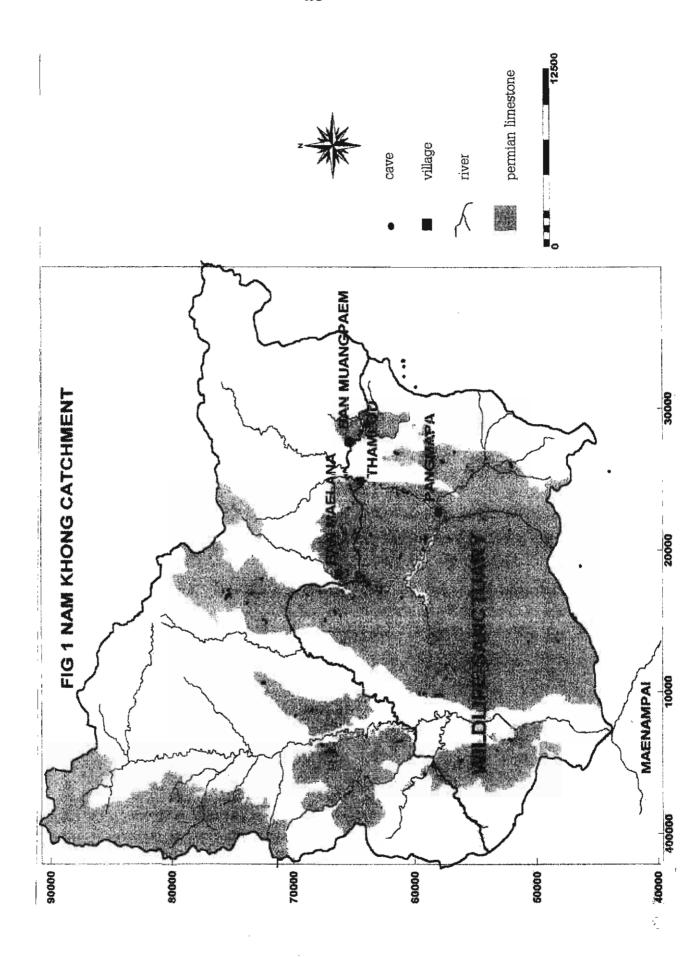
This paper deals with various issues related to the development of a suitable framework for managing the cave and karst resources in the project area. The project database includes a remarkable number of significant but vulnerable sites. More than half of the recorded caves contains pre-historic artifacts with important research and heritage value. Rare and fragile speleothem types, not found elsewhere in Thailand, occur in some sites. Seven known caves are the habitat of troglobitic fish endemic to the region.

The values that local communities place on caves in the region have changed over time. In pre-historic times, many caves were important habitation and burial sites. For most of the historical period cave use is less evident. Recently, new values are being placed on the caves with some communities actively promoting local caves as tourist attractions.

Current activities in the caves and cave catchments are threatening the integrity of the natural and cultural attributes of the region. Noticeable changes have already occurred in the condition of some catchments and features in caves and the level of threat to the relatively undisturbed sites is increasing.


Most of the caves in the project area are within the Nam Pai Wildlife Sanctuary boundary (Fig. 1) where the managing authority is the Royal Forestry Department (RFD). Existing legislation protecting the natural resources within the Wildlife Sanctuary is difficult to enforce primarily due to the number of permanent villages in the area. The underground resources have received little attention or specific protection.

Management will require the formulation of cavespecific plans. A cave classification scheme that groups caves according to their management requirements is proposed as an important first step in this process. The scheme provides a framework for identifying the style and level of management response required for maintaining the values of a particular site. An important initial management objective is to give priority protection to particularly significant and vulnerable features.

Understanding and co-operation from local communities and other concerned parties is essential for the implementation and maintenance of management strategies. Education is fundamental for achieving long-term protection and conservation of the region's natural and cultural resources. The establishment of a Cave Advisory Committee to co-ordinate education and oversee planning and developments, could lead to more consistent, effective and sustainable management of the project area.

CURRENT CAVE AND CATCHMENT VALUES AND USE

Communities in Pang Mapa have traditionally considered it their right to use or exploit local natural resources in the region. The local villagers use caves as temporary shelters, water sources, and as good places to catch fish, hunt (especially mountain goats) or collect guano and cliff bee honey. The cave catchments provide valuable land for growing wet and dry rice, corn and other crops and the forests provide wood and bamboo and other forest products including wild food and medicines. Until recent times, the dolines (closed depressions) in the karst areas were particularly valued by Lisu and Lahu people for cultivating opium poppy and this was one major reason for their migration to the area over the past 100 years. This view has been challenged since the establishment of the Nam Pai

Wildlife Sanctuary in 1972, and the increasing involvement of Government agencies in the modernisation and development of the region. Controls have been placed on forest clearing, logging and the cultivation of opium poppy. Development projects, particularly the Thai-German Highland Development Project, have introduced new crops, farming methods, and infrastructure such as roads, schools, irrigation and water systems.

During the past twenty years, 'outsiders', both Thais and foreigners, have been exploring and researching the caves in the region. Their discoveries have led to new values being placed on caves, from a more 'Western' and scientific perspective. Previous information from mainly Australian and French speleological investigations in the region and the detailed research being undertaken by the Nam Khong and Nam Lang Cave Project has identified many caves of interest to scientists and speleologists for study and research. Some sites have been discovered in a pristine state and this has helped create awareness of the intrinsic natural values of the caves and karst as a vital part of functioning ecosystems and ongoing cave formation processes (Kiernan, 1999). The recreational, exploration and educational opportunities as well as the aesthetic beauty of the caves in the Nam Khong and Nam Lang catchment were, and continue to be, highly valued. Recently some locals, recognising the potential of a new source of income, have begun guiding visitors to caves. Tham Lod, the major tourist attraction in the area, was previously used mainly for fishing and guano collection. Tourists are guided by both locals and outsiders to many caves in the region, including significant and sensitive sites such as Tham STD-034. Cave resources, especially guano and cave streams continue to be used without restriction.

The list of caves being used by local communities is long and growing. Villagers from Ban Mae Lana have chosen five local caves in the nearby Wildlife Sanctuary - Tham STD-624, Tham Pi Man, Tham STD-622, Tham STD-621 and Tham Mae Lana- to be promoted as tourist attractions. The natural and cultural features in these caves are totally unprotected. Ban Muang Paem has three nearby caves - Tham STD-637, Tham STD-638 and Tham STD-634 where tourists are taken. The local guides sometimes burn pine wood for light introducing a major source of heat and air pollution into otherwise stable atmospheres. The people of Ban Tham Lod have asserted their 'custodianship' of Tham Lod by only allowing fellow villagers to act as guides or operate rafts or foodstalls. In spite of a dramatic increase in unregulated exploitation, cave management in the region continues to be neglected by the authorities. Only three caves- Tham Lod, Tham STD-657 and Tham STD-601 have had 'management' intervention by government sources.

THE CAVE DATA BASE

A new database, of 176 caves in the Nam Khong and Nam Lang catchment includes name, map coordinates, a brief description, a summary of known significant features and a checklist of other data. Each cave has also been allocated to a preliminary classification category and a brief statement gives the reason(s) for the classification. Cave classification will be discussed later in the paper. The database on the recorded caves is far from complete and information from many more known caves has yet to be included.

The database is useful for identifying caves with particular attributes and providing easy access to information for research and management purposes. For example, it can be quickly found that 80 of the caves contain wood from pre-historic coffins or support posts (Tham Pi Man), 37 caves have perennial streams, 52 sites have been mapped by the project, etc.

MANAGEMENT CONCERNS IN THE NAM KHONG AND NAM LANG CATCHMENT

In the project area, several particular issues may complicate the implementation of effective cave and cave catchment management. They are as follows:

1. Database accessibility.

The present database has deliberately omitted cave access details, but eventually the project's complete database, included in a Geographical Information System, will identify all known significant features and include detailed maps of caves and their locations. Restricting public access to sensitive cave database information is a sensible option while no protective measures are in place for the many vulnerable features in the region. Deciding how access can be controlled and who should be allowed free access to the complete database will not be easy. Further discussion on this issue is required between the R.F.D, the researchers and other relevant authorities.

2. Scientific values.

More than half of the 176 recorded sites contains pre-historic cultural deposits and/or artifacts that are susceptible to human and natural disturbance. Today the area is inhabited by Tai Yai, Lahu, Lisu and Karen people who claim no cultural connection with the pre-historic inhabitants and place little value on the significant archaeological remains found in more than 80 caves. Many sites are the habitats of either sensitive troglobitic species or other cave fauna that can be easily disturbed. Unlike Thung Yai Wildlife Sanctuary, which

has a largely pristine environment and very few inhabitants, the project area is relatively heavily populated and extensively farmed.

Providing adequate protection for every vulnerable site is presently not feasible. The relative significance of each site and the perceived level of threat to its integrity need to be determined to establish priority for management.

3. Human impacts.

The impacts that human activity in cave catchments can have on cave ecosystems and formation processes have been well documented (see Gillieson 1996, ; Watson et al. 1997). The condition of some cave catchments appears to have seriously deteriorated over the past 20 years. Development projects and government policies, encouraging the establishment of permanent villages, and the regions rapidly growing population have led to more intensive use of the limited natural resources and available arable land. The threats to the environment are compounded by infrastructure developments that cause hydrological changes such as roads, dams, irrigation schemes, village water systems and fishponds. Other threats include: the increasing amount of commercial vegetable farming that involves tilling of the land and the use of fertilisers and pest controls, particularly in the karst areas south of the 1095 Highway; the growing numbers of domesticated animals, especially free roaming cows and buffaloes, in the area; extensive forest plantations of pine and eucalyptus in the Nam Lang catchment; and the removal of forest products for sale, especially teak wood, bamboo shoots and chestnut tree bark.

Investigation of over 100 of the 176 caves in the project area has found that many sites are highly sensitive and vulnerable to disturbance. Current human

activities in caves and cave catchments has already caused considerable deterioration to the condition of some sites and/or seriously threatened their values. These include:

- The burning or looting and/or digging that has occurred in most Tham Pi Man, particularly caves with easy access.
- The damage to speleothems and compacting of sediments in tourist caves such as Tham Lod and Tham STD-637.
- The observed change in the quality of water, with increased sediments, organic matter and pollutants, entering most stream caves. The stream entering Tham Mae Lana north tributary and the stream in Tham Nong Pha Cham are of particular concern as both sites are troglobitic fish habitats.
- The development of some caves for religious purposes has dramatically changed their natural state. Examples include a small cave near Tham Lod sealed off by a concrete wall, Tham STD-642 and Tham STD-634.
- The collecting of cave pearls by visitors to Tham Mae Lana.
- The damage to a rare pre-historic painting that has been virtually rubbed out in Tham Lod.

4. Implementing management.

One hundred and eleven cave entrances recorded in the database are within the Nam Pai Wildlife Sanctuary and the RFD is the managing authority. However, cave management is an area in which the RFD has little expertise or experience. Managing these caves through the enforcement of existing legislation that prohibits unauthorised access to protected areas is presently not feasible, for several reasons. Within the Sanctuary boundary exist many communities with a

long history of unrestricted use of the areas natural resources. The RFD has insufficient manpower and authority to effectively manage and protect the forests, wildlife and the caves in the Sanctuary area. A large increase in the available resources would be required to achieve effective management of all the region's natural and cultural attributes. Expert advice and international liaison and co-operation should be sought in order to help formulate education and training programs for forestry officials to develop their expertise and capacity for karst management (Watson et al., 1997). The idea of creating a Cave Advisory Committee to help with management decision making will be introduced later in this paper.

In the project area there are a number of official bodies involved in management and development. Implementation of appropriate cave management strategies will require co-operation between the local communities and these authorities, which in Pang Mapa may include; the RFD; Tambon, Amphoe and Changwat officials; local and national politicians; the 3rd Army and Border Patrol Police; TAT and other tourism bodies; and the Fine Arts Department.

5. Multiple perspectives.

The different perceptions of values have created opposing viewpoints on the most suitable use for some sites. Some communities are promoting local caves as tourist attractions. Some of these caves have other values that maybe endangered by inappropriate use. For example, the troglobitic fish in Tham Mae Lana are considered to be of international significance (Roberts, 1993 and Borowsky, 1996). Their habitats may be disturbed by regular visitation. Similarly, a Lahu farmer growing dry rice in a doline above Tham Mae Lana will consider his family's welfare more important

than the potential impact his farming methods may have on the cave environment and ecology.

Devising a cave and catchment management plan that is compatible with the aspirations of local communities is a difficult task and may not always be possible if the protection of other values is considered more important.

DEVELOPING A MANAGEMENT FRAMEWORK

The region needs to be managed in a systematic, consistent and appropriate way that recognises the need for protecting the broader values of the caves and karst. Developing an appropriate management framework, which includes all of the cultural, political and law enforcement issues pertaining to the region, is beyond the scope of this paper. Eventually, these issues will have to be dealt with on a 'cave-by-cave' basis. The complexities of the region should not detract from the long-term goals of protection and conservation of all of its natural and cultural attributes. Hard decisions and judgements concerning cave and karst values and their relative importance need to be made.

Cave Management classification for the Nam Khong and Nam Lang Catchment

Cave management classification schemes have been used successfully in several countries to provide a broad framework for establishing guidelines for managers. A review has been made of several cave and karst management approaches.

The New Zealand Department of Conservation has adopted an access control method to manage caves

and parts of caves (Millar and Wilde, 1989). Caves in New Zealand are classified into categories that allow for open access, limited access or restricted access. The Australian cave classification scheme varies slightly and has primarily grouped caves according to their current or intended use and the levels of management intervention needed to protect the values of the site (Davey, 1987). Caves are broadly grouped as either open access sites, special purpose sites or wild and unclassified sites.

Cave classification schemes are not management plans. They do not group caves according to their special features or attributes; the cave database can be used to do this. Rather, they are frameworks with which managers can identify the type and level of intervention, including protection and monitoring, required.

Caves in the region have been preliminarily assigned to management categories that are based on the Australian Cave Management Classification Scheme (Davey, 1987). Slight changes have been made to adapt it for use in Thailand (D. Smart, 1999). Two new sub categories, Religious Sites and Human Industry Sites, have been created.

The management categories are as follows:

1. Public access caves

- 1.1. ADVENTURE CAVES
- 1.2 TOURIST CAVES
- 1.3 RELIGIOUS SITES

2. Special purpose sites

- 2.1. REFERENCE SITES
- 2.2. SITES OF SPECIAL NATURAL AND/OR CULTURAL VALUE
- 2.3. DANGEROUS SITES
- 2.4. HUMAN INDUSTRY SITES

3. Wild and unclassified

- 3.1. WILD CAVES
- 3.2. UNCLASSIFIED CAVES

Specific definitions for each category and criteria for allocating sites to particular categories are listed in Appendix 1.

This cave management classification scheme for the Nam Khong and Nam Lang catchment offers the following advantages:

- Specific criteria are set for allocating caves to appropriate categories.
- The scheme is flexible. As more information becomes available, particularly concerning new values or vulnerability, then caves can be reclassified.
- The scheme is consistent. It provides appropriate guidelines for each category that will help regulate management in the region.
- Potential exists to standardise cave and karst management throughout Thailand.
- Caves promoted for public visitation are identified and criteria are set for determining whether sites are suitable.
- Sites of high natural and/or cultural value that require special protection and management are identified and specific management guidelines can be customised in line with reasons for significance.
- Sites that are dangerous and need protective measures in place are identified.
- Sites that are used by local communities for guano collection and as water sources are identified.
- The scheme allows for continued research, exploration and appropriate recreational use.

- The scheme distinguishes between caves that require active management and caves that are considered, at present, best managed without human interference.
- The scheme allows for a selection of specially protected sites that can be used to monitor the condition of other caves.

ALLOCATING CAVES TO MANAGEMENT CATEGORIES

It must be stressed that the classifications given in the database are preliminary. Detailed investigation of each site is needed to help determine its vulnerability, most suitable use, and the measures needed to achieve effective protection of its natural and/or cultural attributes. The variables considered when allocating caves to management category might include the following:

1. Cave use: Current use by humans and/or other fauna. Potential future use may be considered. Current use alone may establish the management style required for a cave (D.Smart, 1999). Tham Lod, for example, should be managed as a 1.2 Tourist Cave. Tham STD-653 is a village water source and should be managed as specified in the guidelines for 2.4 Human Industry Sites. Tham STD-663 and Tham STD-662 are remote, rarely visited sites and at present should be included in the 3.1 Wild Caves category.

2. Significance of the site: Determining the significance of a cave or a feature in a cave is difficult because significance is relative to a particular community viewpoint or management philosophy (Gillieson, 1996). Criteria used for determining significance in Australia (Davey and White, 1986) and

the U.S. (National Speleological Society, n.d.) have been used in the project area. These can be found in Appendix 2. The criteria used by the N.S.S. were found simple to use and helpful in determining the significance of known attributes in the region's caves. Caves are considered significant if they meet one or more of the N.S.S. criteria. Tham Lod, for example, meets all of the criteria on the list while Tham Mae Lana and Tham STD-650 meet five out of the six criteria. Development of criteria for determining significance, suitable for use throughout Thailand, would help the formulation of management plans and identify sites of regional, national, and international importance.

3.State of preservation: Includes any natural and/or cultural features at each site. Higher value tends to be placed on cave features that are pristine or relatively undisturbed. This may help determine the type of management needed. For example, caves with pristine speleothems, such as Tham STD-657 and caves that contain coffins in a very good state of preservation, such as Tham STD-034, may need extra protection.

4. Threats to the site: Includes all perceived and potential threats to the integrity of the site. The vulnerability of significant features to disturbance is the prime reason for special management intervention and protection usually within the 1.1 and 2.2 Public Access categories and the 2.2 Sites of Special Natural and/or Cultural Value. Most Tham Pi Man sites are considered vulnerable and some management intervention is advisable. These caves are included in the 2.2 category and depending upon the level of significance and vulnerability for each site, management options may include: explanatory signs, education of local villagers and the construction of barriers and gates. Vulnerability

is determined by the level and type of threat, which are defined as follows.

The level of threat: Features considered highly vulnerable are usually easily accessible and/or well known, fragile, easily destroyed, removed or disturbed. Features are less vulnerable if access is difficult, their location is relatively unknown or they are not easily damaged or disturbed.

The type of threat: In the Nam Khong and Nam Lang Catchment potential threats can be subdivided into three types:

- 1. Immediate threats: Typically human disturbance inside caves, which could directly threaten irreplaceable features. Examples include the removal of speleothems, the breaking or damaging of features through vandalism or carelessness, the disturbing or collecting of cave biota and the vandalism and looting of archaeological sites. Other immediate threats may come from outside the cave, such as the sudden release of pollutants or toxic materials into cave streams.
- 2. Intermediate to long-term threats and potential threats: These are threats that produce impacts that may not be immediately noticeable. Inside caves, long term visitation can impact in many ways including compacting floors, spreading dust, lint, hair and skin particles, changing the cave air composition, disturbing biota etc. (Gillieson, 1996)." In the catchments of active stream caves most human activity has a potential adverse impact on cave formation processes and the diversity of cave fauna (Watson et al., 1997).
- 3. Associated threats: These constitute a wide range of potential threats from diverse sources such as; the promoting of undeveloped caves for tourism; the

creating of easier access to the region and to individual caves; the developing of infrastructure inside and outside caves to cater for visitation; the growing interest by the general public and the media in the region's caves; the availability of information on vulnerable sites; and the inadequacies of present management and rotective measures.

APPLYING MANAGEMENT

Once caves have been allocated to management categories, then broad management guidelines can be used to develop strategies considered appropriate for each site. The management options, concerns and strategies contained in Appendix 3 are considered suitable for use in the project area. Many of these have been adapted from international sources (Kiernan, 1988; Millar and Wilde, 1989; and Watson et al., 1997).

Jurisdiction

One of the issues raised earlier was the sense of jurisdiction that local communities have over some caves and catchment areas. This may complicate the implementation of some management strategies that conflict with local aspirations. At Tham Lod however, community involvement is seen as desirable and essential. Caves in some remote areas, such as Tham STD-669 and Tham STD-006, could be managed without direct community involvement. Very few cave catchments could be similarly managed. For the majority of caves, community co-operation on differing levels will be required to achieve sustainable protection.

Education

One of the ways to gain community co-operation and understanding, is through education of cave and cave catchment users. This long-term, ongoing project should begin at the primary school level in Pang Mapa. As an initial step, a letter that encourages communities to help protect their local caves could be drafted and sent to all villages and schools. An example of such a letter appears in Appendix 4. The Nature Education Centre in Tham Lod could devise and implement a program that encourages awareness of cave and karst values and the necessity for protection and conservation. An effective management approach could be on-site explanation of the specific ways that people can damage cave features and how they can help protect them. The potential impacts on caves from activities in the catchment areas should be fully explained to encourage sympathetic land use in the region.

Establishing a Cave Advisory Committee

Applying management requires making difficult decisions regarding cave use and management options. Expert input, and discussion with all concerned parties is needed before the most suitable decisions can be made. The impacts that may arise from promoting an unsuitable site for tourism, for example, could be severe and cause irrevocable damage to the caves features.

To help standardise appropriate cave management it is recommended that a Cave Advisory Committee be established. The committee should consist of people with a knowledge of, and interest in, natural and cultural resource management, as well as scientists, cavers, concerned officials and local community members. The committee should review any development projects in caves or cave catchments and they should oversee and give recommendations on all matters concerning cave and karst management, protection and conservation. Ideally, the RFD should co-ordinate the establishment of this committee.

Priority Management, the first step

It is envisaged that initially very few sites will receive any special protection or management due to a number of factors that may include the limited resources and expertise available for cave management and difficulties encountered in establishing authority. To make the most of whatever resources for cave management become available, priority should be given to particularly outstanding features, especially those in a relatively pristine condition, where the threats to its integrity are considered potentially immediate and high level. If possible, a broad selection of diverse features that need priority management should be chosen. Initial protection may vary from constructing a gate to restrict access, to erecting signs and barriers. Every decision on constructing a gate should be accompanied by detailed plans that include a thorough study of the adverse impacts any developments may have on the cave and its biota (Hunt and Stitt, 1975). The overall management goals for the broader cave and karst resources, however, should not be overshadowed by the priority management features.

