

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อคัดแยกเชื้อแบคทีเรียที่เรียกเคิ่นเพื่อบำบัดน้ำเสียจากโรงงานผักผลไม้ดอง โดยคัดแยกแบคทีเรียที่เรียกเคิ่นจากตัวอย่างน้ำเสียและดินจากโรงงานดองผัก และตัวอย่างอาหารดองเคิ่นในจังหวัดเชียงใหม่ สามารถแยกแบคทีเรียที่เรียกเคิ่นได้จำนวน 34 ไอโซเลต เมื่อนำเชื้อทั้งหมดมาทดสอบความสามารถในการเจริญของเชื้อในอาหารที่มีความเคิ่น โดยทำการเลี้ยงเชื้อในอาหาร Nutrient broth ที่มีความเข้มข้นของเกลือเท่ากับ 0 - 25 เบอร์เซ็นต์ (w/v) ผลการทดลองสั้นตอนนี้สามารถคัดเลือกเชื้อแบคทีเรียที่เรียกเคิ่นที่ทนความเคิ่นได้ในช่วงกว้างจำนวน 10 ไอโซเลต หลังจากนั้นนำเชื้อที่คัดเลือกทั้ง 10 ไอโซเลต มาเลี้ยงในน้ำเสียจากโรงงานผักดอง 3 สัปดาห์และตรวจประสิทธิภาพการลดค่า FCOD และ BOD ผลการทดลองพบว่า S_7B_3 , W_3B_1 และ S_8B_1 มีประสิทธิภาพในการลดค่าซีไอดีได้ดีที่สุด คือจาก 7,920 มิลลิกรัมต่อลิตร เป็น 857, 1,118 และ 1,324 มิลลิกรัมต่อลิตร ตามลำดับ และลดค่าบีไอดี จาก 6,300 มิลลิกรัมต่อลิตร เป็น 686, 894 และ 1,059 มิลลิกรัมต่อลิตร ตามลำดับ การทดสอบการจำแนกชนิดของแบคทีเรียพบว่า เชื้อรหัส W_3B_1 , S_7B_3 และ S_8B_1 จัดอยู่ในสายพันธุ์ *Bacillus cereus*, *Pseudomonas* และ *Erwinia cupripedii* ตามลำดับ หลังจากนั้นทำการทดสอบ pH และความเข้มข้นของน้ำเสียของโรงงานดองผักที่เหมาะสมกับเชื้อทั้ง 3 ไอโซเลต พบว่า pH ที่เหมาะสมของ *Bacillus cereus* เท่ากับ 6 และ *Pseudomonas fluorescens* กับ *Erwinia cupripedii* เท่ากับ 7 ความเข้มข้นของน้ำเสียที่เหมาะสมกับเชื้อทั้ง 3 ไอโซเลตเท่ากับ 100 % การทดสอบประสิทธิภาพการบำบัดน้ำเสียของเชื้อทั้ง 3 ไอโซเลต ที่เตรียมในรูปผงพบว่ามีประสิทธิภาพในการบำบัดน้ำเสียได้ใกล้เคียงกับเชื้อที่เตรียมในรูปของเหลว

Abstract

The objective of this research is to isolate salt-tolerant bacteria for pickling-wastewater treatment. Salt-tolerant bacteria were isolated from wastewater and soil samples from pickle factories, and from salted food samples, Chiang Mai, Thailand. Thirty-four bacterial isolates were achieved. Growth of all isolates in different salt concentrations (0-25 % (w/v)) was tested. Ten isolates with the broad range of salt-tolerant property were selected and cultured in pickling wastewater for three weeks. The efficiency of the isolates in wastewater treatment was measured by reduction of FCOD and BOD. Three potential isolates; S₇B₃, W₃B₁, and S₈B₁ were found to reduce FCOD from 7,920 mg/L to 857, 1,118, and 1,324 mg/L, and BOD from 6,300 mg/L to 686, 894, and 1,059 mg/L, respectively. The three isolates, S₇B₃, W₃B₁, and S₈B₁ were identified as *Bacillus cereus*, *Pseudomonas fluorescens*, and *Erwinia cupripedii*, respectively. The optimum pH and pickling-wastewater concentration for each isolate were determined. The optimum pH was 6 for *Bacillus cereus*, and 7 for *Pseudomonas fluorescens* and *Erwinia cupripedii*. The optimum wastewater concentration for all three isolates was 100 %. The powder preparations of the three isolates were found to be as efficient as liquid preparations in pickling-wastewater treatment.