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This research addresses the scheduling problem in a hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered.
The production line consists of L production stages, each of which may have more than one
non-identical (unrelated) machines. Prior to processing a job on a machine at the first stage,
a setup time from idling is required. Also, sequence dependent setup times are considered
on each machine in each stage. The objective of this research is to minimize the maximum
makespan. Two mathematical models were formulated for small size problems and two
heuristic algorithms (IH and TSearch) were developed to solve larger, more practical
problems. In order to evaluate the Performance of the heuristic, normally, the heuristic
solutions are compared to optimal solutions and/or lower bounds. The hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered
is known to be NP-hard, and hence finding and optimal solution for average or large-size
problems will be computationally intractable. The only alternative left is to develop lower
bounds for the problem and use them to assess the quality of the heuristic solutions.
Therefore, in this study, two lower bounds (Forward and Backward) were developed in order
to evaluate the performance of the heuristics. Results obtained show that the heuristic
algorithms are quite efficient. The relative improvement yielded by the TSearch algorithm was
between 12.2 and 25.5 percent.

Keywords: Heuristics, Hybrid Flowshop, flexible Flowshop, Unrelated Machines,
 Dependent Setup Times.
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1

Scheduling Flexible Flowshops with Sequence Dependent Setup Times and 
Machines in Each Stage Are Unrelated 

 
CHAPTER 1 

INTRODUCTION 
 

Nowadays, manufacturers are faced with customer demands for a variety of high quality 
products.  The companies must therefore make their production systems more flexible, respond rapidly 
to demand fluctuations, and reduce costs related to production.  Hence, companies need to have 
advanced techniques.  Manufacturing has been an interesting topic in production and operation 
management because of areas such as job scheduling or machine loading.   

Scheduling problems arise whenever a set of resources such as workers or machines are 
required to perform a set of operations on jobs, also each operation can be accomplished in more than 
one way.  Given a limited set of resources, the scheduling problem is to assign jobs to resources 
according to some process routing in order to obtain optimal performance measures while ensuring 
that all production constraints are satisfied. The development of production schedules is a remarkably 
important task in industry especially scheduling jobs through non-identical, parallel processors.       
Non-identical processors are processors that do not have equal capabilities and capacities.  This type 
of production system where multiple products are made on parallel, non-identical production line is 
common in both service and manufacturing industries.  For instance, workers in an office have different 
skills, an airline assigns a type of airplane to service a route, or paper plant assigns products to 
different paper machines. A parallel processing is the situation where a job can be done by more than 
one processor but only one processor can actually work on the job (Randhawa & Smith, 1995).  
Hence, scheduling problems involve the assignment of machines to various jobs and determination of 
the order in which the jobs will be performed in order to optimize some criteria (such as minimization of 
makespan, mean flow time, or lateness) while satisfying the shop constraints. 

1.1 A Hybrid Flowshop Environment 

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop.           
A hybrid flowshop is a generalization of the flowshop and the parallel processor environments.           
A hybrid flowshop is alternatively called a flexible flowshop (FFs).  In a hybrid flowshop environment, 
there are L workstations, each of which consists of at least one machine.  The machines in each stage 
may identical, uniform, or unrelated.  In a hybrid flowshop, each job is processed first at stage 1, then 



 

 

2
at stage 2, and so on.  Normally, a job requires only one machine in each stage and any machine can 
process any job as shown in the schematic representation in Figure 1. 

 
          STAGE 1                       STAGE 2                                                               STAGE L 

 
 
 
 
 
 
 
 
 
 
 

1.2 Dependent Setup Time  

The requirements of setup times of jobs are very common in many real manufacturing 
situations such as inspecting material, setting tools, and cleanup.  There are two types of setup times: 
sequence independent and sequence dependent setup times.  Sequence dependent setup times are 
considered to be very important factors in the manufacturing environment, especially, when a shop 
floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969).  Sequence dependent setups 
occur especially in process industry operations, where machine setup time is significant and is needed 
when products change.  The magnitude of setup time depends on the similarity in technological 
processing requirements for successive jobs (Srikan & Ghosh, 1986). Normally, similar technological 
requirements for two consecutive jobs would require lesser setup. 

Even though there exists an enormous amount of research on the flowshop scheduling 
problem, research study has rarely been conducted in the case where setup times are sequence 
dependent (Allahverdi  et al., 1995).  Hence, the results of these research studies lack a practical 
solution for applications that require the treatment of setup times.  For this reason, dependent setup 
times must be allowed for a realistic description and hence are considered in this research. The paper 
is organized as follows.  In the next section, the literature review is presented.  In section 3, the 
problem and propose is described, then two optimizing algorithms are developed in section 4.  The 
heuristic algorithms are described in Section 5.  In section 6, the lower bounds for the problem are 
determined.  Section 7 concludes the paper with a discussion of this research and future extension. 
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Figure 1: A Schematic representation of a Flexible Flowshop Manufacturing Environment 
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CHAPTER 2 

LITERATURE REVIEW 

 
The problem of scheduling n jobs on m machines is one of the classical problems in flowshop 

manufacturing that has been interested researchers for many years.  According to Gupta (1994), a 
heuristic was developed to solve a special case when there is only one machine in the second in order 
to minimize the makespan.  Computational experiments show that the effectiveness of the proposed 
heuristic increases as the problem-size increases.  Brah and Hunsucker (1991) develop branch and 
bound algorithms for the multiple stage hybrid flowshop (Pm1, Pm2,…,Pms)//Cmax).  The computational 
results show that the algorithms can solve only small-sized problems.  Portmann et al. (1998) improved 
the lower bound of Brah’s and reduced the number of branches used in the search tree.  They could 
solve the problems with up to five stages and fifteen jobs.  

For the dependent setup time problem, Ruiz et al. (2005) presented two advanced genetic 
algorithms as well as several adaptations of existing advanced metaheuristics that have shown 
superior performance when applied to a regular flowshop with sequence dependent setup times.  In 
the same year, Ruiz and Maroto developed a metaheuiristic, in the form of genetic algorithm, for hybrid 
flowshops with sequence dependent setup times and machines eligibility.  The results indicate that the 
proposed algorithm is more effective than all other adaptations.  Tahar et al. (2005), developed a linear 
programming model and a heuristic algorithm for identical parallel machine scheduling with job splitting 
and sequence-dependent setup times in order to minimize the makespan.  According to Kurz and 
Askin (2005) developed an integer programming model based on the TSP for the flexible flow lines 
with sequence dependent setup times.  Several heuristics such as Insertion heuristic and Random keys 
Genetic Algorithm also developed. 

In addition, Sethanan (2001), the mixed integer programming is formulated to solve the flexible 
flowshops with sequence dependent setup times when machines in each stages are uniform 
(FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax).  Since the FFs(Qm1,Qm2,…,QmS)/Sipm/ Cmax problem is known to be 
NP-hard (Allahverdi, 1999) and hence finding an optimal solution for average or large-size problems 
will be computationally intractable.  Therefore, in her study, the algorithm and two lower bounds were 
developed to solve the problem.       

From the reviewed literature, there is no literature in scheduling multiple hybrid flowshop lines 
with sequence dependent times when machines in each stage are unrelated.  Hence, this research 
focuses on scheduling multiple hybrid flowshop lines when machines are unrelated and sequence 
dependent times also are considered.   
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CHAPTER 3 

THE PROBLEM DESCRIPTION 
 

This research involves scheduling multiple products through non-identical parallel production 
lines.    There are many production stages in each production line.  Each stage may comprise more 
than one machine.  Resource and technological constraints are considered in this production system.  
Resource constraints generally refer to processor capacities and limitations.  Technological constraints 
are considered as product routing and precedence constraints.  In this study, all products can be 
manufactured on every machine in a stage, and the machine cannot process a new product until the 
previous product has been completely finished.   

Prior to processing a job on a machine, there is an associated setup time.  Thus, setup times 
are considered significant and typically depend on the sequence of the jobs through the processors.  
Setup times in general are large when compared to the unit processing time.  As much of the current 
industrial competition is a time-based, the reduction of the production lead time is an important key.  
Hence, the objective of this research is to minimize the maximum completion time of the products 
called the makespan.  Two mathematical models are formulated to solve the problem and to produce 
an optimal schedule in order to minimize the total makespan. 

3.1 Description of the model 
The assumption made in formulating the model are followed: 

1. It is assumed that the decisions have been made from the long and intermediate-range 
planning. 

2. Production is make-for-stock; hence, there are no due dates associated with products. 
3. All jobs and machines are available at the beginning of the scheduling process. 
4. In the production line, there are many stages.  Each stage of the hybrid flowshop production 

may have several non-identical machines. 
5. Jobs can wait between two production stages and the intermediate storage is unlimited. 
6. Setup times for jobs on each machine are dependent on the order in which jobs are 

processed.  
7. Products cannot be split between machines in the same stage. 
8. There is no job preemption. 
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CHAPTER 4 

OPTIMIZING ALGORITHMS 
 
 

A brief description of the problem is reviewed in order to help in understanding the 
mathematical formulation.  In this research, there is only one production line considered.  The problem 
involves the scheduling of multiple products in a flexible flowshop environment with sequence 
dependent setup times (FFS(Rm1,Rm2,…, RmS)/sipm/Cmax).  The production line consists of many stages, 
which may have one or more non-identical (unrelated) parallel machines.  In each stage, machines can 
process all products but differ in their performances and the machines cannot process a new product 
until the previous product has been completely finished.    
 The products have to be manufactured on only one of the machines in each stage, and the 
processing of products cannot start until the entire batch is completed in the previous stage.   Each 
product, e.g., product i requires P(i,s,m) units processing time on machine m of stage s.  Machine 
setup times are needed between any two products.  In this study, it is assumed that setup times are 
equal for every machine in the same stage when changing from one product to another.  
 This section presents an optimal algorithm for the FFS with uniform machines at each stage.  
A 0-1 mixed integer programming model is developed with the criterion to minimize makespan for this 
problem.   Parameters and decision variables used in formulating the model are defined as presented 
in Table 1.       The 0-1 mixed integer programming formulation is presented below with a brief 
explanation of each constraint. 
 
Table 4.1: The Notation Used in the Mixed Integer Programming Model 
Type of 
Variables 

 
Notation 

 
Explanation 

F(i,s,m) Finish time of product i on machine m of stage s  Decision Variables 
E The makespan 
x(i,s,m)         = 1 , if product i is assigned to machine m of stage s  

= 0 , otherwise 
w(i,p,s,m)      = 1 , if product i immediately precedes product p 

        on machine  m of stage s  
= 0 , otherwise 

w(i,0,s,m)      = 1 , if product i is the last product processed on machine  m of stage s  
= 0 , otherwise 

Binary decision 
variables 

w(0,i,s,m)      = 1 , if product i is the first product processed on machine  m of stage s  
= 0 , otherwise 

i,p,h Product indices Parameters 
s Stage index 
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m(s) The number of machines in stage s 
n Total number of products 
M(s) The set of machines in stage s ; M(s) = {1,2,..,m(s)}  
L The number of stages in the production line 
P(i,s,m) The processing time of product i on machine m of stage s  
ch(i,p,s) The number of time units required to changeover from production i to 

product p at stage s   

 

V a very large positive number. 

 
Model 1:  
The objective function:  Min E 
Constraints:  
F(i,1,m)  ≥ ch(0,i,s) + {P(i,1,m) ⋅ x(i,1,m)}             (1) 

i = 1,2,…,n ; and m=1,2,…,m(1) 

F(i,s,m)  ≥ F(i,s-1,mp) + {P(j,i,s,m) ⋅ x(j,i,s,m)}             (2) 

i = 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1) 

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) ≥ {P(i,s,m) ⋅ x(i,s,m)}     (3) 

i = 1,2,…,n, s = 1,2,…, L, m = 1,2,…,m(s) 

F(i,L,m)  ≤ E         (4) 

i = 1,2,…,n ; and m = 1,2,…,m(L) 

∑
=

)s(m

1m
)m,s,i(x  =  1                   (5) 

i = 1,2,…, n ; and s = 1,2,…, L  

x(p,s,m) – w(0,p,s,m) -                          = 0                               (6) 

p = 1,2,…, n; s = 1,2,…,S; and m = 1,2,…,m(s) 

x(i,s,m) – w(i,0,s,m) -                         = 0        (7) 

i = 1,2,…,n ; s = 1,2,…, L; and m = 1,2,…,m(s) 

                         =  1                  (8) 

s = 1,2,…, L; and m = 1,2,…,m(s)  
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s = 1,2,…, L; and m = 1,2,…,m(s)  

Constraints (1) is a completion time forcing constraints.  It ensures that all products are scheduled and 
the completion time of any product on any machine of the first stage is at least the amount of 
processing time required for the product on that machine. Constraints (2) ensures that the completion 
time of product i produced on machine m in the current stage (stage s) must be greater than its 
completion time in a previous stage (stage s-1).  Constraints (3) is about product sequencing on all the 
L stages.  If product p manufactured on machine m at stage s immediately precedes product i 
manufactured on the same machine and stage, then the value of w(p,i,s,m) equals to one.  Hence, the 
completion time of product i (manufactured on that machine with the same stage) is greater than the 
completion time of product p.  The difference is by the sum of the setup time from product p to product 
i and the required processing time of product i on that machine with the same stage. Constraints (4) 
are needed to ensure that the makespan is equal to or greater than the completion time of each of the 
jobs in the last stage.  Constraints (5) ensures that, for each product, it can be manufactured on only 
one of machines in that stage of a production line. Constraints (6) ensures that, except for the first 
product, a product scheduled on any machine is preceded by exactly one different product.  
Constraints (7) ensures that, except for the last product, a product scheduled on any machine must be 
immediately followed by only one product.  Constraints (8) &(9) ensure that a machine can have 
exactly one first and one last product.   

 
Model 2:  
The objective function:  Min E 
Constraints:  
F(i,L,m)  ≤ E        (1) 

i = 1,2,…,n ; and m = 1,2,…,m(L) 

            (2) 

i = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L  

           (3) 

i = 1,2,…, n ; and s = 1,2,…, L  

 

∑
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          (4) 

h = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L        

           (5) 
i,p = 1,2,…, n ; m = 1,2,…,m(L), and s = 1,2,…, L       

(6) 
i = 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), and mp = 1,2,…,m(s-1) 

     ; i = 1,2,…, n ; m = 1,2,…,m(1)   (7) 

Constraints (1) are needed to ensure that the makespan is equal to or greater than the 
completion time of each of the jobs in the last stage.  Constraints (2) ensures that each machine has 
to be assigned to at most one job.  Constraints (3) ensures that each job is processed once and once 
in each stage.   Constraints (4) ensures that, except for the first product, a product scheduled on any 
machine is preceded by exactly one different product and, except for the last product, a product 
scheduled on any machine must be immediately followed by only one product.  Constraints (5) is about 
product sequencing on all the L stages detailed as in model 1. Constraints (6) ensures that the 
completion time of product i produced on machine m in the current stage (stage s) must be greater 
than its completion time in a previous stage (stage s-1).  The difference must be equal to or greater 
than the amount of processing time required in the current stage.  Constraints (7) is a completion time 
forcing constraints.  It ensures that all products are scheduled and the completion time of any product 
on any machine of the first stage is at least the amount of processing time required for the product on 
that machine.  
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CHAPTER 5 

IH ALGORITHM 
 

Phase 1: Obtaining an Initial Solution Using the IH Algorithm 

The heuristic developed in this phase schedules one product group at a time on the machines 
of the first stage.  The algorithm then proceeds by scheduling products to the machines of all other 
stages.  Prior to the presentation of the IH algorithm, the notation and variables used are defined.  