DISCUSSION

The logical next step after the creation of a database of information on the cave and karst resources in the Nam Khong and Nam Lang catchment is the development of suitable strategies for their protection and conservation. Threats to the integrity of many significant sites have been identified and decisive and effective management is needed to maintain the current condition of the caves and catchments. Inaction by the concerned authorities or delaying action is a threat in itself.

The potential misuse of the project's database is of concern. 'Collectors' of antiques or exotic fish for example, could use the detailed maps to locate sites and cause irrevocable damage. Legally, restricting access to sensitive information once it is recorded, may not be an option.

At present, only one cave, Tham Lod, has any active on-site management. The deterioration in the condition of the cave is obvious after 15 years of use as a tourist cave and some features have been irreparably damaged. The Tham Lod experience has demonstrated the need for the on-site implementation of protective measures and management plans before any new caves are promoted for tourism. The co-operation that has occurred between the RFD and the local community at Tham Lod is commendable. During the past 10 years there has been a growing awareness of the benefits of conserving the values of the cave and plans are being formulated to minimise the impacts from visitors and inappropriate management techniques. The income earned from tourism has reduced the need by the locals to clear forests for agriculture.

Many villages in Pang Mapa would like to develop local caves for tourism. The selection of suitable sites should only occur after the careful consideration of all of the sites values, not just the potential for economic gain. Decisions regarding the use of sites of national and international significance are particularly important. The rarity, fragility, and uniqueness of some cave features warrants the implementation of strategies that protect the primary intrinsic, scientific and aesthetic values of some caves, regardless of any local aspirations. The proposed cave management classification scheme is a useful framework for making decisions on cave use. There are more than 200 known caves in the area, most of which

are unsuitable for tourist development. To limit the damage caused by cave tourism, only a very few suitable sites that can be effectively managed should be promoted.

Maintenance of the present condition of the cave catchments is one of the most difficult and important tasks for the management authorities. Shifting agriculture, using slash and burn techniques, has been practiced in the region for thousands of years and it can be assumed that cave formation processes and ecosystems have adapted to the impacts from these activities. The greatest threats to the underground environment come from the increasing intensity of land use and the modernisation of the region. Traditional agricultural methods, that involve rotational farming, minimal tilling of the land and the use of no fertilisers or pest controls, are preferable in the area. catchments need delineation and more research to assess their condition and susceptibility to disturbance. The management of the dolines directly above stream caves such as Tham STD-650 and Tham Mae Lana should be given special attention to ensure that the quality and quantity of water, air and sediments entering the caves is maintained at present levels.

Attention needs to be given to the problems associated with population expansion and settlement patterns in the project area. Cave and catchment management planning should be integrated with other planning in the region, particularly concerning population, settlement patterns, land use and development.

There will never be a better time to begin management of the regions caves and karst. The opportunity exists **now** to protect and conserve sites of national and international significance, while they are still in a relatively pristine state. The resources needed

to begin the immediate protection of priority sites are small, compared to the heritage values that would be lost through inaction, indecision, or insensitivity. Making these resources available is largely a political decision. Future generations would certainly appreciate the foresight of our decision-makers if the caves and karst were given sustainable protection before their condition deteriorated.

CONCLUSION

Research by the current project has established the need for a suitable management framework for the protection and conservation of the cave and karst resources in the region. The cave management classification scheme, which this paper has chosen to be the basis of this framework, has been presented in detail. The options, concerns and strategies outlined in the appendix need expanding and refining to deal with all the issues relevant to the region. The establishment of a cave advisory committee is strongly recommended. The necessity for involvement of the local communities in cave and catchment management has been demonstrated.

Applying management in the region will be a difficult task faced with many obstacles and a range of diverse viewpoints. The RFD should seek the resources necessary to begin the formulation of suitable management plans for the entire region and specific sites. Input and understanding from all cave and catchment users, managing authorities and concerned parties will facilitate the implementation of management strategies. Inaction and indecision will make it more difficult to achieve the level of protection that these valuable resources deserve.

REFERENCES

- Borowsky, R. Letters and personal communication., 1996.
- Davey, A. Some Experience in Applying the

 Australian Cave Management Classification

 Scheme. Paper presented to the 7th. Australasian

 Cave Management and Tourism Conference,

 N.S.W., 1987.
- Davey, A.G., and White,S. Preliminary management classification and catalogue of Victorian Caves and Karst. Canberra: Applied Natural Resource Management, 1986.
- DCE. Draft Strategy for the Management of Caves and Karst in Victoria. Australia: Victoria: Department of Conservation and Environment, 1991
- Dunkley, J. and Brush, J.B. (eds.). Caves of north-west

 Thailand. Sydney: Speleological Research

 Council Ltd, 1986.
- Dunkley, J. The Caves of Thailand. Sydney: Speleological Research Council Ltd, 1995.
- Gillieson, D. Caves. Processes, Development,

 Management. UK: Blackwell Publishers Ltd, 1996.

- Hunt, G. and Stitt. R.R. Cave Gating. U.S.A: The National Speleological Society. 1975.
- Kiernan, K. The Management of Soluble Rock

 Landscapes. An Australian Perspective.

 Sydney: Speleological Research Council Ltd,
 1988.
- Kiernan, K. Letters and personal communication.
 1999.
- Millar, I.R. and Wilde, K.A. General Policy and

 Guidelines for Cave and Karst Management.

 Wellington: Department of Conservation, 1989.
- N.S.S. Significant Cave Nomination Worksheet. U.S.A.:

 The National Speleological Society, Inc., N.d.
- Roberts, T. Letters and personal communication, 1993
- Smart, D. Letters and personal communication, 1999.
- Watson, J., Hamilton-Smith, E., Gillieson, D., and
 Kiernan, K. (eds). Guidelines for Cave and Karst
 Protection. UK, Canbridge: IUCN, 1997.

THAM MAE LANA VALUES AND VULNERABILTY BY SALLY ANDERSON BENV SC HONS

Sally Anderson

ABSTRACT

Tham Mae Lana is the longest known cave in Thailand. It is located in Amphoe Pang Mapa, Changwat Mae Hong Son, north-west Thailand. The cave's catchment is approximately 38km^2 and has several villages, roads, dams and other developments. Agriculture is the main land use activity. Tham Mae Lana has a range of scientific, aesthetic, recreational, intrinsic, educational and economic values that are distinctive, important and vulnerable. Human activities, in the cave and the cave catchment, threaten the natural integrity of Tham Mae Lana. The cave currently lacks specific protection and management, leaving it vulnerable to disturbance.

INTRODUCTION

Previous studies of Tham Mae Lana have focused primarily on exploration and mapping of the cave system. Tham Mae Lana is part of a larger cave system that includes upstream Mae Lana Cave, or Tham STD-615, and Tham STD-624. Australian speleological expeditions from 1986 to 1992 surveyed 14,600 m of passage in the Mae Lana system. Tham Mae Lana has a surveyed length of 12,600 m and is the longest known cave in Thailand. Minimal research has been undertaken on the caves values or the potential and current threats to the cave.

This paper gives a brief description of the location of Tham Mae Lana and its catchment. This is followed by an identification of the various values of

Tham Mae Lana. The paper then examines the current and potential impacts resulting from activities in the cave; activities in the cave catchment; and the lack of specific protection and management for the cave. Regional issues and problems related to the protection and conservation of Tham Mae Lana are discussed. Recommendations for developing and implementing management prescriptions are outlined and conclusions are drawn. Throughout the paper, 'the cave' is used interchangeably with Tham Mae Lana.

It should be emphasised, that due to the lack of scientific research and investigation in the cave and cave catchment, this paper is primarily based on observations and theoretical considerations. This paper is not a management plan but rather the initial step towards encouraging the instigation of such a plan.

^{*} ผู้ช่วยนักวิจัย ด้านการจัดการทรัพยากรถ้ำ โครงการ "การสำรวจและการจัดทำระบบฐานข้อมูลเกี่ยวกับถ้ำ จังหวัดแม่ฮ่องสอน"

DESCRIPTION OF THAM MAE LANA AND CATCHMENT

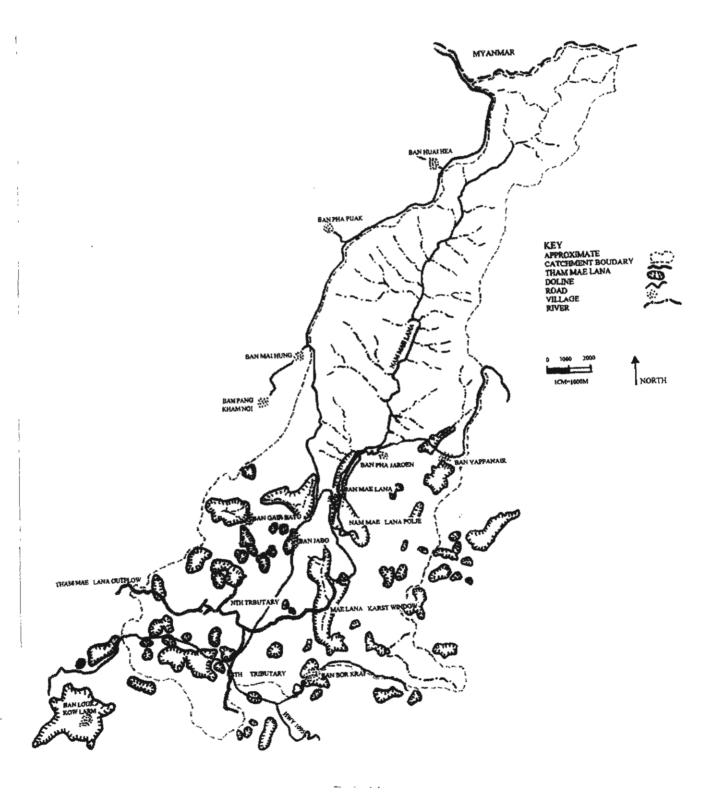
Location of Tham Mae Lana

Tham Mae Lana is located in Tambon Mae Lana, Amphoe Pang Mapa, Changwat Mae Hong Son. The entire cave is within the boundaries of the Lum Nam Pai Wildlife Sanctuary and the Royal Forestry Department (RFD) is the managing authority. The Nam Mae Lana flows into the cave at the 1:50,000 co-ordinates 63.75/17.75 and flows out of the cave at 64.15/13.10. Figure 1 identifies the location of Tham Mae Lana, the approximate cave catchment and major streams and villages in the area.

Description of Tham Mae Lana System

The Nam Mae Lana drains a catchment area that begins at the Myanmar border. Approximately 500 m south of Ban Mae Lana, the stream sinks into one of several impenetrable holes in the polie. For the next few kilometres the stream passes under the limestone ridge south of Ban Mae Lana, before resurging again in a karst window 2.4k m south of Ban Mae Lana. The stream flows on the surface for 300 m before finally plunging into the inflow entrance of Tham Mae Lana. Upstream from the karst window the Mae Lana system can be accessed from two places. "Upstream Mae Lana" including Tham STD-615, can be entered from a small karst window a few hundred metres from the Nam Mae Lana resurgence. At a higher elevation on the hill, a 60 m vertical drop in Tham STD-624 or an 80 m drop in Hoo Yai (Big Hole) is needed to reach the Nam Mae Lana.

Tham Mae Lana is a through cave. The distance from the cave inflow to the outflow, east of Huai Pong Sacn Pik, is 4.6 km in a straight line. The underground


traverse is 7.2 km, most of which is active river passage (Dunkley and Brush, 1986). The underground stream has two major surveyed tributaries; one, approximately 2.4 km from the inflow entrance, flows into the Nam Mae Lana from the south and the other, approximately 3.6 km from the entrance, flows from the north. Many other small tributaries drain into the Nam Mae Lana inside the cave. The Nam Mae Lana sumps in two sections of the cave; after some waterfalls, approximately 3.2 km from the entrance; and at Green Lake, a deep, 30 m wide lake, approximately 4.16 km inside the cave. Both these sumps are bypassed by higher level breakdown sections of the cave that contain the largest caverns. From the re-emergence of the stream after the second sump, the distance to the outflow is another 3 km. This section of the cave is active river passage with some deep pools and many active flowstone formations and stalactites.

Catchment Description

The total catchment area of Tham Mae Lana is approximately 38 km². The catchment boundary is difficult to determine within the karst area and is not a single line that can be represented on a map. Within karst areas, surface topography may not necessarily indicate underground drainage patterns (Watson *et al.*, 1997). Most of the water in the Nam Mae Lana north of Ban Mae Lana flows from non-karst areas. However, it is assumed that all of the water entering the cave via tributaries and active formations has its source in the karst areas above, north and south of the cave.

Within the catchment area there are five villages: Ban Mae Lana, a Tai Yai village; Ban Jabo and a subvillage of Ban Jabo, Ban Gair Batu, both black Lahu villages; and Ban Pha Jaroen and Ban Yappanair, both Red Lahu villages. Ban Bor Krai, Ban Huoi Hea, Ban Pha Puak, Ban Louk Kow Larm and Ban Pang Kham Noi, all Black Lahu villages and Ban Mai Hung, a Tai Yai village, are all located outside the assumed cave catchment boundary (Fig 1). Within the cave catchment, people from all of these 11 villages: cultivate land; raise animals; hunt and gather forests products; cut trees for construction and firewood; and light forest fires, mainly for clearing fields. The primary

land use of the Nam Mae Lana Valley is for irrigated fields, mainly wet rice, and slash and burn fields of mainly dry rice and corn. The dolines in the karst areas of the cave catchment have been extensively cleared for cultivating dry rice and corn and, in the past, opium poppy. Most of the large teak trees in the entire cave catchment have been felled by local communities to construct houses and fences.

Several roads exist within the cave catchment including a 65 km section of Highway 1095, a six kilometre road from the Highway to Ban Mae Lana and smaller dirt roads to Ban Mai Hung, Ban Yappanair and Tham Mae Lana. Other infrastructure developments in the cave catchment include: bridges in Ban Mae Lana; water supply systems and electricity for Ban Mae Lana and Ban Jabo; dams and canals for irrigation in the Mae Lana valley; and some government buildings.

VALUES OF THAM MAE LANA

Tham Mae Lana has a range of scientific, aesthetic, recreational, intrinsic, educational and economic values that are distinctive, important and vulnerable. While the relative importance of these values depends largely on the value perspective from which they are considered, all should be recognized and managed for their protection and preservation.

The values presently recognised are based on limited research and personal observations of the more outstanding features in the cave. Some of the cave features may have several values. For example, speleothems are of great interest to geomorphologists for study and research but their aesthetic value is recognised by most people as their primary value. The following list attempts to identify the primary, known values of the caves attributes. They are not ranked as to importance.

Scientific values

Tham Mae Lana has many different features of interest to scientists for study and research. Further appropriate research has the potential to improve the current inventory and understanding of the scientific values of the cave and may assist with future management.

The cave's values and potential value for scientific research, in the fields of geomorphology, biology, palaeontology and geology, are presented below.

Geomorphological value

Significant deposits of various sediments occur in several locations in the cave. Geomorphologists have the ability to derive insights into landform evolution and climate changes over broad areas, from the study of cave sediments (Watson, et al. 1997; Wildberger and Preiswerk, 1997). The deep, well layered, mud and silt sediment banks in the southern tributary are particularly significant and may contain not only climatic records but a history of land use by humans over 1,000's of years. Sub fossil bat bones, cemented into flowstone on these sediment banks, have also been observed.

The massive speleothems in Tham Mae Lana are typical of tropical environments. Their size suggests that deposition of secondary carbonate has occurred over a long period, although not necessarily continuously (Kiernan, 1991). The following list identifies a large variety of the more significant speleothems in Tham Mae Lana:

- Massive flowstone deposits, up to 40m in width and 30m in height, occur in several places in the cave. Some deposits have been stained brown and orange by fluvic and humic acids (Hill and Forti, 1997). Subaqueous flowstone also occurs in a few places. An excellent example of bell canopy flowstone is located in the upper level chamber.
- Cave pearls have been observed in 10 separate localities in the cave. The largest

collection consists of thousands of pearls measuring up to 3 cm in diameter. Rare varieties include; cube shaped pearls, and the locally named 'bottle' and 'custard apple' pearls.

- Clusters of calcite spar crystals, 2-3 cm across, spread across a fossil, cracked mud floor occur in the upper level chamber. This is the only known location of this formation type in Thailand.
- Coralloids are commonly found throughout the cave.
- Rare orange spathites up to 30 cm long occur in one section of the cave. Hundreds of white and clear aragonite stalactites, profuse frostwork and some stalagmites are also in the same part of the cave.
- The longest soda straws in the region, up to 2 m long, can be found in a higher section of the cave, while 1000's of shorter examples occur in the southern tributary.
- Pendulites can be found in the upper level chamber.

- Anthodites, approximately, 10 cm long, are known to occur in one higher chamber.
- Drapery is found on the inclined cave walls and ceilings, and is particularly prominent in the upper level chamber. Two varieties can be found bacon and sawtooth.
- The best known cave shields in the region occur in the upper level chamber.
- Volcanoe cones are located in one higher chamber. In the region, better examples can only be found in Tham STD-657.
- Birdbath conulites have been observed in the main stream passage. Mud conulites are common in the upper level section.

- Columns 15-20m tall occur in the middle of the upper level section and in many places in the main stream passage.
- Pool spar in rim pools can be seen throughout the cave with excellent examples occurring in higher sections of the main passage downstream from the upper level chamber.
- Stalactites, typically seasonally active, occur throughout the cave. Massive stalagmites, up to 15 m tall occur in several locations. 'Dish plate stalagmites' are common in caverns with high ceilings. Deflected and 'corkscrew' stalactites occur in the southern tributary.
- Helictites of the vermiform variety, occur on many flowstone and dripstone draperies and stalactites. They are particularly profuse in the southern tributary.
- Cave rings occur in at least one locality in the upper level section.
- Rimstone dams occur in many places in the cave often associated with flowstone. The most impressive rim pools occur on the flowstone at the southern tributary junction and in several places in the downstream passage of the cave. Lotus rimstone occurs near the outflow entrance of the cave.

A detailed description of the above mentioned speleothem types can be found in Hill and Forti (1997).

Biological value

Cave biota is accustomed to a relatively constant environment and is often more specialised and sensitive to impacts than biota outside caves (Gillieson, 1996). The study of cave flora and fauna can help unravel biological history. Tham Mae Lana provides a habitat for a range of species, some of which are troglobitic.

Apart from the intrinsic interest of these species, they can display a range of ecological processes not readily studied elsewhere and offer insights into the evolutionary process (DCE, 1991). Little research has been undertaken in relation to the cave's biota and the potential exists for the discovery of many new species.

There are currently two known species of troglobitic cave fish (Kottelat, 1988) endemic to the caves of Pang Mapa, Cryptotora thamicola and Schistura oedipus. C. thamicola is known from only one other cave in Pang Mapa and has no eyes, pigmentation or scales (Kottelat, 1998). The oblique orientation and shape of its pectoral fins is probably related to its mode of life as it has been observed climbing up waterfalls, using its fins to "walk". S. oedipus has been observed in five other caves in Pang Mapa (Spies, J. pers. comm., 1999). It has no colour pattern and no externally visible eye but has a pit in the centre of the skin covering the orbit (Kottelat, 1988). Both species are known only to co-occur in Tham Mae Lana. Tham Mae Lana is one of the few known cave systems in the world where two different species of blind fish share the same subterranean stream (Yang and Chen, date unknown).

Preliminary studies of bats and tiny cave adapted snails have been undertaken in Tham Mae Lana but the results of the research are yet to be published.

Geological and Palaeontological value

There has been minimal research undertaken in relation to the geology and palaeontology of the cave and most of the recorded information is the observations of speleologists. Karst offers geologists clear exposure of lithilogical units, geological structures and minerals. Tham Mae Lana could potentially contain important palaeontological materials, which are well preserved

only in this environment (Watson, et al., 1997). The length and size of the cave are indicators of the opportunities for research in these fields.

Aesthetic value

Tham Mae Lana has a variety of aesthetically pleasing speleothems. These have been listed in detail in Geomorphological values. Speleothems are often a cave's best known attributes as they figure prominently in cave scenery. The vast majority of speleothems in Tham Mae Lana are presently in an excellent state of preservation and the variety, size, fragility and rarity of some of these formations make Tham Mae Lana the best decorated cave in the region. Impressive features in the cave include huge active flowstones and rim pool dams; delicate and fragile speleothems in the tributaries; an impressive 30 m wide lake; numerous waterfalls; and spleothems of great variety and diversity in the upper level chamber. Some of the cave vistas, in the upper level sections, are particularly impressive.

Recreational value

Tham Mae Lana has potential to be used for a range of recreational activities. The caves length, and the variety of experiences the cave can offer visitors, is remarkable for the region. Some high-energy sections of the cave, particularly in the main stream passage, may be suitable for adventure tourism. However, any visitation to the cave, particularly by recreational users, may have serious consequences for the cave biota and fragile speleothems. The benefits derived from the recreational use of the cave must be carefully weighed against the potential threats to the caves other values.

Intrinsic value

Tham Mae Lana and its catchment are an intrinsically important part of the ecosystem and on going cave formation processes including cave and speleothem development. The cave and cave catchment have their own right to exist irrespective of any scientific objective, current or potential use, and/or aspirations placed on the cave by humans. The caves intrinsic value is akin to the notion that the cave has the right to exist as part of the cosmos, which includes all animate as well as inanimate things (Kiernan, K. pers. comm., 1999). The intrinsic value of the cave is inestimable in human terms and an important value that should not be overlooked when developing management prescriptions.

Educational value

Tham Mae Lana offers opportunities for future educational use because of the variety of natural processes operating in the cave. Cave fauna, and different stages of geomorphological and speleothem development, can be easily observed in some sections of the cave.

