

รายงานวิจัยฉบับสมบูรณ์

โครงการ: ผลของการใช้เพอร์พิลีนไกลคอลต่อกระบวนการสร้างกลูโคสในตับโค

โดย นายธีระ รักความสุข

๑๔ สิงหาคม ๒๕๕๖

รายงานวิจัยฉบับสมบูรณ์

โครงการ: ผลของการใช้โพร์พิลินไกลคอลต่อขบวนการสร้างกลูโคสในตับโค

ผู้วิจัย	สังกัด
1. นายอีรุ รักความสุข	ภาควิชาอาชีวศึกษา คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน อ.กำแพงแสน จ.นครปฐม 73140
2. นางอากัสสรา ชูเทศ	ภาควิชาสรีรวิทยา คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน
3. Dr. Theo Wensing	Faculty of Veterinary Medicine Utrecht University Yalelaan 7, 3584 CL Utrecht The Netherlands

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สก. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ : TRG4580002

ชื่อโครงการ : ผลของการใช้โพร์พิลินไกลคอลต่อขบวนการสร้างกลูโคสในตับโค

ชื่อนักวิจัย : 1. นายธีระ รักความสุข มหาวิทยาลัยเกษตรศาสตร์
 2. นางอาภาสสรา ชูเทชะ มหาวิทยาลัยเกษตรศาสตร์
 3. Dr. Theo Wensing Utrecht University

E-mail Address : theera.r@ku.ac.th

ระยะเวลาโครงการ : 1 ปี (กรกฎาคม 2545 ถึง มิถุนายน 2546)

ศึกษาผลของการป้อนโพร์พิลินไกลคอลในช่วงระยะเวลาทดลองต่อการเกิดภาวะการณ์สะสนมของไขมันและขบวนการสร้างกลูโคสในตับโค คัดเลือดแม่โคไฮสไตน์ พรีเซียน จำนวน 23 ตัว โดยแบ่งแม่โคออกเป็น 2 กลุ่ม คือ กลุ่มควบคุมจำนวน 9 ตัว และกลุ่มทดลองจำนวน 14 ตัวซึ่งได้รับโพร์พิลินไกลคอลในขนาด 400 มิลลิลิตรต่อตัวต่อวัน เริ่มตั้งแต่ 7 (6 ± 4) วันก่อนกำหนดทดลองจนถึง 7 วันหลังทดลอง เก็บตัวอย่างเลือดและตับของแม่โคทุกตัวที่ 1 สัปดาห์ก่อนทดลอง และ 2 และ 4 สัปดาห์หลังทดลอง ตัวอย่างเลือดนำไปตรวจหาความเข้มข้นของกลูโคส กรณีไขมันอิสระ เป็นตัวไชดรอกซ์บีวีไทรեต คลอเลสเตรอรอล ตัวอย่างตับนำไปตรวจหาความเข้มข้นของไตรอีซิลก็ลิเซอรอล ไกลโคเจน และการทำงานของอินไซม์ฟรุคโตส 1,6 มิสฟอสฟ่าเตส และทำการบันทึกปริมาณน้ำมารายตัวของแม่โคทุกตัว เมื่อเปรียบเทียบกับความเข้มข้นของกลูโคสก่อนทดลองพบว่าความเข้มข้นของกลูโคสภายหลังทดลองโดยทั้ง 2 กลุ่มลดลง แต่ไม่ปรากฏความแตกต่างของความเข้มข้นของกลูโคสระหว่างกลุ่ม ความเข้มข้นของการด้วยไขมันอิสระก่อนทดลองของโคทั้ง 2 กลุ่มไม่แตกต่างกัน ภายหลังทดลองความเข้มข้นของการด้วยไขมันอิสระในโค กลุ่มควบคุมเพิ่มขึ้น 239% ส่วนในกลุ่มทดลองเพิ่มขึ้น 118% และกลุ่มควบคุมมีความเข้มข้นสูงกว่ากลุ่มทดลองทั้งที่ 2 และ 4 สัปดาห์หลังทดลอง สำหรับความเข้มข้นของเบต้าไชดรอกซ์บีวีไทรեต ไม่แตกต่างกันระหว่างกลุ่มที่ 1 สัปดาห์ก่อนทดลอง แต่ที่ 2 สัปดาห์หลังทดลองความเข้มขันในกลุ่มควบคุมสูงกว่าในกลุ่มทดลอง ตลอดช่วงการเก็บตัวอย่าง ความเข้มข้นของคลอเลสเตรอรอลไม่มีความแตกต่างกันระหว่างกลุ่ม อย่างไรก็ตามความเข้มข้นที่ 4 สัปดาห์หลังทดลองของทั้ง 2 กลุ่มจะสูงกว่าความเข้มข้นที่ 1 สัปดาห์ก่อนทดลองและที่ 2 สัปดาห์หลังทดลอง ผลความเข้มข้นของไตรอีซิลก็ลิเซอรอลในตับพบว่า ที่ 1 สัปดาห์ก่อนทดลองความเข้มข้นของทั้ง 2 กลุ่มไม่แตกต่างกัน แต่ความเข้มข้นในกลุ่มควบคุมเพิ่มขึ้น 245% ที่ 2 สัปดาห์หลังทดลอง ขณะที่ ในกลุ่มทดลองเพิ่มขึ้น 125% และความเข้มข้นในกลุ่มควบคุมสูงกว่ากลุ่มทดลองทั้งที่ 2 และ 4 สัปดาห์หลังทดลอง ความเข้มข้นของไกลโคเจนไม่แตกต่างกันระหว่างกลุ่มทั้งที่ 1 สัปดาห์ก่อนทดลอง และ 2 หรือ 4 สัปดาห์หลังทดลอง นอกจากนี้การทำงานของอินไซม์ฟรุคโตส 1,6 มิสฟอสฟ่าเตส ไม่มีความแตกต่างกันระหว่างก่อนและหลังทดลอง และไม่พบความแตกต่างกัน

ระหว่างกลุ่ม โโคทั้ง 2 กลุ่มมีผลผลิตน้ำนมในช่วง 30 วันหลังคลอดไม่แตกต่างกัน โดยปริมาณน้ำนมเฉลี่ยเท่ากัน 29.1 ± 5.3 และ 30.2 ± 4.1 กิโลกรัมต่อวันต่อวันสำหรับกลุ่มควบคุมและกลุ่มทดสอบตามลำดับ ผลการศึกษาในครั้งนี้กล่าวได้ว่า การป้อนพร็อพเลสินไกลคอลให้แก่แม่โโคในขนาด 400 มิลลิลิตรต่อวันต่อวัน สามารถช่วยลดปัญหาหลังงานข้าดสมดุลให้แก่แม่โโคซึ่งจะทำให้แม่โโคมีการสลายไขมันน้อยลง ส่งผลให้แม่โโคมีการสะสมของไขมันในตับลดลง แม้ว่าพร็อพเลสินไกลคอลจะไม่ได้มีส่วนช่วยให้การทำงานของอินไซม์ที่เกี่ยวข้องกับการสร้างกลูโคสในตับโโคเพิ่มขึ้น แต่อาจกล่าวได้ว่าการเพิ่มพร็อพเลสินในระดับน้ำนมโดยการใช้พร็อพเลสินไกลคอลทำให้ระดับอินซูลินสูงขึ้นและส่งผลต่อการยับยั้งการสลายไขมันจากเนื้อเยื่อไขมัน ดังนั้น การใช้พร็อพเลสินไกลคอลป้อนให้แก่แม่โโคในช่วง 7 วันก่อนคลอดถึง 7 วันหลังคลอดจะช่วยลดปัญหาที่เกี่ยวข้องกับการสะสมของไขมันในตับและจะทำให้ประสิทธิภาพการผลิตของโคนมระยับหลังคลอดดีขึ้น

คำหลัก : โคนม การสะสมไขมันในตับ ขนาดการสร้างกลูโคส พร็อพเลสินไกลคอล

Abstract**Project Code** : TRG4580002**Project title** : Effect of oral administration of propylene glycol on hepatic gluconeogenesis in dairy cows**Investigators** : 1. Dr. Theera Rukkwamsuk Kasetsart University
2. Dr. Apassara Chothesa Kasetsart University
3. Dr. Theo Wensing Utrecht University**E-mail Address** : theera.r@ku.ac.th**Project Period** : 1 year (July 2002 to June 2003)

Twenty-three Holstein Friesian cows were randomly allocated into 2 groups; a control group of 9 cows and a treated group of 13 cows that were drenched with 400 ml of propylene glycol once daily from 7 (6 ± 4) days before anticipated calving date until 7 days after calving. At -1, 2, and 4 wk from parturition, blood samples were collected from all cows for determination of serum glucose, non-esterified fatty acid, β -hydroxybutyrate, and total cholesterol concentrations; and biopsied liver samples were collected from all cows for determination of triacylglycerol and glycogen concentrations. At all intervals, hepatic fructose 1,6 bisphosphatase activities were also measured. Milk yields were recorded daily. Compared with the concentrations at -1 wk, serum glucose concentrations decreased sharply at 2 and 4 wk, and the concentrations did not differ between the two groups at all intervals. Serum non-esterified fatty acid concentrations did not differ between the two groups at -1 wk, the concentrations at 2 wk increased 269% and 118% for control and treated groups, respectively. The concentrations were higher at 2 and 4 wk for control group than for treated group. Serum β -hydroxybutyrate concentrations did not differ between the two groups at -1 wk, the concentrations increased after calving and were higher for control than for treat group at 2 wk. At all intervals, serum cholesterol concentrations did not differ between groups, the concentrations were higher at 4 wk than at -1 and 2 wk for both groups. Triacylglycerol concentrations in the liver increased 245% at 2 wk in the control group, but only 125% in the treated group. At -1 wk, hepatic triacylglycerol concentrations did not differ between the two groups; however, the concentrations were higher at 2 and 4 wk for the control group than for the treated group. Hepatic glycogen concentrations decreased at 2 wk when compared with the concentrations at -1 wk; however, the

concentrations did not differ between the two groups at all intervals. Hepatic fructose 1,6 bisphosphatase activities did not change throughout the experimental period in both groups, and the activities were similar in both groups at all intervals. Average 30-d milk yields were 29.1 ± 5.3 and 30.2 ± 4.1 kg/d for control and treated groups, respectively, and the milk yields did not differ between the two groups of cows. Our results indicated that dairy cows drenched with propylene glycol at a dosage of 400 ml/cow/day could improve negative energy balance and could alleviate a massive mobilization of fat, consequently lower triacylglycerol accumulation in the liver. Though propylene glycol did not seem to increase hepatic gluconeogenesis, it could be suggested that increased ruminal propionate by propylene glycol administration raises blood insulin concentrations, and this phenomena could inhibit lipolysis in adipose tissue. In conclusion, propylene glycol giving between 7 days before expected calving date and 7 days postpartum could be used in practices to alleviate fatty liver problems and their consequences in postparturient dairy cows.

