สรุปและวิจารณ์ผล (Conclusion and discussion)

โครงสร้างป่าผสมผลัดใบ

ลักษณะโครงสร้างของป่าผสมผลัดใบ ที่สถานีวิจัยลุ่มน้ำแม่กลอง อำเภอทองผาภูมิ จังหวัดกาญจนบุรี เป็นป่าผสมผลัดใบที่ไม่มีใม้สักเป็นองค์ประกอบ ลักษณะเรือนยอดเป็นเรือนยอด เปิด (open canopy) จากการสำรวจพบว่ามีความหลากหลายทางชนิดพันธุ์ค่อนข้างสูง พบชนิดพันธุ์ พืชถึง 99 ชนิด พรรณไม้ที่มีความหลากหลายค่อนข้างสูงถึง มีความหนาแน่นของต้นไม้ในป่าเท่ากับ 170.50 ต้นต่อเฮคแตร์ และมีพื้นที่การปกคลุมทางพื้นที่หน้าตัด เท่ากับ 17.25 ตารางเมตรต่อเฮคแตร์ พรรณไม้เด่นที่สำคัญคือ ไม้ประตู่ แดง กาสามปิก ตะคร้อ และมะกอกเกลื้อน เป็นต้น ไม้ใผ่ จัดเป็นพรรณพืชในระดับเรือนยอดชั้นรอง โดยมีอัดราการปกคลุมพื้นที่ทางเรือนยอดที่ใกล้เคียงกับ ไม้เด่นในเรือนยอดชั้นบน ประมาณ 46.3 % ชนิดไผ่ที่สำคัญ คือ ไผ่ไร่ ไผ่ผากมัน ไผ่ข้าวหลาม และ ไผ่บงดำ ไผ่ข้าวหลาม มีการออกดอกและตายขุย จากการสำรวจพบว่ามีความหนาแน่นของกอไผ่ เท่ากับ 0.06 กอต่อดารางเมตร โดยมีจำนวนลำเฉลี่ย 11.07 สำต่อกอ มีขนาดเส้นผ่าศูนย์กลางลำ เฉลี่ย 5.08 ± 1.14 เซนติเมตร และมีอัตราการผลิตเมล็ดเฉลี่ยค่อนข้างสูงมาก คือ 2,442 ± 1,243 เมล็ดต่อดารางเมตร

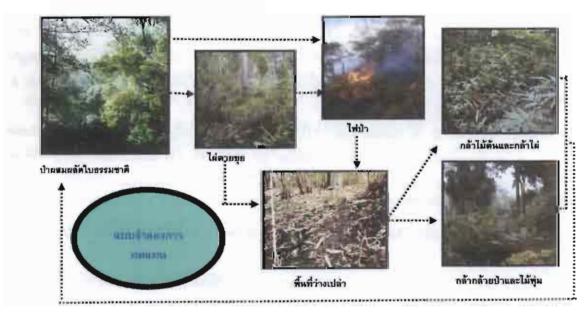
พลวัตของป่าผสมผลัดใบภายหลังใผ่ตายขุย

ภายหลังใผ่ข้าวหลามออกดอก ผล และเกิดการตายขุยขึ้น ปัจจัยแวดล้อมที่เปลี่ยนแปลง อย่างเห็นได้ชัดคือ ปริมาณแสงสว่างที่ส่องผ่านจากเรือนยอด และระดับความขึ้นในดิน ที่เพิ่มสูงขึ้น ซึ่งปัจจัยดังกล่าวนับว่ามีความจำเป็นต่อการสืบต่อพันธุ์ของปาผสมผลัดใบมาก ทั้งการเกิดของกล้า ไม้เด่นในป่าธรรมชาติและการฟื้นกลับของไม้ไผ่เอง ดังจะเห็นได้จาก กล้าของไผ่มีความสามารถสูง มากในการงอกและตั้งตัวโดยใช้ระยะเวลาไม่นานก็สามารถขยายปกคลุมพื้นล่างของปาได้ โดยมี ความหนาแน่นของกล้าไม้ได้สูงสุดถึง 1,250 ต้นต่อตารางเมตร โดยเฉพาะในบริเวณนอกเรือนยอด ไม้ใหญ่และมีการตายขุยของไผ่ นับได้ว่าใผ่ข้าวหลามมีอัตราการงอกที่ดีมาก แม้ว่าจะมีเมล็ดที่ สมบูรณ์เพียง 12. 8 % จากเมล็ดที่ผลิตได้ทั้งหมดเฉลี่ยเท่านั้น (2,442 ± 1243 เมล็ดต่อตารางเมตร) ที่สามารถงอกเป็นกล้าไผ่ได้ เปอร์เซ็นต์การรอดตายของกล้าไผ่เมื่อมีอายุครบหนึ่งปีมีค่าค่อนข้างสูง (58%) โดยมีความสูงกล้าไผ่เฉลี่ยเท่ากับ 21.14 เซนติเมตร และมีอัตราค่าเฉลี่ยความโตด้านความ สูงในช่วงฤดูฝนเท่ากับ 0.99 เชนดิเมตรต่อเดือน

