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200-250 กรัม ทําหนูใหเปนเบาหวานโดยวิธีฉีดสารสเตรปโตโซโตซินเขาทางหลอดเลือดดําขนาดความเขมขน 55
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และกลุมเบาหวานที่ไดรับวิตามินซี (STZ-Vit C)  ใหวิตามินซีเสริมโดยใหสัตวทดลองดื่มน้ํา ซึ่งผสมวิตามินซีขนาด
ความเขมขน 1 กรัมตอน้ํา 1 ลิตรใหกินอยางอิสระ   ทําการทดลองหลังจากสัตวทดลองไดรับการฉีดสารละลายซิเตรท
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ระดับน้ําตาลในเลือด ไกลโคซิเลทเท็ดฮีโมโกลบิน วิตามินซีในพลาสมา ความดันเลือดแดง การไหลเวียนเลือดที่ไป
เล้ียงบริเวณมานตา และการเกาะติดของเม็ดเลือดขาวที่เอนโดทีเลียมภายในหลอดเลือดดําขนาดเล็ก หลังจากสิ้นสุด
การทดลองตัดเก็บลูกตาทันทีเพ่ือนํามาใชในการวิเคราะหหาระดับมาลอนไดอัลดีไฮด

จากผลการทดลองพบวาในหนูกลุมเบาหวานทุกชวงอายุมี ระดับน้ําตาลในเลือด ไกลโคซิเลทเท็ดฮีโมโกลบิน
และมาลอนไดอัลดีไฮดในเนื้เย่ือ สูงขึ้นอยางมีนัยสําคัญทางสถิติ ขณะที่น้ําหนักตัวและระดับวิตามินซีในพลาสมามีคา
ตํ่ากวากลุมควบคุมที่ชวงอายุเดียวกัน ในหนูเบาหวานที่ไดรับวิตามินซีเสริม มีระดับไกลโคซิเลทเท็ดฮีโมโกลบิน และ
ระดับมาลอนไดอัลดีไฮด ตํ่ากวากลุมเบาหวานอยางมีนัยสําคัญทางสถิติ โดยที่ระดับวิตามินซีในพลาสมามีคาสูงขึ้น
เมื่อเปรียบเทียบกับหนูเบาหวาน อยางไรก็ตามเฉพาะในกลุม 36 สัปดาหเทานั้นที่ระดับน้ําตาลในพลาสมามีคาต่ํากวา
กลุมเบาหวานอยางมีนัยสําคัญทางสถิติ  สําหรับอัตราการไหลเวียนเลือดที่ไปเล้ียงบริเวณมานตามีคาต่ํา ขณะที่การ
เกาะติดของเม็ดเลือดขาวมีจํานวนสูงในหนูกลุมเบาหวานทุกชวงอายุ ในหนูเบาหวานที่ไดรับวิตามินซีเสริมการไหล
เวียนเลือดที่ไปเล้ียงบริเวณมานตามีคาสูงอยางมีนัยสําคัญทางสถิติเมื่อเทียบกับกลุมเบาหวาน ขณะที่การเกาะติดของ
เม็ดเลือดขาวมีจํานวนต่ําอยางมีนัยสําคัญทางสถิติเมื่อเทียบกับกลุมเบาหวาน เฉพาะในกลุม 24 และ 36 สัปดาห

โดยสรุปการศึกษาครั้งนี้แสดงใหเห็นถึงการบาดเจ็บของเอนโดทีเลียมในภาวะเบาหวาน ความผิดปกติที่เกิด
ขึ้นดังกลาวนี้เปนผลจากอนุมูลอิสระที่เกิดขึ้นจากระดับน้ําตาลในเลือดที่สูงกวาปกติเปนระยะเวลานานกอใหเกิดการ
ความบกพรองในการทํางานของเซลลเอนโดทีเลียมมีผลทําใหปริมาณการเกาะติดของเม็ดเลือดขาวมีคาเพ่ิมขึ้น การ
ไหลเวียนเลือดที่ไปเล้ียงบริเวณมานตาลดลง เปนที่นาสนใจวาจากผลการทดลองครั้งนี้อาจกลาวไดวาไมเพียงแตการ
ใหวิตามินซีเสริม สามารถปองกันการสูญเสียหนาที่ของเอนโดทีเลียมที่เกิดจากภาวะเบาหวาน แตยังอาจเปนสารที่นํา
มาใชปองกันการเกิดโรคหลอดเลือดเรตินาในผูปวยภาวะเบาหวานที่นําไปสูการขาดเลือดไดอยางดีเย่ียม

คําหลัก วิตามินซี   อนุมูลอิสระ   หนูเบาหวาน   หนาที่ของเซลลเอนโดทีเลียล   การเกาะติดของเซลลเม็ด
เลือดขาว   การไหลเวียนเลือดที่บริเวณมานตา
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Abstract
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Srinakharinvirot University
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Project Period : 1 July 2002– 30 June 2004

The effects of long-term supplementation of antioxidant; vitamin C on vascular structure and
endothelial function of Iris microcirculation in diabetic rats. Diabetes was induced in male Wistar Furth by
intravenous injection of streptozotocin, 55 mg/kg body weight. The rats were divided randomly into three
groups of control (CON), streptozotocin (STZ) and streptozotocin supplementation with vitamin C (STZ-Vit
C). The supplementation of vitamin C was performed by allowing the animals free assessed to drinking
water added  1 g/L of ascorbic acid (Sigma, Chemical Co., USA).  The experiments were performed at 8,
12,  16, 24 and 36 weeks after injection of STZ and citrate buffer. On the day of experiment, body weight
(BW), blood glucose (BG), glycosylated hemoglobin (HbA1c), plasma vitamin C, arterial blood pressure, iris
blood-flow perfusion were measured. Endothelial function was examined by manually counted of leukocyte
that adhered to endothelial cells of iris postcapillary venule in all experimental groups. At the end of each
experiment, plasma vitamin C from venous blood was analyzed and the eye was immediately isolated for
evaluate oxidative stress status; malondialdehyde (MDA)analysis.

The results showed that all groups of  8,12, 16, 24 and 36 weeks STZ-rat  had the significantly
increased in BG, HbA1c and tissue MDA, but decreased in BW and plasma vitamin C levels as compared to
their age-match control groups. However, STZ-Vit C-rat  was significantly decreased in BG (only at 36 weeks
of STZ-Vit C rats), HbA1c and MDA but increased in BW and plasma vitamin C levels as compared to STZ
group. Moreover, all STZ groups have the significantly decreased in iris blood-flow perfusion but increased in
number of leukocyte adhesion. STZ-Vit C was significantly increased iris blood-flow perfusion but decreased
leukocyte adhesion as compared to STZ group only in 24 and 36 week groups. In the present STZ-diabetic
rats, hyperglycemia and increased tissue lipid peroxidation developed. These abnormalities were prevented
by long-term supplementation of vitamin C in STZ-diabetic rats. Moreover, the present study has
demonstrated that the endothelial dysfunction induced by diabetes has been resulted to the increased in
leukocyte adhesion and to the decreased in iris blood flow.

In conclusion the preventive effect on endothelial dysfunction and impaired iris blood flow is due to
the antioxidant capacity of vitamin C. Therefore, vitamin C might be a great therapeutic agent for preventing
diabetic retinopathy.
 Keywords: vitamin c,  diabetic rats,  endothelial function,  leukocyte adhesion,  iris blood flow
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Introduction
The major cause of morbidity and mortality in both type I and type II diabetic patients is

vascular disease which include microangiopathy and macroangiopathy. Microangiopathy is the
hallmark of retinopathy, neuropathy and nephropathy (Standl E. et al, 1996). Diabetes is the
leading cause of blindness . In diabetic patients the whole vascular system of the eye can be
affected by microangiopathy. Most of severe manifestation of vascular changes in diabetic eye
are iridopathy and retinopathy, therefore,diabetic eye diseases are not limited only to the retina
(Bandello F. et al, 1994). Diabetic retinopathy is one of major complications that cause most
suffering in diabetic patients. In diabetes, interaction between leukocyte and endothelium may
be enhanced markedly. In fact, Schroder et al,1991. showed the appearance of capillary
occlusion with leukocyte in the retinopathy of diabetic rats. The leukocytes that adhered to
endothelial cells particularly in the small vessels are caused of capillary occlusion. The harmful
of these phenomenon is that contact of circulating leukocytes with the vascular endothelium
promotes a cascade of events leads to further leukocyte activation.  Once activated, PMNs
release reactive oxygen species (ROS) and mediator of proteolytic tissue degradation,
contributing to oxidative stress, subsequent inflammation, and causing surrounded endothelial
cells even more damaged (Semdly LA et al, 1986). Among the mechanism proposed as
mediators of the endothelial dysfunstion and increased leukocyte adhesion observed in
diabetes, hyperglycemia plays a key pathogenic role in the development of diabetic vascular
diseases. High blood glucose concentrations result in endothelial dysfunction that is associated
with loss of endothelium derived NO, increased vascular permeability, increased endothelial
adhesives, and thickening of the basement membrane of blood vessels, and increased
generation of oxygen free radical (Jones et al, 1987).  Diabetes increases oxidative stress in
tissue and plasma both human and experimental animals, increassing oxidative stress might
play a role in the development of diabetic complication. Oxidative stress develops in the retina
of diabetic animals and   galactos-fed animals (Halliwell B, 1999; Gutteridge JM et al, 2000),
indicating that oxidative stress is associated with the development of retinopathy. Currently, the
potential contribution of increased oxidative stress to the development of endothelial
dysfunction in diabetes has received much of interest. Enhanced oxidative stress in the blood
and tissue is thought to play an important role in the onset and progression of microvascular
complications in diabetic patients. Particularly, the molecular mechanisms of the enhancement
of oxidative stress in diabetes have been characterized by two dependable domains which are
1) increased production of reactive oxygen species (ROS) and 2) impaired endogenous
antioxidant defenses. Several suggestions regarding the origins of oxidative stress in diabetes,
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are free radical generated by glycation of proteins, consumption of NADPH through the polyol
pathway, glucose autoxidation, hyperglycemia-induced pseudohypoxia, and activation of protein
kinase C (VanderJagt DJ, 2000). Normally oxidative level controlled by a variety of cellular
antioxidant defense mechanisms consisting of enzymatic and nonenzymatic scavengers (Aydin
A, 2001). Such enzymes include: superoxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPX). Such those  play an important role in protecting cell and tissue from
oxidative stress. And the endogenous nonenzymatic antioxidants including vitamin C, vitamin
E, reduced glutathione, β-carotene, various amino acids, proteins, uric acid and bilirubin, etc.
They all can directly scavenge reactive oxygen spieces (Kashiwagi A, 2001). Under
hyperglycemic conditions, the intracellular concentrations of reduced vitamin C, reduced
glutathione and vitamin E are reported to be decreased (Giugliano D et al, 1996). Accordingly,
it can be said that antioxidant supplementation is disirable in patients with diabetes mellitus.