Key words: dairy cow, fatty liver, gluconeogenesis, propylene glycol

กิจกรรมประจำ

คณะกรรมการอนบคุณสำนักงานกองทุนสนับสนุนการวิจัยที่ให้ทุนสนับสนุนการศึกษาในครั้งนี้ ขอบคุณ คุณมาในช นาน่วม น.สพ.อนุโรจน์ ปัญญาวรรณ น.สพ.วิวิศ วุฒิวนถุกธ์ และ น.สพ.กรวิชญ์ อนุกูลุพิพงษ์ ที่ช่วยในการให้ข้อมูล และเก็บตัวอย่างที่ฟาร์ม และขอบคุณคนเลี้ยงโคนมทุกท่านที่ดูแลโคนมเป็นอย่างดีต่อกระบวนการวิจัยในครั้งนี้

เนื้อหางานวิจัย

บทนำ

การขาดสมดุลของพลังงาน (negative energy balance) เป็นภาวะที่เกิดขึ้นได้ในโคนม ระยะหลังคลอดโดยเฉพาะในช่วง 0-4 สัปดาห์แรก ทั้งนี้เนื่องจาก พลังงานที่ได้รับจากอาหารไม่เพียงพอ กับพลังงานที่โคนมต้องการเพื่อการตัวร่างซึพและ การสร้างน้ำนม ดังนั้นโคนมจะมีการดอนสนองต่อภาวะการขาดสมดุลของพลังงานนี้โดยการถ่ายพลังงานที่สะสมไว้ในร่างกาย ได้แก่ ไขมัน และ โปรตีน การถ่ายด้วงของไขมัน (lipolysis) ที่เกิดขึ้นจะส่งผลให้มีการปล่อยกรดไขมันอิสระ (free fatty acids หรือ non-esterified fatty acids) เข้าสู่กระแสโลหิตในปริมาณมาก ซึ่งส่งผลให้มีการสะสมของไขมันในรูปไตรอีซิลกอสิเจอโรล (triacylglycerols) ที่ตั้งในปริมาณสูง การสะสมของไตรอีซิลกอสิเจอโรลในตับทำให้การทำหน้าที่ของตับถูกรบกวน โดยเฉพาะหน้าที่ในการสร้าง (gluconeogenesis) และหน้าที่ในการกำจัดสารพิษ (detoxification) ซึ่งจะต้มพันธุ์กับปัญหาสุขภาพ ผลผลิต และ ระบบสืบพันธุ์ในโคนม ปัจจุบันได้มีการศึกษาหาวิธีการลดการถ่ายไขมันในโคนมระยะหลังคลอด ได้แก่ การใช้สารที่ให้พลังงานสูง เช่น propylene glycol ป้อนให้แก่โคนมในระยะดังกล่าวทั้งนี้เพื่อไปทดแทนพลังงานส่วนที่โคนมต้องการทำให้ลดการถ่ายด้วงของไขมันลง ซึ่งในที่สุดจะช่วยลดปัญหาการสะสมของไตรอีซิลกอสิเจอโรลในตับโดย และทำให้โคนมมีผลผลิตดีขึ้น นอกจากนี้ยังช่วยลดปัญหาระบบสืบพันธุ์ และปัญหาสุขภาพที่เป็นผลมาจากการถ่ายด้วงไขมันจากเนื้อเยื่อไขมันและการสะสมของไตรอีซิลกอสิเจอโรลในตับด้วย

โดยปกติโคนมจะมีปัญหาขาดสมดุลของพลังงาน (negative energy balance) ในระยะหลังคลอดทั้งนี้เนื่องจากในระยะนี้โคนมมีความต้องการพลังงานอย่างมากโดยเฉพาะเพื่อการสร้างน้ำนมซึ่งพลังงานที่ต้องการนี้ไม่สามารถได้รับอย่างเพียงพอจากการกินอาหาร (Harrison et al., 1990) ผลที่ตามมาคือโคนมต้องมีการถ่ายพลังงานที่สะสมไว้ในร่างกายโดยเฉพาะจากไขมัน การถ่ายไขมันทำให้มีการเพิ่มขึ้นของกรดไขมันอิสระ (free fatty acids หรือ non-esterified fatty acids) ในเลือด (Rukkwamsuk et al., 1998) กรดไขมันอิสระเหล่านี้ถูกเมตาบoliต์ที่ตับ โดยขบวนการที่สำคัญ 2 ประการคือ re-esterification และ oxidation การ re-esterification ของกรดไขมันอิสระที่ตับจะได้ไตรอีซิลกอสิเจอโรล (triacylglycerols) ซึ่งจะต้องขับออกจากการตับในรูปของ very low density lipoproteins (VLDL) (Bruss, 1993) จากการศึกษาพบว่าในกรณีที่มีตับมีการสร้างไตรอีซิลกอสิเจอโรลมากเกินไปทำให้การขนส่งไตรอีซิลกอสิเจอโรลออกจากตับผ่านทาง VLDL ถูกรบกวน ดังนั้นไตรอีซิลกอสิเจอโรลจะสะสมอยู่ในตับทำให้เกิดภาวะที่เรียกว่า fatty liver (Rukkwamsuk et al., 1998) สำหรับการ oxidation ของกรดไขมันอิสระในตับจะทำให้เกิดสารคิโตน ซึ่งได้แก่ acetone, acetoacetate และ 3-hydroxybutyrate (Bruss, 1993) ทั้งการสะสมของไตรอีซิลกอสิเจอโรลในตับหรือภาวะ fatty liver และการเพิ่มของสารคิโตนในเลือดมีความสัมพันธ์กับปัญหาสุขภาพทั้งโรคทางระบบเมตา

โบลิชีน เช่น milk fever, ketosis เป็นต้น และโรคติดเชื้อต่างๆ เช่น เต้านมอักเสบ มดลูกอักเสบ เป็นต้น (Rukkwamsuk et al., 1999a; Wentink et al., 1997) มีการศึกษาเบื้องต้นพบว่าปัจจุบัน ดังกล่าวข้างต้นส่วนหนึ่งมีความสัมพันธ์กับหน้าที่ของตับถูกกระบวนการโดยเฉพาะหน้าที่ในการสร้างกลูโคส (gluconeogenesis) (Rukkwamsuk et al., 1999b) และหน้าที่ในการขับสารพิษ (detoxification) (West, 1990) ทั้งนี้เนื่องมาจากการสะสมของไตรอีซิลกสี-เซอรอลในตับ

ปัจจุบันมีการนำสารให้พลังงานสูง เช่น propylene glycol มาใช้ป้อนให้แก่แม่โคในระยะคลอดเพื่อให้แม่โคได้รับพลังงานที่เพียงพอทำให้ขบวนการถ่ายไขมันของเนื้อเยื่อในมัณฑลง propylene glycol เป็นสารประกอบที่มีฤทธิ์เป็น glucogenic ซึ่งภายหลังจากที่สัตว์กินเข้าไป ส่วนหนึ่งจะเปลี่ยนเป็น propionate ซึ่งเป็น gluconeogenic precursors และส่วนที่เหลือจะเปลี่ยนเป็นกลูโคสที่ตับ ผลงานของ propylene glycol จะช่วยลดความเข้มข้นของ non-esterified fatty acids และ 3-hydroxybutyrate ในกระแสเลือดและยังช่วยลดการสะสมของไตรอีซิลกสีเซอรอลในตับโค (Studer et al., 1993; Grummer et al., 1994; Christensen et al., 1997) อย่างไรก็ตามการศึกษาดังกล่าวไม่ได้อธิบายผลของ propylene glycol ต่อบริบทการ gluconeogenesis ในตับ โดยเฉพาะในระยะก่อนและหลังคลอด

เทคนิคการเก็บตัวอย่างเนื้อตับผ่านทางผิวหนัง (percutaneous liver biopsy technique) นำมาใช้ในเก็บตัวอย่างเนื้อเยื่อตับเพื่อตรวจหาปริมาณไตรอีซิลกสีเซอรอลที่สะสมอยู่ในตับโค ในช่วงก่อนและหลังคลอด และตรวจหา activity ของเอ็นไซม์ที่เกี่ยวข้องกับขบวนการ gluconeogenesis เพื่อหาความสัมพันธ์ของการใช้ propylene glycol ต่อบริบทการ gluconeogenesis และการสะสมของไตรอีซิลกสีเซอรอลในตับโค

วิธีทำการทดลอง

โภคคลอง อาหารและการให้อาหาร

งานวิจัยนี้ทำที่ฟาร์มโคนมแห่งหนึ่งในจังหวัดนครราชสีมาที่เลี้ยงในระบบ evaporative cooling system โดยโคนมในฟาร์มนี้ประกอบด้วย แม่โครีดนม 503 ตัว โคแห้งนม 171 ตัว ลูกโคและโคสาวทั้งหมด 414 ตัว ปริมาณน้ำนมเฉลี่ยในฟาร์มคือ 20.5 กิโลกรัมต่อตัวต่อวัน ทำการคัดเลือกโคนมโถลส์ไดน์ ฟรีเซียน ที่ตั้งท้องและอยู่ในระยะแห้งนม จำนวน 23 ตัว โดยแบ่งโคนมออกเป็น 2 กลุ่ม ได้แก่ กลุ่มทดลองจำนวน 14 ตัว และกลุ่มควบคุมจำนวน 9 ตัว รายละเอียดของโคทั้ง 2 กลุ่ม แสดงใน Table 1 โคนมได้รับอาหารตามความต้องการโดยโคนมได้รับอาหาร 2 ครั้งต่อวันในระยะแห้งนม และระยะใกล้คลอด และได้รับอาหาร 4 ครั้งต่อวันในระยะหลังคลอด โดยองค์ประกอบของอาหารที่ใช้ในโคทั้งระยะแห้งนมและระยะหลังคลอดแสดงใน Table 2 โคนมกลุ่มทดลองได้รับ propylene glycol ในขนาด 400 มิลลิลิตรต่อตัวต่อวันในช่วง 1 สัปดาห์ก่อนคลอดและ 1 สัปดาห์หลังคลอด ภายหลังคลอด ภายหลังคลอดโคนมเหล่านี้ได้รับการรีดนมจำนวน 2 ครั้งต่อวัน และบันทึกผลผลิตน้ำนมรายตัวตลอดระยะเวลาทำการศึกษา

Table 1. Descriptions of control and experimental cows.

Group	Cow number	Age at start exp. (year)	305-d-yield (kg)	Drenching period	
				Dry period (day)	period (day)
Control	512	2.85	7160	53	-
	523	2.80	6835	82	-
	532	2.77	6925	55	-
	537	2.75	6524	58	-
	9043	3.63	6601	57	-
	9084	3.29	5260	56	-
	9154	3.06	5733	47	-
	9160	3.05	6355	67	-
	9205	2.92	7320	59	-
Average		3.01	6523.7	59	-
s.d.		0.29	666.5	10	-
Treated	520	2.80	7265	52	7
	521	2.80	7162	53	9
	539	2.74	5972	63	20
	9034	3.68	6185	55	11
	9099	3.23	6641	60	16
	9113	3.17	7862	52	8
	9126	3.13	7415	53	10
	9138	3.10	5534	54	10
	9148	3.07	6840	57	14
	9165	3.03	6971	56	13
	9189	2.96	6169	57	14
	9197	2.94	7246	59	16
	9199	2.93	5972	59	16
Average	s.d.	3.04	6764.6	56.1	12.6
		0.24	695.7	3.3	3.7

Table 2. Composition of total mixed rations (TMR) as fed basis.

Ingredient	Dry period	Transition period	Lactating period
			kg as fed
PCL-3 ¹	1.3
PCL-P ²	...	2.0	...
PCL-F ³	3.8
Wet brewer grain	8.0	7.0	10.0
Corn silage	8.0	12.5	12.5
Peanut hay	2.0	6.0	6.0
Rice straw	3.5
Cassava chips	...	1.0	1.3
Whole cotton seed	...	0.6	2.0
Ground corn	1.0
Molasses	1.0	0.5	0.5
Premixes	0.5	0.5	1.0

¹ Consisting of 33.0% soybean meal, 27% canola meal, 22.5% wheat bran, 11% dried brewer grain, 4.1% limestone, and 2.4% salts.

² Consisting of 54.5% soybean meal, 15.0% canola meal, 13.0% dried brewer grain, 11.0% corn gluten meal, 4.7% salts, and 1.8% biophos.

³ Consisting of 50.0% soybean meal, 27.0% corn gluten meal, 14.0% canola meal, 5.5% dried brewer grain, 1.9% salts, and 1.6% limestone.

