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On the improvement of the anisostuctural constitutive model for
describing deformation behaviour of glassy polymers
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C. Paul Buckley
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1. Abstract

The ultimate challenge in constitutive modelling of glassy polymers is to combine all the
important aspects of deformation of polymer glasses in a single constitutive model and thus be
able to describe the behaviour of a matcrial in the widest range, and under the various modes of

loading and boundary conditions.

A number of models have been developed recently, attempting to fulfil such need.
However a single constitutive model which can show accurately, the nonlinear viscoelastic
response under complex loading history, especially during unloading which polymers exhibit
‘enhanced recorvery’, yield drop and strain hardening behaviour, has never been reported before
in the literature. The aim of the work is to extend the anisostructural model in the form
developed earlier in the work of Chaikittiratana [2000] further such that it can describe more

realistic yield behaviour and to include the feature of strain hardening after yield

2. Introduction

Accurate stress-strain analysis of glassy engineering polymers becomes increasingly important as

these polymers are expected to perform as reliably and predictably in various loading
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applications. However these materials pose a particular challenge, in view of the rich variety of
nonlinear viscoelastic features seen in their constitutive responses. To achieve trustworthy stress-
strain analysis, a nonlinear viscoelastic constitutive model capable of faithfully describing the
response to time-dependent, multiaxial stress histories is required.

Polymers are viscoelastic materials displaying time dependent but recoverable
deformation. Unlike metals, significant viscoelastic behaviour of polymers, such as creep and
stress relaxation can be observed at all temperatures and is dependent on the history of stress,
strain, and temperature in a very complex manner.

In load-bearing applications polymer parts are often subjected to multiaxial and complex
stress histories, including loading and unloading, and the deformations are usually in non-linear
viscoelastic regime. However, non-linear viscoelastic stress-strain analysis for polymers, requires
accurate constitutive modelling to describe precisely the response to time-dependent, multiaxial
stress histories. To date, the subject of the modelling of nonlinear viscoelastic behaviour remains
a very active field of research.

A number of constitutive models have been developed to describe the nonlinear
viscoelastic behaviour of polymers. Most of the constitutive models have been aimed at different
aspects of the observations, such as the yield phenomenon, creep, stress relaxation, rate
dependency during monotonic loading, strain softening and strain hardening. Frequently one
model deals with only one aspect of the behaviour and other aspects are not considered. Few
models attempted to predict the nonlinear viscoelastic behaviour of various deformation modes.

In the work of Chaikittiratana [2000], a new improved mathematical constitutive model
was proposed. The new model was based on the existing 3-D isostruct-wral constitutive model by

Dooling et al [1998] which assumed that the physical state of the glass structure are not changed
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during deformation and the non-linearity simply arises from the effect of the local stress raising
the local free energyv. The isostructural model can describe tension—torsion creep but can not
capture recovery after unload and strain softening. In the improved model, the isostructural
assumption was opted out and replaced with the anisostructural assumption which assumed that
the physical state of glassy structure as notified by a fictive temperature 7y varies with the
effective viscous strain in a manner which 7¢ is initially increasing with the effective viscous
strain and then reaches a saturation. By assuming that each relaxation time has its own fictive
temperature changing with the local effective viscous strain in the environment of that relaxation
time, it was found that the improved modei could capture correctly the feature of the ‘enhanced
recovery’ commonly observed in glassy polymers and displayed feature of strain softening.

The work presented here describes how the anisostructural model developed in the work
of Chaikittiratana [2000] can be improved further such that the feature of strain hardening after

yield and realistic yield behaviour can be captured.
3. The anisostructural model

The basis of the anisostructural model developed in the work of Chaikittiratana [2000] is the
model proposed for isotropic glassy polymers below the glass transition by Dooling, Buckley
and Hinduja[1998] (DBH), itself a small-strain spectral generalization of the Glass-Rubber
model of Buckley and Jones[1995]. According to DBH, the macroscopic stress o is obtained

from a set of N+1 tensor state variables

N
b
=3 v ot vo 1
=1
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representing contributions from primary and secondary bond-stretching in N different

environments within the glass (o';) and from conformational entropy change (s“). Each

weighting factor v; (which may be considered the volume fraction associated with environment j)

is associated instantaneously with a shear relaxation time 7. Stress and deformation are

separated into deviatoric (nonlinear viscoelastic) and hydrostatic (linear elastic) parts, with the

deviatoric component of & evolving according to

$) +—=2G" (2)

