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ABSTRACT

The Kostant operator over the quotient Lie algebra su(2)/u(1) is extended to the quotient
Lie superalgebras su(2|1)/u(2) and su(2|1)/(u(1)Xu(1)), and the one over the quotient Lie
algebra su(3)/(su(2)Xu(1)) to su(3|1)/u(3) and su(3|1)/(su(2|1)Xu(1)). The lowest lines of

kernel solutions of the Kostant operators are obtained for each case.
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Chapter 1

Basic information of Lie
superalgebra

1.1 su(2|1) Lie superalgebra

a=(4 )

e Roots in Dynkin basis (w', wy):

e Cartan matrix:

1
wew =—=, wl'w1:§, wi-w =0
— Even roots:
of = £(0,2)
— Odd roots:
BT ==£(1,-1), By ==£(1,1)
e su(2|1) generators

— The oscillator realization of the su(2|1) fundamental representation

[ai_,aj] = 5@‘, {b+,b7} =1

F" = Fgp=btay, F =Fgp=baf
Fyf = Fgr=blay, Fy =F; =ba]
T1+ = Ta{r = afaQ_, T = Taf = afaér
T3 = afal_ — a%“a;, Z = afal_ + a;a; +2b1h

— The differential-form realization of the su(2|1) general representation
Ff = 001, F[ =210y, Fy =00y, F; = 20y,
T1+ 2102, T = 2201, T3 = 2101 — 2209,
Z 2101 + 2202 + 200y

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)



e Commutation relations of the su(2|1) generators

2, T3] =0, [I{,T7]=T; (1.8)
(Z,TE) =0, [T3,TF] = 4275 (1.9)
(2, ) = £F7,  [T3, 7] = FF7, (1.10)
(Z,Ff] = +Ff, [Ty, Ff] = +Ff, (1.11)
17, Fif] = FFy, [T, F) = +FF, (1.12)
(FFE} = S(T+2) 5(1+oa)y+ 5 (T + 2)- 5 (1 - og);

T (071)ij + T (07)ije (1.13)

e su(2|1) representations
The representations of su(2|1) are labeled by a pair of numbers in Dynkin basis
(b,a1) and categorized into three types: atypical-1, atypical-2 and typical [12].

— The atypical-1 representation: b =0
Yo = 280 by = G2t (1.14)
— The atypical-2 representation: b =1+ a;

1/)0 = Z?l, 1/)1 = 012‘111+1. (1.15)

— The typical representation: b # 0, 1+ a

Yo =21, 1 = 0127 4y = 09287 ahyy = 0109287 (1.16)

1.2 su(3|1) Lie superalgebra

e Cartan matrix in Dynkin basis:

0 -1 0
A= -1 2 -1 ]. (1.17)
0 -1 2
e Roots in Dynkin basis (', wi, ws):
1 2 1
w'-w’:—g, Wi Wi =g, WiWj =g, wi-w' =0 (1.18)
— Even roots:
of =+(0,2,-1), of =+(0,-1,2) aFf ==+(0,1,1) (1.19)
— 0Odd roots:
B = +(2,-1,0), BF=4(2,1,-1), FF==+(2,0,1) (1.20)



e su(3|1) generators

— The oscillator realization of the su(3|1) fundamental representation

T
u
Py
By
T3
A

Ta1+ = afa;,
Tal_ = afa;,
F ir = b+a1_,
Fﬁf = b_af,
afal_ — a;ag,

+ _ ot
T, :Ta;—aQa?’,
- — — g— gt
T, _T%_—a2a3,
+ —

- — _ a4t
F2: BQ__bCLZ’

—ata — ata-
Is = ayay —agag

afal +aja; +aiaz +3b7b"

T;_ETa;:ai_
T:,:ET%_:af
Ff = Fg ="
F:;EFBS_:b_

as

(1.21)

— The differential-form realization of the su(3|1) general representation

Tf
Ty
Ty
B

2109 — 7201, T = 2001 — 7109,

2903 — 230y, Ty = 2305 — 7205,
2105 — 2301, Ty = 2301 — 2105,
00y, Fj =00, Fi =00,
2109, Fy = 2909, Fy = 2309
2101 — 2151 — 2909 + 5252

2900y — 2302 — 2305 + 2305

2101 + 2101 + 2209 + 2909 + 2305 + 2303 + 300

e Commutation relations of the su(3|1) generators

g

Tl_] = T3,

[TlivT;:] - iT§t7

[T2+7 TZ_] =15,

+
[Tl 7T3:F] ::FT2:Fv

(T3, Ty ] =T + T3

+
15, T3] = £17

[T5,T5] =0, [Z,T3] =0, [Z,13]=0
T3, T7] = 2217, [T, T3] = FT7,  [Z,T7] =0
(13, 157] = Ty, [T, 13] = 22T, [2,757]=0
T3, T3] = £T57, T3, T3] = +T5,  [2,T57]=0
T3, F*) = FF7, [T, Fi'] =0, 2, F{"] = 21
[T, F5) = +Fy, [T, Fy| = FF, [Z,Fy] =+2F;
(T3, F5'] =0, [Ty, F3'] = +F5", [2,F5] = £2F5

[TlivFli] ::FFQi’
T3, F5'] = ¥F5,
T3, Ff] = £F5,

3

!
3

1
(2T3 + 15+ Z)(Pl)ij +

3

[T, Fyf] = £FT,
157, Fyf] = £F5,
T3, F5) = £,
L (T3 + T3 + Z)(P2)ij

(=15 — 2Tg + Z)(P3)ij + Ty (A )ij + 7 (A] )i

+T5 (AF)ij + T3 (A3)ij + T5 (A3 )ij + T35 (A3)s;

(1.22)

1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34

e e e e e e e N e e e
M N N N~~~

(1.35)



e su(3|1) representations
The representations of su(3|1) are labeled by a triple of numbers in Dynkin basis
(b,a1,a2) and categorized into four types: atypical-1, atypical-2, atypical-3 and
typical.

— The atypical-1 representation: b =0

al za
o = 211232»
a;—1-az+1 a1 zaz—1
o = 92211 232 > ¢3:93211232 >
Yoz = Oaf3211E52 (1.36)

The atypical-2 representation: b =1+ a;

Yo = 21737,
+1z saz—1
1/}1 = 012?1 Z§2, ¢3 = 032?1232 )
P13 = 91932(111+12§2_1. (137)
— The atypical-3 representation: b =2 + a1 + as
Yo = 21737,
1 —1za2+1
1/)1 = 912‘111—’— Zg2, 1/)2 = 922(111 2’;2 y
saz+1
Yo = 01022]17Z5% 7, (1.38)

The typical representation: b £ 0, 1+ a1, 2+ a1 + ao

Yo = 27'Z37%

Y1 = 00 TR W =02 AT s = s

P12 = 010220725 by = 010520 T ERTY ahgg = 09032011552
Y123 = 01020327" 257 (1.39)



Chapter 2

Kostant operators for the
quotient Lie superalgebras

2.1 Introduction

The boson-fermion equivalence in the supersymmetric theories of elementary particles
continues to exercise theoretical physics. One’s intuitive unease with this idea has been
at least partially overcome by a remarkable success of the associated ideas and for-
malism in the supergravity theories. This achivement helps sustain interest and spur
development in establishing superalgebras (also sometimes called Zs-graded Lie alge-
bras), the underlying algebras of supersymmetry [1]. Recently, the Lie superalgebras
which occur in the Kac’s classification scheme [2] have been used in study of odd coset
quantum mechanics [3] and of M-theory on the pp wave [4].

The quotient method of Lie algebras has been proved to be the arsenal of math-
ematical physics in studying supergravity [5, 6] and getting a new kind of algbraic
structure for string theory [7].

2.2 Kostant operator over the quotient of Lie algebras

Normally, a Lie algebra g can be decomposed into a direct sum of subalgebra h and
the quotient p = ¢g/h whose dimension is equal to dim g —dim h. There exists a special
kind of operator on the quotient space, called Kostant operator [8], whose state vector
space describing internal degrees of freedom or charges is a tensor product space of the
spinor representation of so(dim p) with an irreducible representation of a Lie algebra
[9].