Vitamin C, or namely ascorbic acid, is an antioxidant agent, two major properties of
vitamin C make it an ideal antioxidant. The first is  low one-electron reduction potentials of both
ascorbate and it’s one-electron oxidation product, the ascorbyl radical, which is derived from
the one-diol functional group in the molecule (Halliwell B, 1996). These low reduction potentials
enable ascorbate and the ascorbyl radical to react with the reduce basically all physiologically
relevant radical and oxidants. The second major property that make vitamin C such as
effective antioxidant is the stability and low reactivity of the ascorbyl radical formed when
ascorbate scarvenges a reactive oxygen or nitrogen species (Carr AC and Frei B, 1999).
Levels  of vitamin C in plasma and in various tissues are decreased in diabetic patients and in
animals with experimentally induced diabetes. Cellular deficiency of vitamin C has been
implicated in some of the cellular pathology and complications of diabetes mellitus such as
angiopathy. It has been suggested that vitamin C supplementation may help to prevent the
development of some diabetic complications as well (Dai S and Mc Neill JH, 1995). Our
previous study (Jariyapongskul et al, 2002) demonstrated that daily supplementation of vitamin
C could improve the diabetic-induced endothelial dysfunction in STZ-rats.  In particular, we
have showed that long term supplementation of vitamin C could decrease leukocyte adhesion
to the cerebral postcapillary venules in diabetic-rats. In regard to the literature view from the
above, it might be said that vitamin C, as an antioxidant, is likely to ameliorate diabetic-induced
endothelial dysfunction. As which it might help to prevent the leukocyte-endothelial cell
interaction that mostly enhanced the vaso-occlusion and consequently brought about hypoxic
condition in diabetic eye. Together, with the idea of vitamin C could reduce the abnormality of
diabetic-induced endothelial-dependent vasomotion, Therefore, this present study is designed
to evaluate the possible effects of long-term vitamin C supplementation on diabetic iridopathy
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characterization by decreased iris blood-flow perfusion and increased number of leukocyte-
endothelial cell interaction.

Materials and methods

1. Experimental Animal
Male Wistar-Furth rats (National Laboratory Animal Center of Salaya Campus, Mahidol
University) weighing 200-250 g were divided randomly into diabetic and non diabetic group.
The animals were housed in a group four rats per 1 cage. The animals were kept in well-
ventilated room in which the temperature was 28-32 °C with an automatic lighting schedule,
which provided darkness from 7.00 PM to 6.00 AM. All animals were allowed freely access of
food (purina laboratry Chow, Premium Quality feed, Zuelig Gold Coin Mills Pte., Singapore)
and tap water.
1.1 Diabetic induction
The rats were divided into three groups.
:CON group was represented the citrate buffer pH 4.5 injected non diabetic rats drinking
ordinary water (n=30).
:STZ group was represented the streptozotocin-injected diabetic rats drinking ordinary water
(n=30).
:STZ-Vit C was represented the streptozotocin-injected diabetic rats drinking 1 g/L/day of
ascorbic acid (n=30).
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Diabetes was induced by a single intravenous injection of streptozotocin (STZ; Sigma
chemical Co. USA, 55 mg/kg BW). Streptozotocin was freshly prepared by dissolving in citrate
buffer pH 4.5 (Sigma chemical Co. USA ) and immediately single injected into the tail vein and
same volume of citrate buffer pH 4.5 was injected by the same route to nondiabetic control
animal. A diabetic condition defined as a plasma glucose concentration equal or greater than
250 mg/dl, and it usually was verified 48 hours after streptozotocin injection.      A glucometer
(Advance Glucometer, Bochringer Mannheim, Germany) was used for evaluation of plasma
glucose from tail vein blood sample. Rats treated with streptozotocin that did not exhibit an
elevation of blood glucose level at 48 hours (≥250 mg/dl) were excluded from the study
(Jariyapongskul A et al, 1996).

1.2 Vitamin C supplementation
Supplementation of the rats with vitamin C (L-ascorbic acid, 99%, Sigma chemical Co., USA)
started 48 hours after the administration of streptozotocin. Vitamin C was prepared daily by
dissolving in drinking tap water at a concentration of 1g/L. And the experimental rats were
freely access to this vitamin C drinking water (Jariyapongskul A et al, 2002).

Figure 1. The diagram demonstrates the dividing of experimental animal groups.

    8wk   12wk   16wk  24wk  36wk  8wk   12wk   16wk    24wk  36wk    8wk  12wk  16wk  24wk   36wk

Control rats (n=30)
with Vitamin C (n=30) without Vitamin C (n=30)

Male Wistar-Furth rats (N=90)

Diabetic rats (n=60)
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2. Experiments
The experiments were performed at 8, 12, 16, 24, and 36 weeks after the injection of
streptozotocin or citrate buffer pH 4.5.
On the day of experiment, rats were anesthetized with sodium pentobarbital (60 mg/kg BW,
i.p.) and a thecheotomy was performed. They were ventilated mechanically with room air and
supplemental oxygen.  A catheter was inserted into a femoral vein for injection of fluorescence
tracer, and a femoral artery was cannulated for measurement of systolic and diastolic blood
pressure (SBP and DBP) using a pressure transducer connected to a polygraph system (Nihon
Kohden, Japan).

2.1. Iris blood flow-perfusion measurement
The iris blood flow-perfusion was measured using a Laser Doppler Flowmetry with the fiber
optic needle probe (wavelength 780 nm) (model ALF 21, Advance Co. Ltd., Japan). The
needle probe was fixed perpendicularly to and above the iris about 1 mm. Eight different
measurements were performed at each time and the mean was then determined for each
animal (Figure 2).

Principles of Laser Doppler Flowmetry
Laser Doppler Flowmetry (LDF) is an established technique for the real-time measurement of
microvascular red blood cell (or erythrocyte) perfusion in tissue. LDF works by illuminating the
tissue under observation with low power laser light from a probe containing optic fiber light
guides. Laser light from one fiber is scattered within the tissue and some is scattered back to
the probe. Another optical fiber collects the back scattered light from the tissue and returns it to
the adapter as which the result is demonstrated on the screen.

2.2 Intravital fluorescence microscopy
The iris microcirculation was observed by the technique of intravital fluorescence microscope.
Briefly, after preparing the eye, the animal was then moved to the stage under fluorescence
microscope. The FITC- dextran (MW 150,000; 15 mg/kg BW) in conjunction with blue light
excitation was used to label plasma. The other florescent dye is rhodamine 6G (0.15 mg/kg
BW) in conjunction with green light was used to stain mitochondria especially in leukocyte.
Both fluorescent were used and intravenously injected through the cannulated femoral vein.
The epifluorescent image was observed through the x 20 objective len and also by video
camera, SIT (DAGE Co. USA), a low-light and real time throughout the experimental period.
Simultanously, the image was also monitored (Sony) as showed in the figure 2.This videotape
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of each experiment was then play back flame by flame for further image processing analysis
using the software called Global lab image ΙΙ. To measure diameter of postcapillary venule, of
FITC-labeled dextran, MW, 150,000; 0.2 ml of 15mg/kg BW physiological saline solution) was
injected into femoral vein to provide immediate contrast between plasma and interstitium.

2.3. Leukocyte imaging
To visualize the leukocytes adhesion to vascular endothelium, fluorescence marker rhodamine
6G (R6G; Sigma chemical Co., USA; 0.3 mg/ml of normal saline) was administered
intravenously. Adherent leukocytes in iris postcapillary venules (20 to 50 µm diameter) were
recorded real time by SIT video camera mounted on an fluorescence microscope through out
the experimental period. The emission wavelength of R6G lies between 530 and 540 nm. The
leukocyte that was counted as adherent one has to remain stationary for equal or longer than
30 second, the number of adherent cells were manually counted and reported by the number
of cell per field of view (Kalia N et al, 2000).