Notation: 

Let  
i,p    =  product indices 
j,q   =  product group indices 
s   =  stage index 
G   =  set of all product groups; G = {1,2,…,N} 
m* = the minimum value of m(s); m* = 

ψ∈s
min  m(s)  

M*  =  set of m* product groups selected to schedule as the first product 
group on each machine in stage one through stage L 

GR   =  set of all remaining product groups after assigning the first m* groups;  
G\{M*} 

gj    =  number of products in product groups j; j ∈ G 
Pj   =  set of products in product groups j; j ∈ G 
    =  {1,2,…,gj} 
Ψ   =  set of stages in a production line 

=  {1,2,…,L} 
m(s) = number of machines in stage s; s ∈ Ψ 
M(s)  =  set of machines in stage s  
         = {1,2,…,m(s)} 
EM(1) = set of m(1)-m* remaining machines 
vs,m =  speed of machine m at stage s 
ch(q,p,j,i,s) = The number of time units required to changeover from product i of 

group j to product p of group q at stage s  
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ST(j,i,s,m)  =  start time of product i of group j on machine m of stage s.  There 

are 8 possible ways of determining the value of ST(j,i,s,m).  A detailed 
description of these ways is presented in Appendix A.     

PT(j,i,s,m)  =   processing time of product i of group j on machine m of stage s; j ∈ 
G,      i ∈ Pj, s ∈ Ψ, and m ∈ M(s).  

T(j,i) = processing time of product i of group j on the standard machine in the 
first stage (i.e., speed of machine = 100%) 

CT(j,i,s,m)   =  completion time of product i, group j on machine m of stage s.  This 
time is equal to the sum of its start time and processing time.  

 =  ST(j,i,s,m) + PT(j,i,s,m); j ∈ G, i ∈ Pj, s ∈ Ψ, and m ∈ M(s) 
 

5.1 A Detailed Description of the IH Algorithm 

The detailed description of the IH Algorithm is presented below in Parts 1 through 4. 

Part 1: Assign the first m* groups to the machines at stage 1 through stage L-1. 

 Case 1: m* = m(1)  

Step 1: Select the m* groups in order to assign them as the first group on the machines at 
stage 1 through L-1. 

1.1 Find product i* amd m′ with 
jFi∈

min CH(0,0,j,i,s,m)+ ),,,(
1

1
msijPT

S

s
∑
−

=
     for j∈ J, 

s∈Ψ\{L},      m∈ M(s) 

1.2 Find j* where i* ∈ j*  

1.3 Update J = J\{j*}; M(s) = M(s)\{ m′}; and count_j = count_j + 1 

1.4 Check whether J ≠ φ or count_j < m*. 

If J ≠ φ, go to Step 1.1; otherwise, go to Step 2 of this pant. 

 Step 2: Rearrange the products of the m* groups on the first stage machines assigned to them   

2.1 Schedule Product i* of group j* on machine m′ i*. 
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2.2 Calculate completion times of the scheduled product where        

CTime(j,i,s,m′) =  STime(j,i,s,m′) + PT(j,i,s,m′). 

2.3 Update Pj = Pj \ {i*}.  

If Pj ≠ φ, go to Step 2.4. 

If Pj = φ, update G = G\ {j*}.  If M*  = φ, go to Part 2; otherwise, go to Step 1. 

2.4 Find the next product.   

 Find i* and m′ with: 

   
jGi∈

min ( PT(j,i,s,m) + ch(j,p,j,i,1); j ∈G and m∈ M(1)                       

where p is the last product scheduled so far on machine m at the first stage. 

Then, go to Step 2.1 of this pant. 

Case 2: m* < m(1) 

Step 1: Schedule m* groups on the m* machines using the same procedure as case 1 (begin 
with step 1 through step 2). 

Step 2: Find group j* and machine m′ with 
j∀

max  CTime(j,i[l],s=1,m); for m∈ M(1) where  j ∈ 

J* and i[l], is the product scheduled last in group j.  

Step 3: Find i′ and m′′ with 
*

min
jFi∈

 CH(0,0,j,i,s,mm)+ PT(j,i,s=1,mm) where mm ∈EM(1). 

Step 4: Schedule i′ of group j* on machine m′′ and then calculate its completion time on this 
machine which is CTime(q,p[l],s=1,m′′)+ch(q,p[l],j*,i′,s=1) + PT(j*, i′,s, m′′) and p[l], is 
the product scheduled last in group q.  

Step 5: Rearrange the remaining products of group j* on machine m′ after schedule the 
removed product (i.e., product i′) and then update the latest completion of the last 
product of group j* on that machine. 
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Step 6: Check if the latest completion time is improved, perform the product reschedule and 

return to Step 2; otherwise do not remove the product from machine m′, and go to 
Step 7. 

Step 7: Repeat Step 2 through Step 6 with the product scheduled before the product used in 
the last removal attempt.  If all attempts have been exhausted, proceed with Part 2.  

Part 2: Assign the remaining groups to the machines at the first stage 

Step 1: Find i′ and m′′ with 
jFi∈

min  CTime(q,p[l],s=1,m) +CH(q,p[l],j,i,s=1,m)+ PT(j,i,s=1,m)  for j 

∈ GR  and m ∈ M(1) and p[l], is the product scheduled last in group q.  

Step 2: Find j* where i*∈ j* and update GR = GR\ {j*}; if J ≠ φ, go to Step 3; otherwise, go to 
Part 3. 

Step 3: Schedule group j* on m′′ starting with product i′. 

Step 4: Rearrange the products of group j* with the same procedure as Step 2 of Part 1.  
Except that, in Step 2.4, if G = φ, go to Part 3. 

Part 3: Balancing the Production Times of Machines at the First Stage 

Step 1: Balance the production times of machines at the first stage.  

Balancing the production times of machines at the first stage is performed by moving 
one or more of the products of a product group from the machine with the latest completion 
time to other machines such that the latest completion time of the first-stage machines is 
reduced. Balancing is performed after the assignment of all products to machines at the first 
stage has been completed.  The procedure used to balance the production times of the first-
stage machines is presented below: 

1.1 Find the machine with the latest completion time (e.g., machine m’)  

1.2 Remove the last product scheduled on machine m’.  

1.3 Calculate the latest completion time on each of the machines after scheduling the 
removed product last within its product group if scheduled on the machine; 
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otherwise, last on the machine.  Select the one with the smallest updated 
completion time and the corresponding latest completion time.  

1.4 If the latest completion time is improved, perform the product re-schedule and 
return to Step 1; otherwise, do not remove the product from machine m’, and go to 
Step 5. 

1.5 Repeat Steps 1 through 4 with the product scheduled before the product used in 
the last removal attempt.  If all attempts have been exhausted, proceed with Part 
4.  

Part 4: Scheduling All products on All other Stages (i.e., stages 2,3,4,…,L) 

After all products are completely assigned to the first-stage machines, the assignment of these 
products on machines at the succeeding stages needs to be performed.  A Look Ahead (LA) rule 
developed by Sethanan (2001) (details are described in Appendix B) was developed to sequence the 
products on machines at stages 2 through S, in order to obtain low product finish times and a low 
makespan.  The steps for Part 4 are given below.   

Step 1: Schedule all products on all other stages (i.e., stage 2, 3, … , L) and calculate the 
makespan 

1.1 Set s = 2. 

1.2 Set H = the set of products arranged in non-decreasing order of finish times from 
machines in stage s-1.  

1.3 Schedule the first product (e.g., product i) in set H on one of the machines of stage s 
using the LA rule. 

1.4 Update H = H \ {i}.  If H ≠ φ, go back to Step 1.3.  If H = φ, update    s = s + 1.  If s  
≤ L, go to Step 1.2; otherwise, calculate the makespan and go to Phase 2. 

 Phase 2: Improving the Initial Solution Using the TSearch Algorithm  

 The initial solution obtained from Phase 1 (using the IH algorithm) may not be close to 
the optimal solution.  A different heuristic is required to generate better schedules.  The final 
solution of the first phase can be considered as an initial solution that will be improved in this 
phase.  The heuristic of the second phase has three main steps: 1) moving groups between 
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(or within) machines at the first stage,   2) moving products between (or within) machines at 
the first stage, and 3) finding the best sequence resulting in the minimum makespan.   

1. Implementing the TSearch Heuristic with the FFs(Rm1,Rm2,…,Rms)/Sipm/Cmax Problem 

In the tabu search, a decision is made from the set of admissible candidates.  The 
candidate decisions are evaluated and the best one is selected.  A candidate is admissible 
either if it is not tabu or if its tabu status can be overridden by the aspiration criterion.  As 
suggested by Laguna et al. (1993) and Barnes & Laguna (1993), there are four key elements 
to be considered in the TS: 

- To identify the attributes (i.e., the criteria used to define or characterize a move) of 
a move that will be used to generate the tabu classification.  Attributes of moves, 
e.g., indices of jobs (or jobs numbers), positions of jobs, and weights of jobs, are 
identified and recorded in the tabu list in order to prevent move reversals.  

- To identify the actual tabu restriction based on the attributes. 

- To identify a good data structure to keep track of moves that have a tabu status, 
and to free those moves from their tabu condition when their short-term memory 
has expired. 

- To identify an aspiration condition in an effort to allow the tabu status of a move to 
be overridden if it yields a better solution. 

Two popular types of moves found in the literature for the flowshop problem are:              
(1) exchanging jobs (i.e., swap move) and (2) removing the job placed at the xth position and 
then putting it at the yth position (i.e., insertion move).  Taillard’s (1990) experiments showed 
that the insertion move is the most efficient in terms of quality and computation time.  Hence, 
only the insertion move will be considered in this research.   

Part 5: Moving Groups between Machines (and within a Machine) at the First Stage 

In this part, the groups scheduled on machines at the first stage are moved between 
machines (or within a machine) in an effort to minimize the makespan.  This process is not 
performed for the other stages as it takes a large amount of computation time, and yields very 
little improvement.  The best solution obtained from the previous Phase will be used as the 
initial solution.  For each iteration, all the admissible moves within the neighborhood in the 
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current schedule are evaluated and the best move is selected.  The tabu list, neighborhood 
size, and tabu restrictions are applied in the process of moving groups between machines at 
the first stage.  The details of these three components are described below, and are followed 
by the notation used in this part and the detailed procedure of the TSearch algorithm. 

Tabu List 

Let N be the total number of groups.  The size of the tabu list is determined as follows: 

1. m(1) =1.  

Based on the studies of Laguna et al. (1993), the size of the tabu list when jobs 
are moved within a machine is determined as described below.  

1.1 N ≤ 12 
| T | = ⎣ N / 2 ⎦  

 where, | T | = size of the tabu list 
 

1.2 N > 12 
| T | = 10 
 

2. m(1) > 1 
1.1 If 2 ≤ N ≤10, 1 ≤ | T | ≤ 3.   
1.2 If 11 ≤ N ≤20, 3 ≤ | T | ≤ 5. 
1.3 If 21 ≤ N ≤50, 5 ≤ | T | ≤ 10. 
1.4 If N > 51, 10 ≤ | T | ≤ 15. 

 
Neighborhood Size and Tabu Restriction 

In general, defining a good size of d depends on the structure of the problem.  
Based on studies by Laguna et al. (1993) and Barnes and Laguna (1993), the value of d 
can be obtained as follows: 

Let nfs,m be the number of groups schedule on machine m in stage s. 
• For nps,m ≤ 30 

d = ⎣nps,m/2⎦ -1 
where ⎣h⎦   = the largest integer less than or equal to h 
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• For nps,m > 30 

  d = (⎣nps,m/2⎦ / 2) x c/4  
where c is determined experimentally (Laguna et al., 1993 and Brandao & 
Mercer, 1997).  The value of c is usually a number between 1 and 4 (Laguna 
et al., (1993)). 

   In this research, the neighborhood size and tabu restriction are determined as below:
  

1. For m1 = m2 = m 
• If nfs,m = 2, d = 1. 
• If 3 ≤ nfs,m ≤ 5, d = 2. 
• If 6 ≤ nfs,m ≤ 9, d =3. 
• lf nfs,m > 9, the value of d is calculated using the same formula presented 

in the case of  nfs,m ≤ 30.  If nfs,m > 30, the value of c is equal to 2.  
2. For m1 ≠ m2 

• If nfs,m 2 = 1, or 2, d = 1. 
• If nfs,m 2 = 3, d = 2. 
• If 4 ≤ nfs,m 2 ≤ 9, d = 3. 
• If nfs,m 2 ≥ 10, the value of d is calculated using the same formula 

presented in the case of  nfs,m ≤ 30.  If nfs,m 2 > 30, the value of c is equal 
to 2. 

 Notation 

 iter_gr = current iteration number for the process of moving groups between 
machines at the first stage 

 iter_max_gr  =  maximum number of iterations allowed to be performed in the 
product group insertion move procedure 

 best_value_gr  =  the minimum makespan found so far  

 best_seq_gr  =  the best schedule found so far   

 tor_iter_gr  = maximum number of iterations allowed between two successive 
improvements  

 best_iter_gr   =   iteration where the best solution was found so far  

 size_tabu_list_gr  =  size of tabu list  
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move_value_gr =  the minimum makespan obtained from the evaluation of all 

admissible moves in the iteration  

 move_seq_gr =  the schedule that yields the minimum makespan in the iteration
   

Step 1: Initialize all parameters used in the process of moving groups between the machines 
at the first stage. 

   Set  iter_gr    =  0 
best_value_gr  =  makespan obtained in Phase 1 (Part 4)  
best_iter_gr   =  0 
iter_max_gr   = 500  
tor_iter_gr   =  200 
size_tabu_list_gr  =  10 for 10 groups (100 products) 

=  15 for 20 groups (180 products).  

Step 2: Update the number of current iterations. 

Increment the number of iterations (iter_gr) by 1. 

Step 3: Check if the search should be stopped. 

In this step, two stopping criteria are used:   

3.1 Stop the search if the number of the current iterations (iter_gr) is greater than 
max_iter_gr, or 

3.2   Stop the search if the number of successive iterations without improvement is 
greater than tor_iter_gr.  

If the search is not stopped, go to Step 4; otherwise, go to Part 6 to 
proceed with the movement of products. 

Step 4: Move groups between (or within) machines. 