where s and e are deviatoric stress and strain respectively. G’ is the corresponding shear
modulus. Nonlinearity enters the original (isostructural) DBH model through stress-dependence
of the relaxation times, expected from the nonlinear dependence of transition rates on activation
barrier height. However, in view of the evidence for strain-induced structural rejuvenation, we
now generalize the model to the anisostructural case. For consistency with the extensive
literature on structural evolution in glasses, we represent the glass structure at any instant by
Tool’s fictive temperature Ty — temperature at which it would possess the same relaxation time at

equilibrium. The j-th relaxation time is now related to its value 7, in the linear viscoelastic

limit, through shift factors a, ; and a, ; respectively

J

—Vp 0':1
. EXp
s i _ViSe, RT cexp| —C € @)
Ji o.j aTr-J o'j ’ aa'-j - ZRT V Sb . ’ (er.J ]-;‘J HTaa 1}0 _T°°
sinh | ==/
2RT
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b b . .
where o,,, 5, ; are mean stress and j-th octahedral shear stress respectively, V.,V ,C and T, are

material constants and T, is the initial fictive temperature. Evidence from post-yield strain-

softening shows that structural rejuvenation saturates. A simple two-parameter function with this

feature was used therefore to describe the dependence of T; , on deviatoric viscous strain:

£’
I =T+ (Tie = Ti) | 1 —exp| —— where &= %(8‘.’ :e‘.’) 4)
&

where T,

feo

is the (material-specific) saturation fictive temperature and &; is another material
constant, and & is the tensor of j-th viscous strain. The reader should note that, in the new

spectral version of the model, the local (j-th) viscous strain determines a; ;. This was found to

J
be a necessary condition for correct replication of the recovery anomaly. A notable feature of the

model is its small number of adjustable parameters. For a polymer with given initial structure

T;,, there are just four adjustable parameters to capture the entire range of deviations from linear

viscoelasticity (Vs,Vp,T}m,eg ).

The new constitutive model was applied to well-aged, isotropic cast poly(methyl methacrylate)
(PMMA) at 70°C. The material response was fully characterized using a programme of tensile
creep and stress relaxation tests, and constant extension-rate tension and compression tests, all
executed with a standard Instron 4204 testing machine and Instron 3119 Series environmental
chamber. Specimen deformation was measured using Instron extensometers: model 2620-603 for
creep and stress relaxation experiments and model 2620-604 for constant extension-rate tests. A
discrete shear relaxation spectrum was fitted to long-term linear viscoelastic creep data, and then

the nonlinearity parameters were fitted to other data by an iterative manual routine. The
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“universal” value of 1.3 [Bauwens-Crowet 1973] was assumed for the ratio of compression to

tension yield stress, and 7,, was taken to be 378K.

Illustrations of the fit between model response and creep and recovery experiments well
into tJ-1e non-linear viscoelastic region are shown in Figure 1, for different creep stresses. The
model also correctly describes post-yield strain-softening in compression, as can be seen in
Figure 2. However it under-predicts the yield strain, and experimental data in compression show
more gradual yield than the model. It may be scen that the model over-predicts the apparent yield
stress in tension — this is likely to be an artifact caused by crazing intervening in the experimental
data.

The stress-state dependence of the model was tested by simulating a program of biaxial

(tension+shear) non-linear viscoelastic creep and recovery experiments, exploring dependence
. : , 1 .
on the stress invanants I, =1r¢ and 7, = —2-5 :s . The predicted recovery anomaly was found to

increase with I, but not with / , in accord with experiment for PMMA [Resen 1988]. Figure 3
illustrates this for the predicted 100 s shear creep compliance as obtained from simulations of

creep and recovery, J.(100 s) and J,(100 s) respectively, for constant I, and varying I, .

4. Implementation of strain hardardening behaviour

The strain-hardening behavior in glassy polymers is generally attributed to rubber-like entropic
elasticity, arising from the reducing entropy of aligning mobile chains. The strain hardening
behaviour is implemented in to the current form of the anisostructure model for PMMA. In the

present work, we follow usual practice to invoke a conformational entropy function when

calculating this part of the stress. The deviatoric component conformational stress S,°can be

A6



obtained directly from differentiation of the conformational free energy density A° which is
described in terms of the deviatoric principal network stretches A (i=1..3). There are many
suggestions have been made for A°. In this work we employed the energy function used is that
derived by Edwards and Vilgis [1986]. Thus, now the conformational contribution to the

principal components of deviatoric stress S, can be expressed as:

. = OAS )
S =4 — =1.3 5
S = Ao (i=1.3) (5)

i

where ;

NAT| (i —a®) 5o Zj:"(l"'ﬂzz)*“l“[l—azizzj 6)

A = 3
2 l—a?> 47
i=1

N; is the number density of slip-links (entanglements), 7 is parameter specifying the looseness

of the entanglements, and « is a measure of the inextensibility of the entanglement network. The