ส่วนพลวัดของกล้าไม้ใหญ่ทุกชนิดพันธุ์ภายหลังไผ่ตายขุยพบว่า มีอัตราการงอกที่ ค่อนช้างดีในปีแรกหลังไผ่ตายขุย โดยเฉพาะเมื่อเกิดไฟป่าขึ้นเผาเศษซากพืชและไม้ไผ่ที่ยืนต้นตาย เหล่านั้น และพบว่าอัตราการงอกของกล้าไม้เด่นในป่าผสมผลัดใบมีความสัมพันธ์กับปริมาณ ความชื้นในดินสูง คือ พันธุ์ไม้ส่วนใหญ่งอกและเจริญเติบโตได้ดีในช่วงฤดูฝน และเริ่มดายเมื่อ ความชื้นในดินลดด่ำลงในช่วงฤดูแล้ง อย่างไรก็ตามปริมาณการงอกของกล้าไม้ยืนต้นลดปริมาณลง มากในปีที่สอง เนื่องมาจากการแผ่ปกดลุมพื้นที่ที่ค่อนข้างหนาแน่นของกล้าไผ่

ลักษณะชีพลักษณ์ของพรรณไม้เด่น

การร่วงหล่นของชากใบพืช (litter fall) ของพรรณ์ไม้เด่นในป้าผสมผลัดใบ ส่วนใหญ่แล้วมี การร่วงหล่นในช่วงฤดูแล้ง (กุมภาพันธ์ – เมษายน) และทิ้งช่วงประมาณ 3-4 เดือน จึงเริ่มทำการ ผลิใบ (flushing) อย่างไรก็ตาม พันธุ์ไม้บางชนิดเช่น ไม้ยางนา ที่เป็นไม้ดัชนี (indicator species) ของป่าดิบแล้ง มีการทิ้งใบสูงสุดในช่วงตันฤดูหนาว (พณุศจิกายน – ชันวาคม)


การผลิตเมล็จและการร่วงหล่นของเมล็จ ของพืชสำคัญในป่าผสมผลัดใบ ส่วนใหญ่เกิดขึ้น ในช่วงฤดูแลัง (กุมภาพันธ์ — เมษายน) ก่อนเข้าสู่ฤดูผ่น อย่างไรก็ตามพืชบางชนิดมีการปรับตัวให้ สามารถเก็บรักษาเมล็ดไว้บนเรือนยอด เพื่อให้สามารถโปรยเมล็ดได้ตลอดทั้งปีทำให้โอกาสในการ งอกของเมล็ดเกิดได้สูงและเกือบตลอดทั้งปี เช่นเมล็ดประดู เป็นต้น

การสืบต่อพันธุ์ตามธรรมชาติของป่า

การสืบต่อพันธุ์ของป่าผสมผลัดใบ มักถูกจำกัดด้วยปัจจัยที่สำคัญคือ การยับยั้งปริมาณ แสงส่องผ่านเรือนยอดลงสู่พื้นป่า จากการปกคลุมของไม้ไผ่ที่ค่อนข้างหนาแน่นและมีความต่อเนื่อง ในเรือนยอดชั้นรอง ส่งผลให้ปริมาณแสงสว่างบริเวณพื้นป่ามีปริมาณด่ำ (Nakashizuka 1988; Taylor & Zisheng 1992) ทั้งในช่วงฤดูฝนและฤดูแลัง (Marod et al. 2002) ประกอบกับช่วงอายุขัย (life span) ของไผ่ที่ค่อนข้างยาวนานหลายสิบปี บางชนิดมีอายุได้ถึงร้อยปี (Janzen 1976) จึงทำ ให้การสืบค่อพันธุ์ของป่าผสมผลัดใบดำเนินไปอย่างช้า ๆ อย่างไรก็ตามเมื่อไม้ไผ่มีการติดดอกผล และตายขุยแล้ว ทำให้เกิดพื้นที่ว่างขนาดใหญ่และมีความชื้นสูงเพียงพอต่อการสืบค่อพันธุ์ของไม้ ใหญ่รวมถึงไม้ไผ่ได้ในระดับหนึ่ง (Nakashizuka 1991)

ไฟป่า จัดเป็นปัจจัยที่มีบทบาทเด่นต่อการตงสภาพของสังคมปาผสมผลัดใบและปาเด็งรัง ที่ สำคัญ (Mueller-Dombois & Goldammer 1990, Stott 1988, Bunyavejchewin 1983) และพรรณ พืชส่วนใหญ่มักมีการปรับตัวทั้งรูปร่างและกลยุทธ์ในการสืบต่อพันธุ์เพื่อให้ดำรงอยู่ได้ภายใต้สภาพ สังคมที่มีให่ป่าเป็นองค์ประกอบ (Vogl & Schor 1972) ความบ่อยครั้งของการเกิดไฟป่าและความ รุนแรงของไฟ (Fire frequency and fire intensity) นับได้ว่าเป็นบทบาทที่สำคัญของไฟป่า คือ หาก ไฟบ้าเกิดขึ้นบ่อยครั้ง ความรุนแรงของไฟป่าก็จะต่ำ และไม่ก่อให้เกิดอันดรายต่อไม้ใหญ่ แต่จะส่งผล ต่อการเข้ามาทดแทนของกลัวไม้ให้ช้าลงไป อย่างไรก็ตามหากไฟป่าเกิดขึ้นไม่บ่อยครั้ง 4-5 ปีต่อ ครั้ง ความรุนแรงของไฟจะสูงมาก เนื่องจากปริมาณเศษซากพืชที่มีการสะสมกันมากขึ้นและเป็น เชื้อเพลิงอย่างดีต่อการเกิดไฟบ้า ส่งผลให้ความรุนแรงของไฟป่ามีคำมาก ทำให้พรรณไม้ใหญ่อาจ ถูกทำลายลงได้ทั่วทั้งป่า (Marod et al. 1999)

