



## รายงานวิจัยฉบับสมบูรณ์

ความเที่ยงตรงของการตรวจท่าทางของร่างกาย  
ในการประเมินระดับความเสี่ยงต่อความผิดปกติของพัฒนาการ  
ด้านการเคลื่อนไหวในทารกคลอดก่อนกำหนด

โดย

ผศ. ดร. ระบิวราณ เล็กสกุลไชย และคณะ

มิถุนายน 2547

ສັນນູາເລີ່ມທີ່ TRG4580032

## รายงานວิຈัยฉบับສມບູຮັນ

ความເຫັນຕິດຕາມຂອງການປະຕິບັດ  
ຮະດັບຄວາມເສີ່ງຕ່ອງຄວາມຝຶດປົກຕິຂອງພັດນາການ  
ດ້ານການເຄລືອນໄວວິທາກຄລອດກ່ອນກຳນົດ

ຜູ້ວິຈ້າຍ

ຜ.ศ. ดร. ຮະວິວຮຣນ ເລື້ກສກູລໄຊຍ  
Prof. Dr. Suzann K Campbell  
ຮ.ສ. ຊນັດຕິ ອາຄາມານນົກ

มหาวิทยาลัยมหิดล  
University of Illinois at Chicago  
มหาวิทยาลัยมหิดล

ສນັບສຸນໂດຍສໍານັກງານກອງທຸນສນັບສຸນກາງວິຈ້າຍ

(ຄວາມເຫັນໃນรายงานນີ້ເປັນຂອງຜູ້ວິຈ້າຍ ສກວ.ໄມ່ຈໍາເປັນຕ້ອງເຫັນດ້ວຍເສມອໄປ)

## กิตติกรรมประกาศ

ขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย และเจ้าหน้าที่ของ สกอ. ทุกท่านที่พิจารณาให้การสนับสนุนงบประมาณ และเล็งเห็นความสำคัญของการดำเนินงานการวิจัยเพื่อประโยชน์ต่อการคัดกรองทารกที่คลอดก่อนกำหนด ซึ่งทำให้การศึกษาวิจัยครั้งนี้เกิดขึ้นได้

ขอขอบคุณทารก และผู้ปกครองทารกที่เสียสละเวลา และให้ความร่วมมือในการให้ข้อมูล และมารับการตรวจประเมินตามนัด ทำให้ขั้นตอนการรวบรวมผู้เข้าร่วมการศึกษาเป็นไปได้อย่างราบรื่น

ขอขอบคุณท่านอธิการบดี และผู้อำนวยการโครงการจัดตั้งคณะกรรมการพำนัชและวิทยาศาสตร์การเคลื่อนไหวประยุกต์ มหาวิทยาลัยมหิดล ที่ให้ความสนับสนุนในด้านการบริหารบุคลากร และสถานที่ในการเก็บข้อมูลเพื่อการวิจัยครั้งนี้

ขอขอบคุณคณะผู้ช่วยวิจัยทุกท่านที่เสียสละเวลา และปรับตัวรองการทำงานให้สอดคล้องกับช่วงเวลาของการทำงานวิจัยครั้งนี้ และท้ายที่สุดนี้ต้องขอขอบคุณนักวิจัยที่เสียสละเวลา ให้คำแนะนำ และความช่วยเหลือที่มีประโยชน์อย่างมากต่อการดำเนินงานวิจัยครั้งนี้ ทำให้ข้าพเจ้าได้เรียนรู้ด้านการทำวิจัยเพิ่มขึ้น

ผศ. ดร. ระวีวรรณ เล็กสกุลไชย

25 มิ.ย. 2547

รหัสโครงการ TRG4580032

ชื่อโครงการ ความเที่ยงตรงของการตรวจท่าทางของร่างกายในการประเมินระดับความเสี่ยงต่อความผิดปกติของพัฒนาการด้านการเคลื่อนไหวในทารกคลอดก่อนกำหนด

ผู้วิจัย ผศ. ดร. ระวีวรรณ เล็กสกุลไชย, มหาวิทยาลัยมหิดล

Professor Suzann K Campbell, PhD, University of Illinois at Chicago

รศ. ชนัตต์ օคามานน์, มหาวิทยาลัยมหิดล

E-mail address [plekskulcha@hotmail.com](mailto:plekskulcha@hotmail.com)

ระยะเวลาโครงการ 1 กรกฎาคม 2545 ถึง 30 มิถุนายน 2547

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของปัจจัยเสี่ยงที่เกิดขึ้นกับทารกคลอดก่อนกำหนดในช่วงแรกของชีวิต ต่อท่าทางของร่างกายเมื่อทารกมีอายุครบเทอม และเพื่อศึกษาความเที่ยงตรงของการตรวจท่าทางของร่างกาย ต่อความผิดปกติของพัฒนาการด้านการเคลื่อนไหวในทารกคลอดก่อนกำหนด โดยศึกษาในทารกคลอดก่อนกำหนดจำนวน 138 คน ที่แบ่งออกเป็น 3 กลุ่มตามระดับความเสี่ยง คะแนนความเสี่ยงของทารกได้มาจากการข้อมูลในแฟ้มประวัติของทารก และจากการสัมภาษณ์มารดา เมื่ออายุครบเทอมทารกได้รับการประเมินท่าทางด้วยแบบประเมินที่พัฒนาขึ้นสำหรับทารกคลอดก่อนกำหนด และมีระบบการให้คะแนนเชิงปริมาณ และที่ 4 เดือนบริบูรณ์ ทารกได้รับการประเมินพัฒนาการด้านการเคลื่อนไหวโดยนักกายภาพบำบัดที่ไม่ทราบข้อมูลประวัติสุขภาพของทารก จากการวิเคราะห์ผลทางสถิติพบว่าทารกที่มีระดับความเสี่ยงที่ต่างกันมีคะแนนท่าทางที่ไม่เท่ากัน ทารกที่อยู่ในกลุ่มเสี่ยง มีคะแนนท่าทางน้อยที่สุด นอกจากนี้ยังพบว่าแบบประเมินท่าทางนี้ มีความเที่ยงตรงในการทำนายระดับความเสี่ยงต่อความผิดปกติของพัฒนาการของทารกเมื่อทารกอายุ 4 เดือนได้เป็นอย่างดี โดยมีค่า sensitivity, specificity, positive predictive validity และ negative predictive validity เท่ากับ 0.93, 0.88, 0.89, 0.92, ตามลำดับ จึงสามารถสรุปได้ว่า การประเมินท่าทางทารกด้วยแบบประเมินท่าทางมีประโยชน์ในด้านการคัดกรองระดับความเสี่ยงของทารก และสามารถใช้ในการทำนายพัฒนาการด้านการเคลื่อนไหวเมื่อทารกอายุ 4 เดือนได้เป็นอย่างดี การศึกษานี้จึงเป็นการสนับสนุนคุณค่าของการทำนายผลระยะสั้นของท่าทางของทารกต่อพัฒนาการด้านการเคลื่อนไหว การศึกษาผลระยะยาวของท่าทางของทารกต่อการเคลื่อนไหวในทารกที่อายุมากกว่า 4 เดือน เช่นที่ 1 หรือ 3 ปี จึงเป็นประเด็นที่น่าจะมีการพิสูจน์ต่อไป

คำหลัก การประเมิน, พัฒนาการ, ทารก, ท่าทาง

## Abstract

**Project Code** TRG4580032

**Project Title** Validity of a Postural Assessment for Discriminating among Preterm Infants with Varying Risk for Impaired Motor Development

**Investigators** Assistant Professor Raweewan Lekskulchai, Ph.D, Mahidol University  
Professor Suzann K Campbell, PhD, University of Illinois at Chicago  
Associate Professor Chanat Akamanon, Mahidol University

**E-mail Address** [plekskulcha@hotmail.com](mailto:plekskulcha@hotmail.com)

**Project Period** 1 July 2002 to 30 June 2004

This study aims to investigate effect of neonatal risk factors on postural development at term equivalent age and to examine predictive validity of the postural assessment at term to motor development at 4 months corrected age in preterm born infants. A total of 138 preterm infants stratified into three risk groups, i.e. "not at-risk", "suspect" and "at-risk" groups, participated in this study. Number of risk factors was recorded using information from infant's medical record and a parent interview. At term, infant's posture was scored quantitatively on a postural assessment form. At four months corrected age, the infants were scheduled to have a motor performance assessment by a Physical Therapy research assistant blind to infants' medical history.

