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ABSTRACT

Project Code: TRG 45800200
Project Titie: Heuristics for Scheduling Flexible Flowshops when Machines are Unrelated.
Investigator: Asst. Prof. Kanchana Sethanan, Ph.D.

E-mail Address: skanch@kku.ac.th

Project Period: July 1, 2002 - Apr 1, 2004

This research addresses the scheduling problem in a hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered.
The preduction line consists of L production stages, each of which may have more than one
non-identical (unrefated} machines. Prior to processing a job on a machine at the first stage,
a setup time from idling is required. Also, sequence dependent setup times are considered
on each machine in each stage. 'I;he objective of this research is to minimize the maximum
makespan. Two mathematical models were formulated for small size problems and two
heuristic algorithms (IH and TSearch) were developed to solve larger, more practical
problems. In order to evaluate the Performance of the heuristic, normally, the heuristic
solutions are compared to optimal solutions and/or lower bounds. The hybrid flowshop when
machines in each stage are unrelated and sequence dependent setup times are considered
is known to be NP-hard, and hence finding and optimal solution for average or large-size
problems will be computationally intractable. The only alternative left is to develop lower
bounds for the problem and use them to assess lhe quality of the heuristic soluticns.
Therefore, in this study, two lower bounds (Forward and Backward) were developed in order
to evaluate the performance of the heuristics. Results obtained show that the heurstic
algorithms are quite efficient. The relative improvement yisided by the TSearch algorithm was
between 12.2 and 25.5 percent.

Keywords: Heuristics, Hybrid Flowshop, flexible Flowshcp, Unrelated Machines,

Dependent Setup Times.
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Scheduling Flexible Flowshops with Sequence Dependent Setup Times and

Machines in Each Stage Are Unrelated

CHAPTER 1
INTRODUCTION

Nowadays, manufacturers are faced with customer demands for a variety of high quality
products. The companies must therefore make their production systems more flexible, respond rapidly
to demand fluctuations, and reduce cosis related to production. Hence, companies need to have
advanced techniques. Manufacturing has been an interesting topic in production and operation

management because of areas such as job scheduling or machine loading.

Scheduling problems arise whenever a set of resources such as warkers or machines are
required to perform a set of operations on jobs, also each operation can be accomplished in more than
ong way. Given a limited set of resources, the scheduling problem is to assign jobs to resources
according to some process routing in order to obtain optimal performance measures while ensuring
that all production constraints are satisfied. The development of production schedules is a remarkably
important task in industry especially scheduling jobs through non-identical, parallel processors.
Nen-identical processors are processors that do not have equal capabilities and capacities, This type
of production system where muitiple products are made on parallel, non-identical production line is
common in both service and manufacturing industries. For instance, workers in an office have different
skills, an airline assigns a type of airplane to service a route, or paper plant assigns products to
different paper machines. A parallel processing is the situation where a job can be done by more than
ore processor but only one processor can actually wark on the job (Randhawa & Smith, 1995).
Hence, scheduling problems involve the assignment of machines to various jobs and determination of
the order in which the jobs will be performed in order to optimize some criteria (such as minimization of

makespan, mean flow time, or lateness) while satisfying the shop constraints.
1.1 A Hybrid Flowshop Environment

In real industries, a hybrid flowshop is more commonly seen than traditional flowshop.
A hybrid flowshop is a generalization of the flowshop and the parailel processor environments.
A hybrid flowshop is alternatively called a flexibte flowshop (FFs). In a hybrid flowshop environment,
there are L workstations, each of which consists of at least one machine. The machines in each stage

may identical, uniform, or unrelated. In a hybrid flowshop, each job is processed first at stage 1, then
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at stage 2, and so on. Normally, a job requires only one machine in each stage and any machine can

process any job as shown in the schematic representation in Figure 1.

STAGE 1 STAGE 2 STAGEL
M ™ T oM
., I R ——— s
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Lt IR LT Mg
>

Figure 1: A Schematic representation of a Flexible Fiowshop Manufacturing Environment

1.2 Dependent Setup Time

The requirements of setup times of jobs are very common in many real manufacturing
situations such as inspecting material, setting tools, and cleanup. There are two types of setup times:
sequence independent and sequence dependent setup times. Sequence dependent setup times are
considered to be very important factors in the manufacturing environment, especially, when a shop
floor is operated at or near its full capacity (Wilbrecht & Prescott, 1969). Sequence dependent setups
ocecur especially in process industry operations, where machine setup time is significant and is needed
when products change. The magnitude of setup time depends on the similarity in technological
processing requirements for successive jobs (Srikan & Ghosh, 1986). Ncrmally, similar technological

requirements for two consecutive jobs would require lesser setup.

Even though there exists an enormous amount of reszarch on the flowshop scheduling
problem, research study has rarely been conducted in the case where setup times are sequence
dependent (Allahverdi et al., 1995). Hence, the results of these research studies lack a practical
solution‘for applications that require the treatment of setup times. For this reason, dependent setup
times must be allowed for a realistic description and hence are considered in this research. The paper
is organized as follows. In the next section, the literature review is presented. In section 3, the
problem and propose is described, then two optimizing algorithms are developed in section 4. The
heuristic algorithms are described in Section 5. In section 6, the lower bounds for the problem are

determined. Section 7 concludes the paper with a discussion of this research and future extension.



CHAPTER 2
LITERATURE REVIEW

The problem of scheduling n jobs on m machines is one of the classical problems in flowshop
manufacturing that has been interested researchers for many years. According to Gupta (1994), a
heuristic was developed to sclve a special case when there is only cne machine in the second in order
to minimize the makespan. Computational experiments show that the effectiveness of the proposed
heuristic increases as the problem-size increases, Brah and Hunsucker {(1991) develop branch and
bound algorithms for the multiple stage hybrid flowshop (Pmy, Pm,,....Pm/C,..). The computational
results show that the algorithms can solve only smali-sized problems. Portmann et al. (1998) improved
the lower bound of Brah’s and reduced the number of branches used in the search trese. They could

solve the problems with up to five stages and fifteen jobs.

For the dependent setup time problem, Ruiz et al. (2005) presented two advanced genetic
algorithms as well as several adaptations of existing advanced metaheuristics that have shown
superior performance when applied to a regular flowshop with sequence dependent setup times. In
the same year, Ruiz and Maroto developed a metaheuiristic, in the form of genetic algorithm, for hybrid
flowshops with sequence dependent setup times and machines eligibility. The results indicate that the
proposed algorithm is more effective than all other adaptations. Tahar et al. (2005), developed a linear
programming model and a heuristic algorithm for identical parallel machine scheduling with job splitting
and sequence-dependent setup times in order to minimize the makespan. According to Kurz and
Askin (2005) developed an integer programming model based on the TSP for the flexible flow lines
with sequence dependent sefup times. Several heuristics such as Insertion heuristic and Random keys

Genetic Algorithm also developed.

in addition, Sethanan (2001}, the mixed integer programming is formulated to solve the flexible
flowshops with sequence dependent setup times when machines in each stages are uniform
(FFs(Qm,,Qm,,...,Qmg)}/Spn Cpay). Since the FFs(Qm,,Qmy,...,Qmg)/S/ C. problem is known to be
NP-hard (Allahverdi, 1999) and hence finding an optimal solution for average or large-size problems
will be computationally intractable. Therefore, in her study, the algorithm and two lower bounds were

developed to solve the problem.

From the reviewed literature, there is no literature in scheduling multiple hybrid flowshop lines
with sequence dependent times when machines in each stage are unrelated. Hence, this research
focuses on scheduling multiple hybrid flowshop lines when machines are unrelated and sequence

dependent times also are considered.



