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disturbance created by the particle still has impact on the particle’s motion at tater time. This panticle
is no longer the original electron but rather a dressed particle.
The corresponding propagator of the action in Eq. (10) is

rin
G(r(r),r{(0);0) = ({) Dir(z)]e”, (11)

{do not confuse the propagator G(r,r:f) with the dummy function G(x) in Eq. (3)). However, the
action in Eq. (10} is exceedingly complicated and very difficult to be solved. Thus we resort to an
approximate action which has similar property but is easier to handie. In a previous work (2], a
polaron-like action was chosen, which is

0= 5 [er(o) ~—£8—§?-J.B|-drdoc°s (@e/2 1t =) oy (12)

sin (Q1/2)
o
This action is a harmonic trial action which composes of two variational parameters, ie. ¥ and £. x
can be interpreted as an effective coupling strength between the particle and an extemnal harmonic
force with an effective harmonic frequency of £2. These parameters are linked 10 Feynman parameters

Candwbyx = % and £2 = w. The action in Eq. {12) is supposed to be a good approximation to the

action in Eq. (10} when |r{1r) — r(0)| is not very large or there is only a short limited time available to
ihe interaction among the particles, as discussed by Feynman (5, 6]
The approximate propagator to the first cumulant is

Gr(1),r(0): 1) 2= Go(r(r), r(Q); e, {13)
where
(r{1),r(0); 1} = I D[r(z))e™, (14)
r()

and {...};, denoles an average with respect to So Now if we transform ¢ — —T and let T — oo, the
ground stale energy Eo and the effective mass m™ can be extracted from

2nT

In the quantum’s pomt of view, the physical interpretation of this propagator is as follows: firstly, the
electron and the plasmons are initially in their ground states, then they are virtually excited and inter-
act with each other, and eventually, after some time T later, they go back 1o their ground states.
Consequently, Ihe dressed particle is in its ground state and has zero momentum.

The explicit form of the ground state energy in Rydberg unit is written as’

m* 342
G(0,0; T — o0} = @3(0gp(0)e ™57 = (—) e~BT, (15)

Eo=%1*(l—p)z—Z%qungz(q)e‘ﬁdeeprﬁe"—zwf), (16)
0 ¢

. The variational parameters x and

2 5 U=) o007

where 2 = % 4k p=2
v

£2 are now absorbed into another set of adjustable parameters # and p. We concern now with the

! The mathematical detail in derivation of this result is quite lengthy. We suggest the reader to consult Ref. j21. Even though
lhe process of derivation was correct, the final expression of £y was not. The correciion has done in this paper. There are
some notes on the notations in Ref. [2), ie. £ was scaled by Ep, so as the adjustabie parameters, the frequency spectrum
and the magnitude of the wave vector, and they had been renamed accordingly. Nevertheless, after adopting the same unil,
the corrected results must be the same as curs.
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physical meanjngs of Ep. It is of course the energy where the dressed particle has zero momentum but
its position is not fixed. According to the classical picture, the particle is slowly moving stochastically
in response 1o the changes of the potential field created by the particle itself and then goes back to its
initial position after 7. For T — oo, the particie momentum is zero on the average. Hence, Ey can be
compared with the energy of quasiclectrons in a compatible physical system at X =0 or al I poin¢
where the quasielectrons have slowest dynamics and highest symmetry.

l 1
Next, if we expand the propagator Eq. (15) in a series of? where 7™ 0, we get the effective mass
which is
o0

o
z
= lzexp p-14:2 quq‘gz(q} e? J drx?exp (Be™* — ux) | (17)
2

23,

P K2

0
In the next section, we will solve for ¥ and p which yield the minimum Eg. Then we get the corre-
sponding m”*/m. We are interested in how Ey and m™/m behave as a function of r,.

4 Calculation results and discussions The main purpose of this Section is to evaluate the ground
state energy and the effective mass. We enter the plasmon spectra and the dielectric function from
both Lundqvist's and Overhauser’s models into the calculation of the ground state energy in Eq. (16)
and the effective mass in Eq. (17). It is worth mentioning here that the integrals in these equations
cannot be evaluated analytically. Thus we resort to a standard numerical integration and a numerical
mintmization [8]. The numerical minimization is adapted from the simulated annealing method which
has a potential to find the global minimum in multidimensional problems. Some selected results are
shown in Tables 1 and 2.

According to Table 1, we can see firstly, that ¥ is large at small r, and becomes finite but irrelevant
at very small r;. It tends 10 zero very quickly as r increases. Secondly, pa 1 at small r, and it is
getting gradvally smaller as ry increases. Thirdly, Eg is very large at small rg and very small at large
re. Lastly, m*fm 2 1 at small r, and it is sharply increasing at very large r,.

According to Table 2, we can see that By from the two dielectric models behaves similarly,
although Ey from Overhauser’s dielectric model is a little higher. This is because the lecal field and
the venex corrections slightly alter the dynamics of the electron gas and also affect the coupling
strength of the electron—plasmon interaction.

Table I v, p, By and m™ fm are shown as a function of 7,. The plasmon spectrum and the correspend-
ing coupling function are taken from Lundqvist's dieieciric maodel.

e v 2 Ep (Ry) m”
0.00001 finite 1 —489.77 !
0.0001 finite ] —-152.57 [
0.001 finite I ~46.49 |
0.0} finite 1 ~13.49 1

0.1 236.46 0.999 -3.56 1.002
3 7.03 0.989 —8.21 x 10! 1.024
2 2.46 0.579 ~5.14 x 10! 1.046
5 6.09 x 10! 0.952 272 x 197! 1.108
10 2.22 % 107! 0.916 -1.67 x 107! 1.203
100 0.59 x 102 0.600 323 x 1072 2.897
1000 7.24 x 1074 0245 ~6.37 x 1072 18.592
10000 6.06 x 1073 0.101 ~1.22 x 1073 119.877

100000 4.96 x 1079 0.044 —2326 x 1074 722316
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Table 2 Ey shown from the different diclectric models. For comparison, the Coulomb-hole seif-en-
ergy from Eq. (48) in Ref. [4]) and the ground state energy of the plasmaron from Eq. (26) in Ref. {3}
are aiso given.