Results revealed that infants experienced different levels of risk factors during their early life manifested with different quality of postural development at term. Additionally, the postural assessment at term showed high level of predictive validity with sensitivity, specificity, positive predictive validity and negative predictive validity of 0.93, 0.88, 0.89, 0.92, respectively. Thus it can be concluded that the postural assessment is of value in identifying levels of neonatal risk factors and having predictive value in discriminating among preterm infants with varying risk for impaired motor development at four months corrected age. This study, therefore, supported the short-term value of postural assessment to predict four-month motor performance of preterm infants. Further study of the long-term predictive value of the postural assessment is suggested to investigate.

**Keywords** Assessment, Development, Infant, Posture

## เนื้อหาทางวิจัย

### บทนำ

ความก้าวหน้าทางวิทยาศาสตร์และเทคโนโลยี ตลอดจนความสามารถของแพทย์ไทย ทำให้สามารถช่วยชีวิตทารกที่คลอดก่อนกำหนดให้สามารถมีชีวิตอยู่ได้ในจำนวนที่มากขึ้น เมื่อเทียบกับในอดีตที่ผ่านมา ผลจากการคลอดก่อนที่ร่างกายของทารกเหล่านี้ จะได้พัฒนาอย่างสมบูรณ์ภายในครรภ์มารดา ส่งผลให้ทารกเหล่านี้มีความเสี่ยงต่อการเกิดปัญหาทางสุขภาพ และทางด้านพัฒนาการ

นักกายภาพบำบัดทางเด็กมีบทบาทในการป้องกันการเกิดความผิดปกติของท่าทางของร่างกายของทารก ซึ่งพบว่าการพัฒนาท่าทางของร่างกายที่ผิดปกติในวัยทารก มีอิทธิพลต่อความผิดปกติของพัฒนาการด้านการเคลื่อนไหวในวัยเด็ก ทำให้ทารกบางคนมีความพิการ และมีพัฒนาการที่ล่าช้า หรือผิดปกติได้ ซึ่งการปล่อยให้เกิดปัญหา แล้วจึงให้การรักษานั้นออกจากจะเป็นการลื้นเปลืองในด้านกำลังคนและทุนทรัพย์แล้ว ยังมีผลในการบันทอนคุณภาพชีวิตของเด็กและครอบครัวอีกด้วย

การตรวจประเมินท่าทางของทารก ได้มีการศึกษาโดยรวมเป็นหัวข้อเล็กๆ ในแบบประเมินด้านการเคลื่อนไหว หรือแบบประเมินอื่นๆ โดยมิได้มีการรวมเป็นแบบประเมินที่พร้อมใช้ และไม่มีการศึกษาว่าท่าทางที่ตรวจมาได้นั้น เมื่อรวมกันเป็นคะแนนรวมแล้วจะเป็นข้อบ่งชี้ ในด้านของพัฒนาการของเด็กอย่างไรบ้าง ทั้งๆที่ได้มีการศึกษาลักษณะท่าทางที่ปกติ และผิดปกติของเด็ก ส่วนไว้แล้วก็ตาม การรวมท่าทางของทุกส่วนของร่างกายเพื่อความสมบูรณ์แบบในการตรวจประเมิน ก็ยังมิได้มีการศึกษาหรือสรุปไว้ในรายงานรวมที่ผ่านมา การศึกษาครั้งนี้จึงมีวัตถุประสงค์ดังนี้

1. เพื่อรวบรวมวิธีการตรวจประเมินท่าทางของร่างกายทารก มาเป็นแบบประเมินที่พร้อมใช้ในทางคลินิก และสำหรับงานวิจัย
2. เพื่อศึกษาความสัมพันธ์ระหว่างปัจจัยที่มีผลต่อสุขภาพในช่วงแรกเกิดของทารก กับผลการประเมินท่าทางของร่างกายด้วยแบบประเมินที่พัฒนาขึ้นใหม่นี้
3. เพื่อศึกษาความถูกต้องในการประเมินแยกดับความเสี่ยงของการพัฒนาความผิดปกติด้านการเคลื่อนไหว จากผลของแบบประเมินท่าทางของร่างกายของทารก

### วิธีการทดลอง

การศึกษานี้แบ่งเป็น 2 ระยะ คือ

- การพัฒนาแบบประเมินท่าทางของร่างกายของทารก โดยจะมีการรวมเป็นแบบประเมินที่พร้อมใช้ และมีวิธีการให้คะแนน ตลอดจนการรวมคะแนนและแปลผลของคะแนนที่ขัดเจน โดยมีขั้นตอนการศึกษาดังนี้
  - การสืบค้นวรรณกรรมเพื่อเลือกหัวข้อการตรวจประเมินที่มีความถูกต้องและเชื่อถือได้
  - รวบรวมเป็นแบบประเมินที่พร้อมใช้ และมีวิธีการให้คะแนนที่มีแบบแผน แน่นอน
  - ทดลองใช้แบบประเมินในกลุ่มตัวอย่างที่เป็นทารกคลอดก่อนกำหนด และศึกษาความสมัพนธ์ของผลการประเมิน กับระดับปัจจัยเสี่ยงต่อปัญหาสุขภาพในช่วงแรกเกิด เพื่อแบ่งระดับคะแนนของแบบประเมินท่าทางของร่างกายทารก เป็นคะแนนในกลุ่มที่ปราศจากความเสี่ยง (not at-risk), กลุ่มที่ควรติดตาม (suspect) และกลุ่มเสี่ยง (high-risk) เพื่อเป็นฐานข้อมูลต่อไป
- การศึกษาเพื่อทดสอบความถูกต้องของแบบประเมินท่าทางของร่างกายของทารก ในการทำนายพัฒนาการด้านการเคลื่อนไหว เมื่อทารกอายุ 4 เดือนบริบูรณ์ โดยมีขั้นตอนการศึกษาดังนี้
  - ใช้แบบประเมินท่าทางของทารกในการตรวจประเมินท่าทางของทารกคลอดก่อนกำหนดในช่วงที่ทารกมีอายุครบกำหนดพอดี (ที่อายุ 40 สัปดาห์นับจากวันที่ปฏิสนธิ)
  - เมื่อทารกมีอายุครบ 4 เดือน ทารกจะได้รับการตรวจประเมินพัฒนาการด้านการเคลื่อนไหวโดยนักกายภาพบำบัดทางเด็กที่ไม่ทราบคะแนนการตรวจประเมินท่าทางของทารก และไม่ทราบอายุจริงและประวัติความเจ็บป่วยของทารก
  - นำข้อมูลมาวิเคราะห์ทางสถิติ

#### ผลการทดลอง

จากการศึกษาในทารกคลอดก่อนกำหนดจำนวน 138 คน ที่แบ่งออกเป็น 3 กลุ่มตามระดับความเสี่ยง คือ กลุ่มเสี่ยง (45 คน) กลุ่มที่ควรติดตาม (48 คน) และกลุ่มที่ปราศจากความเสี่ยง (45 คน) พบร่วมกันว่า คะแนนความเสี่ยงของทารกมีความสมัพนธ์เชิงลบกับคะแนนท่าทางของทารกเมื่อทารกมีอายุครบเทอม ดังแสดงด้วยค่า Pearson product moment correlation coefficients ( $r = -0.976$ ,  $p < .0001$ ) เมื่อวิเคราะห์ความสามารถของแบบประเมินความเสี่ยงใน

