TROAIN110 ne a3, gasded M

';"smm’iﬁ’mﬂ'uaug-sri

e o=l =] A i m) =
Iﬂ?ﬁﬂ?i: ﬂﬂ‘l:fgEl%‘?’]!»ﬂ‘i’@lﬂ']&nﬁ“llﬂﬂWﬂWﬁﬁﬂﬁﬁ%l%ﬂ%ﬁN@] HOJUA URS

SRV

Tae :ﬁwmamwwﬁ @s.qﬂmﬁaﬂ Tug

#IrIay 2546



Lo A
S URUT TRGA580110

ﬂumﬁé’ﬁﬂﬂﬂﬁugirﬁf

) = .| A & s - :
lassmy: noudduiiinsaawitivaswaaunsouluniela aeslf uay
§NTA

NEIBEIRHITNIITE 3. 0ANART) Duaw

s 9

MAITAENT anInmenaas InssnInluntineay

aﬁ.’uam&u‘[@\ BEENUNEIUERIERUITITY

r

; | = 1“0 L o
(ﬂ"nul,ﬁu'luﬂmmmﬂwaqﬁﬁ g gm. ldudusasiudisauey)



fiadnssuysznma
L, A L J s s - J "
pdnu'nauﬁ@mmm’ueuqmumwwﬂ‘%nm AERATINTH ATAP padila fld
v ' i - o o
nyouusi i Wanunszsn uaznaniininas aua maamnmmﬁwmmdmonw
J [ o 3 L2 r-J
uwmmqmﬂﬂ‘lﬂmum
- e L2 Y i3 [ 3 =, wr A vJ‘ ;
28POUAUMATTINENT anwinmenant LLazqmmmmum'mmaUﬂ“lmaatﬂa
SR ITAaBALATINTT
a L e - o L ™) [ r-9 [ " - V) 0 5 A e i L4
'uauqmmumwunaaY‘auauumgumﬂwmmunuﬁumnumauqv.‘lwu T’!“’)’*wv‘.ﬂ
%’umsqsmq,umaam:ummmw‘iﬂﬂwms
manqmmam’uanamﬁ FBUNWY ﬁ‘d’ﬂauﬁﬁuaguua:tﬂuﬁﬁﬁ'ohaahmﬁ’uﬁua
s F-3 AJ Y [ = A"
uazfITInsdaNwanF M AYMaTa 9 Bu
o A A A o 1 A - =y
YNENFa  TONTIUVIUNTIAMANTRNYRILINY AlavITmuIamenudiug &8
J - { Lo [ s o
Yowonfd  ussialafdueds awmnsnduguaTiaw iy uazvhlilasoniy

LU
v

[ €l e v vy o
unamgmnian g luiiaduintyldsufizuan



WalaTINNS: TRG4580110
d - A d aa oo Ao
ﬁBIﬂ'Nﬂ'ﬁ: YH'}BQﬂ“ﬂLﬂTﬂﬂ’]U’?ﬂﬂﬂéﬂﬂ'}ﬂ'ﬂﬂ?ﬁu1u‘ﬁud&lﬂ NO336 UREFBUS

4 v oaw v (4 - o
TORNIVY: ﬁﬁ’wﬁ'}ﬁﬂﬂﬁn‘m m.qﬂuﬁaﬂ ﬂuqm
madWNENT aaeinomaad qmmmnfuwﬁn TaLL

E-mail Address: may@astro.phys.sc.chuia.ac.th

szpsmlassm: 11

UnfinLis

v aAm o - A A .- aa T
i ldnnuiduiiinseauitveshoduuy Refnmnsuaiidmsewiviidnasan
uszwmgNew  winluamurnsoifiamenionianizi  warsnsan  AmdImaIul

[ a [ ¥ o —n

AT WRINUEDUTAL Wazuaadens noujrsaniduunill wuRamaniGuasszoy

- A L3 v; J’ ot ¥ - i = 1
aidnasounmsnauirwinlaiariuivarnumwnulwasiaiinasawinsatrafion
A > -~ L] - A . i Ly,
tanassuaugndasamne]) iInATIMTBiRnasauinunmING g 39D
" o A’ = s i v o L " mdA it
wuh waswsmusAwIINngesasninalndidsenunanddiunndedliisndgu
daund tllesnnngefuanriuunmly Semansoduinnalusundug 16 agw

\ d o+~ . o . - A

1BU @INIANN ANL RezTaanAY InTgenquiResfuumniafeunvaslizy Wi
lag uiagauwinld (mldwdasowdunsdfinymuasnui madsmannmosizen

L s bl ﬂ& e L <
Wnalndifisstunquifidudounia

dman: dufiinTaswdd wangaTau MEdlEnaTon



Project Code: TRG4580110

Project Title: Path Integral Theory of Plasmaron in ons, two and three dimension
Investigator: Assistant Professor Dr.Udomsilp Pinsook

Department of Physics, Faculty of Science, Chulalongkom University

E-mail Address: may@astro.phys.sc.chula.ac.th

Project Period: 1 year

Abstract

We use Feynman path integration for studying the interaction between electron
and plasmon, in some special cases cailed the plasmaron. We caiculate the propagator,
the ground state energy and the effective mass. Our theory is stated in general, that is
the calculated properties of the electron-plasmon system are depended only upon the
density of the electron gas. For verifying our theory, we consider the electron gas in
various densities. We find that the ground state energy calculated by our theory is in a
good agreement with that of a much more sophisticated method previously calculated.
Due to its generality, it can be used to calculate the properties of other systems, such
as semiconductors, insulators and liquids. We expand our theory to explain the motion
of a general charge particle in condensed matter. We choose the positron as a case
study and find that its effective mass ctaculated from our theory is close to that from a

more complicated theory.
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1 Introduction

The interaction among elecirons is extremely important becaunse the world is rmade of
the Pauli exclusion principle of electrons., Without electrons, life cannot exist. There
were many theoretical approaches attempted to explain the electron-electron interac-
tion [1). This work intend o study only a part of the electron-electron interaction, i.e.
the electron-plasmon interaction.

