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Beam Concrete Width of Ultimate % Load Maximum Normalized shear
compressive precrack (mm) Load (kN) decrease deflection strength
strength (MPa) (mm)

NINARBITAT 1

B1 20.90 - 409.6 - 5.8 0.55
B2 21.87 1.0 325.5 20.52 16.0 0.42
B3 21.36 0.9 336.0 17.96 5.0 0.44
B4 22.19 0.05 444 4 8.5 (increase) 5.0 0.56
B5 21.86 0.3 435.5 5.8 (increase) 8.1 0.56

NINARDITAT 2
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B6 23.90 - 431.0 - 4.1 0.51

B7 23.30 0.40 421.3 2.23 6.5 0.49

B8 23.84 1.60 324.8 24.63 15.0 0.38
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15t round of flexural loading

—

180 degree rotation about the beam axis

Vertical pre-cracks

Unit : mm

2" round of flexural loading

31 4.3a NMINARLUNTAR 4 AULLAALAA

Study area

Shear crack

g1l 4.3b nsegeuns I wInUINULL 3 qA
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(c) N9em 4 @qm'ﬂuﬁ 2 (180 24F1) (Four point bending — Second round)

v
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Reversed flexural loading of deep beam B2

4-point bending (The first step, 0 deg.)

load =294.61 kN

2 Residual displacement
= -
~ T T . O !
B
g 25 20
_ ) ¥ ): 0 -
load = 273.25 kN -300 j

4-point bending (The second step, 180 deg.) -400

Mid-span deflection (mm)

g1 4.5a mu B2

200 Yielding
2 Residual displacement
ks
S -20 10 15
—
load =295.92 kN
4-point bending (The second step, 180 deg.) -400

Mid-span deflection (mm)

g1 4.5b MU B3
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Reversed flexural loading of deep beam B4

4-point bending (The first step, 0 deg.)
300 Load = 254.21 k

200

Load (kN)

-10 -5

Load = 241.07 kN,

e :

4-point bending (The second step, 180 deg.) -300

Mid-span deflection (mm)

g1 4.5c Au B4

Reversed flexural loading of deep beam No.5

400

Load (kN)

4-point bending (The second step, 180 deg.) -300 ]

Mid-span deflection (mm)

51 4.5d muB5
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Reversed flexural loading of deep beam No.7
400 - 4-point bending (The first step, 0 deg.)

Load =274.87 kN

300

-10

Load (kN)

Load =256.82 kN

4-point bending (The second step, 180 deg.) -300 -
Mid-s pan deflection (mm)

31l 4.5e AuB7

Reversed flexural of deep beam No.8
4-point bending (The first step, 0 deg.)
400

8 kN

- A SR PaRRCTSR

15

Load(kN)

|
33
(=}

Load=291.94 kN 7 s

............. 5SN) n o xed

4-point bending (The second step, 180 deg.) -400
M id-span deflection (mm)

51 4.5f AU B8
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Beam B4
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{ Diagonal compression struts crushed
and failed at right side of face A

| 409.57 kN
> Beam ruptures and

o~ Y
400 7 immediately fails
Diagonal
compression \

struts crush

Load (kN)

Non pre-crackgd deep beam
100 1[
08 a0

0 5 10 15

Mid-span deflection (mm)

g1 4.7a aruduiudsendrathminussynuazsrasine uaz nwnisitFresau B1

Load (kN)

Mid-span deflection (mm)

su 4.7b Anduriusszudnadminusmnuazsresing uay nwnisatiReesn B6
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Shear capacity of deep beam B3

Beam ruptures and
40957kN S fails absolutely

336.00kN___ ] T~
,—-sdDOU-

Y . %0004
Concrete struts crush “>~._ J 3, \//

N_Pre-cracked deep bgam No.3 /

Non pre-cracked deep beam MD/" ____,./
0

Mixed sliding and crushing 0 5 10

Mid-span deflection (mm)

51 4.8 Aaudniugsrudnaimminussnuarszazing wuaz namnsitRvesau B2

B —
' Deep beam
' No.2 Face B

Shear capacity of deep beam B2

Non pre-cracked deep beam

500
A9.57 kN

400 Deep beam ruptures
= /\ 325.49 kN _—.and fails absolutely
£ 300 /\/ o= s
2 " |Diagonal “~--"
& A g
S 200 77 \/ compression

