
รายงานวิจัยฉบับสมบูรณ

โครงการ การจัดลําดับการผลิตของอุตสาหกรรมตอเนื่องแบบผสม
เมื่อเคร่ืองจักรในแตละสถานีงานมีประสิทธิภาพการทํางาน
ไมเทากัน

โดย

ผศ.ดร.กาญจนา เศรษฐนันท

พฤษภาคม 2548

II

สัญญาเลขที่ TRG 4580020

รายงานวิจัยฉบับสมบูรณ

โครงการ การจัดลําดับการผลิตของอุตสาหกรรมตอเนื่องแบบผสมเมื่อเคร่ืองจักร
ในแตละสถานีงานมีประสิทธิภาพการทํางานไมเทากัน

โดย

ผศ.ดร.กาญจนา เศรษฐนันท
ภาควิชาวิศวกรรมอุตสาหกรรม

คณะวิศวกรรมศาสตร
มหาวิทยาลัยขอนแกน

สนับสนุนโดยสํานักงานกองทุนสนับสนุนการวิจัย

III

กิตติกรรมประกาศ

การวิจัยครั้งน้ีไดสําเร็จลุลวงไปดวยดี ผูวิจัยตองขอขอบคุณสํานักงานกองทุนสนับสนุนการ
วิจัย (สกว.) ที่ไดใหโอกาสและใหทุนการวิจัยเพ่ือเปนกาสนับสนุนการวิจัยใหแกนักวิจัยรุนใหมไดมี
โอกาสทํางานวิจัยและพัฒนาตัวเองอยางตอเน่ือง และสามารถที่จะผลิตผลงานตีพิมพในวารสารวิชา
การระดับนานาชาติได

พรอมกันนี้ผูวิจัยขอกราบขอบพระคุณ รศ.ดร.สมเกียรติ รุจิเกียติกําจร หัวหนาภาควิชา
วิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร มหาวิทยาลัยขอนแกน นักวิจัยพ่ีเลี้ยงที่ไดกรุณาเสีย
สละเวลาใหคําปรึกษา ชี้แนะแนวทางและความรูตางๆ ตลอดเวลาที่ผูวิจัยไดรับทุน นอกจากนี้ผูวิจัย
ใครขอขอบคุณเจาหนาที่ของ สกว. ทุกทานที่ไดอํานวยความสะดวกและใหความชวยเหลือตางๆ ดวย
ดีตลอดมา

สุดทายผูวิจัยขอขอบพระคุณคุณแมและคุณพอผูอันเปนที่รัก นองสาว นองชาย และตัวเอง
ที่ไดใหความรัก และความอบอุน ตลอดจนกําลังใจที่ทําใหฝาฝนอุปสรรคตางๆ ไดเปนอยางดี

ผศ.ดร.กาญจนา เศรษฐนันท
 พฤษภาคม 2548

IV

บทคัดยอ

รหัสโครงการ : TRG 4580020

ชื่อโครงการ : การจัดลําดับการผลิตของอุตสาหกรรมตอเน่ืองแบบผสม เม่ือเครื่องจักรในแตละ
 สถานีงานมีประสิทธิภาพการทํางานไมเทากัน

ชื่อนักวิจัยและสถาบัน : ผศ.ดร.กาญจนา เศรษฐนันท
ภาควิชาวิศวกรรมอุตสาหกรรม
คณะวิศวกรรมศาสตร
มหาวิทยาลัยขอนแกน

E-mail Address : skanch@kku.ac.th

ระยะเวลาโครงการ : 1 กรกฎาคม 2545 - เมษายน 2547

ในงานวิจัยน้ี ไดศึกษาเกี่ยวกับการจัดลําดับการผลิตในรายการผลิตตอเน่ืองแบบผสม
โดยมีการพิจารณาเวลาเตรียมงานที่ไมอิสระในสายการผลิตตอเน่ืองแบบผสมจะประกอบดวยสถานี
งานทั้งหมด L สถานีงาน โดยแตละสถานีงานประกอบดวยเครื่องจักรอยางนอย 1 เครื่องที่มีประสิทธิ
ภาพไมเทากันแบบไมสัมพันธกัน (unrelated machines) วัตถุประสงคของงานวิจัยน้ี เพ่ือทําใหเวลา
แลวเสร็จของการผลิตมีคานอยที่สุด ในการวิจัยครั้งน้ีรูปแบบทางคณิตศาสตรไดถูกสรางขึ้น เพ่ือหา
คําตอบที่ดีที่สุดสําหรับปญหาขนาดเล็กที่ไมซับซอนและวิธีทางฮิวริสติค 2 ฮิวริสติค (IH และ
TSearch) ซ่ึงไดถูกพัฒนาขึ้นเพ่ือใชในการแกปญหาขนาดใหญที่เปนจริงสําหรับอุตสาหกรรมโดยทั่ว
ไป โดย IH เปนฮิวริสติคที่ใหคาคําตอบเริ่มแรก (initial Solution) ที่คอนขางดีและคําตอบที่ไดจาก IH
ฮิวริสติคนี้จะถูกนําไปปรับปรุงใหดีขึ้นโดย TSearch ฮิวริสติค โดย TSearch ฮิวริสติคนี้จะทาบูเสริช
เมตะฮิวริสติค (Tabu Search Metaheuristic) ในการประเมินประสิทธิภาพของ 2 ฮิวริสติคนั้นจะใช
Lower bounds (Forward LB และ Backward LB) ที่ไดพัฒนาขึ้นในการคํานวณ Lower bounds
น้ันจะประกอบดวย 4 ปริมาณคือ (1) เวลารอของเครื่องจักรที่สถานีงานที่ L (2) เวลารอของเครื่อง
จักรที่สถานีงานสุดทาย (3) เวลาการผลิตทั้งหมด และ (4) เวลาเตรียมเครื่องจักร ดังน้ันในการ
ประเมินประสิทธิภาพของฮิวริสติคที่พัฒนาขึ้นนั้นจะมีการวัดใน 2 ปริมาณคือ (1) สมรรถนะของฮิวริ
สติคโดยเปรียบเทียบกับ Lower bounds และ (2) เปอรเซ็นตการปรับปรุงของ TSearch ฮิวริสติคจาก
การใชคําตอบจาก IH ฮิวริสติค จากการทดลองพบวา ฮิวริสติกที่พัฒนาขึ้นมีประสิทธิภาพคอนขางดี
และเปอรเซ็นตการปรับปรุงประสิทธิภาพจากการใช TSearch ฮิวริสติคจะอยูระหวาง 12.2% - 25.5%

คําหลัก : Heuristics, Hybrid Flowshop, flexible Flowshop, Unrelated Muchines,
 Dependent Setup Times.

mailto:skanch@kku.ac.th

V

ABSTRACT

Project Code: TRG 45800200

Project Title: Heuristics for Scheduling Flexible Flowshops when Machines are Unrelated.

Investigator: Asst. Prof. Kanchana Sethanan, Ph.D.

E-mail Address: skanch@kku.ac.th

Project Period: July 1, 2002 – Apr 1, 2004

This research addresses the scheduling problem in a hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered.
The production line consists of L production stages, each of which may have more than one
non-identical (unrelated) machines. Prior to processing a job on a machine at the first stage,
a setup time from idling is required. Also, sequence dependent setup times are considered
on each machine in each stage. The objective of this research is to minimize the maximum
makespan. Two mathematical models were formulated for small size problems and two
heuristic algorithms (IH and TSearch) were developed to solve larger, more practical
problems. In order to evaluate the Performance of the heuristic, normally, the heuristic
solutions are compared to optimal solutions and/or lower bounds. The hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered
is known to be NP-hard, and hence finding and optimal solution for average or large-size
problems will be computationally intractable. The only alternative left is to develop lower
bounds for the problem and use them to assess the quality of the heuristic solutions.
Therefore, in this study, two lower bounds (Forward and Backward) were developed in order
to evaluate the performance of the heuristics. Results obtained show that the heuristic
algorithms are quite efficient. The relative improvement yielded by the TSearch algorithm was
between 12.2 and 25.5 percent.

Keywords: Heuristics, Hybrid Flowshop, flexible Flowshop, Unrelated Machines,
 Dependent Setup Times.

mailto:Skanch@kku.ac.th

VI

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENT III
ABSTRACTS IV
TABLE OF CONTENTS VI
LIST OF TABLES VII
CHAPTER 1: INTRODUCTION 1

1.1 A HYBRID FLOWSHOP ENVIRONMENT 1
1.2 DEPENDENT SETUP TIME 2

CHAPTER 2: LITERATURE REVIEW 3
CHAPTER 3: THE PROBLEM DESCRIPTION 4

3.1 DESCRIPTION OF THE MODEL 4
CHAPTER 4: OPTIMIZING ALGORITHMS 5
CHAPTER 5: IH ALGORITHM 9

5.1 A DETAILED DESCRIPTION OF THE IH ALGORITHM 10
CHPATER 6: LOWER BOUNDS 21

6.1 INTRODUCTION 21
6.2 LOWER BOUND DETERMINATION 21

CHAPTER 7: COMPUTATIONALEXPERIENCE 29
7.1 INTRODUCTION 29
7.2 COMPARISON OF THE RESULTS OF HEURISTIC ALGORITHMS WITH

 THE LOWER BOUNDS 30
7.3 COMPARISON BETWEEN THE IH ALGORITHM AND THE TSEARCH ALGORITHM 36

CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 39
8.1 CONTRIBUTION OF THE RESEARCH 40
8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 40

CHPATER 9: OUTPUTS จากโครงการวิจัยท่ีไดรับทุนจาก สกว. 41
9.1 การนําเสนอผลงานการประชุมวิชาการระดับนานาชาติ

(International Conference) 41
9.2 Software ของ Heuristic Algorithm ในรูปแบบ GUI (Graphic User Interface) 41
9.3 Software ของการคํานวนคา Lower Bounds ในรูปแบบ GUI (Graphic User Interface) 41

REFFERENCE 42
APPENDICIES 44

APPENDIX A 45
APPENDIX B 48
APPENDIX C 51
APPENDIX D 64
APPENDIX E 72
APPENDIX F 74

VII

TABLE OF CONTENTS

PAGE

TABLE 4.1 THE NOTATION USED IN THE MIXED INTEGER PROGRAMMING MODEL 5
TABLE 7.1 VALUES OF PARAMETERS USED WITH THE DIFFERENT DATA TYPES 29
TABLE 7.2 COMPUTATIONAL RESULTS FOR SET 1 TYPE A: 31
TABLE 7.3 COMPUTATIONAL RESULTS FOR SET 1 TYPE B: 31
TABLE 7.4 COMPUTATIONAL RESULTS FOR SET 1 TYPE C: 32
TABLE 7.5 COMPUTATIONAL RESULTS FOR SET 1 TYPE D: 32
TABLE 7.6 COMPUTATIONAL RESULTS FOR SET 1 TYPE D: 33
TABLE 7.7 COMPUTATIONAL RESULTS FOR SET 2 TYPE B: 33
TABLE 7.8 COMPUTATIONAL RESULTS FOR SET 2 TYPE C: 34
TABLE 7.9 COMPUTATIONAL RESULTS FOR SET 2 TYPE D: 34
TABLE 7.10 AVERAGES OF COMPUTATIONAL RESULTS FOR SETS 1 AND 2 FOR ALL

DATA TYPES:HEURISTIC ALGORITHMS VS. LOWER BOUND 35
TABLE 7.11 RELATIVE IMPROVEMENT RESULTS FOR THE DIFFERENT DATA TYPES IN

SET 1: 37
TABLE 7.12 RELATIVE IMPROVEMENT RESULTS FOR THE DIFFERENT DATA TYPES IN

SET 2: 37
TABLE 7.13 RELATIVE IMPROVEMENT RESULTS FOR SETS 1 AND 2 38

1

Scheduling Flexible Flowshops with Sequence Dependent Setup Times and
Machines in Each Stage Are Unrelated

CHAPTER 1

INTRODUCTION

Nowadays, manufacturers are faced with customer demands for a variety of high quality
products. The companies must therefore make their production systems more flexible, respond rapidly
to demand fluctuations, and reduce costs related to production. Hence, companies need to have
advanced techniques. Manufacturing has been an interesting topic in production and operation
management because of areas such as job scheduling or machine loading.

Scheduling problems arise whenever a set of resources such as workers or machines are
required to perform a set of operations on jobs, also each operation can be accomplished in more than
one way. Given a limited set of resources, the scheduling problem is to assign jobs to resources
according to some process routing in order to obtain optimal performance measures while ensuring
that all production constraints are satisfied. The development of production schedules is a remarkably
important task in industry especially scheduling jobs through non-identical, parallel processors.
Non-identical processors are processors that do not have equal capabilities and capacities. This type
of production system where multiple products are made on parallel, non-identical production line is
common in both service and manufacturing industries. For instance, workers in an office have different
skills, an airline assigns a type of airplane to service a route, or paper plant assigns products to
different paper machines. A parallel processing is the situation where a job can be done by more than
one processor but only one processor can actually work on the job (Randhawa & Smith, 1995).
Hence, scheduling problems involve the assignment of machines to various jobs and determination of
the order in which the jobs will be performed in order to optimize some criteria (such as minimization of
makespan, mean flow time, or lateness) while satisfying the shop constraints.

1.1 A Hybrid Flowshop Environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop.
A hybrid flowshop is a generalization of the flowshop and the parallel processor environments.
A hybrid flowshop is alternatively called a flexible flowshop (FFs). In a hybrid flowshop environment,
there are L workstations, each of which consists of at least one machine. The machines in each stage
may identical, uniform, or unrelated. In a hybrid flowshop, each job is processed first at stage 1, then

2
at stage 2, and so on. Normally, a job requires only one machine in each stage and any machine can
process any job as shown in the schematic representation in Figure 1.

 STAGE 1 STAGE 2 STAGE L

1.2 Dependent Setup Time

The requirements of setup times of jobs are very common in many real manufacturing
situations such as inspecting material, setting tools, and cleanup. There are two types of setup times:
sequence independent and sequence dependent setup times. Sequence dependent setup times are
considered to be very important factors in the manufacturing environment, especially, when a shop
floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence dependent setups
occur especially in process industry operations, where machine setup time is significant and is needed
when products change. The magnitude of setup time depends on the similarity in technological
processing requirements for successive jobs (Srikan & Ghosh, 1986). Normally, similar technological
requirements for two consecutive jobs would require lesser setup.

Even though there exists an enormous amount of research on the flowshop scheduling
problem, research study has rarely been conducted in the case where setup times are sequence
dependent (Allahverdi et al., 1995). Hence, the results of these research studies lack a practical
solution for applications that require the treatment of setup times. For this reason, dependent setup
times must be allowed for a realistic description and hence are considered in this research. The paper
is organized as follows. In the next section, the literature review is presented. In section 3, the
problem and propose is described, then two optimizing algorithms are developed in section 4. The
heuristic algorithms are described in Section 5. In section 6, the lower bounds for the problem are
determined. Section 7 concludes the paper with a discussion of this research and future extension.

m1,1,1 m2,1,1 ML,1,1

M1,2,1

m2,2,1

ML,2,1

m1,3,1 m2,3,1 ML,3,1

m1,m(1),1 m2,m(2),1 mSLm(S

IN
OUT

Figure 1: A Schematic representation of a Flexible Flowshop Manufacturing Environment

3
CHAPTER 2

LITERATURE REVIEW

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop

manufacturing that has been interested researchers for many years. According to Gupta (1994), a
heuristic was developed to solve a special case when there is only one machine in the second in order
to minimize the makespan. Computational experiments show that the effectiveness of the proposed
heuristic increases as the problem-size increases. Brah and Hunsucker (1991) develop branch and
bound algorithms for the multiple stage hybrid flowshop (Pm1, Pm2,…,Pms)//Cmax). The computational
results show that the algorithms can solve only small-sized problems. Portmann et al. (1998) improved
the lower bound of Brah’s and reduced the number of branches used in the search tree. They could
solve the problems with up to five stages and fifteen jobs.