CHAPTER 3
THE PROBLEM DESCRIPTION

This research involves scheduling multiple products through non-identical paraliel production
lines.  There are many production stages in each production line. Each stage may comprise more
than one machine. Resource and technological constraints are considered in this production system.
Resource constraints generally refer to processor capacities and limitations. Technological constraints
are considered as product routing and precedence constraints. In this study, all products can be
manufactured on every machine in a stage, and the machine cannot process a new product until the
previous product has been completely finished.

Prior to processing a job on a machine, there is an associated setup time. Thus, setup times
are considered significant and typically depend on the sequence of the jobs through the processors.
Setup times in general are large when compared to the unit processing time. As much of the current
industriai competition is a time-based, the reduction of the production lead time is an important key.
Hence, the objective of this research is to minimize the maximum completion time of the products
called the makespan. Two mathematical models are formulated to solve the problem and to produce

an optimal schedule in order to minimize the total makespan.

3.1 Description of the model
The assumption made in formulating tha model are followed:
1. It is assumed that the decisions have been made from the long and intermediate-range
planning.
2. Production is make-for-stock; hence, there are no due dates associated with products.
3. All jobs and machines are available at the beginning of the scheduiing process.
4. In the production line, there are many stages. Each stage of the hybrid flowshop production
may have several non-identical machines,
5. Jobs can wait between two production stages and the intermediate storage is unlimited.
6. Setup times for jobs on each machine are dependent on the order in which jobs are
processed.
7. Products cannot be split between machines in the same stage.

8. There is no job preemption.



CHAPTER 4
OPTIMIZING ALGORITHMS

A brief description of the problem is reviewed in order to help in understanding the
mathermatical formulation. In this research, there is only one production line considered. The problem
involves the scheduling of multiple products in a flexible flowshop environment with sequence
dependent setup times (FFS(Rn1.Rp2...., Rrs)/Sipm/Crmax)-  The production line consists of many stages,
which may have one or more non-identical (unrelated) parallel machines. In each stage, machines can
process all products but differ in their performances and the machines cannot process a new product
until the previous product has been completely finished.

The products have to be manufactured on only one of the machines in each stage, and the
processing of products cannot start until the entire batch is completed in the previous stage. Each
product, e.g., product i requires P(i,s,m} units processing time on machine m of stage s. Machine
setup times are needed between any two products. In this study, it is assumed that setup times are
equal for every machine in the same stage when changing from one product to another.

This section presents an optimal algorithm for the FFS with uniform machines at each stage.
A 0-1 mixed integer programming model is developed with the criterion to minimize makespan for this
prcblem. Parameters and decision variables used in formulating the mode! are defined as presented
in Table 1. The 0-1 mixed integer programming formulation is presented below with a brief

explanation of each constraint.

Table 4.1: The Notation Used in the Mixed Integer Programming Model

Type of
Variables Notation Explanation

F{i.s,m} Finish time of preduct i on machine m of stage s
Decision Variahles

E The makespan

x(i,s,m) = 1, if product i is assigned to machine m of stage s

= (0, otherwisa
w(i,p,s.m} = 1, if product | immediately precedes product p

on machine m of stage s
Binary decision

= 0, ctherwise
variables
w(i,0,5,m}) =1, if product i is the |last product processed on machine m of stags s
= (), ctherwise
w(0,i,5,m) = 1, if product i is the first product processed on machina m of stage s
= 0, otherwise
Parameters i.ph Product indices

s Slage index




mys} The number of machines in stage s

n Total number of products

M(s) The set of machines in stage s ; M(s) = {1,2,...m(s})}

L The number of stages in the production line

P(i.s.m} The processing time of product i on machine m of stage s

ch(i.p.s) The number of fime units required to changeover from production i (o

product p at stage s

v a very large positive number,

Model 1:
The objective function: Min E

Constraints:

F(i,1,m) > ch(0,i,s) + {P(i.1,m) * x(i,1,m)} (1)
i=1,2,...n; and m=1,2,...,m(1)

F{i,s,m} 2 F(i,s-1.mp) + {P(.i,s,m} * x(.i,.s,m)} (2)
i=12,...n;8=23..L m=1.2,..m(s), ad mp = 1,2,...,m{s-1)
F(i,s,m}-F(p.s,m)-ch(p,i,s}+(V)(1-w(p,i,s,m)) = {P(i.s,m) * x(i.5,m)} (3)
i=12..0,8=12.., L m=12..m(s)

F(i.L,m) < E (4)

i=1,2...n;andm=12,..mL)

mis)

dox(is.m) = 1 (5)

m=1

i=12,...,.n;ands=12,..., L
x(p,s,m) ~ w(0,p,s,m) - ZW(i, p, s, m) =0 (6)
&

p=12..nms=12..8 and m=12,...m{s)

xism) —wiosm)- = WEpsm) g 7)
i=12,..,n;8=12.. L andm=12,..m(s)

fllW(O, p,s,m) = 1 (8)
pe

s=12,.. Landm=12,...ms)



L w(p,0,5,m =1 (9)

s=12,..,Landm=12..m(s)

Constraints (1) is a completion time forcing constraints. It ensures that all products are scheduled and
the completion time of any product on any machine of the first stage is at least the amount of
processing lime required for the product on that machine. Constraints (2) ensures that the completion
time of product i produced on machine m in the current stage (stage s) must be greater than its
completion time in a previous stage (stage s-1). Constraints (3) is about product sequencing on all the
L stages. If preduct p manufactured on machine m at stage s immediately precedes product i
manufactured on the same rmachine and stage, then the value of w(p,i,s,m) equals to one. Hence, the
completion time of product i (manufactured on that machine with the same stage) is greater than the
completion time of product p. The difference is by the sum of the setup time from preduct p to product
i and the required processing time of product i on that machine with the same stage. Constraints (4)
are needed to ensure that the makespan is equal to or greater than the completion time of each of the
jobs in the last stage. Constraints (5) ensures that, for each product, it can be manufactured on only
one of machines in that stage of a production line. Constraints (6) ensures that, except for the first
product, a product scheduled on any machine is preceded by exactly one different product.
Constraints (7) ensures that, except for the last product, a product scheduled on any machine must be
immediately followed by only one product. Constraints (8) &(9) ensure that a machine can have

exactly one first and one last product.

Model 2:
The objective function: Min E

Constraints:

F(i,L,m) < E (1)

i=12..n,andm=1.2...m(L)

Swipism)<i (2)

1=1

[=12,..on;m=12 . m{lLy,ands=12,...,L
a mis)

> ¥ wipism)=1 (3)

p=0 m=i

i=12,..,n;ands=12,.... L



iw(p,h,s,m)—iw(h,i,s,m)=0 (4)

h=12...n;m=12,..m{L), ands=12,...L
F(i,s,m)—F(p,s,m)—chf pi,s,m)+V{1-w(jism))2 wl p,i,s,m} P(i,s,m) )
ip=12...n,m=12..mil),ands =12, L

Feismjpz F(is—-1,mp )+ P{i,s.mj-w(p.is.m)

(6)
i=1,2,..n;s8=23,...L m=12..m(s), and mp = 1.2,...,m(s-1)

F(il,m)2 P(il,m) - w(p,il,m) i=12,...n;m=12..m) @)

Constraints (1) are needed to ensure that the makespan is equal to or greater than the
completion time of each of the jobs in the last stage. Constraints (2) ensures that each machine has
to be assigned to at most one job. Constraints (3) ensures that each job is processed once and once
in each stage. Constraints (4) ensures that, except for the first product, a product scheduled on any
machine is preceded by exactly one different product and, except for the last product, a product
scheduled on any machine must be immediately followed by only one product. Constraints (5) is about
product sequencing on all the L stages detailed as in model 1. Constraints (6) ensures that the
completion time of product i produced on machine m in the current stage (stage s) must be greater
than its completion time in a previous stage (stage s-1). The difference must be equal to or greater
than the amount of processing time required in the current stage. Constraints (7) is a completion time
forcing constraints. It ensures that all products are scheduled and the completion time of any product
on any machine of the first stage is at least the amount of processing time required for the product on

that machine.



