- 1) หัวหน้าโครงการวิจัยเรื่อง "Hydrological Responses and Stability Analysis of Rainfall-Induced Shallow Slope Failures" เมธีวิจัย สกว ได้รับการสนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว) เป็นเงิน 1,500,000 บาท พ.ศ. 2560-2562
- 2) นักวิจัยโครงการ เรื่อง "โครงการการประยุกต์ใช้ระบบระบายน้ำแนวดิ่งสำหรับงานถมบ่อโคลนในเหมืองแม่ เมาะ" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ) เป็นเงิน 9,936,838 บาท พ.ศ. 2561-2562
- 3) ผู้เชี่ยวชาญด้านวิศวกรรมโยธา โครงการ เรื่อง "โครงการศึกษาความเหมาะสมและการออกแบบ (Feasibility Study and Detailed Design) ศูนย์จัดการสิ่งแวดล้อมอย่างยั่งยืนขององค์การบริหารส่วน ตำบลท้ายดง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากองค์การบริหารส่วนตำบลท้ายดง อำเภอวังโป่ง จังหวัดเพชรบูรณ์ เป็นเงิน 1,232,880 บาท พ.ศ. 2561-2561
- 4) ผู้เชี่ยวชาญโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 4 ประจำปังบประมาณ พ.ศ. 2561" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 5,000,000 บาท พ.ศ. 2561-2562
- 5) ผู้เชี่ยวชาญโครงการวิจัย เรื่อง "การปรับปรุงคุณสมบัติของผิวทางคอนกรีตด้วยน้ำยางพาราผสมสารผสม เพิ่ม" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่งประเทศไทย เป็นเงิน 13,379,575 บาท พ.ศ. 2561-2563

6) ผู้ช่วยศาสตราจารย์ ดร.รุ้งลาวัลย์ ราชัน

- 1) ผู้เชี่ยวชาญโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 5 ประจำปังบประมาณ พ.ศ. 2560" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 3,000,000 บาท พ.ศ. 2559-2560
- 2) ผู้เชี่ยวชาญโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 5 ประจำปีงบประมาณ พ.ศ. 2561" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 3,000,000 บาท พ.ศ. 2560-2561
- 3) ผู้เชี่ยวชาญโครงการวิจัย เรื่อง "การศึกษาเพื่อจัดทำมาตรฐาน Para Soil Cement ในงานก่อสร้างทาง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่งประเทศไทย เป็นเงิน 3,500,000 บาท พ.ศ. 2561-2561
- 4) ผู้เชี่ยวชาญโครงการ เรื่อง "โครงการจ้างที่ปรึกษาจัดทำแผนพัฒนาทางหลวงชนบทประจำกรม กลุ่มที่ 4 ประจำปังบประมาณ พ.ศ. 2561" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็น เงิน 5,000,000 บาท พ.ศ. 2561-2562

7) ผู้ช่วยศาสตราจารย์ ดร.เชิดศักดิ์ สุขศิริพัฒนพงศ์

- 1) หัวหน้าโครงการวิจัย เรื่อง "อิทธิพลของปริมาณความชื้นต่อกำลังต้านทานแรงฉุดของเหล็กเสริมแบกทาน ในดินเม็ดหยาบ" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจาก "ทุนวิจัย คปก. ต่อยอด" สำนักงานกองทุน สนับสนุนการวิจัย (สกว) เป็นเงิน 200,000 บาท พ.ศ. 2559
- 2) หัวหน้าโครงการวิจัย เรื่อง "Strength and Microstructure Development in Soft Clay Stabilized with Fly Ash and Polyvinyl Alcohol (PVA) Geopolymer" ได้รับการสนับสนุนเงินอุดหนุนการวิจัย จาก ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ จากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) เป็นเงิน 600,000 บาท พ.ศ. 2560
- 3) หัวหน้าโครงการวิจัย เรื่อง "การพัฒนาแผ่นกระเบื้องหลังคาจากเส้นใยมะพร้าว-เถ้าลอย จีโอโพลีเมอร์" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสำนักงานคณะกรรมการวิจัยแห่งชาติ (วช) เป็นเงิน 996,000 บาท พ.ศ.2560-2561
- 4) หัวหน้าโครงการวิจัย เรื่อง "นวัตกรรมระบบเสริมกำลังแบกทานด้วยวัสดุพลาสติกใยแก้วสำหรับกำแพงกัน ดินเสริมกำลังเชิงกล ระยะที่ 1" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสำนักงานกองทุนสนับสนุนการ วิจัย (สกว.) เป็นเงิน 1,723,900 บาท พ.ศ.2560-2562
- 5) ผู้เชี่ยวชาญด้านวิศวกรรมโยธา เรื่อง "โครงการศึกษาการปรับปรุงคุณภาพวัสดุที่ไม่ได้มาตรฐาน มทช เพื่อใช้ ในงานทาง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากกรมทางหลวงชนบท (ทช) เป็นเงิน 4,950,000 บาท พ.ศ. 2560-2560
- 6) หัวหน้าโครงการวิจัย เรื่อง "การพัฒนาเสาเข็มดินไฮบริดซีเมนต์จากปริมาณซีเมนต์ต่ำ" ได้รับการสนับสนุน เงินอุดหนุนการวิจัยจากโครงการพัฒนานักวิจัยและงานวิจัยเพื่ออุตสาหกรรม (พวอ) สำนักงานกองทุน สนับสนุนการวิจัย (สกว) เป็นเงิน 522,000 บาท พ.ศ. 2560-2562
- 7) หัวหน้าโครงการวิจัย เรื่อง "การพัฒนาบล็อกมวลเบาเซลลูล่าจากเถ้าหนัก จีโอโพลีเมอร์" ได้รับการ สนับสนุนเงินอุดหนุนการวิจัยจากโครงการพัฒนานักวิจัยและงานวิจัยเพื่ออุตสาหกรรม (พวอ) สำนักงาน กองทุนสนับสนุนการวิจัย (สกว) เป็นเงิน 522,000 บาท พ.ศ. 2560-2562