การเก็บตัวอย่าง

ตัวอย่างเนื้อเยื่อตับ

เก็บตัวอย่างตับจำนวน 3 ครั้ง คือ 1 สัปดาห์ก่อนคลอด และ 2, 4 สัปดาห์หลังคลอด ตัวอย่างเนื้อเยื่อตับที่ได้แบ่งออกเป็นสองส่วนคือ ส่วนที่ 1 นำตัวอย่างเนื้อเยื่อตับใส่ลงใน หลอดแก้วที่มี normal saline solution เพื่อนำไปวิเคราะห์ความเข้มข้นของ ไตรเอซิลกัลลิเซอโรล และวิเคราะห์ activity ของ gluconeogenic enzymes (fructose 1,6 bisphosphatase) และส่วนที่ 2 นำตัวอย่างเนื้อเยื่อตับบีร์มาน 50 มิลลิกรัม ใส่ลงใน 20% KOH เพื่อนำไปวิเคราะห์ความเข้มข้นของ ไกลโคเจน

ตัวอย่างเลือด

เก็บตัวอย่างเลือดจาก jugular vein ปริมาณ 20 ml เมื่อนำไปแยกชั่วคราวแล้วเก็บไว้ที่ตู้แข็งอุณหภูมิ -20 °C จนกระทั่งวิเคราะห์ความเข้มข้นของ glucose, non-esterified fatty acids, β -hydroxybutyrate, and total cholesterol

การวิเคราะห์ตัวอย่าง

ตรวจความเข้มข้นของไตรเออซิกลิเซอโรลและไกลโคเจนในเนื้อเยื่อตับ activity ของ gluconeogenic enzymes ในเนื้อเยื่อตับ และความเข้มข้นของ glucose, non-esterified fatty acids, β -hydroxybutyrate และ total cholesterol ในเลือดด้วยวิธี spectrophotometry

การวิเคราะห์ข้อมูล

วิเคราะห์ข้อมูลความเข้มข้นของไตรเออซิกลิเซอโรลและไกลโคเจนในตับ ความเข้มข้นของ glucose, non-esterified fatty acids, β -hydroxybutyrate และ total cholesterol ในเลือด และ activity ของ gluconeogenic enzyme ของตับ และผลผลิตน้ำนม ด้วยวิธี repeated measures ของ ANOVA โดยมีกลุ่มเป็นปัจจัยหลักและเวลาเป็นปัจจัยข้าม ทำการเปรียบเทียบพารามิเตอร์ระหว่างก่อนคลอดและหลังคลอดด้วยวิธี Paired *t* test และเปรียบเทียบพารามิเตอร์ระหว่างกลุ่มควบคุมและกลุ่มทดลองในแต่ละช่วงเวลา ด้วยวิธี Student *t* test

ผลการทดลอง

ผลผลิตน้ำนม

ปริมาณน้ำนมระยะ 30 วัน ของโคนมกลุ่มควบคุมและกลุ่มทดลอง แสดงใน Figure 1.

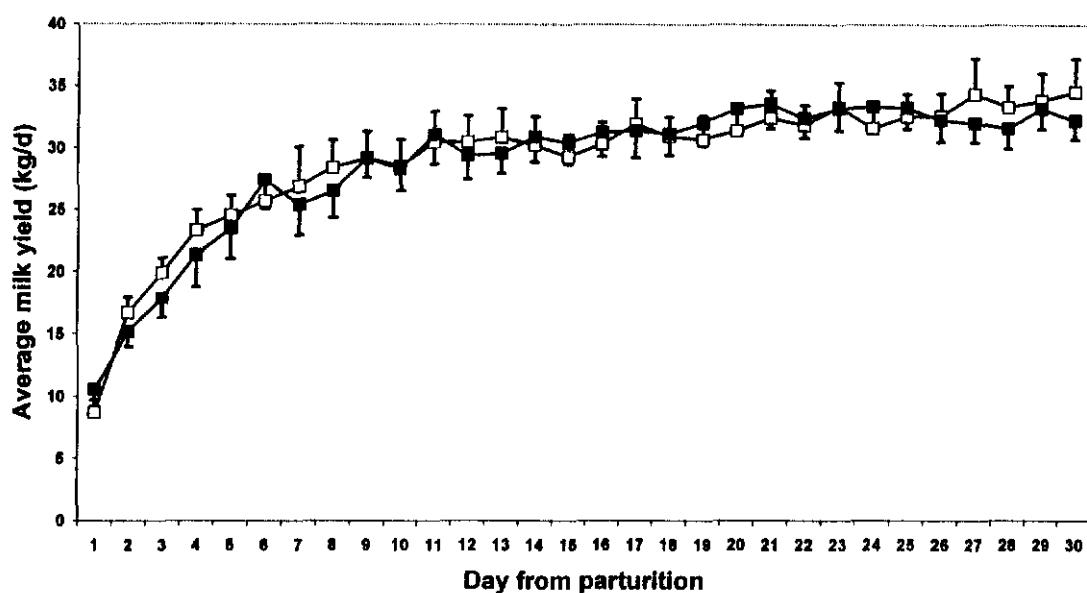


Figure 1. Comparison of milk yield during the first 30 d of lactation between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM).

ไดรเอชิลก็อกซิเซอรอลและไกลโคเจนในตับ

ความเข้มข้นของไดรเอชิลก็อกซิเซอรอลและไกลโคเจนในตับของโคนมกลุ่มควบคุมและกลุ่มทดลองแสดงใน Figure 2 และ Figure 3.

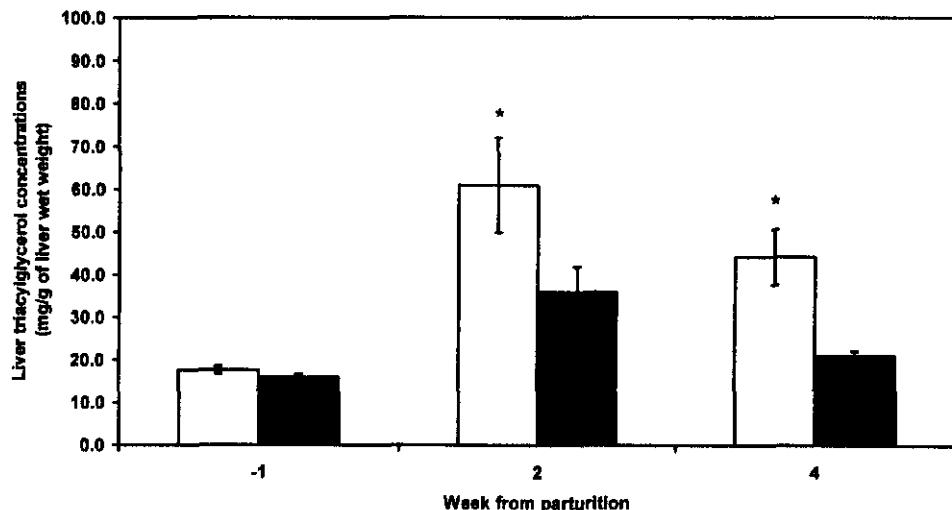


Figure 2. Comparison of triacylglycerol concentrations in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM). Asterisks indicate the time during which the different in mean concentrations of triacylglycerol in the liver was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

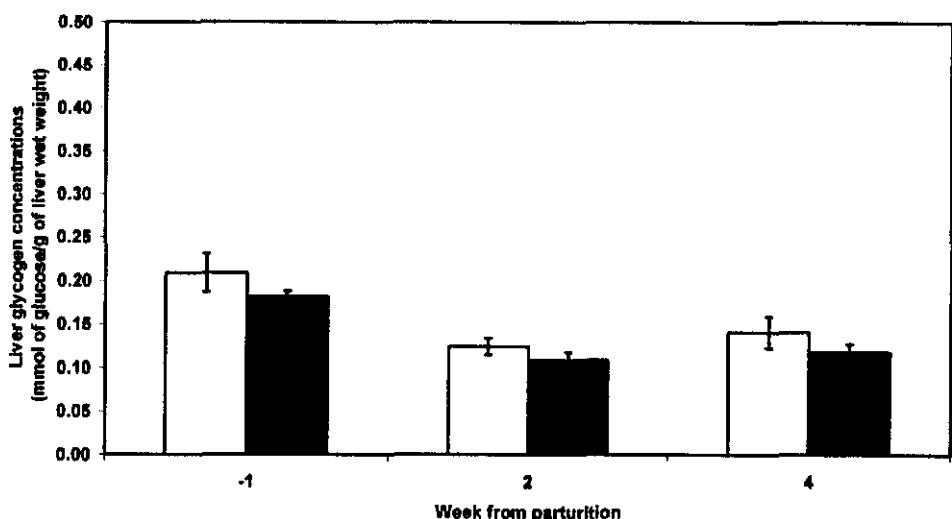


Figure 3. Comparison of glycogen concentrations in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM).

กลูโคส กรดไขมันอิสระ คอเลสเตอรอล และ เบต้าไฮดรอกซีบิวไทรีตในชีรั่ม

ความเข้มข้นของกลูโคส กรดไขมันอิสระ เบต้าไฮดรอกซีบิวไทรีต และคอเลสเตอรอล ในชีรั่มของโคนมกลุ่มควบคุมและกลุ่มทดสอบแสดงใน Figure 4, 5, 6 และ 7.

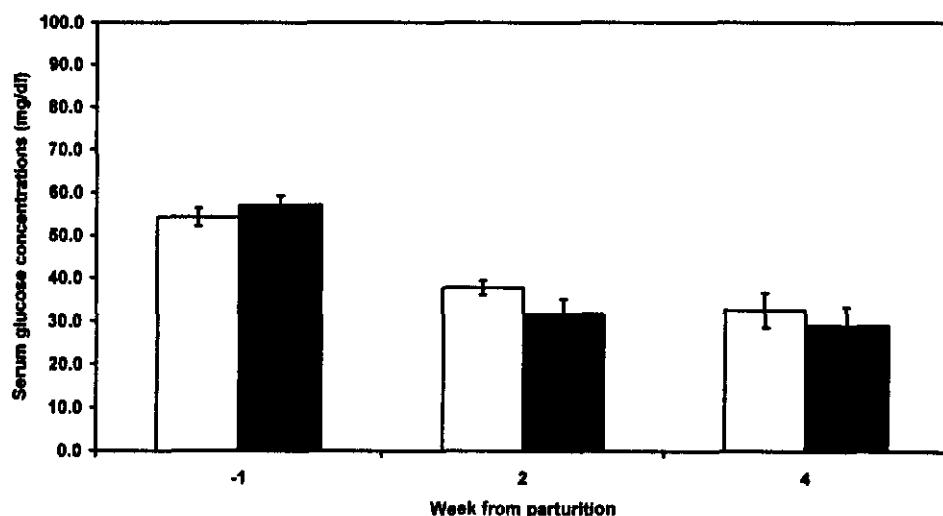


Figure 4. Comparison of glucose concentrations in the serum measured before and after parturition between control cows (◻; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM).

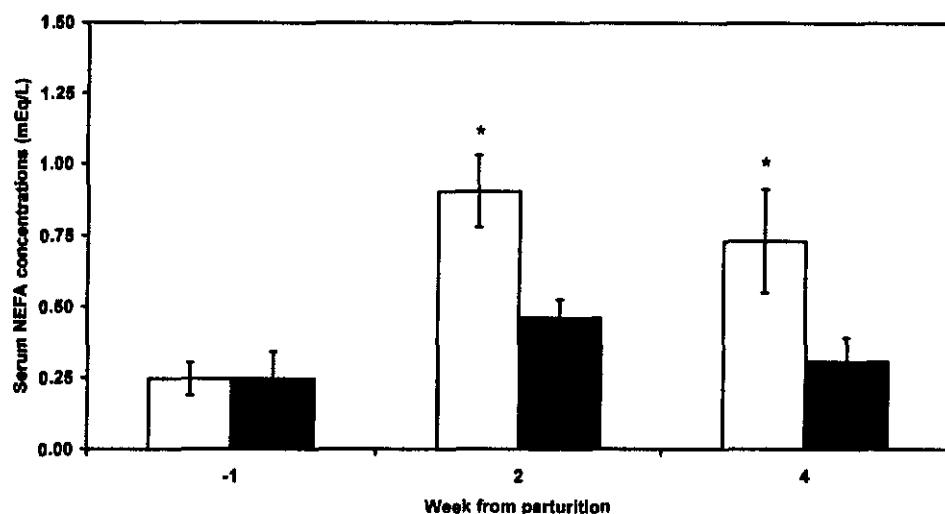


Figure 5. Comparison of non-esterified fatty acids (NEFA) concentrations in the serum measured before and after parturition between control cows (◻; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM). Asterisks indicate the time during which the difference in mean concentrations of NEFA in the serum was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