ดังนั้นการปกคลุมของไผ่ที่ด่อเนื่องในเรือนยอดชั้นรอง ไฟป่า และความแห้งแล้งที่ยาวนาน นับว่ามีความสำคัญด่อองค์ประกอบชนิดพันธุ์ รวมถึงพลวัตของการสืบต่อพันธุ์ในป่าผสมผลัดใบ เป็นอย่างมาก การศึกษาถึงการกระทำร่วมกันของทั้งสามปัจจัยในป่าผสมผลัดใบ เพื่อให้ทราบถึง อิทธิพลระหว่างกันและกัน ต่อการดำรงอยู่ของป่านับว่ามีความสำคัญมากควรที่จะได้เร่งดำเนินการ ศึกษาต่อไป อย่างไรก็ตามความสัมพันธ์ดังกล่าวสามารถสร้างเป็นแบบจำลองการทดแทน (succession model) (ภาพที่ 7) เพื่อเป็นพื้นฐานในการนำไปประยุกต์เพื่อการศึกษาที่ลึกลงไป หรือ เพื่อนำไปใช้ในการจัดการพื้นที่ป่าผสมผลัดใบอื่น ๆ ที่มีสภาพปัจจัยแวดล้อมและปัญหาคล้ายคลึง กับพื้นที่ศึกษาที่ สถานีวิจัยลุ่มน้ำแม่กลอง อำเภอทองผาภูมิ ต่อไป

ภาพที่ 7 แบบจำลองการทดแทน (succession model) ของป่าผสมผลัดใบ

เอกสารอ้างอิง (Reference)

- Ashton, P. S. 1995. Towards a regional forest classification for the humid tropics of Asia. pp. 453-464. In: E.O. Box et al. (eds.). Vegetation Science in Forestry. Kluwer Academic Publishers, Netherlands.
- Blasco, F., Bellan, M. F and Aizpuru., M. 1996. A vegetation map of tropical continental Asia at scale 1:5 million. *Journal of Vegetation Science* 7: 623-634.
- Bunyavejchewin, S. 1983. Analysis of tropical dry deciduous forest of Thailand. I. Characteristics of dominance types. *Nat. Hist. Bull. of Siam Soc.* 31:109-122.

- Janzen, D. H. 1976. Why bamboos wait so long to flower. Annual Review of Ecological Systematic 7: 347-91.
- Kutintara, U. 1975. Structure of the dry dipterocarp forest. Ph. D. dissertation. Colo. State Univ., Fort Collins. 242 p.
- Kutintara, U. 1994. Forest Ecosystem. Dept. of Forest Biology, Fac. of Forestry, K.U., Bangkok, Thailand. 442p. (in Thai)
- Marod, D., Utis, K., Chanchai, Y., Hiroshi, T. & Nakashizuka T. 1999. Structural dynamics of the natural mixed deciduous forest in western Thailand. J. Veg. Sci. 10: 777-786.
- Marod, D., U., Kutintara, H., Tanaka and T., Nakashizuka. 2002. The effects of drought and fire on seed and seedling dynamics in a tropical seasonal forest in Thailand. J. of Plant Eco. 161; 41-57.
- Mueller-Dombois, D. & Goldammer, J.D. 1990. Fire in tropical ecosystems and global environmental change: An introduction. pp. 1-10. In: J.G Goldammer (ed.). Fire in the Tropical Biota. Ecosystem Processes and Global Challenges. Springer-Verlag, New York.
- Nakashizuka, T. 1987. Regeneration dynamics of beech forests in Japan. *Vegetatio* 69: 169-175.
- Nakashizuka, T. 1988. Regeneration of Beech (Fagus crenata) after the simultaneous death of undergrowing bamboos (Sasa kurilensis). Ecol. Res. 3: 21-35.
- Nakashizuka, T. 1991. Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest. *Journal of Vegetation Science* 2: 413-418.
- Numata, M. 1970. Conservational implications of bamboo flowering and death in Japan. Biol. Conserv. 2: 227-229.
- Ogawa, H., Yoda, K. and Kira, T. 1961. A preliminary survey on the vegetation of Thailand.

 Natural Life Southeast Asia 1; 20-158.
- Royal Forest Department. 1962. Types of Forests of Thailand. Royal Forest Department Bullettin. 44:1-12.
- Rundel, P. W. & Boonpragob, K. 1995. Dry forest ecosystems of Thailand. pp. 93-123. In: Bullock, S. H., Mooney, H. & Medina, E. (eds.). Seasonal Dry Tropical Forests. Cambridge University Press, New York.
- Smitinand, T. 1977. Vegetation and ground cover of Thailand. Dept. of For. Biol., Fac. of Forestry, Kasetsart Univ., Bangkok.
- Smitinand, T. & Chumsri, C. 1985, Classification of Thai bamboos. In: *Bamboo seminar*. 6-7 June, 1985, Fac. of Forestry, Kasetsart Univ., BangKok, Thailand. (In Thai)

- Stott, P. A. 1988. The forest as phoenix: towards a biogeography of fire in mainland Southeast Asia. The Geographical Journal 154 (3): 337-350.
- Suksawang, S. 1995. Site Overview: Thong Pha Phum study site. pp. 33-37. In: The International Workshop on "The Changes of Tropical Forest Ecosystems by EŁ Niño and Others". National Research Council, Thailand.
- Taylor, A. H. and Qin, Z. 1988. Regeneration from seed of Sinarundinaria fangiana, a bamboo, in the Wolong giant panda reserve, Sichuan, China. American Journal of Botany 75: 1065-1073.
- Taylor, A. H. & Zisheng, Q. 1992. Tree regeneration after bamboos die-back in Chinese Abies-Betula forest, J. Veg. Sci., 3: 253-260.
- Taylor, A. H., Reid, D. G., Zisheng, Q. & Hu, J. 1991. Spatial patterns and environmental associates of bamboo (*Bashania fangiana* Yi) after mass-flowering in southwestern *China. Bull. Torrey Bot. Club.*, 118: 247-254.
- Veblen, T. T., Schlegel, F. M. & Escobar, R. B. 1980. Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. J. Ecol., 68: 1-31.
- Vogl, R. J. & Schorr, P. K. 1972. Fire and manzanita chaparral in the San Jacinco mountains, CA. Ecology 53:1179-1188.
- Whitmore, T. C. 1984. *Tropical rain forests of the Far East*, second edition, Oxford University Press, Oxford. p. 325.