CHAPTER 5
IH ALGORITHM

Phase 1: Obtaining an Initial Solution Using the IH Algorithm

The heuristic developed in this phase schedules one product group at a time on the machines

of the first stage. The algorithm then proceeds by scheduling products to the machines of all other

stages. Prior to the presentation of the |H algorithm, the notation and variables used are defined.

Notation:
Let

iLp

iq

5

Mi

m(s)

M(s)

EM(1) .
Vs,m

ch(q.p.jiis)

product indices

product group indices

stage index

set of all product groups; G = {1,2,...,N}

the minimum value of m(s); m* = min m(s)
sey

set of m* product groups selected to scheduls as the first product
group on each machine in stage one through stage L

set of all remaining product groups after assigning the first m* groups;
G\{M*}

number of preducts in product groups |, j € G

set of products in product groups j;§ € G

{1.2,....9}
set of stages in a production line
{1.2,...,L}

number of machines in stage s; s € Y

set of machines in stage s

{1.2,...m(s}}

set of m{1}m* remaining machines

speed of machine m at stage s

The number of time units required to changeover from product i of

group j to product p of group q at stage s
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ST{i,s.m) = start time of product i of group j on machine m of stage s. There
are 8 possible ways of determining the value of ST(j,i,s,m). A detailed

description of these ways is presented in Appendix A.

PT(.i,s,m) = processing time of product i of group j on machine m of stage s; | €
G, i€P,s €' andm e Ms)

T(j.§) = processing time of product i of group j on the standard machine in the
first stage (i.e., speed of machine = 100%)

CT(.i,s,m) = completion time of product i, group j on machine m of stage s. This

time is equal to the sum of its start time and processing time.
= ST(ji,s;m) + PT(ism);,j € G,i € P, s € W, andm € M(s)
5.1 A Detailed Description of the IH Algorithm
The detailed description of the IH Algorithm is presented below in Parts 1 through 4.
Part 1: Assign the first m* groups to the machines at stage 1 through stage L-1.

Case 1: m* = m(1)

Step 1: Select the m* groups in order to assign them as the first group on the machines at

stage 1 through L-1.

S-1
1.1 Find product i* amd m’ with min CH(0,0,j,i,s,m)+ Z] Prhbsm forje J,
£=

iefy
se'\L), me M(s)
1.2 Find j* where i* € |*
1.3 Update J = J\{j*}; M(s) = M{s)}{ m'}; and count_j = count_j + 1
1.4 Check whether J %= ¢) or count_j < m*.
If J 3 ¢ go to Step 1.1; otherwise, go to Step 2 of this pant.

Step 2: Rearrange the products of the m* groups on the first stage machines assigned to them

2.1 Schedule Product i* of group j* on machine m’ i
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2.2 Calculate completion times of the scheduled product where

CTime(j,i,s,m’) = STime(j.is.m’) + PT(ism’).

2.3 Update P, = P, \ {i*}.
If P, # §), go to Step 2.4.
IfP = ¢t, update G = G\ {j*}. f M* = (b go to Part 2; otherwise, go to Step 1.
2.4 Find the next product.
Find i* and m’ with:
1?23_8 { PT(j,i,s,m) + chj,p.j,i,1); ] €G and m& M(1)
where p is the last product scheduled so far on machine m at the first stage.

Then, go to Step 2.1 of this pant.

Case 2: m* < m(1)

Step 1: Schedule m* groups on the m* machines using the same procedure as case 1 (begin

with step 1 through step 2).

Step 2: Find group j* and machine m’ with n}da_x CTime(j,im,s=1,m); for me& M(1) where j €
i

J* and i, is the product scheduled last in group j

Step 3: Find i’ and m’’ with min CH(0,0,j,i,s, mm)+ PT(j,i,s=1,mm) where mm €EM(1).

iek

Step 4: Schedule i' of group j* on machine m'’ and then calculate its completion time on this

machine which is CTime(q,p,,5=1,m’ Jch(q.p,i*i’s=1) + PTG, i's, m’") and p,, is

the product scheduled last in group q.

Step 5: Rearrange the remaining products of group j* on machine m’ after schedule the

removed product (i.e., preduct i') and then update the latest completion of the last

product of group |* on that machine.
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Step 6: Check if the latest completion time is improved, perform the product reschedule and

return to Step 2; otherwise do not remove the product from machine m’, and go to

Step 7.

Step 7: Repeat Step 2 through Step 6 with the product scheduled before the product used in

the last removal attempt. If all attempts have been exhausted, proceed with Part 2.

Part 2: Assign the remaining groups to the machines at the first stage

Step 1: Find i’ and m’’ with min CTime(q,py,s=1,m) +CH(q.py1,8=1,m)+ PT(j,i,s=1,m) for |

iE.FJ

€ Gr and m € M(1) and p, is the product scheduled last in group q.

Step 2: Find j* where i* € j* and update G = Gg\ {j*}; if J # ¢t, go to Step 3; otherwise, go to
Part 3.

Step 3: Schedule group j* on m’’ starting with product i’.

Step 4: Rearrange the products of group j* with the same procedure as Step 2 of Part 1.

Except that, in Step 2.4, if G = (b go to Part 3.
Part 3: Balancing the Production Times of Machines at the First Stage
Step 1: Balance the production times of machines at the first stage.

Balancing the production times of machines at the first stage is performed by moving
one or more of the products of a product group from the machine with the latest completion
time to other machines such that the latest compietion time of the first-stage machines is
reduced. Balancing is perforrmed after the assignment of all products to machines at the first
stage has been completed. The procedure used to balance the production times of the first-

stage machines is presented below;
1.1 Find the machine with the latest completion time (e.g., machine m')
1.2 Remove the last product scheduled on machine m'.

1.3 Calculate the latest completion time on each of the machines after scheduling the

removed product last within its product group if scheduled on the machineg;
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otherwise, last on the machine. Select the one with the smallest updated

completion time and the corresponding latest completion time.

1.4 If the latest completion time is improved, perform the product re-schedule and
return to Step 1, otherwise, do not remove the product from machine m', and go to

Step 5.

1.5 Repeat Steps 1 through 4 with the product scheduled before the product used in
the last removal attempt. If all attempts have been exhausted, proceed with Part
4.

Part 4: Scheduling Ali products on All other Stages (i.e., stages 2,3,4,...,L)

After all products are completely assigned to the first-stage machines, the assignment of these
products on machines at the succeeding stages needs to be performed. A Look Ahead (LA} rule
developed by Sethanan (2001) (details are described in Appendix B) was developed to sequence the
products on machines at stages 2 thrbugh S, in order to obtain low product finish times and a low

makespan., The steps for Part 4 are given below.

Step 1: Schedule all products on all other stages (i.e., stage 2, 3, ... , L) and calculate the

makespan
1.1 Sets = 2.

1.2 Set H = the set of products arranged in non-decreasing order of finish times from

machines in stage s-1.

1.3 Schedule the first product (e.g., product i} in set H on one of the machines of stage s

using the LA rule.

