บทคัดย่อ

ชื่อโครงการวิจัย การพัฒนาแหล่งกำเนิดรังสีเอ็กซ์ที่มีห้วงในเรือนเฟมโตวินาที

ผู้วิจัย ดร. จิตรลดา ทองใบ (เศรษฐกร) และ ศ.ดร. ถิรพัฒน์ วิลัยทอง

บทคัดย่อ

การพัฒนาแหล่งกำเนิดอิเล็กตรอนและ โฟตอนห้วงเฟมโตวินาที มีความสำคัญอย่างยิ่งต่อการ ศึกษาทางด้านวิทยาศาสตร์ของปรากฏการณ์ที่เกิดในช่วงเวลาสั้น ทั้งนี้ อิเล็กตรอนห้วงสั้นดังกล่าว สามารถนำไปใช้ในการศึกษาเชิงใดนามิคของระบบในสเกลเฟมโตวินาที หรือนำไปใช้ผลิตรังสีแบบ พัลส์ที่มีห้วงสั้นเช่นเดียวกับห้วงของอิเล็กตรอน สูนย์วิจัยนิวตรอนพลังงานสูง มหาวิทยาลัยเชียงใหม่ ได้พัฒนาระบบผลิตอิเล็กตรอนพลังงาน 15-17 ล้านอิเล็กตรอนโวลท์ ที่มีความยาวห้วงในเรือนเฟมโต วินาที ซึ่งระบบประกอบด้วย ปืนอิเล็กตรอนแบบอาร์เอฟ แม่เหล็กบีบแบบแอลฟา เครื่องเร่งอนุภาค เชิงเส้น และระบบลำเลียงอิเล็กตรอน ระบบผลิตดังกล่าวสามารถผลิตอิเล็กตรอนจากปืน ด้วยกระแส ประมาณ 900 มิลลิแอมแปร์ ด้วยพลังงานสูงสุด 3 ล้านอิเล็กตรอนโวลท์ กระแสของลำอิเล็กตรอนที่ ผ่านการกรองพลังงานในแม่เหล็กแบบแอลฟามีค่าประมาณ 400 มิลลิแอมแปร์ และจะได้กระแส ประมาณ 150 มิลลิแอมแปร์ หลังจากผ่านเครื่องเร่งอนุภาค สามารถตรวจวัดสัญญาณของรังสีใต้แดง ย่านไกลที่ผลิตจากลำอิเล็กตรอนในรูปของรังสีทรานสิชันแบบอาพันธ์ได้ ซึ่งผลดังกล่าวแสดงให้เห็น ว่าความยาวของห้วงอิเล็กตรอนที่เป็นแหล่งกำเนิดของรังสีจะต้องสั้นพอ หรือน้อยกว่า 10 พิโควินาที

เมื่อนำลำอิเล็กตรอนพุ่งตรงออกจากหน้าต่างสแตนเลส มายังสถานีทดลองผลิตรังสีเอ็กซ์ ตรวจพบการเรื่องแสงเนื่องจากรังสีเอ็กซ์ ของฉากเรื่องแสง การวิเคราะห์สเปคตรัมของรังสีเอ็กซ์ใน ช่วง 1-30 กิโลอิเล็กตรอนโวลท์ ตรวจพบพีค K_{α} ของ นิเกิล L_{α} และ L_{β} ของ ตะกั่ว และ K_{α} ของโม ลิบคินัม ที่น่าจะเกิดจากการกระตุ้นวัสคุในบริเวณห้องเครื่องเร่งให้อยู่ในสภาวะกระตุ้น ด้วยรังสีเอ็กซ์ เบรมสตราลุงพลังงานสูงที่แผ่ออกมาจากอิเล็กตรอน

Abstract

Project Title

Development of a femtosecond X-ray source.

Researchers

Dr. Chitrlada Thongbai (Settakorn) and Prof. Dr. Thiiraphat Vilaithong

Abstract

Femtosecond electron and photon pulses are crucial for study dynamic study in ultrafast processes. Such short electron pulses can be used directly for femtosecond time-resolved experiments or used as a source to produce equally short electromagnetic radiation pulses via certain kind of radiation production processes. At the Fast Neutron Research Facility (FNRF), a femtosecond electron source has been developed. The system consists of a thermionic RF-gun, an alpha-magnet, a linear accelerator and beam transport components. Up to 900 mA of beam current with maximum energy of 3 MeV can be obtained from the RF-gun. The beam current ~ 400 mA is available obtained after the energy selection in the alpha magnet and ~ 150 mA was obtained after the beam was accelerated to 15-17 MeV.

At the transition radiation (TR) experimental station, TR was emitted when electrons passed through the interface between vacuum and Al-foil. Since high intensity coherent radiation was emitted at a wavelength longer than the electron-pulse-length, detectable TR signal in the far-infrared suggested that the electron pulses were shorter than 10 picosecond. The short electron pulses were then converted to X-ray pulses at the experimental station located at the end of the beam line. X-rays emitted from electrons were noticed by mean of observing the monitoring screen made from phosphor becoming fluorescent. Analyses of 1-30 keV X-ray spectra displayed characteristic X-ray peaks; K_{α} of nickel, L_{α} and L_{β} of lead and K_{α} of Molybdenum. These characteristic peaks are occurred as consequences of atomic exitation of surrounding materials by Bremsstrahlung X-ray emitted from the electron pulses.