The simplest Kostant’s cubic Dirac operator is the one over su(2). By defining
0% = (01 % i09)/2 and the su(2) generators Ti> = T} & iTy shown in Appendix A as

the even part of the su(2|1) generators, one gets the twisted Kostant operator of su(2)
+ -4 - + L
Ksue) =07 @17 +0- @17 +030 T3+ 5[0 0" los ® fr-3l. (2.1)
Squaring the su(2) Kostant operator, one yields

1
2(2):1®(T12+T22+T§)+111®1 (2.2)

su

which is positive definite.



The Kostant operator over the quotient su(2)/u(1) is
K=octeT +o ®T}. (2.3)
The physical state vector space of the Kostant operator is
U=yt ey = [+>0[4,mj> &|—>|j,m;> (2.4)

As explicitly seen, KT = c11’T look similar to the two spinor-coupled equations
of the Dirac equation and (K)*)* = c c_ 1T to the Klein-Gordon equation. It is
interesting to see that there exist two kernel solutions, wfg = |+£>®|j, +j>, such that
K wg = 0. One can also define the positive and negative Kostant operators K+ =
otT®T 1i which complelely map every state in the quotient vector space V()*)/ V(det)
to V(¢F)/V(¢f). To get a state in terms of the u(1) subalgebra, one needs to act on
the state by the u(1) diagonal generator in its Dynkin basis

D= 1®T3+%[a+,0_]®f+,3]l (2.5)
which yields Dy* = (m; + %)wi and Dz/;li:t ==+ + %)wﬁt In terms of a complex
variable, an su(2) highest state |j,j> is equivalent to z{*, where a; = 2j is an su(2)
Dynkin label [10]. Alternatively, one obtains Dy = 3 (a1 + 1)

Note that one can also construct a chiral Kostant operator

Ke=o" T +0” Ty . (2.6)

where its physical vector space is the same as that of the twisted one except that its
kernel states are wg = |£>®|j, Fji>.
For the quotient su(3)/(su(2) x u(1)), the twisted Kostant operator [6] is

K= 0T, +% T +4 0Ty +7; 9T, (2.7)

where 75 = ot @0t +o @0t 7 =0t ® $(o3+ 1)+ 0~ ® 3(03 F 1) and the su(3)
generators Tf?, are defined in Appendix B as the even part of the su(3|1) generators.
The physical space of this quotient is the tensor product space of the so(4) positive

and negative spinor representations with the su(3) irreducible representation Viai,a2)

U= (|++>++—>) @ V(g a) @ (| = +>+ = —>) @ V{4, a0)- (2.8)

The positive and negative spinor state vector spaces are defined as * = (¢T®1)¥. The
su(2) x u(1) subalgebra consists of two commuting diagonal generators in its Dynkin
basis

Dy = 19T3+ % (D el@ sl +hi ] ® fis1)

= 1®T3+ <;((73—]1)®0'3> ®1 (2.9)
Dy = —1o3(Ty+2T) — 1 (bf5]® Fosd + b vp) @ £g1)

_ —1®€1;(T3+2T8)—;<;(1+03)®03> 1 (2.10)



which are used to act on a state in the tensor product space of the quotient su(3)/(su(2)x
u(1)) to get the state in terms of the diagonal subalgebra. For the trivial one-dimensional
representation Vg gy, one obtains

1
(D1; Do)l +4+>01 = (0; —5)1 + +>®1 (2.11)
1
(D1; Do)l + —>®1 = (0; 5)\ +—>®1 (2.12)
(D1; D9)| —4+>21 = (-1;0)| — +>1 (2.13)
(D1;Dg)| — —>1 = (1;0)] — —>®1 (2.14)

Under the su(2) x u(1) subalgebra, the states | + £>®1 are the singlet states 1./,
with opposite helicity and the states | — =>®1 form a doublet 2y without helicity
[11]. All of them are also the kernel solution of the Kostant operator over the quotient
su(3)/(su(2) x u(l)) and can be described as the degrees of freedom of the N = 2
hypermultiplet, when u(1) ~ so(2) is viewed as the helicity of the four-dimensional
Poincaré algebra.

For a general su(3) irreducible representation, the highest state (a1, ag) in the vector
space V (g, q,) can be represented in terms of complex variables as 21" 23* [6]. The kernel
solutions for the positive spinor-state vector space are

YET =+ 4122, i =+ >R300, (2.15)
and for the negative spinor-state vector space are
Yt = - >822, YT =] - > 25 (2.16)

Note that in the positive spinor space the state ¢E+ is the highest one since 1 ® (T: 2+ +
[T3F, Ty )1 Et = 0 and the state 1~ is the lowest one since 1® (T, +[T;, Ty )¢5~ = 0.
While in the negative spinor space the state ¢E+ is the lowest kernel state of ¢, since
L@ (T + [Ty, Ty )" =0and 1® (Ty + I, Ty vy~ =0.

When acting on the kernel solutions by the commuting pair of subalgebra generator
(D1; D2), one yields

(D1; Do)ty ™ = (al; —é(al + 2az + 3)> B

(Dy; Do)y~ = <—a2; é(2a1 +az + 3)> B

(Dy; Do)t = <—(a1 + az + 1); é(az - a1)> gt

(D1; Do)y~ = <a1 +ag+1; é(@ - a1)> vy (2.17)

In terms of su(2) x u(1) highest weights, the eigenvalues of the above equations are the
Euler triplets as derived in [11].

2.3 Kostant operator over the quotient Lie superalgebras

Next the Kostant operators for the quotient Lie superalgebras su(2]1)/u(2), su(2|1)/(su(2)x
u(1)), su(3|1)/u(3) and su(3]1)/(su(2]|1) xu(1)) are constructed and the kernel solutions
are obtained in each case, respectively.



2.3.1 Kostant operator over the quotient su(2|1)/u(2)

Let v =0t @0t +0- ®@0%, 7F =0t ®@L(03+£ 1)+ 0~ ® (03 F 1) be the gamma
matrices associated with the odd generators F;™ and Fj7, respectively. The Kostant
operator over the quotient su(2|1)/u(2) is

K=9F + 0+ Fy +y By (218)
The state vector space of the operator is
=([+4+>++-2>) V0 © (| = +>+H — —>) @ V(p 0.)- (2.19)

The u(2) subalgebra consists of two commuting diagonal generators in the su(2[1)
orthonormal basis

—

D = 10Ts+> (W ] ®gi_sl+ 3, 1] ®g3_sl)

1/1
= 1®T3+2(2(1+03)®03)®1 (2.20)

S

1 _ _
Dy = 102+ (b mleg .1+, nledk 1)

1/1
= ]1®Z+§ (2(ﬂ+03)®03) ®1 (2.21)

which are used to act on a state in the tensor product space of the quotient su(2|1)/u(2)
to get the state in terms of the diagonal subalgebra.

For the trivial one-dimensional representation V(g gy of su(2|1), one obtains the
lowest line of the kernel solutions as shown in Table 2.1.

Table 2.1: The lowest line of su(2|1)/u(2) kernel solutions

(D1; D2)
|spin states>®V (o) su(2) x u(1l) states Dimensions
| + +>®1¢ (0; 5) 1/
| — +>®1 (—3;0)
| — —>®1p (3;0) 2
|+ —>®1g (0;—3) 1_4/9

2.3.2 Kostant operator over the quotient su(2|1)/(u(1) x u(1))

Let /i =01 @01 @0%, 75 =01 @ (0t @i(o3+ 1)+~ @3 (03$]1)) be the gamma
matrlces associated with the odd generators FF and Fy and i =(0T®i(os£1)+
0~ ® (03 F1)) ® 1 associated with the even generators T77. The Kostant operator
over the quotient su(2|1)/u(2) is

K=WF +nF+%F +%nF +wT +9 T (2.22)



The state vector space of the operator is
U = (|++4>+H ++—>++ 4>+ + ——>) @V a
O = ++>+ = +—>+ = —+>+| = ——>) @ V(pay)- (2.23)

The u(1) xu(1) subalgebra consists of two commuting diagonal generators in the su(2[1)
orthonormal basis

1

D1 = 1®T3+Z(['Yf_v'h_]®9-1-—3]1+['7;_7'72_}®g-2|——3ﬂ+[7;a'73_]®f+731)

= 1®T3-|-;(1@;(1—03)(80'34-03@03@1)@11 (2.24)
Dy = 1®Z+i([’Vf_v’yl_]®91+le+[7;772_]®9<2%le)

= H®Z+;<ﬂ®;(ﬂ+03)®03>®1 (2.25)

which are used to act on a state in the tensor product space of the quotient su(2|1)/u(1)x
u(1) to get the state in terms of the diagonal subalgebra.