100 1 P —/ struts crush

0 @ Pre-cracked deep|beam No.2
0 5 10 15 20 25

Mid-span deflection (mm)

g1l 4.9 Audniusezudnaininussnuazsresing uay nawnisatiRvesny B3
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Load (kN)

500 444,37 KN Beam | ruptures and
e O S 40957 kN[ - fails absolutel
. 400 4 =~ <
£ 300 LD
; RN S wpre-crz'cked deep beam
€200 :}9 /
100 Pre-cracked deep|beam No.4 n/o_"_,./
<! M
0% Crushing of diagonal
0 5 10 15 20 compression struts
Mid-span deflection (mm)
v
71l 4.10 Anudusiugsendtaiwtinusnuazsvezina uaz nwnnsdRvesau B4
Shear capacity of deep beam B35
500 355D kN
409157 KN Beam ruptures and
400 iV £ fails absolutel
o N
200 ~p
Non pre-cracked deep beam /
100 T -
Pre-cracked| deep beam No.
0 R a»
0 5 10 15 20 25

Mid-span deflection (mm)

g1l 4.11 Anuduiugssndnalminussnuazsrezing uaz nawnsttRYesAU BS
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Beam ruptures and
fails absolutely

d deelyéam No.7

tep beam

5

10

Mid-span deflection (mm)

15

s 4.12 anuduiugseudralwsinussynuazszazing uaz nnnisitrresau B7

Load (kN)

Shear capacity of deep beam B8

20

500 430.95 kKN Non pre-cracked deep beam
400 r
I X 324.80 kN
« Beam rupturds and
300 fails absolutel]
More ductile

200 behavior
100 - Pre-cragked deep beam No.8

0 —] |

0 5 10 15

Mid-span deflection (mm)

g1l 4.13 pnuduiudsrudnahminussnuazszacing uaz nannnsitiRzeny B8
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Chapter 5 Theory of pre-cracked concrete
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2. qut»lﬁ shear anisotropy
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naln 2 ns@enanaenAsiLLNSANRauinaaserialiasaInsasiinqania (reduction of effective compressive
X X a Yo Y ' o a No o o o )

strength due to micro-fractures) MilaAaunTAlNAALIAEFIAMNUEN ABUNTAATHAAITLUTNER (compressive

strength) anadiiiasansesF1nqania (micro cracks) AMANIAEMNEIRUNADLNTA N19AAAIIBINIAITLILINERT

gunsaunuli@ag fracture parameter (K) @9anu1saauaaslsiann [1]

K = exp(-0.73E(exp(1-1.25E)) 5.2

Tnef E lurnadnsezandieuwin (equivalent strain) Waz @13130AN9 4 lHa1N

E=[(ce,) +(dy) 1" 53
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Yq=0.707 (g,- &,) 5.5

c=0.62/ €, 5.6

d=0.98/ Sp 5.7

Tnedl ¢ undipsaniade (mean strain) v, {uAdnAsen@en deviatoric (Deviatoric strain) €, AT &, 1
= o o . PN

ANLATLAUAN (principal strain) lagh €,> 8,

c uaz d udasiinesiaquazAmnnldnuaunisdiediu e uanueiuadarenounsn m fAumbsiniidedy
v

o dJ o Yo
USER TaaNNTnAUIL LA AST

0.5
Sp =0.00014 (fc) 5.8
Tunstinimeaesanddeil e, HAWAU 0 dou g, armnsoAundliann (93l 5.5)

g, =W/ (S.G2) 5.9
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| v
Warunalnysgasdnsneiufazinldansoaiuenmn  nasfuusadnilss@ndna  (effective  compressive

strength) lAAegunns

fc,eff = Kfc 5.10

A asunsedalssAvanatiy WA ind s unssdatiufaietesneunin ulifluAideiuusnlssansuaiild
AANANIAAAMIBITUTANEE LAY NNIEauiNEIei AL S TRIARUNTR
5.2.1 NS auAguuuuI1aaInINANAAERSNLNANITNARERY
1. ﬂqmwmmﬁ 1 mumdm&sngnﬁymﬂuﬂ?mmmn