การทำนายระดับความเสี่ยงต่อการพัฒนาการท่าทางที่ไม่สมวัยเมื่อทรงมีอายุครบเทอม พบว่า แบบประเมินทั้งสองมีความเห็นพ้องต้องกันในระดับสูง ดังแสดงในตารางที่ 1

ตารางที่ 1: Percent agreements ระหว่างคะแนนความเสี่ยงและคะแนนท่าทาง

| คะแนนความเสี่ยง   | คะแนนท่าทาง   |           |                  | Percent agreement |
|-------------------|---------------|-----------|------------------|-------------------|
|                   | เหมาะสมกับวัย | ควรติดตาม | ไม่เหมาะสมกับวัย |                   |
| ปราศจากความเสี่ยง | 45            | -         | -                | 100               |
| ควรติดตาม         | 8             | 40        | -                | 83                |
| เสี่ยง            | -             | 3         | 42               | 93                |

เมื่ออายุครบ 4 เดือนบริบูรณ์ ทรงได้รับการประเมินพัฒนาการด้านการเคลื่อนไหวโดยนักกายภาพบำบัดที่ไม่ทราบข้อมูลประวัติสุขภาพของทารก ผลการศึกษาพบว่า คะแนนท่าทางของทรงมีความสัมพันธ์เชิงบวกกับคะแนนพัฒนาการของทรงเมื่อทรงมีอายุครบ 4 เดือน บริบูรณ์ ดังแสดงด้วยค่า Pearson product moment correlation coefficients ( $r = 0.975$ ,  $p < .0001$ ) นอกจากนี้ยังพบว่าแบบประเมินท่าทางนี้ มีความเที่ยงตรงในการทำนายระดับความเสี่ยงต่อความผิดปกติของพัฒนาการของทรงเมื่อทรงอายุ 4 เดือนได้เป็นอย่างดี โดยมีค่า sensitivity, specificity, positive predictive validity และ negative predictive validity เท่ากับ 0.93, 0.88, 0.89, 0.92, ตามลำดับ

### บทวิจารณ์

ทรงคลอดก่อนกำหนดประกอบด้วยประชากรทารกที่คลอดก่อนที่มารดาจะตั้งครรภ์ครบ 37 สัปดาห์บริบูรณ์ จำนวนทรงเหล่านี้นับวันจะเพิ่มมากขึ้น เพราะความก้าวหน้าทางเทคโนโลยีทางการแพทย์ที่สามารถช่วยชีวิตทรงที่คลอดที่อายุครรภ์น้อยๆ และการเปลี่ยนแปลงของสังคมไทยที่มีความเสี่ยงในการตั้งครรภ์ในหญิงอายุน้อย การศึกษาครั้งนี้พบว่าทรงเหล่านี้แม้จะจัดอยู่ในกลุ่มคลอดก่อนกำหนดเหมือนกัน แต่ทรงมีระดับความเสี่ยงต่อความผิดปกติของพัฒนาการที่ไม่เท่ากัน การจำแนกทรงว่ามีความเสี่ยงหรือไม่จึงเป็นขั้นตอนสำคัญในการสื่อสารกับผู้ป่วย

ครองและบุคลากรทางการแพทย์ ทำให้สามารถให้การกระตุนพัฒนาการได้อย่างรวดเร็วและ  
จำเพาะต่อทารกที่มีความเสี่ยงเท่านั้นทำให้สามารถปะหนดทรัพยากรบุคคลได้

การศึกษารังนี้พบว่าการคัดกรองทารกคลอดก่อนกำหนดโดยอาศัยประวัติสุขภาพมี  
ความสัมพันธ์กับพัฒนาการของทารกเมื่อทารกอายุครบเทอม โดยทารกคลอดก่อน  
กำหนดที่มีคะแนนความเสี่ยงสูงในช่วงแรกของชีวิต จะมีการพัฒนาท่าทางที่ไม่เหมาะสมกับวัย  
เมื่อทารกอายุครบเทอม และการคัดกรองทารกด้วยคะแนนท่าทางก็มีความสัมพันธ์ต่อคะแนน  
พัฒนาการด้านการเคลื่อนไหวเมื่อทารกอายุ 4 เดือน จึงอาจกล่าวได้ว่าการคัดกรองในช่วงแรก  
ของชีวิตในกลุ่มทารกเหล่านี้จะเป็นหนทางในการจำแนกทารกกลุ่มที่จะมีพัฒนาการล่าช้าที่ 4  
เดือน ทำให้การให้การกระตุนพัฒนาการในทารกกลุ่มนี้สามารถกระทำได้เร็วกว่า 4 เดือนซึ่ง  
เป็นประโยชน์ในการป้องกันการพัฒนาปัญหาของพัฒนาการด้านอื่นๆที่อาจตามมา หากทารกได้  
รับการรักษาที่ช้าเกินไป

จึงสามารถสรุปได้ว่า การประเมินท่าทางทารกด้วยแบบประเมินท่าทางมีประโยชน์ในด้าน  
การคัดกรองระดับความเสี่ยงของทารก และสามารถใช้ในการทํานายพัฒนาการด้านการเคลื่อน  
ไหวเมื่อทารกอายุ 4 เดือนได้เป็นอย่างดี การศึกษานี้จึงเป็นการสนับสนุนคุณค่าของการทํานายผล  
ระยะสั้นของท่าทางของทารกต่อพัฒนาการด้านการเคลื่อนไหว การศึกษาผลระยะยาวของท่าทาง  
ของทารกต่อการเคลื่อนไหวในทารกที่อายุมากกว่า 4 เดือน เช่นที่ 1 หรือ 3 ปี จึงเป็นประเด็นที่น่า  
จะมีการพิสูจน์ต่อไป

## หนังสืออ้างอิง

1. Foulder-Hughes L, Cooke R. Do mainstream schoolchildren who were born preterm have motor problems? *British Journal of Occupational Therapy* 2003; 66: 9-16.
2. Tideman E. Longitudinal follow-up of children born preterm: cognitive development at age 19. *Early Human Development* 2000; 58: 81-90.
3. Dodd V. Gestational Age Assessment. *Neonatal Network* 1996; 15: 27-36.
4. Gutbrod T, Wolke D, Soehne B, Ohrt B, Riegel K. Effects of gestation and birthweight on the growth and development of VLBW SGA infants: a matched group comparison. *Arch Disease in Childhood* 2000; 82: F208-F214.
5. Majnemer A, Riley P, Shevell M, Birnbaum R, Greentone H, Coates A. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequenlae in preterm survivors. *Dev Med Child Neurol* 2000; 42: 53-60.
6. Wright J. ALcohol consumption, pregnancy and low birth weight. *Lancet* 1983; 1: 663-665.
7. Sheahan M, Brockway N: The high-risk infant. In: Tecklin J, ed. *Pediatric Physical Therapy*, 2 ed. Philadelphia: J.B Lippincott company, 1994; 56-88.

