

รายงานวิจัยฉบับสมบูรณ์

โครงการ การจัดลำดับการผลิตของอุตสาหกรรมต่อเนื่องแบบผสม เมื่อเครื่องจักรในแต่ละสถานึงานมีประสิทธิภาพการทำงาน ไม่เท่ากัน

โดย

ผศ.ดร.กาญจนา เศรษฐนันท์

รายงานวิจัยฉบับสมบูรณ์

โครงการ การจัดลำดับการผลิตของอุตสาหกรรมต่อเนื่องแบบผสมเมื่อเครื่องจักร ในแต่ละสถานึงานมีประสิทธิภาพการทำงานไม่เท่ากัน

โดย

ผศ.ดร.กาญจนา เศรษฐนันท์

ภาควิชาวิศวกรรมอุตสาหกรรม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

กิตติกรรมประกาศ

การวิจัยครั้งนี้ได้สำเร็จลุล่วงไปด้วยดี ผู้วิจัยต้องขอขอบคุณสำนักงานกองทุนสนับสนุนการ วิจัย (สกว.) ที่ได้ให้โอกาสและให้ทุนการวิจัยเพื่อเป็นกาสนับสนุนการวิจัยให้แก่นักวิจัยรุ่นใหม่ได้มี โอกาสทำงานวิจัยและพัฒนาตัวเองอย่างต่อเนื่อง และสามารถที่จะผลิตผลงานตีพิมพ์ในวารสารวิชา การระดับนานาชาติได้

พร้อมกันนี้ผู้วิจัยขอกราบขอบพระคุณ รศ.ดร.สมเกียรติ รุจิเกียติกำจร หัวหน้าภาควิชา วิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น นักวิจัยพี่เลี้ยงที่ได้กรุณาเสีย สละเวลาให้คำปรึกษา ชี้แนะแนวทางและความรู้ต่างๆ ตลอดเวลาที่ผู้วิจัยได้รับทุน นอกจากนี้ผู้วิจัย ใคร่ขอขอบคุณเจ้าหน้าที่ของ สกว. ทุกท่านที่ได้อำนวยความสะดวกและให้ความช่วยเหลือต่างๆ ด้วย ดีตลอดมา

สุดท้ายผู้วิจัยขอขอบพระคุณคุณแม่และคุณพ่อผู้อันเป็นที่รัก น้องสาว น้องชาย และตัวเอง ที่ได้ให้ความรัก และความอบอุ่น ตลอดจนกำลังใจที่ทำให้ฝ่าฝันอุปสรรคต่างๆ ได้เป็นอย่างดี

> ผศ.ดร.กาญจนา เศรษฐนันท์ พฤษภาคม 2548

บทคัดย่อ

รหัสโครงการ: TRG 4580020

ชื่อโครงการ: การจัดลำดับการผลิตของอุตสาหกรรมต่อเนื่องแบบผสม เมื่อเครื่องจักรในแต่ละ

สถานีงานมีประสิทธิภาพการทำงานไม่เท่ากัน

ชื่อนักวิจัยและสถาบัน: ผศ.ดร.กาญจนา เศรษฐนันท์

ภาควิชาวิศวกรรมอุตสาหกรรม

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

E-mail Address: skanch@kku.ac.th

ระยะเวลาโครงการ: 1 กรกฎาคม 2545 - เมษายน 2547

ในงานวิจัยนี้ ได้ศึกษาเกี่ยวกับการจัดลำดับการผลิตในรายการผลิตต่อเนื่องแบบผสม โดยมีการพิจารณาเวลาเตรียมงานที่ไม่อิสระในสายการผลิตต่อเนื่องแบบผสมจะประกอบด้วยสถานี งานทั้งหมด L สถานึงาน โดยแต่ละสถานึงานประกอบด้วยเครื่องจักรอย่างน้อย 1 เครื่องที่มีประสิทธิ ภาพไม่เท่ากันแบบไม่สัมพันธ์กัน (unrelated machines) วัตถุประสงค์ของงานวิจัยนี้ เพื่อทำให้เวลา แล้วเสร็จของการผลิตมีค่าน้อยที่สุด ในการวิจัยครั้งนี้รูปแบบทางคณิตศาสตร์ได้ถูกสร้างขึ้น เพื่อหา คำตอบที่ดีที่สุดสำหรับปัญหาขนาดเล็กที่ไม่ซับซ้อนและวิธีทางฮิวริสติค 2 ฮิวริสติค (IH และ TSearch) ซึ่งได้ถูกพัฒนาขึ้นเพื่อใช้ในการแก้ปัญหาขนาดใหญ่ที่เป็นจริงสำหรับอุตสาหกรรมโดยทั่ว ไป โดย IH เป็นฮิวริสติคที่ให้ค่าคำตอบเริ่มแรก (initial Solution) ที่ค่อนข้างดีและคำตอบที่ได้จาก IH ฮิวริสติคนี้จะถูกนำไปปรับปรุงให้ดีขึ้นโดย TSearch ฮิวริสติค โดย TSearch ฮิวริสติคนี้จะทาบูเสริช เมตะฮิวริสติค (Tabu Search Metaheuristic) ในการประเมินประสิทธิภาพของ 2 ฮิวริสติคนั้นจะใช้ Lower bounds (Forward LB และ Backward LB) ที่ได้พัฒนาขึ้นในการคำนวณ Lower bounds นั้นจะประกอบด้วย 4 ปริมาณคือ (1) เวลารอของเครื่องจักรที่สถานึงานที่ L (2) เวลารอของเครื่อง จักรที่สถานึงานสุดท้าย (3) เวลาการผลิตทั้งหมด และ (4) เวลาเตรียมเครื่องจักร ดังนั้นในการ ประเมินประสิทธิภาพของฮิวริสติคที่พัฒนาขึ้นนั้นจะมีการวัดใน 2 ปริมาณคือ (1) สมรรถนะของฮิวริ สติคโดยเปรียบเทียบกับ Lower bounds และ (2) เปอร์เซ็นต์การปรับปรุงของ TSearch ฮิวริสติคจาก การใช้คำตอบจาก IH ฮิวริสติค จากการทดลองพบว่า ฮิวริสติกที่พัฒนาขึ้นมีประสิทธิภาพค่อนข้างดี และเปอร์เซ็นต์การปรับปรุงประสิทธิภาพจากการใช้ TSearch ฮิวริสติคจะอยู่ระหว่าง 12.2% - 25.5%

คำหลัก: Heuristics, Hybrid Flowshop, flexible Flowshop, Unrelated Muchines,
Dependent Setup Times.

ABSTRACT

Project Code: TRG 45800200

Project Title: Heuristics for Scheduling Flexible Flowshops when Machines are Unrelated.

Investigator: Asst. Prof. Kanchana Sethanan, Ph.D.

E-mail Address: skanch@kku.ac.th

Project Period: July 1, 2002 - Apr 1, 2004

This research addresses the scheduling problem in a hybrid flowshop when machines in each stage are unrelated and sequence dependent setup times are considered. The production line consists of L production stages, each of which may have more than one non-identical (unrelated) machines. Prior to processing a job on a machine at the first stage, a setup time from idling is required. Also, sequence dependent setup times are considered on each machine in each stage. The objective of this research is to minimize the maximum makespan. Two mathematical models were formulated for small size problems and two heuristic algorithms (IH and TSearch) were developed to solve larger, more practical problems. In order to evaluate the Performance of the heuristic, normally, the heuristic solutions are compared to optimal solutions and/or lower bounds. The hybrid flowshop when machines in each stage are unrelated and sequence dependent setup times are considered is known to be NP-hard, and hence finding and optimal solution for average or large-size problems will be computationally intractable. The only alternative left is to develop lower bounds for the problem and use them to assess the quality of the heuristic solutions. Therefore, in this study, two lower bounds (Forward and Backward) were developed in order to evaluate the performance of the heuristics. Results obtained show that the heuristic algorithms are quite efficient. The relative improvement yielded by the TSearch algorithm was between 12.2 and 25.5 percent.

Keywords: Heuristics, Hybrid Flowshop, flexible Flowshop, Unrelated Machines, Dependent Setup Times.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	Ш
ABSTRACTS	IV
TABLE OF CONTENTS	VI
LIST OF TABLES	VII
CHAPTER 1: INTRODUCTION	1
1.1 A HYBRID FLOWSHOP ENVIRONMENT	1
1.2 DEPENDENT SETUP TIME	2
CHAPTER 2: LITERATURE REVIEW	3
CHAPTER 3: THE PROBLEM DESCRIPTION	4
3.1 DESCRIPTION OF THE MODEL	4
CHAPTER 4: OPTIMIZING ALGORITHMS	5
CHAPTER 5: IH ALGORITHM	9
5.1 A DETAILED DESCRIPTION OF THE IH ALGORITHM	10
CHPATER 6: LOWER BOUNDS	21
6.1 Introduction	21
6.2 LOWER BOUND DETERMINATION	21
CHAPTER 7: COMPUTATIONALEXPERIENCE	29
7.1 Introduction	29
7.2 COMPARISON OF THE RESULTS OF HEURISTIC ALGORITHMS WITH	
THE LOWER BOUNDS	30
7.3 COMPARISON BETWEEN THE IH ALGORITHM AND THE TSEARCH ALGORITHM	36
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS	39
8.1 Contribution of the Research	40
8.2 RECOMMENDATIONS FOR FUTURE RESEARCH	40
CHPATER 9: OUTPUTS จากโครงการวิจัยที่ได้รับทุนจาก สกว.	41
9.1 การนำเสนอผลงานการประชุมวิชาการระดับนานาชาติ	
(International Conference)	41
9.2 Software ของ Heuristic Algorithm ในรูปแบบ GUI (Graphic User Interface)	41
9.3 <i>Software ของการคำนวนค่า</i> Lower Bounds ในรูปแบบ GUI (Graphic User Interface)	41
REFFERENCE	42
APPENDICIES	44
APPENDIX A	45
APPENDIX B	48
APPENDIX C	51
APPENDIX D	64
APPENDIX E	72
APPENDIX F	74

TABLE OF CONTENTS

		PAGE
TABLE 4.1	THE NOTATION USED IN THE MIXED INTEGER PROGRAMMING MODEL	5
TABLE 7.1	VALUES OF PARAMETERS USED WITH THE DIFFERENT DATA TYPES	29
TABLE 7.2	COMPUTATIONAL RESULTS FOR SET 1 TYPE A:	31
TABLE 7.3	COMPUTATIONAL RESULTS FOR SET 1 TYPE B:	31
TABLE 7.4	COMPUTATIONAL RESULTS FOR SET 1 TYPE C:	32
TABLE 7.5	COMPUTATIONAL RESULTS FOR SET 1 TYPE D:	32
TABLE 7.6	COMPUTATIONAL RESULTS FOR SET 1 TYPE D:	33
TABLE 7.7	COMPUTATIONAL RESULTS FOR SET 2 TYPE B:	33
TABLE 7.8	COMPUTATIONAL RESULTS FOR SET 2 TYPE C:	34
Table 7.9	COMPUTATIONAL RESULTS FOR SET 2 TYPE D:	34
TABLE 7.10	AVERAGES OF COMPUTATIONAL RESULTS FOR SETS 1 AND 2 FOR ALL	
	DATA TYPES:HEURISTIC ALGORITHMS VS. LOWER BOUND	35
TABLE 7.11	RELATIVE IMPROVEMENT RESULTS FOR THE DIFFERENT DATA TYPES IN	
	SET 1:	37
TABLE 7.12	RELATIVE IMPROVEMENT RESULTS FOR THE DIFFERENT DATA TYPES IN	
	SET 2:	37
TABLE 7.13	RELATIVE IMPROVEMENT RESULTS FOR SETS 1 AND 2	38

Scheduling Flexible Flowshops with Sequence Dependent Setup Times and Machines in Each Stage Are Unrelated

CHAPTER 1 INTRODUCTION

Nowadays, manufacturers are faced with customer demands for a variety of high quality products. The companies must therefore make their production systems more flexible, respond rapidly to demand fluctuations, and reduce costs related to production. Hence, companies need to have advanced techniques. Manufacturing has been an interesting topic in production and operation management because of areas such as job scheduling or machine loading.

Scheduling problems arise whenever a set of resources such as workers or machines are required to perform a set of operations on jobs, also each operation can be accomplished in more than one way. Given a limited set of resources, the scheduling problem is to assign jobs to resources according to some process routing in order to obtain optimal performance measures while ensuring that all production constraints are satisfied. The development of production schedules is a remarkably important task in industry especially scheduling jobs through non-identical, parallel processors. Non-identical processors are processors that do not have equal capabilities and capacities. This type of production system where multiple products are made on parallel, non-identical production line is common in both service and manufacturing industries. For instance, workers in an office have different skills, an airline assigns a type of airplane to service a route, or paper plant assigns products to different paper machines. A parallel processing is the situation where a job can be done by more than one processor but only one processor can actually work on the job (Randhawa & Smith, 1995). Hence, scheduling problems involve the assignment of machines to various jobs and determination of the order in which the jobs will be performed in order to optimize some criteria (such as minimization of makespan, mean flow time, or lateness) while satisfying the shop constraints.

1.1 A Hybrid Flowshop Environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop. A hybrid flowshop is a generalization of the flowshop and the parallel processor environments. A hybrid flowshop is alternatively called a flexible flowshop (FFs). In a hybrid flowshop environment, there are *L* workstations, each of which consists of at least one machine. The machines in each stage may identical, uniform, or unrelated. In a hybrid flowshop, each job is processed first at stage 1, then

at stage 2, and so on. Normally, a job requires only one machine in each stage and any machine can process any job as shown in the schematic representation in Figure 1.

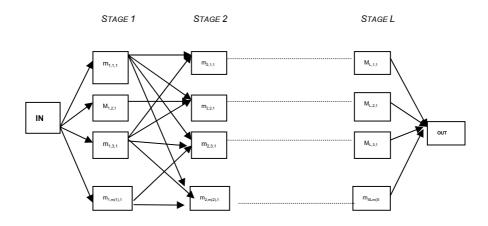


Figure 1: A Schematic representation of a Flexible Flowshop Manufacturing Environment

1.2 Dependent Setup Time

The requirements of setup times of jobs are very common in many real manufacturing situations such as inspecting material, setting tools, and cleanup. There are two types of setup times: sequence independent and sequence dependent setup times. Sequence dependent setup times are considered to be very important factors in the manufacturing environment, especially, when a shop floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence dependent setups occur especially in process industry operations, where machine setup time is significant and is needed when products change. The magnitude of setup time depends on the similarity in technological processing requirements for successive jobs (Srikan & Ghosh, 1986). Normally, similar technological requirements for two consecutive jobs would require lesser setup.

Even though there exists an enormous amount of research on the flowshop scheduling problem, research study has rarely been conducted in the case where setup times are sequence dependent (Allahverdi et al., 1995). Hence, the results of these research studies lack a practical solution for applications that require the treatment of setup times. For this reason, dependent setup times must be allowed for a realistic description and hence are considered in this research. The paper is organized as follows. In the next section, the literature review is presented. In section 3, the problem and propose is described, then two optimizing algorithms are developed in section 4. The heuristic algorithms are described in Section 5. In section 6, the lower bounds for the problem are determined. Section 7 concludes the paper with a discussion of this research and future extension.

LITERATURE REVIEW

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop manufacturing that has been interested researchers for many years. According to Gupta (1994), a heuristic was developed to solve a special case when there is only one machine in the second in order to minimize the makespan. Computational experiments show that the effectiveness of the proposed heuristic increases as the problem-size increases. Brah and Hunsucker (1991) develop branch and bound algorithms for the multiple stage hybrid flowshop (Pm_1 , Pm_2 ,..., Pm_s)// C_{max}). The computational results show that the algorithms can solve only small-sized problems. Portmann et al. (1998) improved the lower bound of Brah's and reduced the number of branches used in the search tree. They could solve the problems with up to five stages and fifteen jobs.

For the dependent setup time problem, Ruiz et al. (2005) presented two advanced genetic algorithms as well as several adaptations of existing advanced metaheuristics that have shown superior performance when applied to a regular flowshop with sequence dependent setup times. In the same year, Ruiz and Maroto developed a metaheuiristic, in the form of genetic algorithm, for hybrid flowshops with sequence dependent setup times and machines eligibility. The results indicate that the proposed algorithm is more effective than all other adaptations. Tahar et al. (2005), developed a linear programming model and a heuristic algorithm for identical parallel machine scheduling with job splitting and sequence-dependent setup times in order to minimize the makespan. According to Kurz and Askin (2005) developed an integer programming model based on the TSP for the flexible flow lines with sequence dependent setup times. Several heuristics such as Insertion heuristic and Random keys Genetic Algorithm also developed.

In addition, Sethanan (2001), the mixed integer programming is formulated to solve the flexible flowshops with sequence dependent setup times when machines in each stages are uniform (FFs(Qm₁,Qm₂,...,Qm_s)/S_{ipm}/ C_{max}). Since the FFs(Qm₁,Qm₂,...,Qm_s)/S_{ipm}/ C_{max} problem is known to be NP-hard (Allahverdi, 1999) and hence finding an optimal solution for average or large-size problems will be computationally intractable. Therefore, in her study, the algorithm and two lower bounds were developed to solve the problem.

From the reviewed literature, there is no literature in scheduling multiple hybrid flowshop lines with sequence dependent times when machines in each stage are unrelated. Hence, this research focuses on scheduling multiple hybrid flowshop lines when machines are unrelated and sequence dependent times also are considered.