ผลงาน (Output) ที่ได้รับจากโครงการ

การนำเสนอผลงานวิจัยในรูปโปสเตอร์

ชื่อเรื่อง; พลวัตของลำและกอของไผ่ข้าวหลามก่อนและหลังไผ่ตายขุย (Culm and Clump Dynamics of Cephalostachyum pergracile before and after the gregarious flowering) ในการประชุมนักวิจัยรุ่นใหม่ ที่โรงแรมเฟ ลิกซ์ จังหวัดกาญจนบุรี

2. การตีพิมพ์ผลงานวิจัย

ชื่อวารสาร; Journal of Forestry คาดว่าจะตีพิมพ์ในเดือนดุลาคม 2547

ภาคผนวก

1. Manuscript สำหรับการตีพิมพ์ในวารสาร Journal of Forestry

The Dynamics of Mixed Deciduous Forest after gregarious flowering of bamboo

*Dokrak MAROD ** Veerasak NEUMRAT**

Samroeng PANUTHAI** and Pongsak SAHUNALU**

Forest Biology Department, Faculty of Forestry, Kasetsart University, Bangkok, Thailand

Mae Klong Watershed Research Station, Thong Pha Phoom District, Kanchanaburi
Province, Thailand

^{3/}Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok, Thailand

*Correspondence author: E-mail: ffordrm@ku.ac th

ABSTACT

Mixed deciduous forest structure study was carried out at Mae Klong Watershed Research Station, Kanchanaburi Province in 2002 with particular reference to the role of gregarious bamboo flowering. All the trees > 5 cm diameter at breast height (dbh), 1.30 m. were identified, measured and tagged. The results showed that the forest was characterized by the low stem density and basal area, 170.75 ha⁻¹ and 17.25 m²ha⁻¹, respectively. Within the mixed deciduous forest ninety-nine tree species were identified. The dominance tree species in top layer were *Pterocarpus macrocarpus*, *Xylia xylocarpa*, and *Schleichera oleosa*, etc. Bamboos were the dominated species in the middle layer, especially, *Gigantochloa albociliata*, *G. hasskaliana*, *Cephalostachyum pergracile*, and *Bambusa tulda*. *Cephalostachyum pergracile* had gregarious flowered in late 2001 which had the clump and culm density as 0.05 m⁻² and 11.07 clump⁻¹. The culm size of this species is quite large with dbh 5.08 ± 1.14 cm and average seed production is 2,442 ± 1243 seed per m².

Forest tree regeneration dynamics and bamboo themselves showed that bamboo seedlings quickly response to the soil moisture content and rapidly germination better than tree seedlings. Bamboo seedlings rapidly covered the whole area and could increase their density up to 1,250 individual/m². Bamboo seedlings developed their root system better than

culm system, especially in the first year seedlings. A new rhizome was produced in the second year old. The annual survival rate of bamboo seedlings is quite high, 58 %, with annual average height about 21.14 cm and have the height growth rate in the rainy season about 0.99 cm/month. While, the seedling emergence of dominance species was very high emergent rate, especially in the first year after bamboo died and forest fire occurred. Because the interaction between death bamboo and forest fire regime produced large vacant space to increase seed germination capacity. Tree seedling emergence and mortality also showed high relationship to the soil moisture content same as bamboo seedlings in which they had high seedling density in the rainy season and high mortality occurred in the dry season when the soil moisture content is quite low. However, the number of seedling emergence in the second year is lower than the first year due to the high dense cover of recovery bamboo. Thus, both the bamboo undergrowth and frequent forest fires could be dominant factors that prevent continuous regeneration.

INTRODUCTION

Mixed deciduous forest is a type of tropical seasonal forest found in Thailand (Royal Forest Department 1962; Ashton 1995; Blasco et al. 1996), it covers large areas and shows much variation in composition and structure (Bunyavejchewin 1983, 1985; Rundel & Boonpragob 1995). In the northern parts of the country, this forest type occupies riparian areas and gentle slopes of elevation below 500 meters above mean sea level (Kutintara 1975; Smitinand 1977). It is dominant on deep-toned red and brown latosols which usually have a deep top soil. The characteristic tree species are *Tectona grandis*, *Pterocarpus macrocarpus*, *Xylia xylocarpa* var. *kerrli*, *Afzelia xylocarpa*, *Lagerstroemia calyculata*, *Terminalia* spp. and *Vitex peduncularis*. Teak (*Tectona grandis*) is usually the most important species, however, it can be absent from the mixed deciduous forest (Ogawa et al. 1961; Smitinand 1996; Ashton 1995). The middle layer is dominated by bamboos (Ogawa et al. 1961; Whitmore 1984, Ahston 1995), *Gigantochloa albociliata*, *Bambusa tulda*, and *B. nutans* are the most common among them (Kutintara 1994). During the dry season forest fires occur within this forest.