1.4 Update H = H\ {i}. IfH 3 @, go back to Step 1.3. fH =, update s=s+1. Ifs

< L, go to Step 1.2; otherwise, caiculate the makespan and go to Phase 2.
Phase 2 Improving the Initial Solution Using the TSearch Algorithm

The initial solution obtained from Phase 1 (using the IH algorithm) may not be close to
the optimal solution. A different heuristic is required to generate better schedules. The final
solution of the first phase can be considered as an initial solution that will be improved in this

phase. The heuristic of the second phase has three main steps: 1) moving groups between
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(or within} machines at the first stage, 2) moving products between (or within) machines at

the first stage, and 3) finding the best sequence resulting in the minimum makespan.
1. Implementing the TSearch Heuristic with the FFs(Rm,Rm,....Rm /S /C . Problem

In the tabu search, a decision is made from the set of admissible candidates. The
candidate decisions are evaluated and the best one is selected. A candidate is admissible
either if it is not tabu or if its tabu status can be overridden by the aspiration criterion. As
suggested by Laguna et al. (1993) and Barnes & Laguna (1993), there are four key elements

to be considered in the TS:

- To identify the attributes (i.e., the criteria used to define or characterize a move) of
a move that will be used to generate the tabu classification, Attributes of moves,
e.g., indices of jobs (or jobs numbers), positions of jobs, and weights of jobs, are

identified and recorded in the tabu list in order to prevent move reversals.
- To identify the actual tabu restriction based on the attributes.

- To identify a good data structure to keep track of moves that have a tabu status,
and to free those moves from their tabu condition when their short-term memory

has expired.

- To identify an aspiration condition in an effort to allow the tabu status of a move to

be overridden if it yields a better solution.

Two popular types of moves found in the literature for the flowshop problem are:
{1) exchanging jobs {i.e., swap move) and (2} removing the job placed at the X position and
then putting it at the y"1 position (L.e., insertion move). Taillard's {1980) experiments showed
that the insertion move is the most efficient in terms of quality and computation time. Hence,

only the insertion move will be considered in this research.
Part 5: Moving Groups between Machines (and within a Machine) at the First Stage

tn this part, the groups scheduled on machines at the first stage are moved between
machines (or within a machine) in an effort to minimize the makespan. This process is not
performed for the other stages as it takes a large amount of computation time, and yields very
little improvement. The best solution obtained from the previous Phase will be used as the

initial solution. For each iteration, all the admissible moves within the neighborhood in the
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current schedule are evaluated and the best move is selected. The tabu list, neighborhood

size, and tabu restrictions are applied in the process of moving groups between machines at
the first stage. The details of these three components are described below, and are followed

by the notation used in this part and the detailed procedure of the TSearch algorithm.

Tabu List

Let N be the total number of groups. The size of the tabu list is determined as follows:
1. m(1) =1.

Based on the studies of Laguna st al. {1993), the size of the tabu list when jobs

are moved within 8 machine is determined as described below.

1.1 NZ12
|T|=|_N/2J

whers, | T | = size.of the tabu list

1.2 N> 12
|TI=10

2. m{(1)=>1
11 F2SNZI0,15|T| <3
1.2 W11 SENX20,35|T|<5.
1.3 21 SN0, 55 T< 10
14 ¥N>5110ZT| <15

Neighborhood Size and Tabu Restriction

In general, defining a goo_d size of d depends on the structure of the problem.
Based on studies by L.aguna et al. (1993) and Barnes and Laguna {1883), the value of d
can be cbtained as follows:
Let nf, ., be the number of groups schedule on machine m in stage s.
®  Fornp,,<30
d = np,2]

where |_hJ = the largest integer less than or equal to h
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L For np,,, > 30

d= (I_np,,mfzj 12) x cl4

where ¢ is determined experimentally (Laguna et al., 1893 and Brandao &
Mercer, 1997). The value of c is usually a number between 1 and 4 {Laguna
et al., (1993)).

In this research, the neighborhood size and tabu restriction are determined as below:

1. Formy=m;=m
® [fnf,,=2d=1.
® f3<nf,<5d=2
® |f8<nf,<9d=3
® |f nf,,, > 9, the value of d is calculated using the same formula presented
in the case of nf,,, <30. If nf,, > 30, the value of ¢ is equal to 2.
2. Form, ¥ m,
® ifnf,,2=10r2d=1.
® fnf,,,=3,d=2
® If4<nf,,,<9,d=3

® f nf,,, = 10, the value of d is calculated using the same formula
presented in the case of nf,,, <30. If nf,,,2 > 30, the value of ¢ is squal
to 2.
Notation
iter_gr = current iteration number for the process of moving groups between
machines at the first stage
iter_max_gr = maximum number of iterations allowed o be performed in the
praduct group insertion move procedure
hest_value_gr = the minimium makespan found so far
best_seq_gr = the best schedule found so far
tor_iter_gr = maximum number of iterations allowed between two successive
improvements
best_iter_gr = jteration where the best solution was found so far

size_tabu_list_gr = size of tabu list
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move_value_gr the minimum makespan obtained from the evaluation of ali

admissible moves in the iteration

move_seq_gr the schedute that yields the minimum makespan in the iteration

Step 1: Initialize all parameters used in the process of moving groups between the machines

at the first stage.

Set iter_gr = 0
best_value_gr = makespan obtained in Phase 1 (Part 4)
best_iter_gr = 0
iter_max_gr = 500
tor_iter_gr = 200
size_tabu_list_gr = 10 for 10 groups (100 products)

= 15 for 20 groups (180 products).

Step 2: Update the number of éurrent iterations.
Increment the number of iterations (iter_gr) by 1.
Step 3: Check if the search should be stopped.
In this step, two stopping criteria are used:

3.1 Stop the search if the number of the current iterations (iter_gr) is greater than

max_iter_gr, or

3.2 Stop the search if the number of successive iterations without improvement is

greater than tor_iter_gr.
If the search is not stopped, go to Step 4; otherwise, go to Part 6 to
proceed with the movement of products.

Step 4: Move groups between {or within} machines.

Groups that were divided between machines are treated as individual sub-
groups. Sequences of products within groups (or sub-groups) are not changed in

this step.
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4.1  For each admissible move, perform the following:

® determine the tentative schedule of groups on machines in stage 1 after

performing the move for the entire product group (or sub-product group).

® tentatively re-schedule alt products on machines in stages 2 through L
using the procedure detailed in Step 8 and find the corresponding

makespan.

4.2  After all admissible moves have been performed, select the move that yields
the minimum makespan. Denote the minimum makespan as move_value_gr

and the corresponding schedule as move_seq_gr.

4.3 Check whether move_value_gr is less than the best_vafue_gr. If true,

perform the following updates and go to Step 4.4
best_value_gr = move_value_gr,
best_seq_gr = move_seq_gr.
Otherwise, go to Step 4.4
4.4 Put the attribute of this move in the tabu list and go back to Step 1.
Part 6: Moving Products between (and within) Machines at the First Stage

In this part, the products are moved between (and within) machines in an effort to
minimize the makespan. As in Part 5, the process of moving products between (and within)
machines is performed only in the first stage. The best soiution cbtained in the previous part
is used as the initial sojution. The notation used in the implementation of the TS is described
below and is foliowed by the procedure. Basically, the rules used to define the tabu list and to

determine the tabu list size, neighborhood size, and tabu restriction are the same as in Part 5.

Notation

iter_pr = current iteration number for the process of moving products
between machines at the first stage

iter_max_pr = maximum number of iterations allowed to perform in the process of

products insertion procedure



best value pr

best_seq_pr

tor_iter_ pr

best_jter_pr

size_tabu_list_ pr

move_value_ pr

move_ seq_pr
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= the minimum makespan found so far

= the best schedule found so far

= maximum number of iterations allowed between two successive

improvements

= jteration where the best sclution has been found so far

= size of tabu list

= the minimum makespan obtained from the evaluation of all

admissible moves in the iteration

H

the schedule that yislds the minimum makespan in the iteration

Details of this part are described as follows.

Step 1: Initialize all parameters used in the process of moving product between machines at

the first stage.

Set

iter_ pr = 0,

best_sol_pr = makespan obtained in Part &
best iter_ pr = 0,

iter_max_pr = 500,

tor_iter_ pr = 200,

size_tabu_list_pr = 10 for 100 products

= 15 for 180 products.