For the dependent setup time problem, Ruiz et al. (2005) presented two advanced genetic
algorithms as well as several adaptations of existing advanced metaheuristics that have shown
superior performance when applied to a regular flowshop with sequence dependent setup times. In
the same year, Ruiz and Maroto developed a metaheuiristic, in the form of genetic algorithm, for hybrid
flowshops with sequence dependent setup times and machines eligibility. The results indicate that the
proposed algorithm is more effective than all other adaptations. Tahar et al. (2005), developed a linear
programming model and a heuristic algorithm for identical parallel machine scheduling with job splitting
and sequence-dependent setup times in order to minimize the makespan. According to Kurz and
Askin (2005) developed an integer programming model based on the TSP for the flexible flow lines
with sequence dependent setup times. Several heuristics such as Insertion heuristic and Random keys
Genetic Algorithm also developed.

In addition, Sethanan (2001), the mixed integer programming is formulated to solve the flexible
flowshops with sequence dependent setup times when machines in each stages are uniform
(FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax). Since the FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax problem is known to be
NP-hard (Allahverdi, 1999) and hence finding an optimal solution for average or large-size problems
will be computationally intractable. Therefore, in her study, the algorithm and two lower bounds were
developed to solve the problem.

From the reviewed literature, there is no literature in scheduling multiple hybrid flowshop lines
with sequence dependent times when machines in each stage are unrelated. Hence, this research
focuses on scheduling multiple hybrid flowshop lines when machines are unrelated and sequence
dependent times also are considered.

4
CHAPTER 3

THE PROBLEM DESCRIPTION

This research involves scheduling multiple products through non-identical parallel production
lines. There are many production stages in each production line. Each stage may comprise more
than one machine. Resource and technological constraints are considered in this production system.
Resource constraints generally refer to processor capacities and limitations. Technological constraints
are considered as product routing and precedence constraints. In this study, all products can be
manufactured on every machine in a stage, and the machine cannot process a new product until the
previous product has been completely finished.

Prior to processing a job on a machine, there is an associated setup time. Thus, setup times
are considered significant and typically depend on the sequence of the jobs through the processors.
Setup times in general are large when compared to the unit processing time. As much of the current
industrial competition is a time-based, the reduction of the production lead time is an important key.
Hence, the objective of this research is to minimize the maximum completion time of the products
called the makespan. Two mathematical models are formulated to solve the problem and to produce
an optimal schedule in order to minimize the total makespan.

3.1 Description of the model
The assumption made in formulating the model are followed:

1. It is assumed that the decisions have been made from the long and intermediate-range
planning.

2. Production is make-for-stock; hence, there are no due dates associated with products.
3. All jobs and machines are available at the beginning of the scheduling process.
4. In the production line, there are many stages. Each stage of the hybrid flowshop production

may have several non-identical machines.
5. Jobs can wait between two production stages and the intermediate storage is unlimited.
6. Setup times for jobs on each machine are dependent on the order in which jobs are

processed.
7. Products cannot be split between machines in the same stage.
8. There is no job preemption.

5
CHAPTER 4

OPTIMIZING ALGORITHMS

A brief description of the problem is reviewed in order to help in understanding the
mathematical formulation. In this research, there is only one production line considered. The problem
involves the scheduling of multiple products in a flexible flowshop environment with sequence
dependent setup times (FFS(Rm1,Rm2,…, RmS)/sipm/Cmax). The production line consists of many stages,
which may have one or more non-identical (unrelated) parallel machines. In each stage, machines can
process all products but differ in their performances and the machines cannot process a new product
until the previous product has been completely finished.
 The products have to be manufactured on only one of the machines in each stage, and the
processing of products cannot start until the entire batch is completed in the previous stage. Each
product, e.g., product i requires P(i,s,m) units processing time on machine m of stage s. Machine
setup times are needed between any two products. In this study, it is assumed that setup times are
equal for every machine in the same stage when changing from one product to another.
 This section presents an optimal algorithm for the FFS with uniform machines at each stage.
A 0-1 mixed integer programming model is developed with the criterion to minimize makespan for this
problem. Parameters and decision variables used in formulating the model are defined as presented
in Table 1. The 0-1 mixed integer programming formulation is presented below with a brief
explanation of each constraint.

Table 4.1: The Notation Used in the Mixed Integer Programming Model
Type of
Variables

Notation

Explanation

F(i,s,m) Finish time of product i on machine m of stage s Decision Variables
E The makespan
x(i,s,m) = 1 , if product i is assigned to machine m of stage s

= 0 , otherwise
w(i,p,s,m) = 1 , if product i immediately precedes product p

 on machine m of stage s
= 0 , otherwise

w(i,0,s,m) = 1 , if product i is the last product processed on machine m of stage s
= 0 , otherwise

Binary decision
variables

w(0,i,s,m) = 1 , if product i is the first product processed on machine m of stage s
= 0 , otherwise

i,p,h Product indices Parameters
s Stage index

6

∑
=

n

i
mspiw

1
),,,(

∑
=

n

p
mspiw

1
),,,(

∑
=

n

p
mspw

1
),,,0(

m(s) The number of machines in stage s
n Total number of products
M(s) The set of machines in stage s ; M(s) = {1,2,..,m(s)}
L The number of stages in the production line
P(i,s,m) The processing time of product i on machine m of stage s
ch(i,p,s) The number of time units required to changeover from production i to

product p at stage s

V a very large positive number.

Model 1:
The objective function: Min E
Constraints:
F(i,1,m) ≥ ch(0,i,s) + {P(i,1,m) ⋅ x(i,1,m)} (1)

i = 1,2,…,n ; and m=1,2,…,m(1)

F(i,s,m) ≥ F(i,s-1,mp) + {P(j,i,s,m) ⋅ x(j,i,s,m)} (2)

i = 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1)

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) ≥ {P(i,s,m) ⋅ x(i,s,m)} (3)

i = 1,2,…,n, s = 1,2,…, L, m = 1,2,…,m(s)

F(i,L,m) ≤ E (4)

i = 1,2,…,n ; and m = 1,2,…,m(L)

∑
=

)s(m

1m
)m,s,i(x = 1 (5)

i = 1,2,…, n ; and s = 1,2,…, L

x(p,s,m) – w(0,p,s,m) - = 0 (6)

p = 1,2,…, n; s = 1,2,…,S; and m = 1,2,…,m(s)

x(i,s,m) – w(i,0,s,m) - = 0 (7)

i = 1,2,…,n ; s = 1,2,…, L; and m = 1,2,…,m(s)

 = 1 (8)

s = 1,2,…, L; and m = 1,2,…,m(s)

7
∑
=

n
mspw

1
),,0,(= 1 (9)

s = 1,2,…, L; and m = 1,2,…,m(s)

Constraints (1) is a completion time forcing constraints. It ensures that all products are scheduled and
the completion time of any product on any machine of the first stage is at least the amount of
processing time required for the product on that machine. Constraints (2) ensures that the completion
time of product i produced on machine m in the current stage (stage s) must be greater than its
completion time in a previous stage (stage s-1). Constraints (3) is about product sequencing on all the
L stages. If product p manufactured on machine m at stage s immediately precedes product i
manufactured on the same machine and stage, then the value of w(p,i,s,m) equals to one. Hence, the
completion time of product i (manufactured on that machine with the same stage) is greater than the
completion time of product p. The difference is by the sum of the setup time from product p to product
i and the required processing time of product i on that machine with the same stage. Constraints (4)
are needed to ensure that the makespan is equal to or greater than the completion time of each of the
jobs in the last stage. Constraints (5) ensures that, for each product, it can be manufactured on only
one of machines in that stage of a production line. Constraints (6) ensures that, except for the first
product, a product scheduled on any machine is preceded by exactly one different product.
Constraints (7) ensures that, except for the last product, a product scheduled on any machine must be
immediately followed by only one product. Constraints (8) &(9) ensure that a machine can have
exactly one first and one last product.

Model 2:
The objective function: Min E
Constraints:
F(i,L,m) ≤ E (1)

i = 1,2,…,n ; and m = 1,2,…,m(L)

 (2)

i = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L

 (3)

i = 1,2,…, n ; and s = 1,2,…, L

∑
=

≤
n

1i
1)m,s,i,p(w

1)m,s,i,p(w
n

0p

)s(m

1m
=∑ ∑

= =

8
 (4)

h = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L

 (5)
i,p = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L

(6)
i = 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1)

 ; i = 1,2,…, n ; m = 1,2,…,m(1) (7)

Constraints (1) are needed to ensure that the makespan is equal to or greater than the
completion time of each of the jobs in the last stage. Constraints (2) ensures that each machine has
to be assigned to at most one job. Constraints (3) ensures that each job is processed once and once
in each stage. Constraints (4) ensures that, except for the first product, a product scheduled on any
machine is preceded by exactly one different product and, except for the last product, a product
scheduled on any machine must be immediately followed by only one product. Constraints (5) is about
product sequencing on all the L stages detailed as in model 1. Constraints (6) ensures that the
completion time of product i produced on machine m in the current stage (stage s) must be greater
than its completion time in a previous stage (stage s-1). The difference must be equal to or greater
than the amount of processing time required in the current stage. Constraints (7) is a completion time
forcing constraints. It ensures that all products are scheduled and the completion time of any product
on any machine of the first stage is at least the amount of processing time required for the product on
that machine.

∑ ∑
= =

=−
n

0p

n

0i
0)m,s,i,h(w)m,s,h,p(w

)m,s,i(P)m,s,i,p(w))m,s,i,j(w1(V)m,s,i,p(ch)m,s,p(F)m,s,i(F ⋅≥−+−−

),1,,(),1,(),1,(mipwmiPmiF ⋅≥

)m,s,i,p(w)m,s,i(P)mp,1s,i(F)m,s,i(F ⋅+−≥

9
CHAPTER 5

IH ALGORITHM

Phase 1: Obtaining an Initial Solution Using the IH Algorithm

The heuristic developed in this phase schedules one product group at a time on the machines
of the first stage. The algorithm then proceeds by scheduling products to the machines of all other
stages. Prior to the presentation of the IH algorithm, the notation and variables used are defined.

Notation:

Let
i,p = product indices
j,q = product group indices
s = stage index
G = set of all product groups; G = {1,2,…,N}
m* = the minimum value of m(s); m* =

ψ∈s
min m(s)

M* = set of m* product groups selected to schedule as the first product
group on each machine in stage one through stage L

GR = set of all remaining product groups after assigning the first m* groups;
G\{M*}

gj = number of products in product groups j; j ∈ G
Pj = set of products in product groups j; j ∈ G
 = {1,2,…,gj}
Ψ = set of stages in a production line

= {1,2,…,L}
m(s) = number of machines in stage s; s ∈ Ψ
M(s) = set of machines in stage s
 = {1,2,…,m(s)}
EM(1) = set of m(1)-m* remaining machines
vs,m = speed of machine m at stage s
ch(q,p,j,i,s) = The number of time units required to changeover from product i of

group j to product p of group q at stage s

10
ST(j,i,s,m) = start time of product i of group j on machine m of stage s. There

are 8 possible ways of determining the value of ST(j,i,s,m). A detailed
description of these ways is presented in Appendix A.

PT(j,i,s,m) = processing time of product i of group j on machine m of stage s; j ∈
G, i ∈ Pj, s ∈ Ψ, and m ∈ M(s).

T(j,i) = processing time of product i of group j on the standard machine in the
first stage (i.e., speed of machine = 100%)

CT(j,i,s,m) = completion time of product i, group j on machine m of stage s. This
time is equal to the sum of its start time and processing time.

 = ST(j,i,s,m) + PT(j,i,s,m); j ∈ G, i ∈ Pj, s ∈ Ψ, and m ∈ M(s)

5.1 A Detailed Description of the IH Algorithm

The detailed description of the IH Algorithm is presented below in Parts 1 through 4.

Part 1: Assign the first m* groups to the machines at stage 1 through stage L-1.

 Case 1: m* = m(1)

Step 1: Select the m* groups in order to assign them as the first group on the machines at
stage 1 through L-1.

1.1 Find product i* amd m′ with
jFi∈

min CH(0,0,j,i,s,m)+),,,(
1

1
msijPT

S

s
∑
−

=
 for j∈ J,

s∈Ψ\{L}, m∈ M(s)

1.2 Find j* where i* ∈ j*

1.3 Update J = J\{j*}; M(s) = M(s)\{ m′}; and count_j = count_j + 1

1.4 Check whether J ≠ φ or count_j < m*.

If J ≠ φ, go to Step 1.1; otherwise, go to Step 2 of this pant.

 Step 2: Rearrange the products of the m* groups on the first stage machines assigned to them

2.1 Schedule Product i* of group j* on machine m′ i*.

11
2.2 Calculate completion times of the scheduled product where

CTime(j,i,s,m′) = STime(j,i,s,m′) + PT(j,i,s,m′).

2.3 Update Pj = Pj \ {i*}.

If Pj ≠ φ, go to Step 2.4.

If Pj = φ, update G = G\ {j*}. If M* = φ, go to Part 2; otherwise, go to Step 1.

2.4 Find the next product.

 Find i* and m′ with:

jGi∈

min (PT(j,i,s,m) + ch(j,p,j,i,1); j ∈G and m∈ M(1)

where p is the last product scheduled so far on machine m at the first stage.

Then, go to Step 2.1 of this pant.

Case 2: m* < m(1)

Step 1: Schedule m* groups on the m* machines using the same procedure as case 1 (begin
with step 1 through step 2).

Step 2: Find group j* and machine m′ with
j∀

max CTime(j,i[l],s=1,m); for m∈ M(1) where j ∈

J* and i[l], is the product scheduled last in group j.

Step 3: Find i′ and m′′ with
*

min
jFi∈

 CH(0,0,j,i,s,mm)+ PT(j,i,s=1,mm) where mm ∈EM(1).

Step 4: Schedule i′ of group j* on machine m′′ and then calculate its completion time on this
machine which is CTime(q,p[l],s=1,m′′)+ch(q,p[l],j*,i′,s=1) + PT(j*, i′,s, m′′) and p[l], is
the product scheduled last in group q.

Step 5: Rearrange the remaining products of group j* on machine m′ after schedule the
removed product (i.e., product i′) and then update the latest completion of the last
product of group j* on that machine.

12
Step 6: Check if the latest completion time is improved, perform the product reschedule and

return to Step 2; otherwise do not remove the product from machine m′, and go to
Step 7.

Step 7: Repeat Step 2 through Step 6 with the product scheduled before the product used in
the last removal attempt. If all attempts have been exhausted, proceed with Part 2.

Part 2: Assign the remaining groups to the machines at the first stage

Step 1: Find i′ and m′′ with
jFi∈

min CTime(q,p[l],s=1,m) +CH(q,p[l],j,i,s=1,m)+ PT(j,i,s=1,m) for j

∈ GR and m ∈ M(1) and p[l], is the product scheduled last in group q.

Step 2: Find j* where i*∈ j* and update GR = GR\ {j*}; if J ≠ φ, go to Step 3; otherwise, go to
Part 3.

Step 3: Schedule group j* on m′′ starting with product i′.

Step 4: Rearrange the products of group j* with the same procedure as Step 2 of Part 1.
Except that, in Step 2.4, if G = φ, go to Part 3.

Part 3: Balancing the Production Times of Machines at the First Stage

Step 1: Balance the production times of machines at the first stage.

Balancing the production times of machines at the first stage is performed by moving
one or more of the products of a product group from the machine with the latest completion
time to other machines such that the latest completion time of the first-stage machines is
reduced. Balancing is performed after the assignment of all products to machines at the first
stage has been completed. The procedure used to balance the production times of the first-
stage machines is presented below:

1.1 Find the machine with the latest completion time (e.g., machine m’)

1.2 Remove the last product scheduled on machine m’.

1.3 Calculate the latest completion time on each of the machines after scheduling the
removed product last within its product group if scheduled on the machine;

13
otherwise, last on the machine. Select the one with the smallest updated
completion time and the corresponding latest completion time.

1.4 If the latest completion time is improved, perform the product re-schedule and
return to Step 1; otherwise, do not remove the product from machine m’, and go to
Step 5.

