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Abstract

The numerical simulations of the flow and convective heat
transfer over a bluff rectangular plate are performed with the inlet
sinusoidal pulsating flow. The objective of this research is to
study the effect of the sinusoidal pulsating flow over the
recirculation flow and the rate of heat transfer of the rectangular
fin. The computation is performed at the Reynolds number of 250
and 400 by varying the frequency (f = 0.1-0.9) and the amplitude
(A = 0.1-0.6) of the incoming flow. The results found that

sinusoidal pulsating flow perturb the dynamic of the flow and

*Corresponding author

introduce the unsteadiness to the flow. The vortex brake down
and vortex shedding is clearly seen at this low Reynolds number.
The length of the separation bubble is reduced by 76% and the
rate of the averaged total heat transfer is increased by 66.3% for
the case Rey =400, A = 0.1 and f = 0.3. The optimal frequency is
found to be 0.3.
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ABSTRACT

The two-dimensional flow and convective heat
transfer over a rectangular bluff plate are
performed at low and moderate Reynolds numbers
with the incoming pulsating flow. The pulsating
flow is in sinusoidal pattern with varying
frequency and amplitude.

For low Reynolds number regime, varying the
frequency and amplitude of the pulsating flow will
introduce an instability to the flow and force the
flow to become unsteady with the formation of
shedding vortices. The separation bubble is
decreased and the heat transfer rate is enhanced for
a low range of pulsating frequency (f = 0.1-0.3).
Increasing the amplitude, directly decreases the

X, and increases Nu..,, because of a higher free

stream velocity. At moderate Reynolds number,
the shedding vortices characteristic is controlled by
the pulsating frequency. The optimal frequency
which produces a maximum overall heat transfer
rate, is the same value on both Reynolds number
regimes and it is found to be /= 0.3 for 4 = 0.1.
Increasing the pulsating frequency in this regime
creates a temperature concentration downstream
and closed to the wall.

KEYWORDS

separation bubble, enhanced heat transfer, shedding
vortices pulsating flow, separated flow

1. INTRODUCTION

The compact heat exchanger is an important tool
for transferring the heat from one medium to
another medium, which have difference in
temperature. Recently, compact heat exchanger is
widely used in many applications such as
industrials,  buildings,  vehicles, electronic
components etc. Therefore the design of heat
exchanger which suitable for particular application
is very crucial. One factor which is important for
the design is the enhancing of the heat transfer rate.

The development and design of more efficient
compact heat transfer devices has received much
attention in recent years. Most investigations have
focused on rectangular fins, which are commonly
used in compact heat exchangers. Rectangular fins
can be arranged in a variety of ways [1, 2]. Most
arrangements are affected by the complex
formation of vortex patterns and their interactions,
which significantly influence the prediction of heat
transfer coefficients. Consequently, the long
rectangular bluff plate, as shown in Fig. 1, has been
preferred as a configuration for the understanding
of the convection mechanisms and the prediction of
heat transfer performance on rectangular fins.
Since the rectangular bluff plate is sufficiently
long, therefore, the flow over the top and the
bottom of the plate do not interact. For this reason
the computational domain in this investigation will
be considered only half of the plate.
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Fig. 1 Flow over a long rectangular bluff plate

Flow visualization studies of Ota ef al. [3],
found that the flow over a rectangular bluff plate
can be characterized by the Reynolds number,
based on the thickness of the plate; Re, = Ud/v,
where U is the free stream uniform velocity, d is
the thickness of the rectangular plate and v is the
kinematic viscosity. They observed three flow
regimes: (i) laminar separation with laminar
reattachment at low Reynolds number regime; (ii)
laminar separation with turbulent reattachment at
moderate Reynolds number regime; (iii) turbulent
separation with turbulent reattachment at high
Reynolds number regime.

Several experimental investigations have shown
that enhanced heat transfer rates in the separated
flow around a bluff rectangular plate could be
obtained by acoustic excitation or periodic
perturbation of the flow field [4, 5]. Hiller and
Cheery [6] studied the effect of turbulence intensity
of the incoming flow to the separation bubble.
They found that the mean flow field responds
strongly to turbulence intensity. Numerical
simulations have also been previously investigated.
Djilali [7] performed two-dimensional simulations
of the convective heat transfer over a stacked array
of rectangular plate at low Reynolds number and
results was similar to a numerical studies of
Kazeminejad et al. [8]. Suksangpanomrung [9]
performed further in moderate Reynolds number
and preliminary investigated in three-dimensional
flow. It was found that the flow unsteadiness plays
an important role in the prediction of the heat
transfer rate and determines the structure of the
thermal field. In addition, three-dimensionally was
found to enhance the heat transfer rate.