Economic value

An economic value has been placed on Tham Mae Lana by local villagers who perceive the potential for deriving income from people visiting the cave. For some villagers the cave's potential for tourism is the most important value of the cave. They have instigated the construction of a dirt road to the cave to provide easier access. Signs in English and Thai identify the location of the cave. There are also signs on Highway 1095, placed by local guesthouse operators to promote tourism, identifying the location and length of Tham

Mae Lana. The economic value of Tham Mae Lana is likely to remain high while it is in a relatively pristine state.

IDENTIFICATION OF POTENTIAL THREATS TO THAM MAE LANA AND CATCHMENT

Current and potential threats to the natural integrity of Tham Mae Lana are either human activity inside the cave or in the cave catchment. Natural changes in the caves condition, such as the recent collapse of part of the caves entrance chamber and cementing of cave pearls by flowstone, are not considered threats. The following section will identify some of the impacts on the caves values that have occurred and the potential impacts that may occur. The lack of management and specific protection of Tham Mae Lana will also be discussed. The limited hard data and previous little monitoring of the cave's condition make identification of impacts difficult.

Human activities in the cave catchment

There is a range of human activities in the cave catchment that may impact on Tham Mae Lana including development, deforestation, and agriculture. Many other activities such as fishing, collecting bamboo shoots and husbandry may cause small but cumulative impacts but it is beyond the scope of this report to detail them all.

1) Development activities

Development activities may be injurious to the amenity and heritage values of karst landscapes, often via a complex chain of cause and affect that may not be evident at first glance (Keirnan, 1988). Within the cave

catchment, two main development activities may affect the integrity of the cave.

a) Road construction - An Australian study (DCE, 1991) reports that road construction and maintenance may physically damage surface karst features, or may lead to increased silting of caves through surface erosion. It may also cause hydrological changes of various sorts (Parizek, 1971 in Keirnan, 1988).

> Past and present road construction within the cave catchment may have adverse impacts on some cave formation processes and the cave ecosystem. Currently a 10-15 m wide bitumen road is being constructed directly over the top of the cave. When completed, this road will connect the villages of Jabo and Mae Lana with Highway 1095. Major changes to the environment above the cave have taken place during construction of this road including: the removal of vegetation and soil; the filling of a small doline; the compaction of the road surface; the extensive blasting of surface and subsurface limestone; the introduction of bitumen and other potential pollutants; and the re-directing of the natural flow of water in the area. It has been noted by Watson et al. (1997) that surfacing of land above caves renders it nearly impermeable, in contrast to the high natural porosity of karst.

b) Construction of dams and irrigation canals – North of Ban Mae Lana the Nam Mae Lana has been diverted to irrigate fields. The construction of irrigation canals and four dams has resulted in an observed diversion of approximately half the Nam Mae Lana flow at the beginning of the 1999 monsoon season. Changes to surface drainage resulting from irrigation or river regulation may interrupt or drastically reduce the supply of water to the cave (Gillieson, 1996). The presence of upstream dams may lead to reduced allogenic recharge and water table lowering. Lowering water table levels or altering water accession into or through caves may affect the rates of geomorphic processes, accelerate collapse and subsidence and seriously effect biotic systems (Gillieson, 1996; Kiernan, 1988).

2) Deforestation

Slash and burn agriculture is the main forest clearing activity in the cave catchment. Before the monsoon rains, vegetation is cleared and then burnt in preparation for cultivation of mainly rice and corn. During the past 20 years there has been more intensive use of the limited amounts of agricultural land. This has been largely the result of rapid population growth, including illegal immigrants from Myanmar; the permanency of villages; and restrictions on clearing enforced by the RFD. Aside from slash and burn agriculture, deforestation has also resulted from the use of local timber by communities to construct houses and fences and for firewood.

"A stable natural vegetation cover should be maintained as this is pivotal to the prevention of erosion and maintenance of critical soil properties" (Watson et al., 1997). In the region, Kiernan (1991) has observed erosion, including slopewash, bought about by exposure of the soil due to forest fires and to slash and burn agricultural practices. Active erosion was evident from soil surface lowering and from accumulation of fine caliber materials in sediment sinks. Gillieson (1996) has reported that erosion of surface soils following clearance, may accelerate silting of caves and resulting changes to the hydrological regime may also accelerate collapse and subsidence and influence karst solution

processes. Changes in the vegetation structure, especially the projected foliage cover, will directly affect both the quantity and quality of water available as feed water for speleothem growth in underlying caves (Gillieson, 1996). Therefore the removal of vegetation in the catchment could have a profound effect on cave decoration and development (Kiernan, 1988).

3) Agriculture

The main impacts of slash and burn farming, which occurs mainly on the valley slopes and in the catchment dolines, have already been discussed. The other major agricultural activity is farming in irrigated fields that make up a large area of the Nam Mae Lana valley. Dams and irrigation channels divert water from the Nam Mae Lana into these fields. Some of this diverted water is then re-directed back to the stream, before it enters the cave. Cultivation of wet rice involves hoeing or ploughing of the soil. Occasionally, fertiliser and pest controls are applied. Buffalo dung is an important traditional fertiliser. These activities may lead to: decreased quantity of water flow; changes in the water's temperature, oxygen levels, pH and algae content; and increased amounts of sediments, nutrients and toxic substances entering the cave. All of these changes can impact upon the cave's ecosystem and processes. Gillieson (1996) has noted that cave biota are usually disadvantaged by quite minor disturbances.

Human activities inside Tham Mae Lana

Due to the sensitive nature of caves, any human activity inside a cave will have some impact (Watson et al., 1997). The impacts caused by visitors to caves has been well documented (see, Gillieson, 1996; DCE, 1991; DELM, 1994). Human presence in cave environments leads to accumulation of dust, skin particles, hair and clothing fibers on speleothems,

consolidation of sediments, trampling of mineral crusts and guano and marking of walls and floors. There will also be changes in cave temperature, humidity and carbon dioxide levels due to human respiration and these can adversely effect the growth of speleothems as well as disrupting or eliminating cave faunal communities.

Visitors have noticeably affected the condition of the Tham Mae Lana. Since the discovery of the cave in 1986, John Spies has observed the following changes:

- The disappearance of cave pearls. Approximately
 30-40 cave pearls have been taken by visitors
 passing the upper level section of the cave.
- The presence of litter, candle wax, and batteries discarded in the cave.
- Disturbance of sediment banks and the stream bed in the southern tributary, including compaction of sediments by visitors. This may also have caused the infilling of rim pools with mud on the flowstone, at the junction of the southern tributary and the Mae Lana stream.
- Mud from visitors boots cemented into flowstone.
- Inadvertent damage to floor formations during exploration of low energy section of the cave.
- Mud and prints from visitors boots have made a permanent trail through the upper level section and areas of fossil mud cracked floor.
- Fewer C. thamicola have been observed on the southern tributary flowstone. Six years ago 15-20 fish could be seen on every visit. During the past few years, approximately four or five fish have been seen. It is unsure whether visitors have caused the decline in observable numbers of fish.

Different user groups may impact on the cave in different ways:

- a) Cave Tourists Tourists to Tham Mae Lana are generally taken by local guides but in the past occasional adventure tours, led by experienced guides and other trips with government officials have taken place. These visitors are more likely to concentrate impacts in more accessible and aesthetically pleasing sections of the cave and to be less knowledgeable about the vulnerability of the cave's features.
- b) Recreational Cavers/Speleologists –
 Recreational cavers and speleologists are
 equipped for and skilled in cave exploration and
 generally knowledgeable in minimal impact
 caving techniques. This user group can cause
 accidental and careless damage to speleothems,
 which Kiernan (1988) has noted is widespread
 in some other caves. Damage is more likely to
 occur in low energy areas of the cave, which
 other user groups visit less frequently.
- c) Local Inhabitants - Most local villagers who visit the cave place little importance on the cave's scientific and intrinsic values and this sometimes leads to inappropriate use of the cave. The cave is generally perceived as a resource for use and exploitation. The cumulative effects of their actions may adversely impact upon the cave features and ecosystem. For example, in the past, locals have been seen using home made bombs and DDT to stun and catch fish near the downstream entrance of the cave (Spies, J. pers. comm., 1999). The local villagers have taken the onus upon themselves to guide tourists into Tham

- Mae Lana. These locals have no training in cave guiding. They often use primitive lighting methods, such as candles and pine wood, or when using torches, sometimes discard batteries inside the cave. Some formations have been soiled and broken by insensitive use of the cave by locals.
- d) Researchers - Scientific research in Tham Mae Lana should be conducted in a way that recognises the complex inter-relationships existing in the cave environment. The Victorian Department of Conservation Environment (1991) recognises that "disruptive research has the potential to cause irreparable damage to a cave's physical, biological or cultural features." To date, little research has been undertaken in Tham Mae Lana but studies on the caves troglobitic fish, including the removal of specimens, may have already violated the cave's integrity and had an irreversible impact on the population dynamics. P. M^c Quilan (P. M^c Quilan, pers. comm in Kiernan, 1988) commented that the loss of even a few individuals in a small population may be sufficient to cause genetic drift, or even extinction.

Lack of Management and Protection

A major threat to the values of Tham Mae Lana is the lack of any specific protection for its significant features. The impacts resulting from activities in the cave and cave catchment are only likely to magnify without appropriate management intervention. Currently there is no monitoring or regulation of activities inside the cave. In the cave catchment, existing management plans are not concerned with

protecting the sub-terranean environment. Ideally, caves should be protected by Total Catchment Management (DCE, 1991). The RFD has the legal authority to restrict access to the cave; place restrictions on forest clearing; refuse development applications; and become actively involved in the management of the cave (Somsak Laoleepa, pers. comm., 1999). Presently, insufficient human and financial resources, previous human settlement, and demand for natural resources inside the Sanctuary boundary are making it difficult for the RFD to enforce existing legislation.

DISCUSSION AND

RECOMMENDATIONS

The significance of the combined values identified in Tham Mae Lana extends beyond the region. Tham Mae Lana is one of Thailand's most important caves and has attributes, such as the troglobitic fish, that are of international significance. These values deserve and require protection and conservation. Proper cave management depends largely on scientific research which identifies significant features and assesses and monitors changes in the cave environment (DCE, 1991). information base is in turn, dependent upon research and investigation. More research and monitoring, both regular and event based are needed to synthesise the most effective and appropriate conservation and protection for Tham Mae Lana.

Ideally, effective management of the cave should include the total catchment area and recognise that activities on the surface can influence the quality and quantity of water and air movement through the subterranean environment. The management of the

entire Tham Mae Lana catchment is difficult due to a number of reasons:

- 1. There is a long established use of the catchment land. Consequently, local communities who rely on the land to cultivate agricultural products for sale and consumption have placed high economic values on these areas.
- 2. Villages are now becoming more permanent due to government policies and increased infrastructure developments. This permanency increases the pressures on, and the demand for, the limited natural resources
- Only part of the cave catchment is within the boundary of the Lum Nam Pai Wildlife Sanctuary, consequently, problems with consistency in management may arise.
- 4. The diversity of soil, vegetation and rock types and land use methods in the cave catchment will require that different management strategies are needed for different parts of the catchment.
- 5. Presently the RFD does not have sufficient staff and other resources to effectively implement existing legislation inside the Wildlife Sanctuary boundary.

Ideally the RFD should endeavor to negotiate appropriate land use and conservation practices in the adjoining lands outside the Sanctuary boundary and exercise its authority and enforce the existing legislation relevant to protection of Tham Mae Lana. The removal of villages and prohibition of land use within the cave catchment is a difficult, if not impossible, task. Reducing the level of the potential impacts resulting from activities within the cave catchment may be a more achievable goal. One of the first steps towards protection and preservation of Tham Mae Lana could be the introduction of public education programs. These

programs should be directed towards land users and create awareness of the caves values. Emphasis should be placed on the link between surface land use and potential impacts in the subterranean environment. Ecologically sustainable land use practices should be encouraged.

Regional bodies involved with infrastructure and development activities within the cave catchment appear unaware of the impacts their actions may have on the cave system. The benefits of the project and not the potential impacts are only acknowledged. The construction of the 10-15 m wide road from Highway 1095 to Ban Jabo is a prime example of a developmental activity within the catchment, where the potential threats to the underground environment were not considered. The road will make access to the highway easier for a number of villages, but at the same time may be adversely affecting cave biota and formation processes. Regional bodies in charge of decisions involved with development infrastructure should also receive education on the potential impacts resulting from development activities. Methods for more sensitive development should be investigated and encouraged. The road, for example, could have been constructed similarly to the 4 m wide road from Highway 1095 to Tham Lod and caused comparatively minimal change to the environment.

No access controls are in place for Tham Mae Lana despite its location in the Wildlife Sanctuary. Anybody who wishes to visit the cave may do so. There is a variety of user groups visiting Tham Mae Lana, all of whom will impact upon the cave to varying degrees. Noticeable changes, particularly to upper level and tributary passages, have already been observed. Access to caves can become a contentious issue particularly if it is denied to local communities. The

observable changes and documented impacts resulting from cave visitation indicate that some access controls should be placed on Tham Mae Lana. Any controls placed on the cave should be discussed with local communities and the benefits of the controls explained. Signs at the cave explaining the reason for the controls should also be erected.

The community of Ban Mae Lana has placed an economic value on Tham Mae Lana based on the potential income that may be earned from tourism. If an economic value is placed on a natural resource, then, through education, local communities, can often see the benefits of preservation and protection. In Ban Tham Lod, the villagers are acutely aware of the economic values of Tham Lod and the need for maintaining or improving the caves condition to preserve theses values. Placing an economic value on natural resources, may not be the best method of conservation. However, in the case of Tham Mae Lana, community recognition of the cave's economic value may encourage, or lead to, an increased awareness of the cave's broader values and vulnerability.

Development and implementation of a suitable management plan is needed to protect and conserve the diverse values of Tham Mae Lana. Listed below are some recommendations that are ranked in no particular order or level of importance.

• The management plan should be based on Total Catchment Management principles. It should involve all relevant government bodies, interested parties and local communities in all stages of its development and application.

100

- Some of the caves features need immediate protection to ensure their continued existence.
- The significant values of the cave, threats to its integrity and other concerns relevant to the cave's management need further identification and consideration.
- A community education programme to create awareness of the values and threats to the cave needs developing.
- The cave catchment needs delineating using water-tracing methods that do not effect the cave's biota.
- The cave system needs; re-surveying as accurately as possible; a thorough inventory of the caves contents and their state of preservation.
- Potential of the cave for World Heritage nomination should be investigated.
- Appropriate research and regular and event based monitoring of the cave and cave catchment condition should be encouraged.
 All researchers should obtain permission from the relevant authorities and the results and conclusions made available to the managing authority.
- Effective and suitable access controls and methods need formulating. Construction of a gate inside the cave is an issue that needs more discussion and consideration.
- The human and financial resources required to effectively develop and implement the management plan need identifying.
- A training programme for cave and karst managers needs developing. Managers should recognise the importance and

- availability of inter- agency and international expertise.
- Depending on access controls, local guides may require thorough training on all aspects of cave guiding and conservation. All visitors should be required to follow a 'minimal impact caving code', such as those used by The Australian Speleological Federation and The National Speleological Society in the U.S.A.

CONCLUSION

Tham Mae Lana has a number of significant scientific, recreational, educational, economic and intrinsic values that are potentially under threat from activities in the cave and cave catchment. It is apparent, that unless specific management prescriptions are initiated, these threats will escalate. Community education that emphasises the values and vulnerability of Tham Mae Lana may reduce current and potential impacts. Effective protection and conservation of the cave's various values can only be achieved through cooperation between the managing authority, local communities and other interested parties. The Royal Department Forestry should co-ordinate development of a suitable management plan. Urgent action is required to maintain the relatively pristine condition of the cave. More appropriate research is required to improve the current inventory and understanding of the scientific values of Tham Mae Lana.

REFERENCES

- DCE, Draft Strategy for the Management
 of Caves and Karst in Victoria. Victoria,
 Australia: Department of Conservation
 and Environment, 1991.
- DELM, Kubla Khan Cave State Reserve

 Management Plan. Tasmania: Department of
 Environment and Land Management, 1994.
- Dunkley, J., and Brush, J.B. (eds.), Caves of north-west Thailand. Sydney: Speleological Research Council Ltd., 1986.
- Dunkley, J. The Caves of Thailand. Sydney: Speleological Research Council Ltd, 1995.
- Gillieson, D. Caves. Processes, Development,
 Management. UK: Blackwell Publishers Ltd,
 1996.
- Hill, C., and Forti, P Cave Minerals of the World. USA: National Speleological Society, 1997.
- Kiernan, K. The Management of Soluble Rock

 Landscapes. An Australian Perspective.

 Sydney: Speleological Research Council Ltd,

 1988.
- Kiernan, K. "Tropical mountain geomorphology and landscape evolution" north-west Thailand.
 Z. Geomorph. N.F. 35 (2): 1991. pp187-206.

- Kottelat, M. "Two Species of Cavefishes
 from Northern Thailand in Genera"

 Nemacheilus and Homaloptera

 (Osteichthyes:Homalopteridae). Records of
 the Australian Museum 40: 1988. pp225-231
- Parizek, R. "Impact of Highways on the hydrgeologic environment"

 Coates, D., (ed). Environmental

 Geography and Landscape Conservation.
 1971. pp151-199
- Parizek, R. The Management of Soluble Rock

 Landscapes. An Australian Perspective.

 Sydney: Speleological Research

 Council Ltd, 1978.
- Watson, J., Hamilton-Smith, E., Gillieson, D., and
 Kiernan, K., (eds). Guidelines for
 Cave and Karst Protection. UK: IUCN, Gland,
 Switzerland and Cambridge, 1997.
- Wilderberger, A. and Preiswerk, C. Karst and Cave of Switzerland. Switzerland:

 Speleo Projects, 1997.
- Yang, J. and Chen, Y., (Date unknown). The cavefishes from Duan, Guangxi China with comments on their adaptions to cave habitats. Publication unknown.

บทนำ

ภายใต้เป้าหมายการพัฒนาของจังหวัดแม่ส่องสอบ ที่จะมุ่งให้เป็นเมืองการท่องเที่ยวเชิงอนรักษ์ อำเภอปาง มะผ้าดูเหมือนจะขานรับเป็นอย่างคื จากศักยภาพเชิงพื้น ที่ที่มีความอุดมสมบูรณ์ทั้งป่าเขา เถื่อนถ้ำ แหล่งโบราณ คดี และวัฒนธรรม ประเพณี ที่มีเอกลักษณ์เฉพาะเผ่า ของชาวไทยภูเขาที่อาศัยอยู่ในพื้นที่นี้ ในความเป็นพื้นที่ เปิดใหม่ของการท่องเที่ยวเดินป่า ที่เคิมมีศูนย์กลางอยู่ที่ เชียงใหม่และเชียงราย ปางมะผ้าไม่เพียงมีทรัพยากรการ ท่องเที่ยวที่เป็นธรรมชาติกว่า มีชุมชนชาวไทยภูเขาที่คง ความคั้งเคิมไว้ได้มากกว่าชุมชนแถวเชียงใหม่และ เชียงราย แต่ปางมะผ้ายังมีเอกลักษณ์เฉพาะพื้นที่ ในความ เป็น "แคนร้อยถ้ำ" ที่มีความหนาแน่นของถ้ำต่อพื้นที่ ความงคงามของปฏิมากรรมธรรมชาติภายในถ้ำเป็น อันดับต้นๆ ของโลก ทำให้บุลคลหลายฝ่ายเห็นความ สำคัญในจุดเค่นด้านนี้ของปางมะผ้า ที่สามารถพัฒนาไป เป็นแหล่งท่องเที่ยวได้ ดังที่การท่องเที่ยวถ้ำลอดได้แสดง ให้ประจักษ์แล้ว ในการเปลี่ยนแปลงวิถีชีวิตของชาวไทย ใหญ่บ้านถ้ำลอด จากที่เคยพึ่งพิงเพียงภาคเกษตรแต่อย่าง เดียว มาเป็นการให้บริการด้านการท่องเที่ยวด้วย ในรูป กลุ่มตะเกียงและกลุ่มแพมากว่า 10 ปี ซึ่งได้บอกอะไรแก่ เราบางอย่าง ทั้งในเรื่องแบบแผนการท่องเที่ยวของนัก ท่องเที่ยวชาวไทยและชาวต่างประเทศ และการเข้ามามี ส่วนร่วมของท้องถิ่นในการท่องเที่ยว ก่อนที่เราจะส่ง เสริมการท่องเที่ยวถ้ำอื่นๆ เราสามารถนำบทเรียนจากถ้ำ ลอดมาใช้ได้บ้างหรือไม่ อย่างไร บทความนี้ จะนำเสนอ พัฒนาการของการท่องเที่ยวถ้ำลอด การเข้ามามีส่วนร่วม ของชุมชนในการดูแลและ ได้รับประ โยชน์จากการท่อง

ถ้ำลอดกับการท่องเที่ยว

พิกุล สิทธิประเสริฐกุล *

เที่ยว แบบแผนและการกระจายตัวของนักท่องเที่ยว เพื่อ สังเคราะห์สู่ข้อเสนอบางประเด็นในการวางแผนการท่อง เที่ยวถ้ำในอนาคต