THE PROBLEM DESCRIPTION

This research involves scheduling multiple products through non-identical parallel production lines. There are many production stages in each production line. Each stage may comprise more than one machine. Resource and technological constraints are considered in this production system. Resource constraints generally refer to processor capacities and limitations. Technological constraints are considered as product routing and precedence constraints. In this study, all products can be manufactured on every machine in a stage, and the machine cannot process a new product until the previous product has been completely finished.

Prior to processing a job on a machine, there is an associated setup time. Thus, setup times are considered significant and typically depend on the sequence of the jobs through the processors. Setup times in general are large when compared to the unit processing time. As much of the current industrial competition is a time-based, the reduction of the production lead time is an important key. Hence, the objective of this research is to minimize the maximum completion time of the products called the makespan. Two mathematical models are formulated to solve the problem and to produce an optimal schedule in order to minimize the total makespan.

3.1 Description of the model

The assumption made in formulating the model are followed:

- 1. It is assumed that the decisions have been made from the long and intermediate-range planning.
- 2. Production is make-for-stock; hence, there are no due dates associated with products.
- 3. All jobs and machines are available at the beginning of the scheduling process.
- 4. In the production line, there are many stages. Each stage of the hybrid flowshop production may have several non-identical machines.
- 5. Jobs can wait between two production stages and the intermediate storage is unlimited.
- 6. Setup times for jobs on each machine are dependent on the order in which jobs are processed.
- 7. Products cannot be split between machines in the same stage.
- 8. There is no job preemption.

OPTIMIZING ALGORITHMS

A brief description of the problem is reviewed in order to help in understanding the mathematical formulation. In this research, there is only one production line considered. The problem involves the scheduling of multiple products in a flexible flowshop environment with sequence dependent setup times (FFS(R_{m1} , R_{m2} ,..., R_{mS})/s_{ipm}/C_{max}). The production line consists of many stages, which may have one or more non-identical (unrelated) parallel machines. In each stage, machines can process all products but differ in their performances and the machines cannot process a new product until the previous product has been completely finished.

The products have to be manufactured on only one of the machines in each stage, and the processing of products cannot start until the entire batch is completed in the previous stage. Each product, e.g., product i requires P(i,s,m) units processing time on machine m of stage s. Machine setup times are needed between any two products. In this study, it is assumed that setup times are equal for every machine in the same stage when changing from one product to another.

This section presents an optimal algorithm for the FFS with uniform machines at each stage. A 0-1 mixed integer programming model is developed with the criterion to minimize makespan for this problem. Parameters and decision variables used in formulating the model are defined as presented in Table 1. The 0-1 mixed integer programming formulation is presented below with a brief explanation of each constraint.

Table 4.1: The Notation Used in the Mixed Integer Programming Model

Type of					
Variables	Notation	Explanation			
Decision Variables	F(i,s,m)	Finish time of product i on machine m of stage s			
Decision variables	E	The makespan			
	x(i,s,m)	= 1 , if product i is assigned to machine m of stage s			
		= 0 , otherwise			
	w(i,p,s,m)	= 1 , if product i immediately precedes product p			
Binary decision		on machine m of stage s			
variables		= 0 , otherwise			
variables	w(i,0,s,m)	= 1 , if product i is the last product processed on machine m of stage s			
		= 0 , otherwise			
	w(0,i,s,m)	= 1 , if product i is the first product processed on machine m of stage s			
		= 0 , otherwise			
Parameters	Product indices				
	s	Stage index			

m(s)	The number of machines in stage s
n	Total number of products
M(s)	The set of machines in stage s; M(s) = {1,2,,m(s)}
L	The number of stages in the production line
P(i,s,m)	The processing time of product i on machine m of stage s
ch(i,p,s)	The number of time units required to changeover from production i to
	product p at stage s
V	a very large positive number.

Model 1:

The objective function: Min E

Constraints:

$$F(i,1,m) \ge ch(0,i,s) + \{P(i,1,m) \cdot x(i,1,m)\}$$
 (1)

i = 1,2,...,n; and m=1,2,...,m(1)

$$F(i,s,m) \geq F(i,s-1,mp) + \{P(j,i,s,m) \cdot x(j,i,s,m)\}$$
 (2)

$$i = 1,2,...,n$$
; $s = 2,3,...,L$, $m = 1,2,...,m(s)$, and $mp = 1,2,...,m(s-1)$

$$F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) \ge \{P(i,s,m) \cdot x(i,s,m)\}$$
(3)

$$i = 1,2,...,n, s = 1,2,..., L, m = 1,2,...,m(s)$$

$$F(i,L,m) \leq E$$
 (4)

i = 1,2,...,n; and m = 1,2,...,m(L)

$$\sum_{m=1}^{m(s)} \chi(i, s, m) = 1 \tag{5}$$

i = 1,2,..., n; and s = 1,2,..., L

$$x(p,s,m) - w(0,p,s,m) - \sum_{p=1}^{n} w(i,p,s,m) = 0$$
 (6)

p = 1,2,..., n; s = 1,2,...,S; and m = 1,2,...,m(s)

$$x(i,s,m) - w(i,0,s,m) - \sum_{i=1}^{n} w(i,p,s,m) = 0$$
 (7)

i = 1,2,...,n; s = 1,2,...,L; and m = 1,2,...,m(s)

$$\sum_{n=1}^{n} w(0, p, s, m) = 1$$
 (8)

$$s = 1,2,..., L;$$
 and $m = 1,2,...,m(s)$

$$\sum_{k=0}^{n} w(p,0,s,m) = 1$$

s = 1,2,...,L; and m = 1,2,...,m(s)

Constraints (1) is a completion time forcing constraints. It ensures that all products are scheduled and the completion time of any product on any machine of the first stage is at least the amount of processing time required for the product on that machine. Constraints (2) ensures that the completion time of product i produced on machine m in the current stage (stage s) must be greater than its completion time in a previous stage (stage s-1). Constraints (3) is about product sequencing on all the If product p manufactured on machine m at stage s immediately precedes product i manufactured on the same machine and stage, then the value of w(p,i,s,m) equals to one. Hence, the completion time of product i (manufactured on that machine with the same stage) is greater than the completion time of product p. The difference is by the sum of the setup time from product p to product i and the required processing time of product i on that machine with the same stage. Constraints (4) are needed to ensure that the makespan is equal to or greater than the completion time of each of the jobs in the last stage. Constraints (5) ensures that, for each product, it can be manufactured on only one of machines in that stage of a production line. Constraints (6) ensures that, except for the first product, a product scheduled on any machine is preceded by exactly one different product. Constraints (7) ensures that, except for the last product, a product scheduled on any machine must be immediately followed by only one product. Constraints (8) &(9) ensure that a machine can have exactly one first and one last product.

Model 2:

The objective function: Min E

Constraints:

$$F(i,L,m) \leq E$$
 (1)

i = 1,2,...,n; and m = 1,2,...,m(L)

$$\sum_{i=1}^{n} w(p,i,s,m) \le 1$$
 (2)

i = 1,2,..., n; m = 1,2,...,m(L), and s = 1,2,..., L

$$\sum_{p=0}^{n} \sum_{m=1}^{m(s)} w(p,i,s,m) = 1$$
 (3)

i = 1,2,..., n; and s = 1,2,..., L

$$\sum_{p=0}^{n} w(p,h,s,m) - \sum_{i=0}^{n} w(h,i,s,m) = 0$$
(4)

h = 1,2,..., n; m = 1,2,...,m(L), and s = 1,2,..., L

$$F(i,s,m) - F(p,s,m) - ch(p,i,s,m) + V(1 - w(j,i,s,m)) \ge w(p,i,s,m) \cdot P(i,s,m)$$
(5)

$$i,p = 1,2,..., n ; m = 1,2,...,m(L), and s = 1,2,..., L$$

$$F(i,s,m) \ge F(i,s-1,mp) + P(i,s,m) \cdot w(p,i,s,m)$$
 (6)

i = 1,2,...,n; s = 2,3,...,L, m = 1,2,...,m(s), and mp = 1,2,...,m(s-1)

$$F(i,1,m) \ge P(i,1,m) \cdot w(p,i,1,m)$$
 ; i = 1,2,..., n; m = 1,2,...,m(1) (7)

Constraints (1) are needed to ensure that the makespan is equal to or greater than the completion time of each of the jobs in the last stage. Constraints (2) ensures that each machine has to be assigned to at most one job. Constraints (3) ensures that each job is processed once and once in each stage. Constraints (4) ensures that, except for the first product, a product scheduled on any machine is preceded by exactly one different product and, except for the last product, a product scheduled on any machine must be immediately followed by only one product. Constraints (5) is about product sequencing on all the L stages detailed as in model 1. Constraints (6) ensures that the completion time of product i produced on machine m in the current stage (stage s) must be greater than its completion time in a previous stage (stage s-1). The difference must be equal to or greater than the amount of processing time required in the current stage. Constraints (7) is a completion time forcing constraints. It ensures that all products are scheduled and the completion time of any product on any machine of the first stage is at least the amount of processing time required for the product on that machine.

IH ALGORITHM

Phase 1: Obtaining an Initial Solution Using the IH Algorithm

The heuristic developed in this phase schedules one product group at a time on the machines of the first stage. The algorithm then proceeds by scheduling products to the machines of all other stages. Prior to the presentation of the IH algorithm, the notation and variables used are defined.

Notation:

Let				
i,p	=	product indices		
j,q	=	product group indices		
S	=	stage index		
G	=	set of all product groups; G = {1,2,,N}		
m*	=	the minimum value of m(s); m* = $\min_{s \in \psi}$ m(s)		
M*	=	set of m* product groups selected to schedule as the first product		
		group on each machine in stage one through stage $\it L$		
G_R	=	set of all remaining product groups after assigning the first m* groups;		
		G\{M*}		
g_{j}	=	number of products in product groups j; j \in G		
P_{j}	=	set of products in product groups j; j \in G		
	=	$\{1,2,\ldots,g_j\}$		
Ψ	=	set of stages in a production line		
	=	{1,2,,L}		
m(s)	=	number of machines in stage s; s $\in \Psi$		
M(s)	=	set of machines in stage s		
	=	{1,2,,m(s)}		
EM(1)	=	set of m(1)-m* remaining machines		
$V_{s,m}$	=	speed of machine m at stage s		
ch(q,p,j,i,s)	=	The number of time units required to changeover from product i of		
		group j to product p of group q at stage s		

ST(j,i,s,m)	=	start time of product i of group j on machine m of stage s. There
		are 8 possible ways of determining the value of ST(j,i,s,m). A detailed
		description of these ways is presented in Appendix A.

PT(j,i,s,m) = processing time of product i of group j on machine m of stage s; j
$$\in$$
 G, i \in P_i, s \in Ψ , and m \in M(s).

$$\mathsf{CT}(\mathsf{j},\mathsf{i},\mathsf{s},\mathsf{m})$$
 = completion time of product i, group j on machine m of stage s. This time is equal to the sum of its start time and processing time.

= ST(j,i,s,m) + PT(j,i,s,m); $j \in G$, $i \in P_i$, $s \in \Psi$, and $m \in M(s)$

5.1 A Detailed Description of the IH Algorithm

The detailed description of the IH Algorithm is presented below in Parts 1 through 4.

Part 1: Assign the first m* groups to the machines at stage 1 through stage L-1.

Case 1: $m^* = m(1)$

Step 1: Select the m* groups in order to assign them as the first group on the machines at stage 1 through L-1.

1.1 Find product i* amd m' with
$$\min_{i \in F_j} \operatorname{CH}(0,0,j,i,s,m) + \sum_{s=1}^{S-1} \operatorname{PT}(j,i,s,m)$$
 for $j \in J$, $s \in \Psi \setminus \{L\}, \quad m \in M(s)$

- 1.2 Find j* where i* \in j*
- 1.3 Update $J = J(j^*); M(s) = M(s)(m'); and count_j = count_j + 1$
- 1.4 Check whether $J \neq \emptyset$ or count_j < m*.

If J $\neq \phi$, go to Step 1.1; otherwise, go to Step 2 of this pant.

- Step 2: Rearrange the products of the m* groups on the first stage machines assigned to them
 - 2.1 Schedule Product i* of group j* on machine m' i*.

2.2 Calculate completion times of the scheduled product where

$$CTime(j,i,s,m') = STime(j,i,s,m') + PT(j,i,s,m').$$

2.3 Update $P_i = P_i \setminus \{i^*\}$.

If
$$P_i \neq \emptyset$$
, go to Step 2.4.

If
$$P_i = \emptyset$$
, update $G = G \setminus \{j^*\}$. If $M^* = \emptyset$, go to Part 2; otherwise, go to Step 1.

2.4 Find the next product.

Find i* and m' with:

$$\min_{i \in G_i} (PT(j,i,s,m) + ch(j,p,j,i,1); j \in G \text{ and } m \in M(1)$$

where p is the last product scheduled so far on machine m at the first stage.

Then, go to Step 2.1 of this pant.

Case 2: m* < m(1)

- **Step 1:** Schedule m* groups on the m* machines using the same procedure as case 1 (begin with step 1 through step 2).
- **Step 2:** Find group j^* and machine m' with $\max_{\forall j}$ CTime(j,i_[l],s=1,m); for $m \in M(1)$ where $j \in J^*$ and $i_{[l]}$, is the product scheduled last in group j.
- **Step 3:** Find i' and m'' with $\min_{i \in F_{j^*}} CH(0,0,j,i,s,mm) + PT(j,i,s=1,mm)$ where mm \in EM(1).
- **Step 4:** Schedule i' of group j* on machine m'' and then calculate its completion time on this machine which is $CTime(q,p_{jj},s=1,m'')+ch(q,p_{jj},j^*,i',s=1)+PT(j^*,i',s,m'')$ and p_{jj} , is the product scheduled last in group q.
- **Step 5:** Rearrange the remaining products of group j* on machine m' after schedule the removed product (i.e., product i') and then update the latest completion of the last product of group j* on that machine.

- **Step 6:** Check if the latest completion time is improved, perform the product reschedule and return to Step 2; otherwise do not remove the product from machine m', and go to Step 7.
- **Step 7:** Repeat Step 2 through Step 6 with the product scheduled before the product used in the last removal attempt. If all attempts have been exhausted, proceed with Part 2.

Part 2: Assign the remaining groups to the machines at the first stage

- Step 1: Find i' and m'' with $\min_{i \in F_j}$ CTime(q,p_[i],s=1,m) +CH(q,p_[i],j,i,s=1,m)+ PT(j,i,s=1,m) for j \in G_R and m \in M(1) and p_[ij], is the product scheduled last in group q.
- **Step 2:** Find j* where i* \in j* and update $G_R = G_R \setminus \{j^*\}$; if $J \neq \emptyset$, go to Step 3; otherwise, go to Part 3.
- **Step 3:** Schedule group j* on m'' starting with product i'.
- **Step 4:** Rearrange the products of group j^* with the same procedure as Step 2 of Part 1. Except that, in Step 2.4, if $G = \emptyset$, go to Part 3.

Part 3: Balancing the Production Times of Machines at the First Stage

Step 1: Balance the production times of machines at the first stage.

Balancing the production times of machines at the first stage is performed by moving one or more of the products of a product group from the machine with the latest completion time to other machines such that the latest completion time of the first-stage machines is reduced. Balancing is performed after the assignment of all products to machines at the first stage has been completed. The procedure used to balance the production times of the first-stage machines is presented below:

- 1.1 Find the machine with the latest completion time (e.g., machine m')
- 1.2 Remove the last product scheduled on machine m'.
- 1.3 Calculate the latest completion time on each of the machines after scheduling the removed product last within its product group if scheduled on the machine;

- otherwise, last on the machine. Select the one with the smallest updated completion time and the corresponding latest completion time.
- 1.4 If the latest completion time is improved, perform the product re-schedule and return to Step 1; otherwise, do not remove the product from machine m', and go to Step 5.
- 1.5 Repeat Steps 1 through 4 with the product scheduled before the product used in the last removal attempt. If all attempts have been exhausted, proceed with Part 4.

Part 4: Scheduling All products on All other Stages (i.e., stages 2,3,4,...,L)

After all products are completely assigned to the first-stage machines, the assignment of these products on machines at the succeeding stages needs to be performed. A Look Ahead (LA) rule developed by Sethanan (2001) (details are described in Appendix B) was developed to sequence the products on machines at stages 2 through S, in order to obtain low product finish times and a low makespan. The steps for Part 4 are given below.

- Step 1: Schedule all products on all other stages (i.e., stage 2, 3, ..., L) and calculate the makespan
 - 1.1 Set s = 2.
 - 1.2 Set H = the set of products arranged in non-decreasing order of finish times from machines in stage s-1.
 - 1.3 Schedule the first product (e.g., product i) in set H on one of the machines of stage s using the LA rule.
 - 1.4 Update H = H \ {i}. If H $\neq \phi$, go back to Step 1.3. If H = ϕ , update s = s + 1. If s \leq L, go to Step 1.2; otherwise, calculate the makespan and go to Phase 2.

Phase 2: Improving the Initial Solution Using the TSearch Algorithm

The initial solution obtained from Phase 1 (using the IH algorithm) may not be close to the optimal solution. A different heuristic is required to generate better schedules. The final solution of the first phase can be considered as an initial solution that will be improved in this phase. The heuristic of the second phase has three main steps: 1) moving groups between

(or within) machines at the first stage, 2) moving products between (or within) machines at the first stage, and 3) finding the best sequence resulting in the minimum makespan.