ko

T VT 44w do e oo y
grdeldldngudfinainunananimesesai 1 fuiuganaassauildwangnsiadulunnman lunnslduuy

o

a2 v o ' o o dal
ANABINNATAANARS AN UUAA AL TAaT

1. wunvesNtaNlss@nsna (G) §iduld G = 2.0 ww. Guiluawinvewmae vatinazuidnglsaledaau

nd1aies 70 NN, uaziindngnasawin 10 wx. agifuauaunin Asinlingnliaunsauwnsnsdae lutdian
wihsnsialals

o

2. svprszwinesasFinm (S) §iduld 200 ww. Faduanlaalsyinamldainnimeass

NANNTILFE LT LTENINULLRNARINNAEAAEASILNNINAABILARAIAI TR

49



AN | NAIFULNEAAINNNT | ANNdNeTes K fc,eff Veal Vexp Vcal/Vexp
nadeLgnyu (MPa) | 31979 (wal) (MPa) | (kN) (kN)

B2 24.56 0.30 0.90 0.81 17.90 128.6 136.3 0.94

B3 23.34 0.25 0.95 0.85 18.85 136.4 144.8 0.94

B4 28.41 0.05 1.00 0.99 28.12 202.0 178.2 1.13

B5 27.02 0.15 0.990 0.94 25.4 182.4 167.4 1.09
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AN | NAYFUUNEAANNNNT | ANNNdNeTes K fc,eff Veal Vexp Vcal/Vexp
NAgaugN1U (MPa) 1974 (W) (MPa) (kN) (kN)

B2 21.87 1.0 0.94 0.83 17.06 167.4 162.8 1.03

B3 21.35 0.90 0.96 0.85 17.42 170.9 168.0 1.02

B4 22.19 0.05 1.00 1.00 22.19 217.7 222.2 0.98

B5 21.86 0.30 1.00 0.98 21.42 210.2 217.8 0.97

= al
NITNAXRAY ﬂﬁuﬂﬂ‘q AN 2

AN | NAITLILTNEARINNNT | AANNANasen K fc,eff Veal Vexp Vcal/Vexp
neaaugnilu (MPa) F1ahid (H.) (MPa) (kN) (kN)

B7 23.30 0.40 1.0 0.97 22.60 205.6 210.7 0.98

B8 23.84 1.60 0.74 0.69 1217 110.7 162.4 0.68
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Mechanism of crack arrest and diversion
Weak pre-cracking plane Diversion of crack

propagation

L.

E

direction of
shear crack | ¢ Cka, T l
propagation stops ! — :\

_—7 .

B -
» Element near pre-existing
- .
Low traction transferred

Element far from pre-exiﬁﬁg\

crack: High traction transferred Path of shear crack propagation

Small normal and shear traction
transfer across pre-crack plane

8

Small combined stress state ‘

. 2

No further propagation of
diagonal crack

b) small pre-crack
diagonal crack dominates behavior

a) large pre-existing crack
pre-existing crack dominates behavior

Experimental Observation

Deformation along pre-existing
crack plays central role

g1l 5.1 nqumavgeuazniadessaning

ANISOTROPY INTERACTION

SHEAR ANISOTROPYA/ \

Crack Interaction
(Multi-cracking)

y As ﬁCrack 1: Pre-crack

S

=

b

0 crm
Crack 2: Diagonal crack

Crack Initiation
(Uni-cracking)

¥ i T Previous crack

e

ol R )28

I = New crack

Crack1  ----> ACTIVE(slip)
(pre-crack) CRACK DIVERSION

Crack 2 ---->DORMANT

(Diagonal crack) CRACK ARREST

Previous crack ----> ACTIVE(slip)

Diagonal
localization  ----> DORMANT

(stress/strain) band

v

Crack arrest and
diversion mechanism

v

No initiation of new
diagonal crack

1 5.2 ngefj Shear Anisotropy
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Non pre-cracked .

element Pre-cracked elgment.
Reduced Effective
Contact Area

g1 5.3 nMsanasresiundudadsrAnnailiasainsasiinm
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g1 5.4 Madeuanindsiuussdnrespauninidnnlndiasesfraliesansesinsziuqania

e, =W/(SG/2)

g1l 5.5 MeAMINANNATANAN €,
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