Abstract

Development of mixed bacterial inoculum for promoting growth and recovery of staple crops under drought condition

This research was begun from the screening of rhizosphere bacteria. There were 112 drought tolerant isolates, of which 78 isolates were from rice, sugarcane and corn rhizosphere soil in Loburi and 34 isolates were from paddy soil in Roi et. From the initial screening, 30 isolates were selected for the bacterial identification and plant growth promoting properties. There were 21 isolates with ACC deaminase. Most of the drought tolerant bacteria had low Phosphate Solubilization Index. Most Gram negative bacteria were able to produce IAA but low exopolysaccharide producing activity. On the other hand, Gram positive bacteria produced low IAA but had high exopolysaccharide producing activity. The efficiency of drought tolerant bacteria on growth promoting, drought tolerant and recovery of plant seedlings were determined in hydroponic system containing PEG 6000 supplemented nutrients. The plant seedlings from seeds with coated bacteria were stronger than the seeds without. Gram negative bacteria such as Enterobacter sp. K1, Acinetobacter sp. L9, Pseudomonas sp. T8, Pseudomonas putida X3 and Pseudomonas putida Y9 promoted rice growth in both normal and drought condition. Moreover, the rice seedlings with those bacteria could recovery well after drought. The bacterial efficiency was corresponded to the ability to produce IAA and ACC deaminase. For plant seedlings with Gram positive bacteria, they had slightly better growth in drought condition. The most efficiency bacteria were Jeotgalicoccus huakuii RA2, B. altitudinis T17 and B. stratosphericus L19. The results with corn seedlings showed the same trend of bacterial efficiency.

The following experiment examined the mixture of bacterial inoculum including 3 Gram positive bacteria and 3 Gram positive bacteria as follows; *Bacillus stratosphericus* L19, *Bacillus pumilus* T1, *Bacillus altitudinis* T17, *Acinetobacter* sp. L9, *Pseudomonas* sp. T8 and *Pseudomonas* sp. X3 in soil pots. The results showed that the bacterial inoculum enhanced the growth and recovery of rice in soil after stop watering. The dominant bacterial populations in rhizosphere soil were corresponded with the bacterial types in the inoculum. The results indicated that the bacteria on coated seeds could grow in rhizosphere soil after the seed germination and survive in both normal and drought conditions. Moreover, the bacterial inoculum slightly promoted its growth and recovery of fodder corn. The efficiency of bacterial inoculum in the greenhouse experiment was not clear. This was probably due to the effect of environmental conditions as well as the changes of bacterial strains in the mixed bacterial inoculum. The overall results indicated that the drought tolerant bacteria from rhizosphere soil had different plant growth promoting activities. Consequently, the screening for efficient bacteria should be made. In addition, the application of bacterial inoculum was suitable for drought sensitive plants such as rice more than fodder corn, which is a natural drought tolerant plant.

บทคัดย่อ

การพัฒนาหัวเชื้อแบคทีเรียผสมเพื่อส่งเสริมการเจริญและการฟื้นตัว ของพืชเศรษฐกิจในสภาวะแห้งแล้ง