1. Implementing the TSearch Heuristic with the FFs(Rm₁,Rm₂,...,Rm_s)/S_{ipm}/C_{max} Problem

In the tabu search, a decision is made from the set of admissible candidates. The candidate decisions are evaluated and the best one is selected. A candidate is admissible either if it is not tabu or if its tabu status can be overridden by the aspiration criterion. As suggested by Laguna et al. (1993) and Barnes & Laguna (1993), there are four key elements to be considered in the TS:

- To identify the attributes (i.e., the criteria used to define or characterize a move) of a move that will be used to generate the tabu classification. Attributes of moves, e.g., indices of jobs (or jobs numbers), positions of jobs, and weights of jobs, are identified and recorded in the tabu list in order to prevent move reversals.
- To identify the actual tabu restriction based on the attributes.
- To identify a good data structure to keep track of moves that have a tabu status, and to free those moves from their tabu condition when their short-term memory has expired.
- To identify an aspiration condition in an effort to allow the tabu status of a move to be overridden if it yields a better solution.

Two popular types of moves found in the literature for the flowshop problem are: (1) exchanging jobs (i.e., swap move) and (2) removing the job placed at the x^{th} position and then putting it at the y^{th} position (i.e., insertion move). Taillard's (1990) experiments showed that the insertion move is the most efficient in terms of quality and computation time. Hence, only the insertion move will be considered in this research.

Part 5: Moving Groups between Machines (and within a Machine) at the First Stage

In this part, the groups scheduled on machines at the first stage are moved between machines (or within a machine) in an effort to minimize the makespan. This process is not performed for the other stages as it takes a large amount of computation time, and yields very little improvement. The best solution obtained from the previous Phase will be used as the initial solution. For each iteration, all the admissible moves within the neighborhood in the

current schedule are evaluated and the best move is selected. The tabu list, neighborhood size, and tabu restrictions are applied in the process of moving groups between machines at the first stage. The details of these three components are described below, and are followed by the notation used in this part and the detailed procedure of the TSearch algorithm.

Tabu List

Let N be the total number of groups. The size of the tabu list is determined as follows:

1.
$$m(1) = 1$$
.

Based on the studies of Laguna et al. (1993), the size of the tabu list when jobs are moved within a machine is determined as described below.

1.1 N
$$\leq$$
 12
| T | = $\begin{bmatrix} N / 2 \end{bmatrix}$
where, | T | = size of the tabu list

2.
$$m(1) > 1$$

1.1 If
$$2 \le N \le 10$$
, $1 \le |T| \le 3$.

1.2 If
$$11 \le N \le 20$$
, $3 \le |T| \le 5$.

1.3 If
$$21 \le N \le 50$$
, $5 \le |T| \le 10$.

1.4 If N > 51,
$$10 \le |T| \le 15$$
.

Neighborhood Size and Tabu Restriction

In general, defining a good size of d depends on the structure of the problem.

Based on studies by Laguna et al. (1993) and Barnes and Laguna (1993), the value of d can be obtained as follows:

Let $nf_{s,m}$ be the number of groups schedule on machine m in stage s.

For
$$np_{s,m} \le 30$$

 $d = \lfloor np_{s,m}/2 \rfloor -1$
where $\lfloor h \rfloor =$ the largest integer less than or equal to h

• For
$$np_{s,m} > 30$$

$$d = \left(\left\lfloor np_{s,m}/2 \right\rfloor / 2 \right) \times c/4$$

where c is determined experimentally (Laguna et al., 1993 and Brandao & Mercer, 1997). The value of c is usually a number between 1 and 4 (Laguna et al., (1993)).

In this research, the neighborhood size and tabu restriction are determined as below:

- 1. For $m_1 = m_2 = m$
 - If $nf_{s.m} = 2$, d = 1.
 - If $3 \le nf_{s,m} \le 5$, d = 2.
 - If $6 \le nf_{s,m} \le 9$, d =3.
 - If $nf_{s,m} > 9$, the value of d is calculated using the same formula presented in the case of $nf_{s,m} \le 30$. If $nf_{s,m} > 30$, the value of c is equal to 2.
- 2. For $m_1 \neq m_2$
 - If $nf_{s.m.2} = 1$, or 2, d = 1.
 - If $nf_{s.m.2} = 3$, d = 2.
 - If $4 \le nf_{s,m,2} \le 9$, d = 3.
 - If $nf_{s,m-2} \ge 10$, the value of d is calculated using the same formula presented in the case of $nf_{s,m} \le 30$. If $nf_{s,m} \ge 30$, the value of c is equal to 2.

Notation

iter_gr = current iteration number for the process of moving groups between machines at the first stage

iter_max_gr = maximum number of iterations allowed to be performed in the product group insertion move procedure

best_value_gr = the minimum makespan found so far

best_seq_gr = the best schedule found so far

tor_iter_gr = maximum number of iterations allowed between two successive improvements

best_iter_gr = iteration where the best solution was found so far

size_tabu_list_gr = size of tabu list

move_value_gr = the minimum makespan obtained from the evaluation of all admissible moves in the iteration

move_seq_gr = the schedule that yields the minimum makespan in the iteration

Step 1: Initialize all parameters used in the process of moving groups between the machines at the first stage.

Set iter_gr 0 best_value_gr = makespan obtained in Phase 1 (Part 4) best_iter_gr iter max gr 500 = tor_iter_gr = 200 size tabu list gr 10 for 10 groups (100 products) = 15 for 20 groups (180 products).

Step 2: Update the number of current iterations.

Increment the number of iterations (iter gr) by 1.

Step 3: Check if the search should be stopped.

In this step, two stopping criteria are used:

- 3.1 Stop the search if the number of the current iterations (iter_gr) is greater than max_iter_gr, or
- 3.2 Stop the search if the number of successive iterations without improvement is greater than tor_iter_gr.

If the search is not stopped, go to Step 4; otherwise, go to Part 6 to proceed with the movement of products.

Step 4: Move groups between (or within) machines.

Groups that were divided between machines are treated as individual subgroups. Sequences of products within groups (or sub-groups) are not changed in this step.

- 4.1 For each admissible move, perform the following:
 - determine the tentative schedule of groups on machines in stage 1 after performing the move for the entire product group (or sub-product group).
 - tentatively re-schedule all products on machines in stages 2 through L using the procedure detailed in Step 8 and find the corresponding makespan.
- 4.2 After all admissible moves have been performed, select the move that yields the minimum makespan. Denote the minimum makespan as move_value_gr and the corresponding schedule as move_seq_gr.
- 4.3 Check whether move_value_gr is less than the best_value_gr. If true, perform the following updates and go to Step 4.4

best_value_gr = move_value_gr,

best seq gr = move seq gr.

Otherwise, go to Step 4.4

4.4 Put the attribute of this move in the tabu list and go back to Step 1.

Part 6: Moving Products between (and within) Machines at the First Stage

In this part, the products are moved between (and within) machines in an effort to minimize the makespan. As in Part 5, the process of moving products between (and within) machines is performed only in the first stage. The best solution obtained in the previous part is used as the initial solution. The notation used in the implementation of the TS is described below and is followed by the procedure. Basically, the rules used to define the tabu list and to determine the tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.

Notation

iter_pr

= current iteration number for the process of moving products between machines at the first stage

iter_max_pr

= maximum number of iterations allowed to perform in the process of products insertion procedure

= the minimum makespan found so far best_value_pr

= the best schedule found so far best_seq_pr

tor iter pr maximum number of iterations allowed between two successive

improvements

best_iter_pr = iteration where the best solution has been found so far

size_tabu_list_ pr = size of tabu list

move_value_ pr = the minimum makespan obtained from the evaluation of all

admissible moves in the iteration

= the schedule that yields the minimum makespan in the iteration move_seq_pr

Details of this part are described as follows.

Set

Step 1: Initialize all parameters used in the process of moving product between machines at the first stage.

=

iter_ pr 0, best sol pr makespan obtained in Part 5 best_iter_ pr 0, iter_max_ pr = 500, tor iter pr 200, size_tabu_list_pr = 10 for 100 products

15 for 180 products.

Step 2: Update the number of current iteration.

Increment the number of (iter_pr) by 1.

Step 3: Check if the search should be stopped.

The two stopping criteria used in Step 3 of Part 5 are also used in this step, as detailed below.

- Stop the search if the maximum number of current iterations (iter_pr) is greater than max_iter_pr, or
- 2. Stop the search if the number of successive iterations without improvement is greater than tor_iter_pr.

If the search is not stopped, go to Step 4. Otherwise, go to Step 5.

Step 4: Move products between (or within) machines.

- 4.1 For each admissible move, perform the following:
 - determine the tentative schedule of products on machines in stage 1 after performing a product move.
 - tentatively re-schedule all products on machines in stages 2 through L using the procedure detailed in Step 8 and find the corresponding makespan.
- 4.2 After all admissible moves have been performed, select the move that yields the minimum makespan. Denote the minimum makespan as move_value_pr and the corresponding schedule as move_seq_pr.
- 4.3 Check if move_value_pr is less than best_value_pr. If true, perform the following updates and go to Step 4.4

best_value_pr = move_value_pr,

best_seq_pr = move_seq_pr.

Otherwise, go to Step 4.4

4.4 Put the attribute of this move in the tabu list and go back to Step 1.

Step 5: Determine the best makespan at the last stage and the best sequence found so far.

CHPATER 6

LOWER BOUNDS

6.1 Introduction

Normally, the quality of heuristic solutions is assessed by comparing their results to: (1) optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained by the best known approximation algorithms. The flexible flowshop problem with sequence dependent setup is known to be NP-hard, and hence finding an optimal solution for average or large-size problems will be computationally intractable. The problem is also relatively new, and no approximation algorithms can be found for it in the literature. The only alternative left is to develop lower bounds for the problem and use them to assess the quality of the TSearch heuristic solutions.

6.2 Lower Bound Determination

Problem parameters and notation used in the development of the lower bound are defined below.

Notation

i, p = product indices

 Ψ = set of stages in a production line

= {1,2,..,L}

s = stage index

n = total number of products

N = set of products

m(s) = number of machines in stage s

M(s) = set of machines at stage s

 $= \{1,2,..., m(s)\}$

V(s,m) = the fastest speed of machine m at stage s to process products

x = the least integer value greater than or equal to x.

SU(i) = the setup time from idling for product i in stage 1

P(i,s) = the processing time of product i on its fastest machine in stage s

ST(i,s) = processing time of product i on a standard machine (i.e., speed = 100%) in stage s

CH(i,p,s) = The number of time units required to changeover from production i to product p at stage s

CT(i,s) = the cumulative processing time of product i on its fastest machines from stage 1 through stage s-1

$$= \sum_{s=1}^{s-1} P(i,s)$$

MN(i,s) = the minimum setup time of product i at stage s. MN(i,s) is the lowest setup time for product i at stage s from any other product

=
$$\min_{i \neq p}$$
 ch(p,i,s)

ICT(i,s-1) = the sum of the setup time from idling of product i at the first stage and the cumulative processing times of product i on its fastest machines from stage 1 through stage s-1.

$$= SU(i) + CT(i,s-1)$$

 δ = the minimum value between m(s) and m(1)

 $= min \{m(s), m(1)\}$

xtra(s) = the difference between the number of machines in the first stage and that in stage s. If negative, a value of zero is used.

 $= \max \{0, m(1) - m(s)\}$

A = set of δ products with lowest values of SU(i)

B = set of δ products with lowest values of ICT(i,s-1)

C = N - B

D = set of m(1) products yielding the lowest values of SU(i)

LB^{F,s} = the lower bound on the makespan calculated at stage s and obtained by the forward method

LB^{F,L} = the lower bound on the makespan calculated at the last stage (stage L) and obtained by the forward method

LB^{B,1} = the lower bound on the makespan calculated at the first stage (stage 1) and obtained by the backward method

LB^F = the best lower bound on the makespan obtained by the forward method

 $= \max_{\forall s} \{ LB^{F,s} \}$

BLB = the best lower bound

= $\max \{LB^F, LB^{B,1}\}$

Based on the flow or routing of products, two methods were developed in this research to calculate a lower bound on the makespan: (1) the forward method and (2) the backward method. The lower bound on the makespan is a stage-based calculation, meaning that a value is calculated for each stage for the forward method, but it is calculated only for the first stage for the backward method. Then, the best lower bound (BLB) is obtained by taking the maximum value of the LB^F and LB^{B,1}, where the LB^F is the best lower bound on the makespan obtained by the forward method and calculated by taking the maximum value of the LB^{F,s}.

To calculate the lower bound on the makespan for the $FFS(R_{m1},R_{m2},...,R_{mL})/s_{ipm}/C_{max}$ sequencing problem, the key idea is to consider a flexible flowshop structure with each machine in each stage as fast as its fastest speed. The makespan can be determined by considering the sum of three quantities: (1) the s-stage machine total waiting and idle times and (2) the total setup and production times on the s-stage machines, and (3) the last stage machine total waiting time. These three quantities can be divided into four components, as presented below.

- total waiting time at stage s (total wait(s))
- total processing time of all products at stage s (total_proc(s))
- total setup time at stage s (total setup(s))
- •total waiting time when a products leave from stage s to the last stage (last_wait(s,L))

A detailed description of these components and how they are used to calculate LB^{F,s} and LB^{B,1} is presented in sections 6.2.1 and 6.2.2, respectively. For the forward method, the optimal makespan cannot be less than the sum of the two elements: (1) the sum of the first above three components divided by the number of machines in the sth stage and (2) the machine waiting time at the last stage. Hence, using the forward method:

$$LB^{F,s} = \frac{1}{m(s)} [total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L)$$

Similarly, for the backward method (only consider the last stage), the last_wait(L) is not included. Hence, using the forward method:

$$LB^{B,1} = \frac{1}{m(1)} [total_wait(1) + total_proc(1) + total_setup(1)]$$

6.2.1 Forward Method

1. Total waiting time at stage s (total_wait(s))

The total_wait(s) is the minimum amount of time that the machines at stage s have to wait until their first products are processed. This means that the first m(s) products have to complete their processing on stage 1 through stage s-1. Two cases are considered in calculating the total_wait(s).

Case 1:
$$m(s) \leq \delta$$

In this case, there are two subcases:

1.1 Total waiting time at the first stage (total wait(1))

total_wait(1) =
$$\sum_{i \in A} SU(i)$$

1.2 Total waiting time at the s^{th} stage; $2 \le s \le L$ (Total_wait(s))

The total_wait(s) is determined by summing the first δ , δ = m(s), smallest values of ICT(i,s-1).

Let

$$\gamma(i,s) = SU(i) + CT(i,s-1)$$

 $\gamma[n,s]$ = the $\gamma(i,s)$ values sorted in non-decreasing order results in the n^{th} lowest value

 $\gamma(i_n,s)$ = product i with the n^{th} lowest value of $\gamma[n,s]$

Hence:

total_wait(s) =
$$\sum_{i \in B} ICT(i, s-1) = \sum_{n=1}^{\delta} \gamma_{[n]}$$

where $i_1 \neq i_2 \neq i_3 \neq ... \neq i_n$

Case 2: m(s) > m(1)

To find the total_wait(s) in this case, the machines in stage s are divided into two groups. The first group contains m(1) machines, and the second contains m(s) - m(1) machines (i.e. xtra(1)). The total waiting time for the machines in the first group (waiting_time_g1(s)) is calculated as the sum of the first δ smallest values of ICT(i): $\sum_{i \in B} ICT(i)$. For the second group, the key idea to find the minimum machine waiting time (wait_time_g2(s)) is to find the earliest start time of the remaining products on machine number m(1)+1, m(1)+2, ..., m(s). To calculate the wait_time_g2(s), the ratio (R) between xtra(1) and m(1) is determined and will be used. The R value is

determined as $\left\lceil \frac{m(s)-m(1)}{m(1)} \right\rceil$. Two cases are considered in calculating the

machine waiting times in this group: (1) R = 1, and (2) R > 1. Details for each of these cases are described below.

(1) R = 1

The following procedure is followed:

Let
$$\Omega(i) = SU(i) + P(i,1); i \in N$$

= the finish time function of product i as it is the first product scheduled on the first stage machines.

$$\beta(j,s\text{-}1) \hspace{1cm} = \min \; \{ \min\{MN(p,1)\}, \; MN(j,1)\} \; + \; CT(j,s\text{-}1); \; \text{where, p} \; \in \; A \; \text{and} \; j \;$$

$$\in \; B$$

- = the start time function of the remaining products on the m(s) m(1) machines in the sth stage
- 1.1 Let x be the machine number in the second group, x = 1,2,..., xtra(1). Set x=1.
- 1.2 Determine the machine waiting time on machine x using the following steps.
 - 1.2.1 Sort all values of Ω (i) in non-decreasing order. Let Ω [1], Ω [2], ..., Ω [c] be the values resulting from the order. Then, find the product with the first lowest value of Ω (i) (e.g., product j):

$$\Omega(j) = \Omega[1] = \min_{i \in N} \Omega(i)$$

1.2.2 Sort all values of β (i,s-1) in non-decreasing order. Let β [1,s-1], β [2,s-1], ..., β [c,s-1] be the values resulting from the order. Then, find the product with the first lowest value of β (i,s-1) (e.g., product g):

$$\beta(g,s-1) = \beta[1,s-1] = \min_{i \in C} \beta(i,s-1)$$

1.2.3 Check if j = g. If not true, calculate the waiting time of machine x in stage s (waiting_time(x,s)) and update set N as follows.

waiting_time(x) =
$$\Omega(j) + \beta(g,s-1)$$

$$N = N \setminus \{j\}, \text{ delete } \beta(g,s-1)$$

and go to step 1.3; otherwise, go to step 1.2.4.