s Lundgvist Overhauser Coulomb-hole (k = 0) [4] Plasmaron (k = 0) [3}
6.1 =3.56 ~3.55 -3.55 5.20
1 —821x 107t —796x 107" —7.95x 10" 109
2 =514x 107" —493%x 107! —-487x 10! 5.94 x 107!
5 =272x107t —248x 1077 —2.47 x 107! 2.47 x 107!
10 —1.67x 107 —146x 16~ —-145x%x 107! 1.23 x 107!
100 -323x 107 -220x 1072 —222x 1072 1.19 x 10672

As mentioned earlier, the Lagrangian and hence the Hamiltonain of the physical systern we have
discussed here can be related to the Coulomb-hole self-encrgy. Therefore, the results of the Coutomb-
hole self-energy at k = 0 from Overbauser’s work [4) using his own dielectric model are shown in
Tabte 2, Even though, Overhauser’s theory and ours originate from different approaches and have very
different mathematical structures, it can be readily seen that with the same dielectric model, Ep from
our theory is in a very pood agreement with QOverhauser's Coulomb-hole seif-energy at k = 0. The
ground state of the plasmaron at k = 0 [3) are also given in the table for comparison. A more careful
observation confirms that £g in this work is not the ground state energy of the plasmaron.

Since both dielectric models have been shown 1o give the similar results. Thus we have chosen
Lundgvist’s model for further investigation because it is simpler and easier to handle. By adopting
Lundqvist's dielectric function, Ep can be written explicitly as

20T

3 e
=yl = p* —-—EJd
Ey 4vt P) ) qu(q)

Jd.xexp(ﬁe"—,ux). (18)
v

av

In the next (wo subsections, we will study this Ep in some asymptotic limits, such as in a very high
electron density, i.e. r; is vanishingly smail, and in a very Jow density, i.e. r; is very large. In these
limits, we find that Eq. (18) can be evaluated anafytically.

4.1 High density limnit in this limit, r; — 0, we find from the numerical resulis that » is large and
finite and p = 1 so that the first term in Eq. (18) vanishes, § = { and

"

J drexp (Be™ — ux) =
0

1
P (19)

Moreover, w, and kg become very large so that ¢* has less significant contribution to wplq) and

py = wy(q) ~ yfwl +5kiq. (20)

Consequently,

E ng]gd 1 2w‘2’Td ! (21)
0~ v Yol ] qwg+§k§q2' B
It ts straightforward to perform the definite integral and writing Ey as a function of . Then we get
1.56
Epm—— (22)
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Table 3 Ep shown in the high density limit, Eq. (22) and in the low density limit, Eq. (26), compared
with the numerical results of Eq. (18). The relative error is alse given.

T numerical high density limit low density limit error (% )
0.00001 —489.77 —493.32 - 0.72
0.0001 —152.57 —156.00 - 2.25
0.001 —46.49 —49.33 - 6.11
1000 —637x 1073 — —742 %1073 16.53
10000 —-122x 107 - -1.32 % 10~} £.20
100000 226 x 107¢  — —2.35 % 1074 3.86

which yields less than 1% error compared with the numerical value at r, = 1075, see Table 3. We
expect that the error would reduce as ry is getting closer to 0. Most of all, we see that Fp is not a

. i
constant as r, — O but rather diverges as ?
rs

4.2 Low density limit In this limit, , o, v =0 and p -+ O so that f=—, y = and the
first term in Eq. (18) can be neglected. In a closer examination, we find that 4 v

exp (fe™* ~ jux) < exp (B — px) (23)
for alt x. Thus

o 00
Eo < wa,fd 2y Jd (24)
oS = =
s o au ) wX(g)

We also notice that the term which contains ¢ has a smaller coniribution 10 w,(g) than the ¢* term.
Thus, we have

Fom -2 [ 4 25
g =~ T J d— 3 2 + q4 ( )
0
which can be readily integrated out and written in term of rg as
1.312
Egp = — a0 (26)
s

which yields tess than 4% error compared with the numerical vatue at ry = 10°, see Table 3.

We have some comments on the behavior of m*/m in the present work as it would reflect a phase
transition of the dressed particle from one physical regime to another between very different scales of
r;. We can see from table 1 that in the high density limit (small r) the dressed particle is mobile, i.e.
m*/m is close to unity, whereas in the low density limit (large rs) it becomes self-trapped, i.e. m*/m
is exceedingly large. In addition, we have shown that £y behaves differently between these two ex-
treme limits. One possible realization of our findings is the fact that in & degenerate electron gas, the
total energy can be decomposed into the kinetie, the screened exchange and the Coulomb-hole parts.
Furthermore, at very high density, the dynamics of electrons are dominated by the kinetic energy
while at very low density, the electrons are localized. This is just coinciding with the behavior of
m™{m in ourresults. We believe that these findings might be an indication of Wigner crystallization.

In this work, we have shown that Feynman path infegral can be applied to a system of an electron
or a hele interacting with plasmons in a Fermi gas. By choosing an appropriate dielectric model, the
ground state energy and the effective mass can be calculated. Some physical systems can be studied
by choosing an appropriate integral limits for the plasmon modes. In this paper, we choose to study
the Coulomb-hole self-energy. Our results are in good agreement with the Coulomb-hole self energy
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at k = 0 from QOverhauser's work f4). The theory predicts a phase transition, i.e. the dressed particle is
mobile in the high density limit but i exhibits a seif-trapping behavior in the low density limit. This
shouid be an indication, or at least 2 precursor, of Wigner cryseallization. The extension of ouar theory
to the plasmaron should be straightforward. The plasmaron theory is important because it supports
some experimental findings in metals [9] and in magneto-optical properties of semiconductors {10].
QOur theory is proposed in general and can be readily extend to lower dimensionality [11]. Some
studies show that the electron—plasmon interaction is more significant in 2D systems [12}, such as in ¢
2 quantum well [13], than in 3D system. Furthermore, it has been suggested that the electron-pias-
mon interaction might assist Cooper pairing in superconductors [14]. We believe that our theory
would suggest a general tool for study those frontier physics involving the electron—plasmon or the
hole-plasmon interaction.