-Step 2: Update the number of current iteration.

Increment the number of (iter_pr} by 1.



20

Step 3: Check if the search should be stopped.

The two stopping criteria used in Step 3 of Part 5 are also used in this step, as

detailed below.

1.

Stop the search if the maximum number of current iterations (iter_pr) is
greater than max_iter_pr, or
Stop the search if the number of successive iterations without

improvement is greater than tor_iter_pr.

If the search is not stopped, go to Step 4, Otherwise, go to Step 5.

Step 4: Move products between {or within) machines.

4.1 For each admissible move, perform the following:

® determine the tentative schedule of products on machines in stage 1 after

performing a product move.

tentatively re-schedule all products on machines in stages 2 through L
using the procedure detailed in Step 8 and find the corresponding

makespan.

4.2 After all admissible moves have been performed, select the move that vields

4.3

the minimum makespan. Denote the minimum makespan as move_value_pr

and the corresponding schedule as move_seq_pr.

Check if move_valua_pr is less than best value_pr. If true, perform the

following updates and go to Step 4.4

best_value_pr = move_value_pr,

best_seq_pr move_seq_pr.

Otherwise, go to Step 4.4

4.4 Put the attribute of this move in the tabu list and go back to Step 1.

Step 5: Determine the best makespan at the last stage and the best sequence found so far.
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CHPATER 6

LOWER BOUNDS

6.1 Introduction
Normally, the quality of heuristic solutions is assessed by comparing their results to: {1)
optimal solutions, (2) lower bounds, and/or (3) reference objective values obtained by the best known
approximation algorithms. The flexible flowshop problem with sequence dependent setup is known to
be NP-hard, and hence finding an optimal solution for average or large-size problems will be
computationally intractable. The problem is also relatively new, and no approximation algorithms can
be found for it in the literature. The only alternative left is to devslop lower bounds for the problem and

use them to assess the quality of the TSearch heuristic solutions.

6.2 Lower Bound Determination

Problem parameters and notation used in the development of the lower bound are defined

below.
Notation
i,p = product indices
s = set of stages in a production line
={12.,L}
s = stage index
n = total number of products
N = get of products
m(s} = number of machines in stage s
M(s) = get of machines at stage s
={1,2,..., m(s)}
V{s,m) = the fastest speed of machine m at stage s to process products
|—x_| = the least integer value greater than or equal to x.
SU(i) = the setup time from idling for product i in stage 1
Pli,s} = the processing time of product i on its fastest machine in stage s
ST(E 8} = processing time of product i on a standard machine (i.e., speed = 100%) in stage s
CH(i,p,s) = The number of time units required to changeover from production i to product p at

stage s
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CT(,s) = the cumulative processing time of product i on its fastest machines from stage 1

through stage s-1

MN{i,s} = the minimum setup time of product i at stage s. MN(i,s) is the lowest setup time

for product i at stage s from any other product

= min ch(p,is}
i®p,
ICT{i,s-1) = the sum of the setup time from idling of product i at the first stage and the

cumulative processing times of preduct i on its fastest machines from stage 1
through stage s-1.
= 8SU(i) + CT(i,s-1)
o = the minimum value between m(s) and m{1)
= min {m(s), m{1)}
xtra(s) = the difference between the number of machines in the first stage and that in stage
s. If negative, a value of zero is used.

= max {0, m(1} - m(s)}

A = set of O products with lowest values of SU(i)

B = set of O products with lowest values of ICT{i,s-1)

C =N-B

D = set of m(1) products yielding the lowest values of SU(i)

8™ = the lower bound on the makespan calculated at stage s and obtained by the
forward method

st = the iower bound on the makespan calculated at the last stage (stage L) and
obtainad by the forward method

L™’ = the lower bound on the makespan calculated at the first stage (stage 1) and

obtained by the backward method
L8" = the best lower bound on the makespan obtained by the forward method
= max {LB™
BLB = the best lower bound

= max (LB, LB®}
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Based on the flow or routing of proeducts, two methods were developed in this research to

calculate a lower bound on the makespan: (1) the forward method and (2} the backward method. The
lower bound on the makespan is a stage-based calculation, meaning that a value is calculated for each
stage for the forward method, but it is calculated only for the first stage for the backward method.
Then, the best lower bound (BLB) is obtained by taking the maximum value of the LB' and LB®,
whera the LBF is the bhest lower bound on the makespan obtained by the forward method and
calculated by taking the maximum value of the e"™"

To calculate the fower bound on the makespan for the FFS(R.,1,Rma,...,Rin )/Sipn/Crrax S€QUeENCing
problem, the key idea is to consider a flexible flowshop structure with each machine in each stage as
fast as its fastest speed. The makespan can be determined by considering the sum of three
quantities: (1) the s-stage machine total waiting and idle times and (2) the total setup and production
times on the s-stage machines, and (3) the last stage machine total waiting time. These three

quantities can be divided into four components, as presented below.

®iotal waiting time at stage s (total_wait(s))
®total processing time of all products at stage s (total_proc(s))
®total setup time al stage s (total_setup(s))

®iotal waiting time when a products leave from stage s to the last stage (last_wait(s,L))

A detailed description of these components and how they are used to calculate LB *and LB™'is
presented in sections 6.2.1 and 6.2.2, respectively. For the forward method, the optimal makespan
cannot be less than the sum of the fwo elements: {1) the sum of the first above three components
divided by the number of machines in the s" stage and (2) the machine waiting time at the last stage.
Hence, using the forward method:

8™ = _1 [total_wait(s) + total_proc(s) + tota!_setup(s)] + last_wait(s,L)

m(s) .

Similarly, for the backward method (only consider the last stage), the last_wait(L) is not included.

Hence, using the forward method:

81

1
LB = 75 [ total_wait{1) + total_proc(1) + total_setup(1)]
m
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6.2.1 Forward Method

1. Total waiting time at stage s (total_wait(s))

The total_wait(s) is the minimum amount of time that the machines at stage s have to
wait until their first products are processed. This means that the first m(s) products have to
complete their processing on stage 1 through stage s-1. Two cases are considered in

calculating the total wait(s).

Case 1: mfs) <O

In this case, there are two subcases:

1.1 Total waiting time at the first stage (total_wait(1))

total_wait(1) = ¥ SU (i)

1e A

1.2 Total waiting time at the s” stage; 2 < s< L (Total_wait(s))

The total_wait(s) is determined by summing the first 0,0 = m(s), smallest values
of ICT(i,5-1).
Let
Y(i.s) = SU(i) + CT(i,s-1)
YIn,s} = the Y(i,s) values sorted in non-decreasing order results in the nth jowest

value

Y(in,s} = product i with the nth lowest value of Y[n,s]

Hence:

5
total_wail(s) =¥ crg,s-1) = 2 ¥lal

B n=l

where iy £ i, i, £.. %,

Case 2: mfs) > m'i)

To find the total_wait(s) in this case, the machines in stage s are divided into two
groups. The first group contains m{1) machines, and the second contains m(s) — m(1}

machines (i.e. xtra{1)). The total waiting time for the machines in the first group

{waiting_time_g1(s)) is calculated as the sum of the first O smallest values of ICT(i):

Z ICT(i)- For the second group, the key idea to find the minimum machine waiting
el

time (wait_time_g2(s)) is to find the earliest start time of the remaining products on
machine number m{1}+1, m(1)+2, ..., m(s). To calculate the wait_time_g2(s}, the ratio