8) ผู้ช่วยศาสตราจารย์ ดร.ปฏิมาพร สุขมาก

1) หัวหน้าโครงการวิจัย เรื่อง "การผลิตอิฐดินเหนียวปากพนังจีโอพอลิเมอร์ด้วยวัสดุเหลือใช้จากโรงงาน อุตสาหกรรม:วัสดุก่อสร้างเขียว" "ได้รับการสนับสนุนเงินอุดหนุนงบประมาณ 100,000 บาท มหาวิทยาลัย วลัยลักษณ์ งบประมาณรายรายได้ ประจำปังบประมาณ พ.ศ. 2561

- 2) หัวหน้าโครงการวิจัย เรื่อง "การประเมินมูลค่าทางเศรษฐศาสตร์ของวิธีเพิ่มเสถียรภาพของลาดดินสำหรับการ ป้องกันดินถล่มบริเวณพื้นที่บ้านหน้าถ้ำ: สู่การจ่ายค่าตอบแทนการให้บริการของระบบนิเวศ" ได้รับการ สนับสนุนเงินอุดหนุนงบประมาณ 250,000 บาท งบประมาณรายจ่ายจากมูลนิธิชัยพัฒนา ประจำปี งบประมาณ พ.ศ. 2561-2562
- 3) หัวหน้าโครงการวิจัย เรื่อง "การศึกษาการใช้น้ำยางธรรมชาติผสมชีเมนต์เพสต์เพื่อการพัฒนาวัสดุทาง วิศวกรรม" ได้รับการสนับสนุนเงินอุดหนุนงบประมาณ 100,000 บาท มหาวิทยาลัยวลัยลักษณ์ งบประมาณ รายรายได้ ประจำปังบประมาณ พ.ศ. 2562

9) <u>นายอาทิตย์ อุดมชัย</u>

- 1) นักวิจัยโครงการ เรื่อง "โครงการการประยุกต์ใช้ระบบระบายน้ำแนวดิ่งสำหรับงานถมบ่อโคลนในเหมืองแม่ เมาะ" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ) เป็นเงิน 9,936,838 บาท พ.ศ. 2561-2562
- 2) ผู้เชี่ยวชาญด้านวิศวกรรมโยธา โครงการ เรื่อง "โครงการศึกษาความเหมาะสมและการออกแบบ (Feasibility Study and Detailed Design) ศูนย์จัดการสิ่งแวดล้อมอย่างยั่งยืนขององค์การบริหารส่วน ตำบลท้ายดง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากองค์การบริหารส่วนตำบลท้ายดง อำเภอวังโป่ง จังหวัดเพชรบูรณ์ เป็นเงิน 1,232,880 บาท พ.ศ. 2561-2561
- 3) ผู้เชี่ยวชาญด้านวิศวกรรมโยธาและการทดสอบโครงการวิจัย เรื่อง "การศึกษาเพื่อจัดทำมาตรฐาน Para Soil Cement ในงานก่อสร้างทาง" ได้รับการสนับสนุนเงินอุดหนุนการวิจัยจากสถาบันวิจัยยาง การยางแห่ง ประเทศไทย เป็นเงิน 3,500,000 บาท พ.ศ. 2561-2561