The objectives of this investigation are therefore
focused on reducing of separation bubble and
enhancing heat transfer rate by introducing
incoming pulsating flow. The flow at the inlet of
the domain will be considered in sinusoidal pattern
with varying frequency and amplitude. The
calculation will performed in two-dimensional
domain at various Reynolds numbers.

2. COMPUTATIONAL PROCEDURES

2.1 Governing Equations

The numerical simulations are performed by
solving the time-dependent, continuity, momentum
and energy equations for an incompressible fluid.
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Continuity equations:

Ui _ (1)
ox;

1

Momentum equations:

ou iy _ lop | Ow @
ot ox; P ox; asz.
Energy equations:
or T _ o’ 3)
ot ox; ox?
2.2 Numerical Methods

Simulations are performed on a staggered grid with
a finite volume method. All terms, including
convective fluxes, are discretized using second-
order central differencing and a low storage 3rd
order Runge-Kutta algorithm is used for time
integration. The continuity equation and the
pressure gradient term in the momentum equations
are treated implicitly, while the convective and
diffusive terms are treated explicitly. The resulting
linear system is solved using a direct method.
Temperature variations are assumed to small
enough that fluid properties can be considered
constant resulting the decoupling of the
hydrodynamics equations from the energy transport
equation. Accordingly, the energy equation is
solved explicitly after the hydrodynamics have
been computed.

2.3 Boundary Conditions
The set of equations (1) (2) and (3) are solved in
the computational domain shown in Fig. 2 and
subjected to the following boundary conditions.
e Inlet: free stream pulsating velocity flow and free
stream temperature.
e Outlet: advective boundary condition.
e Top and Bottom: symmetry condition.
e Plate: no-slip condition for velocity and constant
heat flux for energy are imposed.

The free stream pulsating velocity flow at the
inlet is defined as

u = U(1+Asin2 ft) 4)

where U is the free stream uniform velocity, 4 is
the amplitude and f is the frequency. This free
stream pulsating velocity is varied with time, 7. The
free stream temperature is set to 297 K and the
Prandtle number of the simulation is fixed to 0.7.
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Fig. 2 The computational domain for Lu = 5.5d, Ld
= 18d and blockage ratio (Br = d/H) = 5.7%

2.4 Description of the Simulations

The simulations are performed at low and moderate
Reynolds number, corresponding to the steady
laminar and unsteady transitional regime. The
details are summarized in Table 1. Two-
dimensional mesh size is 118 x 68. From
preliminary investigation, this mesh size is fine
enough for both flow regimes. Non-uniform mesh
distributions were used in the x and y directions
and refined around the leading edge of the plate to
the order of 0.01d in order to avoid the numerical
perturbations. The time step in these simulations is
variable and constrained by the CFL condition.

Table 1 Summary of the simulations

Red f A
250 0.1-1.2 0.1-0.6
400 0.1-1.2 0.1
900 0.1-0.4 0.1
1000 0.1-0.6 0.1

3. RESULTS AND DISCUSSIONS
3.1 Low Reynolds Number Regimes

3.1.1 Flow Fields

The simulation was performed at Reynolds
numbers of 250 and 400 for various frequencies
and amplitudes. The recirculation region or the
separation bubble is measured from the point of
separation at the sharp corner to the point that the
flow reattach the surface again or the point where
the wall shear stress is zero. The length of this
separation bubble is called the reattachment length
and used a symbol of x,.

By introducing the incoming pulsating flow to
the domain at both Reynolds numbers, we found
that the flow field become unsteady with the
formation of shedding vortices. This result is
similar to the numerical results of Djilali et al.
[10]. The pulsating flow will introduce instability
to the flow and force the flow to become unsteady.
Fig. 3 shows sample streamlines for every 2 time
interval. It clearly see that vortices are formed and
shed downstream in pseudo-periodic fashion.
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Fig. 3 The streamline at every 2 time interval: Re,
=250,f=0.2and 4 =0.1
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Since the flow becomes unsteady, the
reattachment length is now fluctuated therefore it
will be averaged with time or time-averaged

reattachment length (X, ). In this investigation,

every simulation, the time-averaged is averaged
more than 400 time units. From the calculation, we
found both frequency and amplitude affect the
time-averaged reattachment length. At Re, = 250,

the value of X, for the free stream uniform velocity

is 3.78d. This is similar to the experimental results
of Lane et al. [11] with the percentage error of 3%.