8. Davidson E, Hobel C. POPRAS: A Guide to Using the Prenatal, Intrapartum, Postpartum Record. Torrance, California: South Bay Regional Perinatal Project Professional Staff Association, 1978.
9. Lekskulchai R. Evaluation of motor development and its relationship to postural measures in Thai infants born preterm. PhD Thesis. Perth: Curtin University of Technology; 2001.
10. Bly L. Motor skills acquisition in the first year : an illustrated guide to normal development. Tucson: Therapy Skill Builders, 1994.
11. Baker M, Banfield C, Kilburn D, Shufflebarger K. Controlling movement: a therapeutic approach to early intervention. Gaithersburg: Aspen Publishers, 1991.
12. De Groot L, Van der Hoek A, Hopkins B, Touwen B. Development of the relationship between active and passive muscle power in preterms after term age. *Neuropediatrics* 1992; 23: 298-305.
13. Plantinga Y, Perdock J, De Groot L. Hand function in low-risk preterm infants: its relation to muscle power. *Dev Med Child Neurol* 1997; 39: 6-11.
14. Van Beek Y, Hopkins B, Hoeksma J, Samson J. Prematurity, posture and the development of looking behaviour during early communication. *J Child Psychol Psychiatry* 1994; 35: 1093-1107.

15. Wijnroks L, Kalverboer A: Early mother-child interaction and quality of attachment in preterm infants. In: Koops W, Hoeksema J, Van den Boom D, eds. *Development of interaction and attachment: traditional and non-traditional approaches*. Amsterdam: North Holland Publishers, 1997; 109-124.
16. Forslund M. Growth and motor performance in preterm children at 8 years of age. *Acta Paediatr* 1992; 81: 840-842.
17. Hadders-Algra M, Huisjes H, Touwen B. Preterm or small-for-gestational-age infants: neurological and behavioural development at the age of 6 years. *Eur J Pediatr* 1988; 147: 460-467.
18. Largo R, Pfister D, Molinari L, Kundu S, Lipp A, Duc G. Significance of prenatal, perinatal and postnatal factors in the development of AGA preterm infants at five to seven years. *Dev Med Child Neurol* 1989; 31: 440-456.
19. Saigal S, Szatmari P, Rosenbaum P, Campbell D, King S. Cognitive abilities and school performance of extremely low birth weight children and matched term control children at 8 years: a regional study. *J Pediatr* 1991; 118: 751-760.
20. Soorani-Lunsing R. Neurobehavioural relationships and puberty: another transformation. *Early Human Development* 1993; 18: 137-149.
21. Gorga D, Martin Stern F, Ross G, Nagler W. Neuromotor development of preterm and full-term infants. *Early Human Development* 1988; 18: 137-149.

22. Carmichael K, Burns Y, Gray P, O'Callaghan M. Neuromotor behavioural assessment of preterm infants at risk for impaired development. *Australian Journal of Physiotherapy* 1997; 43: 101-107.

23. Lacey J, Henderson-Smart D, Edwards D. A longitudinal study of early leg postures of preterm infants. *Develop Med Child Neurol* 1990; 32: 151-163.

24. Lekskulchai R, Cole J. Scarf ratio: a method of measuring the Scarf sign in preterm born infants. *Australian Journal of Physiotherapy* 2000; 46: 85-90.

25. Cohen J. *Statistical power analysis for the Behavioural Sciences.*, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

26. Konishi Y, Takaya R, Kimura K, et al. Development of posture in prone and supine positions during the prenatal period in low risk preterm infants. *Archives Disease in Childhood* 1994; 70: F188-F191.

27. Monterosso L, Coenen A, Percival P, Evans S. Effect of a postural support nappy on "flattened posture" of the lower extremities in very preterm infants. *Journal of Pediatrics and Child Health* 1995; 31: 350-354.

28. Valvano J, DeGangi G. Atypical posture and movement findings in high risk pre-term infants. *Physical and Occupational Therapy in Pediatrics* 1986; 6: 71-81.

29. Vles J, Kingma H, Caberg H, Daniels H, Casaer P. Posture of low-risk preterm infants between 32 and 36 weeks postmenstrual age. *Develop Med Child Neurol* 1989; 31: 191-195.

30. Wright BD, Linacre JM, Heinemann AW. Measuring functional status in rehabilitation. *Physical Medicine and Rehabilitation Clinics of North America* 1993; 4: 475-491.

31. Rasch G. Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press, 1980.

32. Linacre JM. Winsteps Rasch-Model computer program version 3.36. Chicago: MESA Press, 2002.

33. Portney LG, Watkins MP. Foundations of clinical research: Applications to practice, 2 ed. Norwalk: Appleton&Lange, 2000.

34. Piper M, Mazer B, Silver K, Ramsey M. Resolution of neurological symptoms in high-risk infants during the first two years of life. *Develop Med Child Neurol* 1988; 30: 26-35.

35. Sweeney J, Gutierrez T. Musculoskeletal implications of preterm infants positioning in the NICU. *J Perinat Neonat Nurs* 2002; 16: 58-70.

Output จากโครงการวิจัยที่ได้รับทุนจากสว.

## 1. ผลงานตีพิมพ์ในวารสารนานาชาติ

ยังไม่ได้ตีพิมพ์ แต่ได้เขียนบทความเห็นแล้ว และส่งไปยังวารสาร Physical Therapy ซึ่งเป็นวารสารระดับแนวหน้าของวิชาชีพ ซึ่งมีมาตรฐานสูงสุดในการพิจารณาผลงานวิจัย เพื่อพิจารณาซึ่งทาง editorial board ได้ review แล้ว และแนะนำให้ทำการแก้ไขปรับปรุง ผู้วิจัยได้ทำการแก้ไขตามที่ editorial board แนะนำ และส่งให้นักวิจัยเพิ่มเติม ซึ่งนักวิจัยเพิ่มเติมได้แก้ไขตามที่ได้รับ แล้วส่งกลับไป ซึ่งขณะนี้กำลังรอให้นักวิจัยเพิ่มเติมได้รับการอนุมัติ แต่จะขอเวลาอ่านโดยละเอียดต่อไป ซึ่งขณะนี้นักวิจัยเพิ่มเติมได้ติดภารกิจการสอน การแต่งตัว และเป็นวิทยากรงานประชุมระดับชาติจึงไม่มีเวลาอ่านให้ได้ ทำให้การเขียนและส่งบทความวิจัยเรื่องที่ 2 ไปให้วารสารนานาชาติพิจารณา ต้องรอไปก่อน เพราะเรื่องที่ 2 เป็นเรื่องที่ต่อเนื่องจากเรื่องที่ 1 และจะต้องมีการอ้างอิงซึ่งกันและกัน อย่างไรก็ตามผู้วิจัยได้ลองวิเคราะห์ค่าทางสถิติสำหรับบทความที่ 2 อย่างคร่าวๆ แล้วก็พบว่าได้ผลการศึกษา ตรงตามสมมติฐานการวิจัยที่ตั้งไว้ จึงได้เขียนผลการศึกษาของหัวส่องบทความรวมกันในบทคัดย่อและเนื้อหางานวิจัยในช่วงต้นของรายงานฉบับนี้ และคณานักวิจัยมีความมุ่งมั่นที่จะตีพิมพ์ผลงานวิจัยหัวส่องเรื่องนี้ ในวารสารชั้นนำระดับนานาชาติซึ่งเป็นวารสารที่เป็นที่มุ่งหวังของนักวิจัยหลายท่ามทั่วโลก จึงต้องอาศัยความพยายามและใช้เวลามาก

## 2. การนำผลงานวิจัยไปใช้ประโยชน์

ผลการศึกษาครั้งนี้สามารถนำมาใช้ประโยชน์ในด้านการเรียนการสอน และพัฒนาเทคนิคการตรวจประเมินทางคลอดก่อนกำหนดในทางคลินิก

ກາດພັນວັກ 1:

Manuscript

Lekskulchai R, Campbell, SK and Akamanon, C. Postural Assessment of Infants Born Preterm with Varying Risks for Impaired Development. Phys Ther (under review).