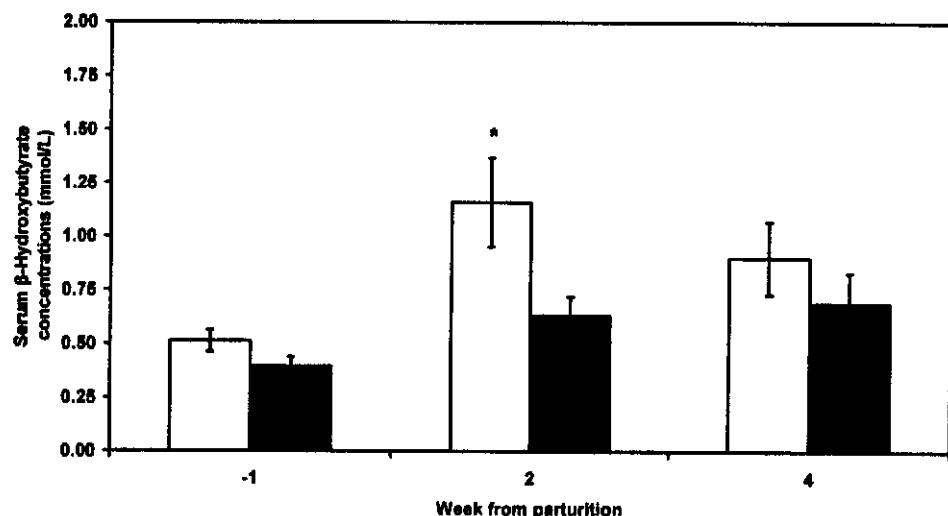


Figure 6. Comparison of β -hydroxybutyrate concentrations in the serum measured before and after parturition between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM). Asterisks indicate the time during which the difference in mean concentrations of β -hydroxybutyrate in the serum was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

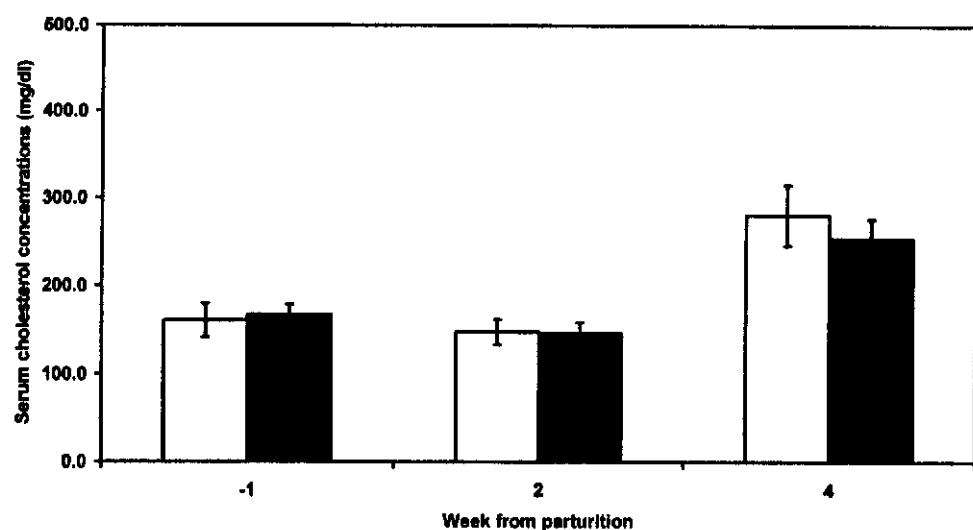


Figure 7. Comparison of total cholesterol concentrations in the serum measured before and after parturition between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM).

การทำงานของเอ็นไซม์ในขบวนการสร้างกลูโคสในตับโค

การทำงานของเอ็นไซม์ฟรุกโตส บีสฟอสฟอเตส ในดับของโคนมมีกลุ่มควบคุมและกลุ่มทดสอบแสดงใน Figure 8

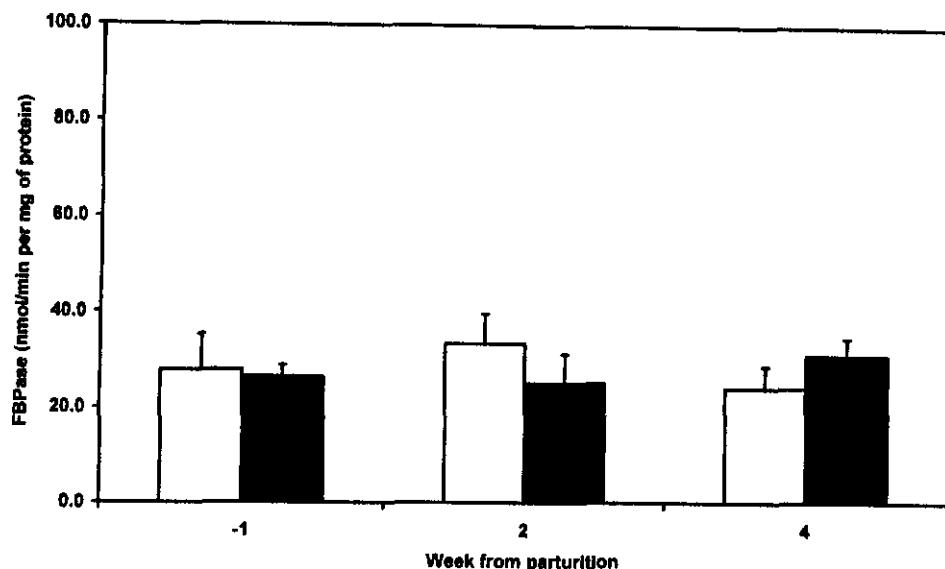


Figure 8. Comparison of activities of fructose 1,6 bisphosphatase (FBPase) in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (± SEM).

บทวิจารณ์

จากการศึกษาพบว่าโคนมทั้งกลุ่มที่ได้รับโพรไพลินไกลคอล และกลุ่มที่ไม่ได้รับโพรไพลินไกลคอลมีผลผลิตน้ำนมไม่แตกต่างกันในช่วงระยะเวลา 30 วันของการให้นม จากรายงานพบว่าปัจจุบันมีภาวะผลลัพธ์ขาดสมดุลที่ชัดต่ำที่สุดประมาณ 2-3 วันหลังคลอด ซึ่งในช่วงนี้แม้โคนมกลุ่มทดสอบจะได้รับโพรไพลินไกลคอลเป็นผลลัพธ์เสริม ซึ่งสารดังกล่าวจะทำให้มีการเพิ่มขึ้นของสัดส่วนการดูดซึมโพรไพลินิกต่อการดูดซึมและการปฏิวิกริบในกระแสรูเมน ส่งผลให้มีการสร้างกลูโคสเพิ่มขึ้นทีตับ ทำให้แม้โคนมที่ได้รับโพรไพลินไกลคอลมีปัจจุบันภาวะผลลัพธ์ขาดสมดุลที่ไม่รุนแรง กล่าวคือการลดลงของระดับกลูโคสหรืออินซูลินเกิดขึ้นไม่มาก การตอบสนองของเนื้อเยื่อไขมันในอันที่จะถูกยกรดไขมันอิสระมาเพื่อใช้ทดแทนผลลัพธ์ขาดหายไปนั้นจึงไม่รุนแรงเท่ากับในกลุ่มควบคุม ซึ่งผลที่เกิดขึ้นนี้สอดคล้องกับการพบความเข้มข้นของกรดไขมันอิสระในกระแสเลือดของโคนมกลุ่มควบคุมมีค่าสูงกว่าในกลุ่มทดสอบ ด้วยเหตุนี้โคนมกลุ่มควบคุมจึงมีการสะสมของไตรเอชิกลีเซอรอลในเซลล์ตับมากกว่าในกลุ่มทดสอบและยังส่งผลให้แม้โคนมกลุ่มควบคุมมีปัจจุบันเกี่ยวกับการเพิ่มขึ้นของเบต้าไครอฟต์ ปิวไทรีด ซึ่งเป็นสารคิดเห็นนิดหนึ่งในตัวสัตว์ จากการศึกษาในครั้งนี้พบว่าการเพิ่มขึ้นของไตรเอชิกลีเซอรอลที่สะสมในตับโคหลังคลอดทั้ง 2 กลุ่ม มีความแตกต่างกันอย่างเห็นได้ชัด แม้ว่าการใช้โพรไพลินไกลคอลจะไม่ส่งผลต่อการกระตุ้นให้ตับของแม้โคนมมีการปรับตัวต่อการเพิ่มการสร้างกลูโคสในตับ

หลังจากผ่านช่วงสัปดาห์แรกหลังคลอดได้ แต่การใช้พิโพรไฟลินไกลคอลปีโอนให้แก่แม่โคในช่วง 1 สัปดาห์ก่อนและ 1 สัปดาห์หลังคลอด จะช่วยให้แม่โคผ่านภาวะวิกฤตของพลังงานขาดสมดุลไปได้อย่างราบรื่น ซึ่งทำให้แม่โคมีการถ่ายไขมันที่ไม่รุนแรง อันส่งผลต่อตับมีการสะสมของไตรเอชิลกีเซอโรลอยู่ในเกณฑ์ที่ถือว่าไม่รุนแรง ซึ่งคาดหวังว่าผลกระทบอันเกิดจากภาวะพลังงานขาดสมดุลและปัญหาการสะสมไขมันในตับในแม่โคหลังคลอดนี้จะไม่รุนแรง อย่างไรก็ตามควรมีการทำงานวิจัยเพิ่มเติม เพื่อร่วบรวมข้อมูลเกี่ยวกับผลของพิโพรไฟลินไกลคอลต่อองค์ประกอบน้ำนม ตลอดจนประสิทธิภาพของระบบสืบพันธุ์ของแม่โคที่ได้รับสารนี้ เพื่อนำผลที่ได้ไปปรับใช้กับการจัดการฟาร์มโคนมให้ได้ประสิทธิภาพสูงสุดต่อไปในอนาคต

หนังสืออ้างอิง

1. Bruss, M. L. 1993. Metabolic fatty liver of ruminants. In: Cornelius C. E., ed. *Advances in veterinary science and comparative medicine*. San Diego: Academic Press Inc. Pages 421-422.
2. Christensen, J. O., R. R. Grummer, F. E. Rasmussen, and S. J. Bertics. 1997. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. *J. Dairy Sci.* 80:563-568.
3. Grummer, R. R., J. C. Winkler, S. J. Bertics, and V. A. Studer. 1994. Effect of propylene glycol during feed restriction on metabolites in blood of prepartum Holstein heifers. *J. Dairy Sci.* 77:3618-3623.
4. Harrison, R. O., S. P. Ford, J. W. Young, A. J. Conley, and A. E. Freeman. 1990. Increased milk production versus reproductive and energy status of high producing dairy cows. *J. Dairy Sci.* 73:2749-2758.
5. Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1998. Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the periparturient period. *J. Dairy Sci.* 81:2904-2911.
6. Rukkwamsuk, T., T. Wensing, and T.A.M. Kruip. 1999a. Relationship between triacylglycerol concentration in the liver and first ovulation in postparturient dairy cows. *Theriogenology*. 51:1133-1142.
7. Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1999b. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows. *J. Dairy Sci.* 82: 500-505.
8. Studer, V. A., R. R. Grummer, and S. J. Bertics. 1993. Effect of prepartum propylene glycol administration on periparturient fatty liver in dairy cows. *J. Dairy Sci.* 76:2931-2939.

9. Wentink, G. H., V.P.M.G. Rutten, T.S.G.A.M. Van den Ingh, A. Hoek, K. E. Muller, and T. Wensing. 1997. Impaired specific immunoreactivity in cows with hepatic lipidosis. *Vet. Immunol. Immunopathol.* 56:77-83
10. West, H. J. 1990. Effect on liver function of acetonemia and the fat cow syndrome in cattle. *Res. Vet. Sci.* 48:221-227.