Acknowiedgments The authors wouid like to express their gratitude to Thaitand Research Fund (TRF} for the
full financial suppornt of this work.

References

{{] G. D. Mahan, Many-particle physics, 3rd edition (Kluwer Academic Publ,, Mew York, 20001
[2]1 V. Sa-yakanit, M. Nithisoontom, and W, Sritrakool, Phys. Scr. 32, 334 {1985).
[3] B. I Lundqvist, Phys. Kondens. Mater. 6, 193 (1967).
{4] A. W. Overhauser, Phys. Rev. B 3, 1888 (1971).
[5] R. B. Feynman, Phys. Rev. B 97, 660 {1955).
[6) R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals (McGraw-Hill Tnc., Singapore,
1993).
(7] V. Sa-yakanit, Phys. Rev. B 19, 2266 (1979);
V. Sa-yakanit, Phys. Rev, B 22, 6222 (1980).
[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge Univer-
sity Press, Cambridge, 1986).
[9) W. Schiilke, G. Stutz, F, Wohtert, and A, Kaprotat, Phys. Rev. B 54, 1438) (1996).
{10l B. D. McCombe, R. J. Wagner, S, Teitler, and J. J. Quinn, Phys. Rev. Lett. 28, 37 (1972).
[11] V. Sa-yakanit, unpublished.
(i2) C. Guillemot and F. Clérot, Phys. Rev. B 47, 7227 (1993).
[13] P. Von Allmen, Phys. Rev. B 46, 13351 (1992).
[14] V. Z. Kresin, Phys. Rev. B 35, 8716 {1987);
. Ruvalds, Phys. Rev. B 35, 8369 (1987}



ARBLUFIHIUITIRITITIANTIZALWIUNT G



August 25, 2003 22:26 WSPC/INSTRUCTION FILE  pl03

International Journal of Modern Physics B
© World Scientific Publishing Company

Effect of charge-plasmon interaction to the effective mass of a charge
particle in solids

Udomsilp Pinseok and Virulh Sa-yakanit

Forum for Theoretical Science, Department of Physics, Faculty of Science,
Chulalongkorn University Bangkok, 18330, Thailand
may@astro.phys.sc.chula.ac.th

Thiti Bovornratanaraks

Department of Physics, Faculty of Science, Chulalongkorn University
Bangkok, 10330, Thailland

We use Feynman variational path integral methed to study the effective mass of a charge
particle in solids in which plasmons are an elementary excitation. This approach has an
edvantage as the ground state energy and the effective mass can be expressed analytically.
We examine a particular case, i.e. the motion of & slow positron in metals. We find that
the effective mass increases with r,. The resulis are compared with those of a similar
approach and of experiments. Nevertheless, the effect of the charge-plasmon interaction
cannot fully account for the large positron effective mass in metals. The discrepancies
are discussed.

Keywords: Feynman variational path integration, charge-plasmon interaction, effective
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1. Introduction

Plasmons are an elementary excitation in an elactron gas. A charge particle interact-
ing with plasmons is & many-body problem!. It has a number of applications. The
exchange-correlation epergy of the electron gas can be approximated by regarding a
single electron as the charge particle moving in the vicinity of the plasmons. It gives
fair results in metals®3, semiconductors and low-dimension objects®>, The next ex-
ample would be charge particles, such as ions or muons, in solids which have been
investigated both theoretically® ™ and experimentally®. These studies suggested that
those charge particles excite some plasmons, called wake field, which in return affect
the motion of the charge particles at Jater time. A slow positron in solids, i.e. metals
or semiconductars, is an important example. This is because the interaction between
a positron and a solid can be decomposed into, for example, positron-plasmon®0
and positron-phonon!! interactions. It was pointed out that the positron-plasmon
interaction is dominant in semiconductors*?, Positrons are quite technologically im-
portant. A number of theoretical works have been devoted for the calculations of

i
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the positron’s ground state energy'®, band structures!?1413 effective mass®10:16.17,
diffusion coefficient and mobility!® in condensed matter. These calculations are very
useful for the interpretation of positron annihilation measurements. These measure-
ments are of great interests as they can reveal density and types of defects in some
solids?%2C, and they are normally non-destructive and hence favorable.

Because of the many-body nature of the problem, a charge particle interacting
with plasmons cannot be solved accurately by an ordinary quantum theory. In this
work, we propose that a charge particle interacting with plasmons can be modeled
by Frohlich-type Lagrangian. This Lagrangian was employed to study the system
of an electron interacting with plasmons®!:22, It has been shown that this kind of
Lagrangian can be solved analytically by using Feynrnan variational path integral.
Also, a similar approach has been used for examining the polaron problem. Tt gives
the best analytical results in the polaron case!. From the path integral method,
we oblain the corresponding propagater and, then the ground state energy and the
effective mass. To verify our theory, we compare our results with a special case-the
effective mass of a slow positron in metals. The effective mass is important as it can
be related to the mobility and the diffusion coefficient of the positron'®. In addition,
the results from theoretical approaches®1918:17 and experimental determination??:2¢
are not in a good agreement. Sorne possible discrepancies will be discussed.

This paper is organized as follows. The interaction model is discussed in section
2. The effective mass from variational path integral method is in section 3. Results
and discussions are in section 4. Conclusions are laid in section 5.

2. Interaction Model

The interaction between a charge particle and plasmon field can be modeled by a
Frohlich-type Lagrangian®?! as

1 . 1 : {2mew igr
L= Emc‘rg + Z §m¢ (Qg - ngi) - Z v quQqe 4 H (1)
q q

where m, is the charge mass, r is the position vector of the charge particle, m, is the
bare electron mass as electrons are the bases of the plasmons, Q,, are the plasmon
generalized coordinates and Qq are their conjugate momenta, q denote the plasmon
wavevectors, w, is the plasmon spectrum, V is the volume of the system. The
system is assumed isotropic sc that the dispersion of the plasmons is directionally
independent. The first term in Eq. (1) describes the kinetic energy of the charge
particle, The second term is the harmonic representation of the plasmon modes.
The third term is the interaction between the charge particie and the plasmons.
The strength of the interaction is enclosed in a coupling function g,. The remaining
task is to select a suitable w, and g,.