The plasmons are the quantized harmonic oscillations. They exist naturally in real
metals and any electron gas. Because of the many-body nature of the problem, any
charge particle interacting with plasmons cannot be solved accurately by an ordinary
quantum theory. In this work, we propose that a charge particle interacting with plas-
mons can be modeled by Frohlich-type Lagrangian. This Lagrangian was employed
to study the system of an electron interacting with piasmons {2, 3]. It has been shown
that this kind of Lagrangian can be solved analytically by using Feynman variational
path integral. Also, a similar approach has been used for examining the polaron prob-
lem. It gives the best analytical results in the polaron case [1]. From the path integral
method, we obtain the corresponding propagator and, then the ground state energy and
the effective mass.

QOur theory can be generalized to study the interaction between a fermion parti-
cle and plasmons. The formulation for a hole-plasmon or a positron-plasmon system
should be exactly the same. A slow positron in solids is an important example. This
is because the interaction between a positron and a solid can be decomposed into, for
example, positron-plasmon (4, 5] and positron-phonon {6] interactions. It was pointed
out that the positron-plasmon interaction is dominant in semiconductors {7). Positrons
are quite technologically important. Many theoretical works have been devoted for the
calculations of the positron’s ground state energy [8], band structures [7, 9, 10], effec-
tive mass {4, 5, 11, 12], diffusion coefficient and mobility [13] in condensed matter.
These calculations are useful for the interpretation of positron annihilation measure-
ments. These medsurements are of great interests as they reveal some information of
defects in solids {14, 15], and they are non-destructive and hence favorable.

To verify our theory, we examine two special cases. The first case is the Coulomb-
hole self-energy of the electron and the ground state energy of the plasmaron. The
results are compared with a more sophisticated work proposed by Overhauser [(16].
The second case is the motion of a positron in solids. We compare our results with
some existing experimental data. The effective mass is important as it can be related to
the mobility and the diffusion coefficient of the positron [13]. In addition, the results
from theoretical approaches [4, 5, 11, 12] and experimental determination [17, 18] are
not in a good agreement. Some possible discrepancies and some extension using path
integral formulations are discussed,

This report is organized as follows: the models of the charge-plasmon interaction
are in section 2, the general Feynman path integral theory for the charge-plasmon sys-
tem is in section 3, and calculation results and discussions are in section 4. Conclusions
are laid in section 5.



2 Models of the charge-plasmon interaction

The interaction between a charge particle and plasmon field can be modeled by 2
Frohlich-type Lagrangian {2, 19] as

= g ?ém CRTCARDY TG Qe ()
where m, is the charge mass, r is the position vector of the charge particle, m, is the
bare electron mass as electrons are the bases of the plasmons, Qq are the plasmon
generalized coordinates and Qq are their conjugate momenta, q denote the plasmon
wavevectors, w, is the plasmon spectrum, V is the volume of the system. The system
is assumed isotropic so that the dispersion of the plasmons is directionally indepen-
dent. The first term in Eq. (1) describes the kinetic energy of the charge particle. The
second term is the harmonic representation of the plasmon modes. The third term is
the interaction between the charge particle and the plasmons. The strength of the inter-
action is enclosed in a coupling function g,. The remaining task is to select a suitable
wq and g,.

In the present work, we intend to use a simplified picture for the many-body inter-
action. Thus, the plasmon specttum w, and the coupling function g, are taken from
the so-called piasmon-pole approximation. In this approximation, the electron-hole
excitations are absorbed into the effective plasmon excitations. The f sum rules are
imposed as a particle conservation rule. There are several plasmon-pole models for
metals (16, 19], semiconductors [20, 21] and liquids [22). For the purpose of iljustra-
tion, we choose a simple model introduced by Lundqvist {19]. He proposed that an
electron gas can be described by a simplified dielectric function,

wg—uz

elgw)= m- (23

This dielectric function is not a full extension of the celebrated random phase approxi-
mation (RPA) but rather an approximation, and it was chosen to satisfy the f sum rules
[19]. The plasmon spectrum is

4 ,
wz__w +3LFq + g, (3)

The coupling function can be writien as

g2 = & (Oelew) e @
T g2 Sw [ _. GPw,

This mode} is simple and yet allow us to find some useful analytic solutions. It also
gives reasonable ground state energy and correlation energy of the electron gas in the
metallic densities [19].