2.4.  Metabolic Changes
The parameters for metabolic changes were blood glucose, HbA1C, and vitamin C. All these
parameters were determined at the end of each experiment by collecting blood sample from
femoral artery. Blood glucose was determined by using glucometer (Advance Glucometer,
Bochringer Mannheim, Germany). Blood sample was divided into 2 sets. One set (1ml) was
collected for the determination of HbA1C analyzed by RIA lab CO,LTD. Where the daily internal
control are performed by external quality control with Faculty of Mahidol Technology, Mahidol
University. And the other set was centifused immediately for the collection of plasma. The
plasma was kept at -80 °C for determination of plasma vitamin C level. Plasma vitamin C level
was measured using enzyme-assisted spectrophotometric method (Liu TZ et al, 1982).

2.5.  Free radical by products : Malondialdehyde (MDA)
Oxidation of polyunsaturated fatty acids leads to numerous peroxidic and aldehydic
compounds, in particular the volatile low molecular weight aldehyde, malondialdehyde (MDA).
The chemical composition of the end products of peroxidation will depend on the fatty acid
composition of the lipid substrate used and upon what metal ions are presented. Thus copper
and iron ions give different end-product distributions as measured by the thiobarbituric acid
(TBA) test. This is one of the most commonly  used method for detecting and measuring lipid
peroxidation. The lipid material is simply heated with TBA at low pH, and the formation of a



- 10 -

pink chromogen is measured at or close to 532nm. The chromogen is formed by reaction of
one molecule of malondialdehyde (MDA) with two molecules of TBA (Ohgawa H et  al, 1979).

3.  Statistical analysis
Results were expressed as mean ± standard deviation of mean (SD). Statistical analysis of
the results was done using two-way analysis of variance followed by student ’s t-test. A
probability (P) of 0.05 or less was considered significant.

Results
Part 1. The antioxidant effects of vitamin C supplementation on metabolic and
hemodynamics changes

1.1 Metabolic changes
The tail vein injection of streptozotocin 55 mg/kg/BW into 200-250g Wistar Furth rat

resulted in polydipsia, polyuria, polyphagia and hyperglycemia within 48 hours and showed
persistent hyperglycemia through out the experiment. In the present study, the criteria used for
diabetic rats was the blood glucose level that had to be higher than 250 mg/dl.

Results of blood glucose, body weight and glycosylated hemoglobin of CON, STZ and
STZ-Vit C rats were shown in Table 1. Eight weeks after streptozotocin injection body weight
were 39% lower in STZ-rats compared with non diabetic control rats (p<0.001) and up to 51%
in 36 weeks (Table 1.). Blood glucose levels were significantly elevated in STZ rats (397.12±
65.48 mg/dl to 463.37±106.52) compared with non diabetic control rats (83.5±11.86 to
100.9±11.51; p<0.001) (Table 1. and Figure 3.). Plasma glycosylated hemoglobin level was
significantly elevated in STZ rats (9.52±1.66 to 10.13±1.88%) compared with non diabetic
control rats (3.91±0.15 to 4.51±0.58 %; p<0.001) in all five monitored time points.
Interestingly, at 36week vitamin C supplemented of diabetic rats significantly improved in body
weight, decreased in blood glucose and decreased in HbA1c .

1.2 Plasma vitamin C was significantly reduced in 12, 24, and 36 weeks STZ-rats
(23.01±0.92, 21.47±1.87 and 15.95±2.02 µmol/L respectively compared with 12, 24 and 36
week of control rats (44.59±2.12, 43.58±1.19 and 44.89±2.93; respectively). Vitamin C
supplementation can improved the plasma vitamin C concentration in all three monitored time
points of STZ-Vit C rats (43.66±3.92, 39.44±2.04 and 38.65±2.02; p < 0.01).
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1.3 Tissue lipid peroxidation
In this present study malondialdehyde (MDA), product of lipid peroxidation was used as

indicator of oxygen free radical. The MDA values were  significant higher in 8, 12, 16, 24, and
36 weeks diabetic rats eyes (103.32±25.28, 107.11±35.75, 146.26±25.73, 137.59± 37.88
and 145.63±28.80) than in 8, 12, 16, 24, and 36 weeks control rats (58.36±27.76, 72.95±
21.41, 69.85±23.64, 70.49±31.39 and 73.65±27.91; respectively). Interestingly, vitamin C
supplemented can reduced MDA values in 16, 24, and 36 weeks of STZ-Vit C rats 84.93±
13.93, 81.70±21.39 and 80.88±20.84; respectively) compared with STZ rats          (p< 0.01).
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Table 1. Body weight, blood glucose and plasma glycosylated hemoglobin (HbA1c)
levels of  control rats(CON), streptozotocin rats (STZ) and streptozotocin rats
supplementation with vitamin C (STZ-Vit C)

Body weight
(g)

Blood glucose
(mg/dl)

Glycosylated
hemoglobin A1c

(HbA1c ;%)
CON  8 WK 393±31.38 (n=10) 83.5±11.86 (n=10) 3.96±0.23 (n=6)

12 WK 443.07±22.41 (n=13) 97±13.81 (n=12) 4±0.61 (n=6)

16 WK 471±37.10 (n=10) 97.9±11.20 (n=10) 4.13±0.71 (n=8)

24 WK 507±35.55 (n=13) 106.84±10.49 (n=13) 4.51±0.58 (n=6)

36 WK 566.45±44.13 (n=11) 100.9±11.51 (n=11) 3.91±0.15 (n=7)

STZ   8 WK 238.8±28.75 (n=10) ++ 408.62±97.82(n=9)++ 10.13±1.88 (n=9)++

12 WK 223.25±36.80 (n=8)++ 397.12±65.48(n=8)++ 10.57±1.55 (n=7)++

16 WK 261±35.71 (n=9)++ 456.37±94.05 (n=8)++ 10.18±1.43 (n=6)++

24 WK 246.00±19.77 (n=8)++ 425.00±64.43 (n=7)++ 9.72±0.52 (n=5)++

36 WK 278.33±55.17 (n=9)++ 463.37±106.52 (n=8)++ 9.52±1.66 (n=4)++

STZ-vit C
 8 WK

236.5±35.11 (n=10)**, ns 413.62±94.09 (n=8)**, ns 9.5±1.00 (n=8)**, ns

12 WK 229.6±47.71 (n=10)**, ns 431.4±83.22 (n=10)**, ns 9.13±1.76 (n=6)**, ns

16 WK 245.12±38.33 (n=8)**, ns 433.42±87.98 (n=7)**, ns 8.71±0.90 (n=7)**, ns

24 WK 276.88±39.25 (n=9)**, ns 380.27±68.96 (n=11)**, ns 9.75±0.70 (n=6)**, ns

36 WK 362.33±38.91 (n=9)**, ## 279.37±77.04 (n=8)**, # 6.60±2.03 (n=5)*, #

Values are expressed as mean ± SD
++ p<0.001 as compared to CON, * p<0.05 as compared to CON,  **  p < 0.01 as compared to CON ,              

#  p<0.05 as compared to STZ,  ## p<0.01 as compared to STZ , ns not significant different as compared to
STZ



Figure 3. The antioxidant effects of vitamin C supplementation on blood glucose
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Table 2 Plasma vitamin C (Vit C) and tissue malondialdehyde (MDA) of control rats(CON),

streptozotocin rats (STZ) and streptozotocin rats supplementation with vitamin C

(STZ-Vit C)

VIT C
(µmol/L)

MDA
(nmol/100mg wet

wt.)
CON   8 WK - 58.3±  27.7 (n =7 )
         12 WK 44.5 ± 2.1 (n = 5) 72.9 ±21.4 (n = 10 )
        16 WK - 69.85±23.64 (n=9)
         24 WK 43.5± 8 1.1 (n = 8) 70.4 ± 31.3 (n = 11)
         36 WK 44.89± 2.93 (n = 5) 73.6 ± 22.9 (n = 10)
STZ      8 WK - 103.3± 25.9 (n = 9)*

         12 WK 23.0±  0.9 (n = 8)*** 107.1± 35.7 (n = 6)*

         16 WK - 146.26±25.73 (n=8)**

         24 WK 21.4± 1.8 (n = 8)*** 137.5 ± 37.8 (n = 6)***

         36 WK 15.9 ± 2.0 (n = 5)*** 145.6± 28.8 (n = 11)***

STZ-vit C
          8 WK

- 67.7± 29.0( n = 6)NS

        12 WK 43.6±  3.92 (n = 5)NS 84.1± 13.4 (n = 6)NS

        16 WK - 84.93±13.93  (n=7)NS, ##

        24 WK 39.4± 2.04 (n = 5)## 84.9± 13.9 (n = 10)##

        36 WK 38.5± 2.0 (n = 5)## 80.8± 20.8 (n = 8)##

Values are expressed as mean ± SD
* p< 0.05 as compared to CON,  ** p<0.01 as compared to CON,  ***  p < 0.001 as compared to CON,
## p< 0.01 as compared to STZ,  NS no significant different as compared to CON
Figure 5. The antioxidant effects of vitamin C supplementation on Plasma Vitamin C
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Values are expressed as mean ± SD.   +  Significantly different as compared to CON (p<0.05),
++  Significantly different as compared to CON (p<0.001), ##  Significantly different as compared to STZ (p
<0.01),  ns  no significantly different as compared to STZ,  NS  no significantly different as compared to CON

Figure 6. The antioxidant effects of vitamin C supplementation on Lipid peroxidation

Values are expressed as mean ± SD.  *  Significantly different as compared to CON (p<0.05),
**  Significantly different as compared to CON (p<0.01), ***  Significantly different as compared to CON (p
<0.001), ##  Significantly different as compared to STZ (p<0.01).