For the trivial one-dimensional representation V(g gy of su(2|1), one obtains the
lowest line of su(2|1)/(u(1) x u(1)) kernel solutions and it is interesting to see that the
u(1) x u(1) lowest line states can be combined to form the su(2) x u(1) states as shown
in Table 2.2.

Table 2.2: The lowest line of su(2|1)/(u(1) x u(1)) kernel solutions

(D15 D9)
|spin states>®V g0 u(1l) x u(1) states  su(2) x u(1) dimensions
[+ ++>®1 (3 3) 21/2
|+ +—>®1g (—3:3)
| — —+>®10 (1;0)
T+ —+>+H = ——>)®10 5 ((0;0)a + (0;0)s) 30
|+ ——>®10 (-1;0)
Z5(l+—+>-[-——>)®10 1 ((0;0)a — (0;0)s) 1o
| - ++>®10 (3:—3)
| — +—>®1g (—3:—3) 2_1/2

2.3.3 Kostant operator over the quotient su(3|1)/u(3)

Let 7 = 01 ® 01 @ 0F, 75 = 01® (07 ® 3(03 £ 1)+ 0~ ® (03 F 1)) and Vi =
(07 @ (05 + 1)+ 0~ ® 3(03 F 1)) ® 1 be the gamma matrices associated with the
odd generators Fi", Fi, and F5, respectively. The Kostant operator over the quotient
su(3|1)/u(3) is

K=vF + M+ Fy + % F +93 Fy +3 Fy (2.26)



The state vector space of the operator is

T = (|[+4++>+H ++—>+H+—4+>+H+ =) @ Vipar.a0)
(| — ++>+ — >+ — 4>+ = ——>) @ V(b0 a9)- (2.27)

The u(3) subalgebra consists of three commuting diagonal generators in the su(3|1)
orthonormal basis

Dy = 1®T3+%([ﬁmﬂ®9i731+['Vz*ﬁz_]®93731+[’Y§,7§]®93731)

= 1®T3+i(ﬂ®ﬂ®03+1®(ﬂ—U3)®U3—O’3®Jg®]l)®]l (2.28)
Dy = 11®(T3+2T8)+i([ﬁ,%—]®gi_sﬂ+[ﬁ,vﬂ@gi_sﬂﬂﬁmﬂ®gi-sﬂ)

= 1®(T3+2T8)+;<Il®;(]l+03)®0303®0’3®]l>®]l (2.29)
Dy = 1®Z+%([ﬁﬁﬂ®gilel+[v2+w£]®937Z1+[7§,v§]®gizﬂ)

- 1®Z+;(ﬂ@;(ﬂ+03)®03+203®03®1)®]1 (2.30)

which are used to act on a state in the tensor product space of the quotient su(3|1)/u(3)
to get the state in terms of the diagonal subalgebra.

For the trivial one-dimensional representation Vg ¢y of su(3/1), one obtains the
lowest line of su(3|1)/u(3) kernel solutions as shown in Table 2.3.

Table 2.3: The lowest line of su(3|1)/u(3) kernel solutions

(D1, D2; D3)
|spin states>®V(g0,0) su(3) X u(1) states Dimensions
|+ ++>®10 (0,0;3) 134
[—++>@10 (3:1:7) 314
| — —+>®10 (3,—3; 1)
| — ——>®1p (-1,-4; 1)
| ++—>®10 (—3.—1;—1%) 3 14
|+ —+>®10 (1,1-1)
[+ ——>®1o (—3:9i—3)
[—+—>®10 (0,0, —3) 15

2.3.4 Kostant operator over the quotient su(3|1)/(su(2]1) x u(1))

Let 75 = 01 ® 01 ® oF and ’yét =0 ® (0" ® %(03 +t1)+o0 ® %(03 F 1)) be the
gamma matrices associated with the even generators T, and T3, respectively, and
= (0t ®1(05£1) + 0~ ® (03 F1)) ® 1 associated with the odd generators Fy .
The Kostant operator over the quotient su(3|1)/(su(2]1) x u(1)) is

K=%Ty +% T +7vT5 + T35+ F5 +91 F5 (2.31)

10



The state vector space of the operator is

U = (|[+++>+++—>H+ —+>+H + =) © Vipaya0)
(| — ++>+ — =>4 — —+>+| = ——>) ® V(pa1.09)- (2.32)

The su(2|1) x u(1) subalgebra consists of three commuting diagonal generators in the
su(3|1) orthonormal basis

1 _ _ _
Dy = 10T+ (%] ® sl + 5] @ L1+ ] @ gisl)

1 1 1
= ]1®T3+5 ﬂ®§(03—1)®(73—§(73®03®1 ®1 (2.33)

—

Dy = 1@ (T3+2Tx) + - (g% 1 © fEsl+ 7,751 ® fis1+ i 71 ] ®@ gl _s1)

1
2

W

1
= 1® (T3 +2T3) + <ﬂ®2(1+03)®03—03®03®1>®1 (2.34)

1 _
D3 = 1®Z+Z ([’Yi‘r?’}/l]@gifzﬂ)

1
= 1®Z+Z(03®03®1)®1 (2.35)
which are used to act on a state in the tensor product space of the quotient su(3|1)/(su(2])x
u(1)) to get the state in terms of the diagonal subalgebra.
For the trivial one-dimensional representation Vg 0y of su(3/1), one obtains the
lowest line of su(3|1)/(su(2|1) x u(1)) kernel solutions as shown in Table 2.4.

Table 2.4: The lowest line of su(3|1)/(su(2]|1) x u(1)) kernel solutions

(-DlaDZ;D?))
|spin states>®V(g0,0) su(2) X u(1l) x u(1) states
[+ ++>810 (—1:1:0)
|+ +—>®10 (-1.3.-1)
|+—+>®10 (_%a_%vl/Q)
|+ ——>®10 (5 —1.1/2)
| —++>®10 (%a_%al)
’ —+—>®1p (?%71_170)
| — —+>®1o (—11,11, —-1/2)
’ ———>®10 1717_1/2)
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H 1 [

4. Remarks

1. Introduction

The Dirac operator plays a significant role in quantum field theories. Its natural general-
ization with a cubic term arose from Kazama and Suzuki’s attempt to create a realistic
string model [l]. Their cubic Dirac operator appeared in the string model as a supercurrent
of a superconformal algebra. Ten years later, this kind of operator was discovered again
by Kostant []. He understood already that an Euler number multiplet from an equal rank
embedding of reductive Lie algebras [fJ] is nothing more than kernel solutions of the cubic
Dirac operator. It is also an accident that the lowest lines of the Euler number multiplets
for the 4-, 8-, and 16-dimensional coset spaces match with the known supersymmetric
multiplets [H].

Although, the Euler number multiplets are easily derived by the GKRS index for-
mula [j],

STRVA—S ®@Vi =) sgn(c)Uees,
ceC

they are not helpful for the formulation of any physical theory. In [{], Brink, Ramond and
Xiong used an algebraic method to determine the general kernel solutions or the Euler num-
ber multiplets of the Kostant operators on the cosets SU(3)/SU(2) x U(1) and F;/SO(9).
By realizing the gamma matrices as dynamical variables satisfying Grassmann algebras,
the Euler number triplets for SU(3)/SU(2) x U(1) and Fy/SO(9) were then written as chiral
superfields. A free action in the light-cone frame for both cosets was also formulated.

The intention of this paper is to determine the general kernel solutions of the Kostant
operators on the 8-dimensional quotients su(5)/su(4) x u(1) and so(6)/so(4) x so(2) by a
quantum mechanical method. We will briefly present how to construct the generators of
su(5) and so(6) Lie algebras and their irreducible representations (irreps). Only parts that
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Figure 1: The su(5) weight diagrams (a) of a 5-dimensional and (b) of a 10-dimensional irreps.

are used in constructing the Kostant operators will be mentioned. Then, the general kernel
solutions will be determined. Their extension to the case of a non-compact Lie algebra was
originated in 1999 by Ramond from his curiosity to know the FKuler number multiplets.