Another interesting model was suggested by Overhauser {16]. He noticed that RPA
does not account for the exchange and correlation effects of the electron gas. Thus he
included some correction terms into the dielectric function, which can be expressed as

b(z)

elg) =1+ T-G2)PE) (5)
where L1g?
Glz) = -t , 6
() Vv1+ 10z? + 1.5z° ©)
1 1 1-2% |14z
Plz) = nkrz? (E + 4z tn Il - xD ' M

and z = 5};";. The form of Eq. (5) is similar to incorporating the local field corrections
and the vertex corrections into the dielectric function. This model is phenomenological
because the exact corrections are not known. Nevertheless, Overhauser showed that
his dielectric function reproduced correct correlation energy in the metallic density
range [16}. The plasmon spectrum is then

2
2 _ wps(q)
“T -1 ®
The coupling function is slightly modified as
' 9, = 9,1 - G(2)), &)

where g, is defined in Eq. (4).
Throughout this work, we adopt the Bohr radius as the unit of length and Rydbergs
(Ry) as the unit of energy. In these units, the long wavelength plasmon frequency w, =

24811 and the magnitude of Fermi wave vector kr = 222 where 7, is a parameter
a7

defined from the electron gas density n = (%?rrf)“. The charge particle states will be
labeled by k and the plasmon states will be labeled by q.

It is worthy of note that the Lagrangian for a positive or negative charge particle is
the same as in Eq. {1). Orly appropriate dielectric response must be selected accord-
ingly. To a crude approximation, the dielectric response for an electron in the electron
gas should be the same as that for a positron in the electron gas. Some refinement to
the interaction model has been suggested, i.e. for a positron in an electron gas, the
coupling function must be multiplied by some enhancement factor and the plasmon
dispersion relation must be modified accordingly {16, 23, 24}. This refinement will be
taken into account in our subsequent works.

3 Feynman path integral theory of an electron-plasmon
system

By using path integration technique [25, 26}, Sa-yakanit et.al. [2] showed that the
corresponding action of Eq. (1), after integrating out the plasmon coordinates, can be



written as

_ a2 i A coswy(t/2 — u}] glale(n)=r(@))
—mcfo dri(r) + 1673 ./dngfo /a drdo sinfwgt/2]
(10)

where u = |7 — ¢|. This action describes a system of a particle moving in a non-local
potential field. This potential field reflects the disturbance caused by the presence of
the particle and affecting the particle’s motion at later time.

However, the action in Eq. (10) is too complicated to be solved. By using varia-
tional principle, we have freedom to choose a simpler action and use variational tech-
nique to obtain some useful information. In a previous work (2], a polaron-like action
was chosen, which is

So=%mc fotdr'f“z(f) / f drd ""Z[f[gf/?l“] () —r()*. (1)

This action is quadratic and composes of two variational parameters, i.e. k and §2
which are related to Feynman parameters ' and w by k = % and {3 = w, The first
term in Eq. {11} is the kinetic energy of the particle. The second term is a non-local
harmonic potential in which « is an effective coupling strength between the particle and
an external harmonic force with an effective harmonic frequency of 0. This trial action
is 2 good approximation to the action in Eq. {10) when |r{7) — (o)) is fairly small or
there is only a short interaction time available, as discussed by Feynman [25, 26}.
From this action, Feynman stated that it leads to the construction of a approximate
propagator [25, 26). Furthermore, the propagator already contains all the information
of the system, such as the ground state energy and the effective mass. Thus knowing
the propagator is equivalent to selving the problem.

Next, we discuss briefly how to obtain the approximate propagator. From the action
in Eq. (10), the corresponding propagator is

Glry,riit) = /rz Dr(t)] €. (12)

Ty

This propagator is complicated and we cannot find its solutions directly. Thus we
impose the variational principle and choose a polaron-like action as in Eq. {11). Its
corresponding propagator is

Go(ra,riit) = [ DIr(t)] e (13)

The chosen tria} action is in a quadratic form so that it can be solved analytically. From
the cumulant expansion, we find that the true propagator can be approximated in term
of the trial action as

Glra, 11;) = Golra, 1y; )€~ 00s0 (14)



where {...)s, denotes an average with respect to Sp. Eq. (14) can be solved in term of
r,, 7 and the variational parameters. The mathematical detail has been given many
times in the literature {2, 27, 28, 29, 30]. Here we simply quote the solutions which

are
3/2 ¢y simje/2)\3
Gaolraymsit) = (5) " (Kl
(15)
e exp{ (L—éL- cot ["3] p2) frg — r1|2} :
The average of S and Sp can be dccomposed as
<8 =5 >5=<S>s5 — < S >, (16)
and
1 t gt coslwq(t/2 — )] _1i2 Avic(ese
_ d 2/ / d q Lig? Atiq(rz—r1)B
<5 >s 1673 / Ya Jo Jo drdo sinfwgt/2| ¢ D
and o,
< Sp g, = M=) 12'9 ("5‘ cot[%] — 1)
(18)
2 drdo SR e, — B,
where
4o {1 -p%) 25in[uu/2]lsin|u(t —u}/2] + 02 wu(t—u) } (19)
Me vsin[vt/2) -0 ¢
" pruf A coslu(t = (- + o)/
sin|vu/2| cos[v(t - (7 +0})/2 U
B=(1- -
(1 ) { sinfvt /2] Ty } (20)
The diagonal part of G(rg, r1; t) can be explicitly written as
m 3/2 vsin 2 v
Gty = () () exo {2972 ( cotl] - 1))
(21)

Xexp{ﬁgquggféﬁdq-dgwﬁne—-:qj }

$infwgt /2]

Qur system is isotropic and thus translational invariant. Therefore G(r, r;¢) = G(0, 0;1).
By using the identity