From Fig. 4, with the same amplitude, the X, is
reduced to minimum value as the frequency is
increased to some value. TheX,become longer

again as the frequency is increased beyond this
point. Accordingly, for the same frequency, the

X, reduced as the amplitude is increased. Fig. 5

shows the variation of X, with frequency on both
Re,; =250 and 400 at amplitude of 0.1. It found that
the distribution of X, at Re;, = 400 follows the

same trend as in Re; = 250 case. From both
calculations, the frequency that produces a

minimum X, is found to be 0.3.
From the analysis of the mean length of
we found that, for the

separation bubble or X, ,
amplitude of 0.1, X, is reduced approximately by

33% and 76% for Re, = 250 and 400 respectively.
The rate of reducing of separation bubble is high at

low frequency till its reach a minimum X,.. This is

followed by the rise up of X, with a smaller rate.
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Fig. 7 The distribution of Nu,e,, from x =0 to 5d
at various frequencies and amplitudes: Re,; = 250.
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Fig. 8 The distribution of Nu,,, from x = 0 to 5d
at various frequencies: 4 =0.1

3.1.2 Heat Transfers

The predicted heat transfer rate, expressed by the
local Nusselt number, Nu, = h.d/k, where h, is local
heat transfer coefficient. The overall heat transfer
rate is calculated from the mean Nusselt number
(Nttean), Which expressed as,

12
Nuyn =Efouxdx. 4)
1
The size of separation bubble directly influences
the performance of the heat transfer rate. The
instantaneous Nusselt number distribution attains a
local peak slightly upstream of the vortex similar to
the previous investigation of [9] at Re, = 1,000.
The induced rotational motion transports heated
fluid away from the surface and entrains ambient
fluid towards the surface. Fig. 6 shows the
distribution of the time-averaged wall temperature




and the local time-averaged Nusselt number for the
amplitude 4 = 0.1 at Re; = 250. It was found that
the local time-averaged Nusselt number attain a
maximum approximately around the mean
reattachment point which similar to [7, 9].

The Nuye,, is directly increased with the
increases of amplitude on both Reynolds number,
however, it is directly increased only at low
frequency, as shown in Fig. 7. At Re, = 250, a low
frequency around f = 0.1-0.3 gives a maximum
mean Nusselt number. From the calculation, at Re,
=250, A = 0.1 and f between 0.1-0.3, the overall
heat transfer is increased approximately by 23%,
30% and 32.5% respectively. As we increase the
Reynolds number from Re; = 250 to Re,; = 400, the
inertia force is higher in the flow. This introduces
an instability to the flow and the flow will become
unsteady much more easily if the flow is perturbed
at the free stream velocity. From the calculation, at
Re; = 400, 4 = 0.1 and f between 0.1-0.3, the
overall heat transfer is increased approximately by
57.4%, 63.2% and 66.6% respectively. From Fig.
8, the distribution of Nu,,.., at Re; = 400 follows
the same trend as in Re; = 250 case.

3.2 Moderate Reynolds Number Regimes

3.2.1 Flow Fields
The time-averaged reattachment length, X, is

shown in Fig. 9 for Re; = 900 and 1000. These
range of Reynolds number, without perturbation, is
considered to be in unsteady transition regime. For

the case of f=0and 4 =0, the X, of 7.3d and

6.3d is obtained for Re; = 900 and 1000
respectively. The result is of the same order as the
measured values reported in the literature for fully
turbulent regime, high Reynolds number range