  Groups that were divided between machines are treated as individual sub-
groups.  Sequences of products within groups (or sub-groups) are not changed in 
this step.  
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  4.1     For each admissible move, perform the following: 

• determine the tentative schedule of groups on machines in stage 1 after 
performing the move for the entire product group (or sub-product group). 

• tentatively re-schedule all products on machines in stages 2 through L 
using the procedure detailed in Step 8 and find the corresponding 
makespan. 

 4.2    After all admissible moves have been  performed, select the move that yields 
the minimum makespan.  Denote the minimum makespan as move_value_gr 
and the corresponding schedule as move_seq_gr. 

 4.3 Check whether move_value_gr is less than the best_value_gr.  If true, 
perform the following updates and go to Step 4.4 

  best_value_gr  = move_value_gr, 

  best_seq_gr = move_seq_gr. 

  Otherwise, go to Step 4.4 

 4.4 Put the attribute of this move in the tabu list and go back to Step 1.  

Part 6: Moving Products between (and within) Machines at the First Stage 

In this part, the products are moved between (and within) machines in an effort to 
minimize the makespan.  As in Part 5, the process of moving products between (and within) 
machines is performed only in the first stage.  The best solution obtained in the previous part 
is used as the initial solution.  The notation used in the implementation of the TS is described 
below and is followed by the procedure.  Basically, the rules used to define the tabu list and to 
determine the tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.   

Notation 

iter_pr = current iteration number for the process of moving products  
between machines at the first stage 

iter_max_pr  =  maximum number of iterations allowed to perform in the process of 
products insertion procedure  
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best_value_pr  =  the minimum makespan found so far  

best_seq_pr  =  the best schedule found so far  

tor_iter_ pr =  maximum number of iterations allowed between two successive 
improvements  

best_iter_pr   =  iteration where the best solution has been found so far  

size_tabu_list_ pr    =  size of tabu list  

move_value_ pr  = the minimum makespan obtained from the evaluation of all 
admissible moves in the iteration  

move_ seq_pr  =  the schedule that yields the minimum makespan in the iteration  

Details of this part are described as follows. 

Step 1: Initialize all parameters used in the process of moving product between machines at 
the first stage. 

Set  iter_ pr  =  0, 

best_sol_ pr  =  makespan obtained in Part 5  

best_iter_ pr  =  0,   

iter_max_ pr = 500,  

tor_iter_ pr  =  200, 

size_tabu_list_pr =  10 for 100 products  

=  15 for 180 products. 

Step 2: Update the number of current iteration.  

Increment the number of (iter_pr) by 1. 
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Step 3: Check if the search should be stopped. 

The two stopping criteria used in Step 3 of Part 5 are also used in this step, as 
detailed below. 

1. Stop the search if the maximum number of current iterations (iter_pr) is 
greater than max_iter_pr, or 

2. Stop the search if the number of successive iterations without 
improvement is greater than tor_iter_pr.  

If the search is not stopped, go to Step 4.  Otherwise, go to Step 5. 

Step 4: Move products between (or within) machines.  

 4.1 For each admissible move, perform the following: 

• determine the tentative schedule of products on machines in stage 1 after 
performing a product move.  

• tentatively re-schedule all products on machines in stages 2 through L 
using the procedure detailed in Step 8 and find the corresponding 
makespan. 

 4.2 After all admissible moves have been performed, select the move that yields 
the minimum makespan.  Denote the minimum makespan as move_value_pr 
and the corresponding schedule as move_seq_pr. 

 4.3 Check if move_value_pr is less than best_value_pr.  If true, perform the 
following updates and go to Step 4.4 

  best_value_pr =  move_value_pr, 

  best_seq_pr   =   move_seq_pr. 

  Otherwise, go to Step 4.4 

 4.4 Put the attribute of this move in the tabu list and go back to Step 1. 

Step 5: Determine the best makespan at the last stage and the best sequence found so far. 
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CHPATER 6 

LOWER BOUNDS 
 

6.1 Introduction 
 Normally, the quality of heuristic solutions is assessed by comparing their results to: (1) 

optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained by the best known 
approximation algorithms.  The flexible flowshop problem with sequence dependent setup is known to 
be NP-hard, and hence finding an optimal solution for average or large-size problems will be 
computationally intractable.  The problem is also relatively new, and no approximation algorithms can 
be found for it in the literature.  The only alternative left is to develop lower bounds for the problem and 
use them to assess the quality of the TSearch heuristic solutions. 

 
6.2 Lower Bound Determination 

 Problem parameters and notation used in the development of the lower bound are defined 
below.  

Notation 
i, p  = product indices 
ψ = set of stages in a production line 

= {1,2,..,L} 
 s   = stage index 
 n  = total number of products 
 N  = set of products  
 m(s) = number of machines in stage s 
 M(s)   = set of machines at stage s 
   = {1,2,…, m(s)} 

ν(s,m) = the fastest speed of machine m at stage s to process products 
 ⎡x⎤  = the least integer value greater than or equal to x. 
 SU(i)      = the setup time from idling for product i in stage 1  
 P(i,s)      = the processing time of product i on its fastest machine in stage s  

ST(i,s) =  processing time of product i on a standard machine (i.e., speed = 100%) in stage s 
CH(i,p,s) = The number of time units required to changeover from production i to product p at 

stage s 
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CT(i,s)      = the cumulative processing time of product i on its fastest machines from stage 1 

through stage s-1 
  = ∑

−

=

1s

1s
siP ),(  

 
 MN(i,s)    = the minimum setup time of product i at stage s.  MN(i,s) is the lowest setup time 

for product i at stage s from any other product   
                          =  

,pi
min

≠
ch(p,i,s) 

 
 ICT(i,s-1) = the sum of the setup time from idling of product i at the first stage and the 

cumulative processing times of product i on its fastest machines from stage 1 
through stage s-1.   

  = SU(i) + CT(i,s-1) 
 δ = the minimum value between m(s) and m(1) 
  = min {m(s), m(1)} 
 xtra(s) = the difference between the number of machines in the first stage and that in stage 

s.  If negative, a value of zero is used. 
  = max {0, m(1) - m(s)}  

A  = set of δ products with lowest values of SU(i)  
B = set of δ products with lowest values of ICT(i,s-1)  
C = N – B 
D = set of m(1) products yielding the lowest values of SU(i)  

      LBF,s = the lower bound on the makespan calculated at stage s and obtained by the 
forward method 

LBF,L = the lower bound on the makespan calculated at the last stage (stage L) and 
obtained by the forward method 

 LBB,1 = the lower bound on the makespan calculated at the first stage (stage 1) and 
obtained by the backward method 

 LBF = the best lower bound on the makespan obtained by the forward method 
  = 

s
max

∀
{LBF,s} 

 BLB = the best lower bound  
  = max {LBF, LBB,1} 
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Based on the flow or routing of products, two methods were developed in this research to 

calculate a lower bound on the makespan: (1) the forward method and (2) the backward method.  The 
lower bound on the makespan is a stage-based calculation, meaning that a value is calculated for each 
stage for the forward method, but it is calculated only for the first stage for the backward method.  
Then, the best lower bound (BLB) is obtained by taking the maximum value of the LBF and LBB,1, 
where the LBF is the best lower bound on the makespan obtained by the forward method and 
calculated by taking the maximum value of the LBF,s.   

To calculate the lower bound on the makespan for the FFS(Rm1,Rm2,…,RmL)/sipm/Cmax sequencing 
problem, the key idea is to consider a flexible flowshop structure with each machine in each stage as 
fast as its fastest speed.  The makespan can be determined by considering the sum of three 
quantities: (1) the s-stage machine total waiting and idle times and (2) the total setup and production 
times on the s-stage machines, and (3) the last stage machine total waiting time.  These three 
quantities can be divided into four components, as presented below.  

 
 
• total waiting time at stage s (total_wait(s)) 
• total processing time of all products at stage s (total_proc(s)) 
• total  setup time at stage s (total_setup(s)) 
• total waiting time when a products leave from stage s to the last stage (last_wait(s,L)) 
 
A detailed description of these components and how they are used to calculate LBF,s and LBB,1 is 

presented in sections 6.2.1 and 6.2.2, respectively.  For the forward method, the optimal makespan 
cannot be less than the sum of the two elements: (1) the sum of the first above three components 
divided by the number of machines in the sth stage and (2) the machine waiting time at the last stage.  
Hence, using the forward method: 

 
LBF,s  = 

)(
1
sm

[total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L) 

 
Similarly, for the backward method (only consider the last stage), the last_wait(L) is not included. 

Hence, using the forward method: 
 

LBB,1  = 
)1(

1
m

[ total_wait(1) + total_proc(1) + total_setup(1)] 
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6.2.1 Forward Method 

1. Total waiting time at stage s (total_wait(s)) 
The total_wait(s) is the minimum amount of time that the machines at stage s have to 

wait until their first products are processed.  This means that the first m(s) products have to 
complete their processing on stage 1 through stage s-1.  Two cases are considered in 
calculating the total_wait(s).  
Case 1: m(s) ≤ δ 
In this case, there are two subcases:  

1.1 Total waiting time at the first stage (total_wait(1)) 
   total_wait(1) = ∑

∈Ai
iSU )(  

1.2 Total waiting time at the sth stage; 2 ≤ s≤ L (Total_wait(s)) 
                          The total_wait(s) is determined by summing the first δ, δ = m(s), smallest values 

of ICT(i,s-1).  
Let  
γ(i,s) = SU(i) + CT(i,s-1) 
γ[n,s] = the γ(i,s) values sorted in non-decreasing order results in the nth lowest 

value 
γ(in,s) = product i with the nth lowest value of γ[n,s] 
 

  Hence: 

 total_wait(s)  = )1,(∑
∈

−
Bi

siICT  =  ∑
=

δ
γ

1
][

n
n   

  where i1 ≠ i2 ≠ i3 ≠…≠ in 
 
Case 2: m(s) > m(1) 

To find the total_wait(s) in this case, the machines in stage s are divided into two 
groups.  The first group contains m(1) machines, and the second contains m(s) – m(1) 
machines        (i.e. xtra(1)).  The total waiting time for the machines in the first group 
(waiting_time_g1(s)) is calculated as the sum of the first δ smallest values of ICT(i): 

∑
∈Bi

)i(ICT .  For the second group, the key idea to find the minimum machine waiting 

time (wait_time_g2(s)) is to find the earliest start time of the remaining products on 
machine number m(1)+1, m(1)+2, …, m(s).  To calculate the wait_time_g2(s), the ratio 
(R) between xtra(1) and m(1) is determined and will be used.  The R value is 
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determined as .

)1(
)1()(
⎥
⎥

⎤
⎢
⎢

⎡ −
m

msm  .        Two cases are considered in calculating the 

machine waiting times in this group:   (1) R = 1, and (2) R > 1.  Details for each 
of these cases are described below. 
(1) R = 1 

  The following procedure is followed: 
 Let  Ω(i)  = SU(i) + P(i,1); i ∈ N 

          = the finish time function of product  i as it is the first product 
scheduled on the first   stage machines. 

       β(j,s-1)  = min {min{MN(p,1)}, MN(j,1)} + CT(j,s-1); where, p ∈ A and j 
∈ B 

                          = the start time function of the remaining products on the m(s)  – 
m(1)  machines in the sth stage 

 1.1 Let x be the machine number in the second group, x = 1,2,…, xtra(1).  Set x=1.  
 1.2 Determine the machine waiting time on machine x using the following steps. 

1.2.1 Sort all values of Ω (i) in non-decreasing order.  Let Ω[1], Ω[2], …, 
Ω[c] be the values resulting from the order.  Then, find the product with 
the first lowest value of Ω(i) (e.g., product j): 

Ω(j) = Ω[1] = 
Ni∈

minΩ(i)  

1.2.2 Sort all values of β(i,s-1) in non-decreasing order.  Let β[1,s-1], β[2,s-
1], …,  β[c,s-1] be the values resulting from the order.  Then, find the 
product with the first lowest value of β( i,s-1) (e.g., product g):  

β(g,s-1) = β[1,s-1] = 
Ci∈

min β( i,s-1)  
  1.2.3 Check if j = g.  If not true, calculate the waiting time of machine x in 

stage s (waiting_time(x,s)) and update set N as follows.  
                                                               waiting_time(x) = Ω(j) + β(g,s-1) 

N = N \ {j}, delete β(g,s-1) 
and go to step 1.3; otherwise, go to step 1.2.4. 

1.2.4 Find the product with the second lowest value of Ω(i) (e.g., product j’): 
Ω(j’) = Ω[2] = 

}\{
min

jNi∈
 Ω(i) 

1.2.5  Find the product with the second lowest value of β( i,s-1) (e.g., 
product g’): 

β(g’,s-1) = β[2,s-1] =  
}\{

min
gNi∈
β( i,s-1) 
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1.2.6 Calculate the minimum waiting_time(x,s) as follows: 

waiting_time(x,s) = min {Ω(j) + β(g’,s-1), Ω(j’) + β(g,s-
1)} 

  1.2.7 If Ω(j) + β(g’,s-1) < Ω(j’) + β(g,s-1), update C = C – {j} and  β(g’,s-1). 
   Otherwise, update C = C– {j’} and delete β(g,s-1). 
 1.3 Update x = x + 1.  If x is greater than m(s) - m(1), go to step 1.4; otherwise,       

go back to step 1.2. 
 1.4 Calculate total_wait(s) as follows: 
  total_wait(s) = ∑

∈Ai
iICT )(  + ∑

−

=

)1()(

1
),(_

msm

x
sxtimewaiting  

 
 (2) R > 1 
 

For this case, the machines in the second group are divided into smaller 
subgroups of m(1) machines (the last subgroup may have a smaller number).  The 
minimum waiting tine of the machines in the first subgroup (i.e., machine number 
m(1)+1, m(1)+2, …, 2m(1)) is determined using the procedure detailed in case (1) (i.e., 
R = 1).  To calculate the minimum waiting time for the machines of the remaining 
subgroups, the same procedure is repeated with the following modifications. 
(1) Function Ω(i) is replaced with function α(i, w1, w2 ,…,wr) which is defined as 

follows. 
α(i, w1, w2 ,…,wr) = SU(i) + P(i,1) + ∑ +

=

r
wPwMS

1
)}1,()1,({

σ
σσ  

 where, i, wσ ∈ N, σ = 1,2,…,r, i ≠ w1 ≠ w2 ,…,≠ wr 
 
 To calculate the waiting time on each subgroup of machines in the last stage, 
function α(i,w1,w2 ,…,wr) must be regenerated for each r until the value of r reaches 
R-1.  For instance, when r =1, the quantity α(i, w1) is used to calculate the waiting 
time for the second subgroup of machines (i.e., machines 2⋅m(1)+1, 2⋅m(1)+2,…, 
3⋅m(1)).  Likewise, when  r = R – 1, the quantity α(i, w1, w2 ,…,wr) is used to 
calculate the waiting time for the Rth subgroup of machines (i.e., machines   (R –
1)⋅m(1)+1,…, m(s)).   
 In step 2.1.2.1, all values of α(i, w1, w2 ,…,wr) obtained from all combinations 
of i and wσ  are sorted in non-decreasing order and let α[1], α[2], α[3],…, α[n] be 
the values resulting from the order. 
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(2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member of set ϖ, 

where ϖ is set of products (i, w1, w2 ,…,wr) that yielded α[1]. 
(3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of α(ϖ) and 

β(g,s-1) such that g is not a member of ϖ, which yield the minimum value of the 
sum of α(ϖ) and β(g,s-1).  Step 2.1.2.7 is then modified to update C = C – ϖ and 
delete β(g,s-1). 