ประโยชน์ที่ได้จากการวิจัย

การนำผลงานวิจัยไปใช้ประโยชน์

ประโยชน์ที่เกิดขึ้นกับเกษตรกร

ผลงานวิจัยขึ้นนี้ชี้ให้เห็นว่าโพลีเพลนไกลคอลชีงเป็นสารให้พลังงานที่มีราคาถูกสามารถนำไปใช้ในการป้องกันปัญหาพลังงานขาดสมดุลในแม่โขนระยะก่อนและหลังคลอดได้โดยจะช่วยทำให้แม่โขนมีการสลายไขมันจากเนื้อเยื่อไขมันลดลงและลดการสะสมของไขมันในตับของโคนมในช่วงระยะหลังคลอดได้ด้วย หากแม่โขนหลังคลอดมีปัญหาเหล่านี้ลดลง จะส่งผลให้มีประโยชน์ต่อการผลิตน้ำนมที่สมบูรณ์ดี ตลอดจนมีความสมบูรณ์พัฒนาเพิ่มขึ้น กล่าวคือ โอกาสที่แม่โขนเหล่านี้จะกลับมาแสดงอาการเป็นสัดภัยหลังคลอดจะเร็วขึ้น ทำให้แม่โขนสามารถผลิตได้ในระยะเวลาที่ต้องการ อันจะส่งผลต่อผลผลิตน้ำนมที่ดีขึ้นของฟาร์มต่อไป

ประโยชน์ที่เกิดขึ้นทางด้านวิชาการและงานวิจัย

ผลงานวิจัยขึ้นนี้จะใช้เป็นแหล่งข้อมูลอ้างอิงเกี่ยวกับการเกิดภาวะพลังงานขาดสมดุล และปัญหาการสะสมของไขมันในตับโคนม ซึ่งมีรายงานน้อยมากในประเทศไทย โดยอาจทำให้นักวิจัยที่ทำงานด้านโคนมหันมาให้ความสนใจกับปัญหาการสะสมของไขมันในตับโคนมที่ส่งผลกระทบต่อประสิทธิภาพของระบบสืบพันธุ์ และปัญหาสุขภาพ ซึ่งเป็นปัญหาที่สำคัญของการเลี้ยงโคนมในประเทศไทย นอกจากนี้นักวิชาการด้านโภชนาศาสตร์โคนมอาจให้ความสนใจในการใช้หรือพัฒนารูปแบบการใช้โพลีเพลนไกลคอลในอาหารสัตว์เพื่อความสะดวกและลดต้นทุน การผลิตอาหารสัตว์ต่อไปในอนาคต

ผลงานวิจัยที่เกี่ยวข้องกับเทคนิคต่างๆ โดยเฉพาะเทคนิคด้านการตรวจวัดการทำงานของเอ็นไซม์ สามารถนำไปปรับใช้ในการศึกษาด้านเอ็นไซม์ตัวอื่นๆ ที่เกี่ยวข้องกับเมตาโบลิซึมต่างๆ ทั้งนี้เพื่อหาสารสกัดชีวภาพที่มีฤทธิ์ในการกระตุ้นการทำงานของเอ็นไซม์ที่เกี่ยวข้องกับประสิทธิภาพการผลิต โดยไม่จำกัดเฉพาะการศึกษาในโคนมเท่านั้น

ผลงานตีพิมพ์ในวารสารนานาชาติ

ผลงานวิจัยขึ้นนี้อยู่ระหว่างการเตรียมต้นฉบับส่งไปตีพิมพ์ในวารสารนานาชาติ คาดว่าจะส่งไปที่ The Journal of Dairy Science ซึ่งเป็นวารสารทางวิชาการเฉพาะด้านโคนม (ต้นฉบับอยู่ในส่วนภาคผนวก)

ภาคผนวก

ส่วนที่ 1

บทความสำหรับการเผยแพร่การนำเสนอผลจากการไปใช้ประโยชน์

ส่วนที่ 2

Manuscript title : **Effect of Propylene Glycol on Fatty Liver Development and Hepatic Gluconeogenesis in Periparturient Dairy Cows**
(In preparation to submit to the Journal of Dairy Science)

ส่วนที่ 1

บทความสำหรับการเผยแพร่การนำเสนอผลจากการไปใช้ประโยชน์

บทความสำหรับเผยแพร่

ปัญหาพลังงานขาดสมดุลระดับโลกในแม็คโคลด์

ปัญหาพลังงานขาดสมดุล หรือ negative energy balance มักเกิดขึ้นกับแม็คโคลด์ในระดับโลก โดยพบว่าแม็คโคลด์ในระดับโลกนี้จะมีการกินได้ต่ำทำให้พลังงานที่ได้รับจากอาหารไม่เพียงพอ กับพลังงานที่ร่างกายต้องการโดยเฉพาะเพื่อการสร้างเนื้อแม้เหลื่องและเนื้านม ดังนั้นพลังงานของแม็คโคลด์ในระดับโลกนี้มักจะขาดสมดุล ซึ่งร่างกายแม็คโคลด์จะตอบสนองต่อภาวะดังกล่าวโดยพบว่าจะมีการลดต่ำลงของความเข้มข้นของกําถูกโคลส์ในกระแสเลือด ส่งผลให้มีระดับความเข้มข้นของอินซูลินลดต่ำลง ภาวะเช่นนี้จะกระตุ้นให้มีการสลายของไขมันที่สะสมไว้ในเนื้อเยื่อไขมันอุดมมากขึ้น ผลของการสลายไขมันจะทำให้ระดับความเข้มข้นของกรดไขมันอิสระในเลือดเพิ่มขึ้นอย่างมาก ซึ่งกรดไขมันเหล่านี้จะเกิดการสะสมในรูปของไตรอีซิกลีเซอรอลในตับของโคล ทำให้เกิดปัญหาการสะสมของไขมันในตับหรือเรียกว่า fatty liver มีรายงานวิจัยอย่างต่อเนื่องพบว่า ปัญหาพลังงานขาดสมดุลและปัญหาการสะสมของไขมันตับโคลมีผลกระทบในทางลบต่อผลผลิตน้ำนม ระบบสืบพันธุ์ และสุขภาพของโคนมหลังคลอด ดังนั้นจึงมีงานวิจัยมากมายพยายามหามาตรการหรือแนวทางในการลดปัญหานี้ทั้งพลังงานขาดสมดุลและปัญหาการสะสมของไขมันในตับ ทั้งนี้เพื่อลดผลกระทบดังกล่าวและทำให้ประสิทธิภาพการผลิตของฟาร์มโคนมเพิ่มขึ้นด้วย

ปัญหาการสะสมของไขมันในตับโคลในฟาร์ม

จากการศึกษาเบื้องต้นพบว่าโคนมพันธุ์ไฮล์ส์โคนม ฟรีเซียน ที่นำมาเลี้ยงในระบบที่มีการปรับอุณหภูมิของโรงเรือน ด้วย evaporative cooling system มีปัญหาเกี่ยวกับการสะสมของไขมันในตับในระดับคลอดประมาณ 70% ของแม็คโคลด์หลังคลอดทั้งหมด โดยพบว่าในตับของแม็คโคลด์นี้มีไตรอีซิกลีเซอรอลสะสมอยู่มากกว่า 50 มิลลิกรัมต่อกิโลกรัมของตับ และผลของการสะสมของไขมันในตับเหล่านี้ทำให้เซลล์ของตับมีรูปร่างเปลี่ยนแปลงไป กล่าวคือมีหยอดไขมันทั้งขนาดเล็กและขนาดใหญ่สะสมอยู่ในไข้โลพลาสซีม ซึ่งอาจส่งผลต่อการทำหน้าที่ปกติของเซลล์ได้ เช่นหน้าที่ในการกำจัดสารพิษหรือสารเมตาโบไลต์ต่างๆ ในร่างกาย เป็นต้น มีรายงานว่า การสะสมของไขมันในตับโคลจะสัมพันธ์กับการดกไนโตรเจนและกรดฟอฟฟิค กล่าวคือ โคลที่มีการสะสมของไตรอีซิกลีเซอรอลหลังคลอดมากขึ้นจะมีระดับคลอดถึงการต่อไข่ครั้งแรกมากขึ้น ซึ่งเป็นเหตุให้แม็คโคลด์ที่มีปัญหาพลังงานขาดสมดุลและการสะสมของไขมันในตับมีประสิทธิภาพของระบบสืบพันธุ์ต่ำ นอกจากนี้ยังพบว่าแม็คโคลด์ที่มีปัญหาการสะสมของไขมันในตับยังพบปัญหาความผิดปกติของเมตาโบโลซีมเพิ่มขึ้น เช่น คีโอดีซีส ไนน้ำนม กระเพาะแทบบิด เป็นต้น โรคหรือปัญหาต่างๆ เหล่านี้จะทำให้ผลผลิตน้ำนมของแม็คโคลด์ลง อาจกล่าวได้ว่าปัญหาการสะสมของไขมันในตับเป็นปัญหาที่ส่งผลกระทบรุนแรงในแม็คโคลด์และในที่สุดทำให้เกิดการสูญเสียทางเศรษฐกิจแก่ธุรกิจการเลี้ยงโคนม

การใช้ไฟล์ไฟล์ในโคนมระยะคลอด

เนื่องจากปัญหาพัฒนาขาดสมดุลเป็นปัญหาที่ไม่อาจหลีกเลี่ยงได้ในแม่โกระยะคลอด ดังนั้นการลดความรุนแรงของภาวะพัฒนาขาดสมดุลในระยะนี้จะช่วยทำให้แม่โกระยะคลอดกับปัญหาที่เกิดจากการสะสมของไขมันในตับหรือปัญหาจากโรคหลังคลอดอื่นๆ ตามมา ในทางปฏิบัติวิธีการหนึ่งที่สามารถลดปัญหาการขาดสมดุลของพัฒนาและผลที่เกี่ยวเนื่องกับการสลายไขมันที่มากเกินไปโดยเฉพาะปัญหาการสะสมของไขมันในตับ คือการป้อนสารที่ให้พัฒนาสูงแก่แม่โกระยะที่แม่โกระยะคลอดด้วยการพัฒนาอย่างมาก คือระยะคลอด ซึ่งในระยะนี้แม่โกระยะคลอดจะมีการกินอาหารลดลงอยู่แล้วตามการเปลี่ยนแปลงทางสรีวิทยาและระบบย่อยอาหารในร่างกาย ดังนั้นการป้อนสารอาหารที่ให้พัฒนาเสริมให้แก่แม่โกระยะช่วยให้แม่โกระยะสามารถผ่านระยะวิกฤตนี้ไปได้อย่างราบรื่นและทำให้ผลกระบวนการจากการที่พัฒนาขาดสมดุลในช่วงดังกล่าวไม่รุนแรงนัก จากการวิจัยนี้ชี้ให้เห็นว่าการป้อนไฟล์ไฟล์ในขนาด 400 มิลลิลิตรต่อวันต่อวัน เริ่มประมาณ 7 วันก่อนคลอดจนถึง 7 วันหลังคลอด จะช่วยลดการสลายไขมันจากเนื้อเยื่อไขมันลงได้ ทำให้การสะสมของไตรเอชิกเลิเซอรอลในตับของโคเหล่านั้นลดลง แม้ว่าการป้อนไฟล์ไฟล์ในโกลคลอดจะไม่ได้ช่วยให้ตับของแม่โกระยานั้นมีประสิทธิภาพในการสร้างกลูโคสเพิ่มขึ้นภายหลังคลอดก็ตาม แต่การป้อนไฟล์ไฟล์ในช่วงสั้นๆ นั้นทำให้มีการเปลี่ยนแปลงของสัดส่วนของกรดไขมันที่ระเหยได้ในระเพาะหมัก กล่าวคือการสร้างไฟรพิออกเอดในสัดส่วนที่มากกว่าอะซิเดตและบีวีไทรีด สัดส่วนที่เพิ่มขึ้นนี้ส่งผลให้มีการหลั่งอินซูลินมากขึ้น ระดับอินซูลินที่เพิ่มสูงขึ้นนี้ ทำให้ขบวนการสลายไขมันของเนื้อเยื่อไขมันลดลง ผลกระบวนการต่างๆ อันจะเกิดจากภาวะพัฒนาขาดสมดุล หรือ ปัญหาการสะสมของไขมันในตับก็จะลดลงด้วย อาจกล่าวได้ว่า การป้อนไฟล์ไฟล์ในโกลคลอด จะช่วยลดปัญหาอันอาจเกิดจากพัฒนาขาดสมดุลและการสะสมของไขมันในตับ และยังเป็นโอกาสในการเพิ่มประสิทธิภาพการผลิตของแม่โกระยะ