Cauchy stress tensor can be fully defined by

6=S"+S8+0,1 ; o, =K¢ (N

m

K is bulk modulus and ¢ is dilation .Under the assumption of no chemical cross-links, the
corresponding parameters are the slip-link (entanglement) density Ns, the inextensibility factor
@, and the slip-link mobility factor 7. It was found that the best fit can be obtained with 7=0.0,
a =0.47 and N, =3.0 x 10%, Figure 4 shows the model simulation together with the experimental
data. Although a perfect fit can not be obtained, a uniaxial compressive strain hardening
behaviour can be captured by the model moderately well. However, slight increase in the

magnitude of stress drop can be observed due to the strain hardening effect.
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5. Yield peak broadening

Although the new anisostructural constitutive model with local 7rassumption could give a good
description of 1000 s creep and recovery in the non-linear viscoelastic regime, but the model
predic.ted smaller strain at yield and a more abrupt yield peak than the experimental data. This
suggests that some description in the constitutive model relating to yielding behaviour needs
improvement.

By observing a piot of stress and strain of deformation under constant strain rate, initially
the plot shows straight line reflecting linear elastic-like response. Then the slope of the plot
begins to decrease gradually but sufficiently noticeable at a stress level approximated to half of
the yield peak. This suggests that at this stress level, some portions in the material have already
accessed to flowing process by some extent. In the constitutive model, the parameters which
govern stress dependent of the viscoelasticity are the activation volumes V; and V,. The broad
yield peak suggests that the stress dependent in flowing behaviour is different for different
relaxing elements in the material. Thus it implies that the activation volumes are in fact varies
across the discrete relaxation spectrum. It can be imagined that there are many possible
molecular motions in the polymer system that can be activated each with its own activation
parameters. As the temperature or strain rate varies, one or another of these mechanism may be
dominant over the others.

The possibility of the variation of activation across the relaxation spectrum which was
neglected previously in the model was re-included. In the work of Dooling and Buckley et al.
[19981 the variation of the activation volume was assumed to varied linearly with the relaxation
spectrum in the same manner of that AS and AH. The variation was assumed such that the longer

relaxation times posses larger activation volumes, thus the parameter 8 was chosen as a possible
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number. It is to be noted that 3 is only applied to V;. However, when apply positive number of 3
into the newly developed model, it did not improve the model’s ability to capture gradual
yielding, but a small negative values can. This is to be noted also that in the work of Dooling and
Buckley et al.[1998], the relaxation spectrum used in that work is cut off at 10’ , thus it
unavoidably creates unrealistic non-linear deformation at high stresses and long time. This
forced them to opt for the larger activation volumes for long relaxation times in order to
reproduce the experimental data reported in their work. The negative values of 3 means that at
smaller relaxation times, the quickest to be activated portions in material, have larger activation
volumes indicating that they require smaller stress than the other portions to make sufficient rate
of flow comparable to that of the imposed strain rate. Those who have large relaxation times will
have smaller activation volumes, but they are those who carry most of the applied stress. Thus, in
those portions, the flow process can occur with comparable rate with smaller activation volumes.
By looking at the definition of the shear activation volume following Eyring et. AlL.[1945] in

Buckley and Jones [1995]

v
V. = %Aym (&)

The activation event is taken to be a discrete viscous deformation of volume V of matenal
obeying equation (viscous equation), the work AW done by the stress system modifying the
energy barrier can be expressed in terms of the shear stress and increment of viscous shear strain

as AW =V.z°% | From this definition, there is a possibility that in the longer relaxation times

5" oct
elements, smaller shear strain can take place due to close packing around those portions,
aithough the volume V of material involving the activation process could be larger. Thus it is

possible that V; are smaller for larger relaxation times.
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By manual iteration following the similar process described previously. the initial best fit

of the model to the constant strain rate experiment data was achieved by having the parameters

as follows; V"= 0.0033 m*mol, V, = 0.00033 m*/mol, B=-0.005, Tp= 377.5 K, T,, = 384 K and

£, = 0.00364. The comparison of the simulation and the constant strain rate experimental data is

shown in Figure 5.

It can be seen from Figure 5 that now the anisostructure model with vanation of shear
activation volumes can correctly describe a yield stress, yield drop in compression and also
capable of reproducing the feature of gradual yield. The model over-predicts the apparent yield
stress in tension. However this is likely to be an artefact of crazing intervening in the
experimental case as mentioned before.