[ [ardor =2 [ aste - 2)1(2), o2
we get
G(0,0,) = (%) v (s‘%ﬁ%) BXP{—(-JU (% cot(4] ~ 1)}

x exp { gv [ dag? [y da(t — 2yt e-3ic

sinfwet/2]

(23)



where

(1 - p?) [ 2sinfvz/2|sinfv{t — 2)/2 Q2 z(t-2)
¢= M { vsin(vt/2] T } ' @4

To avoid dealing with some oscillating behavior in the solutions, we transform ¢ —
—47". This transformation is valid as long as spin is not explicitly taken into account,
as discussed by Feynman [25].
For the system of lower dimensions, i.e. one or two dimension, the propagator can
be modified as
a2 7 ,a d
600,0:) = ()" (renf) " exe {24522 ( cotigf) - 1)) .
(
X eXp {g‘r—g Jdag? fi da(t - z)%e‘%‘“zc} ,
where d is the dimension of the system. The plasmon state ¢, the dielectric func-
tion £(g) and the plasmon dispersion relation w, must be modified accordingly. Some
models for these quantities have been proposed by many authors [20, 31]. They also
suggested that the effects of plasmon become more significant in lower dimensions.
We will extensively study these lower dimension systems in our subsequent works.
We concentrate now on the three dimensional system. In order to find some ground
state properties, we let 7' — o0, the ground state energy £y and the effective mass
my/m. can be extracted from

* \ 3/2
G(0,0; T — 00) = ¢3(0)o(0)e 50T = (E—) ! g BT (26)
2nT
This propagator describes the charge particie and the plasmons which are initiaily in
their ground states, then they are virtually excited and interact with each other, and
eventually, after some time 7T later, they go back to their ground states. This picture is
analogous to the self-energy scheme in quantum many-body theory [1).
From the approximate propagator in Egs. (23) and (26), the ground state energy is
written as {2, 3]

_ 3 2 1 22 8 [ -z
Ep = 4V(1 p) Wuquq g;e L dzexp(fe™ — uz), (27)

where ° = Qz+;n’—‘:.p =2 3= “ﬁé%ﬁ’ﬁandp= “’;'l-i-%% The variational
parameters « and 2 are now absorbed into another set of adjustable cparan:tetcrs v and p.
The system is assumed spherical symmetry. Thus we can replace fdq by [ 4m2¢%dg.
According to the propagator G(0,0;T), Fy can be interpreted as the energy of the
particie which is moving stochastically in response to the changes in the potential field
created by the motion of the particle itself and then goes back to its initial position after
a duration 7. ForT' — oo, the particle has an average zero momentum. Hence, £, can

be compared with the energy of a particle in a compatible physical system at & = 0



or at " point where the particle has slowest dynamics and its wavefunction has highest
symmetry. It is readily to see that this method is quite suitable for the problem of a
thermalized positron in solids because the positron is slowing moving and it occupies
the I state [7, 10).

The limits of [ dg in Eq. (27) are worth discussing. Overhauser [16] show that if
the charge particle is an electron and we perform [¥7 dg, Ey is a major contribution
to the correlation energy of the electron gas at & = 0. The energy state of this system
is quite complicated and sometimes referred to as the plasmaron. The concept of the
plasmaron is working well in poorly conductive semiconductors and insulators. If we
perform f;° dg, Fy is the Coulomb-hole self-energy of the electron gas at £ = 0 [3, 16].

For a positron, we have no prior reasons to exclude short wavelength plasmons.
Thus we simply perform [5° dg. Then Eq should be the lowest possible ground state
energy for the positron-plasmon interaction in our model. The reason is as follows.
Firstly, it is readily seen that the first term, the second term and its integrand in Eq. (27)
are always positive. Owing to the minus sign in front of the second term, for a given set
of variational parameters, the lowest [ is where the second term is largest. Performing
fs° dg with appropriate variational parameters will give the largest possible value of
the second term and hence the lowest possible Ey.

Next, the effective mass can also be extracted from Eqs. (23) and (26). Sa-yakanit
[29] showed that if we expand the propagator Eq. (26) in a series of 7 where 1 — 0,
we get the [ow energy limit efféctive mass which is (3]

Ez = 1 exp [pi -1+ —i /dqq‘igze'ﬁ ]m dzz? exp(Be — ux) (28)

me P2 3m2yt i 0 ’ '

Note that we do not assume here that m, = m,.. Therefore, we can implicitly take the
effects of a periodic potential or a phonon interaction into the account. This is a major
improvement in our theory.

4 Calculation results and discussions

4.1 The electron-plasmon system

The main purpose of this study is to evaluate the ground state energy and the effec-
tive mass. According to the variational principle, in order to obtain the ground state
properties of this system, we insert wy from Eq. (3) or (8) and g, from Eq. (4) or (%)
inte Eq. (27), and solve for v and p which yield the lowest Ey. Then we insert these
v and p into Eq. (28) to get the corresponding m)/m,. It is worth mentioning here
that the integrals in these equations cannot be evaluated analytically. Thus we resort
to a standard numerical integration and a numerical minimization (32]. The numerical
minimization is adapted from the simulated annealing method which has a potential to
find the global minimum in multidimensional problems. In this subsection, we exam-