[12]. As the frequency increased, the X,.is reduced
with similar to the low Reynolds number case.
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Fig. 9 The effect of frequency to X, : 4=0.1
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A typical of vortex formation, coalescence and
shedding at various frequencies is illustrated in Fig.
10. The more details of this physical behavior are
reported by Suksangpanomrung [13]. As the
pulsating frequency 1is increased, the vortex
shedding frequency is also increased. The period of
vortex formation cycle is decreased resulted to a
small spacing between each vortices. From the
simulation, we found that at some frequency, the
spacing between each vortices is closed enough for
the vortices begin to merge again. The merging
process of the shedding vortices is first appeared
closed to the outlet at approximately /= 0.5. The
merging of several vortices produced an unstable
secondary shear layer. Further increased of the
pulsating frequency to f = 0.6, this unstable
secondary shear layer forms a secondary vortices
and the shedding pattern is repeated again, as
shown in Fig. 11. Further analysis of the effect of
pulsating frequency to shedding frequency is need
to be investigated.
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Fig. 10 An instantaneous spanwise vorticity
contour: = 0-0.4, Re, = 1000.
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3.2.2 Heat Transfers

The overall heat transfer coefficient is increased
enormously, as the Reynolds number increased.
Comparison with Fig. 8, for the free stream
uniform velocity (f = 0, 4 = 0), the Nuyeq, iS
increased from 4.79 to 25.29 for the changed of Re,
= 250 to 1000. This indicates that the unsteady
process in the flow field plays an important role for
the rate of heat transfer.

As we increase an instability to the flow by
introducing the amplitude and frequency to the free
stream velocity, the Nu,,.., is responded similar to
the low Reynolds number regime, as shown in Fig.
12. This is due to the strong rotational motion
which transport heat away from the surface. At
amplitude of 0.1, the frequency of 0.3 is found to
be the optimal frequency which gives the highest
overall heat transfer rate. From the calculation, at
Re, = 1000, 4 = 0.1 and f between 0.1-0.3, the
overall heat transfer from x = 0 to 5d is increased
approximately by 37.2%, 45.68% and 50.1%
respectively.
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Fig. 12 The distribution of Nu,,, from x = 0 at
various frequencies: 4 = 0.1.

From the instantaneous temperature contour at
Fig. 13, it is clearly indicated that the heat transfer
is enhanced in the separation bubble or the region
right after the separation point. The dark colour in
the figure means high temperature region. From the
figure, the temperature is concentrated downstream
closed to the wall for the case of /= 0.4. This
indicates a poor local heat transfer rate in that
region. This physical behavior explains the drop of
Nityeqn in Fig. 12. The concentration of temperature
is getting higher as the frequency increases.

The high concentration of the temperature closed
to the wall can be explained by Fig. 10 and Fig. 11.
As the frequency increased, the number of vortices
increased in the domain, however the strength of
each vortices is decreased. When the vortices travel
downstream, due to the rotational motion of the
vortices, the vortices tend to lift them up from the
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surface. This mechanism reduces the performance
of transferring the heat away from the heated
surface.
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Fig. 13 An instantaneous temperature contour at
various frequencies: Re; = 1000.

4. CONCLUDING REMARKS

The rectangular bluff plate is a generic module that
occurs in many compact heat transfer devices. The
objectives of this investigation are focused on
reducing of separation bubble and enhancing heat
transfer rate. The two-dimensional flow and
convective heat transfer calculations are performed
at low and moderate Reynolds numbers with the
incoming pulsating flow. The pulsating flow is in
sinusoidal pattern with varying frequency and
amplitude.

For low Reynolds number regime, varying the
frequency and amplitude of the pulsating flow will
introduce an instability to the flow and force the
flow to become unsteady with the formation of
shedding vortices. These vortices play an
important role in energy transport. The induced
rotational motion from large scale vortices both
transports heated fluid away from the surface and
entrains ambient fluid towards the surface. The
separation bubble is decreased and the heat transfer
rate is enhanced for the low pulsating frequency
ranged (f = 0.1-0.3). Increasing the amplitude,

directly decreases the )_Cr and increases Nipean,

because of a higher free stream velocity.

At moderate Reynolds number, the shedding
vortices characteristic is controlled by the
pulsating frequency. The characteristic shedding
frequency of the vortices is changed. Further
details in the process need to be further
investigated. The optimal frequency which
produce a maximum overall heat transfer rate, is



the same value on both Reynolds number regimes
and it is found to be = 0.3 for 4 = 0.1. Increasing
the pulsating frequency in this regime creates a
high temperature concentration downstream and
closed to the wall.