พัฒนาการการท่องเที่ยวถ้ำลอด

แม้อำเภอปางมะผ้าจะมีถ้ำมากมายร่วม 200 แห่ง และไม่เพียงมีคุณค่าทางวิชาการค้านความวิจิตรบรรจง ของปฏิมากรรมธรรมชาติ ในรูปของหินงอก หินย้อย เสา หิน ม่านหิน หรือไข่มูกถ้ำ ที่มีรูปร่าง ขนาค และสีสัน แปลกตา ยังมีคุณค่าทางค้านชีววิทยา เช่น เป็นแหล่งที่อย่ อาศัยของปลาไม่มีตา และปลาที่สามารถใช้ครีบในการ ไต่ผนังถ้ำทวนกระแสน้ำตกได้ ซึ่งพบเพียงไม่กี่แห่งใน โลกนี้ ส่วนคุณค่าทางด้านโบราณคดีนั้น ปรากฏหลัก ฐานในถ้ำหรือเพิ่งผาต่างๆ ร่วม 80 แห่ง ในรูปของเครื่อง มือเครื่องใช้ของมนุษย์ยุคก่อนประวัติศาสตร์ เช่นเครื่อง มือหิน เศษภาชนะดินเผา ภาพเขียนสีตามผนังถ้ำ และเพิ่ง ผา หรือ โลง ไม้สักที่มีอายุร่วม 2000 ปี เป็นต้น (สิทธิพงษ์ คิลกวณิช, 2542: 1-2) แต่ในสายตาของชมชนในท้องถิ่น ถ้ำคือความลึกลับ ชวนฉงน ปลุกเร้าจินคนาการของคน ในเรื่องสัตว์ร้ายและภูตผีปีศาจที่อาจอาศัยอยู่ในถ้ำ ทำให้ ชาวบ้านหลีกเลี่ยงที่จะเข้าไปข้องแวะกับถ้ำ อาศัยเป็นที่พักพิจชั่วคราวยามออกไปล่าสัตว์ ทำไร่ หรือ เดินทางไกล แต่ก็ไม่ได้เข้าไปลึกกว่าปากถ้ำหรือบริเวณที่ ผู้กล้าที่สุดก็อาจเข้าไปเพียงชั่วแสง แสงสว่างส่องถึง สว่างจากไม้เกี้ยะหนึ่งอัน (ไม้สนชนิดหนึ่ง) จะพาไปได้ เท่านั้น

แต่ถ้ำลอดซึ่งเป็นถ้ำที่ใหญ่แต่ไม่ยาวนัก ประกอบ กับการเป็นถ้ำทะลุ มีปากถ้ำกว้างใหญ่แสงส่องเข้าไปได้ ลึกทั้งสองด้าน ทั้งยังมีน้ำลางไหลผ่าน ทำให้ชาวบ้าน

^{*} ผู้ช่วยนักวิจัย ด้านการจัดการทรัพยากรถ้ำ โครงการ "การสำรวจและการจัดทำระบบฐานข้อมูลเกี่ยวกับถ้ำ จังหวัดแม่ฮ่องสอน"

จำนวนหนึ่งเข้าไปหาปลาที่มีอยู่ชุกชุมในถ้ำมาเป็นอาหาร และอาศัยเก็บขี้ค้างคาวมาทำปุ๋ยใช้ในครัวเรือน ถ้ำลอคจึง เป็นที่รู้จักของชุมชนในละแวกนี้มาตั้งแต่ พ.ศ. 2513 หลัง การเปิดปากถ้ำตามธรรมชาติจากแรงดันน้ำของปีน้ำท่วม (สำนักงานการประถมศึกษาจังหวัดแม่ฮ่องสอน. 2540: 63 และข้อมูลหมู่บ้าน, ม.ป.ป.: 134-136) หลังจาก นั้นความงคงามของปฏิมากรรมในถ้ำลอดได้ถูกเล่าต่อ กันไป จนเป็นที่รู้จักของประชาชนในปางมะผ้า และ บริเวณใกล้เคียงเช่นคำเภอเมืองแม่ฮ่องสอน บทบาทของ ้ ถ้ำสอดจึงเปลี่ยนไปจากการเป็นแหล่งอาหารแหล่งหนึ่ง ของชาวบ้าน มาเป็นแหล่งท่องเพี่ยวด้วย เห็นได้จากที่ กรมป่าไม้ได้ประกาศแยกพื้นที่ 6,250 ไร่ บริเวณถ้ำลอด ออกจากเขตรักษาพันธุ์สัตว์ป่าลุ่มน้ำปาย เพื่อจัดตั้งเป็น วนอุทยาน ใน พ.ศ. 2523 (ปัจจุบันกลับมาอยู่ในเขตรักษา พันธุ์สัตว์ป่าลุ่มน้ำปายตั้งแต่ พ.ศ. 2533 และได้จัดตั้งให้ เป็นสถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำ ลอดใน พ.ศ. 2536) ทำให้ถ้ำลอดเป็นที่รู้จักกันมากขึ้น ของชาวแม่ฮ่องสอน ชาวจังหวัดใกล้เคียง และชาวต่าง ประเทศ โดยเฉพาะหลัง พ.ศ. 2525 เมื่อเสร็จสิ้นการปรับ ปรุงทางหลวงสาย 1095 เชียงใหม่-ปาย ซึ่งทำให้การ คมนาคมสู่ปางมะผ้าเป็นไปได้สะควกขึ้น

สาเหตุที่ถ้ำลอดเป็นที่รู้จักอย่างรวดเร็ว ในการเป็น แหล่งท่องเที่ยวของอำเภอปางมะผ้า ภายหลังการพัฒนา เส้นทางคมนาคมในช่วง พ.ศ. 2525-2538 นั้น นอกจาก เพราะอิทธิพลของการประชาสัมพันธ์ในปีรณรงค์ส่ง เสริมการท่องเที่ยวไทย พ.ศ. 2530 ที่ทำให้แม่ฮ่องสอน เปิดตัวเองสู่การท่องเที่ยวทั้งจังหวัดแล้ว ยังมีความเหมาะ สมบางประการของถ้ำลอดที่ส่งเสริมให้การพัฒนาเป็น แหล่งท่องเที่ยวเดิบโตเร็วขึ้น ดังนี้

ความเหมาะสมทางกายภาพ

ถ้ำลอดมีความยาวของคูหาหลัก ช่วงที่น้ำลางไหล ผ่านประมาณ 600 เมตร ประกอบด้วย 3 คูหาย่อย คือ ถ้ำ เสาหิน ถ้ำตุ๊กตา และถ้ำผีแมน ซึ่งยกระดับสูงขึ้นไปจาก พื้นคูหาหลัก รวมความยาวทั้งหมดของตัวถ้ำประมาณ 1,200 เมตร ซึ่งนับเป็นระยะทางที่พอเหมาะ สามารถเดิน ทะลูถ้ำได้โดยสะดวก และตัวถ้ำยังตั้งอยู่ในทำเลที่ไม่ลาด ขันนัก มีสภาพแวดล้อมที่ร่มรื่น สามารถเข้าถึงได้อย่าง สะดวก และไม่ไกลจากหมู่บ้านมากนัก สภาพโครงสร้าง ภายในถ้ำ โดยเฉพาะพื้นถ้ำสามารถเดินได้อย่างไม่เสี่ยง อันตรายมากเกินไป (หลังจากปรับปรุงการเข้าถึงในบาง จุดที่สูงชันโดยการสร้างบันไดขึ้นไป)

คุณค่าที่หลากหลาย

ภายในคหาย่อยทั้ง 3 คหาของถ้ำลอด ประกอบด้วย โครงสร้างทางธรณีที่วิจิตรงคงามแปลกตา มีลักษณะเค่น แตกต่างกันไปในแต่ละคูหา เช่น ถ้ำเสาหิน มีจุดเด่นอยู่ที่ เสาหินขนาคใหญ่หลายอัน ที่เกิดจากการบรรจบกันของ หินงอกและหินย้อย บางอันมีความสูงถึง 20 เมตร ถ้ำ ตุ๊กตา มีหินงอกหลากหลายรูปร่างคล้ายตุ๊กตา และรูป รวมทั้งภาพเขียนสียุคก่อนประวัติศาสตร์อยู่ สัตว์ต่างๆ ส่วนถ้ำผีแมน มีหลักฐานทางโบราณคดีที่ บนผนังถ้ำ สำคัญ คือ โลงไม้สัก (มหาวิทยาลัยเชียงใหม่, 2538) นอก จากคุณค่ำทางค้านธรณีและ โบราณคคีดังกล่าวแล้ว ลอดยังมีคุณค่าทางด้านการเป็นแหล่งที่อยู่อาศัยของสัตว์ ป็ก คือ ค้างคาวและนกนางแอ่นเป็นจำนวนมาก ซึ่งจะบิน เข้าออกจากถ้ำวันละ 2 เวลา คือ เช้า-เย็น โดยช่วงเช้านก นางแอ่นจะบินออกจากถ้ำไปหากิน แต่ด้างคาวจะเป็น กลับเข้าถ้ำหลังจากหากินในตอนกลางคืน และสลับกัน ในช่วงเย็น นอกจากนั้นในลำน้ำลางที่ไหลผ่านคหาหลัก ของถ้ำ ยังอุดมไปด้วยปลาพวง ที่สร้างความดื่นตาตื่นใจ ให้นักท่องเที่ยวในการเฝ้าคูฝูงปลานี้มากินอาหารจากนัก ท่องเที่ยว

ด้วยทุนพื้นฐานทางด้านตำแหน่งที่ตั้งทางกายภาพ
และกุณค่าหลากหลายด้านของถ้ำลอด ที่ทำให้ถ้ำลอด
เป็นแหล่งท่องเที่ยวที่สร้างความประทับใจให้กับผู้มา
เยือน และสร้างประโยชน์ให้กับชุมชนบ้านถ้ำลอด ใน
เรื่องการกระจายรายได้จากการท่องเที่ยวสู่ชุมชน ทั้งนี้ มิ
ได้เกิดขึ้นลอยๆ แต่เพราะการจัดการอย่างชาญฉลาด และ
มีวิสัยทัศน์ของทั้งชุมชนและส่วนราชการที่เกี่ยวข้อง

การจัดการการท่องเที่ยวของถ้ำลอด

การท่องเที่ยวที่ถ้ำลอด มีการจัดการที่เกิดจากการ ทำงานร่วมกันขององค์กรประชาชน และหน่วยงานภาค รัฐ คือ สถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำ ลอด ซึ่งทั้งสองส่วนนี้แบ่งหน้าที่หลักกันรับผิดชอบ ระหว่างการจัดการทางกายภาพและการศึกษา (สถานี พัฒนาฯ) และการจัดการในเชิงสังคมเพื่อจัดสรรผล ประโยชน์จากการท่องเที่ยว (กลุ่มตะเกียงและกลุ่มแพ) โดยที่ทั้งสองกลุ่มนี้ แม้มีภาระหน้าที่หลักคนละด้านกัน แต่ต่างก็ได้หนุนเสริมซึ่งกันและกัน เป็นการเพิ่มความ เข็มแข็งให้กับการจัดการการท่องเที่ยวถ้ำลอด ดังนี้

ด้านกายภาพและการศึกษา

ดังกล่าวแล้วว่า พื้นที่ถ้ำลอดตั้งอยู่ในเขตรักษาพันธุ์ สัตว์ป่าลุ่มน้ำปาย โดยแยกความรับผิดชอบในการดูแล ที่มีคุณค่าและจุดเค่นนี้ให้อยู่ในความคูแลของ พื้นที่ สถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอด ์ ตั้งแต่ พ.ศ. 2536 ซึ่งสถานีฯได้มีบทบาทอย่างมากในการ พัฒนาโครงสร้างพื้นฐานที่จำเป็น เช่น การปรับปรุงทาง เดินเข้าสู่ถ้ำ พร้อมจัดทำจุดชมธรรมชาติ หรือป่ายแนะนำ พันธ์ไม้ต่างๆ รวมทั้งการสร้างทางเดิน สะพาน บันได และล้อมรั้วรอบๆ จุดเปราะบาง หรือจุดอันตรายภายใน ถ้ำ เพื่อป้องกันอันตรายแก่ตัวนักท่องเที่ยว และโครง สร้างทางธรณีของถ้ำ ที่อาจถูกทำลายจากการเหยียบย่ำ และปืนป่ายของนักท่องเที่ยวได้หากไม่มีทางเดินที่เหมาะ สม นอกจากนี้ สถานีฯยังจัดให้มีนิทรรศการให้ความรู้ เกี่ยวกับการกำเนิดของถ้ำ โครงสร้างและจุดเด่นทางธรณี ภายในถ้ำ ซึ่งเปิดให้ชมทุกวันที่อาคารเอนกประสงค์ของ สถานีพัฒนาฯ

ด้านชุมชน

การพัฒนาด้านโครงสร้างพื้นฐานและการศึกษา ของถ้ำลอด เกิดขึ้นภายหลังการก่อตั้งสถานีพัฒนาและส่ง เสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอดใน พ.ศ. 2536 แต่ถ้ำ ลอดเป็นที่รู้จักของนักท่องเที่ยวทั้งชาวไทยและชาวต่าง ประเทศมาก่อนหน้านั้นแล้ว จากอิทธิพลของการรณรงค์ ส่งเสริมการท่องเที่ยวใน พ.ศ. 2530 และชมชนบ้านถ้ำ ลอดได้เข้ามาเกี่ยวข้องกับการท่องเที่ยว ในรูปของการให้ บริการตะเกียงนำเที่ยวภายในถ้ำลอด แต่เป็นแบบต่างคน ต่างทำ บางครั้งเกิดการแย่งลูกค้าและพะเลาะเบาะแว้งกัน เป็นที่ โกลาหล (อุทิศ นั้นทฟู, สัมภาษณ์) จนกระทั่งมีการ หยิบยกปัญหานี้มาปรึกษาหารือกันในคณะผู้นำหม่บ้าน และได้ข้อสรุปให้มีการจัดตั้งเป็นกลุ่มตะเกียงใน 2534 มีสมาชิกเริ่มแรก 40 คน โดยเป็นตัวแทน 1 คน จาก แต่ละครอบครัวที่มีสำมะ โนครัวอยู่ในบ้านถ้ำลอค (ปัจจุบันมีสมาชิก 80 คน) สมาชิกจะหักรายได้ร้อยละ 15 จากค่าบริการ 100 บาทเข้ากองทุนหมู่บ้านเพื่อใช้ในกิจ การสาธารณประโยชน์ภายในหมู่บ้าน (ปัจจุบันหักร้อย ละ 10) รวมทั้งการพัฒนาหรือปรับปรุงสิ่งก่อสร้างที่จำ ร่วมกับสถานีพัฒนาและส่งเสริมการ เป็นภายในถ้ำ อนรักษ์สัตว์ป่าถ้ำน้ำลอด

จากความสำเร็จในการคลี่คลายปัญหาความขัดแย้ง ของการให้บริการตะเกียง ทำให้เกิดกลุ่มบริการล่องแพ ในลำน้ำลางภายในล้ำขึ้น โดยมีระบบการจัดการเช่นเดียว ในเรื่องการจัดลำดับสมาชิกเพื่อให้ กับกลุ่มตะเกียง บริการแก่นักท่องเที่ยว และมีการหักรายได้ในรูปของค่า สมัครแต่ละปี คนละ 100 บาท เข้ากองทุนหมู่บ้านเช่นกัน จะเห็นได้ว่าพัฒนาการการเข้ามามีส่วนร่วมของชาวบ้าน ้ถ้ำลอดต่อการท่องเที่ยวนั้น ได้เริ่มจากการเข้าร่วมเพื่อผล ประโยชน์เชิงปัจเจกแต่เพียงอย่างเดียว การแก่งแย่งเป็น ไปแบบ "มือใครยาวสาวได้สาวเอา" ซึ่งก่อให้เกิดความ แตกแยก ขัดแย้งขึ้นในชุมชน แต่ด้วยความมีวิสัยทัศน์ ใกลและเห็นแก่ประโยชน์ส่วนรวมของกลุ่มผู้นำชุมชน ทั้งที่เป็นทางการและไม่เป็นทางการ ทำให้การปรับตัวต่อ ความขัดแข้งแย่งชิงผลประโยชน์ เป็นไปในรูปที่ไม่เพียง เกิดประโยชน์ต่อปัจเจกอย่างทั่วถึงในชุมชนเท่านั้น หาก ยังเกิดประโยชน์ต่อส่วนรวมในรูปของเงินส่วนแบ่งคัง กล่าวด้วย และประโยชน์ในการร่วมดูแลรักษาสภาพแวด ล้อมภายในถ้ำและรอบๆ ถ้ำอีกด้วย โดยแบ่งพื้นที่กันรับ ผิดชอบระหว่างกลุ่มตะเกียง กลุ่มแพ และสถานีฯ (ปัจจุบันแม้แต่กลุ่มเด็กนักเรียนที่มาขายอาหารปลาในวัน หยุด ก็รับผิดชอบกวาดขยะบริเวณที่นั่งขายอาหารปลา ด้วย)

การจัดการการท่องเที่ยวบ้านถ้ำลอด เกิดจากความ ร่วมมือระหว่างชมชนผ่านองค์กรประชาชนอย่างไม่เป็น ทางการ ที่รวมตัวกันขึ้นมาด้วยความสมัครใจ จากความ ค้องการแก้ปัญหาความจัดแย้งภายในชุมชนกันเอง หน่วยงานของรัฐ คือ สถานีพัฒนาและส่งเสริมการ อนรักษ์สัตว์ป่าถ้ำน้ำลอด ที่มีหน้าที่ตามกฎหมายในการ คูแลรับผิดชอบพื้นที่ แต่ก็ไม่ได้แสดงอำนาจสิทธิ์ขาด เหนือพื้นที่ ในการจัดการการท่องเที่ยวเองทั้งหมด กลับ ให้ความสำคัญในการจัดการ โดยชมชนที่ได้ก่อตัวมาก่อน แล้วในพื้นที่ โดยเข้ามาพัฒนาเสริมในส่วนที่ยังขาดอยู่ คือ ด้านโครงสร้างพื้นฐาน และการศึกษา นอกจากนี้ ทั้ง องค์กรประชาชนและสถานีฯ ยังได้พยายานระดน ทรัพยากรบุคคลในพื้นที่ ให้เข้ามามีส่วนร่วมในการจัด การการท่องเที่ยวด้วย เพื่อเสริมจุดอ่อนของตน เช่น ได้ เชิญเจ้าหน้าที่พัฒนาชมชน ซึ่งเป็นตัวแทนของหน่วยงาน ด้านการปกครอง ให้เข้ามาเป็นที่ปรึกษาของกรรมการ กลุ่มตะเกียงและแพด้วย หรือในการประชุมประจำเดือน บางครั้งใต้เชิญผู้มีความรู้เกี่ยวกับถ้ำและการอนุรักษ์ใน พื้นที่ มาให้ความรู้แก่สมาชิกกลุ่มตะเกียงและแพ เป็นต้น

ในอำเภอปางมะผ้า การมีส่วนร่วมของชุมชนต่อ
การท่องเที่ยวที่บ้านถ้ำลอด ถูกใช้เป็นตัวอย่างในการส่ง
เสริมการท่องเที่ยวที่บ้านอื่นๆ โดยพยายามแสวงหาความ
เป็นได้ที่จะ "เปิดถ้า" ที่ตั้งอยู่ใกล้ๆ หมู่บ้าน เพื่อพัฒนา
เป็นแหล่งท่องเที่ยวเช่นถ้ำลอด ทั้งนี้ โดยหวังประโยชน์
เพื่อการพัฒนาคุณภาพชีวิตของคนในชุมชนผ่านการ
กระจายรายได้จากการท่องเที่ยว และเพื่อผลประโยชน์
ด้านการอนุรักษ์ผ่านการได้ประโยชน์ทางเสรษฐกิจของ
ชุมชน ที่จะเป็นแรงจูงใจให้ช่วยกันดูแลรักษาถ้ำ และ
สภาพแวดล้อมรอบๆ ถ้ำไว้

แต่ความสำเร็จของการท่องเที่ยวที่ถ้ำลอด อาจไม่ ใช่บทเรียนที่สามารถถอคออกไปสวมกันได้กับทุกชุมชน ด้วยเงื่อนไขหลายๆ ประการ เช่น ตำแหน่งที่ตั้งของถ้ำ โดยสัมพันธ์กับที่ตั้งของหมู่บ้าน จุดเด่นที่จะคึงคูดความ สนใจของนักท่องเที่ยวภายในถ้ำ หรือลักษณะความ เปราะบางของโครงสร้างภายในถ้ำที่แตกต่างกัน (หลาย ถ้ำยังไม่เหมาะที่จะเปิดให้เที่ยวเพราะมีจุดเปราะบางมาก และยังไม่มีมาตรการในการป้องกันผลกระทบจากการ เข้าไปใช้ประโยชน์ในถ้ำ) และหากพิจารณากันให้ลึกซึ้ง บนความสำเร็จของการจัดการการท่องเที่ยวที่ถ้ำ ลอดในวันนี้ ได้บอกอะไรบางอย่างแก่เรา ซึ่งอาจเป็นข้อ พึงระวังที่ควรนำไปสู่การถกเถียงกันบนพื้นฐานความรู้ ทางวิชาการของหลายๆ ฝ่าย เพื่อป้องกันผลกระทบจาก การท่องเที่ยวที่อาจเกิดขึ้นในอนาคต และแสวงหาแนว ทางในการพัฒนาการท่องเที่ยว โดยใช้พื้นที่ทั้งระบบ นิเวศเป็นตัวตั้ง แทนการพัฒนาเป็นรายถ้ำ และรายชุมชน เพราะในทางปฏิบัติแล้ว ในจำนวนถ้ำที่มากมายของปาง มะผ้า คงไม่สามารถเปิดถ้ำใคก็ได้เพื่อตอบสนองต่อการ ท่องเที่ยวในทุกชุมชน