Part 2. The antioxidant effects of vitamin C supplementation on leukocyte-endothelial cell
            interaction
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The leukocyte that was counted as adherent one has to remain stationary for equal or
longer than 30 second (Joussen AM et al, 2002). The leukocyte adhesion was totally count per
field of view of postcapillary venule (diameter 20-50 µm) as described previously.

In the present video microscopic visualization showed clear image of leukocytes
adhering to the endothelium of postcapillary venules in control non diabetes and diabetes rats
all five monitored time points. The average numbers of leukocyte that adhered on endothelium
in a field of view in rats 8, 12, 16, 24, 36 weeks of STZ rats (6.14 ± 1.60, 6.05 ± 0.57, 6.93 ±
1.79, 12.90 ± 3.20, and 22.28 ± 4.35; respectively) were significantly high compared with
control rats atbthe same monitored  time points (2.20 ± 0.65, 2.48 ± 0.79, 2.45 ± 0.69, 2.27
± 0.48  and;  2.56 ± 1.03 respectively). Interestingly, vitamin C supplementation had effects to
reduced the number of leukocyte adhesion to endothelial of postcapillary venule in STZ-Vit C
rats.
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.

CONTROL
50 µM

STZ
50 µM

CONTROL
50 µM

STZ-VITC
50 µM

STZ-VITC
50 µM
Figure 7.  Fluorescence images of
leukocyte -endothelial interaction in iris
post-capillary venules of 8 weeks
control, STZ with and without vitamin C
supplementation. White dot represents
leukocyte that adhered to endothelial
cell
STZ
50 µM
Figure 8.  Fluorescence images of
leukocyte-endothelial interaction in iris
post-capillary venules of 36 weeks
control, STZ with and without vitamin C
supplementation. White dot represents
leukocyte that adhered to endothelial
cell.



Figure 9. The antioxidant effects of vitamin C supplementation on leukocyte adhesion
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3.2 Systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean regional
iris blood-flow perfusion of control, STZ and STZ-Vit C rats.

The results of SBP value  were shown in Table 3. And the results DBP value were
shown in Table 4. In the present study, diabetic state had  effect on change of SBP and DBP
in 16 and 24 weeks of STZ and control rats. The SBP and DBP were significantly different
between STZ and STZ-Vit C at 16-36 weeks.

Table3. Systolic blood pressure control rats(CON), streptozotocin rats

(STZ) and streptozotocin rats supplementation with vitamin C (STZ-Vit C)

Systolic  blood pressure (mmHg)Duration
(weeks) CON STZ STZ-Vit C

8 88.57 ± 22.49
(n=7)

109.28 ± 9.75 NS

(n=7)
95.00 ± 22.20 NS, ns

(n=8)

12 103.00 ± 20.18
(n=5)

115.00 ± 18.70 NS

(n=5)
109.28 ± 12.39 NS, ns

(n=7)

16 93.33 ± 23.16
(n=6)

125.83 ± 13.57 +

(n=6)
112.50 ± 8.80 NS, ns

(n=6)

24 105.55 ± 14.45
(n=9)

116.00 ± 12.94 NS

(n=5)
103.00 ± 5.70 NS, ns

(n=5)

36 104.00 ± 8.94
(n=5)

132.00 ± 7.52+

(n=10)
111.66 ± 7.52 NS,##

(n=6)

Values are expressed as mean ± SD.
+  Significantly different as compared to CON (p<0.05),  ##   Significantly different as compared to STZ (p
<0.01),  ns  no significantly different as compared to STZ,
NS  no significantly different as compared to CON
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Table 4. Diastolic blood pressure control rats(CON), streptozotocin rats

(STZ) and streptozotocin rats supplementation with vitamin C (STZ-Vit C).

Values are expressed as mean ± SD.
*  Significantly different as compared to CON (p<0.05), + Significantly different as compared to CON (p
<0.05), ##  Significantly different as compared to STZ (p<0.01),  ns  no significantly different as compared to
STZ,  NS  no significantly different as compared to CON.

Diastolic blood pressure (mmHg)Duration
(weeks) CON STZ STZ-Vit C

8 79.28 ± 21.68
(n=7)

97.85 ± 8.09NS

(n=7)
85.62 ± 20.07 NS, ns

(n=8)

12 90.00 ±  19.68
(n=5)

106.00 ±  21.62 NS

(n=5)
92.85 ± 14.09 NS, ns

(n=7)

16 79.16 ±  20.83
(n=6)

109.16 ±  12.41 +

(n=6)
105.00 ± 7.07 NS, ns

(n=6)

24 90.00 ± 13.91
(n=9)

90.00 ±  11.72 NS

(n=5)
95.00 ±  8.66 NS, ns

(n=5)

36 88.00 ± 10.36
(n=5)

118.50 ± 8.83 +

(n=10)
103.33 ±  6.05 *,##

(n=6)
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Table 5. iris blood-flow perfusion of control rats(CON), streptozotocin rats
(STZ) and streptozotocin rats supplementation with vitamin C (STZ-Vit C).

 Iris blood-flow perfusion (AU)Duration
(weeks) CON STZ STZ-Vit C

8 54.95±6.05
(n=10)

43.05±8.18 NS

(n=7)
46.97±9.23 NS, ns

(n=9)

12 53.82±6.59
(n=13)

26.66±4.76++

(n=7)
33.74±6.30**, ns

(n=8)

16 56.06±10.11
(n=10)

23.57±2.08++

(n=6)
34.36±6.62**, ns

(n=5)

24 48±7.97
(n=13)

20.35±3.24++

(n=6)
32.06±4.72**, ##

(n=7)

36 44.94±7.30
(n=10)

19.72±2.67++

(n=12)
27.99±7.07**, ##

(n=8)

Values are expressed as mean ± SD.



- 22 -

++  Significantly different as compared to CON (p<0.001),   **  Significantly different as compared to CON (p
<0.001),  ##   Significantly different as compared to STZ (p<0.01),  ns  no significantly different as compared
to STZ,  NS  no significantly different as compared to CON

Figure 10. The antioxidant effects of vitamin C supplementation on iris blood-flow
perfusion
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Values are expressed as mean ± SD.
++  Significantly different as compared to CON (p<0.001),  **  Significantly different as compared to CON (p
<0.001),  ##   Significantly different as compared to STZ (p<0.01),  ns  no significantly different as compared
to STZ,  NS  no significantly different as compared to CON

Part 4.  Study relationship on iris blood-flow perfusion and leukocyte  endothelial cell
            interaction

Linear regression analysis was used to examine the relationship on iris blood-flow
perfusion and leukocyte-endothelial cell interaction. The result of this relationship was shown in
Figure 11. Iris blood-flow perfusion values and leukocyte adhesion (cell per field of view of
postcapillary venule of all five monitored time points of diabetic rats were plotted and these two
parameters were correlated equation y = -0.447x + 32.80, r = -0.317, p < 0.034.  Interestingly,
the correlation was more clarified and supported by the results of STZ-Vit C, y = -1.862x +
47.103, r = – 0.517, p < 0.001. The data demonstrates that the presences of diabetes are
necessary for measurable effect on iris blood-flow perfusion can occur in diabetes, not founded
relationship in control rats.  From the result, it can be explained that when leukocyte adhesion
was raised as the iris blood-flow perfusion was reduced in diabetic
rats.
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     Figure 9. Correlation of  leukocyte
                 adhesion and iris blood flow
                 perfusion in the postcapillary
                 venule from 8-36  week of
                 Control,  STZ-rat,
                 STZ with vitamin C
                 supplementation.

                

y = -0.1579  x  + 13.259
R = 0.554 , P<0.001
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Discussion

In the present study, the experiments were performed to investigate the effects of long-
term vitamin C supplementation on vascular structure and endothelial function of Iris
microvessels in diabetic rats.

Streptozocin (STZ) induce β-cells of Islets of Langerhans damage by initiating
biochemical events which cause DNA strand breaks. This substance has been widely used to
experimentally imitate Type I diabetes mellitus (IDDM) in rats.  STZ action on β-cells is
accompanied by characteristic alterations in blood insulin and glucose concentrations.  Finally,
hyperglycemia develops and blood insulin level decreased (West E et al, 1996). In the present
study, hyperglycemia occurs within 48 hours after the single dose 55 mg/kg BW. of STZ
intravenous injection and persist throughout the experiment. Metabolic derangement after STZ
administration  include marked hyperglycemia, polyphagia, polydipsia, polyuria and weight loss.

I The metabolic changes in diabetic model : Role of vitamin C
In present study, STZ-diabetic rats lost of their body weight compared to the non-

diabetic control rats (CON). Eight weeks after STZ injection body weight were 39% lower in
STZ-rats compared with non diabetic control rats (p<0.001) and up to 51% in 36 weeks. With
a deficiency of insulin, the metabolism was then shifted from insulin-promoted anabolism to
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catabolism of proteins and fats, therefore, it trends to induce a negative energy balance,
resulting in weight loss.