  
The value total_wait(s) when R > 1 is calculated as follows: 
 total_wait(s) = wait_time_g1(s) + wait_time_g2(s) 

  = ∑
∈Ai

iICT )( + ∑
−

=

)1()(

1
),(_

msm

x
sxtimewaiting  

 
2. Total processing time of all products at the sth stage (total_proc(s)) 
 A lower bound of the total processing times on the machines at the last stage is 
calculated as the sum of the processing times of all products when processed on machines 
with the average speed in that stage.  The value of total_proc(s) is hence calculated as 
follows: 
  

total_proc(s) = 
∑

∑

∈

∈

⋅

)(
,

)(),(

sMm
s

Ni

mv

smsiST  

   
 3.  Total setup time at the sth stage (total_setup(s)) 

       In minimizing changeovers, the number of machines assigned to each product should 
be as few as possible.  Thus, the minimum number of setups for the entire production 
schedule on the sth stage machines is equal to N - m(s) setups.  The value of total_setup(s) is 
hence determined as the sum of the N – m(s) smallest changeovers.  

 

  total_setup(s)   = ∑
∈Ci

 s)MS(i,  

 
4.  Total waiting time when a products leave from stage s to the last stage (last_wait(s,L)) 

The total machine waiting time when a products leave from stage s to the last stage 
(last_wait(s,L)) is the minimum amount of time that the last stage machine has to wait until the 
first product from stage (s+1) to be processed on the last stage.  Hence:  
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last_wait(s,L)     =  ∑
+=∀

L

ssi
siP

1'
)}',({min ; s′  = s+1, s+2,…, L-1 

   = 0; s′ =L 
 

  The overall lower bound by the forward method at stage s (LBF,s) and the best lower bound on 
the makespan obtained by this method (LBF) are then calculated as follows: 

 
LBF,s  = 

)(
1
sm

[total_wait(s) + total_proc(s) + total_setup(s)] + last_wait(s,L) 

    LBF    = 
s

max
∀

{LBF,s} 

6.2.2 Backward Method 
 Consider a schedule where products are processed from stage L to stage 1 (i.e., reverse order 
of machines), then its antithetical schedule (mirror image) yields the same makespan for the original 
problem when no setup times are considered.  With setup times, the lower bound for the backward 
schedule would still remain a lower bound for the original problem, when calculated as in the 
forward method with the following two adjustments: 

1. Setup times from idling for the first m(L) products in stage L must not be considered when 
calculating total_wait(L) (i.e., assume SU(i) = 0 for all products, where SU(i) in this case is 
the setup time for product i from idling at stage L). 

2. The sum of the m(1) minimum setup times from idling in stage 1 (sum_setup_idle(1)) should 
be added to total_wait(1). 

The backward lower bound will then be calculated as follows:  
 

LBB,1  = 
)1(

1
m

[ total_wait(1) + sum_setup_idle(1) + total_proc(1) + total_setup(1)] 

The best lower bound (BLB) is then determined as max {LBF,LBB,1}.  
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CHAPTER 7 

COMPUTATIONALEXPERIENCE 
 

7.1 Introduction 
 This section will focus on computational experience with the heuristic algorithms (IH and 

TSearch).  Two quantities are investigated: (1) the performance of the heuristic algorithms, obtained by 
comparing their solutions to the lower bound and (2) the relative improvement of the solutions obtained 
by the IH algorithm with respect to those of the TSearch algorithm.   
 Two sets of problems, with four types of data characteristics in each set, were generated to 
evaluate the above two quantities: 
 

Set 1: 70-85 products (10 groups) 
Set 2: 135-155 products (20 groups) 

 

Four types (A, B, C and D) of data characteristics were generated for each set, and 5 test 
problems were generated for each data type.  The parameters for each data type, processing times of 
products on a standard machine (speed = 1) at each stage (PTime(j,i,s,m)), machine speed deviations 
(vs,m), changeover times between products at each stage (ch(j,i,q,p,s)), and setup times from idling of 
products at the first stage (ch(0,0,j,i,s)), were randomly selected from different uniform distributions as 
shown in Table 7.1 

 
   Table 7.1: Values of Parameters Used with the Different Data Types 

Type Parameter 
A B C D 

Total number of 
machines and 
stages 

 
12 machines,  
4 stages 
(3,3,3) 

 
20 machines,  
5 stages 
(4,4,4,4,4) 

 
12 machines,  
4 stages 
(3,3,3) 

 
20 machines,  
5 stages 
(4,4,4,4,4) 

 
PTime(j,i,s,m) 

 
U[20,50] 

 
U[20,50] 

 
U[20,50] 

 
U[20,50] 

vs,m  
 

U[0.80, 1.20] 
 

U[0.80, 1.20] 
 

U[0.70, 1.30] 
 

U[0.70, 1.30] 

ch(j,i,q,p,s) 
 

U[20%, 40%]  
of Time(j,i,s,m) 

 
U[20%, 40%]  
of Time(j,i,s,m) 

 
U[20%, 40%]  
of Time(j,i,s,m) 

 
U[20%, 40%]  
of Time(j,i,s,m) 

ch(j,i,j,p,s) 
 

U[5%, 15%]  
of Time(j,i,s,m) 

 
U[5%, 15%]  
of Time(j,i,s,m) 

 
U[5%, 15%]  
of Time(j,i,s,m) 

 
U[5%, 15%]  
of Time(j,i,s,m) 

ch(0,0,j,i,s) U[15%, 25%]  
of Time(j,i,s,m) 

U[15%, 25%]  
of Time(j,i,s,m) 

U[15%, 25%]  
of Time(j,i,s,m) 

U[15%, 25%]  
of Time(j,i,s,m) 
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Changeover times between products at each stage (ch(j,i,q,p,s) and setup times from idling 

at the first stage (ch(0,0,j,i,s)) are identical on all machines at the same stage.  Types A and B 
generate problems with small deviations in the speed of machines.  Conversely, types C and D 
generate problems with large deviations in the speeds.  Characteristics of the data types can be 
summarized as follows: 

 
 A: A small number of stages, small deviations in machine speeds, and small, identical 

number of machines in each stage.  
 B: A large number of stages, small deviations in machine speeds, and large, identical number 

of machines in each stage. 
 C: A small number of stages, large deviations in machine speeds, and small, non-identical 

number of machines in each stage.  
 D: A large number of stages, large deviations in machine speeds, and large, identical number 

of machines in each stage. 
 

In section 7.2, the computational results obtained with the heuristics are presented and 
compared to the lower bounds for the large size problems.  Section 7.3 presents the relative 
improvement of the solutions obtained by the IH algorithm with the application of the TSearch 
algorithm. 

  
7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds 

The heuristic algorithms were coded in JAVA and run on a 2.0 GHz PC, with 256 MegaBytes 
of RAM, for testing and evaluation.  In this section, the heuristic algorithms are evaluated using two 
performance measures: (1) solution quality, and (2) computational speed.   The quality of a solution 
generated by the heuristics is measured in terms of their performance (HP), as presented below. 

 HP  = (solLB/solheu) x 100 
 where, 
 HP =  the heuristic performance (%) 
 solLB = the lower bound of the solution 
 solheu = the solution obtained from the heuristic algorithms 
 The computational speed of the algorithms is measured by the amount of CPU time required 

to execute the algorithms.  The CPU time includes compiling, linking, and execution times, and is 
reported in seconds and seconds per iteration for the IH and TSearch algorithms, respectively.  
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For each combination of problem set and data type, ten different test problems were 

generated.  The solution of each test problem using the heuristic algorithm and its lower bound were 
obtained for all combinations of sets and data types.  The results of these computations are presented 
in Tables      7.2-7.13.  Table 7.14 shows the averages obtained for these results.  

 
Table 7.2: Computational Results for Set 1 Type A: 

 Heuristic Algorithms vs. Lower Bound 
CPU Time Heuristic Performance (%) 

TSearch Problem 
Number IH 

(seconds) 
seconds/iteration 

 
Number of Iterations 

(iterations) 

IH TSearch 

1 1.2 2.1 50        56.05         69.00  
2 1.1 2.2 148        58.12         71.20  
3 1.0 2.0 345        56.60         69.90  
4 1.1 2.1 69        56.82         71.40  
5 1.1 2.0 191        56.47         71.40  
 

 
Table 7.3: Computational Results for Set 1 Type B: 

 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 1.0 2.0 150 58.87 69.10 
2 1.1 1.9 156 55.42 68.50 
3 1.0 1.9 245 53.69 69.60 
4 1.1 2.0 145 56.50 71.10 
5 1.1 2.0 89 55.60 68.90 
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Table 7.4: Computational Results for Set 1 Type C: 
 Heuristic Algorithms vs. Lower Bound 

CPU Time 
 

Heuristic Performance (%) 

TSearch Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 1.0 2.0 130 52.53 65.30 
2 1.0 2.0 136 56.34 68.90 
3 1.0 2.1 45 56.39 66.40 
4 1.1 2.0 39 50.43 64.40 
5 1.1 2.0 97 51.57 67.30 

 
 

Table 7.5: Computational Results for Set 1 Type D: 
 Heuristic Algorithms vs. Lower Bound 

 
CPU Time 

 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 1.0 1.9 120 50.04 67.10 
2 1.1 2.0 135 50.80 65.60 
3 1.1 2.0 128 50.33 64.10 
4 1.2 1.9 123 58.61 67.70 
5 1.0 1.9 171 53.45 68.70 
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Table 7.6: Computational Results for Set 2 Type A: 

 Heuristic Algorithms vs. Lower Bound 
 

CPU Time 
 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 30.2 3.2 67 58.25      68.60  
2 30.3 3.2 454 58.37      69.10  
3 30.3 3.2 234 61.06      69.50  
4 30.2 3.2 432 60.74      71.30  
5 30.4 3.1 45 58.78      68.00  

 
 

Table 7.7: Computational Results for Set 2 Type B: 
 Heuristic Algorithms vs. Lower Bound 

 
CPU Time 

 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 31.2 3.2 453 57.93 68.70 
2 31.1 3.3 234 58.11 69.90 
3 31.1 3.3 458 58.90 69.90 
4 31.2 3.4 120 58.41 67.60 
5 31.1 3.1 56 58.27 70.40 
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Table 7.8: Computational Results for Set 2 Type C: 
   Heuristic Algorithms vs. Lower Bound 

 
CPU Time 

 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 43.1 4.0 233 56.33 64.30 
2 43.3 4.0 125 54.45 64.60 
3 43.2 3.9 45 57.87 66.20 
4 43.2 4.1 78 56.25 66.20 
5 43.1 3.9 4551 56.18 64.90 

 
 

Table 7.9: Computational Results for Set 2 Type D: 
 Heuristic Algorithms vs. Lower Bound 

 
CPU Time 

 

 
Heuristic Performance (%) 

TSearch 
Problem 
Number  

IH 
(seconds) 

seconds/iteration 
 

Number of Iterations 
(iterations) 

 
IH 

 
TSearch 

1 44.2 4.1 79 53.52 66.10 
2 44.3 4.0 145 56.42 64.80 
3 44.3 4.0 365 55.06 65.50 
4 44.2 4.1 278 56.35 65.30 
5 44.4 3.9 222 56.55 65.00 
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Table 7.10: Averages of Computational Results for Sets 1 and 2 for all Data Types: 

Heuristic Algorithms vs. Lower Bound  
 

CPU time Heuristic Performance (%) 
TSearch 

Set Type IH 
(seconds) seconds/iteration Number of iterations 

(iterations) 

IH TSearch 

1 A 1.10 2.08 160.60 56.81 70.58 
 B 1.06 1.96 157.00 56.02 69.44 
 C 1.04 2.02 89.40 53.45 66.46 
 D 1.08 1.94 135.40 52.65 66.64 
2 A 30.28 3.18 246.40 59.44 69.30 
 B 31.14 3.26 264.20 58.32 69.30 
 C 43.18 3.98 1006.40 56.22 65.24 
 D 44.28 4.02 217.80 55.58 65.34 

  
 
 Based on these results, the average performance for set 1 ranges between  52.65-

56.81% for the IH algorithm and 66.46-70.58% for the TSearch algorithm.  For set 2, the average 
performance is lower than that of set 1, and ranges between 55.58-59.44% for the IH algorithm and 
65.24-69.30% for the TSearch algorithm.  

 The computational times for the IH are extremely small-- less than 45 seconds.  These 
times do significantly increase with the size of the problem.  This means that the IH algorithm is 
sensitive to the problem size.  In contrast, computational times for the TSearch algorithm seem to be 
high-- between 1.94 and 2.08 seconds per iteration for data set 1 and between 3.18 and 4.02 seconds 
per iteration for data set 2.  These times increase significantly with the size of the problem in terms of 
numbers of products (product groups), stages, and machines. 

 A Factorial Design was used to evaluate the performance of the heuristic algorithms 
(HP).  The design has three factors: deviations in machine speeds, number of products, and number of 
machines and stages.  The analysis was performed using SAS Software V8 for Windows and the 
results are presented in Appendix C.  The statistical results show a significant effect only for two 
factors on the heuristic performance, number of products and deviation in machine speeds.   Tukey’s 
test was performed to compare between the three means obtained with different number of machines 
and stages.  Results of the test (see Appendix C) indicate that the two means are different from each 
other.   
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 The statistical results obtained from ANOVA and Tukey’s test show that the heuristic 

performance declines with the increase of: (1) number of products, and (2) deviation in machine speeds.  
This decline is due mainly to the decrement in the value of the lower bound rather than the performance 
of the heuristics.  The lower bound value may be affected by the following factors: 

(1) the difference between the actual processing times and the smallest processing times of 
products used to calculate the first component of lower bound.  The difference in 
processing times gets larger when the difference in the speeds between the fastest and 
the slowest machines increases. 

(2) the difference between actual processing times and the processing times on the average 
speed machine of products used to calculate the second component of the lower bound, 
and  

(3) the difference between actual setup times (both major and minor setup times) and the 
smallest setup times of the products, used to calculate components 3 and 4 of the lower 
bound.   

If the differences were small, the lower bound would be relatively high resulting in higher 
algorithm performance, and vice versa.  Larger deviations in machine speeds, a number of products 
(groups), and of machines and stages would most probably cause larger differences in processing 
times and setup times.  

 
7.3 Comparison between the IH Algorithm and the TSearch Algorithm 

 In this section, the relative improvement of the solutions obtained from the IH algorithm 
after applying the TSearch is evaluated and presented below. 