การกระจายตัวของนักท่องเที่ยว

จากสถิตินักท่องเที่ยวที่เดินทางมาเยี่ยมชมถ้ำลอด ซึ่งสถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอค ได้บันทึกไว้ตั้งแต่ พ.ศ. 2536 (ปีก่อตั้งสถานีฯ) ได้แสคง ให้เห็นถึงการเพิ่มของจำนวนนักท่องเที่ยวทั้งชาวไทย และชาวต่างประเทศ รวมทั้งความแตกต่างของจำนวนนัก ท่องเที่ยวรายเดือน ในช่วงสูงสุดและค่ำสุดในรอบ 1 ปี (ตารางที่ 1) จากจำนวนรวมของนักท่องเที่ยว ที่เดินทาง มาเที่ยวถ้ำลอคที่เพิ่มขึ้นถึงร้อยละ 64.6 จาก พ.ศ. 2536-2541 แม้ว่าระหว่าง พ.ศ. 2537-2538 จำนวนนักท่อง เที่ยวรวมจะลคลงถึง 4,752 คน (ร้อยละ 13.4) โดยกลุ่มที่ ลด คือ นักท่องเที่ยวชาวต่างประเทศ ซึ่งลดลง 7,292 คน (ร้อยละ 34.2) ทั้งๆ ที่ยอดนักท่องเพี่ยวต่างประเทศรวม ของจังหวัดแม่ฮ่องสอนใน พ.ศ. 2538 ยังเพิ่มถึงร้อยละ 6.95 จาก พ.ศ. 2537 (การท่องเที่ยวแห่งประเทศไทย, 2540: 90) ทั้งนี้ อาจเป็นเพราะการปรับปรุงสนามบินที่ แล้วเสร็จใน พ.ศ. 2538 ทำให้สามารถเพิ่มเที่ยวบินจาก

ตารางที่ 1 แสดงสถิติการกระจายด้วนักท่องเที่ยวของสถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอค

สุด แตกต่าง รวม (เท่า) 4.6 15.715	เดียนต่ำสุด แตกต่าง รวม (เท่า) 606 4.6 15,715	แระ เทคาค่าง (เทา)	เคือนสูงสุด เคือนต่ำสุด แตกต่าง รวม (เท่า)	รวม เคือนสูงสุด เดือนท่ำสุด แตกต่าง รวม	
4.6 15.715	606 4.6				
		606 4.6 15,715	2,764 606 4.6 15,715	19,087 2,764 606 4.6 15,715	คือนตำสุด แตกต่าง (เท่า)
726 4.5 21,324 4,099 1,	4.5 21,324 4,099	726 4.5 21,324 4,099	3,250 726 4.5 21,324 4,099	14,213 3,250 726 4.5 21,324 4,099	-
723 3.3 14,032 4,819	3.3 14,032	723 3.3 14,032	2,388 723 3.3 14,032	16,573 2,388 723 3.3 14,032	เคือนต่ำสุด 1,914 1,178
3.3	723 3.3	2,388 723 3.3 1,494 743 2.0	16,573 2,388 723 3.3 24,293 1,494 743 2.0	27.7 16,573 2,388 723 3.3 13.6 24,293 1,494 743 2.0	<u>e</u>
	723	2,388 723	16,573 2,388 723 24,293 1,494 743	27.7 16,573 2,388 723 13.6 24,293 1,494 743	
726		3,250	14,213 3,250 16,573 2,388 24,293 1,494	5.6 14,213 3,250 27.7 16,573 2,388 13.6 24,293 1,494	แตกต่าง (เท่า) 4.6
	3,250		16,573	27.7 16,573	เคียนทำสุด 606
351 5.6 148 27.7 602 13.6	602		2,113		

ที่มา: สถิตินักท่องเหียวสถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอด

เชียงใหม่มาแม่ฮ่องสอนได้ถึงสัปดาห์ละ 31 เที่ยว (สุรีย์ บญญานพงศ์. 2539: 32) นักท่องเที่ยวต่างประเทศส่วน หนึ่งจึงเดินทางมาแม่ส่องสอน โคยเครื่องบิน แล้วเที่ยว ชมบริเวณรอบๆ อำเภอเมือง แทนการเดินทางโดยรถ จากเชียงใหม่มาปางมะผ้า การลคลงของกลุ่มนักท่อง เพี่ยวชาวต่างประเทศที่มาถ้ำลอด ยังคงคำเนินไปจนถึง พ.ศ. 2540 ในขณะที่นักท่องเที่ยวรวมของแม่ฮ่องสอน ยัง คงเพิ่มในอัตราที่สูง (ร้อยละ 25.65 ใน พ.ศ. 2539 และ ร้อยละ 13.53 ใน พ.ศ. 2540) แต่นักท่องเที่ยวไทยกลับ เพิ่มขึ้นเรื่อยๆ ทกปี อาจเป็นเพราะอิทธิพลของสื่อทั้งวาร-สารการท่องเที่ยว และรายการสารคดีนำเที่ยว ที่มีการ กล่าวถึงแม่ฮ่องสอนมากขึ้น ประกอบกับการปรับปรง ทางหลวงสาย 1095 จากแม่ฮ่องสอน-ปาย จนไปบรรจบ กับช่วงจากเชียงใหม่-ปาย ทำให้นักท่องเที่ยวชาวไทยที่ นิยมเดินทางมาเที่ยวแม่ฮ่องสอน โดยเส้นทางวนรอบ จังหวัดจากเชียงใหม่-แม่สะเรียง-ปางมะผ้า-ปาย-เชียงใหม่ หรือกลับกัน ได้รับความสะดวกในการเดินทาง มากขึ้น และเป็นที่บ่าสังเกตว่าใน พ.ศ. 2541 นักท่อง เที่ยวทั้งชาวไทยและค่างประเทศที่มาเที่ยวถ้ำลอคได้เพิ่ม จำนวนสูงขึ้นอีก ซึ่งอาจเป็นเพราะผลจากการประชา สัมพันธ์ ของปีส่งเสริมการท่องเที่ยวไทย พ.ศ. 2541-2542 (Amazing Thailand Year 1998-1999)

เมื่อพิจารณาถึงการกระจายตัวของนักท่องเที่ยวใน รอบ 1 ปี พบว่าความแตกต่างระหว่างเคือนที่มีนักท่อง เที่ยวจำนวนสูงสุด กับเคือนที่มีจำนวนต่ำสุดแตกต่างกัน มาก ดังแสดงในตารางที่ 1 โดยจำนวนนักท่องเที่ยวใน ช่วงเคือนสูงสุดนั้น มีค่าเฉลี่ยต่อวันถึง 437 คน หรือ 55 คนต่อชั่งโมง (คิด 8 ชั่งโมงต่อวัน จากตัวเลขจำนวนนักท่องเที่ยว พ.ศ. 2541) หากผลของการส่งเสริมการท่อง เที่ยวจะทำให้จำนวนนักท่องเที่ยวเพิ่มขึ้น ในลักษณะที่ยัง คงกระจุกตัวเช่นนี้ นั่นคือความหนาแน่นของนักท่อง เที่ยวในพื้นที่ต่อหนึ่งหน่วยเวลาจะสูงมากในบางช่วง ซึ่ง มีผลทำให้เกิดความแออัดภายในถ้ำ อาจทำให้นักท่อง เที่ยวเดินออกนอกทางเดินที่จัดไว้ให้ มีโอกาสไปเหยียบ ย่ำโครงสร้างทางธรณีที่บอบบางบริเวณพื้นถ้ำได้ และ

ปริมาณการ์บอนไดออกไซด์ หรืออุณหภูมิที่สูงขึ้น เสียง
ผุ้น จากการย่ำเท้าบนพื้นคินในถ้ำย่อมเพิ่มมากขึ้นตามไป
ด้วย สิ่งเหล่านี้ล้วนมีผลกระพบต่อโครงสร้างทางธรณี
สิ่งมีชีวิต และหลักฐานทางโบราณคดีภายในถ้ำ ส่วนใน
แง่นักท่องเที่ยวนั้น ความแออัดทำให้ลคสุนทรียภาพของ
แหล่งท่องเที่ยวนั้นลง และในบางตำแหน่งของถ้ำที่มี
โครงสร้างไม่มั่นคงต่อการรับน้ำหนักมากนัก หรือเป็น
จุดล่อแหลมที่จะพลัดตกลงมาได้ง่าย การมีนักท่องเที่ยว
จำนวนมากๆ พร้อมๆ กัน อาจทำให้เกิดการหักพัง หรือ
พลาดตกลงมาเป็นอันตรายได้

ข้อเสนอเบื้องต้นในการจัดการการท่องเที่ยวถ้ำ

ท่ามกลางการศึกษาเพื่อพัฒนาองค์ความรู้เกี่ยว กับระบบนิเวศถ้ำ มิติหนึ่งที่มนุษย์เข้าไปสัมพันธ์กับถ้ำ คือ ในรูปของการท่องเที่ยว สิบปีที่ผ่านมาของการท่อง เที่ยวถ้ำลอค ได้ให้บทเรียนและสร้างคำถามบางประการ ถึงแนวโน้มการจัดการที่พึงมีพึงเป็น ในความสัมพันธ์ ระหว่างมนุษย์กับระบบนิเวศถ้ำ ดังนี้

การจัดรูปแบบที่เหมาะสมในการท่องเที่ยวถ้ำลอด

เพื่อลคลวามกคดันต่อถ้ำ โดยการจำกัดจำนวนนัก ท่องเที่ยว ที่จะเข้าไปในถ้ำพร้อมกันในหนึ่งหน่วยเวลา ซึ่งต้องการการศึกษาข้อมูลพื้นฐาน ไว้เปรียบเทียบในการ ประเมินการเปลี่ยนแปลงค้านต่างๆ ดังกล่าวข้างค้น เพื่อ ให้ได้มาซึ่งตัวเลขที่เหมาะสม ในการระบุช่วงจำนวนนัก ท่องเที่ยวที่จะเข้าไปในถ้ำพร้อมๆ กันได้ในหนึ่งหน่วย เวลา และการสร้างสรรค์กิจกรรมที่เกี่ยวเนื่องกับถ้ำหรือ การผจญภัย ให้เป็นทางเลือกของนักท่องเที่ยว โดยขยาย ความหมายของการท่องเที่ยวถ้ำออกไปให้มากกว่าเพียง การเดินเข้าไปชมในตัวถ้ำ โดยจัดเป็นโปรแกรมย่อยๆ ให้ มีกิจกรรมอื่นๆ ร่วมกับการเข้าถ้ำ เพื่อลดเวลาในการใช้ ถ้ำลง เช่น

THE RESIDENCE

- ล่องแพระยะสั้นๆ จนถึงปากถ้ำ แล้วเข้าถ้ำ
- ฝึกไต่เขาเตี้ยๆ บริเวณใกล้ๆ ถ้ำ
- สร้างโมเคลจำลองการกำเนิดของถ้ำ และการเกิด

ของโครงสร้างทางธรณีบางอย่างในถ้ำที่ คน สามารถเดินเข้าไปชมและรับคำอธิบายภายใน โมเดลได้

- เคินป่าเส้นทางสั้น ๆ มีจุดแวะชมที่ชี้ถึงความ เชื่อมโยงของทั้งระบบนิเวศน์ ที่จะมีผลต่อถ้ำ เช่น ป่าที่ปกกลุมถ้ำ การใช้สารเคมีในการทำ เกษตร ที่มีผลต่อการปนเปื้อน ของลำน้ำ ก่อน ใหลเข้าถ้ำ เป็นต้น แล้วจึงเข้าชมถ้ำ 1 คูหา - เคินเล่นในสวนกล้วยไม้บริเวณใกล้ๆ ถ้ำ สำหรับ ผู้สูงอายุ หรือเด็กเล็กๆ (เป็นความคิดริเริ่มของสภา ตำบลถ้ำลอดที่จะสร้างสวนกล้วยไม้)

แต่ละชุดกิจกรรมของโปรแกรมย่อยๆ เหล่านี้ ควร ใช้เวลาใกล้เคียงกัน เพื่อความสะดวกในการแบ่งนักท่อง เที่ยวที่มากับกลุ่มการเดินทางเคียวกัน และการเข้าถ้ำของ แต่ละชุดกิจกรรม อาจไม่จำเป็นต้องเป็นถ้ำเคียวกันก็ได้ (หากบริเวณนั้นมีถ้ำอื่นอยู่ใกล้เคียง เช่น ถ้ำเต่าอยู่ใกล้กับ ถ้ำลอด) หรือเป็นคนละดูหาย่อยภายในถ้ำ

การกระจายผลประโยชน์จากการท่องเที่ยว

ถ้ำลอดเป็นตัวอย่างที่ดีของการกระจายผล ประโยชน์จากการท่องเที่ยว ทั้งสู่สมาชิกในชุมชนแต่ละ และสู่ส่วนรวมทั้งชุมชน ครอบครัว ซึ่งไม่ใช่ผล ประโยชน์ที่อยู่ในรูปตัวเงินเท่านั้น แต่เป็นผลประโยชน์ ในรูปแบบต่างๆ เช่น ศาลาวัค ศาลาคุ้ม สะพาน หรือ อุปกรณ์กีฬาสำหรับโรงเรียน ทำให้ชุมชนสามารถเชื่อม โยงการใค้ประโยชน์จากทรัพยากรธรรมชาติคือถ้ำ กับ การดูแลรักษาถ้ำไว้ แต่การอนุรักษ์ถ้ำไม่ได้หมายความ เพียงแค่การคูแล "ตัวถ้ำ" เท่านั้น เพราะการเปลี่ยนแปลง บางอย่างในถ้ำ ขึ้นกับผลรวมของการเปลี่ยนแปลงใน ระบบนิเวศนั้นๆ เช่น สภาพความอุคมสมบูรณ์ของป่า โดยรวม ปริมาณและคณภาพน้ำในแม่น้ำที่ใหลผ่านเข้า ไปในถ้ำ เป็นต้น ซึ่งสิ่งเหล่านี้มีผลจากการเข้าไปใช้ ประโยชน์ของมนุษย์ในพื้นที่นั้น โดยเฉพาะส่วนที่อยู่ เหนือถ้ำขึ้นไป หากต้องการให้การได้ประโยชน์จากการ ท่องเที่ยวถ้ำ เป็นสื่อที่จะให้ชุมชนเกิดสำนึกในการดูแล รักษาสภาพแวคล้อมโดยรวมที่มีผลต่อถ้ำ และการดำรง อยู่ของสรรพชีวิตในถ้ำแล้ว ผลประโยชน์จากการท่อง
เที่ยวคงต้องกระจายออกไปอย่างกว้างขวางกว่าเพียงหนึ่ง
ชุมชน อันเป็นที่ตั้งของถ้ำนั้น โดยที่ประโยชน์นั้น อาจ
เป็นการเกิดโดยตรงเช่นที่ชุมชนบ้านถ้ำลอด หรือเกิดโดย
อ้อมในรูปแบบใดรูปแบบหนึ่งก็ได้ ปัจจุบันมีแนวโน้ม
หนึ่งที่เป็นไปได้ คือ การตั้งศูนย์ขายงานหัตถกรรม หรือ
ผลิตภัณฑ์ทางการเกษตรแปรรูป ที่รวบรวมสินค้าจาก
หลายๆ หมู่บ้านในปางมะผ้ามาวางขายที่ถ้ำลอด

ท้ายสุด คงยังไม่มีคำตอบสำเร็จรูป เกี่ยวกับการ ท่องเที่ยวล้ำในปางมะผ้า ทุกฝ่ายที่เกี่ยวข้องกับการท่อง เที่ยว ทั้งภาครัฐ ภาคเอกชน และภาคประชาชน คงต้อง มาช่วยกันขบคิดท่ามกลางเหตุผลและมุมมองของแต่ละ ฝ่าย บนพื้นฐานข้อเท็จจริงทางวิชาการ และพื้นฐานทุน ทางสังคม วัฒนธรรมที่มีอยู่จริงในชุมชนชาวปางมะผ้า ทั้งนี้ เพื่อให้การใช้ประโยชน์จากการท่องเที่ยวฉ้ำเป็นไป อย่างยั่งยืน และสามารถรักษาไว้ซึ่งมรดกล้ำค่าจากธรรม ชาติเหล่านี้ ให้คงอยู่ต่อไป

บรรณานุกรม

ข้อมูลหมู่บ้านอำเภอปางมะผ้า. (ม.ป.ป.). อัดสำเนา. จอห์น สปีส์. "เสน่ห์แคนถ้ำที่ปางมะผ้า" ใน ปาริชาติ เรื่องวิเศษ (บรรณาธิการ). แม่ฮ่องสอน. กรุงเทพฯ: ค่านสุทธาการพิมพ์, 2537.

มหาวิทยาลัยเชียงใหม่. การศึกษาเพื่อจัดทำแผนการจัด การอนุรัษ์สิ่งแวดล้อมธรรมชาติบริเวณถ้ำน้ำลอด จังหวัดแม่ฮ่องสอน. เชียงใหม่: มหาวิทยาลัย เชียงใหม่, 2538.

สิทธิพงษ์ คิลกวณิชและคณะ. รายงานความ
ก้าวหน้าครั้งที่ 2 โครงการสำรวจและการจัดทำ
ระบบฐานข้อมูลเกี่ยวกับถ้ำ จังหวัดแม่ฮ่องสอน.
นครปฐม: คณะสิ่งแวคล้อมและทรัพยากรศาสตร์
มหาวิทยาลัยมหิคล, 2542.

สุรีซ์ บุญญานุพงศ์ . ผลกระทบจากการส่งเสริมการ ท่องเที่ยว ศึกษากรณีจังหวัดแม่ฮ่องสอน. เชียงใหม่: สถาบันวิจัยสังคม, 2539. อุทิศ นันทฟู, 8 ฅุลาคม 2541. อาจารย์ใหญ่โรงเรียนบ้าน ถ้ำลอค. สัมภาษณ์.

Spies, J. "The Values and Vulnerability of

the Cave and Karst Resources in Mae hongson Province, Thailand" **Journal Ecology**, 1997. 24 (3) pp. 41-48.

The Future of Caves and Karst in Thailand

Dean Smart

INTRODUCTION

Karst in Thailand comprises many rock types. Limestones of Ordovician and Permian ages are the most prominent and well known, but there are also extensive gypsum and rocksalt deposits. Karst represents around 18% of the total land surface area of Thailand (author's unpublished data).

The greatest list yet compiled for caves in Thailand comprises some 3,500 sites (Dunkley, 1995). Information for many more is available in the author's personal archives and is in the process of being compiled. Around 5,000 sites are now 'known'. Many more are waiting to be discovered by science and it is believed that somewhere between 10,000 and 20,000 sites will be the final total.

Present day cave and karst management tends more towards destruction of these valuable and irreplaceable resources than protection. Even well intentioned management is often misguided and inadequate. Can improvements be made to this situation?

PRESENT MANAGEMENT

The importance of caves and karst in Thailand is only now being realised. In terms of biology, no less than 123 species have been discovered living on limestone karst, mountains and in caves. All of these

species are endemic to these habitats and Thailand.

They have not been found anywhere else in the world.

The knowledge we have of ancient people in Thailand and of Thai history and culture has been improved vastly from evidence found in caves. Artifacts inside caves are protected from deterioration by the stable conditions.

Caves and karst are continuing to play an important role in Thai Society. Nearly 10% of all the caves in the list of Dunkley are temple caves. Limestone extraction has been instrumental in the development of the Thai economy. In 1997, a total of 90,000,000 tons (worth 7 billion Baht) was extracted for use in concrete, acidity regulation in fertiliser, decorative marble and toothpaste to list just a few examples (DMR. 1998). Due to the poor economy of recent times this figure has dropped by 50% for 1998 (DMR. 1999). Karst soils are rich and fertile and provide excellent crop production.

Virtually everybody, knowingly or not, makes use of products made of limestone. We use electricity produced by dams built in karst areas and eat food grown on karst. Many people use karst springs for water supplies. It could be said that everybody has a dependence on and a responsibility for caves and karst.

Many people take a direct responsibility for the management of caves and karst. These people range from local villagers to provincial governors, from NGO's to government organisations, from tourists to

[.] นักวิจัย โครงการ "การสำรวจและการจัดทำระบบฐานข้อมูลเกี่ยวกับถ้ำ จังหวัดกาญจนบุรี"

tour operators, from Buddhist worshippers to temples and from academics to industry. Are these 'managers' doing a good job? The answer is unfortunately "NO".

Most National Parks have several caves open for tourists. Sai Yok N.P. has a total of 5 'developed' caves (Smart, 1995), Erewan N.P. has another 5 and Khao Sam Roi Yot N.P. also has 5 (Smart, 1996). One of the caves at Erewan is Tham Wang Badan. This cave is the unique habitat for two species of troglobitic fish, a troglobitic scorpion and a troglobitic springtail (Deharveng, et al. 1987). They live nowhere else on Earth and the cave is subjected to uncontrolled tourists who write graffiti on the walls, drop litter and walk all over the floor sediments. Tham Kaeo in Khao Sam Roi Yot has been described as one of the most important sites for troglobitic spiders in SE Asia (Deeleman-Reinhold, 1993). It too is subjected to many visitors who drop litter, walk everywhere and leave the cave having learnt nothing. These problems also apply to specifically developed tourist caves like Tham Khao Bin, Ratburi. A budget of 22 million Baht was spent on developing the cave (Dunkley, 1993) including a massive lighting system totaling 145,000 watts installed in 1983 (Author's data). Today the cave is dead. Inadequate control over tourists, use of lamps that are too powerful and lack of interpretation have been the main causes (Author's data). The Tourism Authority of Thailand is now considering spending more money on an air ducting system to correct the problem they caused. Tham Khao Bin and most other tourist caves were unsuitable for development in the first place, being dry, single entrance caves with little or no exchange with the surface.

Temple caves dig out much of the original floor sediments of caves and lay down concrete. This action destroys cave habitats, archaeological and palaeontological material and cannot be removed easily without damaging the cave further.

Industrial uses of karst tend to be totally destructive. Flooding due to dams and obliteration by quarrying leaves nothing behind. Pollution to groundwater and water table changes can have dramatic effects over wide areas. Agriculture places severe pressure on karst soils. Over production leeches the soil of nutrients and clearance of undergrowth exposes the soil to erosion. Villages in mountain karst areas often have inadequate waste disposal systems. Sewage and leechates from garbage are simply left to soak into the ground. Water flows underground very quickly through karst and often does not give enough time for the poisons and bacteria to be cleaned out. The deadly Salmonella and E. coli bacteria can survive over 100 days in groundwater (Kaddu-Mulindwa et al, 1983). They then emerge at a spring where the water is used for drinking purposes.