1.5 Repeat Steps 1 through 4 with the product scheduled before the product used in
the last removal attempt. If all attempts have been exhausted, proceed with Part
4.

Part 4: Scheduling All products on All other Stages (i.e., stages 2,3,4,…,L)

After all products are completely assigned to the first-stage machines, the assignment of these
products on machines at the succeeding stages needs to be performed. A Look Ahead (LA) rule
developed by Sethanan (2001) (details are described in Appendix B) was developed to sequence the
products on machines at stages 2 through S, in order to obtain low product finish times and a low
makespan. The steps for Part 4 are given below.

Step 1: Schedule all products on all other stages (i.e., stage 2, 3, … , L) and calculate the
makespan

1.1 Set s = 2.

1.2 Set H = the set of products arranged in non-decreasing order of finish times from
machines in stage s-1.

1.3 Schedule the first product (e.g., product i) in set H on one of the machines of stage s
using the LA rule.

1.4 Update H = H \ {i}. If H ≠ φ, go back to Step 1.3. If H = φ, update s = s + 1. If s
≤ L, go to Step 1.2; otherwise, calculate the makespan and go to Phase 2.

 Phase 2: Improving the Initial Solution Using the TSearch Algorithm

 The initial solution obtained from Phase 1 (using the IH algorithm) may not be close to
the optimal solution. A different heuristic is required to generate better schedules. The final
solution of the first phase can be considered as an initial solution that will be improved in this
phase. The heuristic of the second phase has three main steps: 1) moving groups between

14
(or within) machines at the first stage, 2) moving products between (or within) machines at
the first stage, and 3) finding the best sequence resulting in the minimum makespan.

1. Implementing the TSearch Heuristic with the FFs(Rm1,Rm2,…,Rms)/Sipm/Cmax Problem

In the tabu search, a decision is made from the set of admissible candidates. The
candidate decisions are evaluated and the best one is selected. A candidate is admissible
either if it is not tabu or if its tabu status can be overridden by the aspiration criterion. As
suggested by Laguna et al. (1993) and Barnes & Laguna (1993), there are four key elements
to be considered in the TS:

- To identify the attributes (i.e., the criteria used to define or characterize a move) of
a move that will be used to generate the tabu classification. Attributes of moves,
e.g., indices of jobs (or jobs numbers), positions of jobs, and weights of jobs, are
identified and recorded in the tabu list in order to prevent move reversals.

- To identify the actual tabu restriction based on the attributes.

- To identify a good data structure to keep track of moves that have a tabu status,
and to free those moves from their tabu condition when their short-term memory
has expired.

- To identify an aspiration condition in an effort to allow the tabu status of a move to
be overridden if it yields a better solution.

Two popular types of moves found in the literature for the flowshop problem are:
(1) exchanging jobs (i.e., swap move) and (2) removing the job placed at the xth position and
then putting it at the yth position (i.e., insertion move). Taillard’s (1990) experiments showed
that the insertion move is the most efficient in terms of quality and computation time. Hence,
only the insertion move will be considered in this research.

Part 5: Moving Groups between Machines (and within a Machine) at the First Stage

In this part, the groups scheduled on machines at the first stage are moved between
machines (or within a machine) in an effort to minimize the makespan. This process is not
performed for the other stages as it takes a large amount of computation time, and yields very
little improvement. The best solution obtained from the previous Phase will be used as the
initial solution. For each iteration, all the admissible moves within the neighborhood in the

15
current schedule are evaluated and the best move is selected. The tabu list, neighborhood
size, and tabu restrictions are applied in the process of moving groups between machines at
the first stage. The details of these three components are described below, and are followed
by the notation used in this part and the detailed procedure of the TSearch algorithm.

Tabu List

Let N be the total number of groups. The size of the tabu list is determined as follows:

1. m(1) =1.

Based on the studies of Laguna et al. (1993), the size of the tabu list when jobs
are moved within a machine is determined as described below.

1.1 N ≤ 12
| T | = ⎣ N / 2 ⎦

 where, | T | = size of the tabu list

1.2 N > 12
| T | = 10

2. m(1) > 1
1.1 If 2 ≤ N ≤10, 1 ≤ | T | ≤ 3.
1.2 If 11 ≤ N ≤20, 3 ≤ | T | ≤ 5.
1.3 If 21 ≤ N ≤50, 5 ≤ | T | ≤ 10.
1.4 If N > 51, 10 ≤ | T | ≤ 15.

Neighborhood Size and Tabu Restriction

In general, defining a good size of d depends on the structure of the problem.
Based on studies by Laguna et al. (1993) and Barnes and Laguna (1993), the value of d
can be obtained as follows:

Let nfs,m be the number of groups schedule on machine m in stage s.
• For nps,m ≤ 30

d = ⎣nps,m/2⎦ -1
where ⎣h⎦ = the largest integer less than or equal to h

16
• For nps,m > 30

 d = (⎣nps,m/2⎦ / 2) x c/4
where c is determined experimentally (Laguna et al., 1993 and Brandao &
Mercer, 1997). The value of c is usually a number between 1 and 4 (Laguna
et al., (1993)).

 In this research, the neighborhood size and tabu restriction are determined as below:

1. For m1 = m2 = m
• If nfs,m = 2, d = 1.
• If 3 ≤ nfs,m ≤ 5, d = 2.
• If 6 ≤ nfs,m ≤ 9, d =3.
• lf nfs,m > 9, the value of d is calculated using the same formula presented

in the case of nfs,m ≤ 30. If nfs,m > 30, the value of c is equal to 2.
2. For m1 ≠ m2

• If nfs,m 2 = 1, or 2, d = 1.
• If nfs,m 2 = 3, d = 2.
• If 4 ≤ nfs,m 2 ≤ 9, d = 3.
• If nfs,m 2 ≥ 10, the value of d is calculated using the same formula

presented in the case of nfs,m ≤ 30. If nfs,m 2 > 30, the value of c is equal
to 2.

 Notation

 iter_gr = current iteration number for the process of moving groups between
machines at the first stage

 iter_max_gr = maximum number of iterations allowed to be performed in the
product group insertion move procedure

 best_value_gr = the minimum makespan found so far

 best_seq_gr = the best schedule found so far

 tor_iter_gr = maximum number of iterations allowed between two successive
improvements

 best_iter_gr = iteration where the best solution was found so far

 size_tabu_list_gr = size of tabu list

17
move_value_gr = the minimum makespan obtained from the evaluation of all

admissible moves in the iteration

 move_seq_gr = the schedule that yields the minimum makespan in the iteration

Step 1: Initialize all parameters used in the process of moving groups between the machines
at the first stage.

 Set iter_gr = 0
best_value_gr = makespan obtained in Phase 1 (Part 4)
best_iter_gr = 0
iter_max_gr = 500
tor_iter_gr = 200
size_tabu_list_gr = 10 for 10 groups (100 products)

= 15 for 20 groups (180 products).

Step 2: Update the number of current iterations.

Increment the number of iterations (iter_gr) by 1.

Step 3: Check if the search should be stopped.

In this step, two stopping criteria are used:

3.1 Stop the search if the number of the current iterations (iter_gr) is greater than
max_iter_gr, or

3.2 Stop the search if the number of successive iterations without improvement is
greater than tor_iter_gr.

If the search is not stopped, go to Step 4; otherwise, go to Part 6 to
proceed with the movement of products.

Step 4: Move groups between (or within) machines.

 Groups that were divided between machines are treated as individual sub-
groups. Sequences of products within groups (or sub-groups) are not changed in
this step.

18
 4.1 For each admissible move, perform the following:

• determine the tentative schedule of groups on machines in stage 1 after
performing the move for the entire product group (or sub-product group).

• tentatively re-schedule all products on machines in stages 2 through L
using the procedure detailed in Step 8 and find the corresponding
makespan.

 4.2 After all admissible moves have been performed, select the move that yields
the minimum makespan. Denote the minimum makespan as move_value_gr
and the corresponding schedule as move_seq_gr.

 4.3 Check whether move_value_gr is less than the best_value_gr. If true,
perform the following updates and go to Step 4.4

 best_value_gr = move_value_gr,

 best_seq_gr = move_seq_gr.

 Otherwise, go to Step 4.4

 4.4 Put the attribute of this move in the tabu list and go back to Step 1.

Part 6: Moving Products between (and within) Machines at the First Stage

In this part, the products are moved between (and within) machines in an effort to
minimize the makespan. As in Part 5, the process of moving products between (and within)
machines is performed only in the first stage. The best solution obtained in the previous part
is used as the initial solution. The notation used in the implementation of the TS is described
below and is followed by the procedure. Basically, the rules used to define the tabu list and to
determine the tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.

Notation

iter_pr = current iteration number for the process of moving products
between machines at the first stage

iter_max_pr = maximum number of iterations allowed to perform in the process of
products insertion procedure

19
best_value_pr = the minimum makespan found so far

best_seq_pr = the best schedule found so far

tor_iter_ pr = maximum number of iterations allowed between two successive
improvements

best_iter_pr = iteration where the best solution has been found so far

size_tabu_list_ pr = size of tabu list

move_value_ pr = the minimum makespan obtained from the evaluation of all
admissible moves in the iteration

move_ seq_pr = the schedule that yields the minimum makespan in the iteration

Details of this part are described as follows.

Step 1: Initialize all parameters used in the process of moving product between machines at
the first stage.

Set iter_ pr = 0,

best_sol_ pr = makespan obtained in Part 5

best_iter_ pr = 0,

iter_max_ pr = 500,

tor_iter_ pr = 200,

size_tabu_list_pr = 10 for 100 products

= 15 for 180 products.

Step 2: Update the number of current iteration.

Increment the number of (iter_pr) by 1.

20
Step 3: Check if the search should be stopped.

The two stopping criteria used in Step 3 of Part 5 are also used in this step, as
detailed below.

1. Stop the search if the maximum number of current iterations (iter_pr) is
greater than max_iter_pr, or

2. Stop the search if the number of successive iterations without
improvement is greater than tor_iter_pr.

If the search is not stopped, go to Step 4. Otherwise, go to Step 5.

Step 4: Move products between (or within) machines.

 4.1 For each admissible move, perform the following:

• determine the tentative schedule of products on machines in stage 1 after
performing a product move.

• tentatively re-schedule all products on machines in stages 2 through L
using the procedure detailed in Step 8 and find the corresponding
makespan.

 4.2 After all admissible moves have been performed, select the move that yields
the minimum makespan. Denote the minimum makespan as move_value_pr
and the corresponding schedule as move_seq_pr.

 4.3 Check if move_value_pr is less than best_value_pr. If true, perform the
following updates and go to Step 4.4

 best_value_pr = move_value_pr,

 best_seq_pr = move_seq_pr.

 Otherwise, go to Step 4.4

 4.4 Put the attribute of this move in the tabu list and go back to Step 1.

Step 5: Determine the best makespan at the last stage and the best sequence found so far.

21
CHPATER 6

LOWER BOUNDS

6.1 Introduction
 Normally, the quality of heuristic solutions is assessed by comparing their results to: (1)

optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained by the best known
approximation algorithms. The flexible flowshop problem with sequence dependent setup is known to
be NP-hard, and hence finding an optimal solution for average or large-size problems will be
computationally intractable. The problem is also relatively new, and no approximation algorithms can
be found for it in the literature. The only alternative left is to develop lower bounds for the problem and
use them to assess the quality of the TSearch heuristic solutions.

6.2 Lower Bound Determination

 Problem parameters and notation used in the development of the lower bound are defined
below.

Notation
i, p = product indices
ψ = set of stages in a production line

= {1,2,..,L}
 s = stage index
 n = total number of products
 N = set of products
 m(s) = number of machines in stage s
 M(s) = set of machines at stage s
 = {1,2,…, m(s)}

ν(s,m) = the fastest speed of machine m at stage s to process products
 ⎡x⎤ = the least integer value greater than or equal to x.
 SU(i) = the setup time from idling for product i in stage 1
 P(i,s) = the processing time of product i on its fastest machine in stage s

ST(i,s) = processing time of product i on a standard machine (i.e., speed = 100%) in stage s
CH(i,p,s) = The number of time units required to changeover from production i to product p at

stage s

22
CT(i,s) = the cumulative processing time of product i on its fastest machines from stage 1

through stage s-1
 = ∑

−

=

1s

1s
siP),(

 MN(i,s) = the minimum setup time of product i at stage s. MN(i,s) is the lowest setup time

for product i at stage s from any other product
 =

,pi
min

≠
ch(p,i,s)

 ICT(i,s-1) = the sum of the setup time from idling of product i at the first stage and the

cumulative processing times of product i on its fastest machines from stage 1
through stage s-1.

 = SU(i) + CT(i,s-1)
 δ = the minimum value between m(s) and m(1)
 = min {m(s), m(1)}
 xtra(s) = the difference between the number of machines in the first stage and that in stage

s. If negative, a value of zero is used.
 = max {0, m(1) - m(s)}

A = set of δ products with lowest values of SU(i)
B = set of δ products with lowest values of ICT(i,s-1)
C = N – B
D = set of m(1) products yielding the lowest values of SU(i)

 LBF,s = the lower bound on the makespan calculated at stage s and obtained by the
forward method

LBF,L = the lower bound on the makespan calculated at the last stage (stage L) and
obtained by the forward method

 LBB,1 = the lower bound on the makespan calculated at the first stage (stage 1) and
obtained by the backward method

 LBF = the best lower bound on the makespan obtained by the forward method
 =

s
max

∀
{LBF,s}

 BLB = the best lower bound
 = max {LBF, LBB,1}

23
Based on the flow or routing of products, two methods were developed in this research to

calculate a lower bound on the makespan: (1) the forward method and (2) the backward method. The
lower bound on the makespan is a stage-based calculation, meaning that a value is calculated for each
stage for the forward method, but it is calculated only for the first stage for the backward method.
Then, the best lower bound (BLB) is obtained by taking the maximum value of the LBF and LBB,1,
where the LBF is the best lower bound on the makespan obtained by the forward method and
calculated by taking the maximum value of the LBF,s.

To calculate the lower bound on the makespan for the FFS(Rm1,Rm2,…,RmL)/sipm/Cmax sequencing
problem, the key idea is to consider a flexible flowshop structure with each machine in each stage as
fast as its fastest speed. The makespan can be determined by considering the sum of three
quantities: (1) the s-stage machine total waiting and idle times and (2) the total setup and production
times on the s-stage machines, and (3) the last stage machine total waiting time. These three
quantities can be divided into four components, as presented below.

• total waiting time at stage s (total_wait(s))
• total processing time of all products at stage s (total_proc(s))
• total setup time at stage s (total_setup(s))
• total waiting time when a products leave from stage s to the last stage (last_wait(s,L))

A detailed description of these components and how they are used to calculate LBF,s and LBB,1 is

presented in sections 6.2.1 and 6.2.2, respectively. For the forward method, the optimal makespan
cannot be less than the sum of the two elements: (1) the sum of the first above three components
divided by the number of machines in the sth stage and (2) the machine waiting time at the last stage.
Hence, using the forward method:

LBF,s =

)(
1
sm

[total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L)

Similarly, for the backward method (only consider the last stage), the last_wait(L) is not included.