 
 Let  RI = {(solIH/ - solTSearch) / solIH} x 100 
 
 where, 

 RI =  the relative improvement (%) between solIH and solTSearch 
 solIH = the solution obtained from the IH algorithm 

 solTSearch = the solution obtained from the TSearch algorithm 
 
 Two sets of relatively large size problems are used in this section.  These sets are 

identical to those described in Section 7.2.  For each combination of problem set and data type, 5 
different test problems were generated.  The solutions of each test problem using the IH and TSearch 
algorithms were obtained for all combinations of sets and data types.  The results obtained are 
presented in Tables 7.11 and 7.12.  Table 7.13 shows the averages obtained for these results.  
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Table 7.11: Relative Improvement Results for the Different Data Types in Set 1: 

 

Relative Improvement (%) 

Type 
Problem Number 

A B C D 
1 18.82 14.79 19.56 25.44 
2 18.38 19.15 18.18 22.61 
3 19.06 22.86 15.10 21.53 
4 20.41 20.49 21.75 13.39 
5 20.96 19.25 23.40 22.23 

 
 

Table 7.12: Relative Improvement Results for the Different Data Types in Set 2: 
 

Relative Improvement (%) 

Type 
Problem Number 

A B C D 
1 15.07 15.63 12.36 19.00 
2 15.50 16.87 15.73 12.99 
3 12.19 15.71 12.57 15.92 
4 14.76 13.53 15.02 13.64 
5 13.59 17.28 13.47 13.01 
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Table 7.13: Relative Improvement Results for Sets 1 and 2  

 

RELATIVE IMPROVEMENT (%) 

Type Set  
 

 
A 
 

 
B 

 
C 

 
D 

 
1 
 

19.53 19.31 19.60 21.04 

 
2 
 

14.22 15.80 13.83 14.91 

 
 

 
  As shown in Tables 7.11 and 7.12, the TSearch algorithm provides better makespan 
values than the IH algorithm by 12.19 - 25.44% in the individual test runs.  A Factorial Design was 
used to evaluate the relative improvement (RI) of the solutions obtained by the IH algorithm with the 
application of the TSearch algorithm.  The design has three factors: deviations in machine speeds, 
number of products, and number of machines and stages.  The analysis was performed using SAS 
Software V8 for Windows and the results are presented in Appendix C.  The statistical results show a 
significant effect only for number of products on the RI.  Tukey’s test was performed to compare 
between the three means.  Results of the test (also see Appendix C) show no difference in the relative 
improvement (RI) obtained with number of machines and machine speed configurations.  In contrast, 
results obtained in the ANOVA tables and Tukey’s test show that the relative improvement declines as 
the size of number of products (or groups) increases. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 
 

This research was undertaken to minimize the makespan for the “flexible flowshop with 
sequence dependent setup times when machines in each stages are unrelated” problem.  Two exact 
algorithms were first developed and used to solve small problems.  Two heuristic algorithms (IH and 
TSearch) were then developed to solve larger and more practical problems.   In order to evaluate the 
performance of the heuristic algorithms, two lower bounds were developed for the solution of the 
problem.   

Since the optimal solution can be obtained for only small size problems (only for 5 jobs and    
7 machiines), two heuristic algorithms (IH and TSearch) were developed.  The first algorithm (IH) was 
developed to obtain a good initial solution and then improved in the second phase using the TSearch 
algorithm.  To assess the quality of the heuristic algorithms, two methods were presented for obtaining 
a lower bound for the flexible flowshop with sequence dependent setup times when machines in each 
stages are unrelated problems: (1) forward method and (2) backward method.  Machine waiting time, 
idle time, and the total setup and processing times on machines at the last stage were used to obtain 
the lower bounds. 
 For the computational experience, two data sets with four problem configurations for each set 
were generated, and five test problems were generated for each configuration.  The performances of 
the heuristics were presented and evaluated using two measures: (1) solution quality and                
(2) computational speed.  The quality of heuristic solutions was evaluated using lower bounds.        
The results showed a performance for the IH algorithm between 52.65-56.81% for data set 1 and              
55.58-59.44% for data set 2.  The performance for the TSearch algorithm ranged between           
66.46-70.58% for data set 1 and    65.24-69.30% for data set 2.  The performance of the algorithms 
declined with the increase of: (1) deviation in machine speeds and (2) number of products. 

The computational times were very small for the IH algorithm, indicating that this algorithm is 
very efficient and not sensitive to problem size.  Conversely, the computational times of the TSerach 
algorithm increased significantly with problem size--number of products, stages, and machines.  For the 
relative improvement realized when applying the TSearch algorithm to the results obtained with the IH 
algorithm, the results indicated an improvement between 12.20 and 25.50%.  This improvement 
increased as the deviations in machine speeds, number of stages, and machines increased.  On the 
other hand, it decreased as the number of products (groups) increased. 
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8.1 Contribution of the Research  

 The exact algorithms as well as the heuristic algorithms and the lower bound methods 
developed can also be applied to identical, uniform, and unrelated parallel processing problems with or 
without dependent setup times.  Computational experience showed that both heuristic algorithms are 
effective in solving the problem. 
 

8.2 Recommendations for Future Research    
 The following recommendations are made for future research: 

• The calculation of the lower bounds may be further enhanced 
• Improvements may be made to the TSearch algorithm.  The Tabu search was utilized 

in this research without using intensification or diversification strategies.  These 
strategies, which are used to guide the search in a more intelligent way, need to be 
further studied. 

• Other search methods (e.g., Neural Network or Genetic Algorithm) may be applied to 
solve this problem.  Their performances may be compared to that of the Tabu Search 
algorithm.  
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CHPATER 9 

OUTPUTS จากโครงการวิจัยที่ไดรับทุนจาก สกว. 
 

9.1 Software ของ Heuristic Algorithm ในรูปแบบ GUI (Graphic User Interface) ซ่ึงวิธีการใช
แสดงไวภาคผนวก D 

9.2 Software ของการคํานวณคา Lower Bounds ในรูปแบบ GUI (Graphic User Interface)   ซ่ึง
วิธีการใชแสดงไวภาคผนวก E 

9.3 การนําเสนอผลงานการประชุมวิชาการระดับนานาชาติ (International Conference) 
9.3.1 The 33rd International Conference on Computers and Industrial Engineering: 

Detailed is shown in Appendix F-1 
(Held at Jeju, Korea, on March 25-27, 2004) 

9.3.2  The Fifth Asia-Pacific Conference on Industrial Engineering and Management 
Systems: Detailed is shown in Appendix F-2  
(Held at Gold Coast, Australia., on December 12-15, 2005) 
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Appendix A
Start Time Calculations

There are eight possible ways to determine the value of the start time (STime(j,i,s,m)) as
described below.

1. If  j = the first group processed on machine m at the first stage; j ∈ J,   i = the first product
scheduled in group j; i ∈ Fj, and m ∈ M(1), then:

STime(j,i,1,m) = ch(0,0,j,i,1)
2. If j = the first group scheduled on machine m at the first stage, i ≠ the first product in group j

processed on the machine, then:
STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)
where,
p = the product that precedes product i on machine m in the first stage
and j ∈ J, i, p ∈ Fj, m ∈ M(1)

3. If j ≠ the first group scheduled, i = the first product scheduled in group j on machine m at the
first stage.  Then:

                  STime(j,i1,m) = FTime(q,p,1,m) + ch(q,p,j,i,1)
where,
q = the group that precedes group j on machine m of stage s
p = the last product of group q scheduled on machine m of stage s
and j,q ∈J, i ∈ Fj, p ∈ Fq,  m ∈ M(1)

4. If j ≠ the first group scheduled, i ≠ the first product in j processed on machine m at the first
stage.  Then:

                             STime(j,i,1,m) = FTime(j,p,1,m) + ch(j,p,j,i,1)
where,
p = the product in group j that precedes product i on machine m at the first stage

                        and j ∈ J, i, p ∈ Fj, m ∈ M(1)
5. If j = the first group scheduled, i = the first product in j processed on machine m in stage s: s

∈ {2,3,…,S}.  Then:
 STime(j,i,s,m) = FTime(j,i,s-1,mp)
where, j ∈ J, i ∈ Fj, m ∈ M(s), mp is the machine in stage s-1 on which product i of
group j was processed

6. If j = the first group scheduled, i ≠ the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}.  Then:

STime(j,i,s,m) = max {FTime(j,p,s,m) + ch(j,p,j,i,s), FTime(j,i,s-1,mp)}
      where,

p = the product in group j that precedes product i on machine m  stage s
      j ∈J, i, p ∈ Fj
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 m ∈ M(s)
 mp is defined as above.

7. If j ≠ the first group scheduled, i = the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}.  Then:

STime(j,i,s,m) = max{FTime(q,p,s,m)+ch(q,p,j,i,s), FTim (j,i,s-1,mp)}
                              where,
                              q = the group that precedes group j on machine m of stage s
                              p = the last product of group q scheduled on machine m of stage s
                              and j,q ∈J, i ∈ Fj, p ∈ Fq,  m ∈ M(s), mp is defined earlier.

8. If j ≠ the first group scheduled, i ≠ the first product in group j processed on machine m in
stage s:s ∈ {2,3,…,S}.  Then:

 STime(j,i,s,m)= max{FTime(j,p,s,m)+ch(j,p,j,i,s), FTime(j,i,s-1,mp)}
      where,

p = the product in group j that precedes product i on machine m  stage s
      j ∈ J, i, p ∈ Fj

m ∈ M(s)
mp is defined earlier.

If there is any change in the schedule, then the start time of all products and families affected by 
the change are recalculated.
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Appendix B
The Look Ahead Rule

Look Ahead (LA) Rule
The LA rule is applied when a product from a certain group (e.g., product i from group j) has

finished processing in a previous stage (stage s-1; s >1).  The algorithm starts by using the EFT rule to
determine the best machine, e.g. machine m’, for this product which yields the earliest product finish time.
The LA rule then checks if the product that precedes product i on machine m' is from the same group.  If
true, then product i is scheduled on machine m’ as soon as it becomes available.  Otherwise, the rule
checks if there is an incoming product of group q from the previous stage (e.g., product p of group q) to
be processed on machine m’ in the near future (i.e., before time Γ where Γ is equal to the finish time of
product i on machine m’, plus the changeover time to product p).  If not true, this rule schedules product i
of group j on machine m’ as soon as the machine becomes available.  Otherwise, the rule schedules
product i of group j on machine m’ if either of the following conditions is true:

1. The scheduling of product i of group j on machine m’ does not delay the start time of the
incoming product of group q.  In other words, product i of group j can be scheduled on
machine m’ if the value of DST(q,p) is equal to zero.  This results in an earlier finish time of
product i by FTime(j,i,s,m) – FTime(j,i,s,m’) time units.

2. The amount of RFT(j,i) is greater than that of DST(q,p). For this condition, the machine idle
time would be reduced by RFT(j,i) – DST(q,p) time units.

As described above, the LA rule tries to reduce the machine idle time.  The detailed procedure
for the LA rule is given below.

Initialization:
Let H  = the set of products arranged in non-decreasing order of finish times from

machines in stage s -1, s >1.
Scheduling steps.

1. Let i be the next unscheduled product in set H.
2. Check whether there is any machine in stage s processing products from the same

group as product i (i.e., from group j).  If true, determine the set of the machines in
stage s processing the products of group j (MU(j)) and go to LA-3.  If no machine is
processing products of this group, go to LA-12.

3. Apply the EFT rule to determine machine m, m ∈ MU(j), that yields the earliest
finish time for product i, group j.

4. Apply the EFT rule to determine machine m’, m’ ∈ M(s), which yields the earliest
finish time of product i, group j.

5. If machines m and m’ are the same machine, go to LA-13; otherwise, go to LA-6.
6. Check if there is any product of group q (e.g., product p) being processed in the

previous stage.  If yes, go to LA-7; otherwise, go to LA-13.
7. Calculate the sum of the finish time of product i, group j on machine m’ (FTime

(j,i,s,m')) and the changeover time from this product to product p of group q (ch
(j,i,q,p,s)).
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8. Calculate the start time of product p of group q on machine m’ of stage s when
scheduled after product p’:
STime(q,p,s,m’) = max {FTime(q,p,mp,s-1), FTime(q,p’,s,m’) + ch(q,p’,q,p,s)}.

9. Compare the time in LA-7 (i.e., FTime(j,i,s,m') + ch(j,j,q,p,s')} to that in LA-8 (i.e.,
STime(q,p,s,m’))

If FT(j,i,s,m') + ch(j,j,q,p,s)} ≤ STime(q,p,s,m’), go to LA-13; otherwise, go to
LA-10.

10. Check whether the value of RFT(j,i) = FTime(j,i,s,m) – FTime(j,i,s,m’) is greater
than that of DST(q,p).  If yes, go to LA-13; otherwise, go to LA-11.

11. Do not schedule product i of group j on machine m’.  Go back to LA-1 (i.e., repeat
this procedure until the product is scheduled on a machine in this stage).

12. Apply the EFT rule to determine machine m’, m’ ∈ M(s), that yields the earliest
finish time for product i, group j.

13. Schedule product i of group j on machine m’.



Appendix C 
The Results from the SAS Program 

 
                                         The SAS System      02:17 Friday, February 14, 1997   1 
 
                                 Analysis of Variance Procedure 
                                    Class Level Information 
 
                                   Class    Levels    Values 
 
                                   FAMILY        2    10 20 
 
                                   MC            2    3 5 
 
                                   SPEED         2    1 2 
 
 
                            Number of observations in data set = 40 
 
 
                                         The SAS System      02:17 Friday, February 14, 1997   2 
 
                                 Analysis of Variance Procedure 
 
Dependent Variable: IH 
 
Source                  DF           Sum of Squares             Mean Square   F Value     Pr > F 
 
Model                    7             179.14663750             25.59237679      6.85     0.0001 
 
Error                   32             119.52444000              3.73513875 
 
Corrected Total         39             298.67107750 
 
 
 



                  R-Square                     C.V.                Root MSE            IH Mean 
 
                  0.599812                 3.447422              1.93265071          56.06075000 
 
 
Source                  DF                 Anova SS             Mean Square   F Value     Pr > F 
 
FAMILY                   1              70.67622250             70.67622250     18.92     0.0001 
MC                       1               7.03082250              7.03082250      1.88     0.1796 
FAMILY*MC                1               0.01406250              0.01406250      0.00     0.9515 
SPEED                    1             100.77450250            100.77450250     26.98     0.0001 
FAMILY*SPEED             1               0.36290250              0.36290250      0.10     0.7573 
MC*SPEED                 1               0.13806250              0.13806250      0.04     0.8488 
FAMILY*MC*SPEED          1               0.15006250              0.15006250      0.04     0.8424 
 
 
 
                                         The SAS System      02:17 Friday, February 14, 1997   3 
 
                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: IH 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 3.735139 
 
                                     Number of Means     2 
                                     Critical Range  1.245 
 
                  Means with the same letter are not significantly different. 
 