1.1 Plasma Vitamin C
In this study, the plasma vitamin C in diabetic rats was chronologically monitored by

using a specific enzymatic spectrophotometric method with the absorbance at 593 nm (Liu TZ
et al 1982). The findings demonstrated that plasma vitamin C was significantly reduced in 12,
24, 36 weeks of STZ-rats (23.01±0.92, 21.47±1.87 and 15.95±2.02 µmol/L; respectively) as
compared those of control rats (44.59±2.12, 43.58±1.19 and 44.89±2.93; respectively). The
metabolism of vitamin C has become abnormal in diabetes. And this finding supports the
previous study of Kashiba M et al (2002). They demonstrated that plasma vitamin C
concentrations as well as in tissues were decreased in STZ-induced diabetic rats. The
mechanism which is responsible for the matter might be due to the competitive inhibition
between vitamin C and glucose molecules. Since, transport of vitamin C through biological
membrane is facilitated by diffusion through the ubiquitous glucose transporter proteins
(GLUTs) (Welch RW et al, 1995). GLUTs is normally facilliatate dehydroascorbic acid (DHA)
diffusion into the cell. Therefore, hyperglycemic condition will be downregulated the Vmax of the
uptake mechanism of DHA. Besides, plasma vitamin C was also depleted through its anti-
oxidant property; scavenging with hyperglycemia induced free radical. By means of these
reasons, both plasma and intracellular vitamin C levels were reduced in diabetic state.

1.2 Blood glucose, HbA1C

From the present result, blood glucose , plasma glycosylated hemoglobin levels were
significantly elevated in STZ rats compared with non diabetic control rats (p<0.001). The data
of plasma glycosylated HbA1c reflected long-term exposure to high blood glucose levels, to
which diabetologists use as an index for how well of glycemic control (Cerami A et al, 1979). In
this study supplementation of vitamin C was able to reduce plasma glucose, however,
significant only at 36 weeks of supplemented. These findings confirmed our previous study
(Jariyapongskul A. et al 2002). This unpredicted result might be explained by the beneficial
effect of a rise in plasma vitamin C on increasing insulin action (Paolisso G et al, 1994). In
addition the increased plasma vitamin C with a simultaneous reduction in plasma GSSG/GSH
ratio could enhanced the glucose transport. Since the intravenous injection of streptozotozin 55
mg/kg BW, normally does not damage the whole β cells, therefore, the small amount of
plasma insulin can be detected in streptozotozin diabetic rats. In other word the STZ-rat model
basically represents for hypoinsulinemic state. According to the finding of Paolisso (1994), our
data on hypoglycemic effects of vitamin C may be explained through the possible mechanisms
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of vitamin C on reducing blood glucose via its scavenging free radicals result, by which the
simultaneous plasma GSSG/GSH ratio was increased, and then increase in insulin action
which the consequence of decreased plasma glucose level.

In addition, the glycosylated hemoglobin in diabetic rats was found to be significantly
decreased in 36 weeks of STZ-Vit C as well. Therefore, it further confirmed the benefit effect of
vitamin C on reducing plasma  blood glucose.

1.3 Malondialdehyde (MDA) level in the eye
Lipid peroxidation is initiated by the attack free radical on fatty acid or fatty acyl side

chain. Any chemical species that has sufficient reactivity to abstract a hydrogen atom form a
methylene carbon in the side chain. Malondialdehyde (MDA) is generated by both lipid
oxidation and as a by–product of prostaglandin and thromboxane synthesis. Its plasma
concentration is increased in diabetes mellitus and it is found in the atherosclerotic plague
deposits promoted by diabetes as well (Kume S et al, 1995). In our study, the MDA levels
were significantly higher in 8, 12, 16, 24, and 36 weeks of STZ-rats’ eyes than in control rats
with aged match control. These concentrations are increased  in diabetes mellitus where as it
is that  hyperglycemia can accelerate lipid oxidation (Niskanen LK et al, 1995). Santini SA
(1997) indicated the increased lipid hyproperoxides (ROOH) and also its conjugated diene
plasma levels in IDDM patients. Losada M (1997) reported that patients with retinoathy showed
significantly increased MDA level compared to diabetics without retionopathy and healthy
controls, using the TBA test. The degree of reactive oxygen species (ROS) occurred could be
estimated by the assessment of its main product, malondialdehyde or MDA (Halliwell B et al,
1993).

Currently, there is a great interest in the potential contribution of increased oxidative
stress to the development of complications in diabetes. Increased presence of ROS has also
been implicated in the pathogenesis of IDDM (Santini SA, 1997).  It has been suggested that
long- term  exposure of body tissues to elevate blood glucose can result in diabetic patients
suffering from oxidation (Wolff SP et al, 1987). Oxidative stress can produce major interrelated
derangement of cell metabolism, leading to the peroxidation of cellular membrane lipids as well
as the increased oxidative modification of amino acids and DNA (Halliwell B et al, 1991).

There are many suggestions regarding the origins of oxidative stress in diabetes,
including free radical reactions related to glycation of proteins, consumption of NADPH through
the polyol pathway, glucose autoxidation, hyperglycemia–induced pseudohypoxia, and
activation of protein kinase C (Vanderjagt DJ, 2000). From the results of our studies,
hyperglycemia leads to non-enzymatic glycosylation of proteins, HbA1C, was found to increase
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in STZ-rats. The serum levels of MDA correlated best with glycosylated hemoglobin. Increased
lipid peroxides suggesting increased free radical activity is associated with pathogenic
implications. Under normal circumstances the extent of lipid oxidation is largely controlled by
antioxidant concentration in the surrounding medium which is usually sufficiently high to
prevent propagation of oxidative free radical reactions by oxygen-derived free radicals in blood.
In tissue, there is, however, a greater likelihood that localized deficies of antioxidants would
allow lipid oxidation to occur. (Rimm EB et al, 1993).  This has led to a huge interest in dietary
antioxidants and their protective role in diabetic complications.

Interestingly, vitamin C supplementation can reduce MDA values in 16, 24, and 36
weeks of STZ-Vit C rats compared with STZ-rats at the same aged match group. We present
evidences that continued vitamin C supplementation in diabetic rats revealed a highly
significant reduction in MDA levels.

Vitamin C is the most important water-soluble antioxidant and has the potential to
scavenge the superoxide and hydroperoxyl radicals, which are typical physiological forms of
ROS. It has been documented for its effective scavenging superoxide and other reactive
oxygen species and protection lipid against peroxidation. Several studies show that dietary
antioxidants, vitamin C, can prevent propagation of oxidative free radical reactions (Beyer RE,
1994).

II The antioxidant effects of vitamin C supplementation on  leukocyte-endothelial
interaction

  In our experiment, the exhibition of marked enhancement of leukocyte adhesion and
transmigration was observed through intravital fluorescence microscope by using   rhodamine 6
G to label leukocyte.

In the present study, the iris postcapillary venules with the diameter of 20-50 µm were
chosen for consequently observing the leukocyte-endothelium interaction using an intravital
fluorescence microscopy on 8, 12, 16, 24 and 36 weeks after STZ injection.  Our results
demonstrated that the density of leukocyte adherence per field of view were significantly
increased in STZ-rats at all monitored time compared with control rats.

The peripheral polymorphonuclear leukocyte (PMN) is one of the main inflammatory
cells. PMN-EC adherence resulted in the formation of a microenvironment between the PMN
and the EC (Harlan JM, 1987). Under this scheme, adhesion occurs between mutually
“activated” leukocytes and endothelium particularly in the small vessels and caused capillary
obstruction and occlusion. The harmful of these phenomenon is that contact of circulating
leukocytes with the vascular endothelium promotes a cascade of events leads to further
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leukocyte activation.  Once activated, PMNs release ROS and mediator of proteolytic tissue
degradation, contributing to oxidative stress, subsequent inflammation, and causing surrounded
endothelial cells even more damaged (Semdly LA et al, 1986).

Recent studies indicated that both glucose (Schroder S, 1991 ; Kim JA et al, 1995),
and advanced glycation end-products may damage endothelium and caused the expression of
adhesion molecules (Baumgartner-Parzer SM. et al, 1995 ; Schmidt AM et al, 1995). Non-
enzymatic glycation of proteins may also interfere with leukocyte behavior. Massuda et al,
(1990) have demonstrated that glycosylated protein separated from the serum of diabetic rats
is capable of decreasing membrane fluidity of control leukocyte which may alter leukocyte
function such as leukocyte migration. Even a small reduction in leukocyte deformability would
likely increase leukocyte retention in capillaries. The observation of less deformable leukocytes
has also been extended to both  IDDM and NIDDM patients (Ernst E and Matrai A,1986 ;
Pecsvarady Z et al 1994 ). Sannomiya P et al (1997), demonstrated that aminoguanidine, an
inhibitor of advanced glycation end products formation, prevented the decreased leukocyte
rolling and migration in alloxan-diabetic rats.