The suppression on tree regeneration by undergrowth bamboos has been reported from several types of forests (Taylor & Zisheng 1992). Because they have long lifespans up to several decades (Janzen 1976), and intercepted the light efficiently by cast a deep shade

on the forest floor (Marod et al. 2002). Mixed Deciduous Forest, MDF, occurs in the areas with several months of severe drought and during the dry season forest fire usually occurs (Blasco et al. 1996) and bamboos dominated in the middle layer (Ogawa et al. 1961) (Figure 1). Thus, once they are established, they prevented tree regeneration but their simultaneous death after gregarious flowering can provide a large vacant space for tree regeneration episodically (Nakashizuka 1991).

OBJECTIVES

- To study the structure and dynamics of a mixed deciduous forest after bamboo flowering.
- To study the relationships between the forest regeneration and their environmental factors.

Figure 1 Bamboo flowering, Cephalostachyum pergracile, (A) and some forest fires disturbance (B and C) in MDF at MKWRS.

STUDY AREA

The study was conducted in a natural mixed deciduous forest, with a bamboo undergrowth, teak was absent (Kutintara *et al.* 1995) at Mae Klong Watershed Research Station, Thong Pha Phoom District (14° 30′ to 14° 45′ N, 98° 45′ to 99° E), Kanchanaburi Province, western Thailand, 250 km west from Bangkok. The watershed is approximately 108.9 km² in area, and ranges from 100 to 900 m above mean sea level, and is located on a branch of the Kwai Noi River. The climate is sub-tropical with a long wet season alternates with a short cool dry season and a subsequent hot dry season. Annual rainfall normally exceeds 1,650 mm and is concentrated from late April to October. Mean monthly temperature is about 27.5°C with a maximum of 39.1°C in April and a minimum of 14.6°C

in December. Geographically the area is underlain by parent material of the Rachaburi and the Kanchanaburi series. The rachaburi series is present in the middle area of the watershed and is composed of granite, limestone and shale. The kanchanaburi series is in the western part of the watershed and is composed of shale and limestone. Some rocks have been metamorphosed and phyllite and quartzite are found. The soils are a reddish brown lateritic soil weathered from parent materials of alluvium and residuum of sandstone, limestone and quartzite. The study site is underlain by the Rachaburi series.

The prevailing forest type is a mixed deciduous forest, with some dry dipterocarp forest on the mountain ridges and dry evergreen forest along the creeks (Kutintara et al. 1995). Four bamboo species (Gigantochloa albociliata, G. hasskarliana, Bambusa tulda, and Cephalostachyum pergracile) are dominant in the understory. Most of the forest understory was dominated by one or two of these species. Some undergrowth bamboos (most of Gigantochloa hasskarliana and a part of G. albociliata populations) had flowered and died in part of the plot in 1990. Forest fire had also occurred prior to 1992 following the death of bamboos, but it did not occur subsequently until 1995. The dead culms of bamboo were burnt by fire. Wild banana was mainly found at the mesic site along the valley, where previously Gigantochloa hasskarliana was once dominated. There were no records or evidence of logging within the plot. However, the activities of local people such as selective felling of particular species or fire setting may have affected the forests surrounding the plot. Within the area forest fire may have occurred repeatedly over hundreds of years in the past (Rundel & Boonpragob 1995).

METHODS

- 'A permanent plot (50m x 50m) was established. All trees with DBH > 5cm were tagged, measured and identified (Figure 2 E). Crown projection diagram was done in the plot with size 40m x 40m (Figure 2 D).
- 2. An intensive area (40m x 40m) was selected, and the 24 sets of seed traps each adjacent to a seedling quadrat (1.5m x 1.5m) were set up. The census was done every 2 wks (Figure 2 A and B). All litters were classified and measured after dried in oven with temperature 70°C about 48 hours. All seedlings were tagged and identified in which the cause of death was checked every census.

- 3. The hemispherical photographs were took every seedling quadrat with fish-eye camera (Figure 2 C).
- Soil moisture content was carried out from 0-15 cm depth and corrected every month.

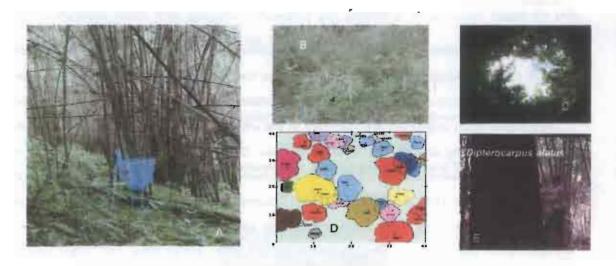


Figure 2 The seed traps (A), seedling quadrat (B) and hemispherical photos (C) were conducted in the intensive area (D), including tree investigation (E).

RESULTS

Forest structure:

Tree density and basal area of MDF were 170.75 ha-1 and 17.25 m2.ha-1, respectively. 93 tree species were found and the dominant species were *Xylia xylocarpa* var. *kerrii, Vitex peduncularis*, *Schleichera oleosa* and *Pterocarpus macrocarpus*. However, some places can be found other species which less occurred in MDF as *Dipterocarpus alatus* and *Shorea siamensis*.

Four Bamboo species, Gigantochloa albociliata, G. hasskarliana, Cephalostachyum pergracile, and Bambusa tulda, were found in the middle layers and culm density of total species about 8500 culm/ha. Gigantochloa albociliata was the dominant species, however, Cephalostachyum pergracile had gregarious flowering in 2001.