In the present work, we intend to use a simplified picture for the many-body
interaction. Thus, the plasmon spectrum w, and the coupling function g, are taken
from the so-called plasmon-pole approximation. In this approximation, the electron-
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hole excitations are absorbed into the effective plasmon excitations. The f sum rules
are imposed as a particle conservation rule, There are several plasmon-pole models
for metals®3, semiconductors®?® and liquids®®. For the purpose of illustration, we
choose a simple model introduced by Lundqvist?. He proposed that an electron gas
can be described by a simplified dielectric function,

w? —w?

£(gw) = 5—"——. (2)
w? —wl -~ w?
This dielectric function is not a full extension of the celebrated random phase ap-
proximation {RPA) but rather an approxdmation, and it was chosen to satisfy the
f sum rules?. The plasmon spectrum is
4

skbe’ +" (3)

2_ 2
wq—-wp—l—

The coupling function can be written as

2 _ 87 (as(q,w))“ _4ra? W

%9 = F"- Ow gPwq

h-1

[

This model is simple and yet allow us to find some useful analytic solutions. It also
gives reasonable ground state energy and correlation energy of the electron gas in
the metallic densities?®.

Throughout this work, we adopt the Bohr radius as the unit of length and
Rydbergs (Ry) as the unit of energy. In these units, the long wavelength plasmon

frequency wy = 3—:‘32—1 and the magnitude of Fermi wave vector kp = %192, where

r¢ is 2 parameter defined from the electron gas density n = {§nr2)~!. The charge
particle states will be labeled by k and the plasmon states will be tabeled by q.

It is worthy of note that the Lagrangian for a positive or negative charge particle
is the same as in Eg. {1}. Only appropriate dielectric response must be selected
accordingly. To a crude approximation, the dielectric response for an electron in
the electron gas should be the same as that for a positron in the electron gas.
Some refinement to the interaction model has been suggested, i.e. for a positron
in an electron gas, the coupling function must be multiplied by some enhancement
factor and the plasmon dispersion relation must be modified accordingly®2?"-28, This
refinernent will be taken into account in our subsequent works.

3. Effective Mass from Variational Path Integral Method

The main objective of this work is to calculate the effective mass of a charge parti-
cle interacting with plasmons. In this section, we give a brief description of Feyn-
man variational path integration. The mathematical details have been presented
elsewhere?!:23:30,31,32.33,34 W discuss here only the physical aspects of the method
and how it can be compared with experiments and other approaches.
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By using path integration technique®®®°, Sa-yakanit et.al?! showed that the
corresponding action of Eq. {1), after integrating out the plasmon coordinates, can
be written as

_ 1 t .2 cos[wq(t/2 u)] tq-(r(r)—r(a])
S = Emc£ dri*(r) + 162 qugq/ f sm[wqt/Z] ,(5)

where u = |7 —o|. This action describes a system of a particle moving in a aon-local
potential field. This potential field reflects the disturbance caused by the presence
of the particle and affecting the particle’s motion at later time.

However, the action in Eq. (5) is too complicated to be solved. By using vari-
ational principle, we have freedom to choose a simpler action and use variational
technique to obtain some useful information. In a previous work®!, a polaron-like
action was chosen, which is

/ drit(r) - / f drd °°S[Q[gfx2]] Ir(r) ~e(a)’.  (8)

This action is quadratic and composes of two variational para.meters ie x and
which.are related to Feynman parameters C and w by & = ££ and 0 = w. The first
term in Eq. (8} is the kinetic energy of the particle, The second term is a non-local
harmonic potential in which & is an effective coupling strength between the particle
and an external harmonic force with an effective harmonic frequency of 2. This
trial action is a good approximation te the action in Eq. (5) when |r(s) — r{¢)|
is fairly small or there is only a short interaction time available, as discussed by
Feynman?®3°, From this action, Feynman stated that it leads to the construction
of a approximate propagator?®3?, Furthermore, the propagator already contains all
the information of the system, such as the ground state energy and the effective
mass. Thus knowing the propagator is equivalent to solving the problem. The full
treatment of the polaron and polaron-like problems using variational path integrals
has been given several times in the literature?!29-30.31.32.33.34 W summarize only
some essential expressions in appendix A.

From the approximate propagator in Eqs. (A.12) and (A.14), the ground state
energy is written as?!-??

3 1 s [T -
Bo= vl = o ~ 5 [ daale™ [ deexp(pe - o), ™
4 2wy 0
wherev2=Qz+mic,p=%,ﬁ=—-%‘:—fland#-* +-§;{~’; The variational

parameters k and ) are now absorbed into another set of adjustable parameters ¥
and p. The system is assumed spherical symmetry. Thus we can replace [ dq by
[ 4n24%dg. According to the propagator G{0,0;T), Ey can be interpreted as the
energy of the particle which is moving stochastically in response to the changes in
the potential field created by the motion of the particle itself and then goes back
to jts initial position after a duration T. For T — oo, the particle has an average
zero momentum, Hence, Ey can be compared with the energy of a particle in a
compatible physical system at k = 0 or at T’ point where the particle has slowest
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dynamics and its wavefunction has highest symmetry. It is readily to see that this
method is quite suitable for the problem of a thermalized positron in solids because
the positron is slowing moving and it occupies the I state!?28,

The Limits of [ dg in Eq. (7) are worth discussing. Overhauser® show that if the
charge particle is an electron and we perform fok*' dq, Eq is a major contribution to
the correlation energy of the electron gas at & = 0. If we perform fow dq, Ey is the
Coulomb-hole self-energy of the electron gas at k& = 0*%2, For a positron, we have
no prior reasons to exclude short wavelength plasmons. Thus we simply perform
_j'0°° dq. Then Ep should be the lowest possible ground state energy for the positron-
plasmon interaction in our model. The reason is as follows. Firstly, it is readily seen
that the first term, the second term and its integrand in Eq. {7) are always positive.
Owing to the minus sign in front of the second term, for a given set of variational
parameters, the lowest Eg is where the second term is largest. Performing J-an dg
with appropriate variational parameters will give the largest possible value of the
second term and bhence the lowest possible Ey.