(R) between xtra(1) and m(1) is determined and wil be used. The R value is
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determined as [”(5)“”(')] : Two cases are considered in calculating the
)
machine waiting times in this group: (1} R = 1, and (2} R > 1. Details for each

of these cases are described below,
(11R=1
The following procedure is followed:
tet Qi) =SUH+PE1)IEN
= the finish time function of product i as it is the first product
scheduled on the first  stage machines.
B(j.s-1) = min {min{MN(p,1}}, MN{j,1)} + CT{j,s-1); where, p € A and |
€ B
= the stari time function of the remaining products on the m(s) -
m(1) machines in the s stage
1.1 Let x be the machine number in the second group, x = 1,2,..., xtra{1). Set x=1.
1.2 Determine the machine waiting time on machine x using the following steps.
1.2.1 Sort all values of £ (i} in non-decreasing order. Let $2[1], €2[2], ...,
Q[c] be the values resulting from the order. Then, find the product with
the first lowest value of Q(i) (e.g., product j)
Q) = Q1) = m}vn iy
1.2.2 Sort all values of B(i.s-1) in non-decreasing order. Let B[1,s—1]. B[2,s—
1l ..., ﬁ[c.s-ﬂ be the values resulting from the order. Then, find the
product with the first lowest value of B( i,s-1) (e.g., product g}
Bra.s-1) = Brrs-11 = min Beis-1)
1.2.3 Check if j = g. If not true, calculate the waiting time of machine x in
stage s {waiting_time(x,s)) and update set N as follows.
waiting_time(x) = C2() + B(g.s-1)
N = N\ §j}, delete P(g,s-1)
and go to step 1.3; otherwise, go to step 1.2.4.
1.2.4 Find the product with the second lowest value of Q(i) (e.g., product j'):
Qgy = Q= min Q)
e NA(J)
1.2.5 Find the product with the second lowest value of B( ihs-1) (e.g.,
product g'):

Big's-1) = Pr2.s-11= min Pis)
e NV g}
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1.2.6 Calculate the minimum waiting_time(x,s) as follows:

waiting_time(x,s) = min {Q(j) + B(g‘,s—1), iy + B(g.s-
1}
1.2.7 1t Q) + Peg,s-1) < () + P(g.s-1), update C = C — {j and P(g'.s-1).
Otherwise, update C = C— {j} and delete [B(g.s-1).
1.3 Update x = x + 1. If x is greater than m(s) - m(1), go to step 1.4; otherwise,
go back to step 1.2.
1.4 Calculate total_wait(s) as follows:
m(s)=mil

total_wait(s) = 3 jCT (i) *+ 7S, waiting _ time(x, 5)
fed =

2R>1

For this casse, the machines in the second group are divided into smaller
subgroups of m(1) machines (the last subgroup may have a smaller number). The
minimum waiting tine of the machines in the first subgroup (i.e., machine number
m(1)+1, m{1)+2, ..., 2m(1)) is determined using the procedure detailed in case (1) (i.e.,
R = 1). To calculate the minimum waiting time for the machines of the remaining

subgroups, the same procedure is repeated with the foliowing modifications.
(1)} Function Q(i) is replaced with function CL(i, w,, w, ,...,w,) which is defined as
follows.

QU Wi W ... wr) = SUG) * PA1) + 3 (M (w2, 1) + P(w..1)}

where, i, Wg E N, T =121 F W, FW,,.. 7 W

To calculate the waiting time on each subgroup of machines in the last stags,
function OL(i,wy,w, ,...,w,}) must be regenerated for each r until the value of r reaches
R-1. For instance, when 5 =1, the quantity Cl{i, w,} is used to calculate the waiting
time for the second subgroup of machines (i.e., machines 2-m{1)+1, 2-m{1)+2,..,,
3'm(1)). Likewise, when r = R - 1, the guantity OL(i, w,, w, ,....w,) is used to

calculate the waiting time for the R" subgroup of machines (i.e., machines (R —

In step 2.1.2.1, all values of CL(i, w1, w2 ,...,wr) obtained from all combinations

of i and wg are sorted in non-decreasing order and let OL[1], CU[2}, OL[3],..., OL[n] be

the values resulting from the order.
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(2) In step 2.1.2.3 of Case 2.1, product g is checked to find if it is a member of set T,
where T is set of products (i, w,, w, ,...,w,} that yielded CL[1}.

{3) Steps 2.1.2.4 through 2.1.2.6 are modified to find the combination of CGL{TJ)} and
B(g,s-1) such that g is not a member of T, which yield the minimum value of the
sum of CL(T3) and [_))(g,s~1). Step 2.1.2.7 is then modified to update C = C — T and
delete [3(g,s-1).

The value total_wait{s) when R > 1 is calculated as follows:
total_wait(s) = wait_time_g1(s) + wait_time_g2(s)
m(s)-m(l}

=X ICTHY Y waiting _time(x,5)

ied x=l

2. Total processing time of all products at the s" stage (total_proc(s))

A lower bound of the total processing times on the machines at the last stage is
calculated as the sum of the processing times of all products when processed on machines
with the average speed in that stage. The value of total_proc(s) is hence calculated as

follows:

> ST (i,5) - m(s)

total_proc(s) = i
Vim
meAM (5)

3. Total setup time at the s" stage (tota)_setup(s})

In minimizing changeovers, the number of machines assigned to each product should
be as few as possible. Thus, the minimum number of setups for the entire production
schedule on the slh stage machinas is equal to N - m(s) setups. The value of total_setup(s) is

hence determined as the sum of the N — m({s) smailest changeovers.

total_setup(s) = > MS(i,s)
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4. Total waiting time when a products leave from stage s to the last stage (last wait(s,L)}
The total machine waiting time when a products leave from stage s to the last stage
(last_wait(s,L)) is the minimum amount of time that the last stage machine has to wait until the

first product from stage (s+1) to be processed on the last stage. Hence:
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i
last_wait(s,L} = min{ Y P>, s} s’ =s+1, 842, L1
Yi

3'=x+l

The overall lower bound by the forward method at stage s (LBF'S) and the best lower bound on

the makespan obtained by this method (LBF) are then calculated as follows:

LB~ = 1 [total_wait{s} + total_proc{s) + total_setup(s)] + fast_wait(s,L)
m(s)
LB" = max {LB™Y
vs

6.2.2 Backward Method
Consider a schedule where products are processed from stage L to stage 1 (i.e., reverse order
of machines), then its antithetical schedule (mirror image) yields the same makespan for the original
problem when no setup times are considered. With setup times, the lower bound for the backward
schedule would still remain a lower bound for the original problem, when calculated as in the
forward method with the following two adjustments:
1. Setup times from idling for the first m(L) products in stage . must not be considered when
calculating total_wait(L) (i.e., assume SU(i) = 0 for all products, where SU(i) in this case is
the setup time for product i from idling at stage L).
2. The sum of the m{1) minimum setup times from idling in stage 1 (sum_setup_idle(1)) shouid
be added to total_wait(1).

The backward lower bound will then be calculated as follows:

LBB.‘I

H

% [ total_wait(1) + sum_setup_idia{1)} + total_proc(1} + total_setup(1)]
m

The best lower bound (BLB) is then determined as max {LBF,LEB'1}.
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CHAPTER 7

COMPUTATIONALEXPERIENCE

7.1 Introduction

This section will focus on computational experience with the heuristic algorithms (IH and
TSearch). Two quantities are investigated: (1) the performance of the heuristic algorithms, obtained by
comparing their solutions to the lower bound and (2) the relative improvement of the solutions obtained
by the IH algorithm with respect to those of the TSearch algorithm.

