บทคัดย่อ

อาคารสูงสมัยใหม่ที่ออกแบบและก่อสร้างในปัจจุบัน มักจะมีความสูงและความชะลูดมากขึ้น ตลอดจนมีน้ำหนักเบากว่าอาคารที่ก่อสร้างแล้วเสร็จในอดีต ทั้งนี้เนื่องมาจากพัฒนาการที่รวดเร็ว และต่อเนื่องของเทคโนโลยีทางค้านการออกแบบและการก่อสร้าง อาคารสูงสมัยใหม่คังกล่าวเมื่อ รับแรงลม มักจะมีระคับการสั่นไหวที่รุนแรงมากขึ้นค้วย คังนั้นในขั้นตอนของการออกแบบอาคาร วิศวกรและผู้ที่เกี่ยวข้องจึงมักที่จะบรรจุเรื่องของการทดสอบแบบจำลองย่อส่วนของอาคารใน อุโมงค์ลมเพื่อศึกษาผลกระทบของลมที่อาจเกิดขึ้นกับโครงสร้าง

การทคสอบแบบจำลองในอุโมงค์ลมโดยวิธี High frequency force balance (HFFB) model tests เป็นวิธีที่ได้รับการขอมรับว่า สามารถทำได้ง่าย สะควกรวดเร็วและประหยัด ตลอดจนมีความ คล่องตัวสูงในเรื่องของการวิเคราะห์ข้อมูลเพื่อการประมาณค่าการสั่นไหวของโครงสร้างอาการ คังนั้นวิธี HFFB นี้จึงเป็นที่นิยมอย่างแพร่หลายและได้พัฒนาจนกลายมาเป็นวิธีมาตรฐานวิธีหนึ่ง สำหรับใช้ในการศึกษาเรื่องผลกระทบของลมที่มีต่อโครงสร้างอาการในปัจจุบัน ตลอดช่วง ระยะเวลาสองทศวรรษที่ผ่านมา ได้มีการทำวิจัยเพื่อพัฒนาวิธีการ HFFB และแก้ไขข้อจำกัดของ วิธีการนี้มาโดยตลอด โดยเฉพาะอย่างยิ่งข้อจำกัดในเรื่องของการวิเคราะห์ผลกระทบเนื่องจากการ โยกตัวของอาการในแนวราบและแนวบิดพร้อมกัน ซึ่งมักจะก่อให้เกิดปัญหากับอาการที่มีระยะ เชื้องศูนย์ระหว่างจุดศูนย์กลางมวลและจุดศูนย์กลางความแจ็ง รวมทั้งการวิเคราะห์ผลทางด้าน Flow-structure interaction หรือที่เรียกว่า Aeroelastic effects ที่มีต่อโครงสร้างอาการ

งานวิจัยชิ้นนี้ใช้ระยะเวลากว่าสองปี เพื่อทำการวิจัยและพัฒนาวิธี HFFB ตลอดจนสร้างองค์ความรู้ ใหม่ที่สำคัญดังต่อไปนี้ 1) พัฒนาอุปกรณ์และเครื่องมือที่สำคัญสำหรับการทดสอบแบบจำลองใน อุโมงค์ลมโดยวิธี HFFB 2) พัฒนาโปรแกรมคอมพิวเตอร์สำหรับการวิเคราะห์ข้อมูลเพื่อประมาณ ค่าแรงและการสั่นใหวของโครงสร้าง 3) ทำการทดสอบเพื่อหาข้อจำกัดตลอดจนปรับปรุงขึด ความสามารถของโปรแกรมคอมพิวเตอร์ที่ได้พัฒนาขึ้น 4) ศึกษาพฤติกรรมการรับแรงลมของ อาการสูงที่มีหน้าตัดเป็นรูปสี่เหลี่ยมจตุรัสและสี่เหลี่ยมผืนผ้า 5) ศึกษาประสิทธิภาพในการลดค่า แรงลมที่กระทำกับอาการและการสั่นใหวของอาการโดยการปรับแต่งรูปร่างบริเวณมุมอาการใน หลายลักษณะ 6) ศึกษาพฤติกรรมการรับแรงลมของอาการสูงคู่แฝดที่มีหน้าตัดเป็นรูปสี่เหลี่ยม จตุรัสที่มีมุมฉากและที่มีการปรับแต่งมุม เพื่อใช้เป็นแนวทางสำหรับการออกแบบนอกเหนือไปจาก การใช้มาตรฐานกำนวณแรงลม 7) ศึกษาและพัฒนาวิธีการ HFFB เพื่อวิเคราะห์หาค่าแรงลมและ การสั่นใหวของอาการสูงที่มีการโยกตัวในแนวราบและแนวบิดพร้อมกัน และ 8) ดำเนินการ ทดสอบแบบจำลองอาการในอุโมงค์ลม เพื่อศึกษาอิทธิพลของระยะเยื้องศูนย์ระหว่างจุดศูนย์กลาง