# Postural Assessment of Infants Born Preterm with Varying Risks for Impaired Development

Lekskulchai R, Campbell, SK and Akamanon, C

## ABSTRACT

**Background and Purpose.** Preterm infants encounter the outside womb environment with different posture when compared with their full-term counterparts. However, degree of differences varies greatly depending on many factors such as conditions occurring during early life. This study aims to evaluate effect of risk factors on posture at term equivalent age. **Subjects.** A total of 138 preterm infants stratified into three risk groups, participated in this study. **Methods.** Number of risk factors was recorded for each infant. At term, their posture was scored on a postural assessment form. **Results.** One-way ANOVA revealed significantly different posture among the three risk groups. **Discussion and Conclusion.** Results showed that infants experienced different levels of risk factors during their early life manifested with different quality of postural development at term. Since this study focuses on concurrent effect of risk factors on posture, longer-term consequences of these two variables on motor development of preterm infants are further points of interest.

**Keywords:** Assessment, Infant, Posture, Risk

Infants born prior to 37 completed weeks of gestation are considered to be preterm and those below 33 weeks are very preterm. Previously, birth weight was used to define

prematurity i.e. infants born weighing less than 2500 grams were considered to be low birth weight (LBW), those weighing less than 1500 grams to be very low birth weight (VLBW) and those weighing less than 1000 grams to be extremely low birth weight (ELBW). However, weight does not always reflect the degree of prematurity, for example, infants born to mothers with diabetic may be heavier at 32 weeks than infants who have experienced poor intrauterine growth but born at 38 weeks <sup>1</sup>. Therefore, at present, a complete definition associated with preterm development includes both birth weight and gestational age of the infant <sup>2-4</sup>. Since infants with a variety of birth weight and gestational age could comprise a preterm infant population, great variation in degrees of prematurity of bodily systems could be found in this population. This is a reason why the preterm infant population is considered a heterogeneous population in terms of later developmental outcomes <sup>4, 5</sup>.

Many events occurring during pre-, peri- and post-natal natal periods of preterm infants have been documented as risk factors affecting their development later in life <sup>1, 2, 4, 5</sup>. Maternal health status such as age, hypertension, preterm rupture of membranes as well as habit during pregnancy such as stress, smoking, drug and alcohol usage, have been studied as factors affecting infants' development <sup>1, 6</sup>. Neurological, respiratory, metabolic and cardiovascular conditions of infants have also been listed as risk factors <sup>1</sup>. <sup>7</sup>. Additionally, research suggested that events occurring after hospitalization such as environmental factors have potential risks for later development of preterm infants <sup>1</sup>.

Factors such as parent's education, marital status, living place, family salary and number of people in family were included as risk factors for this population <sup>8, 9</sup>. Since there are many potential risk factors cited in the literature, selection of significant factors for a research purpose is dependent on the study's aim and criteria.

Physical Therapists working with preterm born infants must be able to answer and console the infants' parents on how much risk for later problems the infants might face in the future. Concern on later developmental outcomes of the infants often shows in terms of worry and questions to Physical Therapists. When answering the parents and other medical personnel, it is needed to reference to any obvious outcomes that could be proved to relate with infants' previous risks. The outcomes can be any accurate signs but it needs to be easy enough to point out to them, for instance posture and motor development. To quantify risks with reference to subsequent outcomes, infants are often grouped into either "at-risk" or "no risk". Concerning the answer to parents, if the answers are only "at risk" or "no risk", it would be difficult to accept that the infants are at risk and it is also very risky to say that the infants have no risk for later problems at all. Therefore, 3 levels of risk factors i.e. "not at-risk", "suspect" and "at-risk" are more appropriate to reduce these concerns.

Even though, it is still controversial that how early is a developmental outcome prediction should be correctly performed, a trend to study in very young infants is worthwhile. During early life, a prerequisite for motor mastery is an appropriate postural

development<sup>10</sup>. Appropriate and inappropriate postures for learning of motor skill<sup>11</sup> or handling<sup>7</sup> have been defined as guides for dealing with very young infants. In preterm infant population, research indicated that postural abnormalities such as hyperextension of neck and trunk could interfere with development of arm and hand function<sup>12, 13</sup>, social interaction and communication<sup>14</sup> and cognitive development<sup>15</sup>. Additionally, evidences supported predictive value of postural abnormalities to later learning disorders, coordination and balance problems in school age and adolescence preterm children<sup>16-20</sup>. Although, neural mechanism underlying postural abnormalities has not yet been elucidated, it has been suggested that disturbances in muscle tone regulation, mainly affecting axial muscles, are responsible for abnormal posture in preterm infants<sup>12, 21</sup>. Therefore, to study subsequent effect of risk factors in very young infants, postures of neck and extremities seem to be appropriate outcome measures.

Posture can be assessed either qualitatively or quantitatively. Posture assessed qualitatively is easy to record and very less time consuming. However, qualitative record of posture has a limitation in comparing changes over time and in consistency and repeatability of assessments across assessors and across time. Posture measured quantitatively has a strong point in its ability to report changes across time so that monitoring changes due to intervention across different treatment groups is possible. In clinic, however, how much changes the infants have developed may not clearly understand by parents and other medical personnel. Beside they only want to know

whether the infants are at-risk for later developmental problems or not. Therefore, assessment that combines the advantages of qualitative and quantitative measures i.e. easy-to-record but having quantitative information to communicate meaningfully with parents and other medical personnel would be of great value. According to the previous studies, postures of specific parts of body measured in the early life can be considered as “good” indicators for further motor development of preterm born infants. For instance, scarf sign, neck posture, shoulder, pelvic, hip and leg postures have been found as appropriate variables in identifying preterm infants who would further develop impaired motor development <sup>9, 22-24</sup>. However, studies have been conducted and reported the results for each variable separately. Significance of these postures may be emphasized if significant postures could be gathered in a ready-to-use assessment form. Furthermore, if the assessment form could have a rating scale in which the score can indicate subsequent status of the infants’ motor performance or disability, the assessment form would be of great value in both clinic and research purposes.

Therefore, this study aims to present a newly developed postural assessment form for preterm infants at term equivalent age, namely PA-term Form, using longitudinal data on postural development of preterm infants from the literature and to study value of the PA-term Form in terms of discriminating preterm infants who experienced three levels of risk factors i.e. “Not at-risk”, “Suspect” and “At-risk”

## METHODS

### Number of risk factors

Sixty-two risk factors affecting subsequent development of preterm infants as indicated in the literature<sup>1, 2, 4-9</sup> were selected for the present study. Information from medical record and a parent interview are required to identify the number of risk factors. The 62 risk factors are classified into 3 groups i.e. 26 maternal factors, 24 infant factors and 12 environmental factors. The numbers of risk factors are ranged into 3 categories to classify infants into 3 risk categories i.e “Not at-risk”, “Suspect” and “At risk” groups. Infants with the numbers of risk factors of less than 20 were grouped as “Not at-risk” infants, those with the numbers of risk factors falling between 20 and 40 were classified as “Suspect” and those with the numbers of risk factors greater than 40 were identified as “At-risk” infants.

Intra- and inter-rater reliability of identifying the numbers of risk factors in 20 preterm infants were estimated and found that the intra-rater reliability of the first author and inter-rater reliability between the first author and a physical therapy research assistant were  $ICC (3,1) = 0.945$ ,  $ICC (2,1) = 0.926$ ,  $p < .001$ , respectively.

### Postural Assessment Form

A postural assessment form for preterm infants at term equivalent age (PA-term Form) was developed and modified from longitudinal data on postural development of preterm infants<sup>9, 23-29</sup>. The PA-term form is formatted on one sheet paper, with picture for each score on each item. There are 14 items on this form, of which 7 items assess posture of

neck and upper extremities and 7 items assess posture of lower extremities. Each item scores on a 3-point scale i.e. 0-2. The higher score means a more appropriate posture for preterm infant at term equivalent age. The highest score possible is 28.