Ta v P EG ([ZY) m::/mc
0.00001 finite 1 -489.77 1
0.0001 finite 1 -152.57 1

0.001 finite 1 -46.49 1
001 finite 1 -13.49 1

0.1 236.46 | 0.999 -3.56 1.002

1 7.03 | 0.989 | -8.21 x10! 1.024

2 2.46 |1 0.979 | -5.14 x10~} 1.046

51609 x1071 ] 0.952 | -2.72 x10°! 1.108
10 | 222 x1071 | 0916 ! -1.67 x10~? 1.203
100 | 9.59 x10~% | 0.600 | -3.23 x102 2.897
1000 | 7.24 x10°% | 0.245 | -6.37 x1073 | 18.592
10000 | 6.06 1075 | 0.101 | -1.22 x1073 | 119.877
100000 | 4.96 x107% | 0.044 | -2.26 x10~4 | 727.316

Tabie 1: Shows v, p, By and m]/m, as a function of r,. The plasmon spectrum and
the corresponding coupling function are taken from Lundgvist’s dielectric model. We
set M, = M.

ine the electron case. Thus it is appropriate to use m, = m,. Some selected results are
shown in table 1 and 2.

According to table 1, we can see firstly, that v is large at small r; and becomes
finite but irrelevant at very small r,. It tends to zero quickly as 7, increases. Secondly,
g == 1 at small r; and it is getting gradually smaller as r, increases. Thirdly, Fy is very
targe at small r, and very small at large r,. Lastly, m:/m, & 1 at small ry and it is
sharply increasing at very large r,.

According 1o table 2, we can see that Fy from the two dielectric models behaves
similarly, although Zp from Overhauser’s dietectric model is a little higher. This is
because the local field and the vertex comections slightly alter the dynamics of the
electron gas and also affect the coupling strength of the electron-plasmon interaction.

As mentioned earlier, the Lagrangian and hence the Hamiltonain of the physical
system we have discussed here can be related to the Coulomb-hole self-energy. There-
fore, the results of the Coulomb-hole self-energy at & = 0 from Overhauser’s work
[16] using his own dielectric model are shown in table 2. Even though, Overhauser’s
theory and ours originate from different approaches and have very different mathe-
matical structures, it can be readily seen that with the same dielectric model, £, from
our theory is in a very good agreement with Overhauser’s Coulomb-hole seif-energy
at & = 0. The ground state of the plasmaron at & = 0 [19] are also given in the table
for comparison.

Since both dielectric models have been shown to give the similar resuits. Thus we



T Lundqvist | Overhauser | Coulomb-hole (k = 0) [16] | Plasmaron (k = 0) {19]
0.1 -3.56 -3.55 -3.55 5.20
1|-8.21 x1071 | -7.96 x107! -7.95 x10°} 1.09
21-514 x107! | 4.93 x10°t -4.87 x107! 5.94 x 107!

5| -2.72 x1071 | -2.48 x1071 -2.47 x107} 2.47 x10°!
10 | -1.67 x10~! | -1.46 x10™! -1.45 x10°? 1.23 x107%
100 | -3.23 x1072 | -2.29 xi0~? -2.22 x1972 1.19 x 1072

Table 2: Shows Fy from the different dielectric models. For comparison, the Coulomb-
hole seif-energy from Ea. (48) in Ref. [16] and the ground state energy of the plas-
maron from Eq. (26) in Ref. [19] are also given.

have chosen Lundqvist’s model for further investigation because it is simpler and easier
to handle. By adopting Lundqgvist’s dielectric function, £, can be written explicitly as

3 2 2(1)3 {wal e'-ﬁ o —z
By = Sv(1-p) _E/o do"— [~ dzexp (pe™™ - uz). (29)

e

In the next two steps, we will study this Eq in some asymptotic limits, such as in a
very high electron density, i.e. 7 is vanishingly small, and in a very low density, i.e.
75 is very large. In these limits, we find that Eq. (29) can be evaluated analytically.

High density limit

In this limit, 7, — O, we find from the numerical results that v is large and finite and
p = 1 so that the first term in Eq. (29) vanishes, § = 0 and

oo 1
/ drexp(Be™ — uz) = —. (30)
0 H
Moreovet, w, and kr become very large so that ¢ has less significant contribution to
wy and
2,42 o
Y R wy = wp+§kpq . 31
Consequently,
2wt poo w2 poo i
Eym ——2 dg— ~ ——L 13 5" (32)
av Jo Wott T Jo wy + 355G

It is straightforward to perform the definite integral and writing Ej as a function of r,.
Then we get
1.56

N (33

Eow -




Ts numerical | high density limit | low density limit | error (%)

' 0.00001 489,77 -493.32 - 0.72
0.0001 -152.57 -156.00 - 225
0.001 -46.49 -49.33 - 6.11
1000 | -6.37 x1073 - -7.42 x1078 16.53
10000 | -1.22 x107°® - -1.32 %1073 820
100000 | -2.26 x10~4 - -2.35 x10™ 3.36

Table 3: Shows Fp in the high density limit, Eq. (33) and in the low density limit,
Eq. (37), compared with the numerical results of Eq. (29). The relative error is also
given.

which yields less than 1% error compared with the numerical value at ry = 1075, see
table 3. We expect that the error would reduce as r, is getting closer to 0. Most of all,
we see that Fy is not a constant as v, — 0 but rather diverges as —‘}r_:

Low density limit

In this fimit, ¥, — 00, v — Oand p — Oso that § = 9;. n= “’—j and the first term in
Eq. (29) can be neglecied. In a closer examination, we find that

exp{fe”” — uzx) < exp(f — ux) (34)
for all z. Thus )
22 oo 1 2wi g0 1
Ep< =2 | dgq— =-"2 =. (35)
v Jo Wall n Jo wq

We also notice that the term which contains ¢ has a smalier contribution to w, than
the ¢? term. Thus, we have
2w3 o 1

by~ ——= dg———, 36
0 T Jo qw§+q“ (36)

which can be readily integrated out and written in term of 7, as

1.32

EO o= ——SF, (3?)
Ts

which yields less than 4% error compared with the numerical value at r, = 10%, see

table 3.