Two sets of problems, with four types of data characteristics in each set, were generated to

avaluate the above two quantities:

Set 1: 70-85 products (10 groups)
Set 2: 135-155 products (20 groups)

Four types (A, B, C and D) of data characteristics were generated for each set, and 5 test
problems were generated for each data type. The parameters for each data type, processing times of
products on a standard machine (speed = 1) at each stage (PTime(j,i,s,m)), machine speed deviations
(v, .): changeover times betweaen products at each stage (ch(j,i,q,p,s)), and setup times from idling of
products at the first stage (ch{0,0,j.i,s)}, were randomly selected from different uniform distributions as

shown in Table 7.1

Table 7.1: Values of Parameters Used with the Different Data Types

T
Parameter yoe
A B c D
Tatal number of
12 machinas, 20 machires, 12 machines, 20 machines,
machinas and
4 slages 5 stages 4 stages 5 stages
stages
(3.3.3} {4.4,44.4) (3.3.3) (44,4,4,4)
PTime(j,i,s.m} U{20.5G) (20,501 Uj20.50] 20,507
v,
o u{0.80. 1.20) U[0.80, 1.20}] U[0.70, 1.30] V[Q.70, 1.30]
ch(j.i.g.p,s) U[20%, 40%} U[20%, 40%)] U{20%, 40%] U[20%, 40%])
of Time(j.i.s,m}) of Time(j.i,s,m}) of Time{],i.5,m) of Time(j.i,s,m}
ch{j,i.j.p.s) U[5%, 15%] U[5%, 15%} U[5%. 15%] U[5%, 15%)]
of Time(j.i,s.m} of Timelji,s,m) of Time(j,l.5,m) of Time(i,i,s,m)
U]15%, 25%]) U[158%, 25%) U[15%, 25%] U[15%, 25%)
ch(0,0).i.s)
of Timelj.i,s.m) of Timel}.i,5,m) af Time{j.i.s,m} of Time(j,i,s.m)
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Changeover times between products at each stage (ch(j,i,q,p,s) and setup times from idling

at the first stage (ch(0,0,j,,s)) are identical on all machines at the same stage. Types A and B
generate problems with small deviations in the speed of machines. Conversely, types C and D
generate problems with large deviations in the speeds. Characteristics of the data types can be

summarized as follows:

A: A small number of stages, small deviations in machine speeds, and small, identical
number of machines in each stage.

B: A large number of stages, small deviations in machine speeds, and large, identical number
of machines in each stage.

C: A small number of stages, large deviations in machine speeds, and small, non-identical
number of machines in each stage.

D: A large number of stages, large deviations in machine speeds, and large, identical number

of machines in each stage.

In section 7.2, the computational results obtained with the heuristics are presented and
compared to the lower bounds for the large size problems. Section 7.3 presents the relative
improvement of the solutions obtained by the IH algorithm with the application of the TSearch

algorithm.

7.2 Comparison of the Results of Heuristic Algorithms with the Lower Bounds

The heuristic algorithms were coded in JAVA and run on a 2.0 GHz PC, with 256 MegaBytes
of RAM, for testing and evaluation. In this section, the heuristic algorithms are evaluated using two
performance measures: (1) solution quality, and (2) computational speed. The quality of a solution

genarated by the heuristics is measured in terms of their performance (HF), as presented below.

HP = {50l p/$0M..,} X 100
where,
HP = the heuristic performance (%)
sollg = the lower bound of the solution
SO0hey = the solution obtained from the heuristic algeorithms

The computational speed of the algorithms is measured by the amount of CPU time required
to execute the algorithms. The CPU time includes compiling, linking, and execution times, and is

reported in seconds and seconds per iteration for the |H and TSearch algorithms, respectively.
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For each combination of problem set and data type, ten different test problems were

generated. The solution of each test problem using the heuristic algorithm and its lower bound were
obtained for all combinations of sets and data types. The results of these computations are presented

in Tables 7.2-7.13. Table 7.14 shows the averages obtained for these resulls.

Table 7.2: Computational Results for Set 1 Type A:

Heuristic Algorithms vs. Lower Bound

CPU Time Heuristic Performance (%)
TSearch
Problem
IH
Number IH TSearch
(seconds)
seconds/feration Number of lterations
{iterations}
1 1.2 21 50 56.05 693.00
2 1.1 22 148 58.12 71.20
3 1.0 2.0 345 56.60 69.90
4 1.1 2.1 69 56.82 71.40
5 1.1 2.0 191 56.47 71.40

Table 7.3: Computational Results for Set 1 Type B:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance (%)
Problem
TSearch
Number
IH
IH TSearch
(seconds)
seconds/iteration MNumber of lferations
(iterations)

1 1.0 2.0 150 58.87 69.10
2 1.1 1.9 156 55.42 68.50
3 1.0 1.9 245 53.69 69.60
4 1.1 2.0 145 56.50 71.10
5 1.1 2.0 89 55.60 68.90




Table 7.4: Computational Results for Set 1 Type C:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance (%)

Problem TSaarch

Number

H
iH TSearch
(seconds)
seconds/iteration Number of lterations
fiterations)

1 1.0 20 130 52.53 65.30
2 1.0 2.0 136 56.34 68.90
3 1.0 2.1 45 56.39 66,40
4 1.1 2.0 39 50.43 64.40
5 1.1 2.0 97 51.57 67.30

Table 7.5: Computational Results for Set 1 Type D:

Heuristic Algerithms vs. Lower Bound

CPU Tims
Heuristic Performance (%)
Problem
TSearch
Number
H
H TSearch
{seconds)
saconds/teration Numnber of iterations
(iterations)
1 1.0 1.8 120 50.04 67.10
2 1.1 2.0 135 50.80 65.60
3 1.1 2.0 128 50.33 64.10
4 1.2 1.9 123 58.61 67.70
5 1.0 1.9 171 53.45 68,70
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Table 7.6: Computational Results for Set 2 Type A:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance (%)
Prabiem
TSearch
Number
IH
IH TSearch
{saconds)
seconds/iteration Numnber of lterations
{itarations)
1 30.2 3.2 67 58.25 68.60
2 30.3 32 454 58.37 69.10
3 30.3 3.2 234 61.06 69.50
4 30.2 3.2 432 60.74 71.30
5 30.4 3.1 45 58.78 68.00

Table 7.7: Computational Results for Set 2 Type B:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance (%)
Problem
TSearch
Number
IH
tH TSearch
(seconds)
seconds/ileration Number of [terations
{iterations)
1 31.2 32 453 57.93 68.70
2 311 3.3 234 58.11 69.90
3 art 3.3 458 58,90 £69.90
4 31.2 3.4 120 58.471 67.60
5 311 371 56 58.27 70,40

a3



Table 7.8: Computational Results for Set 2 Type C:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance {%)
Probiem
TSearch
Number
IH
IH TSearch
(seconds)
seconds/Heration Number of lterations
(iterations}
1 43.1 4.0 233 56.33 64.30
2 43.3 4.0 125 54.45 64.60
3 43.2 39 45 57.87 66.20
4 43.2 4.1 78 56.25 66,20
5 43.1 39 45581 56.18 64.90

Table 7.9: Computational Resulis for Set 2 Type D:

Heuristic Algorithms vs. Lower Bound

CPU Time
Heuristic Performance (%)
Problem
TSearch
Number
IH
H TSearch
(seconds)
seconds/iteration Number of lterations
{iterations)
1 442 4.1 79 53.52 §8.10
2 44.3 4.0 i 145 56.42 64.80
3 44.3 4.0 365 55.06 65.50
4 44.2 4.1 278 56.35 65.30
5 44.4 3.9 222 56.55 65.00

34
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Table 7.10: Averages of Computational Results for Sets 1 and 2 for all Data Types:

Heuristic Algorithms vs. Lower Bound

CPU time Heuristic Performance (%)
TSearch
Set Trpe H H TSearch
{seconds) seconds/iteration Number of iterations
{iterations)
1 A 1.10 2.08 160.60 56.81 70.58
B 1.06 1.96 157.00 56.02 69.44
c 1.04 2.02 89.40 53.45 66.46
D 1.08 1.94 135.40 §2.65 66.64
2 A 30.28 3.18 246.40 59.44 69.30
B 31.14 3.28 264.20 58.32 69.30
C 43.18 3.98 1006.40 56.22 65.24
D 44.28 4.02 217.80 55.56 65.34

Based on these results, the average performance for set 1 ranges between 52.65-
56.81% for the IH aigorithm and 66.46-70.58% for the TSearch algorithm. For set 2, the average
performance is lowser than that of set 1, and ranges hetween 55.58-59.44% for the IH algorithm and
65.24-69.30% for the TSearch algorithm.