The present investigation provides valuable
insight into the dynamics of the flow and the heat
transfer mechanism process. Further investigation
in the dynamic of the flow, which is linked to the
heat transfer process need to be studied in more
details.
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Abstract

The two-dimensional flow and convective heat transfer over a rectangular bluff plate is numerically
simulated with the incoming pulsating flow. For low Reynolds number, variations of the frequency and
amplitude of the pulsating flow will introduce instability and force the flow to become unsteady with the
formation of shedding vortices. The separation bubble is decreased and the heat transfer rate is enhanced.
At moderate Reynolds number, the shedding vortices characteristic is controlled by the pulsating
frequency. The optimal pulsating frequency which produces a maximum overall heat transfer rate, is
found at /= 0.3 for 4 = 0.1. Increasing the pulsating frequency in this regime leads to a temperature

concentration downstream.

Keywords: Heat transfer enhancement, unsteady separated flow, pulsating flow, oscillating flow,

rectangular bluff plate.

Nomenclature
A Velocity perturbation amplitude
d Thickness of rectangular bluff plate
f Non-dimensional pulsating frequency
Nu, Local time-averaged Nusselt number
NU,ean Mean Nusselt number
p Pressure
t Time
T Temperature
Re Reynolds number based on plate thickness, Re = Ud/v
U Free stream velocity

u; Velocity components



X; Cartesian coordinates (x, y, z)

Xy Mean reattachment length
Greek symbols

a Thermal diffusivity

Yo Density

1% Kinematic viscosity

1. Introduction

The development and design of more efficient compact heat transfer devices has received much attention
in recent years. Most investigations have focused on rectangular fins which are commonly used in many
compact heat exchangers. The understanding of the convection mechanisms and the prediction of heat
transfer performance on rectangular fins are usually analyzed by the flow and heat transfer around
rectangular bluff plates. Several geometries of rectangular fins can be arranged in compact heat
exchangers [1, 2], but however most arrangements are affected by the complex formation of vortex

patterns, which always influence the prediction of heat transfer coefficients.

The flow over a rectangular bluff plate is typically considered as benchmark geometry for individual fin.
It exhibits all the important features of the separated flow such as large scale unsteadiness, complex
turbulent structure, curvature effects and large scale pressure gradient. Flow visualization found that the

flow over a rectangular bluff plate can be characterized by the Reynolds number [3].

Ota and Kon [4] experimentally investigated heat transfer from a rectangular bluff plate, and found a 30-
50% increase in the time averaged heat transfer rate in comparison with a turbulent boundary layer on a
plat plate. Djilali [5] performed two-dimensional simulations of the convective heat transfer over a
stacked array of rectangular plates at low Reynolds number and results was similar to a numerical studies
of [6]. Suksangpanomrung [7] performed further at moderate Reynolds number. It was found that the flow
unsteadiness plays an important role in the prediction of the heat transfer rate and the structure of the

thermal field. In addition, three-dimensionality of the flow was found to enhance the heat transfer rate.

Several experimental investigations have shown that enhanced heat transfer rates in the separated flow
around a rectangular bluff plate could be obtained by acoustic excitation or periodic perturbation of the
flow field [8, 9]. Hiller and Cheery [10] studied the effect of turbulence intensity of the incoming flow to
the separation bubble. They found that the mean flow field responds strongly to turbulence intensity. For
numerical investigation, the enhancing of heat transfer rate was investigated by using vortex generator
[11] and oscillating wall [12, 13]. For the oscillatory inlet velocity, Bouhadji and Djilali [14] performed
the two-dimensional simulations. They concluded that by forcing the flow, it radically alters the dynamics

of the flow and results in significantly higher local heat transfer rate.



The purpose of this work is to investigate numerically the enhanced heat transfer rate over a rectangular
bluff plate by introducing an incoming pulsating flow. The flow at the inlet of the domain is considered in
a sinusoidal pattern with varying its frequency and amplitude. The amplitude used in the present work is
in a range of 0.1 to 0.6 while the frequency between 0.1 and 1.2. The simulations are focused on the
optimal frequency for the maximum heat transfer rate and the behavior of the unsteadiness affecting the

heat transfer mechanism.

2. Computational Procedures

2.1 Numerical Methods

The numerical simulations are performed by solving the time-dependent, continuity, momentum and
energy equations for an incompressible fluid.