We have some comments on the behavior of m? /m, in the present work as it would
reflect a phase transition of the dressed electron from one physical regime to another



between very different scales of r,. We can see from table 1 that in the high density
limit (small r,) the electron is mobile, i.e. m}/m, is close to unity, whereas in the
low density limit {large 7,) it becomes self-trapped, i.e. m¢/m,. is exceedingly large.
In addition, we have shown that Fy behaves differently between these two extreme
limits. One possible realization of our findings is the fact that in a degenerate electron
gas, the total energy can be decomposed into the kinetic, the screened exchange and the
Coulomb-hole parts. Furthermore, at very high density, the dynamics of electrons are
dominated by the kinetic energy while at very low density, the electrons are localized.
This is just coinciding with the behavior of m} /m, in our results. We believe that these
findings might be an indication of Wigner crystallization.

4.2 The positron-plasmon system

In this subsection, we show that the interaction model and Feynman variational path in-
tegration can also be applied for the calculation of the effective mass of a slow positron
in metals. The metallic densities of the electron gas are a density in which ry is be-
tween 2.0-6.0. According to the variational principle, in order to obtain the ground
state properties of a slow positron in metals, we insert w, from Eq. (3} and g, from
Eq. (4) into Eq. (27), and solve for v and p which yield the lowest Ep. Then we insert
these v and p into Eq. (28) to get the corresponding m/m,. The expressions (27)
and (28) cannot be evaluated analytically. Again, we resort to a standard numerical
integration and a simulated annealing minimization [32].

Ts v p_| B Ry) | my/m. | me/m,
1 7.05 0.988 | -0.791 | 1.020 | 0.816
2 2.55 0.978 | -0.494 | 1.039 | 0.831
3 1.37 0968 | -0373 | 1.057 | 0846
4.]8.90 x10~! [ 0959 | -0.305 | 1.074 | 0.859
5 1633x1071| 0950 | -0.261 | 1.091 | 0.873
6 | 6.15x1071 | 0931 | -0232 | 1.110 | 0.888
10 | 227 x10°1 | 0911 | -0.160 | 1.173 | 0.938

Tabie 4: Shows v, p, Ep, m>/m. and m} /m, as a function of r,. The plasmon spectrum
and the coupling function are taken from Lundqvist’s model. We set m,/m, = 0.8.

Apart from w, and g,, another input parameter in this theory is the ratio m./m,. It
has been shown that m./m, differs from unity because it depends on band structures
[7, 9, 10] or phonon effects (6}, For illustration, we explore three different values of
me/me, i.e. 0.8, 1.0 and 1.2. The results are shown in Table 4-6. It can be readily
seen that the ground state energy decreases as r, increases and it increases a little as
me/m, ncreases. The effective mass, m;/m, increases as r, increases and as mg/me.



increases. Moreover, at fixed r,, v and p are different for a different . /m,. Evidently,
this shows the internal effects of m,./m, to the ground state properties.

Ty % p | Bo Ry} | m}/m. | mi/m.
1 7.03 0.989 | -0.821 | 1.024 | 1.024
2 2.46 0.979 | -0.514 | 1.046 | 1.046
3 1.31 0.969 | -0.388 | 1.067 | 1.067
4 ! 865x10°1|0961 ] -0318 | 1.088 | 1.088
5 | 6.09 %107t [ 0.952 | -0.272 | 1.108 | 1.108
6 (474 x1071 | 0945 | 0239 | 1.127 | 1.127
10| 222 10t | 0916 | -0.167 | 1.203 | 1.203

Table 5: Same as table 1 but with m/m. = 1.0.

A similar approach to our theory was introduced by Hamann [12}. By using the
many-body techniques and Feynman diagrams, he evaluated m? /m, of a positron in
metals. Some selected values of m?/m,. from Hamann’s work are shown in Table
7. We find that those m /m, in his calculations are 3-8% higher than ours. This is
because he used a slightly different dielectric function. However, the tend is quite the
same.

v e | Eo Ry) | mi/m. | ml/m,
7.13 09901 -0843 | 1.027 | 1232
2.38 0.980 | -0.528 | 1.052 | 1.262
1.29 0.971 | -0.400 | 1.076 | 1.291
843 x10°t [ 0.963 | -0.328 | 1.099 | 1.319
16.02 x10~* 1 0955 | -0.280 | 1.122 | 1.346
464 x1071 | 0.948 | -0.247 | 1.144 | 1373
2.16 x1071 | 0.920 | -0.172 | 1.229 | 1475

y—
= O B e 3

Table 6: Same as table 1 but with m./m, = 1.2,

There were a number of experiments which aimed to determine m/m. of a ther-
malized positron in metals [17, 18]. Some selected values of m /m, from the exper-
iments are also shown in Table 7. We find that those m;/m, from the experiments
are quite large, i.e. almost twice larger than those from our calculations. It shouid
be pointed out that m/m,. from the experiments should include all the interactions
in metals. The large m}/m, could result from other effects, such as positron-phonon
of positron-defect interaction. An experiment showed that the positron-polaron also
has a large effective mass {33]. Other experiments suggested that positrons are easily