Some comments about them are made in the last section.

2. Kostant operator of the quotient su(5)/su(4) x u(1) and its kernel solu-
tions

2.1 The Schwinger’s oscillator realization of the su(5) Lie algebra

To construct the su(5) generators that satisfy Chevalley-Serre relations [f], we introduce
four types of Schwinger’s oscillators 73, 7;, s;, 5j, where i = 1 to 5 and j = 1 to 10,
including their adjoints [[i. Action of the raising oscillators 7’3 and s} on the vacuum state
in correspondence to the su(5) irreps 5 and 10 is shown in figure [la and fb, respectively.
By reversing all arrows in figure flla and [ib, and replacing ’I“;r and s} with 7’;[ and 5;[, they
become the weight diagrams of the 5 and 10 irreps. Although, the 10 and 10 irreps are not
fundamental and can be obtained from anti-symmetrization of 5 and 5 irreps, respectively,
it will be seen later that introducing the oscillators s;, 5; and their adjoints is a convenient
way in determining the general kernel solutions.

From the 5, 5, 10 and 10 weight diagrams, all positive root generators are

T = rirg + 3233 + 3135 + 82288 + (r,s — 7, 35)1,
TQ‘L = 7“57’3 + 5152 + 5§57 + S;SQ + (r,s — T, E)T,
T = TI?“g - 3133 + 3137 + 82289 + (r,s — T, E)T,
T, = 7“37’4 + 5254 + 5355 + 89810 + (r,s — )T,
Tt = rirg+ slsy — sksy 4+ sksio+ (1,5 — 7, 5)1,
Tb?L = TIT4—ST55—S£S7+86810+( — T )T,
T+ = r:{r5 + 3136 + sésS + 8;89 + (r,s — T, E)T,
Ty = rlrs + s}se + shss — shsio + (r,s — 7,3)1,



Ty = 7“57“5 + 5156 — 52;59 — sgslo + (r,s — 7,5)1,
T = TJ{T5 — 3138 — 3239 — 81810 + (r,s — 7,5)1, (2.1)
and all negative ones are
T, =(TH',  A=1,23 ..., 10 (2.2)

The Cartan subalgebra generators in the Dynkin basis,
H = Hy&y + Hoby + H3ds + Haoy = (Hy, Ha, Hs, Hy), (2.3)

are obtained from the following commutators:

Hy, = [T}, 17 ]

= N7+ NP + N + N = N§D = N§ = N = N — (5 = 7,5),
Hy = [T, T, ]

= N+ MO+ N 4 N N N N N 79),
Hs = [TI,TZ]

= N N M N N N NN (79
Hy = [T, T ]

= N+ NP + N 4 NS N N N N — (s = 5), (24)

where N, $T5 are the number operators. They are related to the Cartan generators in the
orthonormal basis,

E = h1é1 + hoég + h3és + hyéy + hsés = [hh ha, h3, hy, h5]7 (2'5)

as follows:

Hy=hy —hy, Hy = hy — hy, Hy = hs — hy, Hy=hy— hs. (2.6)

An su(5) irrep represented by its highest weight A in its vector space Vi can be
generated by action of the raising oscillators, TJ{, Fg, SJ{, §J{O, on the vacuum state

A= ()™ (sD) (51g) = (7)) ™10 >, (2.7)

where a; 234 are non-negative integers, called the Dynkin labels. The action of the Cartan

generators in the Dynkin basis on the highest weight gives their eigenvalues as follow:
HA = (ay,a2, a3, a4)A, (2.8)

and in the orthonormal basis as follow:
EA = [b15b2yb3ab4,b5]A7 (29)

where

1
by = 5(4(11 + 3ag + 2a3 + ayq),



1

by = 3(—CL1 + 3a9 + 2as3 + a4),
1

by = 3(—&1 — 2a9 + 2a3 + a4),

by = 5(_a1 — 2a9 — 3a3 + aq),

b5 == é(—al - 2(12 - 3(13 - 4(14). (210)
Note that by + by + b3 + by + b5 = 0 is due to the basis constraint.

Inside the su(5) generators, the generators Tf2,___,6 and Hj 23 form the su(4) Lie sub-
algebra and the generator hj is the generator of u(1) subalgebra. The other generators
T7i,8,9,10 lie outside the subalgebra su(4) x u(1) and they are used to construct the Kostant
operator of the quotient su(5)/su(4) x u(1).

2.2 Kernel solutions of the Kostant operator

To construct the Kostant operator on the 8-dimensional quotient space, the following 16 x 16
gamma matrices are needed:

I'=0®0 ®o; oy, I's =01 ®01®03®1,
'y =01 ®01®01® 09, [ =01®0®1&1,
I's =01 ®01®01 ® os, I'"=01®031®1,
Iy =01 ®01®02®1, s =09®1®1®1,

where 01 23 are the Pauli matrices and 1 is a 2 x 2 identity matrix. These gamma matrices
satisfy Clifford algebra

(Ta, Ty} =20, (101012 1). (2.11)

To associate with the generators of the quotient su(5)/su(4) x u(1), the gamma matrices
are complexified as follows:

1
§(F1 +ily) =0, ®0 @0 @0,

1 1 1
% = 5(1’3:&2’1‘4) =01®01® |:0'+®§(0-3:t1]-)+0'®§(0-3:|:1]-):|’
+ 1 . L1 _ 1
Yo = §(F5ﬂ:ZP6):0'1® o ®§(0'3:t]l)+0' ®§(0'3:F]l) ®]1,

1 1 1
71i0 = §(I‘7 +il'g) = [U-F ® 5(03 t1)+o0 ® 5(03 F ]l)} ®1®I1. (2.12)

Under these complexification, the positive spinor states of so(8) are | + & + +> and the
negative ones | — + + +>.

From the commutators of the generators of the quotient,

[T, T ) = hy — hs, [Ig, T3] = h — hs,
[Ty, Tyl = ha — hs,  [T1h, Tho) = h1 — hs, (2.13)



the generators T 789,10 are not generated. The structure constants of these transforma-
tions are zero. Hence, there are no cubic terms, which are composed of a product of three
gamma matrices associated with the structure constants. The Kostant operator of the
quotient su(5)/su(4) x u(1) is just

10
K=Y (T, +T)). (2.14)
a="7

This Kostant operator acts on a tensor-product space of the so(8) spinor representations
and the su(5) irrep
= |+ £+ +4>V), (2.15)

and there exist kernel solutions such that

Ky, =0, (2.16)

where \; is a weight in the vector space V). Equation (R.14) can be decomposed into

sixteen, independent equations as follows:

(T + T5 + T + Tip)¢y, =0,
(T —Tg + T, +Tf5)1p/\2 =0,
(T +Tg =Ty +Tip)¢y, =0,
(T; — T — Ty +T) . =0,
(T + T3 + Ty — Ty =0,
(Ty =Ty +Ty —Tip)by =0,
(T + Ty — )q,z% =0,
(Ty — T - TPy, =0,
(T +T5 + T + Tlo)T/),\/ =0,
(Ty — Ty + Ty + Ty, =0,
(T + Ty — Ty + Tip)ty, =0,
(T7 —Tf — Ty + Tio)ty, =0,
(T + T8 + Ty — Tf[))q,bx =0,
(T; =Ty +T4 — Tf{))sz =0,
(T + Ty = Ty = Tip)y, =0,
(17 - T))%/ = 0. (2.17)

One of the possible kernel solutions in the positive spinor space is as follows:



Ul = [+ +—— > ()" () (5™ (70 >,
Ui =+ =4+ > () (sh 2 (s)® )0 >,
Ul = [+ =+ = > (D) (sh)=(s]) s (7)) 0 >,
Ul =+ — =+ > () m (sl (5™ (7])™10 >,
Ul = [+ === > () (sh) = (s (7)o >, (2.18)

and in the negative spinor space as follows:

Uy = =+ > ) s sh) = () 0 >,
Uy, = | = = > )M (sl (8D (7)™ [0 >,
Uy = ==+ > D) (1) ()™ ()™ 0 >,
Uy, = | > ) )R )0 >,
Uy = ==+ 4> ()™ (D=l (7)™ 0 >,
vy, = ==+ = > )= sheEh= )™ >,
Wy = 1= = =+ > () (s () (7)™ 0 >,
Uy, = 1= === > ()" (D™ (sl ()10 > (2.19)

To get the kernel solutions in terms of su(4) x u(1), it needs to act on them by the
Cartan subalgebra generators, which in the Dynkin basis are

1 - _
Dy = hy —hy + 9 (fﬁlto—lhfza%o] - fj).—Q[VJ,Vg ])
1
= H1+§(0’3®03®]1®]1—]l®03®03®]1),
1 - _
Dy = hy = hs + 9 (fgfzhgﬁg]—fifshgﬁg])

1
:H2+§(]1®03®03®]l—]l®]l®03®03),

1 - _
Dy = hy = hy+ 5 (£ _shvd v ] = Flabd e )

1
:H3+_(11®]l®0'3®0'3—]l®]l®]l®o'3),

2
1 1 _ _ _ _
Dy = Shs+ 7 (F-shi a7 1+ Foshsh s ]+ Fshg v 1+ £l o))
1 1
= §h5—Z(1®1®1®03+1®1®0’3®O‘3+11@0'3@0’3@]1
+o3®o31®1). (2.20)

The structure constants in (.20) are read directly from (R.13). The generators Dy, Ds
and Dj are the Cartan generators of su(4) and the generator Dy is the Cartan generator
of u(1). When the Cartan generators act on the kernel solutions, they give

(D1, Dy, D3; Dy)ybf. = (a1, a2, a3; (bs — 2)/2))



( Yy, = (a1, a2 + a3+ 1,a45b3/2)1y, ,

( i, = (a1 + ag + a3 + 1, a4, —ag — a3 — ag — 1;b3/2)¢%

( ) (a1 +ag+az+1,—ag — a3 — 1,az + az + ag + 1;03/2)05,

( ) (a4, —az —ag — 1, —a1; b3/2)9}

( )by, = (a2, a3, a45 (br + 2)/2)9%.

( ) (—a1—ag—ag—a4—1,a1—i—ag—i-ag—i—l,—ag—ag—1;63/2)1/1;,
( ) (—ag—a3—1,—a1,a1+a2+a3+a4+1;bg/2)1/z;;,

(D1, D2, D3; Da)ipy, = (—a3 = as — 1, —ag, —ay; (ba = 1) /2)10 ,

( ) (—ay —az — 1,04 +a2+a3+1,a4;(b2+1)/2)¢;/2,

( ) (—a4, —az,—a; —az — 1; (b + 1)/2)¢;é,

( )1/1;21 = (ag,—a1 —ag —az — l,a1 +ag + ag + aq + 1; (ba + 1)/2)¢A_§1,

( Wy, = (a3+a4—{—1,—a2—a3—a4—1,—a1;(b4—1)/2)¢;/5,

( ) (a1 + a2 + 1,a3, a4; (b2 + 1)/2)7/);/6,

( ) (—ag,a2+a3+a4+1,—a1—ag—ag—a4—1;(b4—1)/2)zp;,7,

( )w;é = (a1,a2,a3 + ag + 1; (by — 1)/2)¢;é. (2.21)

In case a1 = ag = a3 = aq = 0, the kernel solutions (R-2])) can be grouped in terms of su(4)
dimensions as follows:

¢y, ~ (0,1, 0)
w;tl ~ ( 17 _17 1)0
¢+ ~ (_17 07 1)0
1., =97 ~(0,0,00_1, 6p={ "7 , 1, =47 ~(0,0,0),
1 ZZ)AI ( ) ) 1 0 w;\; ~ ( 1’ 0’_1)0 1 ¢)\6 ( )1
Py~ (=1, 1,=1)
w;\; ~ ( 07 _17 0)0
1/1;/1 ~ (=1, 0, 0)_1/9 ¢;é ~ (1,0, 0)19
Yy, ~(1,=1, 0)_1/9 Yy ~ (=11 0)1p
4 40 = - ; 410 = i -
1/1)\,7 ~ (0, 1,=1)_y)9 ¢,\§1 ~(0,=1, 1)1
1/1;8 ~ (0,0, 1)y ¢;§ ~ (0, 0,=1)19

Since the Dynkin labels aj 2 3 4 are non-negative, the direct sum of the su(4) highest weights
+ + + - -
Yy, ® Uy, BYy, @ ¢)\é S 1/)/\,6, (2.22)

or in terms of its Dynkin labels,

(a1,a2,a3)p5—2)/2 © (a1,a2 + a3z +1,a4)y, /2 © (az, a3, as) @, 4+2)/2

©(a1,az,a3 +as + 1)p,—1y2 © (a1 + a2 + 1, a3, a4) (b, 41) /2, (2.23)

forms the Euler number multiplet.
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Figure 2: The so(6) weight diagrams (a) of a 6-dimensional vector (b) of a 4-dimensional co-spinor
and (c¢) of a 4-dimensional spinor representations.

3. Kostant operator of the quotient so(6)/so(4) x so(2) and its kernel solu-
tions

3.1 The Schwinger’s oscillator realization of the so(6) Lie algebra

To construct the generators for so(6), we introduce four types of Schwinger’s oscillators

ri, Ti, Sj, 8j, where i = 1,2,3 and j = 1,2, 3,4, including their adjoints. Action of the

raising oscillators rj , Fj , sl-L

irreps 6, 4. and 4, is shown in figure fa, flb and fe, respectively. Although, the 6 irrep
is not fundamental and can be obtained from an anti-symmetric product of two copies of

and §}L. on the vacuum state in correspondence to the so(6)

either 4. or 4, irrep, it will be seen later that introducing the oscillators r; and 7; is an
easy way to determine the kernel solutions of the Kostant operator.
From the weight diagrams of so(6), all positive root generators are

T = nrz +5253 +(rs - 7,8,

T, = T27‘3+S 52—|—(7’ — 7,5

T = 7”57“3 + 3334 + (r,7, s — T, §)T,

T4+:7“J{3—553—(r 7’§)T,

T = TJ{Tg + 3234 —(r,7,s — 7,757,

Ty = —7‘1[7“2 + 8184 + ( — 7,1, 5)1, (3.1)
and all negative root generators are

Ty =(TH',  A=1,23 ...,6 (3.2)
The Cartan subalgebra generators in the Dynkin basis,

H = Hy&y + Hods + Hss = (Hy, Ho, Hs), (3.3)

are obtained from the following commutators:

Hy = 17,77 = N + NP — N — N = (r,5 — 7, 5),
Hy = [T5, Ty ] = NS + N = NSO = N — (r,s — 7,5),



Hy = [T, T = N + N - N - NS — (r,7, s — 7,1, 5). (3.4)
They are related to the Cartan generators in the orthonormal basis,
E = h1é1 + hoéy + hgég = [hl, h2, hg], (3.5)

as follows:
Hi =hy — hy, Hy=ho — hs, H3 = hy + hs. (3.6)
For an so(6) irrep, its highest weight is
A= (r))* (s})"2(s)) 10 >, (3.7)

where a2 3 are non-negative integers. Action of the so(6) Cartan generators in the Dynkin
basis on it yields
ﬁA = (al, as, ag)A, (3.8)

and in the orthonormal basis

-

AA = [by, by, bs]A, (3.9)

where

1
by = =(ag + az) + ay,

2
1
by = §(a3 + az),
1
b3 = 5(&3 - ag). (310)

Inside the so(6) generators, the generators Ti% and H; ¢ form the so(4) Lie subalgebra
and the generator hg is the generator of so(2) subalgebra. The other generators Tf& 4,5 lie
outside the subalgebra so(4) x so(2) and they are used to construct the Kostant operator
of the quotient so(6)/so(4) x so(2).