 
 
 
 
 



                        Duncan Grouping              Mean      N  FAMILY 
 
                                      A           57.3900     20  20 
 
                                      B           54.7315     20  10 
 
 
 
                                         The SAS System      02:17 Friday, February 14, 1997   4 
 
                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: IH 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 3.735139 
 
                                     Number of Means     2 
                                     Critical Range  1.245 
 
                  Means with the same letter are not significantly different. 
 
                          Duncan Grouping              Mean      N  MC 
 
                                        A           56.4800     20  3 
                                        A 
                                        A           55.6415     20  5 
 
 
 
                                         The SAS System      02:17 Friday, February 14, 1997   5 
 
 
 
 
 



                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: IH 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 3.735139 
 
                                     Number of Means     2 
                                     Critical Range  1.245 
 
                  Means with the same letter are not significantly different. 
 
                        Duncan Grouping              Mean      N  SPEED 
 
                                      A           57.6480     20  1 
 
                                      B           54.4735     20  2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                         The SAS System      02:20 Friday, February 14, 1997   1 
 
                                 Analysis of Variance Procedure 
                                    Class Level Information 
 
                                   Class    Levels    Values 
 
                                   FAMILY        2    10 20 
 
                                   MC            2    3 5 
 
                                   SPEED         2    1 2 
 
 
                            Number of observations in data set = 40 
 
 
                                         The SAS System      02:20 Friday, February 14, 1997   2 
 
                                 Analysis of Variance Procedure 
 
Dependent Variable: TSearch 
 
Source                  DF           Sum of Squares             Mean Square   F Value     Pr > F 
 
Model                    7             153.31575000             21.90225000     14.07     0.0001 
 
Error                   32              49.82800000              1.55712500 
 
Corrected Total         39             203.14375000 
 
 
 
 
 
 
 
 



                  R-Square                     C.V.                Root MSE            TSearch Mean 
 
                  0.754716                 1.840823              1.24784815           67.78750000 
 
 
Source                  DF                 Anova SS             Mean Square   F Value     Pr > F 
 
FAMILY                   1               9.70225000              9.70225000      6.23     0.0179 
MC                       1               0.46225000              0.46225000      0.30     0.5896 
FAMILY*MC                1               0.70225000              0.70225000      0.45     0.5067 
SPEED                    1             139.50225000            139.50225000     89.59     0.0001 
FAMILY*SPEED             1               0.75625000              0.75625000      0.49     0.4909 
MC*SPEED                 1               1.26025000              1.26025000      0.81     0.3750 
FAMILY*MC*SPEED          1               0.93025000              0.93025000      0.60     0.4452 
 
                             The SAS System      02:20 Friday, February 14, 1997   3 
 
                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: TSearch 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 1.557125 
 
                                     Number of Means     2 
                                     Critical Range  .8038 
 
                  Means with the same letter are not significantly different. 
 
                        Duncan Grouping              Mean      N  FAMILY 
 
                                      A           68.2800     20  10 
 
                                      B           67.2950     20  20 
 
 



                                         The SAS System      02:20 Friday, February 14, 1997   4 
 
                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: TSearch 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 1.557125 
 
                                     Number of Means     2 
                                     Critical Range  .8038 
 
                  Means with the same letter are not significantly different. 
 
                          Duncan Grouping              Mean      N  MC 
 
                                        A           67.8950     20  3 
                                        A 
                                        A           67.6800     20  5 
 
 
 
                                         The SAS System      02:20 Friday, February 14, 1997   5 
 
                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: TSearch 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
 
 
 
 
 



                               Alpha= 0.05  df= 32  MSE= 1.557125 
 
                                     Number of Means     2 
                                     Critical Range  .8038 
 
                  Means with the same letter are not significantly different. 
 
                        Duncan Grouping              Mean      N  SPEED 
 
                                      A           69.6550     20  1 
 
                                      B           65.9200     20  2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                         The SAS System      02:19 Friday, February 14, 1997   1 
 
                                 Analysis of Variance Procedure 
                                    Class Level Information 
 
                                   Class    Levels    Values 
 
                                   FAMILY        2    10 20 
 
                                   MC            2    3 5 
 
                                   SPEED         2    1 2 
 
 
                            Number of observations in data set = 40 
 
 
                                         The SAS System      02:19 Friday, February 14, 1997   2 
 
                                 Analysis of Variance Procedure 
 
Dependent Variable: RI 
 
Source                  DF           Sum of Squares             Mean Square   F Value     Pr > F 
 
Model                    7             288.53944000             41.21992000      6.17     0.0001 
 
Error                   32             213.91236000              6.68476125 
 
Corrected Total         39             502.45180000 
 
 
 
 
 
 
 
 



                  R-Square                     C.V.                Root MSE            RI Mean 
 
                  0.574263                 14.96233              2.58549052          17.28000000 
 
 
Source                  DF                 Anova SS             Mean Square   F Value     Pr > F 
 
FAMILY                   1             267.90976000            267.90976000     40.08     0.0001 
MC                       1               9.44784000              9.44784000      1.41     0.2433 
FAMILY*MC                1               1.29600000              1.29600000      0.19     0.6627 
SPEED                    1               0.16900000              0.16900000      0.03     0.8747 
FAMILY*SPEED             1               5.95984000              5.95984000      0.89     0.3521 
MC*SPEED                 1               0.84100000              0.84100000      0.13     0.7251 
FAMILY*MC*SPEED          1               2.91600000              2.91600000      0.44     0.5137 
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                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: RI 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 6.684761 
 
                                     Number of Means     2 
                                     Critical Range  1.665 
 
                  Means with the same letter are not significantly different. 
 
 
 
 
 
 



                        Duncan Grouping              Mean      N  FAMILY 
 
                                      A           19.8680     20  10 
 
                                      B           14.6920     20  20 
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                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: RI 
 
                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 6.684761 
 
                                     Number of Means     2 
                                     Critical Range  1.665 
 
                  Means with the same letter are not significantly different. 
 
                          Duncan Grouping              Mean      N  MC 
 
                                        A           17.7660     20  5 
                                        A 
                                        A           16.7940     20  3 
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                                 Analysis of Variance Procedure 
 
                        Duncan's Multiple Range Test for variable: RI 
 



                  NOTE: This test controls the type I comparisonwise error rate, not the 
                        experimentwise error rate 
 
                               Alpha= 0.05  df= 32  MSE= 6.684761 
 
                                     Number of Means     2 
                                     Critical Range  1.665 
 
                  Means with the same letter are not significantly different. 
 
                        Duncan Grouping              Mean      N  SPEED 
 
                                      A           17.3450     20  2 
                                      A 
                                      A           17.2150     20  1 
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Appendix D 
วิธีการใช Software ของ Heuristic Algorithm (TSEARCH) 

ในรูปแบบ GUI (Graphic User Interface)  
 

D.1 คูมือการใชโปรแกรม TSearch Generate 
 

1. ทําการสราง file ชื่อ n_machines.txt และ n_product.txt เพ่ือเปนที่เก็บขอมูลของจํานวนเครื่องจักรในแตละ
สถานีงานและจํานวนของ product ในแตละ family ดังรูป 
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2. เมื่อได file ทั้งสองแลวใหเก็บใน Folder TshGen แลวจึงเปดโปรแกรม TshGenW.exe จะพบกับหนาจอดังรูป 
แลวกรอกขอมูลจํานวนของ Family และจํานวนของสถานีงาน แลวคลิกปุม Next 
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3. กรอกชวงของเวลาที่ใชในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจากผลิตภัณฑหนึ่งไปเปนอีก
ผลิตภัณฑหนึ่ง ทั้งใน Family เดียวกัน และตาง Family กัน โดยคิดเปนเปอรเซ็นตของ standard processing 
time ชวงของเวลาที่ในการผลิตตอหนวย ชวงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเปน
เปอรเซ็นตของ standard processing time และชวงของจํานวนของแตละ Product ที่ตองการผลิต แลวคลิกที่
ปุม Done 

 
 

 
 
 
 
4. โปรแกรมจะทําการ Generate ขอมูลขึ้นมาเปน file ชื่อ prodPT.txt, product.txt, productCOT.txt และ speed.txt โดยให
ทําการคัดลอก file ทั้งส่ี รวมทั้ง file ชื่อ n_machines.txt และ n_product.txt อีกสอง file ไปยัง Folder โปรแกรม TshGui 
เพ่ือทํา Tabu Search ตอไป 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68

D.2 คูมือการใชโปรแกรม TSEARCH 
 

1. เมื่อทําการคัดลอก file ทั้งหกมาไวใน Folder TshGui แลวใหทําการเปดโปรแกรม TshGuiW.exe จะพบ  
หนาจอดังรูป ใหทําการกรอกขอมูลจํานวนสถานีงาน และจํานวน Family คลิกปุม Next 

 

 
 
 
 

2. หากแนใจแลววา file ชื่อ n_machines.txt และ n_product.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next 
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3. หากแนใจแลววา file ชื่อ productCOT.txt, prodPT.txt และ speed.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next 
 

 
 

4. หากแนใจแลววา file ชื่อ product.txt อยูใน Folder TshGui แลว ใหคลิกปุม Next เพ่ือเขาสูขั้นตอนการหา Initial 
Solution 
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5. คลิกที่ปุม Step 1 ไปตามลําดับจนถึง Step 7 โดยแตละปุมจะแสดงผลลัพธตามขั้นตอนการทํางานเพื่อหา Initial 
Solution แลวจึงคลิกที่ปุม Next 

 

 
 

6. กรอกขอมูล จํานวนรอบสูงสุดที่จะทําการคํานวน จํานวนรอบสูงสุดระหวาง 2 คําตอบที่ดีขึ้นที่จะทําการ
คํานวณตอไป จํานวนรอบสูงสุดที่จะคํานวณตอเมื่อไดคําตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แลวคลิก
ปุม Start โปรแกรมจะทําการคํานวน โดยแสดงคําตอบที่ดีที่สุดในชอง Best Value เมื่อโปรแกรมคํานวณเสร็จ
จะแสดงเวลาที่ใชในการคํานวณดังรูป คลิกปุม Next 
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7. กรอกขอมูล จํานวนรอบสูงสุดที่จะทําการคํานวน จํานวนรอบสูงสุดระหวาง 2 คําตอบที่ดีขึ้นที่จะทําการ
คํานวณตอไป จํานวนรอบสูงสุดที่จะคํานวณตอเมื่อไดคําตอบที่ดีที่สุดในขณะนั้น และ Taboo list size แลวคลิก
ปุม Start โปรแกรมจะทําการคํานวน โดยแสดงคําตอบที่ดีที่สุดในชอง Best Value เมื่อโปรแกรมคํานวณเสร็จ
จะแสดงเวลาที่ใชในการคํานวณดังรูป คลิกปุม Exit เมื่อเสร็จส้ินการคํานวณ 
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Appendix E 
วิธีการใช Software ของ Lower Bounds ในรูปแบบ GUI (Graphic User Interface)  

 
1. เมื่อทําการเปดโปรแกรม Lower Bound ขึ้นมาจะพบกับหนาจอโปรแกรมดังรูป 

 

 
 

2. จากหนาจอโปรแกรมจะทําการกรอกขอมูลลงในโปรแกรมโดยขอมูลที่ตองกรอกลงไปมีดังนี้ 
- ในสวน Factory คือจํานวนสถานีงาน ชวงของเครื่องจักรในสถานีงานที่จะทําการ Random   
- ในสวน Standard processing time คือ ชวงของ Product ใน family จํานวน family และชวงของ standard 

processing time ตอหนวย  
- ในสวน Machine Speed คือชวงของประสิทธิภาพ หรือ Speed ของเครื่องจักร โดยคิดเปนเปอรเซ็นตของ 

standard processing time 
- ในสวน Setup time คือชวงของเวลาที่ตองใชในการเตรียมการผลิต โดยคิดเปนเปอรเซ็นตของ standard 

processing time 
- ในสวน Change over time คือชวงของเวลาที่ใชในการเตรียมการผลิตเมื่อมีการเปลี่ยนการผลิตจาก
ผลิตภัณฑหนึ่งไปเปนอีกผลิตภัณฑหนึ่ง ทั้งใน Family เดียวกัน และตาง Family กัน โดยคิดเปน
เปอรเซ็นตของ standard processing time 

- ในสวนสุดทายคือจํานวนของชุดขอมูลที่ตองการสรางขึ้น แลวจึงคลิกที่ปุม Start โปรแกรมจะทําการ
คํานวนและแสดงผลลัพธในรูปแบบของ Web Page 
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ABSTRACT

This paper presents several mixed integer programming formulations for scheduling hybrid flowshop 
problems with the sequence dependent setup times.  In each stage, machines are unrelated.  Even 
though the hybrid flowshop problem with sequence dependent setup times (FFS(Rm1,Rm2,…, 
RmL)/sipm/Cmax) is known to be NP-hard, there are two main reasons for formulating a mathematical 
programming model:  (1) the mathematical programming formulation provides a better understanding 
of the problem and (2) it may be able to solve practical size problems in the near future.  Hence, in this 
research, the family of the mixed integer programming models is proposed in order to be used in 
practice as a simple support tool for the scheduling.  A variety of different system configurations and 
objective functions considered in this research provide a scheduler with a basis for constructing of 
his/her own model for a particular problem instance.

KEYWORDS
 Hybrid flowshop, Flexible flowshop, Scheduling, Setup times, Unrelated machines

1. Introduction

Nowadays, manufacturers are faced with customer demands for a variety of high quality products.  
The companies must therefore make their production systems more flexible, respond rapidly to 
demand fluctuations, and reduce costs related to production.  Hence, companies need to have 
advanced techniques.  Manufacturing has been an interesting topic in production and operation 
management because of areas such as job scheduling or machine loading. Hence, scheduling problems 
involve the assignment of machines to various jobs and determination of the order in which the jobs 
will be performed in order to optimize some criteria (such as minimization of makespan, or lateness) 
while satisfying the shop constraints.

1.1 A hybrid flowshop environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop.  A hybrid 
flowshops is a generalization of the flowshop and the parallel processor environments.  In a hybrid 
flowshop environment, there are L workstations, each of which consists of at least one machine.  The 
machines in each stage may identical, uniform, or unrelated.  In a hybrid flowshop, each job is 
processed first at stage 1, then at stage 2, and so on.  Normally, a job requires only one machine in 
each stage and any machine can process any job as shown in the schematic representation in Figure 1.

1.2 Dependent setup time

The requirements of setup times of jobs are very common in many real manufacturing situations such 
as inspecting material, setting tools, and cleanup.  In this research, sequence dependent setup times are 
considered to be very important factors in the manufacturing environment, especially, when a shop 
floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969).  Sequence dependent setups 
occur especially in process industry operations, where machine setup time is significant and is needed 
when products change.  The magnitude of setup time depends on the similarity in technological 
processing requirements for successive jobs (Srikan & Glosh, 1986).

mailto:skanch@kku.ac.th
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Even though there exists an enormous amount of research on the flowshop scheduling problem, 
research study has rarely been conducted in the case where setup times are sequence dependent 
(Allahverdi, 1999).  Hence, the results of these research studies lack a practical solution for 
applications that require the treatment of setup times.  For this reason, dependent setup times must be 
allowed for a realistic description and hence are considered in this research.