The computational times for the IH are extremely small-- less than 45 seconds. These
times do significantly increase with the size of the problem. This means that the IH algorithm is
sensitive to the problem size. In contrast, computational times for the TSearch algerithm seem to be
high-- between 1.94 and 2.08 seconds per iteration for data set 1 and between 3.18 and 4.02 seconds
per iteration for data set 2. These times increase significantly with the size of the problem in terms of
numbers of products (product groups), stages, and machines.

A Factoriai Design was vsed to evaluate the performance of the heuristic algorithms
{HP). The design has three factors: deviatigns in machine speeds. number of products, and number of
machines and stages. The analysis was performed using SAS Software V8 for Windows and the
results are presented in Appendix C. The statistical results show a significant effect only for two
factors .on the heuristic performance, number of products and deviation in machine speeds. Tukey's
test was performed to compare between the three means obtained with different number of machines
and stages. Results of the test (see Appendix C} indicate that the two means are different from each

other.



38
The statistical results obtained from ANOVA and Tukey's test show that the heuristic

performance declines with the increase of: {1} number of products, and {2) deviation in machine speeds.
This decline is due mainly to the decrement in the value of the lower bound rather than the performance
of the heuristics. The lower bound value may be affected by the following factors:

(1) the difference between the actual processing times and the smallest processing times of
products used to calculate the first component of lower bound. The difference in
processing times gets larger when the difference in the speeds between the fastest and
the slowest machines increases.

(2) the difference between actual processing times and the processing times on the average
speed machine of products used to calculate the second compoenent of the lower bound,
and

{3) the difference between actual setup times (both major and minor setup times) and the
smallest setup times of the products, used to calculate components 3 and 4 of the lower
bound.

If the differences were small, the lower bound would be relatively high resulting in higher

algorithm performance, and vice versa. Larger deviations in machine speeds, a number of products
{groups), and of machines and stages would most probably cause larger differences in processing

times and setup times.

7.3 Comparison between the |H Algorithm and the TSearch Algorithm
In this section, the relative improvement of the solutions obtained from the IH algorithm

after applying the TSearch is evaluated and presented below.

let RI = {{sol\y/ - 80lgearen) / 8014} x 100
where,
RI = the relative improvement (%) between soly and solrgearen
50l = the solution obtaimed from the IH algorithm
SOltgemen = he solution obtained from the TSearch algorithm

Two sets of relatively large size problems are used in this section. These sets are
identical to those described in Section 7.2. For each combination of problem set and data type, 5
different test problems were generated. The solutions of each test problem using the IH and TSearch
algorithms were obtained for all combinations of sets and data types. The results obtained are

presented in Tables 7.11 and 7.12. Table 7.13 shows the averages obtained for these results.



Table 7.11: Relative Improvement Results for the Different Data Types in Set 1:

Relative Improvement (%)

Problem Number
Type

1 18.82 14.79( 19.56 | 2544

18.38 18.15 | 18.18 | 22.61

19.06 2286 1510| 21.53

20.41 2049 21.75| 13.39

| ]| Q]| N

20.96 18.25 | 2340 2223

Table 7.12: Relative Improvement Results for the Different Data Types in Set 2:

Relative Improvement (%)

Problem Number
Type

b

15.07 1563 | 1236| 19.00

15.50 16.87 | 1573 | 12.99

12.18 15.71 12.57 | 15.92

14.76 1353 | 1502 13.64

| | W | N

13.59 17.28 | 13471 13.01




39
CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

This research was undertaken to minimize the makespan for the “flexible flowshop with
sequence dependent setup times when machines in each stages are unrelated” problem. Two exact
algorithms were first developed and used to solve small problems. Two heuristic algorithms (IH and
TSearch) were then developed to solve larger and more practical problems.  In order to evaluate the
performance of the heuristic algorithms, two lower bounds were developed for the solution of the
problem.

Since the optimal solution can be obtained for only small size problems {only for 5 jobs and
7 machiines), two heuristic algorithms (IH and TSearch) were developed. The first algorithm (1H) was
developed to obtain a good initial solution and then improved in the second phase using the TSearch
algorithm. To assess the quality of the heuristic algorithms, two methods were presented for obtaining
a lower bound for the flexible flowshop with sequence dependent setup times when machines in sach
stages are unrelated problems: (1) forward method and (2} backward method. Machine waiting time,
idle time, and the total setup and processing times on machines at the last stage were used to obtain
the lower bounds.

For the computational experience, two data sets with four problem configurations for each set
were generated, and five test problems were generated for each configuration. The performances of
the heuristics were presented and evaluated using two measures: (1) solution quality and
(2) computational speed. The quality of heuristic solutions was evaluated using lower bounds.
The results showed a performance for the 'H algorithm between 52.65-56.81% for data set 1 and
5558-59.44% for data set 2. The performance for the TSearch algorithm ranged between
66.46-70.58% for data set 1 and  65.24-69.30% for data set 2. The performance of the algorithms
declined with the increase of; (1) deviation in machine speeds and (2) number of products.

The computational times were very smali for the IH algorithm, indicating that this algorithm is
very efficient and not sensitive to problem size. Conversely, the computational times of the TSerach
algorithm increased significantly with problerr; size--number of products, stages, and machines. For the
relative improvement realized when applying the TSearch algorithm to the resuits obtained with the 1H
algorithm, the results indicated an improvement between 12.20 and 25.50%. This improvemant
increased as the deviations in machine speeds, number of stages, and machines increased. On the

other hand, it decreased as the number of products {groups) increased.
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8.1 Contribution of the Research
The exact algorithms as well as the heuristic algorithms and the lower bound methods
developed can also be applied to identical, uniform, and unreiated paraltel processing problems with or
without dependent setup times. Computational experience showed that both heuristic algerithms are

effective in solving the problem.

8.2 Recommendations for Future Research

The following recommendations are made for future research:

®  The calculation of the lower bounds may be further enhanced

® |mprovements may be made to the TSearch algorithm. The Tabu search was utilized
in this research without using intensification or diversification strategies. These
strategies, which are used to guide the search in a more intelligent way, need to be
further studied.

®  Other search methods ({e.g., Neural Network or Genetic Algorithm) may be applied to
solve this problem. Their performances may be compared to that of the Tabu Search

algorithm.
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CHPATER 9

OUTPUTS 9nlasen33daitlasunuain ana.

9.1 Software D9 Heuristic Algorithm Tua‘lhwu GUI {Graphic User Interface) “I‘N’J‘ﬁﬂ’lﬂ'ﬁ
u§ay 1in1enuIN D
9.2 Software PBINTIATUINAAT Lower Bounds-‘?ugi}uuu GUI {Graphic User Interface) "1"1\:
nsldusaslinienuin £
9.3 M uFRINAVIHAIIYTEENITINTTIEAUWINIZ (International Conference)
9.3.1 The 33" International Conference on Computers and Industrial Engineering:
Detailed is shown in Appendix F-1
{Held at Jeju, Korea, on March 25-27, 2004)
8.3.2  The Fifth Asia-Pacific Conference on Industrial Engineering and Management
Systems: Detailed is shown in Appendix F-2
{Held at Gold Coast, Australia., on December 12-15, 2005)
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