3.2 Kernel solutions of the Kostant operator

To construct the Kostant operator of the quotient so(6)/so(4) x so(2), the gamma matrices
used here are

1
~(T3 4 iTy),
2
1 , 1 .
i = 5(Ts £ 1l), vE = 5 (7 & Ts). (3.11)

1 .
vy = 5 (1 £iT2), 5=

From the commutator of the generators of the quotient,

[T5F, Ty ] = ho —hs, [I5,T5) = ha + hs,
(1,77 ) = ha = hs, (T3, T3] = ha + hs, (3.12)

the generators T;E:2 345 are not generated. The structure constants associated with these

transformations are zero. Hence, the Kostant operator is just

5
K=Y (T, +7 1)) (3.13)
a=2



A vector space of the Kostant operator is %f = |+ ++ +>®V). Here, V} is the vector
space of the so(6) irrep with its highest weight A. For the kernel solutions

Ky, =0, (3.14)

where )\; is a weight in the vector space Vj. It is noted that the derivation of the kernel
solutions 1/1;; and w;rg in this quotient is not straightforward as the one in su(5)/su(4) xu(1).
At first glance, the following two equations,

(T + Ty =Ty + T, =0,

(T, =T =T —T5 )Yy, =0, (3.15)

have kernel solutions as follows:

Yy, =+ +—+>10>,
Pf =l+—-—=—>0>. (3.16)

These solutions are true only when a; = a2 = az = 0. We fix this problem by twisting

their spinor states and obtain the general kernel solutions in the positive spinor space as

follows:

Ul =+ 4+ > ) sD = (5D ™[0 >,

Uf, = [+ 44— > D (she (0 >,

Uf, = [+ — == > @hr(she )0 >,

Ui = [+ 4+ — = > () (sh) 2 (5[0 >,

Ul = [+ =+ + > (7)) (sh)2(5]) [0 >,

Ul =14+ =+ = > () (sh) 2 (5]) [0 >,

Ul = [+ = =+ > ) (s (s])el0 >,

Ul = 4+ =+ > ) (sh) 2 (5])e 10 >, (3.17)
and in the negative spinor space as follows:

Uy = = > )M (s ()0 >,

Uy, = = = > )" )™ 6™ 0 >,

vy = == > ()M (s ()0 >,

Uy, = === > ()™ ()™ 6)™0 >,

Wy = ==t > (rh)n(sh ()0 >,

vy = | ==+ = > )M (sh)= ()"0 >,

Uy, = ===+ > D™ D™ )™ >,

Yy = === > ) (sh) 2 (50 > (3.18)

,10,
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= Hi+ -

o = h1+ he + =

1 - - - _
= Shs+7 (2 s a1+ Foshd w1+ fioshd a1+ f2shd )

1
h2+—

1
H{+ Hy + Hs + —

5(

(Fioibd o)+ Fabhd ] -

F Y ot

£ ohd3])

(f+ 1[’74774]+f+ 1[’75775]+f+ 2[72772]+f+ a3 73 ])

1R03003001+03R0301R14+1R11K o3

+1®1®o03®03),

1

2
1

2 4

—03®R031®1).

1
=-h3—-(10101R03-1®1Q03R03+1Q03R032 1

To get the kernel solutions in terms of so(4) X so(2), it needs to act on them by the

Cartan generators, which in the Dynkin basis are

(]l®0'3®0'3®]1+0'3®0'3®]1®]l—]l®]l®]l®0’3—]l®]l®0’3®0’3)

(3.19)

The structure constants in (B.19) are read directly from (B.1J). The generators D; and Dy
are the Cartan generators of so(4) and the generator Dj is the Cartan generator of so(2).

When the Cartan generators act on the kernel solutions, they give

= (
= (
(=
= (
(=
(=
= (
= (
(=
= (
(=
(=
(=
= (
= (
= (

ai, a1 +as +as + 2; b3/2)1/1)\ ,
a1 + az + a3z + 2,a1; —b3 /2)y
ar, a1 + ag + ag; b3 /2)Y5

ag, az; (b +2)/2)¥5, ,

ay —

ag,az; —

ag—a3—2,

al + an + as, —ai; _b3/2)¢A87

a; —

—ai; _b3/2)¢;\’—5’
a1, —a; —ag — a3 — 2;b3/2)Y

a3 — 15 a1 +az + 1’ _(b2 + 1)/2)1#;/1’

ai+az+1,—a; —as —1;—(by + 1)/2)1/1;/27

ay —

a; —

a3 —1,—a; —as — 1; —(bz + 1)/2)¢;é,
az —1,—ay —az — 1; (b + 1)/2)1#;2,

ar —az —1,a1 +az + 15 (b2 +1 /2)%?5,

ap+ax+1,—a; —az—1;(ba + 1

)
)
)

/25,

ar+as+1,a1 +ag+1;—(ba + 1 /2)1/1;,7,
a1+a2+1 a1 +az + 1; (bg—}—l)/Q)?,Z);,g

(3.20)

In case a1 = as = az = 0, the kernel solutions (B.2() can be grouped in terms of so(4)

dimensions as follows:

(17 1)1 = 1/};\—4

— 11 —

~ (0, 0),



T/Jj\rl ~ ( 0, 2)0 T,Z);\FQ ~ ( 2, 0)0
(1,3)0 = § i, ~ (0, 0) , (3,1)0 = ¥i, ~ (0, 0) ,
w;\; ~ ( 07 _2)0 w;\; ~ (_27 O)O
(17 1)—1 = 1/};\; ~ ( 0, O)—17
T/J)Té ~ (1, Dy ¢;/7 ~ (1, 1))
Yy~ (1,=1)1 vy ~ (1L, =1)_1
2,2 = 6 , 2,2)_1/9 = 72 3.21
B22=0 Ly, 0 PP g Ly, o B
7/1;2 ~ (=1,=1)12 ¢;§ ~ (=1, =1)_1)9

Since the Dynkin labels a; 2 3 are non-negative, the direct sum of the so(4) highest weights,
+ + + + - -
Yy, ® Uy, © Uy, ® Yy, @%é 691/1)\/7, (3.22)

or in terms of its Dynkin labels,

(a2,a3) (b, +2)/2@ (a1, a1 + ag + a3 + 2)p, 2@ (a1 + az + a3 + 2,a1)_p, /2D (a3, a2) _ (5, 42) /2
(a1 +az+1,a1 + a3+ 1) p,q1y2 @ (a1 + a3+ 1,a1 + a2+ 1) _gyq1y2,  (3.23)

forms the Euler number multiplet.

4. Remarks

Kernel solutions of the Kostant operator of the 8-dimensional quotients can be easily de-
termined by the quantum mechanical method. The Euler number multiplet obtained in
terms of the diagonal subalgebra is the direct sum of the highest weights of the kernel
solutions, which appear only once. The Euler number multiplets presented in this paper
are exactly the same as derived by using the Weyl group elements of su(5) and so(6) that
are not in their subalgebras [B]. The lowest line of the Euler number multiplet for the
quotient su(5)/su(4) x u(1) is

11@41/2@60@4_1/2@1,1, (41)

and for the quotient so(6)/so(4) x so(2)
(1, 1)1 S5 (2, 2)1/2 D (3, 1)0 D (1, 3)0 S5 (2, 2)_1/2 S5 (1, 1)_1. (42)

There are many possible ways to interpret these Euler number multiplets. If so(2), which
is locally isomorphic to u(1), is viewed as a light-cone little group of ISO(3,1), then they
correspond to degrees of freedom of N = 4 Yang-Mills massless representation in 3+1
space-time. Similarly, if so(6), which is locally isomorphic to su(4), is viewed as a light-
cone little group of ISO(7,1), then they correspond to degrees of freedom of the massless
representation in 7+1 space-time. Lastly, if so(6) x so(2), which is locally isomorphic to
su(4) xu(1), is viewed as a subgroup of SO(6, 2), the anti-de Sitter group and the conformal
group, then they correspond to the massless representations in the 641 and 541 space-time,
respectively.
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Figure 3: The so(2,1) weight diagram associated with the discrete representations. Open and
solid circles along a horizontal line are the so(2, 1) weights of a j representation. In each horizontal
line, only the open circles, the lowest weight in the Vj+ and the highest weight in the V™, are the
non-trivial kernel solutions of the Kostant operator of the quotient so(2,1)/so(2).