งานวิจัยในอนาคต

เนื่องจากไฟล์ไฟล์ในโกลคลอด เป็นสารให้พัฒนาที่มีราคาถูก หากมีการนำมาใช้ในแม่โกระยะคลอดเพื่อป้องกันปัญหาพัฒนาขาดสมดุลและปัญหาการสะสมของไขมันในตับแม่โกระยะ ทำการทำงานวิจัยเพิ่มเติมเพื่อศึกษาประสิทธิผลของการใช้ไฟล์ไฟล์ในโกลคลอด โดยพิจารณาด้านคุณภาพของน้ำนมดิบ ประสิทธิภาพของระบบสีบพันธุ์ และ การเกิดโรคหลังคลอดต่างๆ ควบคู่ไปด้วย ทั้งนี้เพื่อให้ได้ข้อมูลครบถ้วนด้าน อันจะนำไปประกอบการพิจารณาใช้สารตัวนี้อย่างกว้างขวางเพื่อให้ได้ประโยชน์สูงสุดสำหรับอุตสาหกรรมการเลี้ยงโคนในประเทศต่อไป

ส่วนที่ 2

Manuscript title : **Effect of Propylene Glycol on Fatty Liver Development and Hepatic Gluconeogenesis In Periparturient Dairy Cows**
(In preparation to submit to the Journal of Dairy Science)

Effect of Propylene Glycol on Fatty Liver Development and Hepatic Gluconeogenesis in Periparturient Dairy Cows

Theera Rukkwamsuk,* Soonthorn Rungruang,† Apassara Choothesa,* and Theo Wensing‡

*Faculty of Veterinary Medicine, Kasetsart University, Kampangsaen, Nakhon-Pathom 73140, Thailand

†Pakthongchai Dairy Farm, Nakhonrachasima, Thailand

‡Utrecht University, Utrecht, The Netherlands

ABSTRACT

Twenty-three Holstein Friesian cows were randomly allocated into 2 groups; a control group of 9 cows and a treated group of 13 cows that were drenched with 400 ml of propylene glycol once daily from 7 (6 ± 4) days before anticipated calving date until 7 days after calving. At -1, 2, and 4 wk from parturition, blood samples were collected from all cows for determination of serum glucose, non-esterified fatty acid, β -hydroxybutyrate, and total cholesterol concentrations; and biopsied liver samples were collected from all cows for determination of triacylglycerol and glycogen concentrations. At all intervals, hepatic fructose 1,6 bisphosphatase activities were also measured. Milk yields were recorded daily. Compared with the concentrations at -1 wk, serum glucose concentrations decreased sharply at 2 and 4 wk, and the concentrations did not differ between the two groups at all intervals. Serum non-esterified fatty acid concentrations did not differ between the two groups at -1 wk, the concentrations at 2 wk increased 269% and 118% for control and treated groups, respectively. The concentrations were higher at 2 and 4 wk for control group than for treated group. Serum β -hydroxybutyrate concentrations did not differ between the two groups at -1 wk, the concentrations increased after calving and were higher for control than for treat group at 2 wk. At all intervals, serum cholesterol concentrations did not differ between groups, the concentrations were higher at 4 wk than at -1 and 2 wk for both groups. Triacylglycerol concentrations in the liver increased 245% at 2 wk in the control group, but only 125% in the treated group. At -1 wk, hepatic triacylglycerol concentrations did not differ between the two groups; however, the concentrations were higher at 2 and 4 wk for the control group than for the treated group. Hepatic glycogen concentrations decreased at 2 wk when compared with the concentrations at -1 wk; however, the concentrations did not differ between the two groups at all intervals. Hepatic fructose 1,6 bisphosphatase activities did not change throughout the experimental period in both groups, and the activities were similar in both groups at all intervals. Average 30-d milk yields were 29.1 ± 5.3 and 30.2 ± 4.1 kg/d for control and treated groups, respectively, and the milk yields did not differ between the two groups of cows. Our results indicated that dairy cows drenched with propylene glycol at a dosage of 400 ml/cow/day could improve negative energy balance and could alleviate a massive mobilization of fat, consequently lower triacylglycerol accumulation in the liver. Though propylene glycol did not seem to increase hepatic gluconeogenesis, it could be suggested that ruminal propionate raises blood insulin concentrations, and this phenomena could inhibit lipolysis in adipose tissue. In conclusion, propylene glycol giving between 7 days before expected calving date and 7 days postpartum could be used in practices to alleviate fatty liver problems and their consequences in postparturient dairy cows.

Key words: dairy cow, triacylglycerol, histopathology, liver

Abbreviation key: NEB = negative energy balance, NEFA = non-esterified fatty acid, TAG = triacylglycerol(s),

INTRODUCTION

Dairy cows usually go into a period of energy shortage or negative energy balance (NEB) during periparturient period because feed intake of the cows during that period cannot always provide sufficient energy to meet their requirements (Rukkwamsuk et al., 1999a). Thus, the energy supply must be derived from lipolysis and proteolysis. Lipolysis in adipose tissue raises the concentration of non-esterified fatty acids (NEFA) in the blood (Rukkwamsuk et al., 1998). The mobilized NEFA are absorbed by the liver, which are metabolized to yield CO_2 and water or are re-esterified to triacylglycerols (TAG) (Bruss, 1993). The TAG are secreted from the liver in the form of very low density lipoproteins. Evidence exist that more intensive lipolysis as occurring in cows with severe NEB, plasma NEFA concentrations increase more substantially, resulting in hepatic lipidosis or fatty liver (Van den Top et al., 1995; Rukkwamsuk et al., 1998; Rukkwamsuk et al., 1999c). It is well documented that negative energy balance or fatty liver has adverse effects on health, production, and reproduction in dairy cows, partly due to some consequences of intensive lipolysis causing fatty liver or hepatic lipidosis (Gerloff et al., 1986; West, 1990; Rukkwamsuk et al., 1999b; Rukkwamsuk et al., 1999d).

Several researches have tried to alleviate the accumulation of TAG in the liver of periparturient dairy cows using different methods. For example, a 14-day intravenous infusion of glucagon decreases the degree of fatty liver in early lactation dairy cows (Hippen et al., 1999) because this hormone, counter-regulatory to insulin, is responsible for the prevention of hypoglycemia. Oral administration of 1-L propylene glycol once daily during the final week of gestation decreases postpartum plasma NEFA and β -hydroxybutyrate concentrations (Studer et al., 1993). In addition, prepartum oral administration of propylene glycol also reduced hepatic triacylglycerol concentrations by 32 and 42% at 1 and 21 d postpartum. The effect of propylene glycol on reducing triacylglycerol accumulation in the liver could be directed to the consistent lower acetate to propionate ratio when feeding propylene glycol (Cozzi et al., 1996), which elicits a greater insulin response. This situation favors adipose tissues for lipogenesis, rather than lipolysis. It is documented that propylene glycol administered as an oral drench or mixed with concentrate and fed separately from forage appeared to be more effective than feeding propylene glycol as part of TMR (Christensen et al., 1997). It is well known that dairy cows already go into a period of NEB few days before calving and extend to few weeks after calving, with the nadir of NEB occurs mostly during the first week of lactation. Therefore, prevention of NEB during that period could be beneficial for the cows in that lipolysis of adipose tissue could be lowered and that fatty liver could be reduced. Moreover, it could be hypothesized that reducing effect of propylene glycol on fatty liver development could strengthen the liver ability to synthesis glucose via stimulating the hepatic gluconeogenic enzyme activities.

The objective of this study was to determine the effect of propylene glycol on fatty liver development and hepatic gluconeogenesis in periparturient dairy cows. The experiment was designed to test the hypothesis that propylene glycol will alleviate triacylglycerol accumulation, thereby increasing hepatic gluconeogenesis.

MATERIALS AND METHODS

Farm, Animals and Diets

The study was conducted in a commercial dairy farm at Pakthongchai District, Nakornrachasima Province, Thailand. The farm consisted of 503 lactating cows, 171 dry cows, and 414 replacement calves and heifers. The average milk production of the farm was 20.5 kg/cow/d. The close-up and lactating cows were kept in a free-stall housing with an evaporative cooling system, which controls the inside temperature between 25-28 °C. All cows in the evaporating barn were fed ad libitum with total mixed rations as shown in Table 1.

Twenty-three healthy, pregnant, multiparous Holstein Friesian cows were randomly selected; mean age was 3.0 yr (SD = 0.3), mean 305-d cumulative milk yield was 6670 kg (SD = 680) at the start of the experiment.

Table 1. Composition of total mixed rations (TMR) as fed basis.

Ingredient	Dry period	Transition period		Lactating period
		kg as fed		
PCL-3 ¹	1.3
PCL-P ²	...	2.0		...
PCL-F ³		3.8
Wet brewer grain	8.0	7.0		10.0
Corn silage	8.0	12.5		12.5
Peanut hay	2.0	6.0		6.0
Rice straw	3.5
Cassava chips	...	1.0		1.3
Whole cotton seed	...	0.6		2.0
Ground corn		1.0
Molasses	1.0	0.5		0.5
Premixes	0.5	0.5		1.0

¹Consisting of 33.0% soybean meal, 27% canola meal, 22.5% wheat bran, 11% dried brewer grain, 4.1% limestone, and 2.4% salts.

²Consisting of 54.5% soybean meal, 15.0% canola meal, 13.0% dried brewer grain, 11.0% corn gluten meal, 4.7% salts, and 1.8% biophos.

³Consisting of 50.0% soybean meal, 27.0% corn gluten meal, 14.0% canola meal, 5.5% dried brewer grain, 1.9% salts, and 1.6% limestone.

Sampling and Assay Procedures

The liver and bloods were collected about 2 wk (10 ± 5 d) before the anticipated calving date and at 2 (10 ± 3 d) and 4 (28 ± 3 d) wk after parturition.

Liver biopsy was obtained using the percutaneous biopsy method as described by Van den Top (1995). During collection, the liver samples were placed on filter paper, were removed from any connective tissue and blood clots, and were divided into two parts. The first part was placed in a tube with 0.5 ml of 20% KOH for determination of glycogen concentrations. The second part was placed in a tube with physiological saline and was kept on ice for determination of TAG; thereafter in the laboratory, these samples were dried on the filter paper and any remaining connective

tissue or blood clots were removed. The samples were weighed in separated tubes for determination of TAG and FBPase (EC 3.1.3.11) activity, and were kept at -20°C until analysis. For determination of FBPase activity, the liver samples were homogenated in 9 volumes of a buffer (pH 8.0) containing 25 mM HEPES and 5 mM β -mercapto-ethanol. The homogenate was centrifuged at 25000 \times g for 10 min. The supernatant was used for analysis of enzyme activity. Liver TAG concentrations were assayed by spectrophotometry with the use of a commercial kit (Triglyceride GPO-PAP; CLASS-1 Laboratories Co., Ltd., Bangkok, Thailand). Liver glycogen concentrations were determined as described by Van den Top et al. (1994). The activity of FBPase was determined spectrophotometrically (Ulm et al., 1975).

Blood samples were collected from jugular veins and allowed to clot at room temperature. Serum samples were harvested and stored at -20°C until analyses. Concentrations of serum glucose (Glucose GOD-PAP, CLASS-1 Laboratories Co., Ltd., Bangkok, Thailand), NEFA (NEFA C, Wako Pure Chemical Industries Ltd., Osaka, Japan), β -hydroxybutyrate (RB 1007, Randox Laboratories, San Diego, CA), and total cholesterol (CHOD-PAP, CLASS-1 Laboratories Co., Ltd., Bangkok, Thailand) were measured enzymatically with commercially available kits as indicated.