The light conditions were significantly different between in the gap and under the closed canopy both during the rainy and the dry season (df = 5, t = 8.24, p < 0.001 and t = 7.42, p < 0.001, respectively). Light conditions were poor during the rainy season and much better during the dry season under the closed canopy (df = 5, t = 7.86, p < 0.001).

Forest regeneration dynamics:

The density of clump and culm of *Cephalostachyum pergracile* before flowering was 0.06 and 11.1 m⁻², respectively, and the average of culm size was 5.08±1.14 cm. Bamboo seedling rapidly emerged in the early rainy season and seedling density reach to 1,250 culm/m², especially in the open canopy which bamboo died. Their survival rate was high about 58% and seedling growth in the rainy season about 0.9 cm/month. The average height of one year old seedling about 22.8±14.5 cm, and quickly developed the new lateral rhizome to resprout in the next year (Figure 3).

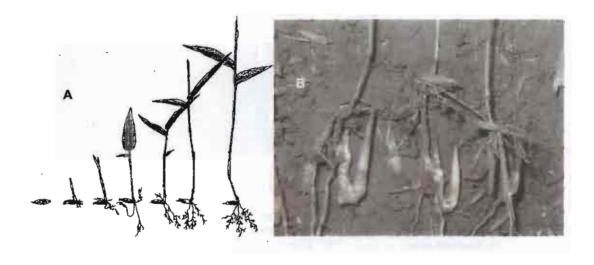



Figure3 Bamboo seedling density in open area (A), and rhizome development in one year old seedling of Cephalostachyum pergracile (B).

Tree seedlings had high emerged, especially in the first year after bamboo flowering and showed high correlation with soil moisture content (Figure 4). Seedling emergence and mortality pattern could be classified into 2 types as 1) rapidly emerged in the early rainy season and began to dead in the dry season; this pattern is mainly characterized of dominant tree species as *Vitex canescense*, *Lagerstroemia tomentosa*, *Xylia xylocarpa* var. *kerrii*, *Shorea siamensis* and *Pterocarpus macrocarpus*. However, *Pterocarpus macrocarpus* showed the different mortality pattern in which they died soon after emerge even in the rainy season due to fungi attacked. 2) Seedling emerged in the mid of the rainy season and died in the dry season such as *Garuga pinnata and Artocarpus rigidus* (Figure 4). Forest fire also could be activated the germination rate of wild banana and some species which have seed bank characteristics.

Figure4 Some abundance tree seedlings showed high relating with the amount of rainfall and show high number of seedling after bamboo flowering.

Phenology of dominance tree species

The pattern of leaf fall of the dominance tree species in this forest had occurred in the early dry season (December) and had remained no leave about 3-4 months before flushing in the rainy season. However, *Dipterocarpus alatus*, dominant species in the dry evergreen forest, had different pattern in which they shed their leave (November to December) and suddenly replaced by new leave only in a week (Figure 5).

The average seed production of bamboo had very high after bamboo flowering 2,442±1,243 seed/m². However, only 12.8 % of total seed production could be sound seed and germinated, while the others had incomplete as empty seed and insect attacked about 64.5 and 22.7 %, respectively (Figure 6). Some species had seed-year (once per 3-4 years) and off-year pattern as Dipterocarpus alatus and Shorea siamensis (Figure 7). The main pattern of seed fall usually start in the late dry season (March-April), however, Pterocarpus macrocarpus can be kept seed on the canopy and shed their seed through the year.

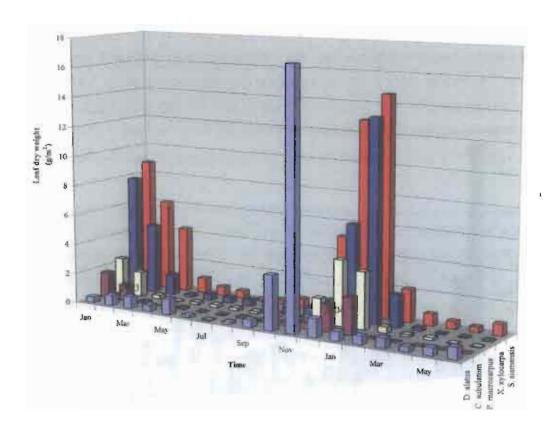


Figure 5 Leaf shading pattern of some dominance species in Mixed deciduous forest

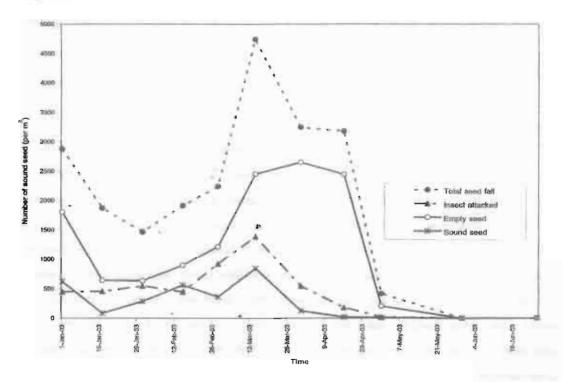


Figure 6 Seed production of Cephalostachyum pergracile classified according to their seed characters.