มวลและจุดศูนย์กลางความแข็ง ที่มีต่อการสั่นใหวของอาคารและแรงที่เกิดขึ้นกับโครงสร้าง งานวิจัยได้ดำเนินมาอย่างต่อเนื่อง และอยู่ระหว่างการสรุปรายละเอียดของการวิเคราะห์หาค่า แรงลมและการสั่นใหวของอาคารสูงที่มีการโยกตัวในแนวราบและแนวบิคพร้อมกัน (Building with 3-D complex mode shapes) รวมทั้งการศึกษาอิทธิพลของระยะเยื้องศูนย์ระหว่างจุดศูนย์กลาง มวลและจุดศูนย์กลางความแข็ง ที่มีต่อการสั่นใหวของอาคารมาตรฐาน CAARC (Commonwealth Advisory Aeronautical Research Council) และแรงที่เกิดขึ้นกับโครงสร้างอาคารดังกล่าว ปัจจัย สำคัญที่มีผลต่อค่าแรงและการสั่นใหวของอาคาร ได้แก่ ความถี่ธรรมชาติของอาคาร รูปแบบการสั่นใหวในทิศทางต่างๆของอาคารที่มีระยะเยื้องศูนย์ระหว่างจุดศูนย์กลางมวลและจุดศูนย์กลาง ความแข็ง การโยกตัวของอาคารในแนวราบและแนวบิคพร้อมกัน ตลอดจนทิศทางการปะทะของ ลม จะได้รับการศึกษาอย่างต่อเนื่องต่อไปในอนาคต

ผลลัพธ์ที่ได้จากงานวิจัยต่อเนื่องดังกล่าวนี้คาคว่าจะมีประโยชน์โคยตรงต่อองค์ความรู้เกี่ยวกับ แรงลมที่กระทำกับอาคารที่มีการโยกตัวในแนวราบและแนวบิคพร้อมกัน ซึ่งสามารถนำมา ประยุกต์ใช้สำหรับการศึกษาและการออกแบบอาคารสูงสมัยใหม่ที่มีรูปทรงทางสถาปัตยกรรม ภายนอกที่ซับซ้อนใด้

Abstract

There is a tremendous growth of taller and more slender buildings to grace the skyline of major cities all over the world. This is due to the rapid and continuous development of design and construction technologies. These modern tall and slender buildings are usually light-weight and less-damped, hence they are likely to have significant dynamic responses due to wind loadings. A programme of wind tunnel model tests is frequently integrated into the design process.

Because of the advantages in terms of simplicity for the model construction, less wind tunnel testing time and flexibility for the data analysis, the high frequency force balance (HFFB) model test is recently considered to be a cost effective method for wind tunnel model tests. This technique has become a standard method for the determination of the wind-induced loads and responses of buildings. During the past two decades, this technique has been steadily developed to overcome its major limitations, for example, neglecting the 3-D complex building vibration mode shapes, which frequently affect the stability and serviceability designs of tall buildings with eccentricity between centre of mass and centre of stiffness, and the aeroelastic effects.

This research project has spanned for more than two years in order to 1) develop the necessary experimental apparatus for wind tunnel high frequency force balance (HFFB) model tests; 2) develop a computer program for the relevant data analysis; 3) experimentally investigate the validation and limitation of the developed testing apparatus and analysis program by benchmarking the wind tunnel test results with the previous published records; 4) experimentally investigate the aerodynamic behaviours of tall buildings with square and rectangular cross-sections; 5) experimentally investigate the effects of corner modifications on a reduction of aerodynamic wind loads and wind-induced responses of buildings; 6) experimentally investigate the structural wind loads of twin tall buildings with various corner modifications and provide guidance for the structural design; 7) refine the experimental set up and data analysis methodology to incorporate the effects of 3-D complex mode shapes on the building's structural wind loads and wind-induced responses, and 8) develop a systematic study to experimentally investigate the effects of eccentricity on the wind loadings and wind-induced responses of buildings. It is now in the stage, where the methodologies for the determination of structural wind loads and wind-induced responses of the building with 3-D complex mode shapes by the HFFB technique are being summarised. Wind tunnel model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building to investigate the effects of building eccentricity on the structural wind loads and wind-induced responses of a tall building have been carried out and the corresponding data analysis, including finite element models of the building structures, is being conducted. The results of wind tunnel model tests will be analysed to examine the effects of eccentricity between centre of mass and centre of stiffness for various wind incident angles. Parameters such as the building mode shapes and frequencies of vibration will be estimated for different eccentricity conditions. The effects of eccentricities, coupling parameters and wind directions on the wind-induced displacement responses will be presented and discussed. These will be the objectives for the follow up research.

The outcomes are expected to be useful for the design of modern tall buildings with complex geometrical shapes, which are likely to have significant coupling between translational and torsional motions due to 3-D complex mode shapes.