Statistical Analyses

Data were statistically analyzed using an SPSS computer program (SPSS Advance Statistic™, 1994). Data were tested for normal distribution using the Kolmogorov-Smirnov test, and the homogeneity of variances was verified using the Levene's test. Normally distributed data were subject to ANOVA using groups as a fixed main effect and sampling days as a repeated measure. Within group, comparison of data between sampling days was performed using the paired Student *t* test. Data of cows between groups were compared using Student *t* test. The two-sided level of statistical significance was preset at $P \leq 0.05$.

RESULTS AND DISCUSSION

Milk yield

All cows calved normally. During the first 30 days of lactation, average milk yields were 29.1 ± 5.3 and 30.2 ± 4.1 kg/d for control and treated groups, respectively, and the milk yields did not differ between the two groups of cows (Figure 1). This observation was in agreement with other studies (Miyoshi et al., 2001; Studer et al., 1993). The same result is also reported when propylene glycol was used in the mid-lactating cows (Cozzi et al., 1996). It could be suggested that propylene glycol drenching once daily at the dosage of 400 ml per cow during the period around calving did not increase milk yield.

Serum glucose, NEFA, β -hydroxybutyrate, and cholesterol

Mean concentrations of serum glucose, NEFA, β -hydroxybutyrate and cholesterol is demonstrated in Figure 2-5. Serum glucose concentrations at -1 wk from parturition did not differ between groups, and the concentrations were $54.2 (\pm 6.2)$ and $56.9 (\pm 8.6)$ mg/dl in control and in treated cows, respectively (Figure 2). Serum glucose concentrations for the two groups decreased after calving. At 2 wk

postpartum, the concentrations were 37.7 (± 4.3) and 31.4 (± 13.5) mg/dl in control and in treated cows, respectively. The concentrations did not differ between the two groups at all intervals. Because the blood sample was not collected during the drenching period, the glucose concentrations in our study did not show any differences between the two groups. However, it is documented that plasma glucose concentrations are increased after drenching with propylene glycol (Miyoshi et al., 2001). It could be suggested that during the first week of lactation when cows are likely to suffer from hypoglycemia and hypoinsulinemia, propylene glycol administered orally to the cows could improve this situation by increasing the proportion of ruminal propionate (Grummer et al., 1994), resulting in an elevation of blood insulin concentrations (Miyoshi et al., 2001). The increased insulin concentrations in the blood results in a lower lipolytic activity as observed in this study that cows drenched with propylene glycol had lower serum NEFA concentrations at either 2 or 4 wks after parturition (Figure 3). The serum NEFA concentrations were similar in both groups at -1 wk from parturition. The concentrations increased after parturition in both groups, the increase were 269% and 118% in control and treated cows, respectively. Results also showed that control cows had greater serum NEFA concentrations at 2 and 4 wks from parturition. The increase of serum NEFA concentrations corresponded well with the results of serum β -hydroxybutyrate concentrations (Figure 4). Our results confirm again that increased NEFA concentrations in the blood predispose a cow to clinical ketosis (Rukkwamsuk et al., 1999d). Therefore, propylene glycol is an efficient compound to treat ketosis in postparturient dairy cows.

Serum cholesterol concentrations did not differ between the two groups at any intervals (Figure 5). However, for both groups, the concentrations were higher at 4 wk than at either -1 wk or 2 wk from parturition. This observation was similar to previous study (Van den Top et al., 1995).

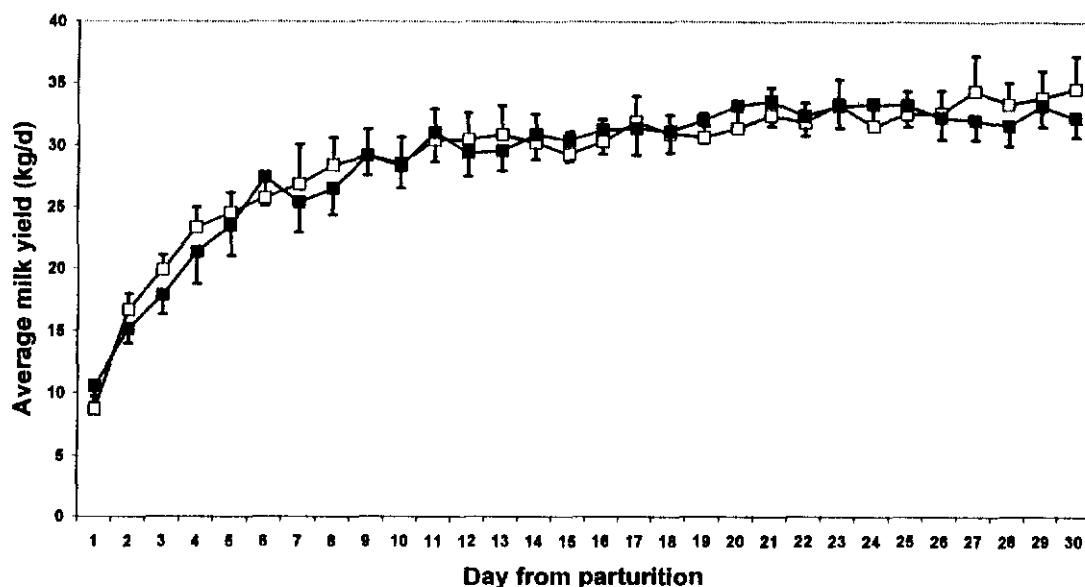


Figure 1. Comparison of milk yield during the first 30 d of lactation between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM).

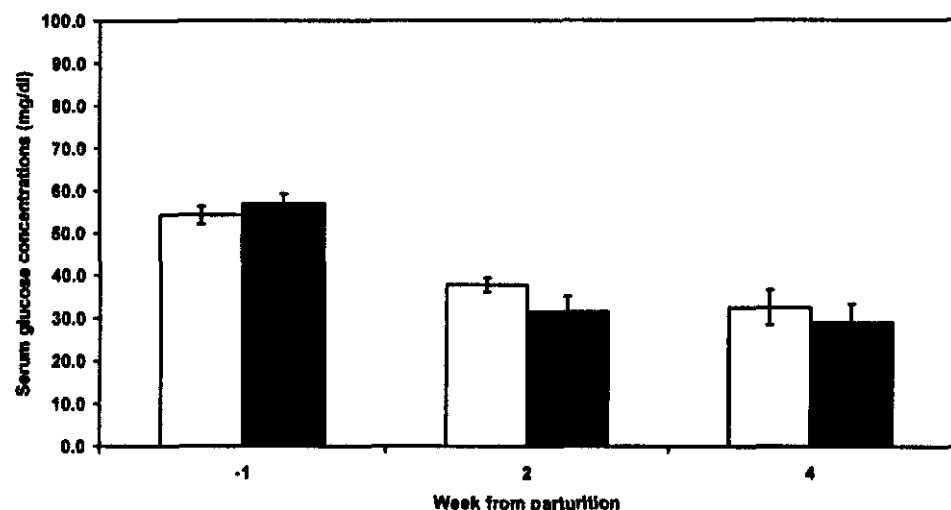


Figure 2. Comparison of glucose concentrations in the serum measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM).

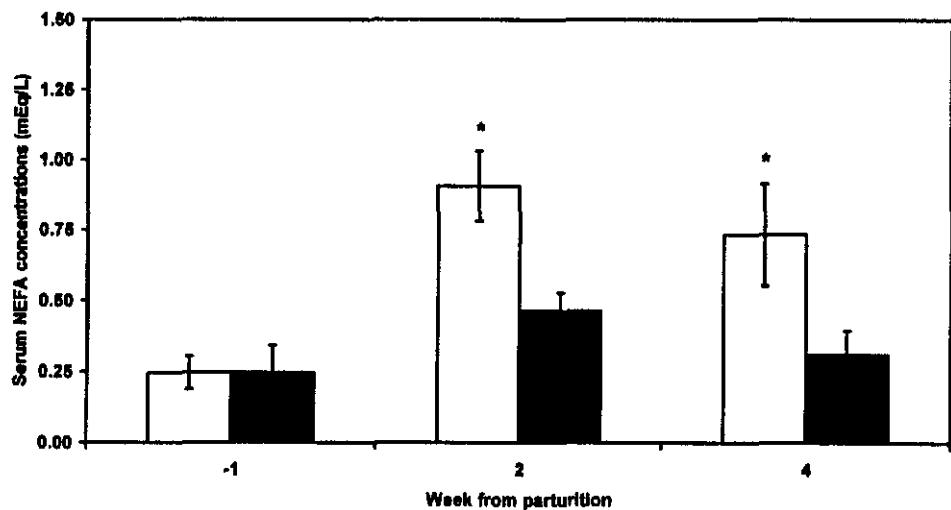


Figure 3. Comparison of non-esterified fatty acids (NEFA) concentrations in the serum measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM). Asterisks indicate the time during which the different in mean concentrations of NEFA in the serum was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

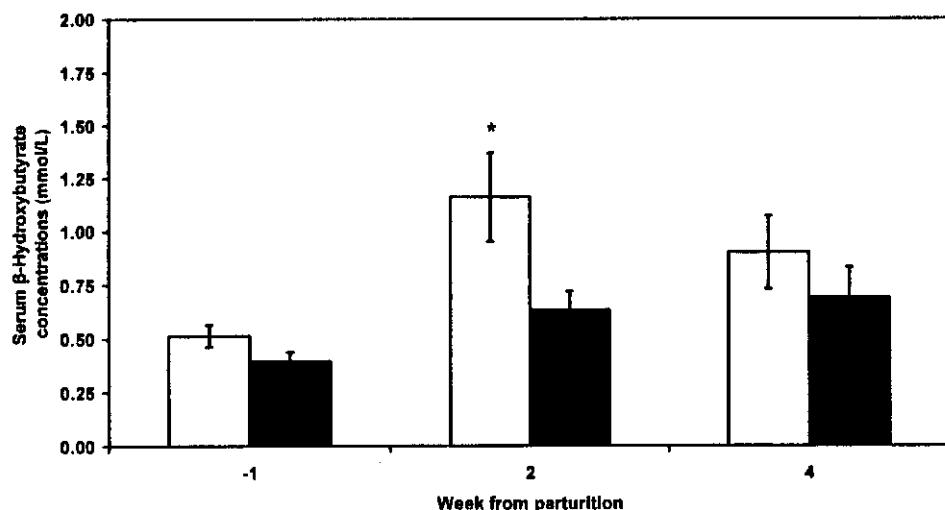


Figure 4. Comparison of β -hydroxybutyrate concentrations in the serum measured before and after parturition between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM). Asterisks indicate the time during which the difference in mean concentrations of β -hydroxybutyrate in the serum was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

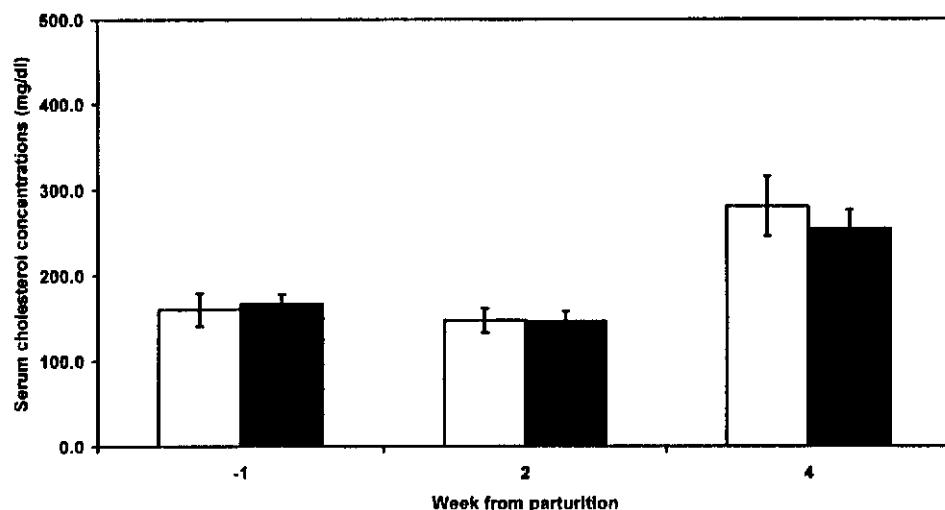


Figure 5. Comparison of total cholesterol concentrations in the serum measured before and after parturition between control cows (□; $n = 9$) and cows that were drenched with propylene glycol (■; $n = 14$). Data are means (\pm SEM).