 In the present study, vitamin C supplementation had the effect to reduce the number
of leukocyte adhesion to endothelium of postcapillary venule in 24- and 36-week STZ-Vit C
rats, but not equal to the control values. Zanardo RO et al (1998) have previously
demonstrated that vitamin C corrected the reduced cell migration in alloxan–diabetic rats as
well. Raised levels of leukocyte adhesion have been demonstrated in diabetic rats. Besides, it
had been prognostic importance in the development of diabetic complications.  For instance,
the role of leukocytes in the pathogenesis of proliferative diabetic retinopathy has been
suggested (Schroder S, 1991; Forrester JV, 1993).  Especially, greater leukocyte adhesion in
diabetic venules was able to reason by dysfunctional diabetic endothelium. Because of several
studies suggested that nitric oxide (NO) was reduced in the endothelium of diabetic vessels. In
addition, the effects of NO not only on vascular smooth muscle, but also Kubes et al (1991)
reported that inhibition of nitric oxide production resulted in a 15-fold increase in leukocyte
adherence to cat mesenteric venules. Additionally, NO was also reported to reduce leukocyte
adhesion in an acute model of canine myocardial ischemia and reperfusion (Lefer et al,1993).
The increased oxidative stress due to hyperglycemia has been reported for its effects on
decreasing nitric oxide activity and synthesis (Jariyapongskul et al 2002, Sridulyakul et al
2003). From our all results, therefore, we suggested that the increase in generation of oxygen
derived free radicals (demonstrated by MDA levels) is the major contributors to induce
increasing leukocyte adhesion in diabetic rats. Since ROS might cause the decrease in NO,
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therefore, the activation of adhesive molecule were occurred. Through this matter, it explains
the reason why could improve or prevent leukocyte adhesion.

III. The antioxidant effects of vitamin C supplementation on iris blood-flow
perfusion

By using laser doppler flowmetry, mean iris blood-flow perfusion of STZ rats was
monitored. The results showed that iris blood-flow in STZ-rats was significantly reduced by
33.64 %, 50.46 %, 57.95, 57.60 % and 56.12 compared with 8, 12, 16, 24, and 36 weeks
control rats, respectively.

Interestingly, our results have demonstrated that the reduced iris blood flow could be
prevented by vitamin C supplementation. The mechanisms responsed for this rteduction of iris
blood flow in diabetes has not yet been clarified. However, as we have mentioned that there
was an imbalance between endothelium-derived vasodilators (nitric oxide, prostacyclin) and
endothelium-derived vasoconstrictors (endothelin) reported well in diabetic rats (Ward KK et al.,
1989, Cameron NE et al., 1994) This imbalance is belived to result from the increased in
oxygen-derived free radicals. Morover, there is an evidence showed that increase
vasoconstrictor could lead to reduce local organ blood flow (Cotter MA et al., 1995) Besides,
Helmke BP et al (1997) have the other point of view that the leukocyte adhesion in
postcapillary venules may  restrict organ blood flow by inducing vasoconstriction in the
neighboring arterioles. In our study, increasing leukocyte adhere to the vascular endothelium
were found in iris postcapillary venules in streptozotocin-induced diabetic rats. Therefore, the
reduction of organ blood flow including iris blood flow  is the result from leukocyte adhesion
and imbalance between endothelium- vasoconstrictor and vasodilator. However, both of them
share the same basis initiated primarily by the oxygen derived free radicals inducing
endothelium dysfunction. Such that is the reason why the vitamin C supplementation could be
used as an antioxidant in order to prevent reduction in iris blood flow.

. 
The effects of long-term supplementation of antioxidant; vitamin C on vascular

structure
In our study, microaneuryms (Figure 12.) were able to observe especially 24 and 36

weeks.  It was suggested that the distension of the vascular wall at sites of microaneurysm
formation may be resulted from the lack of arterial control of blood flow in which it has already
compromised by loss of smooth muscle cell or pericytes.
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reported that increased  in leukostasis been shown in animal models of diabetes with short
duration of disease. Multiple reports have suggested that the increase in leukostasis was
associated with leukocyte or endothelial cell activation and increased expression of adhesion
molecules on both cell types (Miyamoto K et al, 1999; Lo SK et al, 1993).

Accordingly, the results demonstrated the correlation between increased leukocyte
adhesion and decrease in iris blood–flow perfusion was significantly characterized by the linear
regression. Therefore, would like to hypothesize the simple reason explained such correlate as
that once hyperglycemia induced endothelial dysfunction, may be through the decrease of nitric
oxide activity, as described previously therefore, more adhesive molecules of both leukocyte
and endothelial cell were expressed. As when leukocyte adhesion occluded midperipheral
vessels then large areas of capillary nonperfusion were developed and finally it may contribute
to hypoxic development  as a consequence of ischemia. The more leukostasis causes the
vascular occluded, the more capillaries become no flow, and results to less of iris blood-flow
perfusion.

The data demonstrates that the presence of diabetes are necessary for measurable
effect on iris blood-flow perfusion can occur in diabetes, not founded relationship in control rats.
Because of the supplementation of vitamin C could prevent both the increase in leukocytes
adhesion and decreases in iris blood-flow perfusion in diabetic rats. One might simply say that
the prevention of leukostasis probably via the inhibition of expression of adhesive molecule
(Rayment SJ et al, 2003) may be the therapeutic tool for preventing hypoxic condition in
diabetic iris including retina.
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Abstract. Effects of long-term supplementation of antioxidant vitamin C on the iris
microcirculation was investigated in streptozotocin (STZ)-induced diabetic rats. Diabetes was
induced in male Wistar Furth rats by intravenous injection of STZ (55 mg/kg b.w.). The rats were
divided into three groups: control (CON), STZ rats and vitamin supplemented STZ rats (STZ-vitC).
Ascorbic acid (1g/L) was added into drink water for supplementation of vitamin C. The experiments
were performed at 8, 12, 24 and 36 weeks after injection of STZ. Blood glucose, tissue lipid
peroxidation (MDA) and plasma vitamin C were measured. To examine the endothelial function,
leukocyte adhesion to the venular endothelium was evaluated by counting leukocytes labeled with
rhodamine 6G. The iris blood flow perfusion was monitored using a laser doppler flowmeter. In the
STZ-rats, hyperglycemia was induced with increase in the HbA1c, increase in the lipid peroxidation
and decrease in the plasma vitamin C. Their abnormal levels were improved by supplementing
vitamin C in STZ. The number density of adherent leukocytes was increased significantly at 8, 12,
24 and 36 week after injection of STZ, while the iris blood flow perfusion was decreased. In the
STZ-vitC rats, the iris blood-flow perfusion was significantly increased while the leukocyte
adhesion was decreased at 24 and 36 weeks. The iris blood-flow perfusion was related with
leukocyte adhesion. It is concluded that long-term supplementation of vitamin C could prevent the
endothelial dysfunction in diabetes through decrease in leukocyte adhesion and increase in iris blood
flow perfusion. The antioxidant vitamin C might be a great therapeutic agent for preventing diabetic
retinopathy.
Keywords. diabetes, fluorescence videomicroscopy, iris microcirculation, leukocte adhesion,
retinopathy, STZ-induced diabetic rat, vitamin C,
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1. Introduction

Diabetic retinopathy is one of major complications that cause most suffering in
diabetic patients. In diabetes, interaction between leukocyte and endothelium may be
enhanced markedly. In fact, Schroder et al,1991. showed the appearance of capillary
occlusion with leukocyte in the retinopathy of diabetic rats (1). Recently, Bandello et al.
observed phenomena of capillary non-perfusion in the iris microvessels of diabetic patients,
suggesting that these vaso-occlusive processes were not limited to retina alone (2).
Certainly, leukocyte adhesion may be closely connected with blood flow perfusion in
diabetes. However, there are very few studies on the relation between leukocyte adhesion
and blood flow perfusion in the iris microvasculature.

According to Giugliano et al (1996), vitamin C was reduced significantly in
intracellular concentration under diabetic hyperglycemic condition, while glutathione and
vitamin E were decreased. Since vitamin C is a water soluble antioxidant in human plasma
(3). It is capable of scavenging reactive oxygen species and sparing other endogeneous
antioxidant in vivo. In our previous study (4), we demonstrated that daily supplementation
of vitamin C could improve the diabetic-induced endothelial dysfunction in STZ-rats. In
particular, long term supplementation of vitamin C could decrease leukocyte adhesion to the
cerebral post-capillary venules in diabetic-rats. However, there is no data available for
effects of vitamin C on the iris microcirculation in diabetes.

In this paper, we designed an experiment for elucidating effects of vitamin C on
leukocyte adhesion and iris blood-flow perfusion using streptozotocin (STZ)-induced
diabetic rats. We visualized leukocytes flowing in the iris microvasculature under a
fluorescence videomicroscope. By counting the number of leukocytes adhering to the
venular endothelium, we evaluated the leukocyte adhesion. We also evaluated the iris blood
flow perfusion using a laser Doppler flowmeter. We analyzed both parameters of leukocyte
adhesion and iris blood-flow perfusion in normal and STZ rats with and without
supplementing vitamin C at different periods after injection of STZ.