The purpose of this research is to present a family of MIP models for scheduling hybrid flowshops 
with sequence dependent setup times (FFs/sipm/Cmax), for a variety of different system configurations 
and objective functions.  As much of the current industrial competition is a time-based, the reduction 
of the production lead-time and due dates are important keys.  Hence, the objectives considered are to 
(1) to minimize the makespan and (2) to minimize the maximum lateness.  The models proposed can 
be classified into the following four categories:

(1) Lot-splitting is not allowed and dependent setup times are considered,
(2) Lot-splitting is not allowed and both dependent setup times and due dates are considered,
(3) Lot-splitting is allowed and dependent setup times are considered, and
(4) Lot-splitting is allowed and both dependent setup times and due dates are considered.

The paper is organized as follows.  In the next section, the literature review is presented.  In section 3, 
the problem and propose is described, then four optimizing algorithms are developed in section 4.  The 
experimental results are presented in Section 5.  Section 6 concludes the paper with a discussion of 
this research and future extension.

2. Literature Review

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop 
manufacturing that has been interested researchers for many years.  In 1971, Arthany and Ramaswamy 
proposed a branch and bound (B&B) algorithm for the FFs(Pm1, Pm2=1)//Cmax problem.  They could 
optimally solve problems with up to 10 jobs.  Brah and Hunsucker (1991) and Ragendran and 
Chuadhuri (1992) developed B&B algorithms for the FFs(Pm1, Pm2, …,Pms)//Cmax).  Both studies can 
solve only small-sized problems.

In 1995, Moursli improved Brah’s algorithm.  His algorithm can solve the problem with up to 20 jobs 
optimally.  Another study was done by Guinet et al. (1995).  They developed a mathematical model 
and heuristics for the FFs(Pm1, Pm2//Cmax) problems. Up to date, there is only one literature in 
scheduling hybrid flowshop with sequence dependent setup times (FFs/sipm/Cmax).   According to 
Sethanan (2001), the mixed integer programming is formulated to solve FFs/Qm1,Qm2,…,Qms, 
sipm/Cmax.

From the reviewed literature, there is no literature in scheduling hybrid flowshops when machines in 
each stage are unrelated and dependent setup times are considered.  Such problems are hence 

m1,1 m2,1 mL,1

m1,2 m2,2 mL,2

m1,3 m2,3 mL,3

m1,m(1) m2,m(2) mLm

IN
OUT

Figure 1: A Schematic Representation of a hybrid Flowshop Manufacturing Environment



considered in this research with the aim to develop mathematical models for a variety of different 
system configurations and objective functions.

3. The Problem Description

The research deals with the general hybrid flowshop, with L production stages, in which each job 
sequence may not be the same on each machine at each stage.  The problem on hand has several 
distinct products.  Each production stage may be composed of more than one machine.  If a stage has 
multiple machines, they are considered to be unrelated.  This means the speed of machine depends on 
the products to be processed.  Prior to processing a job on a machine, there is an associated setup time. 
Machine setup times are needed between any two products. Thus, setup times are considered 
significant and typically depend on the sequence of the jobs through the processors.  The research 
addresses the problem of scheduling all products on the machines of different stage in order to 
minimize the maximum makespan and due dates.

Description of the models:
The assumptions made in formulating each of the category models are presented as follows:
Category 1:

1. It is assumed that the decisions have been made from the long and intermediate-range 
planning.

2. Production is make-for-stock; hence, there are no due dates associated with products.
3. All jobs and machines are available at the beginning of the scheduling process.
4. Each stage of the hybrid flowshop production may have several unrelated machines.
5. Jobs can wait between two production stages and the intermediate storage is unlimited.
6. Products cannot be split between machines in the same stage.
7. There is no job preemption.

Category 2: The assumptions of this category are exactly same as in category 1 except that assumption
(2) is changed to consider due dates of products.

Category 3: The assumptions of this category are exactly same as in category 1 except that product
splitting is considered.

Category 4: The assumptions of this category are exactly same as in category 1 except that due dates
and splitting of products are considered.

4. Optimizing Algorithms

This section presents optimal algorithms for the hybrid flowshops with unrelated machines at each 
stage.  The 0-1 mixed integer programming formulations are presented below.  There are four models 
with two different objective functions.  Parameters and decision variables used in formulating the 
models are defined as presented in Table 1.

Model 1:   Lot-splitting is not allowed.  The objective function is to minimize the makespan.

The objective function:  Min E

Constraints:
F(i,1,m) ≥ ch(0,i,s=1) + {P(i,1,m) ⋅ x(i,1,m)}; i = 1,2,…,n ; and m=1,2,…,m(1)                   (1)

F(i,s,m) ≥ F(i,s-1,mp) + {P(j,i,s,m)⋅ x(j,i,s,m)}; i= 1,2,…,n ; s = 2,3,…,L, m = 1,2,…,m(s), mp = 1,2,…,m(s-1) (2)

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m))≥{P(i,s,m)⋅x(i,s,m)}; i = 1,2,…,n, s = 1,2,…, L, m = 1,2,…,m(s)  (3)

F(i,L,m) ≤ E ;  i = 1,2,…,n ; and m = 1,2,…,m(L)                  (4)
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Table 1: The Notation Used in the Mixed Integer Programming Model
Type of Variables Notation Explanation

F(i,s,m) Finish time of product i on machine m of stage s
E The makespanDecision Variables
Q(i,s,m) The number of product i that are assigned to machine m of stage s
x(i,s,m) = 1 , if product i is assigned to machine m of stage s

= 0 , otherwise
w(i,0,s,m) = 1 , if product i is the last product processed on machine  m of stage s

= 0 , otherwise
B i n a r y  d e c i s i o n  
variables

w(0,i,s,m) = 1 , if product i is the first product processed on machine  m of stage s
= 0 , otherwise

i,p,h Product indices
s Stage index
m(s) The number of machines in stage s
n Total number of products
M(s) The set of machines in stage s; M(s) = {1,2,..,m(s)}
L The number of stages in the production line
H The total number of machines from all stages

= ∑
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L
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sm

1
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B(i) The number of units required for product i
t(i,s,m) The processing time per unit of product i on machine m of stage s
P(i,s,m) The batch processing time of product i on machine m of stage s ;

P(i,s,m) = B(i)⋅t(i,s,m)
ch(i,p,s) The number of time units required to changeover from production i to product p at 

stage s

Parameters

V a very large positive number.
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= 1; i = 1, 2,…, n ; and s = 1,2,…, L                        (5)

x(p,s,m) – w(0,p,s,m) -                                   = 0; p = 1,2,…, n; s = 1,2,…,L; and m = 1,2,…,m(s)                  (6)

x(i,s,m) – w(i,0,s,m) -                          = 0 ;  i = 1,2,…,n ; s = 1,2,…, L; and m = 1,2,…,m(s)                  (7)

                        =  1 ; s = 1,2,…, L; and m = 1,2,…,m(s)                   (8)

            =  1 ; s = 1,2,…, L; and m = 1,2,…,m(s)                         (9)

Constraints (1) ensure that all products are scheduled and the completion time of any product on any 
machine of the first stage is determined.  Constraints (2) ensure that the completion time of product i 
produced on machine m in the current stage must be greater than its completion time in a previous 
stage.  Constraints (3) are about product sequencing on all the L stages.  Constraints (4) are needed to 
ensure that the makespan is equal to or greater than the completion time of each of the jobs in the last 
stage.  Constraints (5) ensure that, for each product, it can be manufactured on only one of machines in 
that stage of the production line. Constraints (6) ensure that, except for the first product, a product 
scheduled on any machine is preceded by exactly one different product.  Constraints (7) ensure that, 
except for the last product, a product scheduled on any machine must be immediately followed by 
only one product.  Constraints (8) & (9) ensure that a machine can have exactly one first and one last 
product.  In this model, there are H(2+2n+n2)+ nm(L) decision variables and generates        nH
(12+n)-M+n2+nm(1)+ 1 constraints.

 Model 2:   Lot-splitting is not allowed.  The objective is to minimize the maximum lateness.
This model is exactly the same in Category 1 except that constraints (10) is added to find the lateness 
of each job. This model requires H(2+2n+n2)+ nm(L)+1 decision variables and generates    nH
(12+n)-M+n2+nm(1)+ nm(L)+1 constraints.

Lmax ≥ F(i,L,m) – d(i);   for i = 1,2,…,n ; and m = 1,2,…,m(L) (10)



Model 3:   Lot-splitting is allowed.  The objective is to minimize the makespan.
The model to be used is exactly the same in Model 1 with some additional constraints (i.e., constraints 
(10), (11), and (12) as shown below) and one modified constraint (i.e., constraint 5).  This model 
requires H(2+2n+n2)+nm(L)+2nH decision variables and nH(12+n)-M+n2+nm(1)+n(2H+L)
constraints.

  ∑ ≥
=

)( ),,(sm

m
msiX

1
1      ; i = 1,2,…,n ; and s = 1,2,…,L   (5)

∑ =
=

)(

1
)(),,(

sm

m
iBmsiq ; i = 1,2,…,n ; and s = 1,2,…,L                (10)

),,(),,()( msiqmsiXiB ≥⋅ ; i = 1,2,…,n ; s = 1,2,…,L; and m = 1,2,…,m(L)               (11)
),,(),,( msinmsiX ≤ ; i = 1,2,…,n ; s = 1,2,…,L; and m = 1,2,…,m(L)                                 (12)

Model 4:   Lot-splitting is allowed.  The objective is to minimize the maximum lateness.
The model to be used is exactly the same in Model 3, except constraints (13) is added to find the 
lateness of each job.  In this model, there are H(2+2n+n2) + nm(L) +1 +2nH  decision variables and 
nH(12+n)-M+n2+nm(1)+n(2H+L)+ nm(L)+1 constraints.

Lmax ≥ F(i,L,m) – d(i) ; i = 1,2,…,n ; and m = 1,2,…,m(L)                 (13)

5. Experiment Results

In this section, several numerical examples are presented to illustrate various applications of the 
proposed models.  There are four models considered in this paper.  Cases have been established based 
on the number of jobs (n), number of stages (s), and number of machines (m).  In this experiment, the 
parameters are given as: (1) the processing time per a unit of product on each machines of a particular 
stage (t(i,s,m)) which is random from uniform distribution with U(20,50), (2) due date (d) of a product 
which is random from  U(Lpav,2npav/mav) where pav and mav represent the average processing time and 
average number of machines, respectively, and (3) the number of units required for each product (B(i)) 
which is random from uniform distribution with U(15,30).

The examples presented in this section were solved using CPLEX/AMPL software.  The models could 
optimally solve problems with up to 5 jobs 8 machines with reasonable computational effort. CPU run 
times on a PC 500MHz have been varied from several seconds to several minutes.  Table 3 
summarized these cases and their solution results.

6. Conclusions

The family of the mixed integer programming models proposed in this research can be used in practice 
as a simple support tool for the scheduling hybrid flowshops with sequence dependent setup times.  A 
variety of different system configurations and objective functions considered in this research provides 
a scheduler with a basis for constructing of his/her own model for a particular problem instance.

The models proposed can sometimes lead to relatively large integer programs.  In particular, the 
scheduling hybrid flowshops with sequence dependent setup times when machines are unrelated 
contribute essential to the problem size.  For realistic scheduling problem, the mixed integer 
programming may involve several thousands of binary variables, which by far exceeds the solution 
capabilities of the optimization techniques and computer technology.  Hence, for the future research, it 
is necessary to find solution techniques (e.g., heuristic methods) that are easy to implement even 
though they may not always lead to an optimal solution.



Table 3: Optimal Makespan and CPU Times for the Illustrative Problems
Problem Size

m(s)
Optimal Makespan or Lateness  (time units) : CPU time (seconds)

Case
Problem

No. n
s=1 s=2 s=3 s=4 s=5 Model 1 Model 2 Model 3 Model 4

1 2 2 2 - - - 1538.49 : 1 181.49  :  2 1066.73 : 4 0.00     :  5
2 2 2 1 2 - - 2060.32 : 1 0.00     :  1 1667.65 : 2 0.00     :  1
3 2 1 1 2 2 - 2658.76 : 1 63.51   :  1 2335.85 : :2 0.00     :  2

1

4 2 2 2 2 1 1 3243.64 : 11 0.00     :  1 2653.91 : 1333 0.00     :  1
1 3 2 2 - - - 1615.28 : 1 0.00     :  1 795.3 : 2 0.00     :  1
2 3 2 2 2 - - 2371.52 : 14 420.41  :  1 1199.95 : 20 0.00     :  3
3 3 2 2 1 1 - 5064.42 : 1 2189.42 :  2 4514.31 : 2 1676.62 : 2

2

4 3 2 1 2 1 2 5615.04 : 2 1280.20 : 1 4652.73 : 1 543.82  : 1
1 4 2 1 - - - 2950.13 : 1 686.40   : 1 2802.29 : 15 538.82  : 1
2 4 3 2 3 - - n/a* 515.38   :  12 n/a 0.00     :  11
3 4 2 2 2 1 - n/a 0.00      :  1 n/a 0.00     :  1

3

4 4 2 1 2 1 2 4413.10 : 54 1357.48 :  11 3789.83 : 36 789.56  : 30
1 5 1 3 - - - 2358.99 : 17 508.46  :  3 2167.19 : 9 252.46  : 4
2 5 1 1 1 - - 4508.86 : 6 1400.45 : 2 4508.86 : 7 1400.46 : 4
3 5 1 1 2 1 - 6191.39 : 554 1842.75 : 44 5675.39 : 369 1518.75 : 570

4

4 5 1 1 2 1 2 n/a n/a n/a n/a
Note: n/a = finding an optimal solution is computationally intractable.
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ABSTRACT 
In the real world manufacturing environment, the scheduling problems are greatly complicated by 
presence of disparate issues such as: (1) uniform parallel machines with different speeds,    (2) 
sequence dependent setups, and (3) machine restrictions.  In this paper, a complex scheduling 
problem characterized as a hybrid flowshop with machine eligibility constraints is addressed.  
The production line consists of S stages, each of which may have more than one uniform 
machines.  Prior to processing a job on a machine, there is an associated setup time which is 
dependant.  Even though the hybrid flowshop problem is known to be NP-hard, there are two 
main reasons for formulating a mathematical programming model: (1) the mathematical 
programming formulation provides a better understanding of the problem and (2) reasonable 
sized problems may be solved using the model in the near future.  In this research, two 
mathematical programming models (i.e., Model A and Model B) are formulated to solve the 
problem with the objective is to minimize the mean flow time.  The models were solved using 
CLEX/AMPL software on a PC 800 MHz.  Hence, in this research, the two models are compared 
in terms of the number of constraints and decision variables.  Computational results show that 
Model A is more effective because it generates less decision variables.  Model A could be used to 
solve problems with up to five jobs and six machines, while Model B could only be used to solve 
problems with five jobs and four machines. 
 