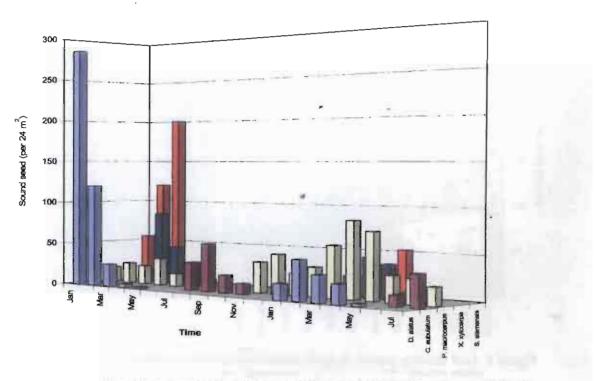


Figure 7 Seed production of some dominance species after bamboo flowering in 2003-04

CONCLUSION

Structure of Mixed Deciduous Forest

Low stem density and basal area with relatively discontinuous canopy layer and large canopy gap proportion characterized the forest. Tree density and basal area were much lower than those reported for other forest types in tropical areas (Swaine *et al.* 1987). A relatively low tree density and basal area is a common structural feature among seasonally dry forests (Gerhardt & Hytteborn 1992), however, these values are particularly low (see Sukwong 1977; Bunyavejchewin 1983). Within mixed deciduous forests extremely low tree density and basal area are formed under the influence of severe seasonal water stress, two other factors may also be important, i.e. the dominance of undergrowth bamboos and the frequent occurrence of fire. The results showed that the forest was characterized by the low stem density and basal area, 170.75 ha⁻¹ and 17.25 m²ha⁻¹, respectively. Ninety-nine tree species were found and identified. The dominance tree species in top layer were *Pterocarpus macrocarpus*, *Xylia xylocarpa*, and *Schleichera oleosa*, etc. Bamboos were the dominated species in the middle layer, especially, *Gigantochloa albociliata*, *G. hasskaliana*, *Cephalostachyum pergracile*, and *Bambusa tulda*.

Cephalostachyum pergracile had gregarious flowered in late 2001 which had the clump and culm density as 0.05 m^2 and 11.07 clump^3 . The culm size of this species is quite large with dbh $5.08 \pm 1.14 \text{ cm}$ and average seed production is $2,442 \pm 1243 \text{ seed per m}^2$. Short-term dynamics of this forest after the local die-back of bamboos clearly showed the importance of the life history of bamboo for the dynamics and structure of the mixed deciduous forest. The fire occurred just after the bamboo die-back indicates the complexities of forest dynamics.

The role of undergrowth bamboo on forest regeneration

The impeding effect of undergrowth bamboos upon tree recruitment is common in temperate zone forests (Veblen et al. 1980; Nakashizuka 1987, 1988; Taylor & Zisheng 1992). The low tree density of the natural mixed deciduous forest may be due in part to the effects of the deep shade from the bamboos. As the cover of bamboo become more dense in the canopy gaps, the regeneration of tree seedlings in gaps will be prevented and the canopy tends to become more discontinuous (Marod et al. 2002). Without episodic death of bamboos and consequent tree recruitment, the canopy would become more discontinuous and tree density would also gradually decrease. Human disturbances such as harvesting would accelerate such a process.

The long lifespan of undergrowth bamboo makes the continuous recruitment of trees difficult and greatly affects the regeneration pattern of the forest. The longevity of bamboos differ among species, but usually extend to several decades; flowering intervals were reported as about 25-100 years for *Dendrocalamus strictus* in India (Gupta 1972; Dwivedi 1988), about 42-51 years for *Melocanna bambusoides* in Bangladesh (Hossain 1962). However, as they have flowered and die simultaneously, light conditions on the forest floor are greatly improved for the natural forest regeneration.

While, bamboo had gregarious flowering and died they provided not only the vacant space for the tree seedling regeneration but also regeneration of themselves. Bamboo seedling rapidly emerged and expanded to cover the forest floor with high density, 1,250 seed/m², especially in the open canopy and bamboo died area. Seed germination of bamboo had very high even they had only 12.8% sound seeds of total average seed production (2,442 ± 1243 seed/m²). The annual survival rate of bamboo seedling showed the high rate about 58% in which they had the average annual height growth rate about 21.14 cm and the growth height growth rate in the rainy season is 0.99 cm/month.

The role of fire

Fire plays an important ecological role to maintain certain types of plant communities and populations in seasonally dry regions, including grasslands, shrublands, savannas, woodlands, and closed forests (Gill et al. 1970; Tyler 1995; Mueller-Dombois & Goldammer 1990). Adaptations of plants in fire-prone communities, including their life forms and regeneration strategies, promote their survival following fire (Vogl & Schorr 1972). In Thailand, forest fires, which are mostly caused by human activities, occur frequently usually as ground fires during the dry season in dry deciduous dipterocarp forest and mixed deciduous forest (Sukwong & Dhamanittakul 1977; Bunyavejchewin 1983). Fire should have had a strong influence upon these forest types and helped to maintain them (Stott 1988; Stott et al. 1990). Western Thailand is characterized by a long dry season (6-7 months) during which the herbaceous vegetation dries out and the leaf litter of deciduous woody plants accumulates on the ground. This dry surface biomass is subject to burning and many woody species in such a habitat are often characterized by recurrent shoot die-back (Chidumayo 1989, 1991). In addition to the severe seasonal drought, fire may play important roles to determine the composition and dynamics of these forests.

The forest dynamics of MDF after bamboo flowering were influenced by many factors as forest fire, large gap area, soil moisture content, and etc. Thus, one dynamic model in the MDF after simultaneous flowering of bamboos and following by those factors could be established as in Figure 8.