งานวิจัยนี้เริ่มจากการคัดกรองแบคทีเรียซึ่งคัดแยกจากดินบริเวณรากพืช โดยได้คัดแยกแบคทีเรียทน แล้งรวมทั้งสิ้น 112 ไอโซเลต โดยเป็นแบคทีเรียจากดินรากข้าว อ้อย และข้าวโพด ในจังหวัดลพบรี จำนวน 78 ไอโซเลต และจากดินนาข้าวจังหวัดร้อยเอ็ด จำนวน 34 ไอโซเลต หลังจากการศึกษาสมบัติเบื้องต้น ได้เลือก แบคทีเรีย 30 ไอโซเลท มาวิเคราะห์ชนิด และทดสอบสมบัติที่เกี่ยวข้องกับการส่งเสริมการเจริญของพืชเพิ่มเติม พบว่ามีแบคทีเรียจำนวน 21 ไอโซเลต ที่ผลิตเอนไซม์ ACC deaminase ได้ แบคทีเรียทนแล้งที่คัดแยกได้มีค่า Phosphate Solubilization Index ต่ำ ส่วนการผลิต IAA พบว่าแบคทีเรียแกรมลบส่วนใหญ่ผลิต IAA ได้ดี แต่ ผลิต Exopolysaccharide ได้ต่ำ ในขณะที่แบคทีเรียแกรมบวกผลิต IAA ได้ต่ำ แต่ผลิต Exopolysaccharide ได้ การทดสอบประสิทธิภาพของแบคทีเรียทนแล้งไอโซเลทต่างๆ ต่อการส่งเสริมการเจริญ การทนแล้ง และการฟื้น ์ ตัวของต้นพืชในระยะต้นกล้า ทำโดยจำลองสภาวะแล้งในระบบไฮโดรโปนิกส์ (Hydroponics) ที่ปลูกพืชโดยใช้ อาหารที่ผสม PEG 6000 พบว่าต้นกล้าที่ปลูกจากเมล็ดที่เคลือบแบคทีเรียมีลักษณะแข็งแรงกว่าเมล็ดที่ไม่ เคลือบเชื้อ ทั้งนี้แบคทีเรียแกรมลบ เช่น Enterobacter sp. K1, Acinetobacter sp. L9, Pseudomonas sp. T8, Pseudomonas putida X3 และ Pseudomonas putida Y9 ช่วยส่งเสริมการเจริญของต้นกล้าข้าวทั้งเมื่ออยู่ใน สภาวะปกติและสภาวะแล้ง ต้นกล้าข้าวที่มีแบคทีเรียดังกล่าว ยังสามารถฟื้นตัวภายหลังสภาวะแล้งได้ดี ทั้งนี้ ประสิทธิภาพของแบคทีเรียเหล่านี้สอดคล้องกับความสามารถในการผลิตฮอร์โมน IAA และ ผลิตเอนไซม์ ACC ส่วนต้นกล้าจากเมล็ดข้าวที่เคลือบด้วยแบคทีเรียแกรมบวกในสภาวะแล้ง พบว่ามีการเจริญดีขึ้น เล็กน้อย โดยแบคทีเรียที่มีประสิทธิภาพสูงได้แก่ Jeotgalicoccus huakuii RA2, B. altitudinis T17 และ B. การทดสอบประสิทธิภาพของหัวเชื้อแบคทีเรียกับต้นกล้าข้าวโพดให้ผลไปในทาง stratosphericus L19 เดียวกัน

้ ต่อมาได้นำหัวเชื้อแบคทีเรียผสมที่ประกอบด้วยแบคทีเรียแกรมบวก 3 ชนิด และแบคทีเรียแกรมลบ 3 ชนิด คือ Bacillus stratosphericus L19, Bacillus pumilus T1, Bacillus altitudinis T17, Acinetobacter sp. L9, Pseudomonas sp. T8 และ Pseudomonas sp. X3 ไปทดสอบประสิทธิภาพต่อพืชที่ปลูกในดินจริงระดับ พบว่าหัวเชื้อแบคทีเรียช่วยส่งเสริมการเจริญและการฟื้นตัวของข้าวในดินภายหลังการงดให้น้ำ กระถาง การศึกษาชนิดของประชากรเด่นในดินบริเวณรากพืชพบว่าสอดคล้องกับประชากรในหัวเชื้อแบคทีเรียแบบผสม แสดงว่ากลุ่มแบคทีเรียที่เคลือบเมล็ดข้าวสามารถเจริญในดินรอบรากข้าวภายหลังการงอกของเมล็ดได้ และยังมี ชีวิตอยู่ได้ทั้งในสภาวะมีน้ำปกติและสภาวะแล้ง นอกจากนี้พบว่าข้าวโพดเลี้ยงสัตว์หัวเชื้อแบคทีเรียช่วยส่งเสริม การเจริญและการฟื้นตัวของข้าวโพดในดินได้เล็กน้อย สำหรับการทดสอบในระดับโรงเรือนนั้น ประสิทธิภาพของหัวเชื้อแบคทีเรียที่ชัดเจน ชึ่งอาจจะมาจากผลของสภาพแวดล้อมและการเปลี่ยนชนิดของ ผลการศึกษาทั้งหมดแสดงให้เห็นว่าแบคทีเรียทนแล้งที่คัดแยกจากดินบริเวณ แบคทีเรียที่ใช้เป็นหัวเชื้อผสม รากของพืช มีสมบัติในการส่งเสริมการเจริญของพืชแตกต่างกัน จึงจำเป็นต้องคัดกรองเฉพาะแบคที่เรียทนแล้ง ที่มีคุณสมบัติการผลิตสารส่งเสริมการเจริญของพืชสูงมาใช้ประโยชน์ต่อไป อย่างไรก็ดีการเติมหัวเชื้อแบคทีเรีย จะเหมาะสำหรับพืชที่ไวต่อสภาวะแล้ง เช่น ข้าว มากกว่าข้าวโพดเลี้ยงสัตว์ที่ทนสภาวะแล้งได้ดี