Next, the effective mass can also be exiracted frem Eqgs. (A.12) and (A.14).
Sa-yakanit® showed that if we expand the propagator Eq. (A.14) in a series of %
where £ — 0, we get the low energy limit effective mass which is®?

m, 1 |9 p* a2 [, 2 -x
et ;z’e"p [p -1+ 2 /dqq gge A dzz®exp(Be™ —uz}| . (8)

The expressions (7) and (8) differ from those of a previous work??. This is because
we do not assume here that m. = m,. Therefore, we can implicitly take the effects
of a periodic potential or a phonon interactior inte the account. This is the major
improvement in our theory.

4. Results and Discussions

In this section, we show that the interaction modet and Feynman variational path
integration can be applied for the calculation of the effective mass of a slow positron
in metals. The metallic densities of the electron gas are a density in which r, is
between 2.0-6.0. According to the variational principle, in order t¢ obtain the ground
state properties of a slow positron in metals, we insert w, from Eq. (3) and g, from
Eq. (4) into Eq. (7}, and solve for v and p which yield the lowest Ey. Then we insert
these v and p into Eq. (8) to get the corresponding m/m.. The expressions (7)
and (8) cannot be evaluated analytically, Thus, we resort to a standard numerical
integration and a simulated annealing minimization3®.

Apart from wq and g,, another input parameter in this theory is the ratio mg/me..
It has been shown that m./m, differs from unity because it depends on band
structures!?14:!5 or phonon effects!!, For illustration, we explore three different
values of m./m., i.e. 0.8, 1.0 and 1.2. The results are shown in Table 1-3. It can be
readily seen that the ground state energy decreases as r, increases and it increases
a little as m./m, increases. The effective mass, m}/m, increases as r, increases
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Table 1. Shows v, p, Eg, m{/m. and m; /m. as a function
of rs. The plesmon spectrum and the coupling function are
taken from Lundgvist’s model. We set m.fm,. = 0.8.

T4 v o Ey(Ry) mi/mc mifme
] 7.05 0.088  -0.791 1.020 0.816
2 2.55 0978  -0.494 1.039 0.831
3 1.37 0968  -0.373 1.057 0.846
4 890 x107Y 08959  -0.305 1.074 0.859
5 633 x107* 0950  -0.261 1.081 0.873
6§ 615x10671 003t -0.232 1110 0.888

2.27 x10°' 0911 -0.160 1.173 0.938

-
L=

and as m./m, increases. Moreover, at fixed r;, v and p are different for a different
m./m,. Evidently, this shows the internal effects of m./m,. to the ground staie
properties.

Table 2. Same as table 1 but with m./m,. = 1.0.

Ta v I Es (Ry) mlfme mlfim,
1 7.03 0880  -0.821 1.024 1.024
2 2.46 0879  -0.514 1.046 1.046
3 1.31 0.965  -0.388 1.067 1.087
4 865 x10"! 086t -0.318 1.088 1.088
5 609 x10-' 0952  -0.272 1.108 1.108
6 4.74 x10~' 0945  -0.239 1.127 1.327

292 %107 0916  -0.167 1.203 1.203

—
=1

A similar approach to our theory was introduced by Hamannl?. By using the
many-body techniques and Feynman diagrams, he evaluated m}/m. of a positron
in metals. Some selected values of m{/m. from Hamann's work are shown in Table
4. We find that those m}/m,. in his calculations are 3-8% higher than ours. This is
because he used a slightly different dielectric function. However, the trend is quite
the same.

Table 3. Same as tabie 1 but with m¢/m, = 1.2

To v p Eo(Ry) mifme mi/m.
1 7.13 0.990  -0.843 1.027 1.232
2 2.38 0.980  -0.528 1.052 1.262
3 1.29 0.971 -0.400 1.076 1.20%
4 843 %101 0963 -0.328 1.099 1.319
5 602 10! 0955  -0.280 1.122 1.346
8 4.64 x10~' 0.948  -0.247 1.144 1.373

2,16 x10~1  0.920  -0.172 1.229 1.475

—_
=
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There were a number of experiments which aimed to determine m./m, of a
thermalized positron in metals?®2¢, Some selected velues of m /m. from the exper-
iments are also shown in Table 4. We find that those m;/m, from the experiments
are quite large, i.e. almost twice larger than those from our calculations. It should
be pointed out that m? /m. from the experiments should include all the interactions
in metals, The large m? /m, could result from other effects, such as positron-phonon
or positron-defect interaction. An experiment showed that the positron-polaron also
has a large effective mass®. Other experiments sugpested that positrons are eas-
ily trapped in the vicinity of defects'®?°. A path integral theory showed that in-
teracting with defects can modify the effective mass®!32, Moreover, the effective
mass determination experiments were carried out over a range of high tempera-
ture. They cannot be done at very low temperature because a positron annihilates
with an electron before thermalization. At the present, our theory does not include
temperature effects. However, the extension of our thecry to include the temper-
ature effects should be straightforward. This was done in the case of polaron by
modifying the approximate propagator to account for the effects of some thermaily
excited states®”-38, It was suggested that the plasmon spectrum can be modified to
include the effect of temperature as well®®. All these thermal modifications will be
considered in our future works.

Table 4. Some selected values of m} /m, from Hamann's work and from the ex-
periments compared with our results where m./me = 1.0.

v, mifme (Qurs)  ml/me (Hamann!'’) r,  m?/m. (Experiments®3t)

2 1.05 1.08 3.25 1.8
3 1.07 1.i2 3.93 1.8
4 1.09 1.15 4.88 21
5 111 1.19 5.20 2.3
8 1.13 1.22 5.63 2.5

5. Conclusions

We propose a general theory for studying a charge particle moving in the vicinity
of plasmons using Frohlich Lagrangian and Feynman variational path integration.
The motion of a slow positron in metals is extensively investigated. We find that
the effective mass increases with r, and it is in an agreement with the results
from Hamann’s work. However, the experiments showed a large effective mass. The
discrepancies should be that in our work the effects of phonon and defects are
not fully accounted for and the temperature effects are absent. We believe that
our theory could be applied for other physical systems, such as electron-plasmon
interaction, wake interaction and so on.
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Appendix A. Feynman Variational Path Integral Method for the
Charge-plasmon System

In this appendix, we outline some crucial results from Feynman variational path
integral method. The main aim is to find the propagator G{rz,r1,¢) from which
some useful information, i.e. By and m}/m,, can be extracted.