Liver Triacylglycerols, glycogen and FBPase activity

Mean concentrations of TAG and glycogen in the liver of control and treated cows is presented in Figure 6-7. At -1 wk from parturition, the hepatic TAG concentrations did not differ between the two groups, the concentration increased after parturition (Figure 6). At 2 wk from parturition, the concentrations were 245% and 125% as much as the concentrations before parturition. The concentrations at either 2 wk or 4 wk were greater for control than for treated cows. This result was due

to the fact that cows drenching with propylene glycol had significantly lower serum NEFA concentrations (Figure 3). Increased NEFA concentrations in the circulation is strongly associated with an increase of TAG accumulation in the liver (Rukkwamsuk et al., 1999a; 1999c). Mean glycogen concentration in the liver did not differ between groups at all intervals (Figure 7). Compared with the concentrations at -1 wk, the concentrations decreased after parturition and remained lower concentrations during the entire experimental period. Although, propylene glycol is a gluconeogenic compound, drenching with this compound during the periparturient period did not stimulate glycogen storage in the liver, possibly due to the fact that cows during the early month of lactation require a greater energy for increasing milk production. Therefore, most gluconeogenic precursors were used to produce glucose available for the requirements, rather than converted to glycogen.

At -1 wk from parturition, the activity of FBPase did not differ between the two groups (Figure 8). The same observation occurred at 2 wk and 4 wk from parturition. Although cows drenching with propylene glycol had an alleviation of serum NEFA concentrations and had a lower TAG accumulation in the liver, the activity of FBPase did not show any improvement when compared to those activity in control cows. As in previous study (Rukkwamsuk et al., 1999b), it is found that cows with greater amount of TAG in the liver tended to have a lower activity of FBPase. The difference between these results could be due to the difference in hepatic triacylglycerol concentrations, which were about 2 times as high as the concentrations observed in this study.

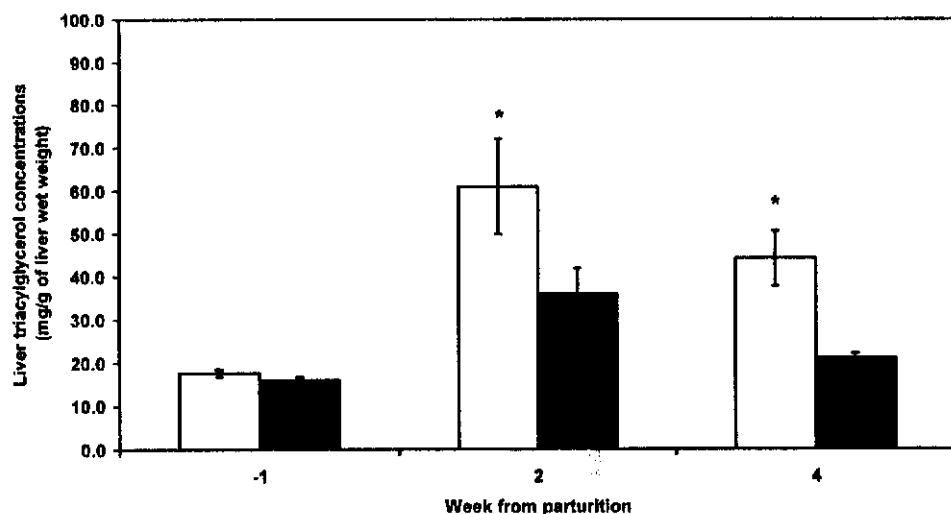


Figure 6. Comparison of triacylglycerol concentrations in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM). Asterisks indicate the time during which the different in mean concentrations of triacylglycerol in the liver was significant ($P \leq 0.05$) between control cows and cows drenched with propylene glycol.

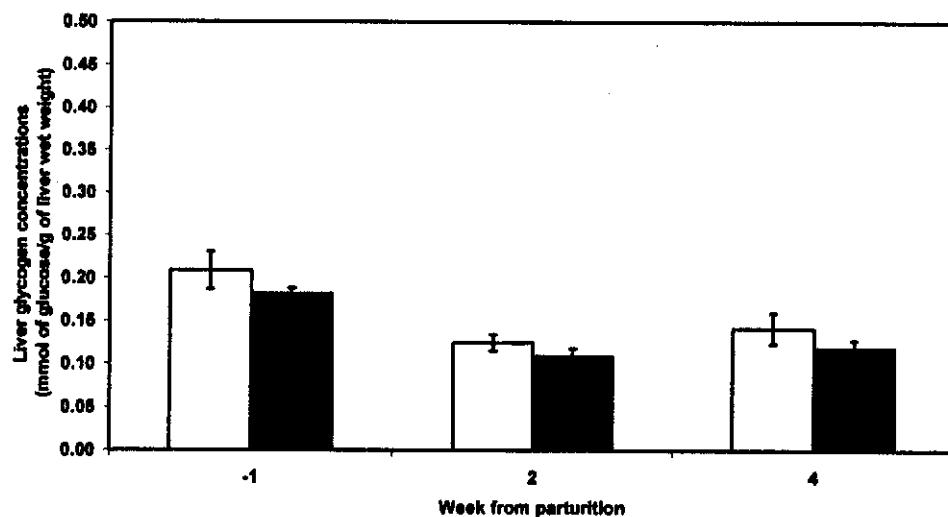


Figure 7. Comparison of glycogen concentrations in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM).

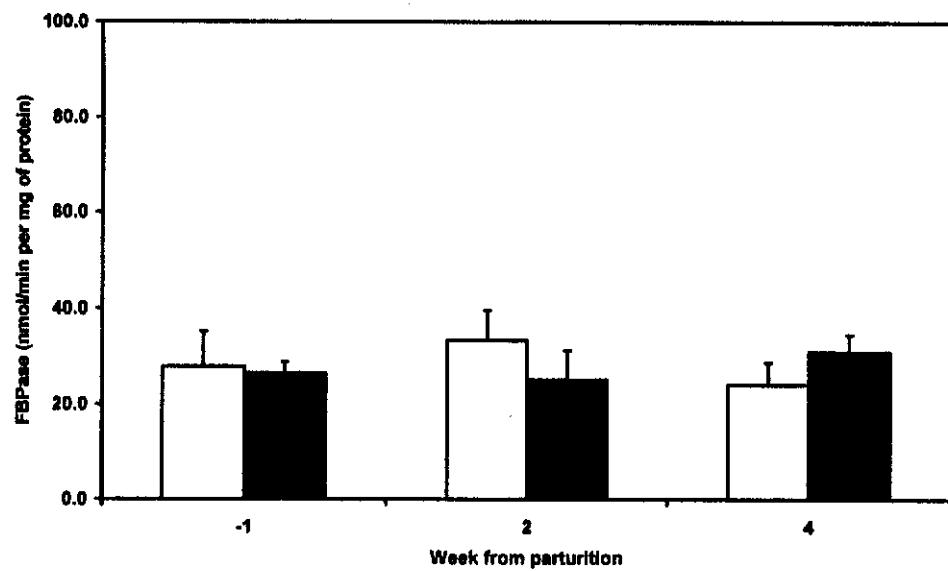


Figure 8. Comparison of activities of fructose 1,6 bisphosphatase (FBPase) in the liver measured before and after parturition between control cows (□; n = 9) and cows that were drenched with propylene glycol (■; n = 14). Data are means (\pm SEM).

CONCLUSIONS

Drenching propylene glycol to a cow from 7 d before expected calving to 7 d after calving could alleviate fat mobilization from adipose tissue at least during the first month of lactation. As a result, the cows drenched with propylene glycol had a remarkable reduction in TAG accumulation in the liver. In this study, the positive carry-over effect of propylene glycol on the increase of FBPase activity was not found. The result may be related to the degree of the TAG accumulation. Although propylene glycol did not show any positive effect on milk production, the effect on alleviation of lipolysis and fatty liver development could be worthwhile to use this compound in the periparturient dairy cows. However, additional research is still required to determine the effect of propylene glycol on the milk composition, reproduction as well as the health of periparturient dairy cows, particularly in tropical countries.

REFERENCES

Bruss, M. L. 1993. Metabolic fatty liver of ruminants. Pages 421-422 in Advances in Veterinary Science and Comparative Medicine. C. E. Cornelius, ed. Academic Press Inc., San Diego.

Cozzi, G., P. Berzaghi, F. Gottardo, G. Gabai, and I. Andrigetto. 1996. Effects of feeding prolylene glycol to mid-lactating dairy cows. *Anim. Feed Sci. Tech.* 64:43-51.

Cirstensen, J. O., R. R. Grummer, F. E. Rasmussen, and S. J. Bertics. 1997. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. *J. Dairy Sci.* 80:563-568.

Gerloff, B. J., T. H. Herdt, and R. S. Emery. 1986. Relationship of hepatic lipidosis to health and performance in dairy cattle. *J. +Am. Vet. Med. Assoc.* 188:845-850.

Grummer, R. R., J. C. Winkler, S. J. Bertics, and V. A. Studer. 1994. Effect of propylene glycol dosage during feed restriction on metabolites in blood of peripartum Holstein heifers. *J. Dairy Sci.* 77:3618-3623.

Hippen, A. R., P. She, J. W. Young, D. C. Beitz, G. L. Lindberg, L. F. Richardson, and R. W. Tucker. 1999. Alleviation of fatty liver in Dairy Cows with 14-day intravenous infusions of glucagons. *J. Dairy Sci.* 82:1139-1152.

Miyoshi, S., J. L. Pate, and D. L. Palmquist. 2001. Effects of propylene glycol drenching on energy balance, plasma glucose, plasma insulin, ovarian function and conception in dairy cows. *Anim. Reprod. Sci.* 68:29-43.

Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1998. Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the periparturient period. *J. Dairy Sci.* 81:2904-2911.

Rukkwamsuk, T., T.A.M. Kruip, G. A. Meijer, and T. Wensing. 1999a. Hepatic fatty acid composition in periparturient dairy cows with fatty liver induced by intake of a high energy diet in the dry period. *J. Dairy Sci.* 82:280-287.

Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1999b. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows. *J. Dairy Sci.* 82:500-505.

Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1999c. Effect of overfeeding during the dry period on the rate of esterification in adipose tissue of dairy cows during the periparturient period. *J. Dairy Sci.* 82:1164-1169.

Rukkwamsuk, T., T. Wensing, and H. J. Breukink. 1999d. Clinical-biochemical observations in dairy cows experimentally induced with fatty liver. Pages 339-343 in Proc. 25th Ann. Conf. Thai Vet. Med. Assoc., Bangkok, SPSS Advance Statistic™ Version 6.1. 1994. SPSS Inc., Chicago, IL.

Studer, V. A., R. R. Grummer, and S. J. Bertics. 1993. Effect of prepartum prolylene glycol administration on periparturient fatty liver in dairy cows. *J. Dairy Sci.* 76:2931-2939.

Ulm, E. H., B. M. Pogell, M. M. deMaine, C. B. Libby, and S. J. Benkovic. 1975 Fructose-1,6-bisphosphatase from rabbit liver. Pages 369-374 in *Methods in Enzymology*, Vol. 42. W. A. Wood, ed. Acad. Press, New York, NY

Van den Top, A. M., T. Wensing, and A. C. Beynen. 1994. The influence of calcium palmitate and oleate feeding on hepatic lipid metabolism in dry goats. *J. Anim. Physiol. Anim. Nutr.* 72:44-55.

Van den Top, A. M., T. Wensing, M.J.H. Geelen, G. H. Wentink, A. T. van't Klooster, and A. C. Beynen. 1995. Time trends of plasma lipids and hepatic triacylglycerol synthesizing enzymes during postpartum fatty liver development in dairy cows with unlimited access to feed during the dry period. *J. Dairy Sci.* 78:2208-2220.

West, H. J. 1990. Effect on liver function of acetonemia and the fat cow syndrome in cattle. *Res. Vet. Sci.* 48:221-227.