Continuity equation:
Zi_p )

Momentum equations:

%+ Ouu, :—ia—p+ 0w, ()
at 6}6]- p 6xi asz
Energy equation:
ou;T 2
a_T + J_ aa_T (3)

ot Oox J 6x5

Simulations are performed on a staggered grid with a finite volume method. All terms, including
convective fluxes, are discretized using second-order central differencing and a low storage 3" order
Runge-Kutta algorithm is used for time integration. The continuity equation and the pressure gradient
term in the momentum equations are treated implicitly, while the convective and diffusive terms are
treated explicitly. A preconditioned conjugate gradient solver is used for matrix computation.
Temperature variations are assumed to small enough so that fluid properties can be considered constant
resulting the decoupling of the hydrodynamics equations from the energy transport equation.

Accordingly, the energy equation is solved explicitly after the hydrodynamics have been computed.

2.2 Computational Domain and Boundary Conditions
The set of Egs. (1), (2) and (3) are solved in the computational domain shown in Fig. 1 and subjected to
the following boundary conditions.

e Qutlet: advective boundary condition.

e Top and Bottom: symmetry condition.

e Plate: no-slip condition for velocity and constant heat flux for energy are imposed.

e Inlet: free stream pulsating flow in sinusoidal pattern and free stream temperature.

The free stream pulsating velocity flow in sinusoidal pattern is varied with time and defined as,



u=U(+ Asin2nft) @)

2.3 Simulation Case Studies

The simulations are performed at low and moderate Reynolds number, corresponding to the steady and
unsteady transitional regime. The mesh size is the same as [7]. The non-uniform mesh distributions are
used in the x and y directions and refined around the leading edge of the plate to the order of 0.01d in
order to avoid the numerical perturbations. The time step in this simulation is varied and constrained by

the CFL condition. The simulation cases studied are shown in Table 1.

3. Results and Discussion

3.1 Low Reynolds Number Regime
The predicted heat transfer rate, expressed by the local time-averaged Nusselt number, Nu, = }_zxd /k,

where /2, is the local time-averaged heat transfer coefficient. The overall heat transfer rate is calculated

from the mean Nusselt number (NU,..,), which expressed as,

mean

1=
NU _ =— [Nudx. 5
Axfu,xx (5)

X

The size of separation bubble directly influences the performance of the heat transfer rate. The
instantaneous Nusselt number distribution attains a local peak slightly upstream of the vortex similar to
[7]. In the separation bubble region, 0 <x/d < x,, the Nusselt number is low as shown in Fig. 2. This is due
to no mixing between the heated fluid inside the separation bubble and the ambient fluid. When the vortex
breaks up, the induced rotational motion transports heated fluid away from the wall and entrains ambient
fluid towards the wall. It is found that the local time-average Nusselt number also attains a maximum
approximately around the mean reattachment point similar to [5, 7]. The highest peak of the maximum

local time-average Nusselt number at Re = 250, 4 = 0.1 is found at = 0.3, as shown in Fig. 3.

The NU,cq, 1s directly increased with the increase of amplitude on both Reynolds numbers. However, itis
directly increased with frequency only at low frequency, as shown in Fig. 4. From the calculation, at Re =
250,4=0.1and f=0.1, 0.2 and 0.3, the overall heat transfer is increased approximately by 23%, 30%
and 32.5% respectively comparing with the case of f=0. As we increase the Reynolds number from Re =
250 to Re =400, the inertia force become higher in the flow. This introduces a high instability to the flow
and the flow will become unsteady much more easily, especially when the flow is perturbed at the inlet.
From the calculation, at Re =400, 4 = 0.1 and /= 0.1, 0.2 and 0.3, the overall heat transfer is increased
approximately by 57.4%, 63.2% and 66.6% respectively comparing with the case of /= 0. From Fig. 5,
the distribution of NU,,.., at Re = 400 follows the same trend as in Re= 250 case.



3.2 Moderate Reynolds Number Regime

The overall heat transfer coefficient is increased enormously, as the rise of Reynolds number. In
the uniform free stream velocity (=0, 4 = 0), the NU, .., value is changed from 4.79 to 25.29 for the
increase of Re from 250 to 1000. This indicates that the unsteady process in the flow field plays an
important role for the heat transfer rate. For the increase in flow instability by introducing the amplitude
and frequency to the free stream velocity, the NU,,,, is responded similar to the low Reynolds number
regime, as shown in Fig. 6. This is due to the strong rotational motion which transports heat away from
the wall. At the amplitude of 0.1, the frequency of 0.3 is found to be the optimal frequency which yields
the highest overall heat transfer rate on both Reynolds numbers. From the calculated results, at Re = 1000,
A = 0.1, the overall heat transfer values from x= 0 to 5d are increased approximately by 37.2%, 45.68%
and 50.1% for /= 0.1, 0.2 and 0.3, respectively, in comparison with the case of uniform free stream

velocity, f= 0.