From the action in Eq. (5), the corresponding propagator is

G(rz,r1;t) = /“ Dr(2)}e*®. (A1)

This propagator is complicated and we cannot find its solutions directly. Thus we
impose the variational principle and choose a polaron-like action as in Eq. (8). Its
corresponding propagator is

Go(ra,11;8) = /n Dr(e)) e (A2)

The chosen trial action is in a quadratic form so that it can be solved analytically.
From the cumulant expansion, we find that the true propagator can be approximated
in term of the trial action as

G(rz,r1;t) = Go(re, r1;t)e’ S 50dso, (A.3)

where {...}s, denotes an average with respect to Sq. Eq. (A.3) can be solved in term

of r1, rp and the variational parameters. Here we simply quote the solutions which
21,31,32,33.34

. 3/2 vsin[ﬂt??} 8
Gg(rg,rl,t) - (ﬁ;ft_ (Qsin vif2 )

are

{A.4)
xexp{ e (“ s vt o t[4] -I-pz‘ [r2 ~ 1] }
The average of S and Sp can be decomposed as
<85~ 5 >5=<5>5, — < 5>, (A.5)
and
<§>s= 55 | ngf / drdo cosiﬁf[(;:f/z}u)] e HOAAlTE, (Ag)
and
< S0 >s5,= S (5 cotl ] - 1)
(A7)

trt /2~
_K_SQ fO IO d’rda%(rg —I‘I)QBZ,
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where
_ (1-0%) {2sinfvu/2)sin[r(t — u)/2] Q2 u(t-u)
A= ™M vsin(vt/2) R Y ) (4.8)
and
4y 2y [ sinfpu/2 cos[p(t — (1 +0))/2] 0w
B=Q-¢7) { sin(v2/2] iy (A9)
The diagonal part of G(rz,ry;2) can be explicitly written as
™, 3/2 { vsin 3 —p? % v
Grmt) = (24)"7" (5amerdl) exo {20522 (4 cot[5] - 1) }
(A1)

i 2t ot cos{wy (8/2-w}|  —1ig?
x exp { v [ dag? f [y drda =il e-dietal,

Our system is isotropic and thus translational invariant. Therefore Gir,r;t) =
G(0,0;t). By using the identity

/D&j:drdaf(u)=2/0tdz(t-z)f(z), (A1)

we get

6(0,0:0) = (£2)*" ($) " exp {205 (3 coulst] - 1)}

{A.12)
X exp {E-!F‘ [ dag? fy d=(t - z)%%ﬂle-éuqzc} ‘
where
- (L-p%) 2sinfrvz/2] sinfu(t — 2)/2] 02 z(t-z)
©= me vsin[uvt/2] + w2 -2 ¢ ‘ (A13)

To avoid dealing with some oscillating behavior in the solutions, we transform ¢t —
—+T", This transformation is valid as long as spin is not explicitly taken into account,
as discussed by Feynman®®. In order to find some ground state properties, we let
T — oo, the ground state energy Ep and the effective mass m?/m,. can be extracted
from

« N\ 372
G(0,0: T — c0) = w5(0)pp{0le™ 5T = (—m—) ¢~ EoT, (A.14)
27T

This propagator describes the charge particle and the plasmons which are initially
in their ground states, then they are virtually excited and interact with each other,
and eventually, after some time T later, they go back to their ground states. This
picture is analogous to the self-energy scheme in quantum many-body theory!. The
explicit expressions for Ey and m/m, are shown in Egs. (7) and (8) respectively.
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Application of Feynman path integration to the electron-plasmeon interaction
Udomsilp Pinsook and Virulh Sa-yakanit

Department of Physics, Faculty of Science, Chulalongkom University, Bangkok 10330 THAILAND

Abstract
We use Feynrnan path integral to calculate some physical properties, i.e. the ground state energy and the
effective mass of the efectron-plasmon system. The Lagrangian and then the action which describe the mo;ion
of a particle, calied the plasmaron, are derived. We have studied two models of the dielectric media proposed
by Lundqvist and Overhauser. By using numerical integration and minimization, we evaluate the ground state
energy and the effective mass as a function of /. We found that both models give similar ground state energy.
There is a pessibility that the theory would predict a phase transition in the plasmaror systerm. The analytic

expansion of the ground ssate energy in some extreme limits are discussed, We also found that in low electron

density the ground state energy is proportional to — which is in a good agreement with Wigner’s prediction.
f
L3

L. Introduction

In this work, the interaction between an electton and plasmons is investigated. This
electron, together with the plasmons ard their interactions, is called a plasmaron. The plasmons
are the quantized harmonic oscillations having electrons as oscillators. They exist naturally in real
metals and any electron gas. The interaction is described by FrOhlich Hamiltonian and can be
solved by using Feynman path integral method'. This problem is analogous to the polaron
problem which can be solved successfully by Feynman path in:egralsz. The potaron problem is &
simplest way to show how a particle interacts with a field. However, the polaron problem
concerns only two parameters; one constant phonon frequency and onme constant coupling
parameter. In the present work, it concerns a dispersion of plasmon frequencies and leads to a
momentum-dependeace coupling function’. Thus the plasmaren is ‘much more complicated than
the polaron problem.

The interaction among electrons is extremely important because the world is made of the
Pauli exclusion principle of electrons. Without electrons, life cannot exist There were many
theoretical approaches attempt to explain the electron-electron interaction. However, all of them
are of perturbation methods in which mathematics becomes more invincible as higher-order terms
are added. Furthermore, one needs different approaches for different regimes and hence most of

the approaches lose their {ransferability. This work on the plasmaron problem is an alternative



method for studying the electron-electron interaction. We uses Feynman method which is non-
perturbative and non-local in time. The non-local term means that the motion of the electron
creates a distorted environment at a point of time. This distorted environment will decay with a
finite lifetime. As long as it exists, this environment will affect the motion of the electron at later
time. The non-perturbative term implies that this method has a potential to give a more accurate
calculation value. Feynman had shown that this method can accurately describe the properties of
the polaron for the whole range of its coupling constants’. Sa-yakanjt had also shown that the
same method was successfully applied to study a sumber of frontier physics problems such as
disordered systems, heavily doped semiconductors, anharmonic crystals and ete.’.