Hence, using the forward method:

LBB,1 =
)1(

1
m

[total_wait(1) + total_proc(1) + total_setup(1)]

24
6.2.1 Forward Method

1. Total waiting time at stage s (total_wait(s))
The total_wait(s) is the minimum amount of time that the machines at stage s have to

wait until their first products are processed. This means that the first m(s) products have to
complete their processing on stage 1 through stage s-1. Two cases are considered in
calculating the total_wait(s).
Case 1: m(s) ≤ δ
In this case, there are two subcases:

1.1 Total waiting time at the first stage (total_wait(1))
 total_wait(1) = ∑

∈Ai
iSU)(

1.2 Total waiting time at the sth stage; 2 ≤ s≤ L (Total_wait(s))
 The total_wait(s) is determined by summing the first δ, δ = m(s), smallest values

of ICT(i,s-1).
Let
γ(i,s) = SU(i) + CT(i,s-1)
γ[n,s] = the γ(i,s) values sorted in non-decreasing order results in the nth lowest

value
γ(in,s) = product i with the nth lowest value of γ[n,s]

 Hence:

 total_wait(s) =)1,(∑
∈

−
Bi

siICT = ∑
=

δ
γ

1
][

n
n

 where i1 ≠ i2 ≠ i3 ≠…≠ in

Case 2: m(s) > m(1)

To find the total_wait(s) in this case, the machines in stage s are divided into two
groups. The first group contains m(1) machines, and the second contains m(s) – m(1)
machines (i.e. xtra(1)). The total waiting time for the machines in the first group
(waiting_time_g1(s)) is calculated as the sum of the first δ smallest values of ICT(i):

∑
∈Bi

)i(ICT . For the second group, the key idea to find the minimum machine waiting

time (wait_time_g2(s)) is to find the earliest start time of the remaining products on
machine number m(1)+1, m(1)+2, …, m(s). To calculate the wait_time_g2(s), the ratio
(R) between xtra(1) and m(1) is determined and will be used. The R value is

25
determined as .

)1(
)1()(
⎥
⎥

⎤
⎢
⎢

⎡ −
m

msm . Two cases are considered in calculating the

machine waiting times in this group: (1) R = 1, and (2) R > 1. Details for each
of these cases are described below.
(1) R = 1

 The following procedure is followed:
 Let Ω(i) = SU(i) + P(i,1); i ∈ N

 = the finish time function of product i as it is the first product
scheduled on the first stage machines.

 β(j,s-1) = min {min{MN(p,1)}, MN(j,1)} + CT(j,s-1); where, p ∈ A and j
∈ B

 = the start time function of the remaining products on the m(s) –
m(1) machines in the sth stage

 1.1 Let x be the machine number in the second group, x = 1,2,…, xtra(1). Set x=1.
 1.2 Determine the machine waiting time on machine x using the following steps.

1.2.1 Sort all values of Ω (i) in non-decreasing order. Let Ω[1], Ω[2], …,
Ω[c] be the values resulting from the order. Then, find the product with
the first lowest value of Ω(i) (e.g., product j):

Ω(j) = Ω[1] =
Ni∈

minΩ(i)

1.2.2 Sort all values of β(i,s-1) in non-decreasing order. Let β[1,s-1], β[2,s-
1], …, β[c,s-1] be the values resulting from the order. Then, find the
product with the first lowest value of β(i,s-1) (e.g., product g):

β(g,s-1) = β[1,s-1] =
Ci∈

min β(i,s-1)
 1.2.3 Check if j = g. If not true, calculate the waiting time of machine x in

stage s (waiting_time(x,s)) and update set N as follows.
 waiting_time(x) = Ω(j) + β(g,s-1)

N = N \ {j}, delete β(g,s-1)
and go to step 1.3; otherwise, go to step 1.2.4.

1.2.4 Find the product with the second lowest value of Ω(i) (e.g., product j’):
Ω(j’) = Ω[2] =

}\{
min

jNi∈
 Ω(i)

1.2.5 Find the product with the second lowest value of β(i,s-1) (e.g.,
product g’):

β(g’,s-1) = β[2,s-1] =
}\{

min
gNi∈
β(i,s-1)

26
1.2.6 Calculate the minimum waiting_time(x,s) as follows:

waiting_time(x,s) = min {Ω(j) + β(g’,s-1), Ω(j’) + β(g,s-
1)}

 1.2.7 If Ω(j) + β(g’,s-1) < Ω(j’) + β(g,s-1), update C = C – {j} and β(g’,s-1).
 Otherwise, update C = C– {j’} and delete β(g,s-1).
 1.3 Update x = x + 1. If x is greater than m(s) - m(1), go to step 1.4; otherwise,

go back to step 1.2.
 1.4 Calculate total_wait(s) as follows:
 total_wait(s) = ∑

∈Ai
iICT)(+ ∑

−

=

)1()(

1
),(_

msm

x
sxtimewaiting

 (2) R > 1

For this case, the machines in the second group are divided into smaller
subgroups of m(1) machines (the last subgroup may have a smaller number). The
minimum waiting tine of the machines in the first subgroup (i.e., machine number
m(1)+1, m(1)+2, …, 2m(1)) is determined using the procedure detailed in case (1) (i.e.,
R = 1). To calculate the minimum waiting time for the machines of the remaining
subgroups, the same procedure is repeated with the following modifications.
(1) Function Ω(i) is replaced with function α(i, w1, w2 ,…,wr) which is defined as

follows.
α(i, w1, w2 ,…,wr) = SU(i) + P(i,1) + ∑ +

=

r
wPwMS

1
)}1,()1,({

σ
σσ

 where, i, wσ ∈ N, σ = 1,2,…,r, i ≠ w1 ≠ w2 ,…,≠ wr

 To calculate the waiting time on each subgroup of machines in the last stage,
function α(i,w1,w2 ,…,wr) must be regenerated for each r until the value of r reaches
R-1. For instance, when r =1, the quantity α(i, w1) is used to calculate the waiting
time for the second subgroup of machines (i.e., machines 2⋅m(1)+1, 2⋅m(1)+2,…,
3⋅m(1)). Likewise, when r = R – 1, the quantity α(i, w1, w2 ,…,wr) is used to
calculate the waiting time for the Rth subgroup of machines (i.e., machines (R –
1)⋅m(1)+1,…, m(s)).
 In step 2.1.2.1, all values of α(i, w1, w2 ,…,wr) obtained from all combinations
of i and wσ are sorted in non-decreasing order and let α[1], α[2], α[3],…, α[n] be
the values resulting from the order.

27
(2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member of set ϖ,

where ϖ is set of products (i, w1, w2 ,…,wr) that yielded α[1].
(3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of α(ϖ) and

β(g,s-1) such that g is not a member of ϖ, which yield the minimum value of the
sum of α(ϖ) and β(g,s-1). Step 2.1.2.7 is then modified to update C = C – ϖ and
delete β(g,s-1).

The value total_wait(s) when R > 1 is calculated as follows:
 total_wait(s) = wait_time_g1(s) + wait_time_g2(s)

 = ∑
∈Ai

iICT)(+ ∑
−

=

)1()(

1
),(_

msm

x
sxtimewaiting

2. Total processing time of all products at the sth stage (total_proc(s))
 A lower bound of the total processing times on the machines at the last stage is
calculated as the sum of the processing times of all products when processed on machines
with the average speed in that stage. The value of total_proc(s) is hence calculated as
follows:

total_proc(s) =
∑

∑

∈

∈

⋅

)(
,

)(),(

sMm
s

Ni

mv

smsiST

 3. Total setup time at the sth stage (total_setup(s))

 In minimizing changeovers, the number of machines assigned to each product should
be as few as possible. Thus, the minimum number of setups for the entire production
schedule on the sth stage machines is equal to N - m(s) setups. The value of total_setup(s) is
hence determined as the sum of the N – m(s) smallest changeovers.

 total_setup(s) = ∑
∈Ci

 s)MS(i,

4. Total waiting time when a products leave from stage s to the last stage (last_wait(s,L))

The total machine waiting time when a products leave from stage s to the last stage
(last_wait(s,L)) is the minimum amount of time that the last stage machine has to wait until the
first product from stage (s+1) to be processed on the last stage. Hence:

28

last_wait(s,L) = ∑
+=∀

L

ssi
siP

1'
)}',({min ; s′ = s+1, s+2,…, L-1

 = 0; s′ =L

 The overall lower bound by the forward method at stage s (LBF,s) and the best lower bound on
the makespan obtained by this method (LBF) are then calculated as follows:

LBF,s =

)(
1
sm

[total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L)

 LBF =
s

max
∀

{LBF,s}

6.2.2 Backward Method
 Consider a schedule where products are processed from stage L to stage 1 (i.e., reverse order
of machines), then its antithetical schedule (mirror image) yields the same makespan for the original
problem when no setup times are considered. With setup times, the lower bound for the backward
schedule would still remain a lower bound for the original problem, when calculated as in the
forward method with the following two adjustments:

1. Setup times from idling for the first m(L) products in stage L must not be considered when
calculating total_wait(L) (i.e., assume SU(i) = 0 for all products, where SU(i) in this case is
the setup time for product i from idling at stage L).

2. The sum of the m(1) minimum setup times from idling in stage 1 (sum_setup_idle(1)) should
be added to total_wait(1).

The backward lower bound will then be calculated as follows:

LBB,1 =
)1(

1
m

[total_wait(1) + sum_setup_idle(1) + total_proc(1) + total_setup(1)]

The best lower bound (BLB) is then determined as max {LBF,LBB,1}.

29
CHAPTER 7

COMPUTATIONALEXPERIENCE

7.1 Introduction
 This section will focus on computational experience with the heuristic algorithms (IH and

TSearch). Two quantities are investigated: (1) the performance of the heuristic algorithms, obtained by
comparing their solutions to the lower bound and (2) the relative improvement of the solutions obtained
by the IH algorithm with respect to those of the TSearch algorithm.
 Two sets of problems, with four types of data characteristics in each set, were generated to
evaluate the above two quantities:

Set 1: 70-85 products (10 groups)
Set 2: 135-155 products (20 groups)

Four types (A, B, C and D) of data characteristics were generated for each set, and 5 test
problems were generated for each data type. The parameters for each data type, processing times of
products on a standard machine (speed = 1) at each stage (PTime(j,i,s,m)), machine speed deviations
(vs,m), changeover times between products at each stage (ch(j,i,q,p,s)), and setup times from idling of
products at the first stage (ch(0,0,j,i,s)), were randomly selected from different uniform distributions as
shown in Table 7.1

 Table 7.1: Values of Parameters Used with the Different Data Types

Type Parameter
A B C D

Total number of
machines and
stages

12 machines,
4 stages
(3,3,3)

20 machines,
5 stages
(4,4,4,4,4)

12 machines,
4 stages
(3,3,3)

20 machines,
5 stages
(4,4,4,4,4)

PTime(j,i,s,m)

U[20,50]

U[20,50]

U[20,50]

U[20,50]

vs,m

U[0.80, 1.20]

U[0.80, 1.20]

U[0.70, 1.30]

U[0.70, 1.30]

ch(j,i,q,p,s)

U[20%, 40%]
of Time(j,i,s,m)

U[20%, 40%]
of Time(j,i,s,m)

U[20%, 40%]
of Time(j,i,s,m)

U[20%, 40%]
of Time(j,i,s,m)

ch(j,i,j,p,s)

U[5%, 15%]
of Time(j,i,s,m)

U[5%, 15%]
of Time(j,i,s,m)

U[5%, 15%]
of Time(j,i,s,m)

U[5%, 15%]
of Time(j,i,s,m)

ch(0,0,j,i,s) U[15%, 25%]
of Time(j,i,s,m)

U[15%, 25%]
of Time(j,i,s,m)

U[15%, 25%]
of Time(j,i,s,m)

U[15%, 25%]
of Time(j,i,s,m)

30
Changeover times between products at each stage (ch(j,i,q,p,s) and setup times from idling

at the first stage (ch(0,0,j,i,s)) are identical on all machines at the same stage. Types A and B
generate problems with small deviations in the speed of machines. Conversely, types C and D
generate problems with large deviations in the speeds. Characteristics of the data types can be
summarized as follows:

 A: A small number of stages, small deviations in machine speeds, and small, identical

number of machines in each stage.
 B: A large number of stages, small deviations in machine speeds, and large, identical number

of machines in each stage.
 C: A small number of stages, large deviations in machine speeds, and small, non-identical

number of machines in each stage.
 D: A large number of stages, large deviations in machine speeds, and large, identical number

of machines in each stage.

In section 7.2, the computational results obtained with the heuristics are presented and
compared to the lower bounds for the large size problems. Section 7.3 presents the relative
improvement of the solutions obtained by the IH algorithm with the application of the TSearch
algorithm.

7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds

The heuristic algorithms were coded in JAVA and run on a 2.0 GHz PC, with 256 MegaBytes
of RAM, for testing and evaluation. In this section, the heuristic algorithms are evaluated using two
performance measures: (1) solution quality, and (2) computational speed. The quality of a solution
generated by the heuristics is measured in terms of their performance (HP), as presented below.

 HP = (solLB/solheu) x 100
 where,
 HP = the heuristic performance (%)
 solLB = the lower bound of the solution
 solheu = the solution obtained from the heuristic algorithms
 The computational speed of the algorithms is measured by the amount of CPU time required

to execute the algorithms. The CPU time includes compiling, linking, and execution times, and is
reported in seconds and seconds per iteration for the IH and TSearch algorithms, respectively.

31
For each combination of problem set and data type, ten different test problems were

generated. The solution of each test problem using the heuristic algorithm and its lower bound were
obtained for all combinations of sets and data types. The results of these computations are presented
in Tables 7.2-7.13. Table 7.14 shows the averages obtained for these results.

Table 7.2: Computational Results for Set 1 Type A:

 Heuristic Algorithms vs. Lower Bound
CPU Time Heuristic Performance (%)

TSearch Problem
Number IH

(seconds)
seconds/iteration

Number of Iterations

(iterations)

IH TSearch

1 1.2 2.1 50 56.05 69.00
2 1.1 2.2 148 58.12 71.20
3 1.0 2.0 345 56.60 69.90
4 1.1 2.1 69 56.82 71.40
5 1.1 2.0 191 56.47 71.40

Table 7.3: Computational Results for Set 1 Type B:

 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 1.0 2.0 150 58.87 69.10
2 1.1 1.9 156 55.42 68.50
3 1.0 1.9 245 53.69 69.60
4 1.1 2.0 145 56.50 71.10
5 1.1 2.0 89 55.60 68.90

32

Table 7.4: Computational Results for Set 1 Type C:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 1.0 2.0 130 52.53 65.30
2 1.0 2.0 136 56.34 68.90
3 1.0 2.1 45 56.39 66.40
4 1.1 2.0 39 50.43 64.40
5 1.1 2.0 97 51.57 67.30

Table 7.5: Computational Results for Set 1 Type D:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 1.0 1.9 120 50.04 67.10
2 1.1 2.0 135 50.80 65.60
3 1.1 2.0 128 50.33 64.10
4 1.2 1.9 123 58.61 67.70
5 1.0 1.9 171 53.45 68.70

33
Table 7.6: Computational Results for Set 2 Type A:

 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 30.2 3.2 67 58.25 68.60
2 30.3 3.2 454 58.37 69.10
3 30.3 3.2 234 61.06 69.50
4 30.2 3.2 432 60.74 71.30
5 30.4 3.1 45 58.78 68.00

Table 7.7: Computational Results for Set 2 Type B:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 31.2 3.2 453 57.93 68.70
2 31.1 3.3 234 58.11 69.90
3 31.1 3.3 458 58.90 69.90
4 31.2 3.4 120 58.41 67.60
5 31.1 3.1 56 58.27 70.40

34

Table 7.8: Computational Results for Set 2 Type C:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 43.1 4.0 233 56.33 64.30
2 43.3 4.0 125 54.45 64.60
3 43.2 3.9 45 57.87 66.20
4 43.2 4.1 78 56.25 66.20
5 43.1 3.9 4551 56.18 64.90

Table 7.9: Computational Results for Set 2 Type D:
 Heuristic Algorithms vs. Lower Bound

CPU Time

Heuristic Performance (%)

TSearch
Problem
Number

IH
(seconds)

seconds/iteration

Number of Iterations
(iterations)

IH

TSearch

1 44.2 4.1 79 53.52 66.10
2 44.3 4.0 145 56.42 64.80
3 44.3 4.0 365 55.06 65.50
4 44.2 4.1 278 56.35 65.30
5 44.4 3.9 222 56.55 65.00

35
Table 7.10: Averages of Computational Results for Sets 1 and 2 for all Data Types:

Heuristic Algorithms vs. Lower Bound

CPU time Heuristic Performance (%)
TSearch

Set Type IH
(seconds) seconds/iteration Number of iterations

(iterations)

IH TSearch

1 A 1.10 2.08 160.60 56.81 70.58
 B 1.06 1.96 157.00 56.02 69.44
 C 1.04 2.02 89.40 53.45 66.46
 D 1.08 1.94 135.40 52.65 66.64
2 A 30.28 3.18 246.40 59.44 69.30
 B 31.14 3.26 264.20 58.32 69.30
 C 43.18 3.98 1006.40 56.22 65.24
 D 44.28 4.02 217.80 55.58 65.34

 Based on these results, the average performance for set 1 ranges between 52.65-

56.81% for the IH algorithm and 66.46-70.58% for the TSearch algorithm. For set 2, the average
performance is lower than that of set 1, and ranges between 55.58-59.44% for the IH algorithm and
65.24-69.30% for the TSearch algorithm.

