

รายงานวิจัยฉบับสมบูรณ์

โครงการ
กลไกการต้านทานต่อยาปฏิชีวนะของเชื้อ *E. coli* และ
Salmonella ที่แยกจากสัตว์บริโภคในประเทศไทย

โดย
ภาวน พดุงทศ และคณะ

30 กันยายน 2551

รายงานວິຈัยຈົບສົມບູຮັນ

ໂຄງການ
ກລົກການທ່ານທານຕ່ອຍາປົງປົງຫະຂອງເຊື່ອ *E. coli* ແລະ *Salmonella*
ທີ່ແຍກຈາກສັດວົບຮົມໂກຄົນປະເທດໄທ

ຄະນະຜູ້ວິຈัย

ຜ.ສ.ນ.ສພ.ດ.ກາວິນ ພຸດູທຄ

ຄະນະສັດວົບຮົມ ມາຮົມ ພິເມັງໄໝ

ຜ.ສ.ນ.ພ.ດ.ໜາງວິທຍ໌ ຕຣີພູທຮັຕນ໌

ຄະນະພົບຮົມ ມາຮົມ ພິເມັງທິດລ

ຜ.ສ.ນ.ສພ.ດ.ວຸ່ງທີພຍ໌ ຂວານຊື່ນ

ຄະນະສັດວົບຮົມ ຈຸພາລົງກຣົນ ມາຮົມ ພິເມັງ

ຮ.ສພ.ນູ.ດ.ວ.ສຸມາລື ບຸນູມາ

ຄະນະສັດວົບຮົມ ມາຮົມ ເກະຊົມ ພິເມັງ

ສັບສົນໂດຍສໍານັກງານກອງທຸນສັບສົນການວິຈัย

(ຄວາມເຫັນໃນรายงานຈົບສົມນີ້ເປັນຂອງຜູ້ວິຈัย ສກວ.ໄມ້ຈໍາເປັນຕ້ອງເຫັນດ້ວຍເສມອໄປ)

กลไกการต้านทานต่อยาปฏิชีวนะของเชื้อ *E. coli* และ *Salmonella* ที่แยกจากสัตว์บริโภคในประเทศไทย

บทคัดย่อ

เป็นที่ทราบกันดีว่าเชื้อแบคทีเรียที่ติดต่อผ่านอาหารสามารถต้านทานต่อยาต้านจุลชีพบางชนิดได้ โดยอาจถ่ายทอดความสามารถในการต้านทานต่อยาต้านจุลชีพผ่านสารพันธุกรรมที่เคลื่อนที่ได้ เช่น integron โครงการนี้มีวัตถุประสงค์เพื่อสำรวจไก่การดื้อยาในระดับโมเลกุล โดยเฉพาะส่วนของสารพันธุกรรมที่สามารถสะสมความต้านทานต่อยาปฏิชีวนะ (Integron) ของเชื้อแบคทีเรียที่แยกได้จากสัตว์บริโภค และหาความสัมพันธ์ระหว่างสารพันธุกรรมที่สามารถสะสมความต้านทานต่อยาปฏิชีวนะ(Integron) กับการต้านทานต่อยาปฏิชีวนะของเชื้อแบคทีเรียที่แยกได้จากสัตว์บริโภค ทำการศึกษาโดยเพาะเชื้อ *E.coli* จำนวน 292 ตัว และ *Salmonella* จำนวน 267 ตัว จากสัตว์บริโภค คนและสิ่งแวดล้อมในฟาร์ม ทำการตรวจความต้านทานต่อยาต้านจุลชีพ ceftiofur, chloraphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline ด้วยวิธี Disk diffusion และตรวจหา Integrase gene (*int1*) ด้วยปฏิกิริยาลูกิโซ่พอลิเมอเรส ตรวจหา antibiotic resistance gene cassettes ที่อยู่ในส่วนกลางของ integron element ซึ่งส่วนนี้จะเป็น variable region ของ integron element แต่ละชนิดที่จะมีจำนวนและชนิดของยีนดื้อยาไม่เหมือนกัน ตรวจหาและยืนยัน resistance gene cassette ด้วย Nucleotide sequencing , Western blot และ Restriction endonuclease analysis (REA)

ผลการตรวจเชื้อ *E.coli* 292 ตัว และเชื้อ *Salmonella* 267 ตัว พบว่าเชื้อ *E.coli* 80% มีความต้านทานต่อยามากกว่าชนิดเดียว (Multiresistance) โดยมีสัดส่วนเชื้อที่มีความต้านทานคุ้งสุดต่อยา erythromycin(89%) oxacillin(83%) sulfa-trimethoprim(72%) และ tetracycline(65%) ตามลำดับ และพบว่าเชื้อ *E.coli* 34% มี Integrase gene (*int1*) ผลการตรวจเชื้อ *Salmonella* พบว่า เชื้อ 95% มีความต้านทานต่อยามากกว่าชนิดเดียว (Multiresistance) โดยมีสัดส่วนเชื้อที่มีความต้านทานคุ้งสุดต่อยา oxacillin(100%) erythromycin(98%) tetracycline(88%) and trimethoprim-sulfamethoxazole(75%) ตามลำดับ และพบว่าเชื้อ *Salmonella* 91% มี Integrase gene (*int1*) Gene cassette ใน Class 1 integron ที่พบใน *E.coli* และ *Salmonella* ส่วนใหญ่มีขนาดใกล้เคียงกัน (1.9 – 2.0 kb) และส่วนใหญ่มี gene *dfrA12* และ *aadA2* Class 1 integron มีความสัมพันธ์กับการต้านทานต่อยามากกว่า 2 ชนิดอย่างมีนัยสำคัญ ($p < 0.05$) แต่ gene cassette ที่พบไม่สอดคล้องกับยาที่ต้านทานอย่างมีนัยสำคัญ