There are a number of further applications. Firstly, the 3D plasmaron can be applied for
the calculations of the electron correlation energy. The electron correlation energy is very difficult
to obtain an accurate value because it contains two excitation modes: plasmons and electron-hole
pairs. Overhauser’ suggested that this problem can be simplified by using modified plasmon
modes which incorporate the effect of both plasmons and ¢lectron-hole pair. He successfully
reproduceé the electron correlation energy for the metallic density. This application will be served
as a test for the present research. Secondly, the plasmaron could give g prediction of the
crystallization of electrons, the so-called Wigner crystallization, as their density becomes very
low. Thirdly, the 2D plasmaron is used for describing the superconductivity in a nuwmber of high-
T, superconductors, such as Y-Ba-Cu-O or Bi-Sr-Ca-Cu-0’. Fourthly, the quasi-1D plasmaron is
used for explaining the high-frequency behavior of organic semimetals’. Lastly, there is a
possibility that the plasmaron can give a description of the metal to insulator transition’.

This paper is organized as follows: the models of the electron-plasmon interaction are in
section II, the general Feynman path integral theory of the plasmaron is in section III and

calculation results and discussions are in section IV, -

II. The models of the electron-plasmon interaction

Firstly, we consider an electron moving in a dielectric medium such as a degenerate
electron gas or a jellium. The electron and the dielectric medium will interact with each other.
The spectrum of excitation modes will determine the streagth of the interaction. However, there
are two elementary excitations in dielectric media; plasmoﬁs and electron-hole pairs. Calculations
involving electron-hole pairs are qguite tedious’ and we shall Ty to avoid. Lundqvist” suggested

that the whole excitation spectrum can be replaced by a modified plasmon spectrum. This



modified plasmon spectrum obeys the sum rules’. Those sum rules limit the contributions of
plasmons to the dielectric function and hence serve as a convenient interpolation scheme. This
approximation is sometimes called the single-mode approximation.

The first model was introduced by Lundqvistm. He considered the electron gas in the
random phase approximation (RPA) and proposed that the dielectric medium in this case can be
described by a simpiified dielectric function, ,
w5 (k) -’

Wi(K) -0l -w*’

e(k,w) = (D

This diefectric function is not a full cover of RPA but rather an approximation, calied one pole

approximation, and it was chosen to satisfy the sum rules’®. The plasmon spectrum is

4

2 2 242

w2 (k) =} +§ka + kY )

The coupling function can be written as

8 1 4w
g (k) =F(ae(k w)/aw] = o (k) ©)

4 0=w, 2

Note that in order to compare our results with some existing data, we need to follow a natural unit

hz

widely used in the physics of atomic scale, ie. =1, e’ =2 ) H =1. By using 7, unit, the
3.4641 : .

long wavelength plasmon frequency @, = 3 and the magnitde of Fermi wave vector

rS
1.9192
K= :
o

s

The second model was suggested by Overhauser’. He noticed that RPA is not account for
the exchange and correlation effects of the electron gas. Thus he included some correction terms

into the dielectric function, which can be expressed as

P(x)

E(k)=1+1—G(X)P(x)’ 4)
where
o K
2k,
2
G =—X
J1+10x2+1.5x%
Z(x)
Plx) =221
(x) el

2
E(x)=l+[1;;, Mij;l‘



The form of eq. (4) is similar to incorporating the local field corrections and the vertex
corrections into the dielectric function’. This model is phenomenalogical because the exact
corections are not known. Nevertheless, Overhauser showed that his dielectric function

reproduced correct correlation energy in the metallic density ra.nges. The plasmon spectrum is

then
) ,
2 k w 8(
()(@1 ©)
The coupling function is slightly modified as
gk = gl -6(x)], ©)

where g(K) is defined in eq. (3).
In the next section, we will discuss Feynman path iniegral method for the electron-
plasmon system. The information needed in Feynman method is the plasmon spectra and the

coupling functions defined in eq. (2), (3}, (5) and (6).

I1I. Feynmaa path integral theory of the plasmaron
In this section, we will give a general description of the path integral theory of the
eiectron-plasmon system. The general theory can be stated without referring to a specific
interaction model. Firstly, we construct the Lagrangian of the electron-plasmon sys'cemI which is
of FrOhtich-type;
PZ
L=——Z—m wM%)E

2m i

I’ -
M (k)qie‘fk", ¢

where /77 is the electron mass and 2/77 =1 in the atomic unit, 7 is the electron momentum,
g are the plasmons’ generalized coordinates and (.7; are their conjugate momentum, K denote
plasmons’ wave vector, V' is the volume of the system. This Lagrangian represents a coupled
system of an electron and plasmons. The plasmons are created by the presence of the electron and
in retumn affect the motion of the electron. The first term in the Lagrangian describes the kinetic
energy of the electron. The second term is the harmonic representation of the acoustic plasmon
modes. The third term is the interaction between the electron and the plasmons. The strength of
the interaction is enclosed in g(k). We can choose g(K) and its corresponding @, (k) from

the previous section. We will see later that both models give very similar results.



Follow Feynman’s method, Sa-yakanit et.al’ showed that the carresponding action is

t
) . e cos| w (k)(——lr—cr\)}
.2 1 22 [ 72
§ =S [Pde s [ aki g (k)] [ deds —— -
0 0 00 sm[mp(k) ﬂ

The system is assumed to have spherical symmetry. Thus we can replace _[OK: by I4H2k 2dk .

