

กลไกการต้านทานต่อยาปฏิชีวนะของเชื้อ *E. coli* และ *Salmonella* ที่แยกจากสัตว์บริโภคในประเทศไทย

บทคัดย่อ

เป็นที่ทราบกันดีว่าเชื้อแบคทีเรียที่ติดต่อผ่านอาหารสามารถต้านทานต่อยาต้านจุลชีพบางชนิดได้ โดยอาจถ่ายทอดความสามารถในการต้านทานต่อยาต้านจุลชีพผ่านสารพันธุกรรมที่เคลื่อนที่ได้ เช่น integron โครงการนี้มีวัตถุประสงค์เพื่อสำรวจไก่การดื้อยาในระดับโมเลกุล โดยเฉพาะส่วนของสารพันธุกรรมที่สามารถสะสมความต้านทานต่อยาปฏิชีวนะ (Integron) ของเชื้อแบคทีเรียที่แยกได้จากสัตว์บริโภค และหาความสัมพันธ์ระหว่างสารพันธุกรรมที่สามารถสะสมความต้านทานต่อยาปฏิชีวนะ(Integron) กับการต้านทานต่อยาปฏิชีวนะของเชื้อแบคทีเรียที่แยกได้จากสัตว์บริโภค ทำการศึกษาโดยเพาะเชื้อ *E.coli* จำนวน 292 ตัว และ *Salmonella* จำนวน 267 ตัว จากสัตว์บริโภค คนและสิ่งแวดล้อมในฟาร์ม ทำการตรวจความต้านทานต่อยาต้านจุลชีพ ceftiofur, chloraphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline ด้วยวิธี Disk diffusion และตรวจหา Integrase gene (*int1*) ด้วยปฏิกิริยาลูกิโซ่พอลิเมอเรส ตรวจหา antibiotic resistance gene cassettes ที่อยู่ในส่วนกลางของ integron element ซึ่งส่วนนี้จะเป็น variable region ของ integron element แต่ละชนิดที่จะมีจำนวนและชนิดของยีนดีอย่าไม่เหมือนกัน ตรวจหาและยืนยัน resistance gene cassette ด้วย Nucleotide sequencing , Western blot และ Restriction endonuclease analysis (REA)

ผลการตรวจเชื้อ *E.coli* 292 ตัว และเชื้อ *Salmonella* 267 ตัว พบว่าเชื้อ *E.coli* 80% มีความต้านทานต่อยามากกว่าชนิดเดียว (Multiresistance) โดยมีสัดส่วนเชื้อที่มีความต้านทานคุ้งสุดต่อยา erythromycin(89%) oxacillin(83%) sulfa-trimethoprim(72%) และ tetracycline(65%) ตามลำดับ และพบว่าเชื้อ *E.coli* 34% มี Integrase gene (*int1*) ผลการตรวจเชื้อ *Salmonella* พบว่า เชื้อ 95% มีความต้านทานต่อยามากกว่าชนิดเดียว (Multiresistance) โดยมีสัดส่วนเชื้อที่มีความต้านทานคุ้งสุดต่อยา oxacillin(100%) erythromycin(98%) tetracycline(88%) and trimethoprim-sulfamethoxazole(75%) ตามลำดับ และพบว่าเชื้อ *Salmonella* 91% มี Integrase gene (*int1*) Gene cassette ใน Class 1 integron ที่พบใน *E.coli* และ *Salmonella* ส่วนใหญ่มีขนาดใกล้เคียงกัน (1.9 – 2.0 kb) และส่วนใหญ่มี gene *dfrA12* และ *aadA2* Class 1 integron มีความสัมพันธ์กับการต้านทานต่อยามากกว่า 2 ชนิดอย่างมีนัยสำคัญ ($p < 0.05$) แต่ gene cassette ที่พบไม่สอดคล้องกับยาที่ต้านทานอย่างมีนัยสำคัญ

โดยสรุปเชื้อ *E.coli* และ *Salmonella* ที่แยกจากสัตว์บริโภคและสิ่งแวดล้อมในฟาร์มมีการต้านทานต่อยาต้านจุลชีพหลายชนิดและมีสารพันธุกรรมเคลื่อนที่ที่สามารถสะสมความต้านทานต่อยาต้านจุลชีพ จำนวนมาก โดยมี integron และ resistance gene cassette มีลักษณะคล้ายคลึงกัน สัตว์บริโภคอาจเป็นแหล่งของเชื้อดื้อยาที่สำคัญ แต่การต้านทานต่อยาชนิดต่างๆอาจมีกลไกอื่นที่ไม่พบบน integron

**Mechanisms of antimicrobial resistance in *Escherichia coli* and *Salmonella*
from food animals in Thailand.**

Abstract

It has been shown that antimicrobial resistance can be commonly found in foodborne bacteria. Spreading of resistance genes via mobile genetic elements such as integrons may be an important mechanism. Our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from chickens and pigs in Thailand. Resistance to ceftiofur, chloraphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline were determined using disk diffusion technique. Detection of class I integrase genes (*intI1*), 3'conserved regions and other resistance gene cassettes was conducted using polymerase chain reaction and confirmed with restriction endonuclease analysis (REA) western blot and nucleotide sequencing.

Of the 292 *E. coli* isolates, 95% were resistant to more than one antimicrobial agent. The proportion of *E. coli* with resistance to erythromycin, oxacillin, sulfa-trimethoprim, and tetracycline were 89%, 83%, 72%, and 65%, respectively. The *intI1* gene was found in 34% of the *E. coli*. Of these *E. coli*, 88% were also multi-resistance. The most frequently found integron(38%) had variable regions size ranging from 600 – 2,000 bp. Of the 267 *Salmonella* isolates, 95% were resistant to more than one agent. The proportion of *Salmonella* with resistance to oxacillin, erythromycin, tetracycline, and trimethoprim-sulfamethoxazole were 100%, 98%, 88%, and 75%, respectively. The *intI1* gene was found in 91% of the *Salmonella* tested (n=197). Of these *Salmonella* , 93% were also multiresistance. *dfrA12-aadA2* gene cassette were found on 46% of *E.coli* and 99% of *Salmonella* class 1 integron. Class 1 integron was significantly associated with multi-resistance($p < 0.05$), however resistance to specific drug was not significantly correlated with the gene cassette found on the integron.

In conclusion, high level of antimicrobial resistance and class 1 integrons was found in *E.coli* and *Salmonella* isolates from food animals in northern Thailand. Food animals may be an important carrier of mobile molecular mechanism of resistance to antimicrobial agents in northern Thailand. However, resistance to certain agent may require other mechanism not associated with class 1 integron.