Present day management of caves and karst in Thailand is poorly organised and carried out by people with little or no background knowledge. Sufficient knowledge and expertise is available although little use is being made of it.

FUTURE PROSPECTS FOR CAVES AND KARST IN THAILAND

Without major changes to the current situation, the caves and karst of Thailand are going to suffer very badly. The majority of caves currently used by visitors will continue to suffer from aesthetic destruction, habitat impacts, theft of artifacts and speleothems and loss of significant scientific data. Without good interpretation, this damage will spread quickly to other

caves and sites not currently developed where 'ecotourists' visit.

Improvements in cave management are needed in the following areas:

- Developing fewer caves and only those caves that are suitable for the intended purpose.
- In cave development including designated pathways, sensitive lighting and trained guides.
- Interpretation of caves to visitors needs to begin, not only at tourist caves, but also at temple caves.
- Avoid permanent development such as concrete floors and enlarging of caves through explosives.
- Train cave managers to understand caves in terms of geology, biology, environment, hydrology, significance and vulnerability.

Caves must start to be thought of as just a very small part of the larger, overall karst system. If the surrounding karst is managed properly then the caves within it are automatically protected. This requires land managers to preserve natural forests in catchment areas. Pollution controls over human and livestock sewage, garbage, industrial wastes and agricultural chemicals need to strictly adhered to. Adequate waste treatment systems are more essential to remote villages than roads and electricity. Use of fertiliser and pesticides should be kept to a minimum or better still, not used at all. The full impacts of dams and quarrying need to be carefully studied long before they reach a stage of realisation. This applies not just to the immediate area, but also to areas where relocated people are moved to, e.g. the North Eastern people of Lam Khlong Ngu. Other construction such as roads and pipelines should be aware of potential hydrological changes.

Conservation ethics and appropriate laws are already in place in Thailand. It is relatively easy to

apply good management to the caves and karst of Thailand and improvements should be seen within a short space of time.

THAILAND CAVE AND KARST GROUP

Improved management and conservation of Thailand's caves and karst is the TCK group's objective. The group was created to act as an information source for anybody with an interest in caves and karst. A large library of textbooks, journals and articles has been collected already and continues to expand. The group also actively undertakes exploration, surveying and study of caves and karst in Thailand. A journal is published four times a year.

The TCK Group can provide knowledgeable and experienced advice on all aspects of caves and karst. The group intends to become the central depository for data concerning caves and karst in Thailand. A database for all caves and karst in Thailand has been set and in rapidly increasing in size.

Members are now being requested. Please contact the author for details or visit our website.

REFERENCES

Deeleman-Reinhold, C.L.. "A remarkable troglobitic

Tetrablemmid spider from a cave in Thailand

(Arachnida: Araneae: Tetrablemmidae)",

Nat. Hist. Bull. Siam Soc. 41, 1993. pp.99-103.

Deharveng, L. et al. Expedition Thai-Maros 86, Rapport Speleologique et Scientifique.

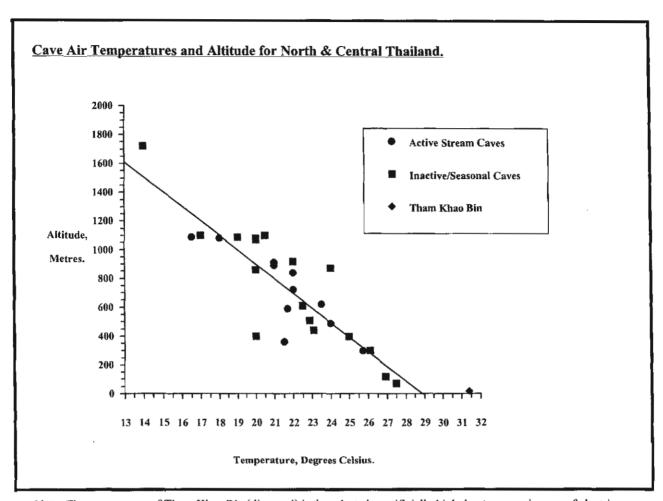
Toulouse: Pyreneenne de Speleologie, 1987.

- D M R. Mineral statistics of Thailand 1993-1997.

 Report. Bangkok: Department of Mineral
 Resources, 1998.
- D M R. Mineral statistics of Thailand 1997-1998.

 Bangkok: Department of Mineral Resources,

 999.
- Dunkley, J.D. "Khao Bin Cave, Thailand and the problem of enhanced levels of carbon dioxide in tropical tourist caves", Proc. 11th Int. Congr. Speleology, Beijing: 1993. pp155-156.
- Dunkley, J.D. **The caves of Thailand.** Sydney: Speleological Res. Council, 1995. 124 pp.
- Kaddu-Mulindwa, D., et al, "Survival of some pathogenic and potential pathogenic bacteria in


- groundwater", In Ground water in water resources planning. Unesco: 1983. pp1137-1145.
- Smart, D. Tham Lawa, report on general aspects
 with particular attention to tourism. (unpub.
 Report). Bangkok: Royal Forest Department,
 1995. 48pp.
- Smart, D. Caves of Khao Sam Roi Yot a

 preliminary study of the caves, current

 management practices and visitor impacts.

 (unpub. Report). Bangkok: Royal Forest

 Department, 1996. 28pp.

Note: The temperature of Tham Khao Bin (diamond) is thought to be artificially high due to excessive use of electric lighting.

Most other, natural plots are consistent with the best line fit. Plots deviating from the line can be explained by local conditions. For example, the two plots at lower left probably reflect locally depressed temperatures in the bottom of the 500m deep river gorge where they are situated.

© - Thailand Cave and Karst Group, 1999. Data from many sources.

ภาคผนวก

การประเมินค่าดัชนีความสำคัญของพันธุ์ให้ในสังคมพืช

การประเมินคัชนีความสำคัญของพันธุ์ไม้ จะทำการประเมินแยกในแต่ละแปลงสำรวจเนื่องจากในแปลงสำรวจใดๆ จะเป็นตัวแทนของสังคมป่าบนหลังคาถ้ำ นั้นๆ โดยข้อมูลที่ได้จากแปลงสำรวจขนาด 10 x 50 เมตรของป่าบนหลังคาถ้ำ STD-664 จะคิดเป็นแปลงย่อยขนาด 10 x 10 เมตุร จำนวน 5 แปลง การคำนวณเพื่อให้ ได้ค่าดัชนีความสำคัญของพันธุ์ไม้ โดยทำการบันทึกข้อมูลของไม้ที่มีขนาดเส้นรอบวง (GBH) เกินกว่า 30 เซนติเมตร ขึ้นไป ที่ความสูงระดับ 1.30 เมตร เหนือพื้น-ดิน นำมาสู่ขั้นตอนการหาค่าดัชนีความสำคัญ ดังนี้

- 1. ทำการบันทึกจำนวนค้นไม้แต่ละชนิคที่ปรากฏ ในแปลงทั้งหมด (5 แปลง) และหาค่าจำนวนค้นเฉลี่ยต่อ แปลง ซึ่งก็คือ ค่าความหนาแน่นของพืชชนิคนั้นต่อ แปลง เช่น จากตารางที่ 1 ไม้ไทร มีทั้งสิ้น 1 ต้น เฉลี่ยต่อ แปลง จะได้ 1/5 = 0.2 ต้นต่อแปลง และทำการรวมค่า ความหนาแน่นของไม้ทุกชนิคได้ 1.6 ต้นต่อแปลง
- 2. ทำการประเมินค่าความถี่ของไม้ทุกชนิดใน แปลงตัวอย่าง โดยนับจำนวนแปลงที่ไม้ชนิดนั้นปรากฏ หารค้วยจำนวนแปลงที่ทำการสำรวจ จากตารางที่ 1 เฉพาะไทร พบว่าปรากฏใน 1 แปลงจากทั้งหมด 5 แปลง คำนวณค่ำความถี่ได้ 1/5 = 0.2 รวมค่าความถี่ทั้งหมดของ ไม้ที่ปรากฏ ได้ 1.6
- ทำการหาพื้นที่หน้าตัดของไม้ทุกชนิดในแปลง ทำโดยการนำค่า GBH มาคำนวณพื้นที่หน้าตัด จากสม การ (GBH²)/(4 x (22/7)) เป็นรายคัน เฉพาะไทร มี

พื้นที่หน้าคัด 2.3376 ตารางเมตร (หากไม้ชนิดนั้นมีมาก กว่า 1 ต้นให้รวมพื้นที่หน้าตัดของไม้นั้นไว้ด้วยกัน) หา ผลรวมพื้นที่หน้าตัดของไม้ทุกชนิดในแปลง ได้ 3.5449 ตารางเมตร

- 4. หาค่าความหนาแน่นสัมพันธ์ของไม้แต่ละชนิด หาได้จากความหนาแน่นของไม้ชนิดนั้นต่อแปลง หาร ด้วยผลรวมความหนาแน่นทั้งหมด คูณด้วย 100 ซึ่งจาก ตารางเดิม ไม้ไทร ได้เท่ากับ (0.2/1.6) x 100 = 12.5 ทำการคำนวณค่าความหนาแน่นสัมพันธ์ของไม้อื่นๆ ทุก ชนิดโดยวิธีเดียวกันนี้
- 5. หาค่าค่วามถี่สัมพันธ์ของไม้แค่ละชนิด จากตา รางเดิม เฉพาะไม้ไทร ค่าความถี่สัมพันธ์หาได้จาก ค่า ความถึ่ของไม้ไทร หารด้วย ค่าความถี่รวมของไม้ทุก ชนิดในแปลง คูณด้วย 100 ซึ่งได้เท่ากับ (0.2 / 1.6) x 100 = 12.5 ทำการคำนวณค่าความถี่สัมพันธ์ ของไม้ ชนิดอื่นด้วยวิธีเดียวกัน
- 6. หาค่าความเค่นสัมพันธ์ของไม้แต่ละชนิค ได้ จาก พื้นที่หน้าตัดของพืชชนิดนั้น หารด้วย ผลรวมพื้นที่ หน้าตัดของไม้ทั้งหมดในแปลงนั้น คูณด้วย 100 สำหรับ ไม้ไทร ในตารางเคิม จะมีค่า (2.3376 / 3.5499) x 100 = 65.85 ค่านี้สำหรับไม้ชนิดอื่นคำนวณได้จากวิธี เดียวกัน
- 7. ทำการหาค่าดัชนีความสำคัญของไม้แต่ละชนิด ในสังคมพืช (I.V.I.) ได้จากการรวมค่าความหนาแน่น สัมพันธ์ ความถี่สัมพันธ์ และความเค่นสัมพันธ์เข้าด้วย กัน ตัวอย่างเช่น สำหรับไม้ไทร ในตารางเดิม เท่ากับ 12.5 + 12.5 + 65.85 = 90.85 แสดงให้เห็นว่าเป็นไม้ที่มี การแสดงออกนำเป็นอันคับที่ 1 บนหลังคาถ้ำนั้นๆ

ตารางที่ 1 แสดงชนิดพันธุ์และลักษณะเค่นของไม้ในแปลงตัวอย่าง หลังคาถ้ำ STD-064 บ้านน้ำริน

No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม ² /100 ม ²)	ความหนา แน่น	ความถึ่	ความหนา แน่น	ความถี่ สัมพันธ์	ความเด่น สัมพันธ์	I.V.I.
			(100 H²)	(100 n²)	สัมพันธ์	(%)	(%)	
					(%)			
1	ไทร	2.3376	0.2	0.2	12.5	12.5	65.8514	90.85146
2	หว้า สระเป๋ (ไทยใหญ่)	0.4776	0.2	0.2	12.5	12.5	13,4554	38.45547
3	ดะเกียนหนู	0.2088	0.2	0.2	12.5	12.5	5.8829	30.88297
4	สมอไทย	0.1912	0.2	0,2	12.5	12.5	5,3855	30.38555
5	ลำโยป่า	0.1324	0.2	0.2	12.5	12.5	3.7303	28.73032
6	มะค่ามด	0.1089	0.2	0.2	12.5	12.5	3.0685	28.06859
7	แคทราย	0.0749	0.2	0.2	12.5	12.5	2.1091	27.10916
8	พญารากคำ (กะเจียน)	0.0183	0.2	0.2	12.5	12.5	0.5164	25.51647
		3.5499	1.6	1.6	100	100	100	300

ที่มา : จากการสำรวจ, 2541.

ตารางที่ 2 แสดงชนิดพันธุ์และลักษณะเด่นของไม้ในแปลงตัวอย่าง บนหลังคาผีแมนถ้ำลอด

No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม ² /100 ม ²)	ความหนา แน่น (100 ม ²)	ความถี่ (100 ม ²)	ความหนา แน่น สัมพันธ์ (%)	ความถึ่ สัมพันธ์ (%)	ความเด่น สัมพันธ์ (%)	I.V.I.
1	รัง	0.4229	0.6	0.4	25	20	47.0522	92,05221
2	แดง	0.0694		0.4		20		44.39139
3	เพิ่ง	0.1154	0.4	0.2	16.66	10	12.8411	39.50786
4	 ปอตูก	0.1243	0.2	0.2	8.33	10	13.8336	32.16701
5	รัก	0.0962	0.2	0.2	8.33	10	10.7127	29.04613
6	ปอเรียง	0.0336	0.2	0.2	8.33	10	3.7406	22.07396
4	รักน้ำ	0.0240	0.2	0.2	8.33	10	2.6781	21.01153
8	เสี้ยวป่า	0.0127	0.2	0.2	8.33	10	1.4165	19.7499
		0.8988	2.4	2	100	100	100	300

ที่มา : จากการสำรวจ, 2541.

ตารางที่ 3 แสคงชนิดพันธุ์และลักษณะเค่นของไม้ในแปลงตัวอย่าง บนหลังถ้ำ STD-032

No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม ² /100 ม ²)	ความหนา แม่น (100 ม ²)	ความถี่ (10 0 ม ²)	ความหนา แน่น สัมพันธ์ (%)	ความถี่ สัมพันธ์ (%)	ความเด่น สัมพันธ์ (%)	I.V.1.
1	รกฟ้า	0.8541	0.8	0.6	44,44	37.5	49.0595	131.004
2	รัง	0.8322	0.4	0.4	22.22	25	47.8039	95.02615
3	ปอเดียงฝ้าย	0.0398	0.4	0.4	22.22	25	2.2914	49.5136
4	ปอดูบหูช้าง	0.0147	0.2	0.2	11.11	12.5	0.8451	24.45626
		1.7409	1.8	1.6	100	100	100	300

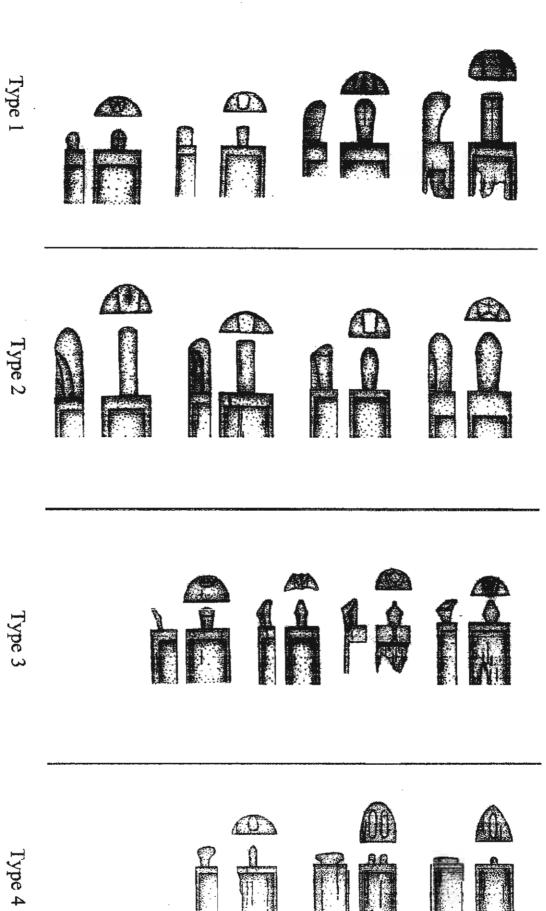
ที่มา : จากการสำรวจ, 2541.

ตารางที่ 4 แสดงชนิดพันธุ์และลักษณะเค่นของไม้ในแปลงตัวอย่าง ป่าเต็งรัง หลังคาถ้ำ STD-624

No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม²/100 ม²)	ความหนา แน่น	ความถึ่	ความหนา แน่น	ความถึ่ สัมพันธ์	ความเด่น สัมพันธ์	I.V.I.
			(100 ม [*])	(100 ม²)	สัมพันธ์	(%)	(%)	
					(%)			
1	กะแบกเลือด	0.1904	0.6	0.6	15.78	17.647	15.1706	48.6072
2	รัง	0.2182	0.6	0.4	15.78	11.765	17.3902	44.94444
3	ก่อแพะ	0.3376	0.2	0.2	5.26	5.8824	26.9038	38.04937
4	รกฟ้า	0.0909	0.6	0.4	15.78	11.765	7.2477	34.80192
5	คะคล้อ	0.0836	0.4	0.4	10.52	11.765	6.6676	28.95866
6	รัก	0.1537	0.2	0.2	5.26	5.8824	12.2492	23.3947
7	เกล็ด (เก็ค)	0.0795	0.2	0.2	5.26	5.8824	6.3398	17.48538
8	ปอกุ้ม	0.0296	0.2	0.2	5.26	5.8824	2.3590	13,5045
9	มะกอกเกิ้ม	0.0223	0.2	0.2	. 5.26	5.8824	1.7808	12,9263
10	ปอเลียง (เลียงฝ้าย)	0.0198	0.2	0.2	5.26	5.8824	1.5849	12.7304
11	เต็ง	0.0168	0.2	0.2	5.26	5.8824	1.3415	12,4870
12	จิ้วป่า	0.0121	0.2	0.2	5.26	5.8824	0.9642	12.109
		1.2551	3.8	3.4	100	100	100	30

ที่มา : จากการสำรวจ, 2541.

ตารางที่ 5 แสดงชนิดพันธุ์และลักษณะเด่นของ ไม้ในแปลงตัวอย่าง หลังคาถ้ำ STD-665


No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม ² /100 ม ²)	ความหนา แน้น (100 ม ²)	ความถื่ (100 ม ¹)	ความหนา แน่น สัมพันธ์ (%)	ความถี่ สัมพันธ์ (%)	ความเด่น สัมพันธ์ (%)	I.V.I.
1	กะพี่จั่น	0.2578	0.6	0.6	27.27	27.273	22.7021	77.24757
2	Unknown l	0.1617	0.4	0.4	18.18	18.182	14.2441	50.60781
3	จิ้วป่า	0.2088	0.2	0.2	9.09	9.0909	18.3887	36.57053
4	แคทราย	0.1838	0.2	0.2	9.09	9.0909	16.1885	34.37039
5	ดะเคียนหนู	0.1559	0.2	0.2	9.09	9.0909	13.7333	31.91519
6	รคฟ้า	0.1386	0.2	0.2	9.09	9.0909	12.2086	30.39051
7	ปอตุบ	0.0154	0.2	0.2	9.09	9.0909	1.3565	19.53834
8	มะกอกเกิ้ม	0.0133	0.2	0.2	9.09	9.0909	1.1778	19.35967
		1.1357	2.2	2.2	100	100	100	300

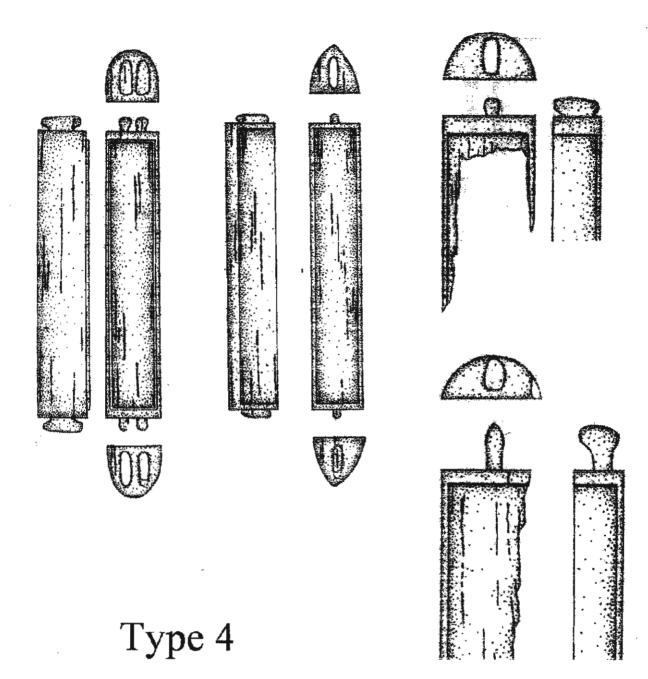
ที่มา : จากการสำรวจ, 2541.

ตารางที่ 6 แสดงชนิดพันธุ์และลักษณะเค่นของไม้ในแปลงตัวอย่าง บนหลังคาปากถ้ำลอดน้ำเข้า

No	ชนิดพันธุ์	พ.ท.หน้าตัด (ม ² /100 ม ²)	ความหนา แน่น	ความถึ่	ความหนา แน่น	ความถื่ สัมพันธ์	ความเด่น สัมพันธ์	I.V.I.
			(100 ม ²)	(100 ม ¹)	สัมพันธ์	(%)	(%)	
					(%)			
1	รัง	0.3833	0.8	0.6	22.22	21.429	29.5073	73.15816
2	เฟ้า	0.3262	0.4	0.4	11.11	14.286	25.1157	50.5126
3	รัก	0.2570	0.6	0.2	16.66	7.1429	19.7900	43.59953
4	ก่อแพะ	0.1442	0.4	0.2	11.11	7.1429	11.1030	29.35698
5	แสลงใจ	0.0218	0.4	0.4	11,11	14.286	1.6839	27.08081
6	ก่อ	0.0644	0.2	0.2	5.55	7.14 29	4.9618	17.66031
7	เหมือดคน	0.0315	0.2	0.2	5.55	7.1429	2.4313	15.12974
8	แคง	0.0296	0.2	0.2	5.55	7.1429	2.2794	14.97782
9	มะกอก	0.0215	0.2	0.2	5,55	7.1429	1.6564	14.35483
10	เสี้ยวป่า	0.0191	0.2	0.2	5.55	7.1429	1.4708	14.16922
		1.2990	3.6	2.8	100	100	100	300

ที่มา : จากการสำรวจ, 2541.