(P (T)-F(a)) C(8)

L=

This action is analogous to a system of a particle in a potential field, the second term of eq.'(S),
which is non-local in time. The classical picture is that the disturbance created by the particle still
has impact on its motion at later time. This particle is the so-called plasmaron. The plasmaron

propagator is
z 1
G(F,7;t) = [ DIF(t)e" . ©

However, the action in eq. (8) is exceedingly complicated and very difficult 1o be solved. One
solution is to find an approximate action which has similar property but is easy to handle. In the
previous work], a polaron-like action was chosen, which is

2 COS Q(% )

¢
sinQ —
2

This action composes of two variational parameters, f.e. K and 2. These parameters are linked

mb . KQ 4k _ _
S, = > l fzd,,_HS_ z[ £ tedo|F (1) - F(o) (10)

4
to Feynman parameters C and W by K = 7 and Q =W . The approximate plasmaron

propagator to the first cumulant is

"So)so

i
o _ Is
G(F,F;t)=Gy(F,T;t)e* , (i)
where
o g
Go(F, 73 t) = [ DIF ()™
;‘-"
There are a number of physical properties containing in this propagator such as the ground state
energy, the effective mass and the density of states. As discussed by Feynmanz, if we transform

t — —iT and let T — oo, the ground state energy and the effective mass /77 * can be extracted

from

3/2
m_*] ey
nT

7

G(0,0;T — =) =, (0)ep, (0)e ™" =( (12)

The explicit form of the ground state energy is written as



1
2y

E, = %vu - p)? - 5= [ dkk* g (k)e” [ dxete ", (13)
0 0

where
V2=Q% +«x,
Q
p=—,
4

k21_ 2 1
B = ( p),

v

4

According to the atomic unit, this ground state energy is expressed in Rydberg and we are
interested in how it behaves as a function of density parameter /. Note that it is the energy
where the plasmaron has zero momentum, i.e. it is slowly moving stochastically in the potential

field in response to the changes and yet its momentum is zero on the average. If we expand the

, 1 .
propagator eq. (12) in a series of B= thcre B — 0, we get the effective mass' which is
' 1 ' 22 B ( x_
m* = —exp pz—1+%fdkk“gz(k)e Plaocie® | (4
P 3nv 9
The variation parameters K and £ are now absorbed into another set of adjustable parameters 1

and 0. In the next section, we will solve for ¥ and 0 which yield the minimum £,.

IV. Calculation results and discussions

The main purpose of this section is to evaluate the ground state energy and the effective
mass. We enter the plasmon spectra and the dielectric function from both Lundqvist’s and
Overhauser’s models into the calculation of the ground state energy in eq. (13) and the effective
mass in eq. (14). It is worth mentioning here that these integrals cannot be evaluated aralytically.
Thus we resort to a standard rumerical integration and a numerical minimization . The accuracy
of the numerical integration is eight decimal points. All the results are compared with those
obtained from Mathematica package”. The numerical minimization is adapted from the simulated
annealing method which has a potential to find the global minimum in multidimensionai
probiems,

We plot £, and /M * as a function of /,. The results are shown below. In the £, s
graph, the minus sign is omitted. Surprisingly, £, from both models are quite similar even

though /77 * behaves differently at large /. The adjustable parameters are also plotted against



v
I . For clarity, we plot £, = E_ instead of V because V is very small at large /. It is
F

interesting to see how P is changing from 1 to about 0 as /; is increasing. The curve of 0 is
similar to a mirror image of tanh. There is a point where the slope almost diverges. In the
polaron's problem, p =1 in the weak coupling limit and o = 0 in the strong coupling limit.
The plasmaron’s problem is one of its analogy. Therefore, the behaviour of © in the present
work would reflect a phase transition of the plasmaron from one physical regime to another
between very different scales of /. One possible realization is the fact that at very high density,
the electrons are essentially mobile while at very low density, the electrons are locatized, known
as Wigner crystallization,

We bave shown that Lundqvist’s model exhjl'bits simtiar behaviour to Overhauser’s.
Because of its simplicity, we will use Lundqvist’s dielectric function to analytically evaiuate £,
which now is

e-ﬁ
w,(k)

in the limit of very high electron density, i.e. vanishingly small 77, and very low density, i.e. very

3 , 2007 T ger
EO—ZIV(I—,O) —n—;a[dk £dxe ol (15)

large 7.

High density limit

L . 1
In this limit, /. — 0,and p=1 sothat 8 =0 and _[dxeﬁe B = . Moreover,
0

i
2 4 2
@, and K become very large so that @ ,(K) = uV = Ja)p +§/(F/( . Consequently,
20 % 202 %
R e By P — 06
oy w(Ku T a)f,+§k,;/(2
Performing the definite integral and writing as a function of 7, we get
1.5633
£y = A (17)

L

which yields about 16% error of £, compared with the numerical valve at 7, =0.01. We

expect that the error would reduce as /; is getting closer to 0. Most of all, we see that £

diverges as f;"‘z .
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Low density limit

k? w, (k
In this limit, /; — e°, and 0 — 0 so that }32'7 and f = ‘D( ) In a closer
examination, we found that ePe " < PP forall X . Thus
20% 3 1 202 % 1
Ey<-—2[dk =-2fdk———. (18)
v oy oK)y Ty @ (K)
1 1
We also notice that 2(/() decays very rapidly around K = 0. If we expand it as a function of
w
2]
K, we get
21 = 0.0833r7 + O(k?), (19)
w, (k)
and the essence of the integral in eq. (18) is just
2(02 £,
E, = -2 | ok0.083372, o)
T %
where K, is a small number in which eq. (19) is a good approximation. A wick is to expand
. 1 | 1 491 1
———— 43 a function of — and we find that ——— = ——~———_ We know that — — 0,
w, (k) Iy w,(k) k* Kkor, I,
k'kk4'91 it ing with — fore K
hence at large X ,ie K > K, W become very small comparing with F. Therefore K,
5
_ , , 4.91
must satisfy the inequality E >> E’?’
and thea
1
K, oo —. 21)
rS
Insert this relation into eq. (20), we get
1
Ep o ——. (22)
75
. . 0.88 s :
This should be compared with £, = — . obtained by Wigner . However, £, is solely

5

1
depended on K - - Further studylz shows a better approximation in which Ee < ——7-
f

5

In this work, we have shown that Feynman path integral can be applied to the plasmaron
problem. By choosing an appropriate dielectric model, the ground state energy and the effective
mass can be calculated. The theary predicts a phase transition from the weak coupling to the
strong coupling limits. The ground state energy has the same behaviour as of Wigner's pfediction

at very low electron density. We believe this theory is useful for the study of the plasmaron.
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