 The computational times for the IH are extremely small-- less than 45 seconds. These
times do significantly increase with the size of the problem. This means that the IH algorithm is
sensitive to the problem size. In contrast, computational times for the TSearch algorithm seem to be
high-- between 1.94 and 2.08 seconds per iteration for data set 1 and between 3.18 and 4.02 seconds
per iteration for data set 2. These times increase significantly with the size of the problem in terms of
numbers of products (product groups), stages, and machines.

 A Factorial Design was used to evaluate the performance of the heuristic algorithms
(HP). The design has three factors: deviations in machine speeds, number of products, and number of
machines and stages. The analysis was performed using SAS Software V8 for Windows and the
results are presented in Appendix C. The statistical results show a significant effect only for two
factors on the heuristic performance, number of products and deviation in machine speeds. Tukey’s
test was performed to compare between the three means obtained with different number of machines
and stages. Results of the test (see Appendix C) indicate that the two means are different from each
other.

36
 The statistical results obtained from ANOVA and Tukey’s test show that the heuristic

performance declines with the increase of: (1) number of products, and (2) deviation in machine speeds.
This decline is due mainly to the decrement in the value of the lower bound rather than the performance
of the heuristics. The lower bound value may be affected by the following factors:

(1) the difference between the actual processing times and the smallest processing times of
products used to calculate the first component of lower bound. The difference in
processing times gets larger when the difference in the speeds between the fastest and
the slowest machines increases.

(2) the difference between actual processing times and the processing times on the average
speed machine of products used to calculate the second component of the lower bound,
and

(3) the difference between actual setup times (both major and minor setup times) and the
smallest setup times of the products, used to calculate components 3 and 4 of the lower
bound.

If the differences were small, the lower bound would be relatively high resulting in higher
algorithm performance, and vice versa. Larger deviations in machine speeds, a number of products
(groups), and of machines and stages would most probably cause larger differences in processing
times and setup times.

7.3 Comparison between the IH Algorithm and the TSearch Algorithm

 In this section, the relative improvement of the solutions obtained from the IH algorithm
after applying the TSearch is evaluated and presented below.

 Let RI = {(solIH/ - solTSearch) / solIH} x 100

 where,

 RI = the relative improvement (%) between solIH and solTSearch
 solIH = the solution obtained from the IH algorithm

 solTSearch = the solution obtained from the TSearch algorithm

 Two sets of relatively large size problems are used in this section. These sets are

identical to those described in Section 7.2. For each combination of problem set and data type, 5
different test problems were generated. The solutions of each test problem using the IH and TSearch
algorithms were obtained for all combinations of sets and data types. The results obtained are
presented in Tables 7.11 and 7.12. Table 7.13 shows the averages obtained for these results.

37
Table 7.11: Relative Improvement Results for the Different Data Types in Set 1:

Relative Improvement (%)

Type
Problem Number

A B C D
1 18.82 14.79 19.56 25.44
2 18.38 19.15 18.18 22.61
3 19.06 22.86 15.10 21.53
4 20.41 20.49 21.75 13.39
5 20.96 19.25 23.40 22.23

Table 7.12: Relative Improvement Results for the Different Data Types in Set 2:

Relative Improvement (%)

Type
Problem Number

A B C D
1 15.07 15.63 12.36 19.00
2 15.50 16.87 15.73 12.99
3 12.19 15.71 12.57 15.92
4 14.76 13.53 15.02 13.64
5 13.59 17.28 13.47 13.01

38
Table 7.13: Relative Improvement Results for Sets 1 and 2

RELATIVE IMPROVEMENT (%)

Type Set

A

B

C

D

1

19.53 19.31 19.60 21.04

2

14.22 15.80 13.83 14.91

 As shown in Tables 7.11 and 7.12, the TSearch algorithm provides better makespan
values than the IH algorithm by 12.19 - 25.44% in the individual test runs. A Factorial Design was
used to evaluate the relative improvement (RI) of the solutions obtained by the IH algorithm with the
application of the TSearch algorithm. The design has three factors: deviations in machine speeds,
number of products, and number of machines and stages. The analysis was performed using SAS
Software V8 for Windows and the results are presented in Appendix C. The statistical results show a
significant effect only for number of products on the RI. Tukey’s test was performed to compare
between the three means. Results of the test (also see Appendix C) show no difference in the relative
improvement (RI) obtained with number of machines and machine speed configurations. In contrast,
results obtained in the ANOVA tables and Tukey’s test show that the relative improvement declines as
the size of number of products (or groups) increases.

39
CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

This research was undertaken to minimize the makespan for the “flexible flowshop with
sequence dependent setup times when machines in each stages are unrelated” problem. Two exact
algorithms were first developed and used to solve small problems. Two heuristic algorithms (IH and
TSearch) were then developed to solve larger and more practical problems. In order to evaluate the
performance of the heuristic algorithms, two lower bounds were developed for the solution of the
problem.

Since the optimal solution can be obtained for only small size problems (only for 5 jobs and
7 machiines), two heuristic algorithms (IH and TSearch) were developed. The first algorithm (IH) was
developed to obtain a good initial solution and then improved in the second phase using the TSearch
algorithm. To assess the quality of the heuristic algorithms, two methods were presented for obtaining
a lower bound for the flexible flowshop with sequence dependent setup times when machines in each
stages are unrelated problems: (1) forward method and (2) backward method. Machine waiting time,
idle time, and the total setup and processing times on machines at the last stage were used to obtain
the lower bounds.
 For the computational experience, two data sets with four problem configurations for each set
were generated, and five test problems were generated for each configuration. The performances of
the heuristics were presented and evaluated using two measures: (1) solution quality and
(2) computational speed. The quality of heuristic solutions was evaluated using lower bounds.
The results showed a performance for the IH algorithm between 52.65-56.81% for data set 1 and
55.58-59.44% for data set 2. The performance for the TSearch algorithm ranged between
66.46-70.58% for data set 1 and 65.24-69.30% for data set 2. The performance of the algorithms
declined with the increase of: (1) deviation in machine speeds and (2) number of products.

The computational times were very small for the IH algorithm, indicating that this algorithm is
very efficient and not sensitive to problem size. Conversely, the computational times of the TSerach
algorithm increased significantly with problem size--number of products, stages, and machines. For the
relative improvement realized when applying the TSearch algorithm to the results obtained with the IH
algorithm, the results indicated an improvement between 12.20 and 25.50%. This improvement
increased as the deviations in machine speeds, number of stages, and machines increased. On the
other hand, it decreased as the number of products (groups) increased.

40
8.1 Contribution of the Research

 The exact algorithms as well as the heuristic algorithms and the lower bound methods
developed can also be applied to identical, uniform, and unrelated parallel processing problems with or
without dependent setup times. Computational experience showed that both heuristic algorithms are
effective in solving the problem.

8.2 Recommendations for Future Research
 The following recommendations are made for future research:

• The calculation of the lower bounds may be further enhanced
• Improvements may be made to the TSearch algorithm. The Tabu search was utilized

in this research without using intensification or diversification strategies. These
strategies, which are used to guide the search in a more intelligent way, need to be
further studied.

• Other search methods (e.g., Neural Network or Genetic Algorithm) may be applied to
solve this problem. Their performances may be compared to that of the Tabu Search
algorithm.

41
CHPATER 9

OUTPUTS จากโครงการวิจัยที่ไดรับทุนจาก สกว.

9.1 Software ของ Heuristic Algorithm ในรูปแบบ GUI (Graphic User Interface) ซ่ึงวิธีการใช
แสดงไวภาคผนวก D

9.2 Software ของการคํานวณคา Lower Bounds ในรูปแบบ GUI (Graphic User Interface) ซ่ึง
วิธีการใชแสดงไวภาคผนวก E

9.3 การนําเสนอผลงานการประชุมวิชาการระดับนานาชาติ (International Conference)
9.3.1 The 33rd International Conference on Computers and Industrial Engineering:

Detailed is shown in Appendix F-1
(Held at Jeju, Korea, on March 25-27, 2004)

9.3.2 The Fifth Asia-Pacific Conference on Industrial Engineering and Management
Systems: Detailed is shown in Appendix F-2
(Held at Gold Coast, Australia., on December 12-15, 2005)

42
REFERENCES

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A Review of Scheduling. Research Involving

Setup Considerations, OMEGA, The International Journal of Management Science, 27: 219-
239.

Barns, J. W. & Laguna, M. (1993). Solving the Multiple-Machine Weighted Flow Time Problem Using
Tabu search. IIE Transactions, 25(2), 121-128.

Brah, S. A. & Hunsucker, J. L. (1991). Branch and Bound Algorithm for the Flow Shop with Multiple
Processors. European Journal of Operational Research, 51, 88-99.

Gupta, J. N. D. & Tunc, E. A. (1994). Scheduling a Two-Stage Hybrid Flowshop with Separable Setup
and Removal Time. European Journal of Operational Research, 77, 415-428.

Kurz M. E., & Askin, R. G. (2004). Scheduling Flexible Flow lines with Sequence Dependent Setup
Times. European Journal of Operational Research, 159, 66-82.

Laguna, M. & Barns, J. W. & Glover, F. (1993). Intelligent Scheduling with Tabu Search: An
Application to Jobs with Linear Delay Penalties and Sequence-Dependent Setup Costs and
Times. Journal of Applied Intelligence, 3, 159-172.

Portmann, M-. C., Vignier, A., Dardilhac, D. & Dezalay, D. (1998). Branch and Bound Crossed with GA
to Solve Hybrid Flowshops, European Journal of Operational Research, 107, 384-400.

Randhawa, S. U. & Smith, T.A. (1995). An Experiment Investigation of Scheduling Non-Identical,
Parallel Processors with Sequence-Dependent Setup Times and Due Date, International Journal
of Production Research, 33(1), 59-69.

Ruiz R., Maroto, C., & Alcaraz A. (2005). Solving the Flowshop Scheduling Problem with Sequence
Dependent Setup Times Using Advanced Metaheuristics., European Journal of Operational
Research, 165, 34-54.

Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times. Doctoral
Dissertation, West Virginia University. West Virginia.

Simons Jr.,J. V., (1992). Heuristics in Flowshop Scheduling with Sequence Dependent Setup Times.
OMEGA, The International Journal of Management Science, 20(2): 215-225.

Srikar, B. N. & Ghosh, S. (1986). A MILP Model for the n-job, m-stage Flowshop with Sequence
Dependent Set-up Times. International Journal of Production Research, 24(6), 1459-1474.

Tahar D. N., Yalaoui F., Chu C., & Amodeo L. (2005). A Linear Programming Approach for Identical
Parallel Machine Scheduling with Job Splitting and Sequence dependent Setup Times.
International Journal of Production Economics. To Appear.

Tillard, E. (1990). Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem. European
Journal of Operational Research, 47(1), 65-74.

43
Wilbrecht, J. K. & Prescott, W. B. (1969). The Influence of Setup Time on Job Shop Performance,

Management Science, 16, B274-B280.

Appendixes

Appendix A
Start Time Calculations

46

Appendix A
Start Time Calculations

There are eight possible ways to determine the value of the start time (STime(j,i,s,m)) as
described below.

1. If j = the first group processed on machine m at the first stage; j ∈ J, i = the first product
scheduled in group j; i ∈ Fj, and m ∈ M(1), then:

STime(j,i,1,m) = ch(0,0,j,i,1)
2. If j = the first group scheduled on machine m at the first stage, i ≠ the first product in group j

processed on the machine, then:
STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)
where,
p = the product that precedes product i on machine m in the first stage
and j ∈ J, i, p ∈ Fj, m ∈ M(1)

3. If j ≠ the first group scheduled, i = the first product scheduled in group j on machine m at the
first stage. Then:

 STime(j,i1,m) = FTime(q,p,1,m) + ch(q,p,j,i,1)
where,
q = the group that precedes group j on machine m of stage s
p = the last product of group q scheduled on machine m of stage s
and j,q ∈J, i ∈ Fj, p ∈ Fq, m ∈ M(1)

4. If j ≠ the first group scheduled, i ≠ the first product in j processed on machine m at the first
stage. Then:

 STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)
where,
p = the product in group j that precedes product i on machine m at the first stage

 and j ∈ J, i, p ∈ Fj, m ∈ M(1)
5. If j = the first group scheduled, i = the first product in j processed on machine m in stage s: s

∈ {2,3,…,S}. Then:
 STime(j,i,s,m) = FTime(j,i,s-1,mp)
where, j ∈ J, i ∈ Fj, m ∈ M(s), mp is the machine in stage s-1 on which product i of
group j was processed

6. If j = the first group scheduled, i ≠ the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}. Then:

STime(j,i,s,m) = max {FTime(j,p,s,m) + ch(j,p,j,i,s), FTime(j,i,s-1,mp)}
 where,

p = the product in group j that precedes product i on machine m stage s
 j ∈J, i, p ∈ Fj

47

 m ∈ M(s)
 mp is defined as above.

7. If j ≠ the first group scheduled, i = the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}. Then:

STime(j,i,s,m) = max{FTime(q,p,s,m)+ch(q,p,j,i,s), FTim (j,i,s-1,mp)}
 where,
 q = the group that precedes group j on machine m of stage s
 p = the last product of group q scheduled on machine m of stage s
 and j,q ∈J, i ∈ Fj, p ∈ Fq, m ∈ M(s), mp is defined earlier.

8. If j ≠ the first group scheduled, i ≠ the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}. Then:

 STime(j,i,s,m)= max{FTime(j,p,s,m)+ch(j,p,j,i,s), FTime(j,i,s-1,mp)}
 where,

p = the product in group j that precedes product i on machine m stage s
 j ∈ J, i, p ∈ Fj

m ∈ M(s)
mp is defined earlier.

If there is any change in the schedule, then the start time of all products and families affected by
the change are recalculated.

49

Appendix B
The Look Ahead Rule

Look Ahead (LA) Rule
The LA rule is applied when a product from a certain group (e.g., product i from group j) has

finished processing in a previous stage (stage s-1; s >1). The algorithm starts by using the EFT rule to
determine the best machine, e.g. machine m’, for this product which yields the earliest product finish time.
The LA rule then checks if the product that precedes product i on machine m' is from the same group. If
true, then product i is scheduled on machine m’ as soon as it becomes available. Otherwise, the rule
checks if there is an incoming product of group q from the previous stage (e.g., product p of group q) to
be processed on machine m’ in the near future (i.e., before time Γ where Γ is equal to the finish time of
product i on machine m’, plus the changeover time to product p). If not true, this rule schedules product i
of group j on machine m’ as soon as the machine becomes available. Otherwise, the rule schedules
product i of group j on machine m’ if either of the following conditions is true:

1. The scheduling of product i of group j on machine m’ does not delay the start time of the
incoming product of group q. In other words, product i of group j can be scheduled on
machine m’ if the value of DST(q,p) is equal to zero. This results in an earlier finish time of
product i by FTime(j,i,s,m) – FTime(j,i,s,m’) time units.

2. The amount of RFT(j,i) is greater than that of DST(q,p). For this condition, the machine idle
time would be reduced by RFT(j,i) – DST(q,p) time units.

As described above, the LA rule tries to reduce the machine idle time. The detailed procedure
for the LA rule is given below.

Initialization:
Let H = the set of products arranged in non-decreasing order of finish times from

machines in stage s -1, s >1.
Scheduling steps.

