

รหัสโครงการ: TRG4580110

ชื่อโครงการ: ทฤษฎีอินทิเกรตตามวิถีของพลาสมารอนในหนึ่งมิติ สองมิติ และสามมิติ

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร.อุดมศิลป์ ปั่นสุข

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: may@astro.phys.sc.chula.ac.th

ระยะเวลาโครงการ: 1 ปี

บทคัดย่อ

เราใช้ทฤษฎีอินทิเกรตตามวิถีของพายันแม่น เพื่อศึกษาอันตรกิริยาระหว่างอิเล็กตรอน และพลาสมอน หรือในสถานะการณ์พิเศษจะเรียกเฉพาะว่า พลาสมารอน เราคำนวณด้วยแผ่นกระาย พลังงานสถานะพื้น และมวลยังผล ทฤษฎีของเรามีเป็นบททั่วไป นั่นคือสมบัติของระบบ อิเล็กตรอนพลาสมอนที่คำนวณได้นี้จะขึ้นกับความหนาแน่นของก้าชอิเล็กตรอนเพียงอย่างเดียว เพื่อทดสอบความถูกต้องของทฤษฎี เราพิจารณา ก้าชอิเล็กตรอนที่ความหนาแน่นต่างๆ ผู้วิจัยพบว่า พลังงานสถานะพื้นจากทฤษฎีของเรามีให้ผลไกล์เคียงกับผลที่มีผู้คำนวณแล้วแต่ใช้วิธีที่ซับซ้อนกว่า เนื่องจากทฤษฎีของเรามีเป็นบททั่วไป จึงสามารถคำนวณผลในระบบอื่นๆ ได้ อย่างเช่น สารกึ่งตัวนำ ฉนวน และของเหลว เราขยายทฤษฎีเพื่ออธิบายการเคลื่อนที่ของประจุไฟฟ้า ได้ๆ ในวัสดุความแน่นได้ เราใช้โพสติرونเป็นกรณีศึกษาและพบว่า มวลยังผลจากทฤษฎีของเรามีให้ผลไกล์เคียงกับทฤษฎีที่ซับซ้อนกว่า

คำหลัก: อินทิเกรตตามวิถี พลาสมารอน ก้าชอิเล็กตรอน

Project Code: TRG4580110

Project Title: Path Integral Theory of Plasmaron in one, two and three dimension

Investigator: Assistant Professor Dr.Udomsilp Pinsook

Department of Physics, Faculty of Science, Chulalongkorn University

E-mail Address: may@astro.phys.sc.chula.ac.th

Project Period: 1 year

Abstract

We use Feynman path integration for studying the interaction between electron and plasmon, in some special cases called the plasmaron. We calculate the propagator, the ground state energy and the effective mass. Our theory is stated in general, that is the calculated properties of the electron-plasmon system are depended only upon the density of the electron gas. For verifying our theory, we consider the electron gas in various densities. We find that the ground state energy calculated by our theory is in a good agreement with that of a much more sophisticated method previously calculated. Due to its generality, it can be used to calculate the properties of other systems, such as semiconductors, insulators and liquids. We expand our theory to explain the motion of a general charge particle in condensed matter. We choose the positron as a case study and find that its effective mass calculated from our theory is close to that from a more complicated theory.

Keywords: path integration, plasmaron, electron gas