 2. Materials and methods

2.1. Diabetic induction

Ninety five male Wistar-Furth rats weighing 200-250 g were divided randomly into
diabetic (n =62) and non diabetic (n=33) group. Diabetes was induced by a single
intravenous injection of streptozotocin (STZ; Sigma chemical Co. USA, 55 mg/kg BW).
Streptozotocin was freshly prepared by dissolving in citrate buffer pH 4.5 (Sigma chemical
Co. USA) and immediately single injected into the tail vein and same volume of citrate
buffer pH 4.5 was injected by the same route to non-diabetic control animal. After 24 hours
of STZ injection and prior to each experiment, the glucose level was verified using a
glucometer (Advance Glucometer, BOEHRINGER MANNHEIM, Germany). The diabetic
condition defined as a plasma glucose concentration ≥250 mg/dl.
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2.2. Vitamin C supplementation

Supplementation of the rats with vitamin C (L-ascorbic acid, 99%, Sigma chemical Co.,
USA) started 24 hours after the administration of streptozotocin. Vitamin C was prepared
daily by dissolving in drinking tap water at a concentration of 1g/L. And the experimental
rats were freely access to this vitamin C drinking water (4).

2.3.  Experiments

The experiments were performed at 8, 12, 24, and 36 weeks after the injection of
streptozotocin or citrate buffer (pH 4.5).

On the day of experiments, the rat was anesthetized with sodium pentobarbital (60
mg/kg BW, i.p.) and a thecheotomy was performed. It was ventilated mechanically with
room air and supplemental oxygen. A catheter was inserted into a femoral vein for injection
of fluorescence tracers, and a femoral artery was cannulated for measurement of systolic
(SBP) and diastolic blood pressure (DBP) using a pressure transducer connected to a
polygraph system (Nihon Kohden, Japan).

2.3.1. Iris blood flow-perfusion measurement

The iris blood flow-perfusion was measured using a laser Doppler flowmetry with a
fiber optic needle probe (wavelength 780 nm) (model ALF 21, Advance Co. Ltd., Japan).
The needle probe was fixed perpendicularly to and above the iris about 1 mm. Eight
different measurements were performed at each time, and the mean of iris-blood flow
perfusion was then determined for each animal .

2.3.2 Intravital fluorescence microscopy

The iris microcirculation was observed under an intravital fluorescence
videomicroscope. After preparing the eye, briefly, after the left eye was retracted such
occular was suffused with a drop of sterile saline solution. Afterthat, a piece of thin
transparent glass with 2×2 mm2 was placed on the left occular. The glass was fixed to the
skin arround the left eye. The animal was moved to the stage of the fluorescence
videomicroscope. The FITC-dextran (MW 150,000; 15 mg/kg BW) in conjunction with
blue light excitation was used for labeling plasma. The other florescent dye is rhodamine
6G (0.15 mg/kg BW) in conjunction with green light was used for staining mitochondria,
especially in leukocyte. The both fluorescent tracers were injected intravenously through
the cannulated femoral vein; These can be used, in parallel, by switching between two
different filter blocks. The epifluorescent image was observed under a low light in real-time
throughout the experiment period, using x20 objective lens and a SIT video-camera (DAGE
Co. USA). Simultanously, the image was monitored. The videotapes recorded in each
experiment were played back flame-by-flame for further analysis of image processing,
using a software called Global lab image ΙΙ.
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2.3.3. Leukocyte imaging

To visualize the leukocytes adhesion to vascular endothelium, fluorescence marker
rhodamine 6G (R6G; Sigma chemical Co., USA; 0.3 mg/ml of normal saline) was
administered intravenously. Adherent leukocytes in the iris post-capillary venules were
observed under a fluorescence videomicroscope and recorded in real time throughout the
experimental period. The emission wavelength of R6G lies between 530 and 540 nm.

During playback of the videotape, the number of leukocyte adherence to endothelium of
the post-capillary venule (20 to 50 µm in diameter) were counted using the software (called
Global lab image). To measure the diameter of post-capillary venule, FITC-labeled dextran
(MW 150,000) suspension in physiological saline solution (0.2 ml of 15mg/kg b.w.) was
injected into the femoral vein for providing an immediate contrast between plasma and the
interstitium.

We regarded the leukocyte as adherent one when it remained stationary for equal or
longer than 30 second (5). The number of adherent cells were manually counted and
expressed as the number of cell per field of view (6).

2.4. Changes in systemic parameters

2.4.1 Blood glucose, and plasma vitamin C

The parameters for metabolic changes were blood glucose (BG), blood glycosylated
hemoglobin (HbA1c) and plasma vitamin C. All these parameters were determined at the
end of each experiment by collecting blood sample from the femoral artery. Blood glucose
was determined by using a glucometer (Advance Glucometer, Boehringer Mannheim,
Germany). The plasma was kept at -80 °C for determination of plasma vitamin C level and
was measured using enzyme-assisted spectrophotometric method (5).

2.4.2. Free radical by products: Malondialdehyde (MDA)

The level of lipid peroxidation in the left eye was assayed by measuring the reaction
products between malondialdehyde (MDA) and thiobarbituric acid (TBA).
Briefly, rat eye was homogenized and washed . After resuspending in distilled water ,lipid
peroxidation was allowed to react with TBA at 95o C for 60 minutes. The reaction mixture
was cooled to room temperature and the reaction product was extracted with n-butanol and
the formation of a pink chromogen is measured at or close to 532 nm (6).

2.5. Statistical analysis

Results were expressed as mean ± standard deviation of mean (SD). Statistical analysis of
the results was done using two-way analysis of variance followed by student ’s t-test. A
probability (P) of 0.05 or less was considered significant.
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3. Results

3.1. Changes in systemic parameters

The blood glucose levels was significantly elevated in STZ rats (397.12±65.48
mg/dl to 463.37±106.52), compared with non diabetic control rats (83.5±11.86 to 100.9±
11.51; p<0.001). Table 1. shows the level of blood glucose,  plasma vitamin C, and tissue
MDA in all the  monitored time points. The level of vitamin C in diabetic rats was
significantly decreased (P<0.01), showing the concentration approximately 60% smaller
than that in control rats. This reduction in plasma vitamin C returned up to the control level
after the supplementation of vitamin C. Plasma

To determine the antioxidant effect of vitamin C on the eye, tissue MDA, product of
lipid peroxidation was used. The tissue MDA was found to accumulate in the STZ-rats
higher than control rats in all monitored time points (8, 12, 24, 36 weeks). The eye of rats
supplemented with vitamin C (8-36 weeks) showed a 19.57-44.82 % decrease in eye MDA
level. These results indicated that the beneficial effects of vitamin C were mediated through
their antioxidant actions.

Table1. Systemic parameters (blood glucose, plasma vitamin C, tissue MDA, systolic pressure,
diastolic pressure in control,diabetic with and without vitamin C supplementation. Values are
expressed as mean ± SE

BG
(mg/dl)

VIT C
(µmol/L)

        MDA
(nmol/100mg wet
wt.)

CON  8 W 83.5 ± 11.8 (n = 10) - 58.3±  27.7 (n =7 )
         12 W 97.0 ± 13.8 (n = 12) 44.5 ± 2.1 (n = 5) 72.9 ±21.4 (n = 10 )
         24 W 106.8± 10.4 (n = 13) 43.5± 8 1.1 (n = 8) 70.4 ± 31.3 (n = 11)
         36 W 100.9± 11.5 (n = 11) 44.89± 2.93 (n = 5) 73.6 ± 22.9 (n = 10)
STZ   8 W 408.6± 97.8 (n = 9)*** - 103.3± 25.9 (n = 9)*

         12 W 397.1± 65.4 (n = 8)*** 23.0±  0.9 (n = 8)*** 107.1± 35.7 (n = 6)*

         24 W 425.0± 64.4 (n = 7)*** 21.4± 1.8 (n = 8)*** 137.5 ± 37.8 (n = 6)***

         36 W 463.0± 106.5 (n = 8)*** 15.9 ± 2.0 (n = 5)*** 145.6± 28.8 (n = 11)***

STZ-vit C
           8W

413.6± 94.0 (n = 8)NS - 67.7± 29.0( n = 6)NS

        12 W 431.4± 83.2 (n = 10)NS 43.6±  3.92 (n = 5)NS 84.1± 13.4 (n = 6)NS

        24 W 380.2± 68.9 (n = 11)NS 39.4± 2.04 (n = 5)## 84.9± 13.9 (n = 10)##

        36 W 279.3± 77.0 (n = 8)## 38.5± 2.0 (n = 5)## 80.8± 20.8 (n = 8)##

BG = blood glucose; VITC = plasma vitamin C; MDA = tissue malondialdehyde.
*** p<0.001 as compared to CON; ** p<0.01 as compared to CON; *  p < 0.05 as compared to CON ;
## p<0.01 as compared to STZ ; NS not significant different as compared to STZ
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3.2 Leukocyte-endothelial cell interaction

All the leukocytes counted as adherent one remained stationary for 30 second. The
leukocyte adhesion was counted per field of view totally of postcapillary venule (diameter:
20-50 µm).

 The present videomicroscopic visualization showed clear images of leukocyte
adhering to the endothelium of postcapillary venules in control (non-diabetes), STZ-rats
with and without vitamin C supplementation in all the monitored time points. Fig.1. shows
image of leukocyte adhesion (strained by rhodamine-6G) at 36 weeks of control, STZ-rats
with and without vitamin C supplementation. The number of leukocyte adhesion appear
dramatically increased in STZ-rats but very few leukocyte adhesion on the endothelial
lining in control and STZ-rats with supplementation of vitamin C .