ตัวอย่างหัวโลงแบบต่าง ๆ


N. S. S. S.

. .

the same constitution of

;

Type 2

ตรางรวบรวมรายละเอียดเกี่ยวกับ โลง ไม้

ACCOUNT OF THE PARTY OF THE PAR

				Alt Int Title Dilita Colonia Colonia Pine Pine Pine	O 111 I 161 A 191		
ชื่อถ้า	กลุ่มน้ำ	จำนวนโลง	ดเหล	դենոր	การวางตัว	หลักฐานร่วม	ดินเดเ หม
แหล่งโบราณกดีหมายเลข !	พอง	2	กลาง	จูกเม็ดกลม	เสา-คาม		
แหล่งโบราพคดีหมายเลข 2	ของ	5	กสาง	1,แท่งให้คู่,ตัวฬ,กรวชห้วมน,แท่งครึ่งวงกลม	กานเสียบกับหลีบหิน		บางโลงไม่มีแกะหัวห้าย
แหล่งโบราณคดีหมายเลข 3	บอง	4	เ็นนใ	มาตรฐาน	เสา-คาน	ST, PS, HB	แกะหัวเสาเป็นรูปสัตว์
แหล่งโบราณกดีหมาผลข 4	ኑઉቤ	2	กลาง	ทะขอ,แตงกวาทู่-เคียว	คานหาคบนหลืบ,หลืบ	PS	
แหล่งโบราณกลีหมาผลช 15	NGA.	3	เหมู-เกลก	มาตรฐาน	เสา-คาน	ST, IT, PS, HB, S	*,C ₁₄
แหล่งโบราพกดีหมายเลข 19	P.G/f.	7	NEGO	มาตรฐาน,แดงกวาถู่-เดี๋ยว	เสา-คาน,คานเสียบกับหลืบหิน	ST,PS	*, มีการขุดกัน
แหล่งโบราณคดีหมายเลข 23	ኑዕቤ	1			กานหาดบนหลับ	PS, ST	
แหล่งโบราณคลีหมายเลข 25	NBA	1			เสา-คาน	PS	
แหล่งโบราณคดีหมายเลข 26	ของ	2	เนยเ	ศะขอ,แคงกวากู่-เคียว	เสา-ลาน	PS,HB	เสาแบบจำม
แหล่งโบราณคลีหมายเลข 7	โป่งเสนปึก	6	เล็ก-กลาง	แบบเหาะ	ถูกเคลื่อนย้าย		พบโลงเด็ก
แหล่งโบราณคดีหมาผลข 9	โป็งแสมปั๊ก		เล็ก-กลาง	אווענווו, ?	บหลืบ	B, PS, HB	พบโลงเล็ก
แหล่งโบราณกดีหมาผลขา0	โป่งแสนปึก	10	NEU		เสาะอาน		ชังไม่ให้เก็บราชละเอียด
แหล่งไบราณคลีหมายเลข 11	โป่งแสนปีก	10	กสาง	เดือน,หัวสัคว์,หางสัตว์,มาตรฐาน,แท่งใช้คู่	เสา-กาน,คานหาดผนัง,ในหลืบ	IT, PS, HB, BO	พบกระโหลกใน Flowstone
*9					เสาธรรมคาและแบบง่ามให้		เตาแบบจ่าม
แหล่งโบราณคดีหมายเลข 17	โปงแสนปิ๊ก	10	กลาง	หัวสัตว์-หางสัตว์,หัวเพชร,นะเพื่อง	เสา-คาน,หาดกับ โชลหิน,พื้นถ้ำ	IT, PS, HB, AB, BO,S	
				ชวาน,เรชาคณีค,เฉพาะ		IR	
แหล่งใบราณคดีหมายเลข 18	แม่ละนา	2	กลาง	บาตรฐาน,แท่งไม้คู่	เสา-คาน,พื้นด้า	ST,PS,HB	RAS
แหล่งโบราณคดีหมายเลช 29	แม่ละนา	3	กลาง-ใหญ่	เคือย,หัวเพชร,หางสัตว์,แท่งไม้เหลี่ยมคู่	เสา-คาน,หลืบหืน,หานพาคหลืบหืน	HB,AB,IT,BO,SS,S	
แหล่งโบราณคดีหมาผลข 33	_ แม่ละนา	1			เสา-คานเสาแบบง่าม		High Co ₂
แหล่งโบราณคดีหมายเลข 13	การ	5	กลาง	เฉพาะ, มาตรฐาน,จุกหกเหลี่ยม	นเษ-นม	IT, PS, IR	บางชิ้นแกะหัวทั่วชด่างกัน
				จุกกรึ่งวงคลม,จุกนม			บางโลงใช้ใม้สนทำ
แหล่งโบราณกลีพมาผลข 14	ลาง	_	กลาง	มาครฐาน	เสา-คาน		*
แหล่งโบราณคดีหมาผลข 16	ลาง	4	กลาง-ใหญ่	มาครฐาน,แดงกวาคู่,ดะขอ,หัวไม้ชืด	เสา-คาน	PS,ST	*,C,4
แหล่งโบรานคลีหมาผลข 20	NE	15	กลาง-ใหญ่	เดือน,มาตรฐาน,เฉพาะ	เสา-คาน,มีการใช้ใช้กระคานรองโลง	ST.HB.TS	*,RAS,LS

	·			<u> </u>			_				ı		
หมายเหตุ	C ₁₄	*,C ₁₄				*,C ₁₄ ,หัวเสานีการและ	*,มีคารนำโลงใน้เค่ามาใช้ใหม่	พบไถงเด็ก	*	โลจ-เสา ใช้ในคนละอย่าง			
หนักฐานร่วม	PS,HB,ST	PS,IT,LW		PS,HB,B		ST,PS	ST,PS,HB,BO			PS, Lacquer wear			
การวางตัว	เสา-ตาน,หลืบด้ำ,หื้นด้า	- เล็บเล็ห,นาด-เซเ	คานเสียบกับหลืบหิน,พื้นถ้ำ	เสา-คาน,หลืบด้า,พื้นด้า	หมาเมาเม	เสา-คาน,บนหลืบถ้ำ	เสา-คาม,บนหสืบถ้ำ		นะน-เมา	นเห-เชา			
gunn	มาตรฐาน,แดงกว่าคู่,เคือย	มาตรฐาน,แลงถาาคู่,หัวสัตว์,เฉพาะ	กเรียยเน	ะดุษา-ผิเผางผาวัดอยู่าหเรียนก	ម៉ើចប	เคือย,แดงกวาคู่-เดียว	เล็ก-กลาง- หัวสัตร์-หางสัตร์,เดือย,แดงกวาเดียว,เฉพาะ		RLESHIR	มาตรฐาน			
าหาด	กลาง	เล็ก-กลาง	กถห	กลาง-ใหญ่	กลาง	กลพ-ใหญ่	เล็ก-กลาง-	ใหญ่	กลาง	ใหญ่	;		
จำนวหโลง	01	5	3	8	1	3	15		1	1	IÞI		
กลุ่มนำ	a Ne	สาง	M.B.	สห	BNB.	ผน	S.E		ลห	พื้นที่ตอนใต้	ราม	•	
ชื่อถ้า	แหล่งโบราณกดีหมายเลข 27	แหล่งโบราณกดีหมายเลข 28	แหล่งโบราณคดีหมายเลข 31	แหล่งโบราณกรีหมายเลข 32	แหล่งโบราณกดีหมาผลข 34	แหล่งโบราณคดีหมายเลข 35	แหล่งโบราณคดีหมายเลข 36		แหล่งโบราณคดีหมายเลข 37	แหล่งโบราณคดีหมายเลข 6			

• 1

Commence Com

A se suppression of

American Superior Control Superior Supe

C14 Dating Method Lacquerware Iron Ring Iron Tool Excavated Seed Bead LW H H H s Sharpening Stone Bronze Ornament Humen Bone Animal Bone Rockart Site Living Site Stone Tool Potsherd RAS LS ST TS BO 盟 AB SS Abbriviation:

APPENDIX 1

DEFINING CATEGORIES AND CLASSIFYING CAVES

CATEGORY 1. PUBLIC ACCESS CAVES - Caves where the public is encouraged to visit for aesthetic appreciation, education and recreation.

1.1 ADVENTURE CAVES:

- The most suitable sites are high-energy systems where visitors have very low impact on cave formations and life. Caves that flood annually or caves with little inherent value other than their morphology may be considered. Other issues that need consideration include location and ease of access and the availability of guides and resources for management and monitoring of impacts. It is recommended that only a very few robust sites be promoted for adventure tourism.
- Caves in this category are used by experienced, properly equipped cavers or inexperienced but properly equipped groups led by guides. The main distinction between adventure caves and some wild caves used for the same activity is that adventure caves are actively promoted. The main distinction between adventure caves and tourist caves are 1) visitors to tourist caves require no special equipment, and 2) adventure caves are usually more challenging with minimal or no infrastructure developments.

1.2 TOURIST CAVES:

- Tourist caves can be identified by their current use or their potential for development. In general, caves that have been developed with infrastructure in place to protect the cave and provide safe access are included in this category. Development may include pathways, lighting, barriers, gates, signs, bridges and ladders. Guides are usually available.
- ⇒ Caves that are suitable for tourist development should meet the following criteria.
 - a) The cave is a high-energy system where visitors have a very low impact on cave processes and the ecosystem.
 - Adequate protection can be provided for the caves special natural or cultural attributes.
 - c) The cave is aesthetically impressive.
 - d) Potential exists for recreational and/or educational opportunities with easy access to a variety of natural and/or cultural features.
 - e) Enough resources are available to effectively manage the site.

1.3 RELIGIOUS SITES:

⇒ Caves and rock shelters that have been developed for religious purposes.

CATEGORY 2. SPECIAL PURPOSE SITES: This category includes caves that require restrictions on access or other management intervention to either protect visitors from extreme danger or to protect and conserve the special natural, cultural and economic values of the site.

2.1 REFERENCE SITES:

- Reference sites are caves that can provide a baseline for monitoring and comparison with sites in other categories.
- Suitable sites are relatively undisturbed and contain a variety of features or representational features suitable for comparison purposes.
 - capable of being effectively managed to strictly protect the features related to the reference function(s) of the site.
 - considered to be relatively unthreatened by any potential disturbance to their present condition.
 This criterion is important when long term monitoring and comparison is needed.

2.2 SITES OF SPECIAL NATURAL AND/OR CUTURAL VALUE

The second secon

- Caves considered suitable for this category have features or attributes where special protection is necessary to maintain the value of the site for research, aesthetic appreciation, education, recreation, nature and heritage conservation.
- ⇒ Careful consideration of a sites relative significance, vulnerability to disturbance, state of preservation and the availability of resources to effectively protect the site, should be made before caves are included in this category. This category includes both caves and rock shelter sites that are threatened by human disturbance and contain one or more of the following attributes:

- a) Rare or endangered troglobites, troglophiles or trogloxenes.
- b) Cultural deposits indicating that they were used historically or as prehistoric cemeteries, living or camping sites.
- c) Pre-historic rock art, stencils or engravings.
- d) Particularly outstanding features of scientific interest.

2.3 DANGEROUS SITES

Caves or parts of caves that are potentially dangerous or life threatening for visitors. This category includes all caves that contain particularly low levels of oxygen and/or high levels of carbon dioxide either all the time, or at particular times of the day, or seasonally. Caves that are extremely dangerous due to instability or flooding may also be included.

2.4 HUMAN INDUSTRY SITES

⇒ Includes caves currently being used as a village water source and sites where guano, limestone, bird nests, cliff bee honey or other natural cave resources are collected.

CATEGORY 3. WILD AND UNCLASSIFIED CAVES

3.1 WILD CAVES

⇒ Remote and/or rarely visited caves where the level of human disturbance has minimal impact on the caves natural and/or cultural features. Remote is defined as being more than one hours walk from a road or a village. The main users of wild caves are experienced cavers. Caves suitable for this category are considered managed best without human interference.

3.2 UNCLASSIFIED CAVES

⇒ All caves not yet classified or documented are included in this category.

APPENDIX 2

CRITERIA FOR DETERMINING SIGNIFICANCE

<u>TABLE 1</u>. Criteria for determining cave significance in Australia.

The most significant caves rate highly on any one criterion or on a combination of two or more of the following criteria:

GEOLOGICAL: Diversity and complexity of the geological record.

GEOMORPHOLOGICAL: Range of ages and types of sediments, multiple levels and variety of speleothems.

PALAEONTOLOGICAL: Size of deposits, integrity of the site and rarity of deposits.

MINERALOGICAL: Quality, variety, quantity and rarity of minerals.

HYDROLOGICAL: Quantity of flow, importance to humans and ecosystem.

BIOLOGICAL: Number, rarity and diversity of species and potential for future research. Importance of the site as a habitat.

ARCHAEOLOGICAL: Quantity and diversity of material, integrity of the site and value for research.

AESTHETIC: Quantity, quality, variety and state of preservation of speleothems; grandeur of cave vistas.

RECREATIONAL: Length and depth of cave, variety of existing or potential recreational opportunities.

EDUCATIONAL: Variety of features, ease of access and clarity of expression.

CULTURAL: Importance of the site for cultural and/or religious activities.

TABLE 2: Criteria for determining cave significance, used by The National Speleological Society, Inc., USA.

A cave is considered significant if it meets one or more of the following criteria:

BIOTA: The cave provides seasonal or yearlong habitat for organisms or animals, or contains species or subspecies of flora or fauna native to caves that are sensitive to disruption, or are endangered.

CULTURAL: The cave contains, historical and/or cultural properties or archaeological resources or other features important for research, historical associations or other historical or traditional significance.

GEOLOGICAL/MINERALOGICAL/PALAEONTOL

OGICAL: The cave possesses one or more of the following features-

- Geologic or mineralogic features that are particularly outstanding, or are fragile, or that exhibit interesting formation processes, or that are otherwise useful for study.
- Deposits of sediments, or features useful for evaluating past events.
- 3) Palaeontological resources with potential to contribute useful educational and scientific information. HYDROLOGICAL: The cave is part of a hydrological system or contains water that is important to humans, biota or development of cave resources.

RECREATIONAL: The cave provides or could provide recreational opportunities or scenic values.

EDUCATIONAL/SCIENTIFIC: The cave offers opportunities for educational or scientific use; or the cave is virtually in a pristine state, lacking evidence of contemporary human disturbance or impact; or, the length, volume, total depth, height, or similar measurements are notable.

APPENDIX 3

MANAGEMENT STRATEGIES, CONCERNS AND OPTIONS FOR DIFFERENT CATEGORIES

CATEGORY 1. PUBLIC ACCESS CAVES

1.1 ADVENTURE CAVES

- * The principal management aim is to provide recreational opportunities while preserving the cave's natural features.
- * Some monitoring of use may be needed with restrictions on party size and frequency. In some sites, gating may be desirable for monitoring and restricting entry.
- * All caves promoted as adventure caves require obvious signs in Thai and English, instructing visitors how to avoid damaging the cave and themselves. Passive on-site interpretation of the cave's attributes is recommended.
- * Adventure caving guides should ideally be locals who have received thorough training on all aspects of cave guiding including cave conservation, caving techniques and etiquette, and safety.
- * Impact monitoring of frequently used site is desirable. Caves with unacceptable impact levels may require re-classification and/or further protective measures.

1.2 TOURIST CAVES

* Caves where tourists are encouraged to visit require detailed, ecologically sustainable management plans, constant supervision and, when necessary, cleaning and restoration.

- * Due to the lack of ideal sites, the high level of effort and financial investment of money and effort needed, and the difficulty in providing adequate protection for the natural attributes of the caves, only a minimal number of caves should be developed for tourism. Protective measures for the caves' features should be in place before tourists are encouraged to visit.
- * Sustainability is the key. With enough controls, deterioration in the condition of the cave or in the cave life can be prevented.
- * Any developments outside the cave must not adversely affect the underground environment.
- * Any developments inside caves should be designed for minimal impact on the environment. Structures should be constructed from suitable materials and built in such a way that they can be removed without damaging the cave. Before 'developments' are introduced, the potential adverse impact on the cave should be assessed.
- * Interpretation services should be provided to enhance visitor experiences. Management controls should seek levels of visitor use that are sustainable.
- * Regular monitoring of the condition of the cave is important for developing the best management strategies and responses.
- * Involvement of the local people is important in the protection of caves.

 Educational seminars and direct

- involvement of local people as guides and caretakers is recommended.
- * Trained local guides who can help maintain the condition of the cave should accompany visitors to tourist caves.

1.3 RELIGIOUS SITES

* Some caves already developed for religious purposes have been changed radically. Any developments need close monitoring. Due to religious and social constraints, options for managers are limited. Consultation and sensitive persuasion on the benefits of protecting the natural features of the site is recommended.

CATEGORY 2. SPECIAL PURPOSE SITES:

Special purpose sites each require their own specifically defined management policy and prescriptions based on the reasons for their classification and the vulnerability of the site to human disturbance. Strategies for the most sensitive sites should be formulated as soon as possible. The broad guidelines given for each category need to be refined according to the particular requirements for protecting each site.

2.1 REFERENCE CAVES

- * The principal management aim is to preserve these caves in their natural state so that a reference set of caves and cave life is available for perpetuity.
- * Access is strictly limited to legitimate scientific research and monitoring related to reference functions of the site.

 Permission for access should only be granted by relevant authorities.

- * To control access, gating may sometimes be necessary. Gates should only be constructed when - they are effective, can be maintained and don't disturb the fauna or conflict with other values of the site.
- * Remote, largely unknown and rarely visited sites require less management intervention than more vulnerable sites.

 Management priority is given to reference caves that require immediate protection.
- * Threats to the natural integrity of reference sites are both internal and external. In some sites, the environmental quality of the cave's catchment is crucial to the continued existence of the reference features.
- * Education of the local inhabitants on the significance and vulnerability of each site is recommended. Local participation in the protection of the caves and cave catchments is the ultimate goal.
- It is important that resources are made available to effectively manage reference sites.

2.2 SITES OF SPECIAL NATURAL AND/OR CULTURAL VALUE

The protection of the sites significant features and ecosystem is the major management concern. Some caves have a wide range of significant and vulnerable features that require protection. Management strategies may vary according to the reasons for a sites significance. Listed below are more detailed management prescriptions for special value sites, based on the primary values that need protection. Managers of the caves and other concerned authorities should be made aware of the importance of protecting sites that

may be of regional, national or international significance.

MANAGING SITES OF SIGNIFICANT GEOLOGICAL/GEOMORPHOLOGICAL AND/OR PALAEONTOLOGICAL VALUE

- * The main concern for managers is maintaining the special attributes of individual caves in their natural state. These may include outstanding speleothems, fossils and sediments.
- * Priority is given to the most significant sites that are vulnerable to disturbance.
- * Development in these caves is kept to a minimum, access may need to be controlled and management programs include monitoring, protection and restoration when necessary.
- * Depending on the particular site, options for controlling access may include- issuing permits; allowing access only when escorted by trained, responsible guides; erecting signs to explain the significance of the site and necessary controls; erecting barriers to protect vulnerable features; and, constructing a lockable gate. Ideally no modification to the cave should occur.
- * Legitimate research should be allowed if it has no impact on the special attributes of the cave or if the benefits of the research are perceived to outweigh the potential impacts.
- * The maintenance of the quality of active speleothems is dependent upon how well the forest cover and soil quality is

- managed outside and above the cave in the catchment area.
- * Education of locals and visitors on the importance and fragility of cave formations and sediments is needed.

 Involvement of locals in reducing their impact on the caves and cave catchments and encouraging conservation awareness is important for long term protection.
- Land use activities that alter the quality and quantity of the natural flow of air, water or sediments underground should be identified and, when possible, remedial action taken. Management options includeencouraging more sensitive environmentally farming methods; reducing impacts from developments already in place; appropriate reforestation and regeneration of degraded catchments; and, in some cases, prohibiting any human activity in specific areas.
- Particularly vulnerable sites should not be advertised and access details should not be made available to the public. Only tourist and adventure caves should be promoted for recreational purposes.

MANAGING SITES OF SIGNIFICANT BIOLOGICAL VALUE

- * Principal management aims are to maintain the natural integrity of the ecosystem both inside the cave and in the catchment area above the cave.
- * Caves in this category are particularly sensitive to human disturbance. Managers must ensure visitors to the caves, and the

local inhabitants lifestyles outside the caves, do not impact upon cave life. Human activities inside caves that may adversely impact cave life need to be controlled and monitored. These activities include- scientific collection of specimens; collection of bat guano and water; and disturbance by other visitors.

- * Options for mangers inside the caves include- controlling and limiting cave access; erecting explanatory signs in Thai and English; and construction barriers, walkways and gates when necessary.
- Cave fauna surveys studying species diversity, uniqueness numbers. and habitats needed are for effective management planning. Surveys should be allowed and encouraged after the relevant authorities have considered the value of the research and whether research techniques in any way endanger the species being studied.
- * To preserve aquatic life, monitoring of water quality and quantity is needed and appropriate management decisions should be implemented to ensure the cave catchment is maintained in a state as close to natural as possible. Disturbance to catchment areas through deforestation, reforestation, afforestation, agriculture, husbandry, quarrying and hydrology changes due to road building, car park development, building dams etc., should be monitored. When possible all developments that may impact on the cave

- ecosystem should be reconsidered and appropriate remedial action taken where such impacts occur.
- Education of cave visitors and the local inhabitants on how they can help preserve the unique cave fauna and flora is advisable. Emphasis should be on developing long term solutions minimise the impact from activities that adversely affect the environment, such as the forest in dolines catchment basins and using pesticides, fertilizers and other potential pollutants that may enter the underground water Ideally, local inhabitants will systems. become caretakers of the special cave fauna and flora in their area.
- * Other management options include not making the access details of sensitive sites generally available and avoiding the construction of roads or paths that make access easier.