1.2.4 Find the product with the second lowest value of Ω (i) (e.g., product j'):

$$\Omega(j') = \Omega[2] = \min_{i \in N \setminus \{j\}} \Omega(i)$$

1.2.5 Find the product with the second lowest value of β (i,s-1) (e.g., product g'):

$$\beta(g',s-1) = \beta[2,s-1] = \min_{i \in N \setminus \{g\}} \beta(i,s-1)$$

1.2.6 Calculate the minimum waiting_time(x,s) as follows:

$$\label{eq:waiting_time} \text{waiting_time}(\textbf{x},\textbf{s}) = \min \; \{\Omega(\textbf{j}) \; + \; \beta(\textbf{g}',\textbf{s}-1), \; \Omega(\textbf{j}') \; + \; \beta(\textbf{g},\textbf{s}-1)\}$$

$$1.2.7 \; \text{If} \; \Omega(\textbf{j}) \; + \; \beta(\textbf{g}',\textbf{s}-1) \; < \; \Omega(\textbf{j}') \; + \; \beta(\textbf{g},\textbf{s}-1), \; \text{update} \; \textbf{C} \; = \; \textbf{C} \; - \; \{\textbf{j}\} \; \text{and} \; \; \beta(\textbf{g}',\textbf{s}-1).$$
 Otherwise, update C = C- $\{\textbf{j}'\}$ and delete $\beta(\textbf{g},\textbf{s}-1)$.

- 1.3 Update x = x + 1. If x is greater than m(s) m(1), go to step 1.4; otherwise, go back to step 1.2.
- 1.4 Calculate total_wait(s) as follows:

total_wait(s) =
$$\sum_{i \in A} ICT(i) + \sum_{x=1}^{m(s)-m(1)} waiting _time(x, s)$$

(2) R > 1

For this case, the machines in the second group are divided into smaller subgroups of m(1) machines (the last subgroup may have a smaller number). The minimum waiting tine of the machines in the first subgroup (i.e., machine number m(1)+1, m(1)+2, ..., 2m(1)) is determined using the procedure detailed in case (1) (i.e., R=1). To calculate the minimum waiting time for the machines of the remaining subgroups, the same procedure is repeated with the following modifications.

(1) Function Ω (i) is replaced with function α (i, w_1 , w_2 ,..., w_r) which is defined as follows.

$$\alpha(i, w_1, w_2, ..., w_r) = SU(i) + P(i,1) + \sum_{\sigma=1}^r \{MS(w_{\sigma}, 1) + P(w_{\sigma}, 1)\}$$

where, i, $w_{\sigma} \in N$, $\sigma = 1, 2, ..., r$, $i \neq w_1 \neq w_2, ..., \neq w_r$

To calculate the waiting time on each subgroup of machines in the last stage, function $\Omega(i,w_1,w_2,...,w_r)$ must be regenerated for each r until the value of r reaches R-1. For instance, when r =1, the quantity $\Omega(i, w_1)$ is used to calculate the waiting time for the second subgroup of machines (i.e., machines $2 \cdot m(1) + 1$, $2 \cdot m(1) + 2$,..., $3 \cdot m(1)$). Likewise, when r = R - 1, the quantity $\Omega(i, w_1, w_2, ..., w_r)$ is used to calculate the waiting time for the Rth subgroup of machines (i.e., machines (R - $1 \cdot m(1) + 1$,..., m(s)).

In step 2.1.2.1, all values of $\Omega(i, w1, w2, ..., wr)$ obtained from all combinations of i and w_{σ} are sorted in non-decreasing order and let $\Omega[1]$, $\Omega[2]$, $\Omega[3]$,..., $\Omega[n]$ be the values resulting from the order.

- (2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member of set $\overline{\omega}$, where $\overline{\omega}$ is set of products (i, $w_1, w_2, ..., w_r$) that yielded $\Omega[1]$.
- (3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of $\alpha(\varpi)$ and $\beta(g,s-1)$ such that g is not a member of ϖ , which yield the minimum value of the sum of $\alpha(\varpi)$ and $\beta(g,s-1)$. Step 2.1.2.7 is then modified to update C = C ϖ and delete $\beta(g,s-1)$.

The value total_wait(s) when R > 1 is calculated as follows:

total_wait(s) = wait_time_g1(s) + wait_time_g2(s)
=
$$\sum_{i \in A} ICT(i) + \sum_{x=1}^{m(s)-m(1)} waiting_time(x, s)$$

2. Total processing time of all products at the sth stage (total_proc(s))

A lower bound of the total processing times on the machines at the last stage is calculated as the sum of the processing times of all products when processed on machines with the average speed in that stage. The value of total_proc(s) is hence calculated as follows:

total_proc(s) =
$$\frac{\sum_{i \in N} ST(i, s) \cdot m(s)}{\sum_{m \in M(s)} v_{s, m}}$$

3. Total setup time at the sth stage (total_setup(s))

In minimizing changeovers, the number of machines assigned to each product should be as few as possible. Thus, the minimum number of setups for the entire production schedule on the s^{th} stage machines is equal to N - m(s) setups. The value of total_setup(s) is hence determined as the sum of the N - m(s) smallest changeovers.

total_setup(s) =
$$\sum_{i \in C} MS(i, s)$$

Total waiting time when a products leave from stage s to the last stage (last_wait(s,L))

The total machine waiting time when a products leave from stage s to the last stage (last_wait(s,L)) is the minimum amount of time that the last stage machine has to wait until the first product from stage (s+1) to be processed on the last stage. Hence:

last_wait(s,L) =
$$\min_{\forall i} \{ \sum_{s'=s+1}^{L} P(i,s') \}$$
; s' = s+1, s+2,..., L-1
= 0; s' =L

The overall lower bound by the forward method at stage s (LB^{F,s}) and the best lower bound on the makespan obtained by this method (LB^F) are then calculated as follows:

$$LB^{F,s} = \frac{1}{m(s)} [total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L)$$

$$LB^{F} = \max_{\forall s} \{LB^{F,s}\}$$

6.2.2 Backward Method

Consider a schedule where products are processed from stage L to stage 1 (i.e., reverse order of machines), then its antithetical schedule (mirror image) yields the same makespan for the original problem when no setup times are considered. With setup times, the lower bound for the backward schedule would still remain a lower bound for the original problem, when calculated as in the forward method with the following two adjustments:

- Setup times from idling for the first m(L) products in stage L must not be considered when calculating total_wait(L) (i.e., assume SU(i) = 0 for all products, where SU(i) in this case is the setup time for product i from idling at stage L).
- 2. The sum of the m(1) minimum setup times from idling in stage 1 (sum_setup_idle(1)) should be added to total wait(1).

The backward lower bound will then be calculated as follows:

$$\mathsf{LB}^{\mathsf{B},1} = \frac{1}{m(1)} [\, \mathsf{total_wait}(1) + \mathsf{sum_setup_idle}(1) + \mathsf{total_proc}(1) + \mathsf{total_setup}(1)]$$
 The best lower bound (BLB) is then determined as max $\{\mathsf{LB}^\mathsf{F}, \mathsf{LB}^\mathsf{B}, \mathsf{LB}^\mathsf{F}\}$.

COMPUTATIONALEXPERIENCE

7.1 Introduction

This section will focus on computational experience with the heuristic algorithms (IH and TSearch). Two quantities are investigated: (1) the performance of the heuristic algorithms, obtained by comparing their solutions to the lower bound and (2) the relative improvement of the solutions obtained by the IH algorithm with respect to those of the TSearch algorithm.

Two sets of problems, with four types of data characteristics in each set, were generated to evaluate the above two quantities:

Set 1: 70-85 products (10 groups)

Set 2: 135-155 products (20 groups)

Four types (A, B, C and D) of data characteristics were generated for each set, and 5 test problems were generated for each data type. The parameters for each data type, processing times of products on a standard machine (speed = 1) at each stage (PTime(j,i,s,m)), machine speed deviations $(v_{s,m})$, changeover times between products at each stage (ch(j,i,q,p,s)), and setup times from idling of products at the first stage (ch(0,0,j,i,s)), were randomly selected from different uniform distributions as shown in Table 7.1

Table 7.1: Values of Parameters Used with the Different Data Types

Parameter	Туре				
1 drameter	А	В	С	D	
Total number of machines and stages	12 machines,	20 machines,	12 machines,	20 machines,	
	4 stages	5 stages	4 stages	5 stages	
	(3,3,3)	(4,4,4,4,4)	(3,3,3)	(4,4,4,4,4)	
PTime(j,i,s,m)	U[20,50]	U[20,50]	U[20,50]	U[20,50]	
<i>V</i> _{s,m}	U[0.80, 1.20]	U[0.80, 1.20]	U[0.70, 1.30]	U[0.70, 1.30]	
ch(j,i,q,p,s)	U[20%, 40%]	U[20%, 40%]	U[20%, 40%]	U[20%, 40%]	
	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	
ch(j,i,j,p,s)	U[5%, 15%]	U[5%, 15%]	U[5%, 15%]	U[5%, 15%]	
	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	
ch(0,0,j,i,s)	U[15%, 25%]	U[15%, 25%]	U[15%, 25%]	U[15%, 25%]	
	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	of Time(j,i,s,m)	

Changeover times between products at each stage (ch(j,i,q,p,s)) and setup times from idling at the first stage (ch(0,0,j,i,s)) are identical on all machines at the same stage. Types A and B generate problems with small deviations in the speed of machines. Conversely, types C and D generate problems with large deviations in the speeds. Characteristics of the data types can be summarized as follows:

- A: A small number of stages, small deviations in machine speeds, and small, identical number of machines in each stage.
- B: A large number of stages, small deviations in machine speeds, and large, identical number of machines in each stage.
- C: A small number of stages, large deviations in machine speeds, and small, non-identical number of machines in each stage.
- D: A large number of stages, large deviations in machine speeds, and large, identical number of machines in each stage.

In section 7.2, the computational results obtained with the heuristics are presented and compared to the lower bounds for the large size problems. Section 7.3 presents the relative improvement of the solutions obtained by the IH algorithm with the application of the TSearch algorithm.

7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds

The heuristic algorithms were coded in JAVA and run on a 2.0 GHz PC, with 256 MegaBytes of RAM, for testing and evaluation. In this section, the heuristic algorithms are evaluated using two performance measures: (1) solution quality, and (2) computational speed. The quality of a solution generated by the heuristics is measured in terms of their performance (HP), as presented below.

HP =
$$(sol_{LB}/sol_{heu}) \times 100$$

where,

HP = the heuristic performance (%)

 sol_{LR} = the lower bound of the solution

sol_{heu} = the solution obtained from the heuristic algorithms

The computational speed of the algorithms is measured by the amount of CPU time required to execute the algorithms. The CPU time includes compiling, linking, and execution times, and is reported in seconds and seconds per iteration for the IH and TSearch algorithms, respectively.

For each combination of problem set and data type, ten different test problems were generated. The solution of each test problem using the heuristic algorithm and its lower bound were obtained for all combinations of sets and data types. The results of these computations are presented in Tables 7.2-7.13. Table 7.14 shows the averages obtained for these results.

 Table 7.2: Computational Results for Set 1 Type A:

Heuristic Algorithms vs. Lower Bound

		CPU	Time	Heuristic Performance (%)	
Problem Number	IH	TSearch		ІН	TSearch
Number	(seconds)	seconds/iteration	Number of Iterations (iterations)	""	rocalcii
1	1.2	2.1	50	56.05	69.00
2	1.1	2.2	148	58.12	71.20
3	1.0	2.0	345	56.60	69.90
4	1.1	2.1 69		56.82	71.40
5	1.1	2.0	2.0 191		71.40

Table 7.3: Computational Results for Set 1 Type B:

		CPU Time		Heuristic Performance (%)	
Problem Number	IH	TSearch			
	(seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	1.0	2.0	150	58.87	69.10
2	1.1	1.9	156	55.42	68.50
3	1.0	1.9	245	53.69	69.60
4	1.1	2.0 145		56.50	71.10
5	1.1	2.0	89	55.60	68.90

Table 7.4: Computational Results for Set 1 Type C:

Heuristic Algorithms vs. Lower Bound

ı					
		CPU	CPU Time		nce (%)
Problem Number	TSearch IH				
	(seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	1.0	2.0	130	52.53	65.30
2	1.0	2.0	136	56.34	68.90
3	1.0	2.1	45	56.39	66.40
4	1.1	2.0	2.0 39		64.40
5	1.1	2.0	97	51.57	67.30

Table 7.5: Computational Results for Set 1 Type D:

		CPU	Time	Heuristic Performance (%)	
Problem Number		TSearch			
IH (seconds)		seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	1.0	1.9	120	50.04	67.10
2	1.1	2.0	135	50.80	65.60
3	1.1	2.0	2.0 128		64.10
4	1.2	1.9	1.9 123		67.70
5	1.0	1.9	171	53.45	68.70

Table 7.6: Computational Results for Set 2 Type A:

Heuristic Algorithms vs. Lower Bound

		CPU	Heuristic Performance (%)		
Problem Number		TSearch			
	IH (seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	30.2	3.2	67	58.25	68.60
2	30.3	3.2	454	58.37	69.10
3	30.3	3.2	3.2 234		69.50
4	30.2	3.2	3.2 432		71.30
5	30.4	3.1	45	58.78	68.00

Table 7.7: Computational Results for Set 2 Type B:

		CPU	Heuristic Performance (%)		
Problem Number	14	TSearch			
	IH (seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	31.2	3.2	453	57.93	68.70
2	31.1	3.3	234	58.11	69.90
3	31.1	3.3	3.3 458		69.90
4	31.2	3.4	3.4 120		67.60
5	31.1	3.1	56	58.27	70.40

Table 7.8: Computational Results for Set 2 Type C:

Heuristic Algorithms vs. Lower Bound

		CPU	Time	Heuristic Performance (%)	
Problem Number		TSearch			
	IH (seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch
1	43.1	4.0	233	56.33	64.30
2	43.3	4.0	125	54.45	64.60
3	43.2	3.9	45	57.87	66.20
4	43.2	4.1	4.1 78		66.20
5	43.1	3.9	4551	56.18	64.90

Table 7.9: Computational Results for Set 2 Type D:

	<u>-</u>					
		CPU	Heuristic Performance (%)			
Problem Number		T:	TSearch			
	IH (seconds)	seconds/iteration	Number of Iterations (iterations)	IH	TSearch	
1	44.2	4.1	79	53.52	66.10	
2	44.3	4.0	145	56.42	64.80	
3	44.3	4.0	4.0 365		65.50	
4	44.2	4.1	4.1 278		65.30	
5	44.4	3.9	222	56.55	65.00	

Table 7.10: Averages of Computational Results for Sets 1 and 2 for all Data Types:

Heuristic Algorithms vs. Lower Bound

			CPU time	Heuristic Performance (%)			
Set	Туре	T IH		Search			
		(seconds)	seconds/iteration	Number of iterations (iterations)] IH	TSearch	
1	Α	1.10	2.08	160.60	56.81	70.58	
	В	1.06	1.96	157.00	56.02	69.44	
	С	1.04	2.02	89.40	53.45	66.46	
	D	1.08	1.94	135.40	52.65	66.64	
2	Α	30.28	3.18	246.40	59.44	69.30	
	В	31.14	3.26	264.20	58.32	69.30	
	С	43.18	3.98	1006.40	56.22	65.24	
	D	44.28	4.02	217.80	55.58	65.34	

Based on these results, the average performance for set 1 ranges between 52.65-56.81% for the IH algorithm and 66.46-70.58% for the TSearch algorithm. For set 2, the average performance is lower than that of set 1, and ranges between 55.58-59.44% for the IH algorithm and 65.24-69.30% for the TSearch algorithm.

The computational times for the IH are extremely small-- less than 45 seconds. These times do significantly increase with the size of the problem. This means that the IH algorithm is sensitive to the problem size. In contrast, computational times for the TSearch algorithm seem to be high-- between 1.94 and 2.08 seconds per iteration for data set 1 and between 3.18 and 4.02 seconds per iteration for data set 2. These times increase significantly with the size of the problem in terms of numbers of products (product groups), stages, and machines.

A Factorial Design was used to evaluate the performance of the heuristic algorithms (HP). The design has three factors: deviations in machine speeds, number of products, and number of machines and stages. The analysis was performed using SAS Software V8 for Windows and the results are presented in Appendix C. The statistical results show a significant effect only for two factors on the heuristic performance, number of products and deviation in machine speeds. Tukey's test was performed to compare between the three means obtained with different number of machines and stages. Results of the test (see Appendix C) indicate that the two means are different from each other.

The statistical results obtained from ANOVA and Tukey's test show that the heuristic performance declines with the increase of: (1) number of products, and (2) deviation in machine speeds. This decline is due mainly to the decrement in the value of the lower bound rather than the performance of the heuristics. The lower bound value may be affected by the following factors:

- (1) the difference between the actual processing times and the smallest processing times of products used to calculate the first component of lower bound. The difference in processing times gets larger when the difference in the speeds between the fastest and the slowest machines increases.
- (2) the difference between actual processing times and the processing times on the average speed machine of products used to calculate the second component of the lower bound, and
- (3) the difference between actual setup times (both major and minor setup times) and the smallest setup times of the products, used to calculate components 3 and 4 of the lower bound.