The Kostant operator can be extended from a compact Lie algebra to a non-compact
one. Methods to construct the Kostant operator are similar in both the compact and
the non-compact Lie algebras. The simplest quotient of the non-compact Lie algebras is
s0(2,1)/s0(2). For details of the so(2,1) generators, commutation relations and represen-
tations, see [§. The Kostant operator,

K=0tT"+0 TT, (4.3)

acts on its vector space 1/1;[ = |+ > |j,m; >, where in each discrete representation j,
|mj| > j. Its non-trivial kernel solutions, whose corresponding states are shown as open
circles in figure [, are

Zf)jr:|+> |j’_j >, ¢;:|_> |J’]> (44)

These solutions are similar to the kernel solutions of su(2)/u(1). Another interesting non-
compact Lie algebra is so(4,2), the conformal group in the 3+1 space-time, whose spinors
are twistors [ff]. For the case so(4, 2)/so(4) xso(2), it is found that its lowest line of the Euler
number multiplet for the discrete representation is similar to that of so(6)/so(4) x so(2).

Finally, it is just a hope that the constructions of the Kostant operators and the
derivations of their kernel solutions presented here will be useful when someone wants to
oxidize a low-dimensional field theory to a higher-dimensional one or to reduce a high-
dimensional field theory to a lower-dimensional one [I{], or even to connect the Kostant
operators to the string theory [, [J].
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Abstract

We report on a three-month undergraduate research project to compute energy
levels and their corresponding wavefunctions of an electron confined in a
tetrahedral-shaped quantum dot heterostructure. A typical example of such
a quantum system is an InAs tetrahedral-shaped quantum dot embedded in a
cuboid GaAs matrix. For the simulation we used the Schrodinger equation in
three-dimensional Cartesian space. After discretizing the Schrodinger equation
by using the finite volume method, the resulting large-scale eigenvalue matrix
is solved for eigenvalues and eigenvectors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconductor quantum dots (QD) have recently become greatly interesting because of their
unique electronic characteristics and the possibility of fabricating realistic quantum dots in
laboratories by applying nanotechnology. Quantum dots have discrete energy levels like those
of a single atom. Therefore, novel optoelectronic devices such as the quantum dot laser [1]
and the quantum dot infrared photodetector (QDIP) [2] have become feasible.

Several studies of semiconductor quantum dots were focused on both experimental and
theoretical aspects. Experiments indicate that quantum dots can have several shapes depending
on the fabrication methodology. Self-assembled quantum dots usually have a pyramidal shape
[3] or an island-like shape [4]. However, quantum dots grown in a specific recess, for example,
in a tetrahedral-shaped confinement, have a shape similar to the recess shape [5]. A typical
example is an InAs tetrahedral-shaped quantum dot embedded in a cuboid GaAs matrix. The
shape of quantum dots is an important property, since calculations have demonstrated that the
energy levels of an electron confined in a quantum dot depend on its internal shape.
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In our project, we used the finite volume method to discretize the Schrodinger equation
for an electron confined in a one-dimensional (1D) quantum well, a two-dimensional (2D)
quantum wire, and in three-dimensional (3D) cubic-shaped and tetrahedral-shaped quantum
dots. This method transforms the differential form of the Schrédinger equation into a large-
scale matrix eigenvalue problem. The eigenvalues and eigenvectors—the energy levels and
wavefunctions of the electron, respectively—are then calculated. We show in detail how to
discretize the Schrodinger equation for the electron in a 3D tetrahedral-shaped quantum dot by
assuming that the effective mass of the electron is constant. Resulting examples are presented
in the form of energy levels and wavefunctions.

2. The discretization of the Schrodinger equation

Consider an electron confined in a 3D semiconductor tetrahedral-shaped quantum dot. In a
real situation, the electron’s effective mass m* depends both on its position and its energy,
which can be derived from the eight-band k-p analysis and the effective mass theory [6]. We
simplify this situation by assuming that the electron’s effective mass is constant

m*(x,y,z, E) = m. (1
For convenience, we define the notation
h2
&= — , 2
2m*

where 7 is the reduced Plank constant. The Schrodinger equation, to be solved for the relevant
energy levels and their corresponding wavefunctions, is
RV .\ 2w . 2w LV W = B )
Py a0 T x’ 9 = b
axz " 8y2 | 9z Yz
where FE is an energy and W is a wavefunction. The tetrahedral-shaped potential V (x, y, z) is
given by
Vinside X+y+z <20
andx —y—z<0
Vix,y,2) = and —x +y —z <0 4)
and—x —y+z<0
Voutside,»  Otherwise.

In this paper, we also assume that Vinsge and Vousige are constant. As shown in figure 1, the
tetrahedral-shaped potential is properly placed in a cuboid matrix having the size £ x £ x £.
So, we can simplify the computations using a uniform mesh in Cartesian coordinates.

The Schrodinger equation is then calculated by the finite volume method over a control
volume rather than at a single node [7]. As shown in figure 2, the control volume surrounded
by grid nodes has limits from x to x + Ax, y to y + Ay and z to z + Az and its centre is located
at anode (i, j, k). For the first term on the left-hand side of (3), integration over the control
volume yields

+Az py+Ay px+Ax 82\11 32\11 82\11 oW oW
[ e (), () o
2 y x 0x ay 0z 0X / iax ox ),
(7)., (5) el (5))
+ei|l — - — AxAz+e | — - — AxAy.
{ ay y+Ay 8y y 0z z+Az 9z z

(&)
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Figure 1. The structure model of the tetrahedral-shaped quantum dot.

Z+Az

Figure 2. The control volume centred at a node (i, j, k).

For the second term, integration yields

z+Az py+Ay px+Ax _
/ / / V()C, y, Z)\IJ d)C dy dZ = \I’(i,j,k) V(i,j,k) A)CAyAZ, (6)
z y X

where W is supposed to be constant inside the control volume and equal to W ; x), and V{; ;1)
denotes a volume average of V(x, y, z). To get V{; j 1), it is necessary to consider five types
of nodes located in five different parts of a tetrahedron as shown in figure 3:

e For the first type, the node is inside the tetrahedron. The whole control volume is also
inside the tetrahedron. Then

Vii.ik) = Vinside- (7

e For the second one, the node is located on a surface of the tetrahedron. The ratio of the
control volume inside to outside is 1:1,

U/ 1 1
V(i,j,k) =3 Vinside + 2 Voutside - (8)

e For the third one, the node lies on an edge of the tetrahedron. The ratio of the control
volume inside to outside is 5:19,
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Figure 3. Five types of nodes located in five different parts of a tetrahedron.

0/ 5 19
V(i,j,k) =2 Vinside + 24 Voutside- (O]

e For the fourth one, the node is situated at the corner of the tetrahedron. The ratio of the
control volume inside to outside is 1:15,

% 1 15
Vii.jky = 1¢ Vinside + 1 Voutside- (10)

e For the last one, the node is positioned outside the tetrahedron. The whole control volume
is also outside the tetrahedron:

Vii.it = Voutside- (11)
For the right-hand side of equation (3), integration yields

+Az py+Ay px+Ax
/ f / EW dx dy dZ = E‘IJ(i,j’k)AXAyAZ. (12)
z y X

Up to here, we had

v v ow v
el — | — AyAz +¢ — —| — AxAz
dx x+Ax ax X 8y y+Ay 8y y
().~
+ei| — — | — AxAy
9z Z+AZ 9z k4

+ V(i,j,k)\y(i,j,k) AxAyAz = E\If(iyj,k) AxAyAz. (13)

The gradients at surfaces of the control volume in equation (13) are approximated at first order
by taking the difference of wavefunctions between adjacent control volumes as follows:

@ Vs — Y b (14a)
ox X+Ax B Ax ’

(3_\11) ~ Wi k) — Y b (14b)
ay y+Ay Ay

(3_\11) ~ Wi jar) — Y, ik (14¢)
0z Z+Az Az ’
OV Wik — Y-k (14d)

X Y - Ax ’
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(ﬂ) ~ Yiijwo = Yij-10 (14e)

ay /, Ay

<8_\IJ> ~ Vi i — Y jk-1 (141)
az /, Az

For a uniform mesh in 3D Cartesian coordinates, we set
Ax = Ay = Az = Ah. (15)
With this simplification, the Schrodinger equation (13) finally becomes