Key Words: Scheduling, Flexible Flowshop, Mathematical Programming, Hybrid Flowshop, 

Machine Eligibility Restriction, Dependent Setup Times. 
 

1. INTRODUCTION 
Consider the following problem.  A set of processors must perform a set of jobs, and jobs cannot 
process until predecessors are finished.  The processing time required to perform each job varies 
on each processor.  This research focuses on assigning the jobs to each processor and scheduling 
the jobs in such a way that the mean flow time is minimize. 

In real-life industries, a hybrid flowshop is more commonly seen than traditional flowshop.  A 
hybrid flowshop is a generalization of the flowshop and the parallel processor environments.  In a 
hybrid flowshop, there are S stations, each containing of at least one machine.  The machines in 
each stage may identical, uniform, or unrelated.  Let Pims denote the processing time of job j on 
machine m n stage s.  In general, one can distinguish among the following three cases. 

(1) identical machines: Pims = P1ms for all i and m in each s 
(2) uniform machines: Pims = Pms/vi for all i and m, where vm is the speed of machine m, and 

Pj is the processing time at the normal speed (100% speed). 
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(3) unrelated machine: Pims arbitrary for all i and m in each s 
This paper considers the problem of scheduling independent job i1, i2,…,in on hybrid flowshop 

which machines in each stage are unrelated and eligible.  Prior to the processing of a job on a 
machine, there is an associated setup time.  Machine setup times are needed between any two 
products.  Thus, setup times are considered significant and typically depend on the sequence of 
the jobs through the processors, called dependent setup times. The problem is well known to be 
NP-hard.  Additionally, in the system a job assigned to a particular machine define eligibility of a 
machine. If a job cannot be assigned to machines due to efficiency concerns, the machines cannot 
process the job.  Hence, let Mi,s denotes the set of machines in stage s that can process job i. 

This research consider the problem of scheduling jobs to unrelated and eligible machines so 
that the maximum completion time (makespan) is minimized.  Following standard three-field, the 
above problem is denoted as FFs/Rm1,Rm2,…,Rms/Mi,s sipm/Cmax.   

2. LITURATURE REVIEW 
The problem of scheduling n jobs on m machines is one of the classical problems in flowshop 
manufacturing that has been interested researchers for many years. In 1995, Guinet et al. 
developed a mathematical model and heuristics for the FFs(Pm1, Pm2//Cmax) problems.  According 
to Sethanan (2001), the mixed integer programming is formulated to solve FFs/Qm1,Qm2,…,Qms, 
sipm/Cmax.   

In 2003, Alagoz and Azizoglu developed a mathematical model and three heuristic algorithms 
for rescheduling in parallel machines and they also consider machine restrictions. In 2004, 
Shchepin and Vakhania developed a polynomial-time algorithm for non-preemptive scheduling 
of n-independent jobs on m-unrelated machines to minimize the makespan.  The algorithm yields 
a better worst-case performance than the earlier known best performance bound.  Ghirardi and 
Potts (2004) develop a recovering beam search to obtain approximate solutions for unrelated 
parallel machines to minimize the makespan.  The study could solve for instances with the large 
size up to 1000 jobs in polynomial time.    

From the reviewed literature, there is no literature in scheduling hybrid flowshops when 
dependent setup times and eligibility machine restriction are considered.  Such problems are 
hence considered in this research with the aim to develop two mathematical models with the 
objective to minimize the mean flowtime.  

3. THE PROBLEM DESCRIPTION 
The research deals with the general hybrid flowshop, with S production stages, in which each job 
sequence may not be the same on each machine at each stage.  The problem on hand has several 
distinct products.  Each production stage may be composed of more than one machine.  If a stage 
has multiple machines, they are considered to be unrelated.  This means the speed of machine 
depends on the products to be processed.  The machines in each stage could not process every job 
because of machine restrictions.  Additionally, prior to processing a job on a machine, there is an 
associated setup time. Machine setup times are needed between any two products. Thus, setup 
times are considered significant and typically depend on the sequence of the jobs through the 
machines.  The research addresses the problem of scheduling all products on the machines of 
different stage in order to minimize the mean flow time. The assumptions that have been made 
are: 

(1) It is assumed that the decisions have been made from the long and medium term 
planning. 
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(2) Production is make-for-stock; hence, there are no due dates associated with products. 
(3) All jobs and machines are available at the beginning of the scheduling process. 
(4) Each stage of the hybrid flowshop production may have several unrelated machines. 
(5) Jobs can wait between two production stages and the intermediate storage is unlimited. 
(6) Setup times for jobs on each machine are dependent on the order in which jobs are 

processed. 
(7) Products cannot be split between machines in the same stage. 
(8) There is no job preemption. 

4. EXACT ALGORITHMS 
This section presents optimal algorithms for the hybrid flowshops with unrelated machines at 
each stage.  The 0-1 mixed integer programming formulations are presented below.  Parameters 
and decision variables used in formulating the models are defined as presented in Table 1.   
 
Table 1: The Notation Used in the Mixed Integer Programming Model 

Type of Variables Notation Explanation 
Decision Variables F(i,s,m) Finish time of product i on machine m of stage s  

x(i,s,m)         = 1 , if product i is assigned to machine m of stage s 
= 0 , otherwise 

x(j,i,s,m) = 1,  if product i is previously scheduled product i on machine m of stage s 
= 0, otherwise  

w(i,0,s,m)      = 1, if product i is the last product processed on machine  m of  
       stage s  
= 0 , otherwise 

w(0,i,s,m)      = 1, if product i is the first product processed on machine  m of  
       stage s  
= 0 , otherwise 

Binary decision 
variables 

W(i,j,s,m) =1, if product I immediately precedes product j on machine m of  
     stage s 
=0; otherwise 

i,p,h,j Product indices 
s Stage index 
m(s) The number of machines in stage s 
n Total number of products 
M(s) The set of machines in stage s; M(s) = {1,2,..,m(s)}  
PD(s,m)   Set of products that can be processed on machine m of stage s 
S The number of stages in the production line 
ψ Set of stages 
H The total number of machines from all stages 

=  ∑
=

S

s
sm

1
)(

P(i,s,m) The processing time of job i on the mth machine m in stage s  
ch(i,p,s) The setup time required between job i and p in stage s if i precedes p  

Parameters 

V a very large positive number. 
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 7.5.4 

1

Model A:    

The objective function:  Min )},,({1 mSiF
n
⋅  

Constraints:  
F(i,1,m)  ≥  ch(0,i,s=1) + {P(i,1,m) ⋅ x(i,1,m)} 

i ∈ PD(s,m); and m ∈ M(s)     (1) 

F(i,s,m) ≥ F(i,s-1,mp) + {P(i,s,m)⋅ x(i,s,m)};   

i ∈ PD(s,m); s = 2,3,…,S, m ∈ M(s), mp = 1,2,…,m(s-1)    (2) 

F(i,s,m)-F(p,s,m)-ch(p,i,s)+(V)(1-w(p,i,s,m)) ≥ {P(i,s,m)⋅x(i,s,m)};  

i ∈ PD(s,m), s = 1,2,…, S, m ∈ M(s)      (3) 

∑
=

)(
),,(

sm

m
msix

1
 =  1 

∑ mspiw ),,,(
=

n

i

i ∈ PD(s,m); and s∈ ψ                                (4) 

x(p,s,m) – w(0,p,s,m) -                              = 0;  

p ∈ PD(s,m); s∈ ψ; and m ∈ M(s)                           (5) 

∑
=

ms
1

),

p
mspi

1
),,,(∑

n
w

=
x(i,s,m) – w(i,0,s,m) -                         = 0 ;  

 i ∈ PD(s,m); s∈ ψ; and m ∈ M(s)                          (6) 
n

p
mspw

1
),,,0(                         =  1; s∈ ψ; and m ∈ M(s)         (7) 

∑
n

pw ,0,(              =  1 ; s∈ ψ; and m ∈ M(s)                           (8) 
p=

 

Constraint (1) ensures that all products are scheduled and the completion time of any product 
on one of machines in the first stage is determined.  Constraint (2) ensures that the completion 
time of product i produced on machine m in the current stage must be greater than its completion 
time in a previous stage.  Constraint (3) is about product sequencing on all the S stages.  
Constraint (4) ensures that, for each product, it can be manufactured on only one of machines in 
that stage of the production line. Constraint (5) ensures that, except for the first product, a product 
scheduled on any machine is preceded by exactly one different product.  Constraint (6) ensures 
that, except for the last product, a product scheduled on any machine must be immediately 
followed by only one product.  Constraints (7) & (8) ensure that a machine can have exactly one 
first and one last product.   
 
 
 
 
 



Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference 2004   
 

Model B: 

The objective function:  Min )},,({1 mSiF
n
⋅  

Constraints:  
 
        

),1,,(),1,(),1,( mjiXmjPmjF ≥  

  i , j ∈ PD(s,m) , m ∈ M(s), and i ≠ j                     (9) 
 
 ),,,(),,()',1,(),,( msjiXmsjPmsjFmsjF +−≥

  i , j ∈ PD(s,m),  m ∈ M(s),  i ≠ j  ,  s∈ ψ,   m′ ∈ M(s-1)         (10) 

 )),,,(1(),,(),,,(),,(),,( msjiXVmsjPmsjiXmsiFmsjF −−+≥

 

  i,j∈ PD(s,m), i ≠  j , m ∈ M(s), and s∈ ψ                   (11) 

 
1),,,(

0

)(

1
=∑∑

= =

n

i

sm

m
msjiX   

  j ∈ PD(s,m), i ≠ j and  s∈ ψ                                    (12)  

  
∑ ∑
= =

=−
n

i

n

j
msjhXmshiX

0 0
0),,,(),,,(  

 

 i, h ∈ PD(s,m), i ≠  j , m ∈ M(s), and s ∈ ψ                   (13) 

∑
=

≤
n

i
msjiW

1
1),,,(    1 

 i ∈ PD(s,m), m ∈ M(s), i ≠ j, and s∈ ψ                                      (14) 
                 

Constraint (9) ensures that all products are scheduled and the completion time of any product 
on any machine of the first stage is determined.  Constraint (10) ensures that the completion time 
of product i produced on machine m in the current stage must be greater than its completion time 
in a previous stage.  Constraint (11) is about product sequencing on all the S stages.  Constraint 
(12) ensures that, for each product, it can be manufactured on only one of machines in each stage 
of the production line. Constraint (13) ensures that each machine must have only one first and 
one last product.  And, except for the last product, a product scheduled on any machine must be 
immediately followed by only one product.  Constraint (14) ensures that each product must 
precede at most one different product.   

5. COMPARISON OF THE TWO FFS MODELS 
The comparisons of the models were performed for the following analyses: (1) problem size 
complexity of each model and (2) comparison of the two models with regard to computer 
solution required.  
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5.1 Size complexity of the models 
The size of both models is represented by the equations in Table 2. 

 

 Table 2: Size Complexity of each Model for the Flexible Flowshop  
 

Model Problem Total 
Variables Binary Variables Constraints 

A FFS(Rm1, Rm2, …, RmS)/sipm,Mj/ F ) nH n(8H+2m(1)+3nH) n(S+5H+m(1)+m(S)m(S-1)+ 
m(S-1)m(S-2)+…+m(2)m(1)) 

B 
FFS(Rm1, Rm2, …, RmS)/sipm,Mj/ F ) 

nH 6n2H+3nH+n2m(1) n(S+3H+m(1)+m(S)m(S-1)+ 
m(S-1)m(S-2)+…+m(2)m(1)) 

 

5.2 Experimental Design 
In this section, several numerical examples are presented to illustrate various applications of the 
proposed models.  There are two models considered in this paper.  Cases have been established 
based on the number of jobs (n), number of stages (s), number of machines (m), and number of 
restricted machines.  In this experiment, the parameters are given as: (1) the processing time of 
products on each machines of a particular stage (P(i,s,m)) is a random value number from the 
uniform distribution U(20,50), (2) the speed of machines is a random number from U(0.7, 1.3).  
The examples presented in this section were solved using CPLEX/AMPL software.   

5.3 Results 
The solutions of the thirty problems solutions are summarized in Table 3.  The CPU time are also 
given in Table 4.  Model A could optimally solve problems with up to 5 jobs 8 machines with 
reasonable computational effort, while Model 2 could optimally solve problems only 4 jobs 6 
machines.  However, it as shown that Model A requires less computer time than Model B 
because it generates lesser numbers of binary and decision variables. 

6. CONCLUSIONS AND FUTURE WORK 
The mathematical programming models proposed in this research can be used in practice as a 
simple support tool for scheduling in hybrid flowshops.  The models lead to large integer 
programming problem however.  In particular, the scheduling hybrid flowshops with sequence 
dependent setup times and machines in each stage are unrelated and eligible contribute essentially 
to the problem size.  For realistic scheduling problem, the mathematical programming may 
involve several thousands of binary variables and constraints, which by far exceeds the solution 
capabilities of the optimization techniques and computer technology.  Hence, for the future 
research, it is necessary to find solution techniques (e.g., metaheuristic methods) that are easy to 
implement even though they may not always lead to an optimal solution.   
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Table 3: Computer Solution Time for the Problems of Each Model 
 

Problem  Computer solution time (sec.) 
Machines* Jobs  Model  A Model B 

5 (2,1,2)** 3  1 2 
5(1,2,2) 3  1 1 
5 (2,1,1,1) 3  1 1 
5 (2,2,1) 3  1 1 
5 (1,2,2) 3  1 1 
4 (2,1,1) 4  1 15 
4 (1,2,1) 4  30 29 
4 (1,1,2) 4  16 13 
4 (2,2) 4  30 30 
4 (1,1,1,1) 4  17 25 
5 (2,2,1) 4  24 30 
5 (2,1,2) 4  4 3 
5 (1,2,2) 4  3 2 
5 (1,2,1,1) 4  23 32 
5 (3,2) 4  20 16 

Table 4: Computer Solution Time for the Problems of Each Model 

Problem  Computer solution time (sec.) 
Machines* Jobs  Model  A Model B 

4 (2,1,1) 5  45 37 
4 (1,2,1) 5  28 32 
4(1,1,2) 5  29 60 
4 (2,2) 5  4 3 
4 (2,1,1) 5  25 35 
7 (3,2,2) 5  120 136 
7 (2,3,1,1) 5  1251 1546 
7 (3,1,2,1) 5  826 411 
7 (4,2,1) 5  350 70 
7 (3,2,2) 5  5 5 
6 (2,3,1) 5  2342 n/a 
6 (2,2,2) 5  4419 n/a 
6 (2,1,3) 5  6095 n/a 
6 (1,1,1,2,1) 5  n/a*** n/a 
6 (2,1,1,1,1) 5  n/a n/a 
Note:  * Number of the restricted machines is one machine. 

                   **(x,y,z) = There are x, y, and z machines in station 1, 2, and 3, respectively.                            
 ***n/a = finding an optimal solution is computationally intractable. 
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