If the differences were small, the lower bound would be relatively high resulting in higher algorithm performance, and vice versa. Larger deviations in machine speeds, a number of products (groups), and of machines and stages would most probably cause larger differences in processing times and setup times.

7.3 Comparison between the IH Algorithm and the TSearch Algorithm

In this section, the relative improvement of the solutions obtained from the IH algorithm after applying the TSearch is evaluated and presented below.

Let RI =
$$\{(sol_{IH}/ - sol_{TSearch}) / sol_{IH}\} \times 100$$

where,

RI = the relative improvement (%) between sol_{IH} and sol_{TSearch}

 sol_{IH} = the solution obtained from the IH algorithm

sol_{TSearch} = the solution obtained from the TSearch algorithm

Two sets of relatively large size problems are used in this section. These sets are identical to those described in Section 7.2. For each combination of problem set and data type, 5 different test problems were generated. The solutions of each test problem using the IH and TSearch algorithms were obtained for all combinations of sets and data types. The results obtained are presented in Tables 7.11 and 7.12. Table 7.13 shows the averages obtained for these results.

Table 7.11: Relative Improvement Results for the Different Data Types in Set 1:

	Relative Improvement (%)				
Problem Number	Туре				
	Α	В	С	D	
1	18.82	14.79	19.56	25.44	
2	18.38	19.15	18.18	22.61	
3	19.06	22.86	15.10	21.53	
4	20.41	20.49	21.75	13.39	
5	20.96	19.25	23.40	22.23	

 Table 7.12: Relative Improvement Results for the Different Data Types in Set 2:

	Relative Improvement (%)				
Problem Number	Туре				
	Α	В	С	D	
1	15.07	15.63	12.36	19.00	
2	15.50	16.87	15.73	12.99	
3	12.19	15.71	12.57	15.92	
4	14.76	13.53	15.02	13.64	
5	13.59	17.28	13.47	13.01	

Table 7.13: Relative Improvement Results for Sets 1 and 2

	RELATIVE IMPROVEMENT (%)					
Set	Туре					
	А	В	С	D		
1	19.53	19.31	19.60	21.04		
2	14.22	15.80	13.83	14.91		

As shown in Tables 7.11 and 7.12, the TSearch algorithm provides better makespan values than the IH algorithm by 12.19 - 25.44% in the individual test runs. A Factorial Design was used to evaluate the relative improvement (RI) of the solutions obtained by the IH algorithm with the application of the TSearch algorithm. The design has three factors: deviations in machine speeds, number of products, and number of machines and stages. The analysis was performed using SAS Software V8 for Windows and the results are presented in Appendix C. The statistical results show a significant effect only for number of products on the RI. Tukey's test was performed to compare between the three means. Results of the test (also see Appendix C) show no difference in the relative improvement (RI) obtained with number of machines and machine speed configurations. In contrast, results obtained in the ANOVA tables and Tukey's test show that the relative improvement declines as the size of number of products (or groups) increases.

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

This research was undertaken to minimize the makespan for the "flexible flowshop with sequence dependent setup times when machines in each stages are unrelated" problem. Two exact algorithms were first developed and used to solve small problems. Two heuristic algorithms (IH and TSearch) were then developed to solve larger and more practical problems. In order to evaluate the performance of the heuristic algorithms, two lower bounds were developed for the solution of the problem.

Since the optimal solution can be obtained for only small size problems (only for 5 jobs and 7 machines), two heuristic algorithms (IH and TSearch) were developed. The first algorithm (IH) was developed to obtain a good initial solution and then improved in the second phase using the TSearch algorithm. To assess the quality of the heuristic algorithms, two methods were presented for obtaining a lower bound for the flexible flowshop with sequence dependent setup times when machines in each stages are unrelated problems: (1) forward method and (2) backward method. Machine waiting time, idle time, and the total setup and processing times on machines at the last stage were used to obtain the lower bounds.

For the computational experience, two data sets with four problem configurations for each set were generated, and five test problems were generated for each configuration. The performances of the heuristics were presented and evaluated using two measures: (1) solution quality and (2) computational speed. The quality of heuristic solutions was evaluated using lower bounds. The results showed a performance for the IH algorithm between 52.65-56.81% for data set 1 and 55.58-59.44% for data set 2. The performance for the TSearch algorithm ranged between 66.46-70.58% for data set 1 and 65.24-69.30% for data set 2. The performance of the algorithms declined with the increase of: (1) deviation in machine speeds and (2) number of products.

The computational times were very small for the IH algorithm, indicating that this algorithm is very efficient and not sensitive to problem size. Conversely, the computational times of the TSerach algorithm increased significantly with problem size--number of products, stages, and machines. For the relative improvement realized when applying the TSearch algorithm to the results obtained with the IH algorithm, the results indicated an improvement between 12.20 and 25.50%. This improvement increased as the deviations in machine speeds, number of stages, and machines increased. On the other hand, it decreased as the number of products (groups) increased.

8.1 Contribution of the Research

The exact algorithms as well as the heuristic algorithms and the lower bound methods developed can also be applied to identical, uniform, and unrelated parallel processing problems with or without dependent setup times. Computational experience showed that both heuristic algorithms are effective in solving the problem.

8.2 Recommendations for Future Research

The following recommendations are made for future research:

- The calculation of the lower bounds may be further enhanced
- Improvements may be made to the TSearch algorithm. The Tabu search was utilized
 in this research without using intensification or diversification strategies. These
 strategies, which are used to guide the search in a more intelligent way, need to be
 further studied.
- Other search methods (e.g., Neural Network or Genetic Algorithm) may be applied to solve this problem. Their performances may be compared to that of the Tabu Search algorithm.

CHPATER 9

OUTPUTS จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 9.1 Software ของ Heuristic Algorithm ในรูปแบบ GUI (Graphic User Interface) ซึ่งวิธีการใช้ แสดงไว้ภาคผนวก D
- 9.2 Software ของการคำนวณค่า Lower Bounds ในรูปแบบ GUI (Graphic User Interface) ซึ่ง วิธีการใช้แสดงไว้ภาคผนวก E
- 9.3 การนำเสนอผลงานการประชุมวิชาการระดับนานาชาติ (International Conference)
 - 9.3.1 The 33rd International Conference on Computers and Industrial Engineering:
 Detailed is shown in Appendix F-1
 (Held at Jeju, Korea, on March 25-27, 2004)
 - 9.3.2 The Fifth Asia-Pacific Conference on Industrial Engineering and Management Systems: Detailed is shown in Appendix F-2 (Held at Gold Coast, Australia., on December 12-15, 2005)

REFERENCES

- Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). *A Review of Scheduling. Research Involving Setup Considerations*, OMEGA, The International Journal of Management Science, 27: 219-239.
- Barns, J. W. & Laguna, M. (1993). Solving the Multiple-Machine Weighted Flow Time Problem Using Tabu search. IIE Transactions, 25(2), 121-128.
- Brah, S. A. & Hunsucker, J. L. (1991). *Branch and Bound Algorithm for the Flow Shop with Multiple Processors*. European Journal of Operational Research, 51, 88-99.
- Gupta, J. N. D. & Tunc, E. A. (1994). Scheduling a Two-Stage Hybrid Flowshop with Separable Setup and Removal Time. European Journal of Operational Research, 77, 415-428.
- Kurz M. E., & Askin, R. G. (2004). Scheduling Flexible Flow lines with Sequence Dependent Setup Times. European Journal of Operational Research, 159, 66-82.
- Laguna, M. & Barns, J. W. & Glover, F. (1993). Intelligent Scheduling with Tabu Search: An Application to Jobs with Linear Delay Penalties and Sequence-Dependent Setup Costs and Times. Journal of Applied Intelligence, 3, 159-172.
- Portmann, M-. C., Vignier, A., Dardilhac, D. & Dezalay, D. (1998). *Branch and Bound Crossed with GA to Solve Hybrid Flowshops*, European Journal of Operational Research, 107, 384-400.
- Randhawa, S. U. & Smith, T.A. (1995). An Experiment Investigation of Scheduling Non-Identical,

 Parallel Processors with Sequence-Dependent Setup Times and Due Date, International Journal
 of Production Research, 33(1), 59-69.
- Ruiz R., Maroto, C., & Alcaraz A. (2005). Solving the Flowshop Scheduling Problem with Sequence

 Dependent Setup Times Using Advanced Metaheuristics., European Journal of Operational

 Research, 165, 34-54.
- Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times. Doctoral Dissertation, West Virginia University. West Virginia.
- Simons Jr., J. V., (1992). Heuristics in Flowshop Scheduling with Sequence Dependent Setup Times.

 OMEGA, The International Journal of Management Science, 20(2): 215-225.
- Srikar, B. N. & Ghosh, S. (1986). A MILP Model for the n-job, m-stage Flowshop with Sequence Dependent Set-up Times. International Journal of Production Research, 24(6), 1459-1474.
- Tahar D. N., Yalaoui F., Chu C., & Amodeo L. (2005). A Linear Programming Approach for Identical Parallel Machine Scheduling with Job Splitting and Sequence dependent Setup Times. International Journal of Production Economics. To Appear.
- Tillard, E. (1990). Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem. European Journal of Operational Research, 47(1), 65-74.

Wilbrecht, J. K. & Prescott, W. B. (1969). *The Influence of Setup Time on Job Shop Performance, Management Science*, 16, B274-B280.

Appendix A Start Time Calculations

Appendix A

Start Time Calculations

There are eight possible ways to determine the value of the start time (STime(j,i,s,m)) as described below.

1. If j = the first group processed on machine m at the first stage; $j \in J$, i = the first product scheduled in group j; $i \in F_p$ and $m \in M(1)$, then:

```
STime(j,i,1,m) = ch(0,0,j,i,1)
```

2. If j = the first group scheduled on machine m at the first stage, $i \neq$ the first product in group j processed on the machine, then:

```
STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1) where, p = the product that precedes product i on machine m in the first stage and j \in J, i, p \in F, m \in M(1)
```

3. If $j \neq$ the first group scheduled, i = the first product scheduled in group j on machine m at the first stage. Then:

```
STime(j,i1,m) = FTime(q,p,1,m) + ch(q,p,j,i,1) where, q = \text{the group that precedes group } j \text{ on machine } m \text{ of stage } s p = \text{the last product of group } q \text{ scheduled on machine } m \text{ of stage } s and j,q \in J, i \in F_i, p \in F_a, m \in M(1)
```

4. If $j \neq$ the first group scheduled, $i \neq$ the first product in j processed on machine m at the first stage. Then:

```
STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1) where, p = the product in group j that precedes product i on machine m at the first stage and j \in J, i, p \in F_i m \in M(1)
```

5. If j = the first group scheduled, i = the first product in j processed on machine m in stage s: s $\in \{2,3,...,S\}$. Then:

```
STime(j,i,s,m) = FTime(j,i,s-1,mp)
```

 $j \in J$, $i, p \in F$

where, $j \in J$, $i \in F_{j}$, $m \in M(s)$, mp is the machine in stage s-1 on which product i of group j was processed

 If j = the first group scheduled, i ≠ the first product in group j processed on machine m in stage s:s ∈ {2,3,...,S}. Then:

```
STime(j,i,s,m) = max \{FTime(j,p,s,m) + ch(j,p,j,i,s), FTime(j,i,s-1,mp)\} where,

p = the product in group j that precedes product i on machine m stage s
```

$$m \in M(s)$$
 mp is defined as above.

7. If $j \neq the$ first group scheduled, i = the first product in group j processed on machine m in stage $s:s \in \{2,3,...,S\}$. Then:

```
STime(j,i,s,m) = max\{FTime(q,p,s,m)+ch(q,p,j,i,s), FTim(j,i,s-1,mp)\} where, q = the group that precedes group j on machine m of stage s p = the last product of group q scheduled on machine m of stage s and j,q \in J, i \in F_i, p \in F_q, m \in M(s), mp is defined earlier.
```

8. If $j \neq$ the first group scheduled, $i \neq$ the first product in group j processed on machine m in stage $s:s \in \{2,3,...,S\}$. Then:

```
STime(j,i,s,m)=max\{FTime(j,p,s,m)+ch(j,p,j,i,s),\ FTime(j,i,s-1,mp)\} where, p= the product in group j that precedes product i on machine m stage s j\in J, i, p\in F_j m\in M(s) mp is defined earlier.
```

If there is any change in the schedule, then the start time of all products and families affected by the change are recalculated.

Appendix B

The Look Ahead Rule

Look Ahead (LA) Rule

The LA rule is applied when a product from a certain group (e.g., product i from group j) has finished processing in a previous stage (stage s-1; s >1). The algorithm starts by using the EFT rule to determine the best machine, e.g. machine m', for this product which yields the earliest product finish time. The LA rule then checks if the product that precedes product i on machine m' is from the same group. If true, then product i is scheduled on machine m' as soon as it becomes available. Otherwise, the rule checks if there is an incoming product of group q from the previous stage (e.g., product p of group p) to be processed on machine p in the near future (i.e., before time p where p is equal to the finish time of product p on machine p as soon as the machine becomes available. Otherwise, the rule schedules product p on machine p as soon as the machine becomes available. Otherwise, the rule schedules product p of group p on machine p as soon as the following conditions is true:

- The scheduling of product i of group j on machine m' does not delay the start time of the incoming product of group q. In other words, product i of group j can be scheduled on machine m' if the value of DST(q,p) is equal to zero. This results in an earlier finish time of product i by FTime(j,i,s,m) FTime(j,i,s,m') time units.
- 2. The amount of RFT(j,i) is greater than that of DST(q,p). For this condition, the machine idle time would be reduced by RFT(j,i) DST(q,p) time units.

As described above, the LA rule tries to reduce the machine idle time. The detailed procedure for the LA rule is given below.

Initialization:

Let H = the set of products arranged in non-decreasing order of finish times from machines in stage s -1, s >1.

Scheduling steps.

- 1. Let *i* be the next unscheduled product in set H.
- 2. Check whether there is any machine in stage *s* processing products from the same group as product *i* (i.e., from group *j*). If true, determine the set of the machines in stage *s* processing the products of group *j* (MU(*j*)) and go to LA-3. If no machine is processing products of this group, go to LA-12.
- 3. Apply the EFT rule to determine machine m, $m \in MU(j)$, that yields the earliest finish time for product i, group j.
- 4. Apply the EFT rule to determine machine m', $m' \in M(s)$, which yields the earliest finish time of product i, group j.
- 5. If machines *m* and *m*' are the same machine, go to LA-13; otherwise, go to LA-6.
- 6. Check if there is any product of group q (e.g., product p) being processed in the previous stage. If yes, go to LA-7; otherwise, go to LA-13.
- 7. Calculate the sum of the finish time of product i, group j on machine m' (FTime (j,i,s,m')) and the changeover time from this product to product p of group q (ch (j,i,q,p,s)).

- 8. Calculate the start time of product p of group q on machine m' of stage s when scheduled after product p':
 - $STime(q,p,s,m') = \max \{FTime(q,p,mp,s-1), FTime(q,p',s,m') + ch(q,p',q,p,s)\}.$
- 9. Compare the time in LA-7 (i.e., FTime(j,i,s,m') + ch(j,j,q,p,s')} to that in LA-8 (i.e., STime(q,p,s,m'))

 $\textit{If FT(j,i,s,m')} + \textit{ch(j,j,q,p,s)} \} \leq \text{STime}(q,p,s,m'), \text{ go to LA-13; otherwise, go to LA-10.}$

- 10. Check whether the value of RFT(j,i) = FTime(j,i,s,m) FTime(j,i,s,m') is greater than that of DST(q,p). If yes, go to LA-13; otherwise, go to LA-11.
- 11. Do not schedule product i of group j on machine m. Go back to LA-1 (i.e., repeat this procedure until the product is scheduled on a machine in this stage).
- 12. Apply the EFT rule to determine machine m', $m' \in M(s)$, that yields the earliest finish time for product i, group j.
- 13. Schedule product i of group j on machine m'.

Appendix C

The Results from the SAS Program

The SAS System 02:17 Friday, February 14, 1997 1

Analysis of Variance Procedure Class Level Information

Class	Levels	Values
FAMILY	2	10 20
MC	2	3 5
SPEED	2	1 2

Number of observations in data set = 40

The SAS System 02:17 Friday, February 14, 1997 2

Analysis of Variance Procedure

Dependent Variable: IH

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	179.14663750	25.59237679	6.85	0.0001
Error	32	119.52444000	3.73513875		
Corrected Total	39	298.67107750			

	R-Square	C.V.	Root MSE		IH Mean
	0.599812	3.447422	1.93265071	56	.06075000
Source	DF	Anova SS	Mean Square	F Value	Pr > F
FAMILY	1	70.67622250	70.67622250	18.92	0.0001
MC	1	7.03082250	7.03082250	1.88	0.1796
FAMILY*MC	1	0.01406250	0.01406250	0.00	0.9515
SPEED	1	100.77450250	100.77450250	26.98	0.0001
FAMILY*SPEED	1	0.36290250	0.36290250	0.10	0.7573
MC*SPEED	1	0.13806250	0.13806250	0.04	0.8488
FAMILY*MC*SPEED	1	0.15006250	0.15006250	0.04	0.8424

The SAS System 02:17 Friday, February 14, 1997 3

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: IH

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 3.735139

Number of Means 2 Critical Range 1.245

Means with the same letter are not significantly different.