The simulations of a series of creep and recovery experiments well into the non-linear
viscoelastic region are shown together with the experiment data in Figure 6, for different creep
stresses. It can be seen from the figure that the model can still capture very well the deformation

behaviour of creep and recovery.
6. Conclusion

The features of creep-recovery, stress relaxation and yield drop in a glassy polymer can be
captured with a anisostructural variant of the DBH model, where the fictive temperature varies

with local viscous strain. The simulation of creep and recovery under different stress states,

shows the same trends as that observed experimentally by Resen[1988].

However, the simulation of constant strain rate history predicts earlier yield and gives
unrealistic abrupt yield peak. It was discovered that the broader yield peak, and hence more

realistic yield behaviour, can be brought about by letiing the shear activation volumes to vary
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linearly across the discrete relaxation spectrum such that shorter relaxation times are associated
with larger shear activation volumes. Furthermore, with this variation of shear activation
volumes, the features of creep-recovery, especially the ‘enhanced recovery’, effects are still in
accord with the experimental data performed by the author [2000]. Although the simulations of
creep and recovery experiments are slightly poorer than with the constant activation volumes,

this deficiency can certainly be improved by finer adjustment of the non-linear parameters.

The strain hardening feature was successfully implemented in to the existing

anisostructural! model employing Edwards-Vilgis strain energy function.

The constitutive model can now capture, the non-linear viscoelastic response under
complex loading history, including unloading which polymers exhibit ‘enhanced recorvery’,
yield drop and strain hardening behaviour. These features has never been reported before for a

unified constitutive model in the literature.

7. Reference

Bauwens-Crowet, C. [1973]. Journal of materials science 8: 968.
Buckey, C.P. and D.C. Jones [1995]. Polymer 36: 3301.

Chaikittiratana, A. [2000]. Non-linear Viscoelastic Strain Analysis. D.Phil. Thesis.
Departrent of Engineering Science. University of Oxford. Oxford.

Dooling, P.J. and C.P. Buckley [1998]. Polymer Engineering and Science. 38:892.
Edwards, S. F. and T.H. Vilgis [1986]. Polymer, 27: 483
Halsey, G., H.J. White and H. Eyring [1945]. Textile Research Journal 15: 295.

Resen, A. S. [1988]. Biaxial creep of plastics. Ph.D., Department of Mechanical Engineering.
Manchester, UMIST.

All



0.01

0.009 4

18.65 MPa

0.008 A

0.007 4

0.006 ¢

tad

0.005
j 11 55 MPa

Straln

0004 4

F-Y

0 003 4

0.002 -

0.001 - .

X
:k%h X .

0 #— — v T r
0 500 1000 1500 2000

Time (s)

Figure 1 Simulation of a series of creep and recovery data using the new anisostructural model
for 1,000 seconds creep.

8.E+7

7.E47 4

6.E47 - Compression /
"“““-—,1 B .

S.E+7 A

4. E+7

Stress (Pa)

Tension — Experimental data

3.B+7 A — Simulation

2.E+7 ﬁ

1.E+7 +

O‘E"'o LS ¥ L] L T T T T T L] T T T T T
000 0.02 004 Q.06 0.08 010 0.12 0.14 016 018 020 022 024 026 0.28 0.30
Strain applied

gure 2 Simulation (anisostructural model) of tensile and compressive at a constant strain rate
of 1.2 x 107 /s,

Al2



1.4

1.35 ithe
09--
13 7 N=55MPa
Q»..
1.25 ’-- .m
a 1.2/ g Lar
g K ---'
- 'o. --.’n
115 |
¢ .= e ee@ -~ Jr(100)
11 | ¥ CooB. .. Je(100)
1.05
1 ‘ .
0 50 100 150 200 250
12'(MPa)
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hardening implemented) and compressive experimental data at strain rate = 1.2x 10°s.

Al3



8.0E+07

7.0E+07
6.0E+07
5.0E+07

406407 -

Stress (MPa)

3.08407 -

2.0E407 1

==~ Experimental data — girrulation

1.0E+07 |

0.08+00

0 0.02 0.04 0.06 0.08 0.1 012 0.14 016 0.18 0.2
Strain

Figure 5 Simulation of tensile and compressive tests at a constant strain rate of 1.2 x 10 /s
with new optimised parameters (V, decreasing linearly across the relaxation )

0.01

0.009 -
18 66 MPa
0.008 1
0.007 -

0.006 o

K
0.005 W

11.55 MPa

Strain

0.004 -
0.003 J
0.002 -

0.001 4 )

X 1000
(o}
0

T

. e
T L =T

500 1000 1500 2000

Time {s)

Figure 6 Simulation of a series of creep and recovery data using the anisostructural model for 1,000

seconds creep with new optimised parameters (Simulations are continuous line and data
are symbols)

Al4