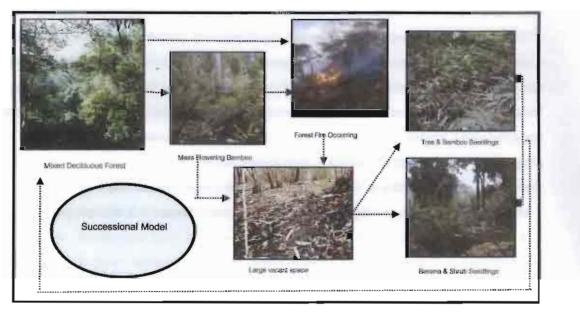


Figure 5 The successional model in MDF after simultaneous flowering of bamboo.

REFERENCES

- Ashton, P. S. 1995. Towards a regional forest classification for the humid tropics of Asia. pp. 453-464. In: E.O. Box et al. (eds.). Vegetation Science in Forestry. Kluwer Academic Publishers, Netherlands.
- Blasco, F., Bellan, M. F and Aizpuru, M. 1996. A vegetation map of tropical continental Asia at scale 1:5 million. *Journal of Vegetation Science* 7: 623-634.
- Bunyavejchewin, S. 1983. Analysis of tropical dry deciduous forest of Thailand. I. Characteristics of dominance types. *Nat. Hist. Bull. of Siam Soc.* 31:109-122.
- Janzen, D. H. 1976. Why bamboos wait so long to flower. *Annual Review of Ecological Systematic* 7: 347-91.
- Kutintara, U. 1975. Structure of the dry dipterocarp forest. Ph. D. dissertation. Colo. State Univ., Fort Collins. 242 p.
- Kutintara, U. 1994. Forest Ecosystem. Dept. of Forest Biology, Faculty of Forestry, Kasetsart University., Bangkok, Thailand. 442p. (in Thai)
- Marod, D., Utis, K., Chanchai, Y., Hiroshi, T. & Nakashizuka T. 1999. Structural dynamics of the natural mixed deciduous forest in western Thailand. J. Veg. Sci. 10: 777-786.
- Marod, D., U., Kutintara, H., Tanaka and T., Nakashizuka. 2002. The effects of drought and fire on seed and seedling dynamics in a tropical seasonal forest in Thailand. J. of Plant Eco. 161: 41-57.
- Mueller-Dombois, D. & Goldammer, J.D. 1990. Fire in tropical ecosystems and global environmental change: An introduction. pp. 1-10. In: J.G Goldammer (ed.). Fire in the Tropical Biota. Ecosystem Processes and Global Challenges. Springer-Verlag, New York.
- Nakashizuka, T. 1987. Regerieration dynamics of beech forests in Japan. *Vegetatio* 69: 169-175.
- Nakashizuka, T. 1988. Regeneration off Beech (Fagus crenata) after the simultaneous death of undergrowing bamboos (Sasa kurilensis). Ecol. Res. 3: 21-35.
- Nakashizuka, T. 1991. Population dynamics of coniferous and broad-leaved trees in a Japanese temperate mixed forest. *Journal of Vegetation Science* 2: 413-418.
- Numata, M. 1970. Conservational implications of bamboo flowering and death in Japan. *Biol. Conserv.* 2: 227-229.
- Ogawa, H., Yoda, K. and Kira, T. 1961. A preliminary survey on the vegetation of Thailand.

 Natural Life Southeast Asia 1: 20-158.

- Royal Forest Department. 1962. Types of Forests of Thailand. Royal Forest Department Bullettin. 44:1-12.
- Rundel, P. W. & Boonpragob, K. 1995. Dry forest ecosystems of Thailand. pp. 93-123. In: Bullock, S. H., Mooney, H. & Medina, E. (eds.). Seasonal Dry Tropical Forests. Cambridge University Press, New York.
- Smitinand, T. 1977. Vegetation and ground cover of Thailand. Dept. of For. Biol., Fac. of Forestry, Kasetsart Univ., Bangkok.
- Smitinand, T. & Chumsri, C. 1985. Classification of Thai bamboos. In: *Bamboo seminar*. 6-7 June. 1985, Fac. of Forestry, Kasetsart Univ., BangKok, Thailand. (In Thai)-
- Stott, P. A. 1988. The forest as phoenix: towards a biogeography of fire in mainland Southeast Asia. The Geographical Journal 154 (3): 337-350.
- Suksawang, S. 1995. Site Overview: Thong Pha Phum study site. pp. 33-37. In: The International Workshop on "The Changes of Tropical Forest Ecosystems by EL Niño and Others". National Research Council, Thailand.
- Taylor, A. H. and Qin, Z. 1988. Regeneration from seed of Sinarundinaria fangiana, a bamboo, in the Wolong giant panda reserve, Sichuan, China. American Journal of Botany 75: 1065-1073.
- Taylor, A. H. & Zisheng, Q. 1992. Tree regeneration after bamboos die-back in Chinese Abies-Betula forest. J. Veg. Sci., 3: 253-260.
- Taylor, A. H., Reid, D. G., Zisheng, Q. & Hu, J. 1991. Spatial patterns and environmental associates of bamboo (*Bashania fangiana* Yi) after mass-flowering in southwestern China. Bull. Torrey Bot. Club, 118: 247-254.
- Veblen, T. T., Schlegel, F. M. & Escobar, R. B. 1980. Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. J. Ecol., 68: 1-31.
- Vogl, R. J. & Schorr, P. K. 1972. Fire and manzanita chaparral in the San Jacinco mountains, CA. Ecology 53:1179-1188.
- Whitmore, T. C. 1984. *Tropical rain forests of the Far East*, second edition, Oxford University
 Press, Oxford. p. 325.