Intra- and inter-rater reliability of the PA-term Form in 20 preterm infants were estimated and found that the intra-rater reliability of the first author and inter-rater reliability between the first author and a physical therapy research assistant were ICC (3,1) = 0.937, ICC (2,1) = 0.915,  $p < .001$ , respectively.

### **Subjects**

Sample size was estimated according to the equation described by Cohen (1988)<sup>25</sup>. From the estimation, 44.76 infants were required for each risk group to meet the power of 0.9. Therefore, a total of 135 infants (45 infants  $\times$  3 groups) were intended to recruit for this study. The method of assigning infants to one of the risk groups was dependent on the infant' number of risk factors. Infants with the numbers of risk factors less than 20 were grouped as "Not at-risk" infants, those with the numbers of risk factors falling between 20 and 40 were classified as "Suspect" and those with the numbers of risk factors greater than 40 were identified as "At-risk" infants.

Parents of infants born prior to 37 weeks of gestation without genetic and physical abnormalities were contacted. Study protocol was explained to the parents and if the parents agreed to allow their infants to participate in this study, one or both parents were asked to sign the inform consent. Then the number of risk factors of the infant was

obtained from the infant's medical record and a parent interview. This number was used to identify the infant to a risk group. However, the number of risk factors of 25 infants could not be obtained at the first visit because some information was not available at this time i.e. Length of hospital stay, successful breast-feeding and pacifier needed during hospitalization. Subject recruitment had to be continued even though the 135<sup>th</sup> infant was enrolled because the 25 infants might be classified in any risk groups. As a result, there were 45, 48 and 45 infants included in the "not at-risk", "suspect" and "at-risk" groups, respectively. Although there were 3 extra infants in the "suspect" group, all 48 infants in the group were used for analysis. Thus the total subjects included in this study were 68 boys and 70 girls with the average gestational age of 32.14 weeks (SD= 2.23, range 27-36). Descriptive data of the subjects classified by risk groups are shown in

Table 1.

Table1: Descriptive data of the infants classified by risk groups

| Group       |     |      | Number of |      |     | Gestational Age (weeks) |         | Birth Weight (grams) |      |      |
|-------------|-----|------|-----------|------|-----|-------------------------|---------|----------------------|------|------|
|             | Boy | Girl | Mean      | SD   | Min | Max                     | Mean    | SD                   | Min  | Max  |
| Not at-risk | 20  | 25   | 32.73     | 2.03 | 28  | 36                      | 1748.00 | 303.40               | 1160 | 2480 |
| Suspect     | 25  | 23   | 32.27     | 2.02 | 28  | 36                      | 1632.67 | 326.09               | 1120 | 2450 |
| At-risk     | 23  | 22   | 31.64     | 2.41 | 27  | 35                      | 1500.44 | 328.49               | 850  | 2410 |

### **Study Protocol**

After obtaining the written consent from parents, the first author reviewed the infant's medical record and conducted a short parent interview. Information was recorded in a risk score sheet. A physical therapist research assistant was responsible in counting all infants' number of risk factors in order to stratify the infants into "not at-risk", "suspect" or "at-risk" group and to monitor the number of infants in each risk group to indicate the time that subject recruitment could be terminated. Then the infants were scheduled to see the first author again when they reached term equivalent age. At this second visit, infants' posture was measured and scored on the PA-term Form.

### **Data Analysis**

Item scores of PA-term form were summed to obtain the "Total postural score". Since total postural scores are derived from the summations of item categorical scores, analyses of these data using linear statistic are inappropriate <sup>30</sup>. However, the summation of item scores is very convenient for use in clinic. Therefore, data on the total scores were presented in this study and analyzed using non-parametric statistic. To eliminate limitation on using categorical scale data, computer software based upon Rasch analysis <sup>31</sup> was employed to convert all categorical scores into continuous, linear measures. The software program selected to utilize in this study was WINSTEPS Rasch Measurement version 3.36 <sup>32</sup>. The item scores of PA-term form were entered the program to obtain the "Postural Measure". Additionally, the item scores of the two

subscale of the PA-term form i.e. the Neck and Upper extremity posture and Lower extremity posture were converted to linear measures to obtain Neck and UE Measure and LE Measure, respectively.

## RESULTS

The PA-term form was developed and modified based on previous research studies, Each item comprised the form has its own value, however, when including many items in one form, internal consistency is required to be evaluated. Pearson product moment correlation was utilized to evaluate this issue. Results revealed that the coefficient between the “Neck and UE Measure” and the LE Measure was 0.926, ( $p < .001$ ), which can be ensured the internal consistency of the PA-term Form.

To examine whether number of risk factors that infants have experienced during the neonatal period would associate with their posture at term equivalent age, Pearson product-moment correlation was employed. Results showed that number of risk factors had negative significant correlations with Neck and UE Measure, LE Measure and Postural Measure (Table 2).

Table 2: Pearson product moment correlation coefficients between numbers of risk factors and Neck and Upper extremity Measure, Lower extremity Measure and Postural Measure

|                        | Neck and Upper extremity Measure | Lower extremity Measure | Postural Measure |
|------------------------|----------------------------------|-------------------------|------------------|
| Number of risk factors | -.951*                           | -.959*                  | -.976*           |

\*p < .0001

To assess whether infants in different risk categories obtain different Postural Measure, a One-Way ANOVA was employed. Result revealed a significant difference among the Postural Measure of infants in the three risk groups  $F_{(2,135)} = 440.20$ , (p<.001). Scheffe multiple comparisons showed that Postural Measure of all pairs differed significantly from each other (Table 3). Mean differences revealed that infants in “Not at-risk” had higher Postural Measure than infants in “Suspect” and “At-risk” groups, and infants in the “Suspect” had higher Postural Measure than infants in the “At-risk” group (Table 3).

Table 3: Scheffe Multiple Comparisons for Postural Measure with risk groups as independent variable

| (I) GROUP   | (J) GROUP | Mean     |             | Standard Difference (I-Error<br>J) | p     | 95% Confidence Interval |       |  |  |
|-------------|-----------|----------|-------------|------------------------------------|-------|-------------------------|-------|--|--|
|             |           |          |             |                                    |       | Lower Bound             |       |  |  |
|             |           | Standard | Upper Bound |                                    |       |                         |       |  |  |
| Not at-risk | Suspect   | 35.44    | 2.27        | <.001                              | <.001 | 29.82                   | 41.06 |  |  |
| Not at-risk | At-risk   | 68.42    | 2.30        | <.001                              | <.001 | 62.71                   | 74.13 |  |  |
| Suspect     | At-risk   | 32.98    | 2.26        | <.001                              | <.001 | 27.36                   | 38.60 |  |  |

In clinic, it is not convenient for users to convert the total postural score into a continuous, linear measure. The total postural score is easier to calculate in order to communicate with the infant's parent or other medical personnel. To ease with this purpose, ranges of postural score were identified based on the total number of scores in the PA-term Form. Infants with the total postural scores of greater than 19 are classified as "Optimal" group, and those with the score between 10-19 and of less than 10 are identified as "Suspect" and "Abnormal" groups, respectively.

To examine whether the postural score ranges identified here correctly explains previous risk events that the infants had experienced, comparison between classifications of the infants based on risk factors and PA-term form was performed. Results showed that there were 11 infants (7.97 %) that the two forms disagreed (Table

4). Percent agreements between the infant's classifications based on risk factors and PA-term Form are summarized in Table 4.