MANAGING SITES OF SIGNIFCANT ARCHAEOLOGICAL AND/OR CULTURAL VALUE

- * Determining relative significance of archaeological sites is very subjective and their future potential for research may be underestimated. Therefore, all known archaeological sites should be included in this category.
- * Varying levels of management intervention will be required depending on the vulnerability of each site to disturbance.

- * In most cases, the archaeological remains exist only because of their sheltered environment.
- Archaeological sites in Pang Mapa are vulnerable human disturbance looting and including: digging for artifacts; chopping and burning coffin wood; erasing rock art and moving archaeological material. Natural disturbances and degradation includeforest fires; animals and insects (especially termites) digging into the cave floor or eating coffin wood or other artifacts; and the impact of light and moisture.
- * A selection of sites should receive special protection as Reference Sites.
- * Management options include:
- -Restricting access to particularly significant and vulnerable sites by erecting barriers, signs in Thai and English and, when the cave warrants it, erecting gates or fences.
- -Not making the location and access details of archaeological sites generally available to the public.
- —Producing educational material for local communities encouraging the preservation of archaeological sites. This material should be made available to every school and village headman in the region. Local villagers should be encouraged to feel responsible for protecting the sites in their area and to act as caretakers. School groups could be taken on tours of local caves to help the children understand how valuable archaeological sites are for research into the

- region's prehistory and how they can help protect them.
- —Clearing firebreaks and removing flammable materials from near coffins in some sites.
- Returning, wherever possible, coffins removed from caves (to villages, nearby forests etc.) to their original location.
- Promoting one or two suitable sites for public access, for the purpose of education and satiating tourist curiosity. Any site that receives visitors must have protective measures in place (barriers, signs, walkways, guides etc) to adequately safeguard the archaeological and cultural remains. In Pang Mapa the most suitable sites are Tham Lod and Tham Pi Man Nam Lang Jum, which already receive visitors.
- Encouraging 'non-invasive' research to learn more about the values of the site. Permission for any research, by Thai or foreign archaeologists in Pang Mapa, must be given by the Fine Arts Department and other management authorities.
- Developing the Nature Education Centre at Tham Lod as a museum and information centre on the prehistory of the area. Any artifacts removed from the caves by archaeologists should be kept there. Artifacts should only be removed from caves when it is necessary for research or when their continued existence would not be possible without their removal. Artifacts taken from caves need special maintenance to ensure their condition does not deteriorate.

- —Regular monitoring (as often as possible) of all significant and/or vulnerable sites. Photo or video monitoring is a desirable method for comparison studies and impact assessment studies, and for refining management methods.
- Erecting official signs from the Fine Arts

 Department, in Thai and English, at each
 archaeological site, instructing visitors on
 the importance of the site and how they can
 help to preserve it.
- Providing special protection for some rock art sites when necessary. Measures may include fencing with wire mesh and placing a thin line of silicone above the art to prevent water flowing across the rock face.

MANAGING SITES OF SIGNIFICANT HYDOLOGICAL VALUE

- * The maintenance of the quantity and quality of the water is the primary management concern.
- * Identification of the entire catchment is essential for effective management.

 Current and potential threats to the condition of catchments need to be recognised. Regular monitoring of water quantity and quality is needed to establish priorities and development responses.
- * Long-term plans for rehabilitating and protecting catchments need to be developed.
- * Education of local villagers and district and provincial authorities on the

- importance of hydrological resources is needed.
- Appropriate scientific research on aquatic species in caves should be encouraged.

2.3 DANGEROUS SITES

* Caves that are considered dangerous for human entry should have appropriate signs, which can be easily understood by everyone, warning of the dangers.

Barriers should be erected when n e c e s s a r y .

2.4 HUMAN INDUSTRY SITES AND WATER SOURCES

- * The collection of bat guano can have a major impact on cave life. The economic advantages should be carefully weighed against the potential threat to a cave's ecosystem before permission is given to collect bat guano.
- * Cliff bee honey gathering is an ancient activity. Very few local inhabitants still collect this honey and the impact of people using traditional methods is probably minimal. However, monitoring of the extent of this activity is still recommended.
- * Collection of speleothems or limestone from caves should be strictly prohibited.
- * Managers of village water sources should follow the guidelines for managing hydrological sites.
- * Regular monitoring of flow rate and water quality is recommended. Other

- monitoring could include water temperature and pH measurements.
- * Controls of the unrestricted use of underground water sources may be needed if such use adversely impacts on the ecosystem.

CATEGORY 3. WILD AND UNCLASSIFIED CAVES

The best protection for these sites is education of the general public, particularly local inhabitants, on the

- importance of caves and cave conservation.
- * Generally, there are no restrictions on access but location and access details should not be made available to the public. Speleological investigation should be encouraged and the results of such work made available through the appropriate authorities.
- * Unclassified caves should be investigated and classified as soon as possible.

APPENDIX 4

Draft letter for every headman and head teacher in Pang Mapa.

This letter is to be read out at village meetings and at school assemblies.

Amphur Pang Mapa has more than 200 caves. These caves may be millions of years old and have been formed by water flowing through cracks in limestone. Some caves are more than 10km long. Most caves have stalagmites and stalactites that grow very slowly with dripping water. They can take 100,000 years to grow. They are very fragile and are easily damaged if people touch or walk on them.

Some caves have tiny fish with no eyes. These fish are very special and can be found nowhere else in the world. It is important that we do everything we can to protect these fish in the caves in Pang Mapa. Don't let anyone take any of these fish from the caves.

We must try to keep the streams clean too. If people throw rubbish in the streams or use pesticides on fields where the water flows into streams, the blind fish may die. If any more forest is cleared, some streams may stop flowing.

In Pang Mapa there are many other special caves. These caves are called Tham Pi Man and can be found near most villages in Pang Mapa. There are more than 80 Tham Pi Man in Pang Mapa.

These caves are the cemeteries of people who lived in Pang Mapa almost 2,000 years ago. The wood in the caves is from coffins. This wood has lasted for

1,700 years - possibly some of the oldest standing wooden structures in the world.

Some people in Pang Mapa have gone into caves and then chopped and burned this ancient wood. They have dug into the cave floor to look for treasure but the ancient people left nothing of value with their dead.

Scientists want to study these caves to find out about the people who lived in Pang Mapa a long time ago.

Please help look after the Pi Man caves near your village. Don't let anyone touch any old wood, pottery or bones, take anything out of the caves or damage them in any way. The caves are much more valuable if they are left in their natural condition.

If everyone in Pang Mapa helps look after the caves then our children and grandchildren will be able to see them in their present condition.

Government officials can't look after everything. This is the reason why everyone - Lisu, Lahu, Karen and Tai Yai is needed to help preserve our caves. In some caves, Government officials will place signs and fences, to keep people away from things that need protection. Please respect these.

If anybody has any information about caves near their village or knows of anyone who has damaged or taken anything from a cave, please contact the Forestry at Tham Lod.

ACKNOWLEDGEMENTS

I wish to thank Sittipong Dilokwanich, Dean Smart, Kevin Kiernen and Peter Grave for reviewing earlier versions of this paper.

THE ENDEMIC BIODIVERSITY OF LIMESTONE CAVES AND KARST IN THAILAND

(Total> 123 species)

The accompanying table lists some of the animals and plants that are found only in limestone areas of Thailand and nowhere else in the world. Information is taken from many sources.

A very broad diversity has been discovered including most major biological groups: mammals, birds, reptiles, insects, arachnids, crustaceans, molluses and plants. This list is not exhaustive of current literature and more species could be added with further searching. Consequently, it is biased towards the most available information and certain species or areas, e.g. springtails and Chiang Mai Province.

Undoubtedly, many more species remain to be discovered by science in the limestone karst of Thailand. Areas of research that are distinctly lacking

in Thailand include algae, bacteria, protozoa, mosses, ferns, lichens, fungi and many groups of arthropod.

Possibly, to avoid problems of competition by similar creatures living in the same habitat, tropical cavernicoles tend to differ from each other at generic level rather than species level. This ensures greater differences between each animal type and improves the energy efficiency of the ecosystem. It also increases the likelihood that any new discovery will be a new genus. Out of the above 62 cave restricted species no less than 15 of them are the type representative of the genus as well.

Where one genus is represented by many species, e.g. the springtail *Troglopedetes*, the animals are not restricted to one cave or locality rather they are spread all over Thailand. The 12 known species of *Troglopedetes* are found in 11 different caves separated in some cases by distances of several hundred kilometres. This is a fine example of the endemic biodiversity often displayed by cave and karst organisms.

Section of Section 1

1

The second of th

The state of the s

A COLUMN STATE OF THE STATE OF

Animal Type	Latin Name	Locality (Province)	Cave Restricted?	Troglo-	Туре
				morphic?	Genus?
Palms	Maxburretia furtadoana	Surat Thani		'	i
	Trachycarpus oreophilus	Chiang Mai			
Cycads	Cycas nongnoochii	Nakhon Sawan			
	Cycas pranburiensis	Prachuab Khiri Khan			
	Cycas tansacha	Saraburi	,		
Flowering	Clematis wittii	Chiang Mai			
Plants	Gentiana leptoclada	Chiang Mai	1		
	Geranium lamberti ssp.siamensis	Chiang Mai		1	
	Impatiens kerriae	Chiang Mai			!
	Luculia gratissima var.glabra	Chiang Mai		1	
	Pedicularis siamensis	Chiang Mai			
	Scabiosa siamensis	Chiang Mai			
Flatworms	Dugesia deharvengi	Khon Kaen	√	√	
Snails	Alycaeus pratatensis	Kanchanaburi			
	Boysidia chiangmaiensis	Chiang Mai			
	Boysidia tholus	?			
	Diplommatina akron	?			!
	Diplommatina doichiangdao	Chiang Mai			
	Diplommatina hidagi	?			
	Diplommatina naiyanetri	?			1
	Diplommatina prakayangensis	?			
	Diplommatina pupaformis	?	_		
	Diplommatina umpangensis	Tak			1
	Discartemon khaosokensis	Surat Thani	1		
	Gyliotrachela khaochongensis	Trang	1		
	Hypselostoma khaowongensis	Rayong			1
	Opisthostama klongsangensis	Surat Thani			
Spiders	Bacillemma leclerci	Prachuab Khiri Khan	√	1	1
	Liphistius tham	Saraburi	✓		
	Ochyroceratidae (gen. sp.)	Prachuab Khiri Khan	✓	✓	✓
	Pholcidae (gen. sp.)	Prachuab Khiri Khan	✓	✓	✓
	Telemidae (gen. sp.)	Prachuab Khiri Khan	✓	✓	✓
Pygmy	Eukoenenia deleta	Phangnga	/	1	
Whipscorpions	Eukoenenia lyrifer	Chiang Rai	✓		
•	Eukoenenia thais	Chiang Mai	✓	✓	
	Koenenioides leclerci	Prachuab Khiri Khan	✓		
	Koenenioides spiniger	Chiang Mai/Kanchanaburi			?

	In	C1: - 14://2 1 - :			
Harvestmen	Bandona palpalis	Chiang Mai/Saraburi		l	
	Fangensis leclerci	Chiang Mai/Kanchanaburi	i	Ì	ľ
	Neopygopus siamensis	Chiang Mai		1	
·	Paratakoia minima	Saraburi			
Mites	Siamacarus dalgeri	Yala	√	· /	V
	Siamacarus withi	Phangnga	√	√	
Crabs	Phaibulamon stilipes	Kanchanaburi	√	✓	✓
	Phricotelphusa deharvengi	Phangnga	√		
	Potamon namlang	Mae Hong Son			
Shrimp	Macrobrachium sirindhorn	Mae Hong Son		- '	- "
Amphipods	Aequigidiella aquilifera	Khon Kaen/Chaiyaphum	V	1	1
	Bogidiella thai	Phangnga	✓	✓	
Isopods	Annina fustis	Phangnga	√		
	Exalloniscus thailandensis	Mae Hong Son			
	Indoniscus deharvengi	Mae Hong Son	✓	✓	
	Stenasellus bedosae	Surat Thani	✓	✓	
	Stenasellus deharvengi	Khon Kaen	✓	✓	
	Stenasellus rigali	Chaiyaphum	✓	✓	
	Thailandoniscus annae	Phangnga	✓	✓	✓
Syncarida	Parabathynellidae (gen. sp.)	Chiang Mai	√	1	1
Millipedes	Cerastelachys cavernicola	Yala (?)	-		1
	Dyomerothrix gremialis	Chiang Mai	✓	✓	
Springtails	Acherontiella thai	Lampang			
	Arrhopalites anulifer	Chiang Mai			
	Arrhopalites chiangdaoensis	Chiang Mai	✓	\	
	Blasconurella arcuata	Chiang Mai			
	Blasconurella intermedia	Chiang Mai	}		✓
	Cephalachorutes pestilentiae	Chiang Mai			
	Ceratophysella morula	Chiang Mai	i		
	Chirolavia gabaudei	Chiang Mai			✓
ł	Coecobrya guanophila	Chiang Mai	✓	,	ł
ł	Coecobrya similis	Chiang Mai	₹.		
	Digitanura quadrilobata	Mae Hong Son/Kanchanaburi	<u> </u>		✓
	Friesea chiangdaoensis	Chiang Mai	1		1
	Friesea kanchanaburiensis	Kanchanaburi			
	Friesea lisu	Chiang Mai			1
	Friesea microphthalma	Surat Thani			
	Friesea rubeni	Chiang Rai	1		1
	Paranura bisetosa	Chiang Mai			
	Paranura chiangdaoensis	Chiang Mai			
	•	1 *	1		

Manuscript of the control of the con

**	B 11.00				
	Paranura globulifer	Phangnga			
	Paranura leclerci	Phangnga			
	Paranura tibiotarsalis	Chiang Mai		_	
İ	Pseudosinella chiangdaoensis	Chiang Mai	V	√	
	Troglopedetes calvus	Kanchanaburi	√		
1	Troglopedetes centralis	Chiang Mai	✓		
l	Troglopedetes convergens	Ratburi	✓		
	Troglopedetes dispersus	Kanchanaburi	✓	✓	
	Troglopedetes fredstonei	Chiang Mai	✓	✓	
	Troglopedetes leclerci	Chiang Mai	✓	✓	
	Troglopedetes longicornis	Mae Hong Son	✓	✓	
	Troglopedetes maffrei	Mae Hong Son	✓	√	
	Troglopedetes maungonensis	Chiang Mai	✓	✓	
	Troglopedetes microps	Chiang Mai	✓		
1	Troglopedetes multispinosus	Chiang Rai	✓	✓	
	Troglopedetes paucisetosus	Prachuab Khiri Khan	✓		
Diplura	Apistocampa leclerci	Chiang Mai			√
	Eutrichocampa inchoata	Kanchanaburi			
	Japygidae (gen. sp.)	Chiang Mai	✓	✓	✓
	Lepidocampa armata	Krabi			
Cockroaches	Spelaeoblatta thamfaranga	Kanchanaburi	√		
Crickets	Diestrammena annandalei	?	✓		
	Diestrammena gravelyi nigricauda	Yala (?)	✓		
Beetles	Dichillus kuschstaberi	Ratburi	1		
	Eustra lebretoni	Chiang Mai	✓ -		
	Eustra troglophila	Mae Hong Son	✓		
	Ozaenaphaenops deharvengi	Mae Hong Son	✓	✓	✓ .
	Ozaenaphaenops leclerci	Chiang Rai	✓	✓	
	Ptomaphaginus leclerci	Phangnga	✓		
	Siamoporus deharvengi	Khon Kaen	✓	1	✓
	Trechiama siamensis	Chaiyaphum	✓	✓	
Fish	Cryptotora thamicola	Mae Hong Son	✓	1	√
	Nemacheilus troglocataractus	Kanchanaburi	✓	✓	
	Neolissochilus sp.	Phitsanulok	✓	✓	
	Poropuntius speleops	Chaiyaphum	✓	✓	
	Pterocryptis buccata	Kanchanaburi	✓	✓	
1	Schistura jarutanini	Kanchanaburi	✓	✓	
	Schistura oedipus	Mae Hong Son	✓	✓	
	Schistura sp.	Phitsanulok	✓	✓	

Lizards	Lygosoma khoratense	Saraburi		
Birds	Napothera crispifrons calcicola	Saraburi		
Bats	Craseonycteris thonglongyai	Kanchanaburi		
	Hipposideros halophyllus	Lopburi/Uthai Thani		
Rats	Leopaldamys neilli	Saraburi/Kanchanaburi		
	Niviventor hinpoon	Saraburi		

รายนามนักวิจัย

ชื่อ -	- สกุล	สถานที่ทำงาน	โทรศัพท์ (E-mail)
1 គុណ	กฤษณ์ เจริญทอง	เขตรักษาพันธุ์สัตว์ป่าเชียงดาว อ.เชียงดาว จ.เชียงใหม่	053 - 202486
2 ผศ.เ	เกษม กุลประคิษฐ์	คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล อ.พุทธมณฑล จ.นครปฐม	4410211 - 16 ค่อ 202
3 គ្នាល	ชัยพร ศิริพรไพมูลย์	กองพัฒนาบ่อบาคาล กรมโยธาธิการ	5791353 , 01-8378296 arleks@hotmail.com
4 คร.ร์	รัศมี ชูทรงเคช	ภาควิชาโบราณคดี คณะโบราณคดี มหาวิทยาลัยศิลปากร	2226819 rasmis@mozart.inet.co.th
5 คูณา	สมศักดิ์ เลายี่ป่า	สถานีพัฒนาและส่งเสริมการอนุรักษ์สัตว์ป่าถ้ำน้ำลอด	053 - 202486
6 ผศ.เ	คร.สิทธิพงษ์ คิลกวณิช	คณะสิ่งแวคล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิคล อ.พุทธมณฑล จ.นครปฐม	4410211 - 16 คือ 218
7 Mr.	Dean Smart	ส่วนอนุรักษ์สัตว์ป่า กรมป่าไม้	
8 Mr.	John Spies	Cave Lodge อ.ปางมะผ้า จ.แม่ฮ่องสอน	053-619024
8 Mr.	John Spies	Cave Lodge อ.ปางมะผ้า จ.แม่ฮ่องสอน	053-619024

รายชื่อผู้ช่วยนักวิจัย

1

ชื่อ - สกุล	สถานที่ทำงาน	โทรศัพท์ (E-mail)
คุณจักรินรัฐ นิยมค้า	นักศึกษาปริญญาโท สาขาวิชาก่อนประวัติศาสตร์	
	คณะโบราณคดี มหาวิทยาลัยศิลปากร	2775019
คุณเชิคศักดิ์ ครีรยาภิวัฒน์	คณะ โบราณคดี มหาวิทยาลัยศิลปากร	1144#551712
คุณทองเพียร ทาคำมา	เขตรักษาพันธุ์สัตว์ป่าอุ่มน้ำปาย อ.ปาย จ.แม่ฮ่องสอน	
คุณนัทชมน ภูรีพัฒน์พงศ์	กณะโบราณคดี มหาวิทยาลัยศิลปากร	
คุณบุชนภางค์ ชุมคื	คณะโบราณคดี มหาวทยาลัยศิลปากร	
คุณบุษรา ค่ำคูณ	เขตรักษาพันธุ์สัตว์ป่าเชียงคาว อ.เชียงคาว จ.เชียงใหม่	(Pager) 162#289457
	คุณเชิดศักดิ์ ครีรยาภิวัฒน์ คุณทองเพียร ทาคำมา คุณนัทชมน ภูรีพัฒน์พงศ์ คุณนุชนภางค์ ชุมดี	คณะโบราณคดี มหาวิทยาลัยศิลปากร คุณเชิดศักดิ์ ครีรยาภิวัฒน์ คณะโบราณคดี มหาวิทยาลัยศิลปากร คุณทองเพียร ทาคำมา เขตรักษาพันธุ์สัตว์ป่าลุ่มน้ำปาย อ.ปาย จ.แม่ฮ่องสอน คุณนัทชมน ภูรีพัฒน์พงศ์ คณะโบราณคดี มหาวิทยาลัยศิลปากร คุณนุชนภางค์ ชุมดี คณะโบราณคดี มหาวิทยาลัยศิลปากร

ชื่อ - สกุล	สถานที่ทำงาน	โทรศัพท์ (E-mail)
7 คุณพัฒน์ธร โทใวยะ 1	นักธรณีวิทยาอิสระ	054-317258, 02-3984952.
, ,	นักศึกษาปริญญาโท สาขาวิชาเทคโนโลยีการบริหารสิ่งแวคล้อม คณะสิ่งแวคล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิคล	
9 คุณไพศาล ศรีพิเศษ	กองพัฒนาบ่อบาคาล กรมโยชาธิการ	5791353 (Pager) 1188#71184
10 คุณรมณีย์ ทองคารา	คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล	8892183 ท่อ 6490,6491
1 '	นักศึกษาปริญญาโท สาขาวิชาเทค โน โลยีการบริหารสิ่งแวคล้อม คณะสิ่งแวคล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิคล	9695070 (Pager) 1188 # 7118 fairang@hotmail.com
12 คุณสุมลรัตน์ สวัสคิ์สาลี	50 ถ.เจริญนคร คลองสาน กทม. 10600	8602044 กด 0
13 คุณสุรศักดิ์ สุตะปัญญา	อาชีพอิสระ 38 หมู่ 2 ต.แม่ตื่น อ.อมก๋อย จ.เชียงใหม่	
14 คุณหยาดอรุณ ชมสุขประกิต	สถาบันมัลติมิเดีย	6421925-7 ค่อ 119-120
15 Ms.Sally Anderson	นักวิจัยอิสระ 15 หมู่ 1 ค.ถ้ำลอด อ.ปางมะค้า จ.แม่ฮ่องสอน	-