1. Let i be the next unscheduled product in set H.
2. Check whether there is any machine in stage s processing products from the same

group as product i (i.e., from group j). If true, determine the set of the machines in
stage s processing the products of group j (MU(j)) and go to LA-3. If no machine is
processing products of this group, go to LA-12.

3. Apply the EFT rule to determine machine m, m ∈ MU(j), that yields the earliest
finish time for product i, group j.

4. Apply the EFT rule to determine machine m’, m’ ∈ M(s), which yields the earliest
finish time of product i, group j.

5. If machines m and m’ are the same machine, go to LA-13; otherwise, go to LA-6.
6. Check if there is any product of group q (e.g., product p) being processed in the

previous stage. If yes, go to LA-7; otherwise, go to LA-13.
7. Calculate the sum of the finish time of product i, group j on machine m’ (FTime

(j,i,s,m')) and the changeover time from this product to product p of group q (ch
(j,i,q,p,s)).

50

8. Calculate the start time of product p of group q on machine m’ of stage s when
scheduled after product p’:
STime(q,p,s,m’) = max {FTime(q,p,mp,s-1), FTime(q,p’,s,m’) + ch(q,p’,q,p,s)}.

9. Compare the time in LA-7 (i.e., FTime(j,i,s,m') + ch(j,j,q,p,s')} to that in LA-8 (i.e.,
STime(q,p,s,m’))

If FT(j,i,s,m') + ch(j,j,q,p,s)} ≤ STime(q,p,s,m’), go to LA-13; otherwise, go to
LA-10.

10. Check whether the value of RFT(j,i) = FTime(j,i,s,m) – FTime(j,i,s,m’) is greater
than that of DST(q,p). If yes, go to LA-13; otherwise, go to LA-11.

11. Do not schedule product i of group j on machine m’. Go back to LA-1 (i.e., repeat
this procedure until the product is scheduled on a machine in this stage).

12. Apply the EFT rule to determine machine m’, m’ ∈ M(s), that yields the earliest
finish time for product i, group j.

13. Schedule product i of group j on machine m’.

Appendix C
The Results from the SAS Program

 The SAS System 02:17 Friday, February 14, 1997 1

 Analysis of Variance Procedure
 Class Level Information

 Class Levels Values

 FAMILY 2 10 20

 MC 2 3 5

 SPEED 2 1 2

 Number of observations in data set = 40

 The SAS System 02:17 Friday, February 14, 1997 2

 Analysis of Variance Procedure

Dependent Variable: IH

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 179.14663750 25.59237679 6.85 0.0001

Error 32 119.52444000 3.73513875

Corrected Total 39 298.67107750

 R-Square C.V. Root MSE IH Mean

 0.599812 3.447422 1.93265071 56.06075000

Source DF Anova SS Mean Square F Value Pr > F

FAMILY 1 70.67622250 70.67622250 18.92 0.0001
MC 1 7.03082250 7.03082250 1.88 0.1796
FAMILY*MC 1 0.01406250 0.01406250 0.00 0.9515
SPEED 1 100.77450250 100.77450250 26.98 0.0001
FAMILY*SPEED 1 0.36290250 0.36290250 0.10 0.7573
MC*SPEED 1 0.13806250 0.13806250 0.04 0.8488
FAMILY*MC*SPEED 1 0.15006250 0.15006250 0.04 0.8424

 The SAS System 02:17 Friday, February 14, 1997 3

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: IH

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 3.735139

 Number of Means 2
 Critical Range 1.245

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N FAMILY

 A 57.3900 20 20

 B 54.7315 20 10

 The SAS System 02:17 Friday, February 14, 1997 4

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: IH

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 3.735139

 Number of Means 2
 Critical Range 1.245

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N MC

 A 56.4800 20 3
 A
 A 55.6415 20 5

 The SAS System 02:17 Friday, February 14, 1997 5

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: IH

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 3.735139

 Number of Means 2
 Critical Range 1.245

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N SPEED

 A 57.6480 20 1

 B 54.4735 20 2

 The SAS System 02:20 Friday, February 14, 1997 1

 Analysis of Variance Procedure
 Class Level Information

 Class Levels Values

 FAMILY 2 10 20

 MC 2 3 5

 SPEED 2 1 2

 Number of observations in data set = 40

 The SAS System 02:20 Friday, February 14, 1997 2

 Analysis of Variance Procedure

Dependent Variable: TSearch

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 153.31575000 21.90225000 14.07 0.0001

Error 32 49.82800000 1.55712500

Corrected Total 39 203.14375000

 R-Square C.V. Root MSE TSearch Mean

 0.754716 1.840823 1.24784815 67.78750000

Source DF Anova SS Mean Square F Value Pr > F

FAMILY 1 9.70225000 9.70225000 6.23 0.0179
MC 1 0.46225000 0.46225000 0.30 0.5896
FAMILY*MC 1 0.70225000 0.70225000 0.45 0.5067
SPEED 1 139.50225000 139.50225000 89.59 0.0001
FAMILY*SPEED 1 0.75625000 0.75625000 0.49 0.4909
MC*SPEED 1 1.26025000 1.26025000 0.81 0.3750
FAMILY*MC*SPEED 1 0.93025000 0.93025000 0.60 0.4452

 The SAS System 02:20 Friday, February 14, 1997 3

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: TSearch

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 1.557125

 Number of Means 2
 Critical Range .8038

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N FAMILY

 A 68.2800 20 10

 B 67.2950 20 20

 The SAS System 02:20 Friday, February 14, 1997 4

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: TSearch

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 1.557125

 Number of Means 2
 Critical Range .8038

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N MC

 A 67.8950 20 3
 A
 A 67.6800 20 5

 The SAS System 02:20 Friday, February 14, 1997 5

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: TSearch

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 1.557125

 Number of Means 2
 Critical Range .8038

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N SPEED

 A 69.6550 20 1

 B 65.9200 20 2

 The SAS System 02:19 Friday, February 14, 1997 1

 Analysis of Variance Procedure
 Class Level Information

 Class Levels Values

 FAMILY 2 10 20

 MC 2 3 5

 SPEED 2 1 2

 Number of observations in data set = 40

 The SAS System 02:19 Friday, February 14, 1997 2

 Analysis of Variance Procedure

Dependent Variable: RI

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 288.53944000 41.21992000 6.17 0.0001

Error 32 213.91236000 6.68476125

Corrected Total 39 502.45180000

 R-Square C.V. Root MSE RI Mean

 0.574263 14.96233 2.58549052 17.28000000

Source DF Anova SS Mean Square F Value Pr > F

FAMILY 1 267.90976000 267.90976000 40.08 0.0001
MC 1 9.44784000 9.44784000 1.41 0.2433
FAMILY*MC 1 1.29600000 1.29600000 0.19 0.6627
SPEED 1 0.16900000 0.16900000 0.03 0.8747
FAMILY*SPEED 1 5.95984000 5.95984000 0.89 0.3521
MC*SPEED 1 0.84100000 0.84100000 0.13 0.7251
FAMILY*MC*SPEED 1 2.91600000 2.91600000 0.44 0.5137

 The SAS System 02:19 Friday, February 14, 1997 3

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: RI

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 6.684761

 Number of Means 2
 Critical Range 1.665

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N FAMILY

 A 19.8680 20 10

 B 14.6920 20 20

 The SAS System 02:19 Friday, February 14, 1997 4

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: RI

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 6.684761

 Number of Means 2
 Critical Range 1.665

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N MC

 A 17.7660 20 5
 A
 A 16.7940 20 3

 The SAS System 02:19 Friday, February 14, 1997 5

 Analysis of Variance Procedure

 Duncan's Multiple Range Test for variable: RI

 NOTE: This test controls the type I comparisonwise error rate, not the
 experimentwise error rate

 Alpha= 0.05 df= 32 MSE= 6.684761

 Number of Means 2
 Critical Range 1.665

 Means with the same letter are not significantly different.

 Duncan Grouping Mean N SPEED

 A 17.3450 20 2
 A
 A 17.2150 20 1

 65

Appendix D
วิธีการใช Software ของ Heuristic Algorithm (TSEARCH)

ในรูปแบบ GUI (Graphic User Interface)

D.1 คูมือการใชโปรแกรม TSearch Generate

1. ทําการสราง file ชื่อ n_machines.txt และ n_product.txt เพ่ือเปนที่เก็บขอมูลของจํานวนเครื่องจักรในแตละ
สถานีงานและจํานวนของ product ในแตละ family ดังรูป

 66

2. เมื่อได file ทั้งสองแลวใหเก็บใน Folder TshGen แลวจึงเปดโปรแกรม TshGenW.exe จะพบกับหนาจอดังรูป
แลวกรอกขอมูลจํานวนของ Family และจํานวนของสถานีงาน แลวคลิกปุม Next

 67

3. กรอกชวงของเวลาที่ใชในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจากผลิตภัณฑหนึ่งไปเปนอีก
ผลิตภัณฑหนึ่ง ทั้งใน Family เดียวกัน และตาง Family กัน โดยคิดเปนเปอรเซ็นตของ standard processing
time ชวงของเวลาที่ในการผลิตตอหนวย ชวงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเปน
เปอรเซ็นตของ standard processing time และชวงของจํานวนของแตละ Product ที่ตองการผลิต แลวคลิกที่
ปุม Done

4. โปรแกรมจะทําการ Generate ขอมูลขึ้นมาเปน file ชื่อ prodPT.txt, product.txt, productCOT.txt และ speed.txt โดยให
ทําการคัดลอก file ทั้งส่ี รวมทั้ง file ชื่อ n_machines.txt และ n_product.txt อีกสอง file ไปยัง Folder โปรแกรม TshGui
เพ่ือทํา Tabu Search ตอไป

 68

D.2 คูมือการใชโปรแกรม TSEARCH

1. เมื่อทําการคัดลอก file ทั้งหกมาไวใน Folder TshGui แลวใหทําการเปดโปรแกรม TshGuiW.exe จะพบ
หนาจอดังรูป ใหทําการกรอกขอมูลจํานวนสถานีงาน และจํานวน Family คลิกปุม Next

2. หากแนใจแลววา file ชื่อ n_machines.txt และ n_product.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next

 69

3. หากแนใจแลววา file ชื่อ productCOT.txt, prodPT.txt และ speed.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next

4. หากแนใจแลววา file ชื่อ product.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next เพ่ือเขาสูขั้นตอนการหา Initial
Solution

 70

5. คลิกที่ปุม Step 1 ไปตามลําดับจนถึง Step 7 โดยแตละปุมจะแสดงผลลัพธตามขั้นตอนการทํางานเพื่อหา Initial
Solution แลวจึงคลิกที่ปุม Next

6. กรอกขอมูล จํานวนรอบสูงสุดที่จะทําการคํานวน จํานวนรอบสูงสุดระหวาง 2 คําตอบที่ดีขึ้นที่จะทําการ
คํานวณตอไป จํานวนรอบสูงสุดที่จะคํานวณตอเมื่อไดคําตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แลวคลิก
ปุม Start โปรแกรมจะทําการคํานวน โดยแสดงคําตอบที่ดีที่สุดในชอง Best Value เมื่อโปรแกรมคํานวณเสร็จ
จะแสดงเวลาที่ใชในการคํานวณดังรูป คลิกปุม Next

 71

7. กรอกขอมูล จํานวนรอบสูงสุดที่จะทําการคํานวน จํานวนรอบสูงสุดระหวาง 2 คําตอบที่ดีขึ้นที่จะทําการ
คํานวณตอไป จํานวนรอบสูงสุดที่จะคํานวณตอเมื่อไดคําตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แลวคลิก
ปุม Start โปรแกรมจะทําการคํานวน โดยแสดงคําตอบที่ดีที่สุดในชอง Best Value เมื่อโปรแกรมคํานวณเสร็จ
จะแสดงเวลาที่ใชในการคํานวณดังรูป คลิกปุม Exit เมื่อเสร็จส้ินการคํานวณ

 72

 73

Appendix E
วิธีการใช Software ของ Lower Bounds ในรูปแบบ GUI (Graphic User Interface)

1. เมื่อทําการเปดโปรแกรม Lower Bound ขึ้นมาจะพบกับหนาจอโปรแกรมดังรูป

2. จากหนาจอโปรแกรมจะทําการกรอกขอมูลลงในโปรแกรมโดยขอมูลที่ตองกรอกลงไปมีดังนี้
- ในสวน Factory คือจํานวนสถานีงาน ชวงของเครื่องจักรในสถานีงานที่จะทําการ Random
- ในสวน Standard processing time คือ ชวงของ Product ใน family จํานวน family และชวงของ standard

processing time ตอหนวย
- ในสวน Machine Speed คือชวงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเปนเปอรเซ็นตของ

standard processing time
- ในสวน Setup time คือชวงของเวลาที่ตองใชในการเตรียมการผลิต โดยคิดเปนเปอรเซ็นตของ standard

processing time
- ในสวน Change over time คือชวงของเวลาที่ใชในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจาก
ผลิตภัณฑหนึ่งไปเปนอีกผลิตภัณฑหนึ่ง ทั้งใน Family เดียวกัน และตาง Family กัน โดยคิดเปน
เปอรเซ็นตของ standard processing time

- ในสวนสุดทายคือจํานวนของชุดขอมูลที่ตองการสรางขึ้น แลวจึงคลิกที่ปุม Start โปรแกรมจะทําการ
คํานวนและแสดงผลลัพธในรูปแบบของ Web Page

MIXED INTEGER PROGRAMMING MODELS FOR SCHEDULING
HYBRID FLOWSHOPS WHEN MACHINES ARE UNRELATED

Kanchana Sethanana,*, Ph.D., Somkiet Rijikietgumjorna, Ph.D.
a Industrial Engineering Department, Khon Kaen University, Thailand

Phone: (043) 343-117, Fax: (043) 343-117
*E-mail: skanch@kku.ac.th

ABSTRACT

This paper presents several mixed integer programming formulations for scheduling hybrid flowshop
problems with the sequence dependent setup times. In each stage, machines are unrelated. Even
though the hybrid flowshop problem with sequence dependent setup times (FFS(Rm1,Rm2,…,
RmL)/sipm/Cmax) is known to be NP-hard, there are two main reasons for formulating a mathematical
programming model: (1) the mathematical programming formulation provides a better understanding
of the problem and (2) it may be able to solve practical size problems in the near future. Hence, in this
research, the family of the mixed integer programming models is proposed in order to be used in
practice as a simple support tool for the scheduling. A variety of different system configurations and
objective functions considered in this research provide a scheduler with a basis for constructing of
his/her own model for a particular problem instance.

KEYWORDS
 Hybrid flowshop, Flexible flowshop, Scheduling, Setup times, Unrelated machines

1. Introduction

Nowadays, manufacturers are faced with customer demands for a variety of high quality products.
The companies must therefore make their production systems more flexible, respond rapidly to
demand fluctuations, and reduce costs related to production. Hence, companies need to have
advanced techniques. Manufacturing has been an interesting topic in production and operation
management because of areas such as job scheduling or machine loading. Hence, scheduling problems
involve the assignment of machines to various jobs and determination of the order in which the jobs
will be performed in order to optimize some criteria (such as minimization of makespan, or lateness)
while satisfying the shop constraints.

1.1 A hybrid flowshop environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop. A hybrid
flowshops is a generalization of the flowshop and the parallel processor environments. In a hybrid
flowshop environment, there are L workstations, each of which consists of at least one machine. The
machines in each stage may identical, uniform, or unrelated. In a hybrid flowshop, each job is
processed first at stage 1, then at stage 2, and so on. Normally, a job requires only one machine in
each stage and any machine can process any job as shown in the schematic representation in Figure 1.

1.2 Dependent setup time

The requirements of setup times of jobs are very common in many real manufacturing situations such
as inspecting material, setting tools, and cleanup. In this research, sequence dependent setup times are
considered to be very important factors in the manufacturing environment, especially, when a shop
floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence dependent setups
occur especially in process industry operations, where machine setup time is significant and is needed
when products change. The magnitude of setup time depends on the similarity in technological
processing requirements for successive jobs (Srikan & Glosh, 1986).

mailto:skanch@kku.ac.th

 STAGE 1 STAGE 2 STAGE L

Even though there exists an enormous amount of research on the flowshop scheduling problem,
research study has rarely been conducted in the case where setup times are sequence dependent
(Allahverdi, 1999). Hence, the results of these research studies lack a practical solution for
applications that require the treatment of setup times. For this reason, dependent setup times must be
allowed for a realistic description and hence are considered in this research.