From the instantaneous temperature contour in Fig. 7, it is clearly seen that the heat transfer is enhanced
in the separation bubble or the region right after the separation point as fis increased. The dark colour in
the figure means high temperature region. In the figure, the temperature is concentrated downstream
closed to the wall for the case of /= 0.4. This indicates a poor local heat transfer rate in that region. This
physical behavior can explain the drop of NU,,., in Fig. 6. The concentration of temperature is become
higher for increasing the frequency. The high concentration of the temperature in vicinity of the wall can
be clearly explained by Fig. 8. As the frequency increases, a number of vortices are increased in the flow
field due to the pulsating frequency. However, the strength of each vortices and the space between them
are reduced. Since the vortices have less strength, therefore the rotational motion has less affect in
transporting the heated fluid away from the wall and entraining the ambient fluid toward the wall. This
mechanism reduces the heat transfer rate. A large number of vortices and the small spacing between
vortices in the shear layer make the vortices to coalesce each others again especially at downstream of the
flow. This can create the secondary shear layer at downstream of the flow. This layer behaves as a normal
shear layer since it acts as a barrier between the heated fluid and the ambient fluid. It is found that the
flow is governed by the complex pseudo-periodic patterns of vortex formation again which is pairing,
merging and shedding from the separated shear layer similar to the case of /= 0, except that the separated

shear layer is longer.

The predicted mean surface pressure coefficient distribution along the surface of the plate is shown in Fig.
9. In the figure, the mean pressure is suddenly dropped at the separation point due to a sharp corner of the
rectangular bluff plate and recovery back to around the mean surface pressure coefficient of -0.5. The
strength and location of the mean surface pressure minimum is coupled with the vorticity in the mean
separation bubble. With increasing pulsating frequency, the surface pressure minimum is lower than the
unperturbed case and the recovery process is initiated further upstream. Downstream of the recovery
region, for the unperturbed case, the flow is dominated by the redeveloping boundary layer which takes

place under a slightly negative streamwise surface pressure gradient. However, the negative streamwise



surface pressure gradient in the recovery region is not presented when the pulsating frequency is applied
to the flow. From the predicted results, the mean surface pressure drop becomes larger for increasing the

pulsating frequency.

4. Concluding Remarks

The rectangular bluff plate is a generic module that occurs in many compact heat transfer devices. The
objective of this investigation is focused on the enhancement of heat transfer rate. The two dimensional
convective heat transfer calculations are performed at low and moderate Reynolds number values with an
incoming pulsating flow. The sinusoidal pulsating flow is introduced with varying frequency and
amplitude. In low Reynolds number regime, varying the amplitude and frequency of the pulsating flow
will introduce instability to the flow and force the flow to become unsteady with the formation of
vortices. These vortices play an important role in energy transport. The heat transfer rate is enhanced for
the low pulsating frequency of the range /= (0, 0.3) at 4 = 0.1. The NU,,.,, is directly increased for the
rise of the amplitude because of a higher free stream velocity. At moderate Reynolds number, the
shedding vortices characteristic is controlled by the pulsating frequency. The optimal frequency, at the
amplitude of 4 = 0.1, which yields a maximum heat transfer rate for the range of 0 <x < 10d is f=0.3,
similar to the case of low Reynolds number. Increasing the pulsating frequency in this regime leads to a
secondary shear layer, with a formation of pairing, merging and shedding of vortices in the layer again.
The temperature is concentrated downstream and closed to the wall because of this effect. The present
investigation provides valuable insight into the dynamics and the mechanism of heat transfer process.
Further investigation in the dynamic of the flow, which is linked to the heat transfer, needs to be studied

in more details, especially for the three-dimensional flow.

Acknowledgement
The author wishes to thank the SWU-CRMA Jointed Post-Graduated Program for many supports and the
financial support provided by the Thailand Research Fund is also gratefully acknowledged.

References

[1] C.H. Amon, D. Majumdar, C.V. Herman, F. Mayinger, B.B. Mikic, D.P. Sekulic, Numerical and
experimental studies of self-sustained oscillatory flows in communicating channels, International
Journal of Heat and Mass Transfer 35 (1992) 3115-3129.