BMWirt, ik + V-1, + Vi jr1.0 + Vi, j—1.0 + Vi, jke) + Vi jk—-1))

o WYijh = EWi k. (16)
where

B=——, (17)

(Ah)?
and
6¢e _

VAT Viijik- (18)
By using Kronecker’s delta-function 4, ; defined by

w={o 420 (19

equation (16) can be written as
(B8, jk),i+1,j,6) 8, j k), =1, 7,0 + G, j k), G j+1,k) T 8, k), G, j—1,k) F 8, k), (i, jk+1)
+8(i,j,0, G, jk—1)) F 0,108,k Gk 1 Wi, = EWG, k- (20)

In the computational box, the number of nodes on each side is set to be N + 2, starting from O
to N +1, and the wavefunctions at nodes on surfaces of the box are set to be zero. Hence, there
are only N* unknown wavefunctions. For convenience in constructing a matrix equation, the
triple (i, j, k) is transformed to be a number as follows:

(G, j. k) > N>(G—1D+N(G — D) +k,i,jk=1,2,3,...,N. 2D
Then, the discretized Schrodinger equation (20) can be written in matrix form
[H][V] = E[V], (22)

where the column matrix [W] is the matrix of unknown wavefunctions Wy2_1)+n(j—1)+ and
the square matrix [H] is the sparse or Hamiltonian matrix whose all nonzero entries locate
along seven diagonal lines as follows:

HN\2 14N G- 1) +h N2 O+N =Dk = Bs i=1toN—-1jk=1tN,
Hp2 (1) aN =1k, N2 (—2)+N -1 +k = B i=2tN, J.k=1toN,
Hp2 1N G =Dk, N2 = DN Gk = Bs j=1ltoN-1, ik=1tN,
Hy2 -1+ NG -1k, N2~ DN (-2 4k = B, J=2tN, i,k=1tN, (23)
HN2 1N = D)4k N2 = DN =Dkl = By k=1toN -1, i,j=1toN,
HN2 14N G = D)4k, N2~ DN G = D+h—1 = B, k=2toN, i,j=1tN,

Hy2 (i 1) 4N G= Dk, N2 (= D+N =14k = @i, j.k)» i,j,k=1toN.
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Figure 4. The sparsity pattern of the matrix [H]. The blank space represents zero entries and the
diagonal lines represent nonzero entries.

The number of eigenvalues of [ H] is also equal to N, the number of unknown wavefunctions.
However, the eigenvalues that can be energy levels of quantum dots are those which have
values lower than Vyide.

To obtain the energy levels as well as the corresponding wavefunctions of the electron,
the eigenvalues and eigenvectors of the matrix [H] are calculated by a specially developed
modification of the existing Mathematica standard algorithm. The main algorithm of the
simulation consists of the following steps: (i) input all necessary initial data such as sizes
of the computational box and the tetrahedron quantum dot, the values of inside and outside
potentials, and the number of nodes; (ii) build up the sparse matrix [H]; (iii) compute
eigenvalues of [ H]; (iv) select the eigenvalues that are lower than Vgysige; (V) compute and
plot 3D graphics of the corresponding eigenvectors.

3. Numerical results

In this section, we present some of the numerical results. In our simulation, all physical
parameters are in the same order as in [8]. The electron effective mass in the quantum dot
is presumably equal to 0.028 of the electron rest mass my = 9.1 x 1073! kg. For the InAs
tetrahedral-shaped QD in the GaAs matrix, the confinement potential is 0.77 eV. Therefore,
the value of Viyige = —0.77 eV and Vyysige = 0 eV.

We firstly generate a computational box of 20 x 20 x 20 nm? with at its centre a tetrahedral-
shaped quantum dot, which is properly imbedded in a cuboid matrix of 14 x 14 x 14 nm?. Due
to the PC’s memory limit, the number of nodes used on each side of the computational
box has been restricted to 21, starting from O to 20 (including 20). As the values of
wavefunctions at the surfaces of the computational box are set to zero, the number of
unknown wavefunctions on each side of the computational box is equal to the number of nodes
minus 2, thus 19. Although this seems to be fairly small, the number of unknown wavefunctions
is still 193 = 6859. Nevertheless, the computational program generates the sparse matrix [H ]
of dimension 6859 x 6859 as shown in figure 4.
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Figure 5. Distribution of the negative eigenvalues of the matrix [H].

Figure 7. Threefold degenerate wavefunctions of the first-excited state.

In the next step, the eigenvalues of [H] have been computed. With the settings, there
exist only five eigenvalues, which are all negative, and their distribution is shown in figure 5.
The rest, which is not shown, is positive. The smallest eigenvalue, approximately equal to
—0.48 eV, is the energy level of the ground state of the electron confined in the tetrahedral-
shaped quantum dot. The next three values, all approximately equal to —0.25 eV, are the
energy levels of the first-excited state. Their energy levels are threefold degenerated. All these
degeneracies are due to the symmetry of the tetrahedron. The last one, approximately equal
to —0.02 eV, is the energy level of the second-excited state.

In the last step, our computational program calculates the corresponding wavefunctions
and plots the ground state, first-excited state and second-excited state wavefunctions as shown
in figures 6, 7 and 8, respectively. Note that the wavefunctions of the first-excited state
look similar to each other except for their alignment. By observing nodal areas that separate
different shaded regions, the wavefunctions of the 3D tetrahedral-shaped quantum dot look
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Figure 8. The wavefunction of the second-excited state.
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Figure 9. The cross section of the ground state wavefunction at z = 10 nm. The tetrahedral-shaped
quantum dot is imbedded in the cuboid matrix ranging from 3 to 17 nm.

compatible with those of the 1D quantum well. For the ground state wavefunction, the shade
variation from the centre to the surfaces of the tetrahedron corresponds to a decrease of
amplitude of the wavefunction. A nodal area of the ground state wavefunction lies near the
surfaces of the tetrahedron as shown in figure 9. For the first-excited state wavefunctions,
there exists a nodal area that separates two different shaded regions as shown in figure 10. For
the second-excited state wavefunction, when looking on each side, there exist two nodal areas
between different shaded regions as shown in figure 11.

4. Discussions

Itis hard to solve the Schrodinger equation analytically for an electron confined in a tetrahedral-
shaped quantum dot, to derive its energy levels and corresponding wavefunctions. The
numerical simulation presented here is a simple and an effective tool for deriving them. The
finite volume method is used to discretize the Schrodinger equation. This discretization gives
a large-scale eigenvalue matrix equation, which is solved by the Mathematica program.

The program has been tested by using realistic physical parameters of the InAs/GaAs
quantum dot. The difference between the inside and outside potential of tetrahedron is
0.77 eV. Due to our hardware limits, we have set the number of nodes in each direction of
the computational box equal to 21 and the wavefunctions at nodes on the surfaces of the
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Figure 10. The cross section of the first-excited state wavefunctions at z = 10 nm, corresponding
to figure 7 in the same order.
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Figure 11. The cross section of the second-excited state wavefunction, from left to right, at
z=28,10, 12 nm.

computational box equal to zero. From these settings, the number of unknown wavefunctions
is just 19° = 6859. It takes an amount of time for our program to get the eigenvalues and
corresponding wavefunctions of the 6859 x 6859 matrix [ H]. The resulting eigenvalues which
can be the energy levels of the electron confined in the tetrahedral potential are those which
have values less than the outside potential.

The ground state, first-excited state and second-excited state wavefunctions of the 3D
tetrahedral-shaped quantum dot are plotted in the 3D graphics. The first-excited state
wavefunctions are threefold degenerate due to the symmetry of the tetrahedron. Clearly,
looking at the nodal areas between different shaded regions, the wavefunctions of the 3D
tetrahedral-shaped quantum dot are compatible with those of the 1D quantum well.

Finally, it is noted that electron energy levels also depend on the size of the quantum dot
and the electron effective mass. If the dot size increases, the electron energy level decreases.
Conversely, if the dot size decreases, the electron energy level increases. Also, variation of
the electron effective mass gives the same result as that of the dot size.
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