The purpose of this research is to present a family of MIP models for scheduling hybrid flowshops
with sequence dependent setup times (FFs/sipm/Cmax), for a variety of different system configurations
and objective functions. As much of the current industrial competition is a time-based, the reduction
of the production lead-time and due dates are important keys. Hence, the objectives considered are to
(1) to minimize the makespan and (2) to minimize the maximum lateness. The models proposed can
be classified into the following four categories:

(1) Lot-splitting is not allowed and dependent setup times are considered,
(2) Lot-splitting is not allowed and both dependent setup times and due dates are considered,
(3) Lot-splitting is allowed and dependent setup times are considered, and
(4) Lot-splitting is allowed and both dependent setup times and due dates are considered.

The paper is organized as follows. In the next section, the literature review is presented. In section 3,
the problem and propose is described, then four optimizing algorithms are developed in section 4. The
experimental results are presented in Section 5. Section 6 concludes the paper with a discussion of
this research and future extension.

2. Literature Review

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop
manufacturing that has been interested researchers for many years. In 1971, Arthany and Ramaswamy
proposed a branch and bound (B&B) algorithm for the FFs(Pm1, Pm2=1)//Cmax problem. They could
optimally solve problems with up to 10 jobs. Brah and Hunsucker (1991) and Ragendran and
Chuadhuri (1992) developed B&B algorithms for the FFs(Pm1, Pm2, …,Pms)//Cmax). Both studies can
solve only small-sized problems.

In 1995, Moursli improved Brah’s algorithm. His algorithm can solve the problem with up to 20 jobs
optimally. Another study was done by Guinet et al. (1995). They developed a mathematical model
and heuristics for the FFs(Pm1, Pm2//Cmax) problems. Up to date, there is only one literature in
scheduling hybrid flowshop with sequence dependent setup times (FFs/sipm/Cmax). According to
Sethanan (2001), the mixed integer programming is formulated to solve FFs/Qm1,Qm2,…,Qms,
sipm/Cmax.

From the reviewed literature, there is no literature in scheduling hybrid flowshops when machines in
each stage are unrelated and dependent setup times are considered. Such problems are hence

m1,1 m2,1 mL,1

m1,2 m2,2 mL,2

m1,3 m2,3 mL,3

m1,m(1) m2,m(2) mLm

IN
OUT

Figure 1: A Schematic Representation of a hybrid Flowshop Manufacturing Environment

considered in this research with the aim to develop mathematical models for a variety of different
system configurations and objective functions.

3. The Problem Description

The research deals with the general hybrid flowshop, with L production stages, in which each job
sequence may not be the same on each machine at each stage. The problem on hand has several
distinct products. Each production stage may be composed of more than one machine. If a stage has
multiple machines, they are considered to be unrelated. This means the speed of machine depends on
the products to be processed. Prior to processing a job on a machine, there is an associated setup time.
Machine setup times are needed between any two products. Thus, setup times are considered
significant and typically depend on the sequence of the jobs through the processors. The research
addresses the problem of scheduling all products on the machines of different stage in order to
minimize the maximum makespan and due dates.

Description of the models:
The assumptions made in formulating each of the category models are presented as follows:
Category 1:

1. It is assumed that the decisions have been made from the long and intermediate-range
planning.

2. Production is make-for-stock; hence, there are no due dates associated with products.
3. All jobs and machines are available at the beginning of the scheduling process.
4. Each stage of the hybrid flowshop production may have several unrelated machines.
5. Jobs can wait between two production stages and the intermediate storage is unlimited.
6. Products cannot be split between machines in the same stage.
7. There is no job preemption.

Category 2: The assumptions of this category are exactly same as in category 1 except that assumption
(2) is changed to consider due dates of products.

Category 3: The assumptions of this category are exactly same as in category 1 except that product
splitting is considered.

Category 4: The assumptions of this category are exactly same as in category 1 except that due dates
and splitting of products are considered.

4. Optimizing Algorithms

This section presents optimal algorithms for the hybrid flowshops with unrelated machines at each
stage. The 0-1 mixed integer programming formulations are presented below. There are four models
with two different objective functions. Parameters and decision variables used in formulating the
models are defined as presented in Table 1.

Model 1: Lot-splitting is not allowed. The objective function is to minimize the makespan.

The objective function: Min E

Constraints:
F(i,1,m) ≥ ch(0,i,s=1) + {P(i,1,m) ⋅ x(i,1,m)}; i = 1,2,…,n ; and m=1,2,…,m(1) (1)

F(i,s,m) ≥ F(i,s-1,mp) + {P(j,i,s,m)⋅ x(j,i,s,m)}; i= 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), mp = 1,2,…,m(s-1) (2)

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m))≥{P(i,s,m)⋅x(i,s,m)}; i = 1,2,…,n, s = 1,2,…, L, m = 1,2,…,m(s) (3)

F(i,L,m) ≤ E ; i = 1,2,…,n ; and m = 1,2,…,m(L) (4)

∑
=

n

i
mspiw

1
),,,(

∑
=

n

p
mspw

1
),,,0(

∑
=

n

p
mspw

1
),,0,(

∑
=

n

p
mspiw

1
),,,(

Table 1: The Notation Used in the Mixed Integer Programming Model
Type of Variables Notation Explanation

F(i,s,m) Finish time of product i on machine m of stage s
E The makespanDecision Variables
Q(i,s,m) The number of product i that are assigned to machine m of stage s
x(i,s,m) = 1 , if product i is assigned to machine m of stage s

= 0 , otherwise
w(i,0,s,m) = 1 , if product i is the last product processed on machine m of stage s

= 0 , otherwise
B i n a r y d e c i s i o n
variables

w(0,i,s,m) = 1 , if product i is the first product processed on machine m of stage s
= 0 , otherwise

i,p,h Product indices
s Stage index
m(s) The number of machines in stage s
n Total number of products
M(s) The set of machines in stage s; M(s) = {1,2,..,m(s)}
L The number of stages in the production line
H The total number of machines from all stages

= ∑
=

L

s
sm

1
)(

B(i) The number of units required for product i
t(i,s,m) The processing time per unit of product i on machine m of stage s
P(i,s,m) The batch processing time of product i on machine m of stage s ;

P(i,s,m) = B(i)⋅t(i,s,m)
ch(i,p,s) The number of time units required to changeover from production i to product p at

stage s

Parameters

V a very large positive number.

∑
=

)(),,(sm

m
msix

1

= 1; i = 1, 2,…, n ; and s = 1,2,…, L (5)

x(p,s,m) – w(0,p,s,m) - = 0; p = 1,2,…, n; s = 1,2,…,L; and m = 1,2,…,m(s) (6)

x(i,s,m) – w(i,0,s,m) - = 0 ; i = 1,2,…,n ; s = 1,2,…, L; and m = 1,2,…,m(s) (7)

 = 1 ; s = 1,2,…, L; and m = 1,2,…,m(s) (8)

 = 1 ; s = 1,2,…, L; and m = 1,2,…,m(s) (9)

Constraints (1) ensure that all products are scheduled and the completion time of any product on any
machine of the first stage is determined. Constraints (2) ensure that the completion time of product i
produced on machine m in the current stage must be greater than its completion time in a previous
stage. Constraints (3) are about product sequencing on all the L stages. Constraints (4) are needed to
ensure that the makespan is equal to or greater than the completion time of each of the jobs in the last
stage. Constraints (5) ensure that, for each product, it can be manufactured on only one of machines in
that stage of the production line. Constraints (6) ensure that, except for the first product, a product
scheduled on any machine is preceded by exactly one different product. Constraints (7) ensure that,
except for the last product, a product scheduled on any machine must be immediately followed by
only one product. Constraints (8) & (9) ensure that a machine can have exactly one first and one last
product. In this model, there are H(2+2n+n2)+ nm(L) decision variables and generates nH
(12+n)-M+n2+nm(1)+ 1 constraints.

 Model 2: Lot-splitting is not allowed. The objective is to minimize the maximum lateness.
This model is exactly the same in Category 1 except that constraints (10) is added to find the lateness
of each job. This model requires H(2+2n+n2)+ nm(L)+1 decision variables and generates nH
(12+n)-M+n2+nm(1)+ nm(L)+1 constraints.

Lmax ≥ F(i,L,m) – d(i); for i = 1,2,…,n ; and m = 1,2,…,m(L) (10)

Model 3: Lot-splitting is allowed. The objective is to minimize the makespan.
The model to be used is exactly the same in Model 1 with some additional constraints (i.e., constraints
(10), (11), and (12) as shown below) and one modified constraint (i.e., constraint 5). This model
requires H(2+2n+n2)+nm(L)+2nH decision variables and nH(12+n)-M+n2+nm(1)+n(2H+L)
constraints.

 ∑ ≥
=

)(),,(sm

m
msiX

1
1 ; i = 1,2,…,n ; and s = 1,2,…,L (5)

∑ =
=

)(

1
)(),,(

sm

m
iBmsiq ; i = 1,2,…,n ; and s = 1,2,…,L (10)

),,(),,()(msiqmsiXiB ≥⋅ ; i = 1,2,…,n ; s = 1,2,…,L; and m = 1,2,…,m(L) (11)
),,(),,(msinmsiX ≤ ; i = 1,2,…,n ; s = 1,2,…,L; and m = 1,2,…,m(L) (12)

Model 4: Lot-splitting is allowed. The objective is to minimize the maximum lateness.
The model to be used is exactly the same in Model 3, except constraints (13) is added to find the
lateness of each job. In this model, there are H(2+2n+n2) + nm(L) +1 +2nH decision variables and
nH(12+n)-M+n2+nm(1)+n(2H+L)+ nm(L)+1 constraints.

Lmax ≥ F(i,L,m) – d(i) ; i = 1,2,…,n ; and m = 1,2,…,m(L) (13)

5. Experiment Results

In this section, several numerical examples are presented to illustrate various applications of the
proposed models. There are four models considered in this paper. Cases have been established based
on the number of jobs (n), number of stages (s), and number of machines (m). In this experiment, the
parameters are given as: (1) the processing time per a unit of product on each machines of a particular
stage (t(i,s,m)) which is random from uniform distribution with U(20,50), (2) due date (d) of a product
which is random from U(Lpav,2npav/mav) where pav and mav represent the average processing time and
average number of machines, respectively, and (3) the number of units required for each product (B(i))
which is random from uniform distribution with U(15,30).

The examples presented in this section were solved using CPLEX/AMPL software. The models could
optimally solve problems with up to 5 jobs 8 machines with reasonable computational effort. CPU run
times on a PC 500MHz have been varied from several seconds to several minutes. Table 3
summarized these cases and their solution results.

6. Conclusions

The family of the mixed integer programming models proposed in this research can be used in practice
as a simple support tool for the scheduling hybrid flowshops with sequence dependent setup times. A
variety of different system configurations and objective functions considered in this research provides
a scheduler with a basis for constructing of his/her own model for a particular problem instance.

The models proposed can sometimes lead to relatively large integer programs. In particular, the
scheduling hybrid flowshops with sequence dependent setup times when machines are unrelated
contribute essential to the problem size. For realistic scheduling problem, the mixed integer
programming may involve several thousands of binary variables, which by far exceeds the solution
capabilities of the optimization techniques and computer technology. Hence, for the future research, it
is necessary to find solution techniques (e.g., heuristic methods) that are easy to implement even
though they may not always lead to an optimal solution.

Table 3: Optimal Makespan and CPU Times for the Illustrative Problems
Problem Size

m(s)
Optimal Makespan or Lateness (time units) : CPU time (seconds)

Case
Problem

No. n
s=1 s=2 s=3 s=4 s=5 Model 1 Model 2 Model 3 Model 4

1 2 2 2 - - - 1538.49 : 1 181.49 : 2 1066.73 : 4 0.00 : 5
2 2 2 1 2 - - 2060.32 : 1 0.00 : 1 1667.65 : 2 0.00 : 1
3 2 1 1 2 2 - 2658.76 : 1 63.51 : 1 2335.85 : :2 0.00 : 2

1

4 2 2 2 2 1 1 3243.64 : 11 0.00 : 1 2653.91 : 1333 0.00 : 1
1 3 2 2 - - - 1615.28 : 1 0.00 : 1 795.3 : 2 0.00 : 1
2 3 2 2 2 - - 2371.52 : 14 420.41 : 1 1199.95 : 20 0.00 : 3
3 3 2 2 1 1 - 5064.42 : 1 2189.42 : 2 4514.31 : 2 1676.62 : 2

2

4 3 2 1 2 1 2 5615.04 : 2 1280.20 : 1 4652.73 : 1 543.82 : 1
1 4 2 1 - - - 2950.13 : 1 686.40 : 1 2802.29 : 15 538.82 : 1
2 4 3 2 3 - - n/a* 515.38 : 12 n/a 0.00 : 11
3 4 2 2 2 1 - n/a 0.00 : 1 n/a 0.00 : 1

3

4 4 2 1 2 1 2 4413.10 : 54 1357.48 : 11 3789.83 : 36 789.56 : 30
1 5 1 3 - - - 2358.99 : 17 508.46 : 3 2167.19 : 9 252.46 : 4
2 5 1 1 1 - - 4508.86 : 6 1400.45 : 2 4508.86 : 7 1400.46 : 4
3 5 1 1 2 1 - 6191.39 : 554 1842.75 : 44 5675.39 : 369 1518.75 : 570

4

4 5 1 1 2 1 2 n/a n/a n/a n/a
Note: n/a = finding an optimal solution is computationally intractable.

Acknowledgements

This research is fully supported by the Thailand Research Fund Grant No. TRG4580020.

References

Arthanary, T. S. & Ramaswamy, K. G. (1971). An Extension of Two Machine Sequencing Problem.
Opsearch, 8, 10-22.

Brah, S. A. & Hunsucker, J. L. (1991). Branch and Bound Algorithm for the Flow Shop with Multiple
Processors. European Journal of Operational Research, 51, 88-99.

Guinet, A., Solomon, M.M., Kedia, P.K. & Dussauchoy, A. (1996). A Computational Study of
Heuristics for Two-Stage Flexible Flowshops, International Journal of Production Research, 34(5),
1399-1415.

Moursli, O. (1995). Branch and Bound Lower Bounds for the Hybrid Flowshop. Intelligent
Manufacturing Systems, 4th IFAC Workshop, 31-36.

Rajendran, C. & Chaudhuri, D. (1992). Scheduling in n-job, m-machine Flowshop with Parallel
Processors to Minimize Makespan, International Journal of Production Economics, 27, 137-143.

Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times.
Doctoral Dissertation, West Virginia University. West Virginia.

Srikar, B. N. & Ghosh, S. (1986). A MILP Model for the n-job, m-stage Flowshop with Sequence
Dependent Set-up Times. International Journal of Production Research, 24(6), 1459-1474.

Wilbrecht, J. K. & Prescott, W. B. (1969). The Influence of Setup Time on Job Shop Performance,
Management Science, 16, B274-B280.

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

MATHEMATICAL MODELS FOR A HYBRID FLOWSHOP WITH ELIGIBILITY
RESTRICTIONS

Kanchana Sethanan, Jakrapong Gerdjuntheung, and Somkiet Rujikietgumjorn

Industrial Engineering Department, Khon Kaen University, Thailand

skanch@kku.ac.th

ABSTRACT
In the real world manufacturing environment, the scheduling problems are greatly complicated by
presence of disparate issues such as: (1) uniform parallel machines with different speeds, (2)
sequence dependent setups, and (3) machine restrictions. In this paper, a complex scheduling
problem characterized as a hybrid flowshop with machine eligibility constraints is addressed.
The production line consists of S stages, each of which may have more than one uniform
machines. Prior to processing a job on a machine, there is an associated setup time which is
dependant. Even though the hybrid flowshop problem is known to be NP-hard, there are two
main reasons for formulating a mathematical programming model: (1) the mathematical
programming formulation provides a better understanding of the problem and (2) reasonable
sized problems may be solved using the model in the near future. In this research, two
mathematical programming models (i.e., Model A and Model B) are formulated to solve the
problem with the objective is to minimize the mean flow time. The models were solved using
CLEX/AMPL software on a PC 800 MHz. Hence, in this research, the two models are compared
in terms of the number of constraints and decision variables. Computational results show that
Model A is more effective because it generates less decision variables. Model A could be used to
solve problems with up to five jobs and six machines, while Model B could only be used to solve
problems with five jobs and four machines.