**Table 4: Percent agreements between number of risk factors and Posture score within three risk categories**

| Number of risk factors | Postural Score |         |          | Percent agreement |
|------------------------|----------------|---------|----------|-------------------|
|                        | Optimal        | Suspect | Abnormal |                   |
| Not at-risk            | 45             | -       | -        | 100               |
| Suspect                | 8              | 40      | -        | 83                |
| At risk                | -              | 3       | 42       | 93                |

## DISCUSSION

When developing assessment forms that comprised many items, concern is emphasized on how well all items are inter-correlated. If all items assess the same construct, summing of the items scores could represent performance or quality of the measuring construct<sup>33</sup>. The PA-term form has been proved of its internal consistency, since the results revealed that posture of neck and upper extremity correlated well with posture of lower extremity. This is not surprising since structure of the whole body is inter-linked, poor development of upper extremity would lead to less appropriate development of lower extremity. Infants with asymmetrical development of posture still received accordant scores on both the Neck and UE measure and LE measure. Therefore, it can be assured that the PA-term form could represent level of age-appropriate posture of

preterm infants. This can be considered as the first step to develop the easy-to record PA-term form for use in clinic by physical therapists who are new to work with preterm infants.

As stated in the literature, preterm infants are susceptible to multisystem disorders and illness, which may affect their chances of subsequent development and survival <sup>1</sup>.

Results from the present study indicated that not all preterm infants would develop postural problems at term equivalent age. Since preterm infants encountered different levels of risk factors would develop varying degrees of age appropriate postural development at term. Infants with greater number of risks during neonatal period developed less appropriate posture of neck, upper and lower extremities at term equivalent age when compared with those with fewer risk factors. When infants were categorized into 3 risk groups, results were consistent with the correlation outcomes, i.e. infants classified in “at-risk” group received least postural measures at term. Postural measures of “not at-risk” group were highest among the 3 risk groups.

To ease with clinical use of the PA-term form, ranges of postural scores were defined in order to compare the classifications with risk groups. It was found that the PA-term form could completely identified infants who had experienced high risk factors during neonatal period. There were 8 infants whose postural scores falling within “optimal” range but had experienced “suspect” level of risk factors. Likewise, 3 “at-risk” infants were misclassified as “suspect” for inappropriate postural development at term.

According to these results, the “suspect” level of risk and posture was the main level of misclassification. Infants in the “suspect” group may be during transient period, as the age increased, they may move to either “normal” or “abnormal” level <sup>34</sup>. Therefore, it is not surprised that the “suspect” level is easy to misclassify. However, the advantage of having “suspect” level is to eliminate the possibility of over-identified infants who may not actually need intervention and not identified those who actually need intervention. Parents of infants in the “suspect” level would feel less worry and could make their own decision in allowing their infants to receive intervention or not. This is the reason why the researchers still decide to use the 3 levels of classification.

According to previous research reports, risk factors during early life could contribute to later developmental problems <sup>1, 2, 4-9</sup> and postural abnormalities contribute to subsequent developmental problems <sup>9, 22-24</sup>. The present study examined linkage between risk factors and posture, therefore, it may be hypothesized that both risk factors and posture might affect infants’ subsequent development. However, to conclude the hypothesis with more confidence, longitudinal follow-up of the subjects to monitor their later performance is aimed to conduct. Additionally, research conducted using the PA-term Form in other population is worth interest since body position that preterm infants have experienced could affect alignment and shaping of musculoskeletal system <sup>35</sup>. Infants nursed in different positions may receive different postural measures at term equivalent age. Therefore further studies on these issues are suggested.

## CONCLUSION

The PA-term form has been developed for use by physical therapists who are new to work with preterm born infants as the guideline to evaluate and communicate the findings with parents and other medical personnel. In research field, the summation of item scores may not give linear measure of the performance. However, in clinic, the total score derived from summing items scores is less-time consuming and convenient. Therefore, posture presented in this study was analyzed in both the total scores and linear measures. Results revealed accordant outcomes of postural scores and measures. Infants with greater number of risk factors obtained less postural scores as well as less postural measures. Therefore, this study would be the first step to present the PA-term form that has been proved of internal consistency and the scores can be interpreted in terms of total scores and linear measures depending on the purpose of users. Further research is ongoing in following up the infants to evaluate longer-term effect of the risk factors and to evaluate correlation of posture detected at term and later development of the infants.

## Acknowledgements

We would like to thank all of the infants, the parents, medical and nursing staff for helping with this project, and our sincere appreciation is expressed to the Thailand Research Fund for making this research possible.

## REFERENCES

1. Foulder-Hughes L, Cooke R. Do mainstream schoolchildren who were born preterm have motor problems? *British Journal of Occupational Therapy* 2003; 66: 9-16.
2. Tideman E. Longitudinal follow-up of children born preterm: cognitive development at age 19. *Early Human Development* 2000; 58: 81-90.
3. Dodd V. Gestational Age Assessment. *Neonatal Network* 1996; 15: 27-36.
4. Gutbrod T, Wolke D, Soehne B, Ohrt B, Riegel K. Effects of gestation and birthweight on the growth and development of VLBW SGA infants: a matched group comparison. *Arch Disease in Childhood* 2000; 82: F208-F214.
5. Majnemer A, Riley P, Shevell M, Birnbaum R, Greentone H, Coates A. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequenlae in preterm survivors. *Dev Med Child Neurol* 2000; 42: 53-60.
6. Wright J. ALcohol consumption, pregnancy and low birth weight. *Lancet* 1983; 1: 663-665.
7. Sheahan M, Brockway N: The high-risk infant. In: Tecklin J, ed. *Pediatric Physical Therapy*, 2 ed. Philadelphia: J.B Lippincott company, 1994; 56-88.

8. Davidson E, Hobel C. POPRAS: A Guide to Using the Prenatal, Intrapartum, Postpartum Record. Torrance, California: South Bay Regional Perinatal Project Professional Staff Association, 1978.
9. Lekskulchai R. Evaluation of motor development and its relationship to postural measures in Thai infants born preterm. PhD Thesis. Perth: Curtin University of Technology; 2001.
10. Bly L. Motor skills acquisition in the first year : an illustrated guide to normal development. Tucson: Therapy Skill Builders, 1994.
11. Baker M, Banfield C, Kilburn D, Shufflebarger K. Controlling movement: a therapeutic approach to early intervention. Gaithersburg: Aspen Publishers, 1991.
12. De Groot L, Van der Hoek A, Hopkins B, Touwen B. Development of the relationship between active and passive muscle power in preterms after term age. *Neuropediatrics* 1992; 23: 298-305.
13. Plantinga Y, Perdock J, De Groot L. Hand function in low-risk preterm infants: its relation to muscle power. *Dev Med Child Neurol* 1997; 39: 6-11.
14. Van Beek Y, Hopkins B, Hoeksma J, Samson J. Prematurity, posture and the development of looking behaviour during early communication. *J Child Psychol Psychiatry* 1994; 35: 1093-1107.

15. Wijnroks L, Kalverboer A: Early mother-child interaction and quality of attachment in preterm infants. In: Koops W, Hoeksema J, Van den Boom D, eds. *Development of interaction and attachment: traditional and non-traditional approaches*. Amsterdam: North Holland Publishers, 1997; 109-124.
16. Forslund M. Growth and motor performance in preterm children at 8 years of age. *Acta Paediatr* 1992; 81: 840-842.
17. Hadders-Algra M, Huisjes H, Touwen B. Preterm or small-for-gestational-age infants: neurological and behavioural development at the age of 6 years. *Eur J Pediatr* 1988; 147: 460-467.
18. Largo R, Pfister D, Molinari L, Kundu S, Lipp A, Duc G. Significance of prenatal, perinatal and postnatal factors in the development of AGA preterm infants at five to seven years. *Dev Med Child Neurol* 1989; 31: 440-456.
19. Saigal S, Szatmari P, Rosenbaum P, Campbell D, King S. Cognitive abilities and school performance of extremely low birth weight children and matched term control children at 8 years: a regional study. *J Pediatr* 1991; 118: 751-760.
20. Soorani-Lunsing R. Neurobehavioural relationships and puberty: another transformation. *Early Human Development* 1993; 18: 137-149.
21. Gorga D, Martin Stern F, Ross G, Nagler W. Neuromotor development of preterm and full-term infants. *Early Human Development* 1988; 18: 137-149.