Duncan Grouping		Mean	N	FAMILY
A	57	.3900	20	20
В	54	.7315	20	10

The SAS System 02:17 Friday, February 14, 1997 4

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: IH

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $\,$

Alpha= 0.05 df= 32 MSE= 3.735139

Number of Means 2 Critical Range 1.245

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	MC
A	56.4800	20	3
A	55.6415	20	5

The SAS System 02:17 Friday, February 14, 1997 5

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: IH

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 3.735139

Number of Means 2 Critical Range 1.245

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	SPEED
A	57.6480	20	1
В	54.4735	20	2

The SAS System 02:20 Friday, February 14, 1997 1

Analysis of Variance Procedure Class Level Information

Class	Levels	Values
FAMILY	2	10 20
MC	2	3 5
SDEED	2	1 2

Number of observations in data set = 40

The SAS System 02:20 Friday, February 14, 1997 2

Analysis of Variance Procedure

Dependent Variable: TSearch

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	153.31575000	21.90225000	14.07	0.0001
Error	32	49.82800000	1.55712500		
Corrected Total	39	203.14375000			

	R-Square	C.V.	Root MSI	Ξ	TSearch Mean
	0.754716	1.840823	1.24784815	5	67.78750000
Source	DF	Anova SS	Mean Square	e F Value	Pr > F
FAMILY	1	9.70225000	9.70225000	6.23	0.0179
MC	1	0.46225000	0.46225000	0.30	0.5896
FAMILY*MC	1	0.70225000	0.70225000	0.45	0.5067
SPEED	1	139.50225000	139.50225000	89.59	0.0001
FAMILY*SPEED	1	0.75625000	0.75625000	0.49	0.4909
MC*SPEED	1	1.26025000	1.26025000	0.81	0.3750
FAMILY*MC*SPEED	1	0.93025000	0.93025000	0.60	0.4452
		The SAS Syst	em 02:20 Friday,	February 14,	, 1997 3

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: TSearch

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 1.557125

Number of Means 2 Critical Range .8038

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	FAMILY
А	68.2800	20	10
В	67.2950	20	20

The SAS System 02:

02:20 Friday, February 14, 1997 4

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: TSearch

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 1.557125

Number of Means 2 Critical Range .8038

Means with the same letter are not significantly different.

MC	N	Mean	Duncan Grouping
3	20	67.8950	A
5	2.0	67.6800	A A

The SAS System 02:20 Friday, February 14, 1997 5

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: TSearch

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 1.557125

Number of Means 2 Critical Range .8038

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	SPEED
А	69.6550	20	1
В	65.9200	20	2

The SAS System 02:19 Friday, February 14, 1997 1

Analysis of Variance Procedure Class Level Information

Class	Levels	Values
FAMILY	2	10 20
MC	2	3 5
SPEED	2	1 2

Number of observations in data set = 40

The SAS System 02:19 Friday, February 14, 1997 2

Analysis of Variance Procedure

Dependent Variable: RI

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	288.53944000	41.21992000	6.17	0.0001
Error	32	213.91236000	6.68476125		
Corrected Total	39	502.45180000			

	R-Square	C.V.	Root MSE]	RI Mean
	0.574263	14.96233	2.58549052	17	.28000000
Source	DF	Anova SS	Mean Square	F Value	Pr > F
FAMILY	1	267.90976000	267.90976000	40.08	0.0001
MC	1	9.44784000	9.44784000	1.41	0.2433
FAMILY*MC	1	1.29600000	1.29600000	0.19	0.6627
SPEED	1	0.16900000	0.16900000	0.03	0.8747
FAMILY*SPEED	1	5.95984000	5.95984000	0.89	0.3521
MC*SPEED	1	0.84100000	0.84100000	0.13	0.7251
FAMILY*MC*SPEED	1	2.91600000	2.91600000	0.44	0.5137

The SAS System 02:19 Friday, February 14, 1997 3

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: RI

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 6.684761

Number of Means 2 Critical Range 1.665

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	FAMILY
А	19.8680	20	10
В	14.6920	20	20

The SAS System 02:19 Friday, February 14, 1997 4

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: RI

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 6.684761

Number of Means 2 Critical Range 1.665

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	MC
A	17.7660	20	5
A	16.7940	20	3

The SAS System 02:19 Friday, February 14, 1997 5

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: RI

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 32 MSE= 6.684761

Number of Means 2 Critical Range 1.665

Means with the same letter are not significantly different.

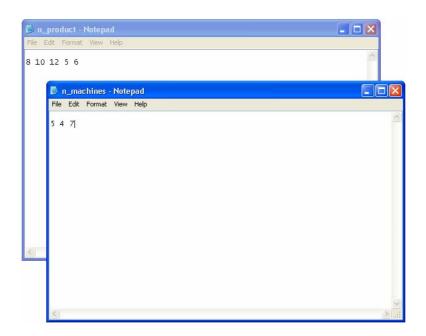
Duncan Gi	rouping	Mean	N	SPEED
	A	17.3450	20	2
	A A	17.2150	20	1

Appendix D

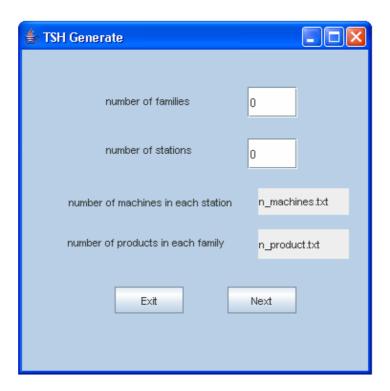
วิธีการใช้ Software ของ Heuristic Algorithm (TSEARCH) ใหฐปแบบ GUI (Graphic User Interface)

D.1 คู่มือการใช้โปรแกรม TSearch Generate

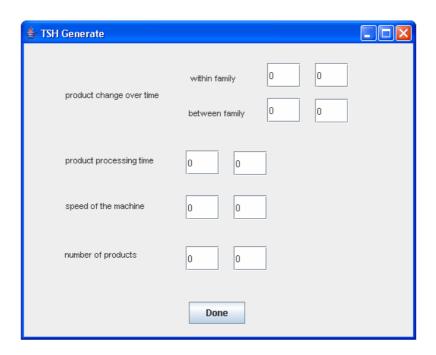
1. ทำการสร้าง file ชื่อ n_machines.txt และ n_product.txt เพื่อเป็นที่เก็บข้อมูลของจำนวนเครื่องจักรในแต่ละ สถานึงานและจำนวนของ product ในแต่ละ family ดังรูป



2. เมื่อได้ file ทั้งสองแล้วให้เก็บใน Folder TshGen แล้วจึงเปิดโปรแกรม TshGenW.exe จะพบกับหน้าจอดังรูป แล้วกรอกข้อมูลจำนวนของ Family และจำนวนของสถานึงาน แล้วคลิกปุ่ม Next



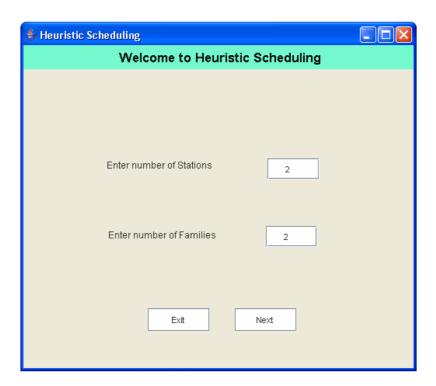
3. กรอกช่วงของเวลาที่ใช้ในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจากผลิตภัณฑ์หนึ่งไปเป็นอีก ผลิตภัณฑ์หนึ่ง ทั้งใน Family เดียวกัน และต่าง Family กัน โดยคิดเป็นเปอร์เซ็นต์ของ standard processing time ช่วงของเวลาที่ในการผลิตต่อหน่วย ช่วงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเป็น เปอร์เซ็นต์ของ standard processing time และช่วงของจำนวนของแต่ละ Product ที่ต้องการผลิต แล้วคลิกที่ ปุ่ม Done



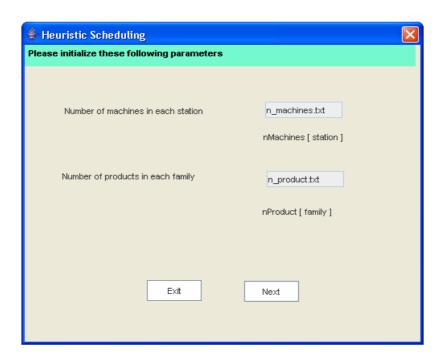
4. โปรแกรมจะทำการ Generate ข้อมูลขึ้นมาเป็น file ชื่อ prodPT.txt, product.txt, productCOT.txt และ speed.txt โดยให้ ทำการคัดลอก file ทั้งสี่ รวมทั้ง file ชื่อ n_machines.txt และ n_product.txt อีกสอง file ไปยัง Folder โปรแกรม TshGui เพื่อทำ Tabu Search ต่อไป

D.2 คู่มือการใช้โปรแกรม TSEARCH

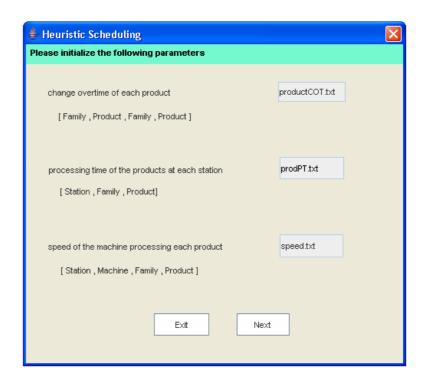
1. เมื่อทำการคัดลอก file ทั้งหกมาไว้ใน Folder TshGui แล้วให้ทำการเปิดโปรแกรม TshGuiW.exe จะพบ หน้าจอดังรูป ให้ทำการกรอกข้อมูลจำนวนสถานีงาน และจำนวน Family คลิกปุ่ม Next



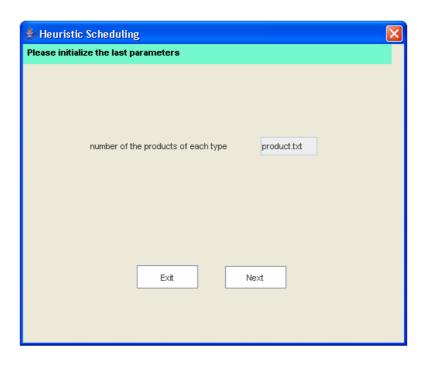
2. หากแน่ใจแล้วว่า file ชื่อ n_machines.txt และ n_product.txt อยู่ใน Folder TshGui แล้ว ให้คลิกปุ่ม Next



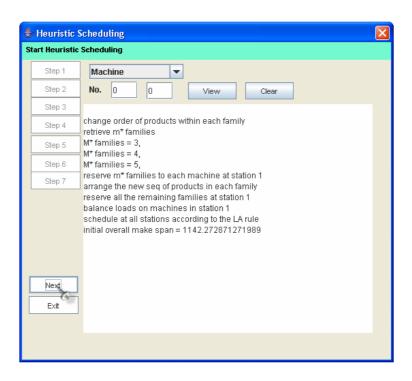
3. หากแน่ใจแล้วว่า file ชื่อ productCOT.txt, prodPT.txt และ speed.txt อยู่ใน Folder TshGui แล้ว ให้คลิกปุ่ม Next



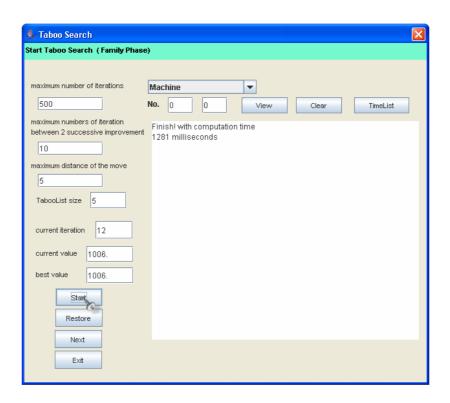
4. หากแน่ใจแล้วว่า file ชื่อ product.txt อยู่ใน Folder TshGui แล้ว ให้คลิกปุ่ม Next เพื่อเข้าสู่ขั้นตอนการหา Initial Solution



5. คลิกที่ปุ่ม Step 1 ไปตามลำดับจนถึง Step 7 โดยแต่ละปุ่มจะแสดงผลลัพธ์ตามขั้นตอนการทำงานเพื่อหา Initial Solution แล้วจึงคลิกที่ปุ่ม Next



6. กรอกข้อมูล จำนวนรอบสูงสุดที่จะทำการคำนวน จำนวนรอบสูงสุดระหว่าง 2 คำตอบที่ดีขึ้นที่จะทำการ คำนวณต่อไป จำนวนรอบสูงสุดที่จะคำนวณต่อเมื่อได้คำตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แล้วคลิก ปุ่ม Start โปรแกรมจะทำการคำนวน โดยแสดงคำตอบที่ดีที่สุดในช่อง Best Value เมื่อโปรแกรมคำนวณเสร็จ จะแสดงเวลาที่ใช้ในการคำนวณดังรูป คลิกปุ่ม Next

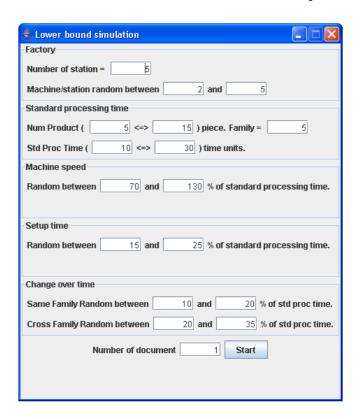


7. กรอกข้อมูล จำนวนรอบสูงสุดที่จะทำการคำนวน จำนวนรอบสูงสุดระหว่าง 2 คำตอบที่ดีขึ้นที่จะทำการ คำนวณต่อไป จำนวนรอบสูงสุดที่จะคำนวณต่อเมื่อได้คำตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แล้วคลิก ปุ่ม Start โปรแกรมจะทำการคำนวน โดยแสดงคำตอบที่ดีที่สุดในช่อง Best Value เมื่อโปรแกรมคำนวณเสร็จ จะแสดงเวลาที่ใช้ในการคำนวณดังรูป คลิกปุ่ม Exit เมื่อเสร็จสิ้นการคำนวณ

Appendix E

วิธีการใช้ Software ของ Lower Bounds ใหฐปแบบ GUI (Graphic User Interface)

1. เมื่อทำการเปิดโปรแกรม Lower Bound ขึ้นมาจะพบกับหน้าจอโปรแกรมดังรูป



- 2. จากหน้าจอโปรแกรมจะทำการกรอกข้อมูลลงในโปรแกรมโดยข้อมูลที่ต้องกรอกลงไปมีดังนี้
 - ในส่วน Factory คือจำนวนสถานีงาน ช่วงของเครื่องจักรในสถานีงานที่จะทำการ Random
 - ในส่วน Standard processing time คือ ช่วงของ Product ใน family จำนวน family และช่วงของ standard processing time ต่อหน่วย
 - ในส่วน Machine Speed คือช่วงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเป็นเปอร์เซ็นต์ของ standard processing time
 - ในส่วน Setup time คือช่วงของเวลาที่ต้องใช้ในการเตรียมการผลิต โดยคิดเป็นเปอร์เซ็นต์ของ standard processing time
 - ในส่วน Change over time คือช่วงของเวลาที่ใช้ในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจาก ผลิตภัณฑ์หนึ่งไปเป็นอีกผลิตภัณฑ์หนึ่ง ทั้งใน Family เดียวกัน และต่าง Family กัน โดยคิดเป็น เปอร์เซ็นต์ของ standard processing time
 - ในส่วนสุดท้ายคือจำนวนของชุดข้อมูลที่ต้องการสร้างขึ้น แล้วจึงคลิกที่ปุ่ม Start โปรแกรมจะทำการ คำนวนและแสดงผลลัพธ์ในรูปแบบของ Web Page

MIXED INTEGER PROGRAMMING MODELS FOR SCHEDULING HYBRID FLOWSHOPS WHEN MACHINES ARE UNRELATED

Kanchana Sethanan^{a,*}, Ph.D., Somkiet Rijikietgumjorn^a, Ph.D.

a Industrial Engineering Department, Khon Kaen University, Thailand
Phone: (043) 343-117, Fax: (043) 343-117

*E-mail: skanch@kku.ac.th

ABSTRACT

This paper presents several mixed integer programming formulations for scheduling hybrid flowshop problems with the sequence dependent setup times. In each stage, machines are unrelated. Even though the hybrid flowshop problem with sequence dependent setup times (FFS(R_{m1} , R_{m2} ,..., R_{mL})/ s_{ipm} / C_{max}) is known to be NP-hard, there are two main reasons for formulating a mathematical programming model: (1) the mathematical programming formulation provides a better understanding of the problem and (2) it may be able to solve practical size problems in the near future. Hence, in this research, the family of the mixed integer programming models is proposed in order to be used in practice as a simple support tool for the scheduling. A variety of different system configurations and objective functions considered in this research provide a scheduler with a basis for constructing of his/her own model for a particular problem instance.

KEYWORDS

Hybrid flowshop, Flexible flowshop, Scheduling, Setup times, Unrelated machines

1. Introduction

Nowadays, manufacturers are faced with customer demands for a variety of high quality products. The companies must therefore make their production systems more flexible, respond rapidly to demand fluctuations, and reduce costs related to production. Hence, companies need to have advanced techniques. Manufacturing has been an interesting topic in production and operation management because of areas such as job scheduling or machine loading. Hence, scheduling problems involve the assignment of machines to various jobs and determination of the order in which the jobs will be performed in order to optimize some criteria (such as minimization of makespan, or lateness) while satisfying the shop constraints.