Fig.1 shows image of leukocyte adhesion (strained by rhodamine-6G) at 36 weeks
of control

CONTROL 50 µM
STZ

50 µM

STZ-VITC
50 µM
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2.3. Iris blood flow perfusion

By using laser Doppler flowmetry, the regional iris blood flow perfusion was
measured at 8 points of the iris’s area.  Table 2 shows the mean values of  iris blood flow
perfusion. The means of iris blood flow perfusion in STZ rats were significantly reduced to
33.64 %, 50.46 %, 57.60 % and 56.12 %, respectively,  compared with control rats on 8, 12,
24 and 36 weeks. There appeared significant difference between STZ and STZ-vit C on 24
and 36 weeks.

Fig. 2.   LA = Leukocyte adhesion; ** p<0.01as compared to CON;  * p < 0.05 as compared to CON ;
## p<0.01 as compared to STZ ; NS not significant different as compared to STZ
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Fig. 3. AU = arbitary unit.  ** p<0.01as compared to CON; * p < 0.05as compared to CON; ## p<0.01
as compared to STZ; ns not significant different as compared to CON; NS not significant different as
compared to STZ

2.4  Relationship between the iris blood flow perfusion and leukocyte-endothelial cell
interaction

Linear regression analysis was used to examine the relationship on the iris
blood-perfusion and leukocyte-endothelial cell interaction. The obtained relationship was
shown in Fig. 4.  The iris blood flow perfusion values and leukocyte adhesion (cells per
field of view of postcapillary venule) in control and diabetic rats were plotted at all the
monitored time points. The two parameters, iris blood flow perfusion (x) and leukocyte
adhesion (y), were correlated as follows:

y = 0.0015x + 1.18 (r = 0.060, P < 0.696)    for control rat,  
y = -0.192x + 17.0 (r = 0.292, p < 0.034)   for STZ-rat
y = -0.158x + 13.3 (r = 0.554, p < 0.001)   for STZ-vitC rat.

It is interesting to note that any effect on the iris blood flow perfusion appeared in diabetic
rats, but not in control rats. This indicates that the presence of diabetes is necessary for
measurable effect on the iris blood flow perfusion to occur.  The present relationship
between the iris blood flow perfusion (x) and leukocyte adhesion (y) showed that:  1) In
control (non-diabetic) rats appeared no effect on the iris blood flow perfusion, This
indicates that the presence of diabetes is necessary for measurable effect on the iris blood
flow perfusion to occur; 2) In diabetic rats, the iris blood flow perfusion was reduced when
leukocyte adhesion was raised. This tendency was lowered in diabetic rats with vitamin C,
compared to diabetic rats without vitamin C.
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Discussion

Hyperglycemia may lead to elevated production of oxidative stress by a number of
mechanisms, including the production of oxidants by vascular endothelium and leukocytes.
The present study shows  increased in oxidative stress(MDA levels) in the eye of diabetic
rats which can be inhibited significantly by the supplementation of antioxidant, vitamin C.

Vitamin C is an important water-soluble antioxidant, and has a potential to scavenge
superoxide and hydroperoxyl radicals. Up to now, a number of documents have showed its
effectivesness for scavenging superoxide and other reactive oxygen species and protection
lipid against peroxidation (7,8). In the present study, we  showed its effectiveness for
reducing lipid peroxidation (MDA) levels in STZ-induced diabetic rats. In fact, vitamin C
supplementation could reduce MDA levels significantly at 24 and 36 weeks after STZ
injection. Currently, there is a great interest in the potential contribution of increased
oxidative stress to the development of complications in diabetes. It has been suggested that
long-term exposure of body tissues to elevate blood glucose can result in diabetic patients
suffering from oxidation (9). Oxidative stress can produce major interrelated derangement
of cell metabolism, leading to the peroxidation of cellular membrane lipids (10).The extent
of lipid oxidation is controlled by antioxidant concentration in the surrounding medium, so
that the level may be usually sufficiently high for the propagation of oxidative free radical
reactions in blood, but deficit of antioxidants in tissues may allow lipid oxidation to occur
(11). This has led to a substantial interest in dietary antioxidants and their protective role in
diabetic complications.

In the present study, we monitored the iris blood-flow perfusion in STZ-induced
diabetic rats with and without supplementation of vitamin C, using laser doppler flowmetry.
The measured iris blood-flow was reduced significantly at 8, 12, 24, and 36 weeks after
STZ injection, compared with control rats. Moreover, the supplementation of vitamin C
increased the iris blood-flow perfusion significantly at 24 and 36 weeks. It is to be noted
that reduction in iris blood-flow perfusion in diabetes might be suppressed by
administration of vitamin C.

In general, vitamin C could prevent the impairment endothelium-dependent
vasodilation. This mechanism has been elucidated both by intravenous infusion (12,13,14)
and by oral administration (15,16). In hyperglycemia, reactive oxygen species (ROS) is
induced to increase, associated with increase in MDA level. The ROS increases leukocyte-
endothelial interaction through inducing endothelial dysfunction, which may lead to
decreasing the iris blood-flow perfusion. It is, therefore, reasonable to assume that once
ROS is decreased by vitamin C as an antioxidant, endothelial dysfunction should be
prevented.

In the present study, we visualized the behavior of leukocytes in microvessels by
rhodamine 6G to label leukocyte for examination the leukocyte-endothelium interaction
under a fluorescence videomicroscope. Choosing the iris postcapillary venules with 20-50
µm in diameter, we continuously observed the cells flowing through the venules. Our result
demonstrated that the number density of leukocyte adhering to venule was significantly
increased in STZ-induced diabetic rats at different periods after STZ injection, compared
with control rats. A number of factors influences the leukocyte adhesion to endothelium,
including oxygen-derived free radicals. According to recent studies, high blood glucose
may damage endothelium (1,17), and also cause the expression of adhesion molecules
(18,19). Our study indicated that vitamin C is effective for reducing leukocyte adhesion to
venular endothelium in diabetes.

It has been noted that increases in leukocyte adhesion to microvessels occur in diabetic
patients and diabetic animal models. Such increased levels of leukocyte adhesion  may be of



12

prognostic importance in the development of diabetic complications. In fact, leukocytes
played a role in the pathogenesis of proliferative diabetic retinopathy (1,20). Especially,
enhanced adhesion of leukocyte was considered a reason for dysfunction of endothelium
induced in diabetes. There are several studies to indicate that nitric oxide (NO) was reduced
in the endothelium of diabetic vessels. Kubes et al (1991) reported that inhibition of NO
production resulted in a 15-fold increase in leukocyte adhesion to cat mesenteric venules
(21). Moreover, NO reduced leukocyte adhesion in an acute model of canine myocardial
ischemia and reperfusion (22). There are in vivo studies to report that increased oxidative
stress due to hyperglycemia might be effective for decreasing NO activity and synthesis (23
Our result provides a clue to understanding why antioxidant could improve or prevent
leukocyte adhesion. The increase in generation of oxygen-derived free radicals
(demonstrated by MDA levels) may be a major contributor increasing leukocyte adhesion in
diabetic rats. Considering decrease in NO by ROS, adhesive molecules might be activated.

Both increased leukocyte adhesion and reduced blood flow appear in diabetic patients and
diabetic animal models. It is reasonable to suppose that the both factors should be essential
for the development of diabetic angiopathy. An aim of the present study was to seek for
relation between leukocyte adhesion and blood flow perfusion in the iris microvasculature.
By identifying both changes of iris blood-flow perfusion and leukocyte adhesion as early as
8 weeks after diabetic induction, we could relate the leukocyte adhesion with the iris blood
flow perfusion. As it is shown in Fig.4, the correlation between leukocyte adhesion and iris
blood-flow perfusion were expressed by the linear regression. Especially, the obtained
relationship showed a good correlation for STZ-induced diabateic rats supplemented
vitamin C.

There are several reports to indicate that increase in leukocyte adhesion was a critical
factor in the early retinopathy through decrease in retinal blood flow and increase in
cytokine expression and vascular endothelial growth factor (24,25). Miyamoto K. et al
(1999) showed how leukostasis was increased in animal models with diabetic diseases
during short periods. Such increase in leukostasis might be associated with leukocyte or
endothelial cell activation and increased expression of adhesion molecules (24,26). Our
result showed that increase in leukocyte adhesion could be closely related with decrease in
iris blood flow perfusion. Presumedly, once hyperglycemia induced endothelial
dysfunction, it might decrease NO activity, which resulted in more expression of adhesive
molecules in both leukocytes and endothelial cells. Once leukocyte adhesion occludes mid-
peripheral vessels, non-perfusion may be induced at large areas of capillary network, which
leads to hypoxic development as a consequence of ischemia. It is likely that the more
leukostasis causes microvascular occlusion, the more capillaries become non-perfused,
which results in less blood-flow perfusion in the iris microvasculature.

In conclusion, the present experiment provided an in vivo evidence to indicate that lipid
peroxidation levels (MDA) was induced in the diabetic eye and was decreased by
supplementing vitamin C. Moreover, the leukocyte adhesion was related with the iris blood
flow perfusion. The supplemented vitamin C could prevent both increases in leukocytes
adhesion and decreases in iris blood-flow perfusion in diabetic rats. A therapeutic tool for
preventing hypoxic condition in diabetic iris ,including retina may be the prevention of
leukostasis, which may be possible by inhibiting the expression of adhesive molecules (27).
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