22. Carmichael K, Burns Y, Gray P, O'Callaghan M. Neuromotor behavioural assessment of preterm infants at risk for impaired development. *Australian Journal of Physiotherapy* 1997; 43: 101-107.

23. Lacey J, Henderson-Smart D, Edwards D. A longitudinal study of early leg postures of preterm infants. *Develop Med Child Neurol* 1990; 32: 151-163.

24. Lekskulchai R, Cole J. Scarf ratio: a method of measuring the Scarf sign in preterm born infants. *Australian Journal of Physiotherapy* 2000; 46: 85-90.

25. Cohen J. *Statistical power analysis for the Behavioural Sciences.*, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

26. Konishi Y, Takaya R, Kimura K, et al. Development of posture in prone and supine positions during the prenatal period in low risk preterm infants. *Archives Disease in Childhood* 1994; 70: F188-F191.

27. Monterosso L, Coenen A, Percival P, Evans S. Effect of a postural support nappy on "flattened posture" of the lower extremities in very preterm infants. *Journal of Pediatrics and Child Health* 1995; 31: 350-354.

28. Valvano J, DeGangi G. Atypical posture and movement findings in high risk pre-term infants. *Physical and Occupational Therapy in Pediatrics* 1986; 6: 71-81.

29. Vles J, Kingma H, Caberg H, Daniels H, Casaer P. Posture of low-risk preterm infants between 32 and 36 weeks postmenstrual age. *Develop Med Child Neurol* 1989; 31: 191-195.

30. Wright BD, Linacre JM, Heinemann AW. Measuring functional status in rehabilitation. *Physical Medicine and Rehabilitation Clinics of North America* 1993; 4: 475-491.

31. Rasch G. Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press, 1980.

32. Linacre JM. Winsteps Rasch-Model computer program version 3.36. Chicago: MESA Press, 2002.

33. Portney LG, Watkins MP. Foundations of clinical research: Applications to practice, 2 ed. Norwalk: Appleton&Lange, 2000.

34. Piper M, Mazer B, Silver K, Ramsey M. Resolution of neurological symptoms in high-risk infants during the first two years of life. *Develop Med Child Neurol* 1988; 30: 26-35.

35. Sweeney J, Gutierrez T. Musculoskeletal implications of preterm infants positioning in the NICU. *J Perinat Neonat Nurs* 2002; 16: 58-70.

ภาคผนวก 2:

บทความสำหรับการเผยแพร่

“การคัดกรองหารักคลอดก่อนกำหนดด้วยแบบประเมินท่าทาง

ทำให้สามารถจำแนกหารักคลอดเสี่ยงต่อความล่าช้าของพัฒนาการที่ 4 เดือน”

## การคัดกรองทางคุณลักษณะที่สำคัญในกระบวนการประเมินท่าทาง ทำให้สามารถจำแนกทารก กลุ่มเสี่ยงต่อความล่าช้าของพัฒนาการที่ 4 เดือน

ผศ. ดร. ระวีวรรณ เล็กสกุลไชย, มหาวิทยาลัยมหิดล

Professor Suzann K Campbell, PhD, University of Illinois at Chicago

รศ. ชันต์ օคਮานนท์, มหาวิทยาลัยมหิดล

หารกคลอดก่อนกำหนดประกอบด้วยประชากรทารกที่คลอดก่อนที่มารดาจะตั้งครรภ์ครบ 37 สัปดาห์บวบวูณ์ จำนวนทารกเหล่านี้นับวันจะเพิ่มมากขึ้น ทั้งนี้อาจเป็นเพราะความก้าวหน้าทางเทคโนโลยีทางการแพทย์ที่สามารถช่วยชีวิตทารกที่คลอดที่อายุครรภ์น้อยๆ และการเปลี่ยนแปลงของสังคมไทยที่มีความเสี่ยงของการตั้งครรภ์ในหญิงอายุน้อย จากการศึกษาในทารกคลอดก่อนกำหนดชาวไทยจำนวน 138 คน พบร่วมทารกเหล่านี้ แม้จะจัดอยู่ในกลุ่มคลอดก่อนกำหนด เนื่องกัน แต่ทารกมีระดับความเสี่ยงต่อความพิบากติของพัฒนาการที่ไม่เท่ากัน ทารกบางคน คลอดก่อนกำหนดแต่มีพัฒนาการที่สมวัย เข้าโรงเรียนตามปกติได้ แต่บางคนกลับมีความพิการไม่สามารถเคลื่อนไหวและเรียนรู้สิ่งแวดล้อมได้ ทั้งนี้เนื่องจากมีปัจจัยหลายอย่างทั้งในด้านประวัติสุขภาพมารดาขณะตั้งครรภ์ ภาวะแทรกซ้อนทางสุขภาพของทารกเอง และสิ่งแวดล้อมของทารกในช่วงแรกๆ ของชีวิต ที่ล้วนแล้วแต่ส่งผลถึงพัฒนาการของทารกทั้งสิ้น

จากการศึกษาวิจัยที่ผ่านมาในทั้งต่างประเทศ และในประเทศไทยพบว่า ท่าทางของร่างกายทารกที่คลอดก่อนกำหนดมีความแตกต่างจากท่าทางของทารกที่คลอดครบกำหนด เช่น ทารกคลอดก่อนกำหนดมักจะนอนในท่าเหยียดตัวตรง ซึ่งต่างจากทารกคลอดครบกำหนดที่จะนอนในท่าเดี่ยวตัวเรցในมือถ่วงของโลก การประเมินท่าทางของร่างกายทารกคลอดก่อนกำหนดที่จะเป็นหนทางหนึ่งในการคัดกรองทารกที่อาจมีความเสี่ยงต่อความผิดปกติของพัฒนาการในอนาคต ซึ่งจากการศึกษาได้พบว่าท่าทางของร่างกายทารกคลอดก่อนกำหนดที่มีประวัติสูขภาพจัดอยู่ในกลุ่มที่มีความเสี่ยงสูง มีคะแนนท่าทางที่ไม่สมวัยเมื่อทารกมีอายุครบ四周 และเมื่อติดตามทารกเหล่านี้ไปจนอายุครบ 4 เดือน ก็พบว่าทารกที่มีท่าทางของร่างกายที่ไม่สมวัยก็มีพัฒนาการด้านการเคลื่อนไหวที่ล่าช้าด้วย จึงสรุปได้ว่าการประเมินท่าทางของร่างกายทารกเมื่อทารกอายุครบ四周 เป็นเครื่องมือที่ง่ายๆ ไม่ต้องเครื่องมือที่ยุ่งยากซับซ้อนแต่กลับมีประโยชน์ในการจำแนกทารกกลุ่มเสี่ยงออกจากทารกที่ไม่เสี่ยงทำให้สามารถนำทารกมารับการรักษาต่อไปได้อย่างรวดเร็ว ทำให้สามารถให้ความช่วยเหลือทารกให้มีพัฒนาการที่สมวัยได้อย่างทันท่วงที และช่วยป้องกันปัญหาของพัฒนาการด้านอื่นๆ ที่สัมพันธ์กับการเรียนรู้ผ่านชีวิตการค้นคว้าสิ่งแวดล้อมจากการศึกษาที่ผ่านมา ซึ่งสอดคล้องกับแนวความคิดแนวปฏิบัติในการกระบวนการดูแลลูก

ทารกที่สมควรให้ทารกที่มีความเสี่ยงได้รับการกระตุ้นพัฒนาการให้เร็วที่สุดเท่าที่จะทำได้ เพื่อผลที่ดีที่สุดสำหรับทารกและอนาคตของชาติ.