Key Words: Scheduling, Flexible Flowshop, Mathematical Programming, Hybrid Flowshop,

Machine Eligibility Restriction, Dependent Setup Times.

1. INTRODUCTION
Consider the following problem. A set of processors must perform a set of jobs, and jobs cannot
process until predecessors are finished. The processing time required to perform each job varies
on each processor. This research focuses on assigning the jobs to each processor and scheduling
the jobs in such a way that the mean flow time is minimize.

In real-life industries, a hybrid flowshop is more commonly seen than traditional flowshop. A
hybrid flowshop is a generalization of the flowshop and the parallel processor environments. In a
hybrid flowshop, there are S stations, each containing of at least one machine. The machines in
each stage may identical, uniform, or unrelated. Let Pims denote the processing time of job j on
machine m n stage s. In general, one can distinguish among the following three cases.

(1) identical machines: Pims = P1ms for all i and m in each s
(2) uniform machines: Pims = Pms/vi for all i and m, where vm is the speed of machine m, and

Pj is the processing time at the normal speed (100% speed).

 7.5.1

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

(3) unrelated machine: Pims arbitrary for all i and m in each s
This paper considers the problem of scheduling independent job i1, i2,…,in on hybrid flowshop

which machines in each stage are unrelated and eligible. Prior to the processing of a job on a
machine, there is an associated setup time. Machine setup times are needed between any two
products. Thus, setup times are considered significant and typically depend on the sequence of
the jobs through the processors, called dependent setup times. The problem is well known to be
NP-hard. Additionally, in the system a job assigned to a particular machine define eligibility of a
machine. If a job cannot be assigned to machines due to efficiency concerns, the machines cannot
process the job. Hence, let Mi,s denotes the set of machines in stage s that can process job i.

This research consider the problem of scheduling jobs to unrelated and eligible machines so
that the maximum completion time (makespan) is minimized. Following standard three-field, the
above problem is denoted as FFs/Rm1,Rm2,…,Rms/Mi,s sipm/Cmax.

2. LITURATURE REVIEW
The problem of scheduling n jobs on m machines is one of the classical problems in flowshop
manufacturing that has been interested researchers for many years. In 1995, Guinet et al.
developed a mathematical model and heuristics for the FFs(Pm1, Pm2//Cmax) problems. According
to Sethanan (2001), the mixed integer programming is formulated to solve FFs/Qm1,Qm2,…,Qms,
sipm/Cmax.

In 2003, Alagoz and Azizoglu developed a mathematical model and three heuristic algorithms
for rescheduling in parallel machines and they also consider machine restrictions. In 2004,
Shchepin and Vakhania developed a polynomial-time algorithm for non-preemptive scheduling
of n-independent jobs on m-unrelated machines to minimize the makespan. The algorithm yields
a better worst-case performance than the earlier known best performance bound. Ghirardi and
Potts (2004) develop a recovering beam search to obtain approximate solutions for unrelated
parallel machines to minimize the makespan. The study could solve for instances with the large
size up to 1000 jobs in polynomial time.

From the reviewed literature, there is no literature in scheduling hybrid flowshops when
dependent setup times and eligibility machine restriction are considered. Such problems are
hence considered in this research with the aim to develop two mathematical models with the
objective to minimize the mean flowtime.

3. THE PROBLEM DESCRIPTION
The research deals with the general hybrid flowshop, with S production stages, in which each job
sequence may not be the same on each machine at each stage. The problem on hand has several
distinct products. Each production stage may be composed of more than one machine. If a stage
has multiple machines, they are considered to be unrelated. This means the speed of machine
depends on the products to be processed. The machines in each stage could not process every job
because of machine restrictions. Additionally, prior to processing a job on a machine, there is an
associated setup time. Machine setup times are needed between any two products. Thus, setup
times are considered significant and typically depend on the sequence of the jobs through the
machines. The research addresses the problem of scheduling all products on the machines of
different stage in order to minimize the mean flow time. The assumptions that have been made
are:

(1) It is assumed that the decisions have been made from the long and medium term
planning.

 7.5.2

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

(2) Production is make-for-stock; hence, there are no due dates associated with products.
(3) All jobs and machines are available at the beginning of the scheduling process.
(4) Each stage of the hybrid flowshop production may have several unrelated machines.
(5) Jobs can wait between two production stages and the intermediate storage is unlimited.
(6) Setup times for jobs on each machine are dependent on the order in which jobs are

processed.
(7) Products cannot be split between machines in the same stage.
(8) There is no job preemption.

4. EXACT ALGORITHMS
This section presents optimal algorithms for the hybrid flowshops with unrelated machines at
each stage. The 0-1 mixed integer programming formulations are presented below. Parameters
and decision variables used in formulating the models are defined as presented in Table 1.

Table 1: The Notation Used in the Mixed Integer Programming Model

Type of Variables Notation Explanation
Decision Variables F(i,s,m) Finish time of product i on machine m of stage s

x(i,s,m) = 1 , if product i is assigned to machine m of stage s
= 0 , otherwise

x(j,i,s,m) = 1, if product i is previously scheduled product i on machine m of stage s
= 0, otherwise

w(i,0,s,m) = 1, if product i is the last product processed on machine m of
 stage s
= 0 , otherwise

w(0,i,s,m) = 1, if product i is the first product processed on machine m of
 stage s
= 0 , otherwise

Binary decision
variables

W(i,j,s,m) =1, if product I immediately precedes product j on machine m of
 stage s
=0; otherwise

i,p,h,j Product indices
s Stage index
m(s) The number of machines in stage s
n Total number of products
M(s) The set of machines in stage s; M(s) = {1,2,..,m(s)}
PD(s,m) Set of products that can be processed on machine m of stage s
S The number of stages in the production line
ψ Set of stages
H The total number of machines from all stages

= ∑
=

S

s
sm

1
)(

P(i,s,m) The processing time of job i on the mth machine m in stage s
ch(i,p,s) The setup time required between job i and p in stage s if i precedes p

Parameters

V a very large positive number.

 7.5.3

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

 7.5.4

1

Model A:

The objective function: Min)},,({1 mSiF
n
⋅

Constraints:
F(i,1,m) ≥ ch(0,i,s=1) + {P(i,1,m) ⋅ x(i,1,m)}

i ∈ PD(s,m); and m ∈ M(s) (1)

F(i,s,m) ≥ F(i,s-1,mp) + {P(i,s,m)⋅ x(i,s,m)};

i ∈ PD(s,m); s = 2,3,…,S, m ∈ M(s), mp = 1,2,…,m(s-1) (2)

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) ≥ {P(i,s,m)⋅x(i,s,m)};

i ∈ PD(s,m), s = 1,2,…, S, m ∈ M(s) (3)

∑
=

)(
),,(

sm

m
msix

1
 = 1

∑ mspiw),,,(
=

n

i

i ∈ PD(s,m); and s∈ ψ (4)

x(p,s,m) – w(0,p,s,m) - = 0;

p ∈ PD(s,m); s∈ ψ; and m ∈ M(s) (5)

∑
=

ms
1

),

p
mspi

1
),,,(∑

n
w

=
x(i,s,m) – w(i,0,s,m) - = 0 ;

 i ∈ PD(s,m); s∈ ψ; and m ∈ M(s) (6)
n

p
mspw

1
),,,0(= 1; s∈ ψ; and m ∈ M(s) (7)

∑
n

pw ,0,(= 1 ; s∈ ψ; and m ∈ M(s) (8)
p=

Constraint (1) ensures that all products are scheduled and the completion time of any product
on one of machines in the first stage is determined. Constraint (2) ensures that the completion
time of product i produced on machine m in the current stage must be greater than its completion
time in a previous stage. Constraint (3) is about product sequencing on all the S stages.
Constraint (4) ensures that, for each product, it can be manufactured on only one of machines in
that stage of the production line. Constraint (5) ensures that, except for the first product, a product
scheduled on any machine is preceded by exactly one different product. Constraint (6) ensures
that, except for the last product, a product scheduled on any machine must be immediately
followed by only one product. Constraints (7) & (8) ensure that a machine can have exactly one
first and one last product.

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

Model B:

The objective function: Min)},,({1 mSiF
n
⋅

Constraints:

),1,,(),1,(),1,(mjiXmjPmjF ≥

 i , j ∈ PD(s,m) , m ∈ M(s), and i ≠ j (9)

),,,(),,()',1,(),,(msjiXmsjPmsjFmsjF +−≥

 i , j ∈ PD(s,m), m ∈ M(s), i ≠ j , s∈ ψ, m′ ∈ M(s-1) (10)

)),,,(1(),,(),,,(),,(),,(msjiXVmsjPmsjiXmsiFmsjF −−+≥

 i,j∈ PD(s,m), i ≠ j , m ∈ M(s), and s∈ ψ (11)

1),,,(

0

)(

1
=∑∑

= =

n

i

sm

m
msjiX

 j ∈ PD(s,m), i ≠ j and s∈ ψ (12)

∑ ∑
= =

=−
n

i

n

j
msjhXmshiX

0 0
0),,,(),,,(

 i, h ∈ PD(s,m), i ≠ j , m ∈ M(s), and s ∈ ψ (13)

∑
=

≤
n

i
msjiW

1
1),,,(1

 i ∈ PD(s,m), m ∈ M(s), i ≠ j, and s∈ ψ (14)

Constraint (9) ensures that all products are scheduled and the completion time of any product
on any machine of the first stage is determined. Constraint (10) ensures that the completion time
of product i produced on machine m in the current stage must be greater than its completion time
in a previous stage. Constraint (11) is about product sequencing on all the S stages. Constraint
(12) ensures that, for each product, it can be manufactured on only one of machines in each stage
of the production line. Constraint (13) ensures that each machine must have only one first and
one last product. And, except for the last product, a product scheduled on any machine must be
immediately followed by only one product. Constraint (14) ensures that each product must
precede at most one different product.

5. COMPARISON OF THE TWO FFS MODELS
The comparisons of the models were performed for the following analyses: (1) problem size
complexity of each model and (2) comparison of the two models with regard to computer
solution required.

 7.5.5

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

5.1 Size complexity of the models
The size of both models is represented by the equations in Table 2.

 Table 2: Size Complexity of each Model for the Flexible Flowshop

Model Problem Total
Variables Binary Variables Constraints

A FFS(Rm1, Rm2, …, RmS)/sipm,Mj/ F) nH n(8H+2m(1)+3nH) n(S+5H+m(1)+m(S)m(S-1)+
m(S-1)m(S-2)+…+m(2)m(1))

B
FFS(Rm1, Rm2, …, RmS)/sipm,Mj/ F)

nH 6n2H+3nH+n2m(1) n(S+3H+m(1)+m(S)m(S-1)+
m(S-1)m(S-2)+…+m(2)m(1))

5.2 Experimental Design
In this section, several numerical examples are presented to illustrate various applications of the
proposed models. There are two models considered in this paper. Cases have been established
based on the number of jobs (n), number of stages (s), number of machines (m), and number of
restricted machines. In this experiment, the parameters are given as: (1) the processing time of
products on each machines of a particular stage (P(i,s,m)) is a random value number from the
uniform distribution U(20,50), (2) the speed of machines is a random number from U(0.7, 1.3).
The examples presented in this section were solved using CPLEX/AMPL software.

5.3 Results
The solutions of the thirty problems solutions are summarized in Table 3. The CPU time are also
given in Table 4. Model A could optimally solve problems with up to 5 jobs 8 machines with
reasonable computational effort, while Model 2 could optimally solve problems only 4 jobs 6
machines. However, it as shown that Model A requires less computer time than Model B
because it generates lesser numbers of binary and decision variables.

6. CONCLUSIONS AND FUTURE WORK
The mathematical programming models proposed in this research can be used in practice as a
simple support tool for scheduling in hybrid flowshops. The models lead to large integer
programming problem however. In particular, the scheduling hybrid flowshops with sequence
dependent setup times and machines in each stage are unrelated and eligible contribute essentially
to the problem size. For realistic scheduling problem, the mathematical programming may
involve several thousands of binary variables and constraints, which by far exceeds the solution
capabilities of the optimization techniques and computer technology. Hence, for the future
research, it is necessary to find solution techniques (e.g., metaheuristic methods) that are easy to
implement even though they may not always lead to an optimal solution.

 7.5.6

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

Table 3: Computer Solution Time for the Problems of Each Model

Problem Computer solution time (sec.)
Machines* Jobs Model A Model B

5 (2,1,2)** 3 1 2
5(1,2,2) 3 1 1
5 (2,1,1,1) 3 1 1
5 (2,2,1) 3 1 1
5 (1,2,2) 3 1 1
4 (2,1,1) 4 1 15
4 (1,2,1) 4 30 29
4 (1,1,2) 4 16 13
4 (2,2) 4 30 30
4 (1,1,1,1) 4 17 25
5 (2,2,1) 4 24 30
5 (2,1,2) 4 4 3
5 (1,2,2) 4 3 2
5 (1,2,1,1) 4 23 32
5 (3,2) 4 20 16

Table 4: Computer Solution Time for the Problems of Each Model

Problem Computer solution time (sec.)
Machines* Jobs Model A Model B

4 (2,1,1) 5 45 37
4 (1,2,1) 5 28 32
4(1,1,2) 5 29 60
4 (2,2) 5 4 3
4 (2,1,1) 5 25 35
7 (3,2,2) 5 120 136
7 (2,3,1,1) 5 1251 1546
7 (3,1,2,1) 5 826 411
7 (4,2,1) 5 350 70
7 (3,2,2) 5 5 5
6 (2,3,1) 5 2342 n/a
6 (2,2,2) 5 4419 n/a
6 (2,1,3) 5 6095 n/a
6 (1,1,1,2,1) 5 n/a*** n/a
6 (2,1,1,1,1) 5 n/a n/a
Note: * Number of the restricted machines is one machine.

 **(x,y,z) = There are x, y, and z machines in station 1, 2, and 3, respectively.
 ***n/a = finding an optimal solution is computationally intractable.

ACKNOWLEDGEMENTS
This research is fully supported by the Thailand Research Fund Grant No. TRG4580020

 7.5.7

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004

REFERENCES
Alagoz O. & Azizoglu, M. (2002). Rescheduling of Identical Parallel Machines under Machine

Eligibility Constraints. European Journal of Operational Research. To Appear.
Ghirardi, M. & Potts, C.N. (2004). Makespan Minimization for Scheduling Unrelated Parallel

Machine: A Recovering Beam Search Approach. European Journal of Operational
Research. To Appear.

Guinet, A., Solomon, M.M., Kedia, P.K. & Dussauchoy, A. (1996). A Computational Study of
Heuristics for Two-Stage Flexible Flowshops, International of Production Research, 34.5,
1399-1415.

Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times.
Doctoral Dissertation, West Virginia University. West Virginia.

Shchepin E.V. & Vakhania N. (2004). An Optimal Rounding Gives a Better Approximation for
Scheduling Unrelated Machines. European Journal of Operational Research. To Appear.

 7.5.8

	8.pdf
	8.pdf
	1.2 Dependent setup time
	3. The Problem Description
	Description of the models:
	4. Optimizing Algorithms
	Model 1: Lot-splitting is not allowed. The objective function is to minimize the makespan.
	The objective function: Min E
	Constraints:

	Constraints (1) ensure that all products are scheduled and the completion time of any product on any machine of the first stage is determined. Constraints (2) ensure that the completion time of product i produced on machine m in the current stage mu