[2] M. Hiramatsu, T. Ishimasu, T. Ohkouchi, Numerical analysis of innerfins for intercoolers, JSME
International Journal, Series B 35(3) (1992) 406-412.

[3] T.Ota, Y. Asano, J. Okawa, Reattachment length and transition of the separated flow over blunt
plates, Bulletin of the JSME 24 (1981) 941-947.

[4] T. Ota,N. Kon, Heat transfer in the separated and reattached flow over a blunt flat plate: Effect of

nose shape, Journal of Heat Transfer 122 (1979) 197-206.



[5] N. Djilai, Forced laminar convection in an array of stacked plates, Numerical Heat Transfer, Part A
25 (1994) 393-408.

[6] H.Kazeminejad, M. Ghamari, M.A. Yaghoubi, A numerical study of convective heat transfer from a
blunt plate at low Reynolds number, International Journal of Heat and Mass Transfer 39(1) (1996)
125-133.

[7] A. Suksangpanomrung, Investigation of unsteady separated flow and heat transfer using direct and
large eddy simulation, PhD thesis, University of Victoria, Canada, BC, 1999.

[8] K. Hourigan, L.W. Welch, M.C. Thompson, P.I. Coopper, M.C. Welsh, Augmented forced
convection heat transfer in separated flow around a blunt flat plate, Experimental Thermal and Fluid
Science 4 (1991)182-191.

[91 K.S.Hwang, H.J. Sung, J.M. Hyun, Mass transfer measurements from a blunt-face flat plate in a
uniform flow, International Journal of Heat and Fluid Flow 17(2) (1996) 179-182.

[10] R. Hiller, N.J. Cheery, The effect of free stream turbulence on separation bubbles, Journal of Wind
Engineering and Industrial Aerodynamics 8 (1981) 49-58.

[11] S.J. Yang, A numerical investigation of heat transfer enhancement for electronic devices using an
oscillating vortex generator, Numerical Heat Transfer, Part A 42(3) (2002) 269-284.

[12] C.H. Cheng, K.S. Hung, Numerical predictions of thermal convection in a rectangular enclosure
with oscillating wall, Numerical Heat Transfer, Part A 48(8) (2005) 791-809.

[13] W.S. Fu, B.S. Tong, Numerical investigation of heat transfer of a heated channel with oscillating
cylinder, Numerical Heat Transfer, Part A 43(6) (2003) 639-658.

[14] A. Bouhadji, N. Djilali, Forcing of unsteady separated flow and convective heat transfer via bulk

upstream oscillations, International Journal of Heat and Fluid Flow 24 (2003) 77-90.

Figure Captions

Fig. 1. Computational domain and schematic of mean flow; L, = 5.5d, L, = 18d and blockage ratio (Br =

d/H)=5.7%
Fig. 2. Streamline, temperature contour and instantaneous Nusselt number at Re = 250, 4 = 0.1, f=0.1.
Fig. 3. Distribution of local time averaged Nusselt number at various frequencies, Re = 250.
Fig. 4. Variation of Nu,,,, from x= 0 to 5d with frequency at various amplitudes, Re = 250.
Fig. 5. Variation of Nu,,.,, from x= 0 to 5d with frequency for Re =250 and 400, 4 = 0.1.
Fig. 6. Variation of Nu,.,, from x= 0 to 5d with frequency for Re = 900 and 1000, 4 = 0.1.
Fig. 7. Instantaneous temperature contours for various frequencies, 4 = 0.1, Re = 1000.
Fig. 8. Instantaneous spanwise vorticity contours for various frequencies, Re= 1000.
Fig. 9. Variation of mean surface pressure coefficient for various frequencies, Re = 1000.



Table 1. Summaries of the simulation cases studied

Reynolds number (Re) Pulsating frequency () Amplitude (4)
250 0.1-1.2 0.1-0.6
400 0.1-1.2 0.1
900 0.1-0.4 0.1
1000 0.1-0.6 0.1
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Fig. 1. Computational domain and schematic of mean flow; L, = 5.5d, L, = 18d and blockage ratio (Br =

d/H) = 5.7%.
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Fig. 2. Streamline, temperature contour and instantaneous Nusselt number at Re =250, 4 = 0.1, f=0.1.
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