1.1 A hybrid flowshop environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop. A hybrid flowshops is a generalization of the flowshop and the parallel processor environments. In a hybrid flowshop environment, there are L workstations, each of which consists of at least one machine. The machines in each stage may identical, uniform, or unrelated. In a hybrid flowshop, each job is processed first at stage 1, then at stage 2, and so on. Normally, a job requires only one machine in each stage and any machine can process any job as shown in the schematic representation in Figure 1.

1.2 Dependent setup time

The requirements of setup times of jobs are very common in many real manufacturing situations such as inspecting material, setting tools, and cleanup. In this research, sequence dependent setup times are considered to be very important factors in the manufacturing environment, especially, when a shop floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence dependent setups occur especially in process industry operations, where machine setup time is significant and is needed when products change. The magnitude of setup time depends on the similarity in technological processing requirements for successive jobs (Srikan & Glosh, 1986).

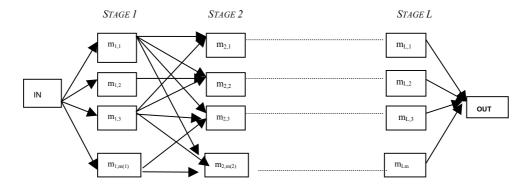


Figure 1: A Schematic Representation of a hybrid Flowshop Manufacturing Environment

Even though there exists an enormous amount of research on the flowshop scheduling problem, research study has rarely been conducted in the case where setup times are sequence dependent (Allahverdi, 1999). Hence, the results of these research studies lack a practical solution for applications that require the treatment of setup times. For this reason, dependent setup times must be allowed for a realistic description and hence are considered in this research.

The purpose of this research is to present a family of MIP models for scheduling hybrid flowshops with sequence dependent setup times (FFs/s_{ipm}/ C_{max}), for a variety of different system configurations and objective functions. As much of the current industrial competition is a time-based, the reduction of the production lead-time and due dates are important keys. Hence, the objectives considered are to (1) to minimize the makespan and (2) to minimize the maximum lateness. The models proposed can be classified into the following four categories:

- (1) Lot-splitting is not allowed and dependent setup times are considered,
- (2) Lot-splitting is not allowed and both dependent setup times and due dates are considered,
- (3) Lot-splitting is allowed and dependent setup times are considered, and
- (4) Lot-splitting is allowed and both dependent setup times and due dates are considered.

The paper is organized as follows. In the next section, the literature review is presented. In section 3, the problem and propose is described, then four optimizing algorithms are developed in section 4. The experimental results are presented in Section 5. Section 6 concludes the paper with a discussion of this research and future extension.

2. Literature Review

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop manufacturing that has been interested researchers for many years. In 1971, Arthany and Ramaswamy proposed a branch and bound (B&B) algorithm for the FFs(Pm₁, Pm₂=1)//C_{max} problem. They could optimally solve problems with up to 10 jobs. Brah and Hunsucker (1991) and Ragendran and Chuadhuri (1992) developed B&B algorithms for the FFs(Pm₁, Pm₂, ...,Pm_s)//C_{max}). Both studies can solve only small-sized problems.

In 1995, Moursli improved Brah's algorithm. His algorithm can solve the problem with up to 20 jobs optimally. Another study was done by Guinet et al. (1995). They developed a mathematical model and heuristics for the FFs(Pm₁, Pm₂//C_{max}) problems. Up to date, there is only one literature in scheduling hybrid flowshop with sequence dependent setup times (FFs/s_{ipm}/C_{max}). According to Sethanan (2001), the mixed integer programming is formulated to solve FFs/Qm₁,Qm₂,...,Qm_s, s_{ipm}/C_{max}.

From the reviewed literature, there is no literature in scheduling hybrid flowshops when machines in each stage are unrelated and dependent setup times are considered. Such problems are hence

considered in this research with the aim to develop mathematical models for a variety of different system configurations and objective functions.

3. The Problem Description

The research deals with the general hybrid flowshop, with L production stages, in which each job sequence may not be the same on each machine at each stage. The problem on hand has several distinct products. Each production stage may be composed of more than one machine. If a stage has multiple machines, they are considered to be unrelated. This means the speed of machine depends on the products to be processed. Prior to processing a job on a machine, there is an associated setup time. Machine setup times are needed between any two products. Thus, setup times are considered significant and typically depend on the sequence of the jobs through the processors. The research addresses the problem of scheduling all products on the machines of different stage in order to minimize the maximum makespan and due dates.

Description of the models:

The assumptions made in formulating each of the category models are presented as follows:

Category 1:

- 1. It is assumed that the decisions have been made from the long and intermediate-range planning.
- 2. Production is make-for-stock; hence, there are no due dates associated with products.
- 3. All jobs and machines are available at the beginning of the scheduling process.
- 4. Each stage of the hybrid flowshop production may have several unrelated machines.
- 5. Jobs can wait between two production stages and the intermediate storage is unlimited.
- 6. Products cannot be split between machines in the same stage.
- 7. There is no job preemption.

<u>Category 2:</u> The assumptions of this category are exactly same as in category 1 except that assumption (2) is changed to consider due dates of products.

<u>Category 3:</u> The assumptions of this category are exactly same as in category 1 except that product splitting is considered.

<u>Category 4:</u> The assumptions of this category are exactly same as in category 1 except that due dates and splitting of products are considered.

4. Optimizing Algorithms

This section presents optimal algorithms for the hybrid flowshops with unrelated machines at each stage. The 0-1 mixed integer programming formulations are presented below. There are four models with two different objective functions. Parameters and decision variables used in formulating the models are defined as presented in Table 1.

Model 1: Lot-splitting is not allowed. The objective function is to minimize the makespan.

The objective function: Min E

Constraints:

$$F(i,1,m) \ge ch(0,i,s=1) + \{P(i,1,m) \cdot x(i,1,m)\}; i = 1,2,...,n ; and m=1,2,...,m(1)$$

$$F(i,s,m) \ge F(i,s-1,mp) + \{P(j,i,s,m) \cdot x(j,i,s,m)\}; i = 1,2,...,n ; s = 2,3,...,L, m = 1,2,...,m(s), mp = 1,2,...,m(s-1) (2)$$

$$F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) \ge \{P(i,s,m)\cdot x(i,s,m)\}; i=1,2,...,n, s=1,2,...,L, m=1,2,...,m(s)$$
 (3)

$$F(i,L,m) \leq E; i = 1,2,...,n; and m = 1,2,...,m(L)$$
 (4)

Table 1: The Notation Used in the Mixed Integer Programming Model

Type of Variables	Notation	Explanation			
	F(i,s,m)	Finish time of product i on machine m of stage s			
Decision Variables	Е	The makespan			
	Q(i,s,m)	The number of product i that are assigned to machine m of stage s			
	x(i,s,m)	= 1, if product i is assigned to machine m of stage s = 0, otherwise			
Binary decision variables	w(i,0,s,m)	= 1, if product i is the last product processed on machine m of stage s = 0, otherwise			
	w(0,i,s,m)	= 1, if product i is the first product processed on machine m of stage s = 0, otherwise			
	i,p,h	Product indices			
	S	Stage index			
	m(s)	The number of machines in stage s			
	n	Total number of products			
M(s)		The set of machines in stage s; $M(s) = \{1,2,,m(s)\}$			
	L	The number of stages in the production line			
	Н	The total number of machines from all stages			
Parameters		$=\sum_{s=1}^{L}m(s)$			
	B(i)	The number of units required for product i			
	t(i,s,m)	The processing time per unit of product i on machine m of stage s			
	P(i,s,m)	The batch processing time of product i on machine m of stage s;			
		$P(i,s,m) = B(i) \cdot t(i,s,m)$			
	ch(i,p,s)	The number of time units required to changeover from production i to product p			
		stage s			
	V	a very large positive number.			

$$\sum_{m=1}^{m(s)} x(i, s, m) = 1; i = 1, 2, ..., n; and s = 1, 2, ..., L$$
 (5)

$$\sum_{m=1}^{m(s)} x(i, s, m) = 1; i = 1, 2, ..., n; and s = 1, 2, ..., L$$

$$x(p,s,m) - w(0,p,s,m) - \sum_{p=1}^{n} w(i, p, s, m) = 0; p = 1, 2, ..., n; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$x(i,s,m) - w(i,0,s,m) - \sum_{i=1}^{n} w(i, p, s, m) = 0; i = 1, 2, ..., n; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$\sum_{p=1}^{n} w(0, p, s, m) = 1 \quad ; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$\sum_{p=1}^{n} w(p,0,s,m) = 1 \quad ; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$(5)$$

$$(6)$$

$$x(i,s,m) - w(i,0,s,m) - \sum_{i=1}^{n} w(i, p, s, m) = 0; i = 1, 2, ..., n; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$\sum_{p=1}^{n} w(p,0,s,m) = 1 \quad ; s = 1, 2, ..., L; and m = 1, 2, ..., m(s)$$

$$(9)$$

$$x(i,s,m) - w(i,0,s,m) - \sum_{i=1}^{n} w(i,p,s,m) = 0; i = 1,2,...,n; s = 1,2,...,L; and m = 1,2,...,m(s)$$
 (7)

$$\sum_{p=1}^{n} w(0, p, s, m) = 1 ; s = 1, 2, ..., L; and m = 1, 2, ..., m(s) (8)$$

$$\sum_{n=1}^{n} w(p,0,s,m) = 1 \qquad ; s = 1,2,...,L; and m = 1,2,...,m(s)$$
(9)

Constraints (1) ensure that all products are scheduled and the completion time of any product on any machine of the first stage is determined. Constraints (2) ensure that the completion time of product i produced on machine m in the current stage must be greater than its completion time in a previous stage. Constraints (3) are about product sequencing on all the L stages. Constraints (4) are needed to ensure that the makespan is equal to or greater than the completion time of each of the jobs in the last stage. Constraints (5) ensure that, for each product, it can be manufactured on only one of machines in that stage of the production line. Constraints (6) ensure that, except for the first product, a product scheduled on any machine is preceded by exactly one different product. Constraints (7) ensure that, except for the last product, a product scheduled on any machine must be immediately followed by only one product. Constraints (8) & (9) ensure that a machine can have exactly one first and one last product. In this model, there are $H(2+2n+n^2)+nm(L)$ decision variables and generates $(12+n)-M+n^2+nm(1)+1$ constraints.

Model 2: Lot-splitting is not allowed. The objective is to minimize the maximum lateness. This model is exactly the same in Category 1 except that constraints (10) is added to find the lateness of each job. This model requires $H(2+2n+n^2)+nm(L)+1$ decision variables and generates $(12+n)-M+n^2+nm(1)+nm(L)+1$ constraints.

$$L_{max} \ge F(i, L, m) - d(i); \text{ for } i = 1, 2, ..., n; \text{ and } m = 1, 2, ..., m(L)$$
 (10)

Model 3: Lot-splitting is allowed. The objective is to minimize the makespan.

The model to be used is exactly the same in Model 1 with some additional constraints (i.e., constraints (10), (11), and (12) as shown below) and one modified constraint (i.e., constraint 5). This model requires $H(2+2n+n^2)+nm(L)+2nH$ decision variables and $nH(12+n)-M+n^2+nm(1)+n(2H+L)$ constraints.

$$\sum_{k=1}^{m(s)} X(i, s, m) \ge 1 \quad ; i = 1, 2, ..., n ; and s = 1, 2, ..., L$$
 (5)

$$\sum_{m=1}^{m(s)} X(i, s, m) \ge 1 \quad ; i = 1, 2, ..., n ; and s = 1, 2, ..., L$$

$$\sum_{m=1}^{m(s)} q(i, s, m) = B(i) \quad ; i = 1, 2, ..., n ; and s = 1, 2, ..., L$$
(10)

$$B(i) \cdot X(i,s,m) \ge q(i,s,m); i = 1,2,...,n; s = 1,2,...,L; and m = 1,2,...,m(L)$$
 (11)

$$X(i,s,m) \le n(i,s,m)$$
; $i = 1,2,...,n$; $s = 1,2,...,L$; and $m = 1,2,...,m(L)$ (12)

Model 4: Lot-splitting is allowed. The objective is to minimize the maximum lateness.

The model to be used is exactly the same in Model 3, except constraints (13) is added to find the lateness of each job. In this model, there are $H(2+2n+n^2) + nm(L) + 1 + 2nH$ decision variables and $nH(12+n)-M+n^2+nm(1)+n(2H+L)+nm(L)+1$ constraints.

$$L_{max} \ge F(i,L,m) - d(i) \; ; i = 1,2,...,n \; ; and \; m = 1,2,...,m(L)$$
 (13)

5. Experiment Results

In this section, several numerical examples are presented to illustrate various applications of the proposed models. There are four models considered in this paper. Cases have been established based on the number of jobs (n), number of stages (s), and number of machines (m). In this experiment, the parameters are given as: (1) the processing time per a unit of product on each machines of a particular stage (t(i,s,m)) which is random from uniform distribution with U(20,50), (2) due date (d) of a product which is random from $U(Lp_{av}, 2np_{av}/m_{av})$ where p_{av} and m_{av} represent the average processing time and average number of machines, respectively, and (3) the number of units required for each product (B(i))which is random from uniform distribution with U(15.30).

The examples presented in this section were solved using CPLEX/AMPL software. The models could optimally solve problems with up to 5 jobs 8 machines with reasonable computational effort. CPU run times on a PC 500MHz have been varied from several seconds to several minutes. Table 3 summarized these cases and their solution results.

6. Conclusions

The family of the mixed integer programming models proposed in this research can be used in practice as a simple support tool for the scheduling hybrid flowshops with sequence dependent setup times. A variety of different system configurations and objective functions considered in this research provides a scheduler with a basis for constructing of his/her own model for a particular problem instance.

The models proposed can sometimes lead to relatively large integer programs. In particular, the scheduling hybrid flowshops with sequence dependent setup times when machines are unrelated contribute essential to the problem size. For realistic scheduling problem, the mixed integer programming may involve several thousands of binary variables, which by far exceeds the solution capabilities of the optimization techniques and computer technology. Hence, for the future research, it is necessary to find solution techniques (e.g., heuristic methods) that are easy to implement even though they may not always lead to an optimal solution.

Table 3: Optimal Makespan and CPU Times for the Illustrative Problems

	<u> </u>	Problem Size									
Case	Problem No.			m(s)			Optimal Makespan or Lateness (time units) : CPU time (seconds)				
	NO.	n	s=1	s=2	s=3	s=4	s=5	Model 1	Model 2	Model 3	Model 4
	1	2	2	2	-	-	-	1538.49 : 1	181.49 : 2	1066.73 : 4	0.00 : 5
	2	2	2	1	2	-	-	2060.32 : 1	0.00 : 1	1667.65 : 2	0.00 : 1
1	3	2	1	1	2	2	-	2658.76 : 1	63.51 : 1	2335.85 : :2	0.00 : 2
	4	2	2	2	2	1	1	3243.64 : 11	0.00 : 1	2653.91 : 1333	0.00 : 1
	1	3	2	2	-	-	-	1615.28 : 1	0.00 : 1	795.3 : 2	0.00 : 1
2	2	3	2	2	2	-	-	2371.52 : 14	420.41 : 1	1199.95 : 20	0.00 : 3
	3	3	2	2	1	1	-	5064.42 : 1	2189.42 : 2	4514.31 : 2	1676.62 : 2
	4	3	2	1	2	1	2	5615.04 : 2	1280.20 : 1	4652.73 : 1	543.82 : 1
	1	4	2	1	-	-	-	2950.13 : 1	686.40 : 1	2802.29 : 15	538.82 : 1
3	2	4	3	2	3	-	-	n/a	515.38 : 12	n/a	0.00 : 11
3	3	4	2	2	2	1	-	n/a	0.00 : 1	n/a	0.00 : 1
	4	4	2	1	2	1	2	4413.10 : 54	1357.48 : 11	3789.83 : 36	789.56 : 30
	1	5	1	3	-	-	-	2358.99 : 17	508.46 : 3	2167.19 : 9	252.46 : 4
4	2	5	1	1	1	-	-	4508.86 : 6	1400.45 : 2	4508.86 : 7	1400.46 : 4
4	3	5	1	1	2	1	-	6191.39 : 554	1842.75 : 44	5675.39 : 369	1518.75 : 570
	4	5	1	1	2	1	2	n/a	n/a	n/a	n/a

Note: n/a = finding an optimal solution is computationally intractable.

Acknowledgements

This research is fully supported by the Thailand Research Fund Grant No. TRG4580020.

References

Arthanary, T. S. & Ramaswamy, K. G. (1971). An Extension of Two Machine Sequencing Problem. *Opsearch*, 8, 10-22.

Brah, S. A. & Hunsucker, J. L. (1991). Branch and Bound Algorithm for the Flow Shop with Multiple Processors. *European Journal of Operational Research*, 51, 88-99.

Guinet, A., Solomon, M.M., Kedia, P.K. & Dussauchoy, A. (1996). A Computational Study of Heuristics for Two-Stage Flexible Flowshops, *International Journal of Production Research*, 34(5), 1399-1415.

Moursli, O. (1995). Branch and Bound Lower Bounds for the Hybrid Flowshop. *Intelligent Manufacturing Systems*, 4th IFAC Workshop, 31-36.

Rajendran, C. & Chaudhuri, D. (1992). Scheduling in n-job, m-machine Flowshop with Parallel Processors to Minimize Makespan, *International Journal of Production Economics*, 27, 137-143.

Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times. *Doctoral Dissertation, West Virginia University*. West Virginia.

Srikar, B. N. & Ghosh, S. (1986). A MILP Model for the *n*-job, *m*-stage Flowshop with Sequence Dependent Set-up Times. *International Journal of Production Research*, 24(6), 1459-1474.

Wilbrecht, J. K. & Prescott, W. B. (1969). The Influence of Setup Time on Job Shop Performance, *Management Science*, 16, B274-B280.

MATHEMATICAL MODELS FOR A HYBRID FLOWSHOP WITH ELIGIBILITY RESTRICTIONS

Kanchana Sethanan, Jakrapong Gerdjuntheung, and Somkiet Rujikietgumjorn

Industrial Engineering Department, Khon Kaen University, Thailand

skanch@kku.ac.th

ABSTRACT

In the real world manufacturing environment, the scheduling problems are greatly complicated by presence of disparate issues such as: (1) uniform parallel machines with different speeds, sequence dependent setups, and (3) machine restrictions. In this paper, a complex scheduling problem characterized as a hybrid flowshop with machine eligibility constraints is addressed. The production line consists of S stages, each of which may have more than one uniform machines. Prior to processing a job on a machine, there is an associated setup time which is dependant. Even though the hybrid flowshop problem is known to be NP-hard, there are two main reasons for formulating a mathematical programming model: (1) the mathematical programming formulation provides a better understanding of the problem and (2) reasonable sized problems may be solved using the model in the near future. In this research, two mathematical programming models (i.e., Model A and Model B) are formulated to solve the problem with the objective is to minimize the mean flow time. The models were solved using CLEX/AMPL software on a PC 800 MHz. Hence, in this research, the two models are compared in terms of the number of constraints and decision variables. Computational results show that Model A is more effective because it generates less decision variables. Model A could be used to solve problems with up to five jobs and six machines, while Model B could only be used to solve problems with five jobs and four machines.

Key Words: Scheduling, Flexible Flowshop, Mathematical Programming, Hybrid Flowshop, Machine Eligibility Restriction, Dependent Setup Times.

1. INTRODUCTION

Consider the following problem. A set of processors must perform a set of jobs, and jobs cannot process until predecessors are finished. The processing time required to perform each job varies on each processor. This research focuses on assigning the jobs to each processor and scheduling the jobs in such a way that the mean flow time is minimize.

In real-life industries, a hybrid flowshop is more commonly seen than traditional flowshop. A hybrid flowshop is a generalization of the flowshop and the parallel processor environments. In a hybrid flowshop, there are S stations, each containing of at least one machine. The machines in each stage may identical, uniform, or unrelated. Let P_{ims} denote the processing time of job j on machine m n stage s. In general, one can distinguish among the following three cases.

- (1) identical machines: $P_{ims} = P_{1ms}$ for all i and m in each s
- (2) uniform machines: $P_{ims} = P_{ms}/v_i$ for all i and m, where v_m is the speed of machine m, and P_i is the processing time at the normal speed (100% speed).

(3) unrelated machine: P_{ims} arbitrary for all i and m in each s

This paper considers the problem of scheduling independent job i_1 , i_2 ,..., i_n on hybrid flowshop which machines in each stage are unrelated and eligible. Prior to the processing of a job on a machine, there is an associated setup time. Machine setup times are needed between any two products. Thus, setup times are considered significant and typically depend on the sequence of the jobs through the processors, called dependent setup times. The problem is well known to be NP-hard. Additionally, in the system a job assigned to a particular machine define eligibility of a machine. If a job cannot be assigned to machines due to efficiency concerns, the machines cannot process the job. Hence, let $M_{i,s}$ denotes the set of machines in stage s that can process job i.

This research consider the problem of scheduling jobs to unrelated and eligible machines so that the maximum completion time (makespan) is minimized. Following standard three-field, the above problem is denoted as $FFs/R_{ml}, R_{m2}, ..., R_{ms}/M_{i,s}$ s_{ipm}/C_{max} .

2. LITURATURE REVIEW

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop manufacturing that has been interested researchers for many years. In 1995, Guinet et al. developed a mathematical model and heuristics for the FFs(P_{m1} , P_{m2} // C_{max}) problems. According to Sethanan (2001), the mixed integer programming is formulated to solve $FFs/Q_{m1}, Q_{m2}, ..., Q_{ms}, s_{ipm}/C_{max}$.

In 2003, Alagoz and Azizoglu developed a mathematical model and three heuristic algorithms for rescheduling in parallel machines and they also consider machine restrictions. In 2004, Shchepin and Vakhania developed a polynomial-time algorithm for non-preemptive scheduling of *n*-independent jobs on *m*-unrelated machines to minimize the makespan. The algorithm yields a better worst-case performance than the earlier known best performance bound. Ghirardi and Potts (2004) develop a recovering beam search to obtain approximate solutions for unrelated parallel machines to minimize the makespan. The study could solve for instances with the large size up to 1000 jobs in polynomial time.

From the reviewed literature, there is no literature in scheduling hybrid flowshops when dependent setup times and eligibility machine restriction are considered. Such problems are hence considered in this research with the aim to develop two mathematical models with the objective to minimize the mean flowtime.

3. THE PROBLEM DESCRIPTION

The research deals with the general hybrid flowshop, with *S* production stages, in which each job sequence may not be the same on each machine at each stage. The problem on hand has several distinct products. Each production stage may be composed of more than one machine. If a stage has multiple machines, they are considered to be unrelated. This means the speed of machine depends on the products to be processed. The machines in each stage could not process every job because of machine restrictions. Additionally, prior to processing a job on a machine, there is an associated setup time. Machine setup times are needed between any two products. Thus, setup times are considered significant and typically depend on the sequence of the jobs through the machines. The research addresses the problem of scheduling all products on the machines of different stage in order to minimize the mean flow time. The assumptions that have been made are:

(1) It is assumed that the decisions have been made from the long and medium term planning.

- (2) Production is make-for-stock; hence, there are no due dates associated with products.
- (3) All jobs and machines are available at the beginning of the scheduling process.
- (4) Each stage of the hybrid flowshop production may have several unrelated machines.
- (5) Jobs can wait between two production stages and the intermediate storage is unlimited.
- (6) Setup times for jobs on each machine are dependent on the order in which jobs are processed.
- (7) Products cannot be split between machines in the same stage.
- (8) There is no job preemption.

4. EXACT ALGORITHMS

This section presents optimal algorithms for the hybrid flowshops with unrelated machines at each stage. The 0-1 mixed integer programming formulations are presented below. Parameters and decision variables used in formulating the models are defined as presented in Table 1.

Table 1: The Notation Used in the Mixed Integer Programming Model

Type of Variables	Notation	Explanation					
Decision Variables	F(i,s,m)	Finish time of product i on machine m of stage s					
	x(i,s,m)	= 1, if product i is assigned to machine m of stage s					
		= 0, otherwise					
	x(j,i,s,m)	= 1, if product i is previously scheduled product i on machine m of stage s					
		= 0, otherwise					
	w(i,0,s,m)	= 1, if product i is the last product processed on machine m of					
Binary decision		stage s					
variables		= 0, otherwise					
variables	w(0,i,s,m)	= 1, if product i is the first product processed on machine m of					
		stage s					
		= 0, otherwise					
	W(i,j,s,m)	=1, if product I immediately precedes product j on machine m of					
		stage s					
		=0; otherwise					
	i,p,h,j	Product indices					
	S	Stage index					
	m(s)	The number of machines in stage s					
	n	Total number of products					
	M(s)	The set of machines in stage s; $M(s) = \{1,2,,m(s)\}$					
	PD(s,m)	Set of products that can be processed on machine m of stage s					
Parameters	S	The number of stages in the production line					
Parameters	Ψ	Set of stages					
	Н	The total number of machines from all stages					
		$=\sum_{s=1}^{S}m(s)$					
	P(i,s,m)	The processing time of job i on the m th machine m in stage s					
	ch(i,p,s)	The setup time required between job i and p in stage s if i precedes p					
	V	a very large positive number.					

Model A:

The objective function: Min $\frac{1}{n} \cdot \{F(i, S, m)\}$

Constraints:

$$F(i,1,m) \ge ch(0,i,s=1) + \{P(i,1,m) \cdot x(i,1,m)\}$$

$$i \in PD(s,m); and m \in M(s)$$
 (1)

 $F(i,s,m) \ge F(i,s-1,mp) + \{P(i,s,m) \cdot x(i,s,m)\};$

$$i \in PD(s,m); s = 2,3,...,S, m \in M(s), mp = 1,2,...,m(s-1)$$
 (2)

 $F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) \ge \{P(i,s,m)\cdot x(i,s,m)\};$

$$i \in PD(s,m), s = 1,2,..., S, m \in M(s)$$
 (3)

$$\sum_{m=1}^{m(s)} x(i, s, m) \qquad = \qquad 1$$

$$i \in PD(s,m)$$
; and $s \in \psi$ (4)

$$x(p,s,m) - w(0,p,s,m) - \sum_{i=1}^{n} w(i,p,s,m) = 0;$$

$$p \in PD(s,m); s \in \psi; \text{ and } m \in M(s)$$
 (5)

$$x(i,s,m) - w(i,0,s,m) - \sum_{p=1}^{n} w(i, p, s, m) = 0;$$

$$i \in PD(s,m); s \in \psi, \text{ and } m \in M(s)$$
 (6)

$$\sum_{n=1}^{n} w(0, p, s, m) = 1; s \in \psi; \text{ and } m \in M(s)$$
 (7)

$$\sum_{s=0}^{n} w(p,0,s,m) = 1; s \in \psi; \text{ and } m \in M(s)$$
 (8)

Constraint (1) ensures that all products are scheduled and the completion time of any product on one of machines in the first stage is determined. Constraint (2) ensures that the completion time of product i produced on machine m in the current stage must be greater than its completion time in a previous stage. Constraint (3) is about product sequencing on all the S stages. Constraint (4) ensures that, for each product, it can be manufactured on only one of machines in that stage of the production line. Constraint (5) ensures that, except for the first product, a product scheduled on any machine is preceded by exactly one different product. Constraint (6) ensures that, except for the last product, a product scheduled on any machine must be immediately followed by only one product. Constraints (7) & (8) ensure that a machine can have exactly one first and one last product.

Model B:

The objective function: Min $\frac{1}{n} \cdot \{F(i,S,m)\}$

Constraints:

$$F(j,1,m) \ge P(j,1,m)X(i,j,1,m)$$

$$i, j \in PD(s, m), m \in M(s), \text{ and } i \neq j$$
 (9)

$$F(j, s, m) \ge F(j, s - 1, m') + P(j, s, m)X(i, j, s, m)$$

$$i, j \in PD(s,m), m \in M(s), i \neq j, s \in \psi, m' \in M(s-1)$$
 (10)

$$F(j, s, m) \ge F(i, s, m) + X(i, j, s, m)P(j, s, m) - V(1 - X(i, j, s, m))$$

$$i,j \in PD(s,m), i \neq j, m \in M(s), \text{ and } s \in \psi$$
 (11)

$$\sum_{i=0}^{n} \sum_{m=1}^{m(s)} X(i, j, s, m) = 1$$

$$j \in PD(s, m), i \neq j \text{ and } s \in \Psi$$

$$(12)$$

$$\sum_{i=0}^{n} X(i,h,s,m) - \sum_{j=0}^{n} X(h,j,s,m) = 0$$

$$i, h \in PD(s, m), i \neq j, m \in M(s), \text{ and } s \in \psi$$
 (13)

$$\sum_{i=1}^{n} W(i, j, s, m) \le 1$$

$$i \in PD(s,m), m \in M(s), i \neq j, \text{ and } s \in \psi$$
 (14)

Constraint (9) ensures that all products are scheduled and the completion time of any product on any machine of the first stage is determined. Constraint (10) ensures that the completion time of product i produced on machine m in the current stage must be greater than its completion time in a previous stage. Constraint (11) is about product sequencing on all the S stages. Constraint (12) ensures that, for each product, it can be manufactured on only one of machines in each stage of the production line. Constraint (13) ensures that each machine must have only one first and one last product. And, except for the last product, a product scheduled on any machine must be immediately followed by only one product. Constraint (14) ensures that each product must precede at most one different product.

5. COMPARISON OF THE TWO FFS MODELS

The comparisons of the models were performed for the following analyses: (1) problem size complexity of each model and (2) comparison of the two models with regard to computer solution required.

5.1 Size complexity of the models

The size of both models is represented by the equations in Table 2.

Table 2: Size Complexity of each Model for the Flexible Flowshop

Model	Problem	Total Variables	Binary Variables	Constraints
A	$FFS(R_{m1}, R_{m2},, R_{mS})/s_{ipm}, M_j/\overline{F})$	nН	n(8H+2m(1)+3nH)	n(S+5H+m(1)+m(S)m(S-1)+ m(S-1)m(S-2)++m(2)m(1))
В	$FFS(R_{m1}, R_{m2},, R_{mS})/s_{ipm}, M_j/\overline{F})$	nН	$6n^2H + 3nH + n^2m(1)$	n(S+3H+m(1)+m(S)m(S-1)+ m(S-1)m(S-2)++m(2)m(1))

5.2 Experimental Design

In this section, several numerical examples are presented to illustrate various applications of the proposed models. There are two models considered in this paper. Cases have been established based on the number of jobs (n), number of stages (s), number of machines (m), and number of restricted machines. In this experiment, the parameters are given as: (1) the processing time of products on each machines of a particular stage (P(i,s,m)) is a random value number from the uniform distribution U(20,50), (2) the speed of machines is a random number from U(0.7, 1.3). The examples presented in this section were solved using CPLEX/AMPL software.

5.3 Results

The solutions of the thirty problems solutions are summarized in Table 3. The CPU time are also given in Table 4. Model A could optimally solve problems with up to 5 jobs 8 machines with reasonable computational effort, while Model 2 could optimally solve problems only 4 jobs 6 machines. However, it as shown that Model A requires less computer time than Model B because it generates lesser numbers of binary and decision variables.

6. CONCLUSIONS AND FUTURE WORK

The mathematical programming models proposed in this research can be used in practice as a simple support tool for scheduling in hybrid flowshops. The models lead to large integer programming problem however. In particular, the scheduling hybrid flowshops with sequence dependent setup times and machines in each stage are unrelated and eligible contribute essentially to the problem size. For realistic scheduling problem, the mathematical programming may involve several thousands of binary variables and constraints, which by far exceeds the solution capabilities of the optimization techniques and computer technology. Hence, for the future research, it is necessary to find solution techniques (e.g., metaheuristic methods) that are easy to implement even though they may not always lead to an optimal solution.

Table 3: Computer Solution Time for the Problems of Each Model

Problem		Computer solution time (sec.)		
Machines*	Jobs	Model A	Model B	
5 (2,1,2)**	3	1	2	
5(1,2,2)	3	1	1	
5 (2,1,1,1)	3	1	1	
5 (2,2,1)	3	1	1	
5 (1,2,2)	3	1	1	
4 (2,1,1)	4	1	15	
4 (1,2,1)	4	30	29	
4 (1,1,2)	4	16	13	
4 (2,2)	4	30	30	
4 (1,1,1,1)	4	17	25	
5 (2,2,1)	4	24	30	
5 (2,1,2)	4	4	3	
5 (1,2,2)	4	3	2	
5 (1,2,1,1)	4	23	32	
5 (3,2)	4	20	16	

Table 4: Computer Solution Time for the Problems of Each Model

Problem		Computer solution time (sec.)			
Machines*	Jobs	Model A	Model B		
4 (2,1,1)	5	45	37		
4 (1,2,1)	5	28	32		
4(1,1,2)	5	29	60		
4 (2,2)	5	4	3		
4 (2,1,1)	5	25	35		
7 (3,2,2)	5	120	136		
7 (2,3,1,1)	5	1251	1546		
7 (3,1,2,1)	5	826	411		
7 (4,2,1)	5	350	70		
7 (3,2,2)	5	5	5		
6 (2,3,1)	5	2342	n/a		
6 (2,2,2)	5	4419	n/a		
6 (2,1,3)	5	6095	n/a		
6 (1,1,1,2,1)	5	n/a***	n/a		
6 (2,1,1,1,1)	5	n/a	n/a		

Note: * Number of the restricted machines is one machine.

ACKNOWLEDGEMENTS

This research is fully supported by the Thailand Research Fund Grant No. TRG4580020

^{**}(x,y,z) = There are x, y, and z machines in station 1, 2, and 3, respectively.

***n/a = finding an optimal solution is computationally intractable.

REFERENCES

- Alagoz O. & Azizoglu, M. (2002). Rescheduling of Identical Parallel Machines under Machine Eligibility Constraints. *European Journal of Operational Research*. To Appear.
- Ghirardi, M. & Potts, C.N. (2004). Makespan Minimization for Scheduling Unrelated Parallel Machine: A Recovering Beam Search Approach. *European Journal of Operational Research*. To Appear.
- Guinet, A., Solomon, M.M., Kedia, P.K. & Dussauchoy, A. (1996). A Computational Study of Heuristics for Two-Stage Flexible Flowshops, *International of Production Research*, **34.5**, 1399-1415.
- Sethanan, K. (2001). Scheduling Flexible Flowshops with Sequence Dependent Setup Times. *Doctoral Dissertation*, West Virginia University. West Virginia.
- Shchepin E.V. & Vakhania N. (2004). An Optimal Rounding Gives a Better Approximation for Scheduling Unrelated Machines. *European Journal of Operational Research*. To Appear.