trapped in the vicinity of defects {14, 15]. A path integral theory showed that inter-
acting with defects can modify the effective mass {27, 28]. Moreover, the effective
mass defermination experiments were carried out over a range of high temperature.
They cannot be done at very low temperature because a positron annihilates with an
electron before thermalization. At the present, our theory does not include temperature
effects. However, the extension of our theory to include the temperature effects should
be straightforward. This was done in the case of polaron by modifying the approxi-
mate propagator to account for the effects of some thermally excited states [34, 35).
It was suggested that the plasmon spectrum can be modified to include the effect of
temperature as well [31]. All these thermal modifications will be considered in our

future works.

my/m. (Ours) | m;/m, (Hamann [12}} | r, | m>/m. (Experiments [17, 18])

rs

2 1.05 1.08 3.25 1.8
3 1.07 112 393 1.8
4 1.09 1.15 4.86 2.1
5 1.11 1.19 5.20 2.3
6 1.13 1.22 5.63 2.5

Table 7: Somé selected values of m?/m,. from Hamann’s work and from the experi-
ments compared with our results where m./m,. = 1.0.

5 Conclusions

In this work, we have shown that Feynman path integral can be applied to a sysiem
of an electron or a'positron interacting with plasmons in a Fermi Gas. By choosing
an appropriate dielectric model, the ground state energy and the effective mass can be
calcuiated. Some physical systems can be studied by choosing an appropriate integral
fimits for the plasmon modes. For an electron, we choose 10 study the Coulomb-hole
self-energy. Qur results are in good agreement with the Coulomb-hole seif energy
at k = { from Overhauser’s work [16).The theory predicts a phase transition, i.e
the dressed electron is mobile in the high density limit but it exhibits a self-trapping
behavior in the low density limit. This should be an indication, or at least a precursor,
of Wigner crystallization. For a positron, we study its effective mass as it interacts with
plasmons in solids. We find that our results are in agreement with a similar approach
but not with experiments. The electron-plasmon interaction is important because it
supports some experimental findings in metals [36] and in magneto-optical properties
of semiconductors {37]. Our theory is proposed in general and can be readily extend
to lower dimensionality. Some studies show that the electron-plasmon interaction is
more significant in 2D systems [20, 31, 38], such as in a quantum well [39], than in



3D system. Furthermore, it has been suggested that the electron-plasmon interaction
might assist Cooper pairing in superconductors [40]. We believe that this report will
open a possibility for investigating these frontier physical systems in the future.
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PACS 71.45.Gm

We study a system of an eleciron interacting with plasmons using Feynman path integral method. The
Lagrangian and then the action which describe the motion of the electron interacting with a harmonic
field of the plasmons are derived. The interaction strength is embedded in a specific dielectric function
and z corresponding plasmon spectrum. We have studied two models of the dielectric media proposed
by Lundqvist and Overhavser. By using numerical integration and minimization, we evaluate the
ground state energy and the effective mass of the system as a function of r,. We found that both
models give simitar ground state energy. There is a possibility that the theory would predict a phase
transition in this system. The analytic expansion of the ground stale energy in some exmeme limits are
investigated. The applications of theory to some excitations in a Fermj gas are discussed.

1 Introduction The interaction among ¢electrons is extremely important because the world is made
of the Pauli exciusion principle of electrons. Without electrons, life cannot exist. There were many
theoretical approaches atternpted to explain the electron—electron imeraction (1). This work presents
an alternative method for studying a part of the electron—electron interaction, i.e. the eleciron—plas-
mon iateraction.

The plasmons are the quantized harmonic oscillations. They exist naturally in real metals and any
electron gas. The interaction between an electron and plasmons ¢an be described by Frishlich Hamiko-
nian [2]). This problem is analogous to the polaren preblem [3]. However, the polaren problem in-
volves only two constant parameters; a phonon frequency and a coupling parameter. In the electron—
plasmon or the hole—plasmon interaction, the problemn becomes more complicated because the cou-
pling strength is depended on the momentum of the plasmons {3, 4]. In this study, we choose Feyn-
man variational path integral method as a calculation tool. Tt is a non-perturbative method. Hence it
has a potential t0 give more accurate calculations. Feynman had shown that this method can accu-
rately describe the properties of the polaron for the whole range of its coupling constants [5, ). Sa-
yakanit had also shown that the same method was successfully applied to study a number of frontier
physics problems such as disordered systems, heavily doped semiconductors, anharmonic crystals and
ete. {see for example [7]). We will show that Feynman method is stll an efficient tool for such a
complicated problem like the electron—plasmon system,
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Note that cur theory can as well be generalized to study the interaction between a fermion particle
and ptasmons. However, for simplicity, we will concentrate on an electron-plasmon sysitem as a case
study. The formulation for a hole—plasmon system should be exactly the same.

This paper is organized as foltows: the models of the electron—plasmon interaction are in Section 2,
the general Feynman path integral theory for the electron-plasmon system is in Sectica 3, and cafcu-
lation results and discussions are in Section 4,

2 Models of an electron—plasmon interaction Firstly, we consider an electron moving in a dielectric
medium such as a degenerate electron gas or a jellium. The electron and the dielectric medivm will
interact with each other. The spectrum of excitation modes will determine the strength of the interaction.
However, there are (wo elementary excitations in the electrog gas; plasmons and electron-hole pairs.
Calculations involving the electron—hole pairs are quite tedious [4] and we shal! try 10 avoid. Lundqvist
[3] suggested that the whole excitation spectrum can be replaced by a modified plasmon spectrum. This
modified plasmon spectrum obeys the £ sum rules [1, 3, 4], Those sum rules limit the contributions of
plasmons to the gdielectric function and hence serve as a convenient interpolation scheme. This approxi-
mation is sometimes called the plasmon pole approximation. The main airo of this Section is to discuss
some selected dielectric models and their comesponding plasmon spectra.

The first model was introduced by Lundqvist [3). He considered the electron gas in the random
phase approximation {RPA) and proposed that the dielectric medium in this case can be described by
a simplified diclectric function,

wi(q) — w? )

S(QIw) = wg(q) *-(U;‘; - w’Z .

This dielectric-function is not a full cover of RPA but rather an approximation, and it was chosen to
satisfy the sum rujes [3). The plasmon spectrum is

wylg) = wp + 1kt + g*. 2)

The coupling function can be written as

8 1 ~ dmew}
£la) = 7 (8e{q,w)f8w) wmay  G0p(0) N

Note that in order (o compare our resulis with some existing works, we need ¢ follow some natural
2

. A
units widely used in the physics of the atomic scale, i.e. i=1, ¢2 =2, — = 1. In these units, the
2m
3.4641
ez
5
, where r; is the density parameter and the electron density n is 1/%3:-2. Throughout this

long wavelength plasmon frequency w, = and the magnitude of Fermi wave vector

ke = 1.9162

paper, the electron states will be labeled by k and the piasmon states will be tabeled by g.

The second model was suggested by Overhauser [4). He noticed that RPA does not account for the
exchange and commelation effects of the electron gas. Thus he included some correction terms inio the
dielectric function, which can be expressed as

{0 = 1+ 1= (@
where 2
Glx) = e (s)

VI + 10x2 + 1.5xF

P) 1 (i+ 1 ~-.t'2i |1 +x|) , ©)

T2 \2 7 Tdax T=xf
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and x = Zki The form of Eq. (4) is similar to incorporating the local field corrections and the vertex
F
corrections into the dielectric function. This model is phenomenological because the exact corrections

are not known. Nevertheless, Overhauser showed that his dielectric function reproduced correct corre-
tation energy in the metallic density range [4]. The plasmon spectrum is then

2 _ wpe(q)
og) = a1 (7)

The coupling function is slightly modified as
g'(q) = gla) (1 - G(x)}, (8)

where g{g) is defined in Eq. (3).

It is worth noting that these dielectric functicns are in fact valid for any test charged particle. Hence, they
can be used for describing the interaction of an ¢lectron with plasmons or a hole with plasmons.

in the mext section, we will discuss Feynman path integral method for the electron-plasmon sys-
iem. The information needed in Feynman method is the plasmonr spectra and the coupling functions
defined in Egs. (2), (3), (7). and (8}).

3 Feynman path integral theory of an electron-plasmon system In this Section, we will give a
general description of the path integral theory of the electron-plasmon system. Our theory can be
stated without referring to a specific interaction model. Firstly, we construct the Lagrangian of the
elecuron—plasmon system {2] which is of Frishlich-type;

2M wp(q)

L—é—mr-kz (2 - i) Q) - I £(g) Qe , (9)

where s is the electron mass, r is the position vector of the electron, %mr’z is the electron kinenic
encrgy, M is the plasmon mass which we do not know but it will disappear during the path integration
process, {J, are the plasmon generalized coordinates and Qq are their conjugate momenta, ¢ denote
plasmon wavevectors, V is the volume of the system. The system is assumed isotropic so that the
dispersion of the plasmons is directionally independent. This Lagrangian represents a coupled system
of the electron and the plasmons. The first term in the Lagrangian describes the kinetic energy of the
electron. The second term is the harmonic representation of the plasmon modes. The third term is the
interaction between the electron and the plasmons. The strength of the interaction is enclosed in g(g).
We can choose g{g) and its corresponding wp(g) from the previous section. We will see later that both
maodels give similar results.
Following Feynman’s method, Sa-yakanit et al. [2) showed that the comresponding action is

!

(s L [ g o €23120(0) (1/2 = 17 = 0) g1y
5= 20Jd PO+ idqqg(q}ﬂdrdo S,n[wp(q)f/;z] ! (10)

The system is assumed spherical symmetry. Thus we have replaced [dg by J'4Jr2q2dq Choices of the
integration limits are depended on a physicat system we choose lo study, A trivial choice is j°° dg and
the action in Eq. (10} can be uvsed for describing the Coulomb-hole seli-energy [4]. In order to study
the plasmaron, a hole dressed by plasmons in a Fermi gas, a constraint on a hoie in a state k and
plasmons in states g must be imposed, ie. |k +g| < kg (3, 4). This is because a hole cannot be
excited to a state above the Fermi surface. For simplicity, we will use the trivial choice for general
discussions from now on.

From the path integral's point of view, Eq. (10) shows that the system of the electron interacting
with the plasmons can be reduced to & system of a particle ir a potential freld. This potential field is
described by the second term in Eq. (10), which is non-local in time. The classical picture is that the