โดยสรุปเชื้อ *E.coli* และ *Salmonella* ที่แยกจากสัตว์บริโภคและสิ่งแวดล้อมในฟาร์มมีการต้านทานต่อยาต้านจุลชีพหลายชนิดและมีสารพันธุกรรมเคลื่อนที่ที่สามารถสะสมความต้านทานต่อยาต้านจุลชีพ จำนวนมาก โดยมี integron และ resistance gene cassette มีลักษณะคล้ายคลึงกัน สัตว์บริโภคอาจเป็นแหล่งของเชื้อดื้อยาที่สำคัญ แต่การต้านทานต่อยาชนิดต่างๆอาจมีกลไกอื่นที่ไม่พบบน integron

**Mechanisms of antimicrobial resistance in *Escherichia coli* and *Salmonella*
from food animals in Thailand.**

Abstract

It has been shown that antimicrobial resistance can be commonly found in foodborne bacteria. Spreading of resistance genes via mobile genetic elements such as integrons may be an important mechanism. Our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from chickens and pigs in Thailand. Resistance to ceftiofur, chloraphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline were determined using disk diffusion technique. Detection of class I integrase genes (*intI1*), 3'conserved regions and other resistance gene cassettes was conducted using polymerase chain reaction and confirmed with restriction endonuclease analysis (REA) western blot and nucleotide sequencing.

Of the 292 *E. coli* isolates, 95% were resistant to more than one antimicrobial agent. The proportion of *E. coli* with resistance to erythromycin, oxacillin, sulfa-trimethoprim, and tetracycline were 89%, 83%, 72%, and 65%, respectively. The *intI1* gene was found in 34% of the *E. coli*. Of these *E. coli*, 88% were also multi-resistance. The most frequently found integron(38%) had variable regions size ranging from 600 – 2,000 bp. Of the 267 *Salmonella* isolates, 95% were resistant to more than one agent. The proportion of *Salmonella* with resistance to oxacillin, erythromycin, tetracycline, and trimethoprim-sulfamethoxazole were 100%, 98%, 88%, and 75%, respectively. The *intI1* gene was found in 91% of the *Salmonella* tested (n=197). Of these *Salmonella* , 93% were also multiresistance. *dfrA12-aadA2* gene cassette were found on 46% of *E.coli* and 99% of *Salmonella* class 1 integron. Class 1 integron was significantly associated with multi-resistance($p < 0.05$), however resistance to specific drug was not significantly correlated with the gene cassette found on the integron.

In conclusion, high level of antimicrobial resistance and class 1 integrons was found in *E.coli* and *Salmonella* isolates from food animals in northern Thailand. Food animals may be an important carrier of mobile molecular mechanism of resistance to antimicrobial agents in northern Thailand. However, resistance to certain agent may require other mechanism not associated with class 1 integron.

บทนำ

ตลอดระยะเวลา ก้าวที่ผ่านมาการรักษาการติดเชื้อแบคทีเรีย ทำได้โดยการใช้ยาปฏิชีวนะเป็นหลักแม้ว่าจะมีการค้นพบว่าเชื้อแบคทีเรียสามารถพัฒนาความต้านทานต่อยาปฏิชีวนะซึ่งอาจส่งผลให้การรักษาไม่ได้ผล¹ ในระยะหลังนี้ได้มีการศึกษาพบเชื้อที่สามารถต้านทานต่อยาปฏิชีวนะหลายชนิด ทั้งเชื้อก่อโรคในคน เชื้อก่อโรคในสัตว์ และที่เป็นปัญหาสำคัญคือเชื้อที่ไม่ก่อโรคในสัตว์แต่อาจติดต่อและก่อโรคในคนที่บริโภคอาหารจากสัตว์² ซึ่งส่วนใหญ่เป็นเชื้อแบคทีเรียแกรมลบเช่น เชื้อ *E. coli*, *Salmonella*³ และ *Campylobacter*⁴ จากสภาพการเลี้ยงสัตว์เพื่อบริโภคในปัจจุบันที่มีการใช้ยาปฏิชีวนะเป็นสารเร่งการเจริญเติบโต อาจทำให้เชื้อแบคทีเรียดังกล่าวที่อยู่อาศัยตามปกติในตัวสัตว์โดยไม่ก่อโรค สามารถพัฒนาความสามารถในการต้านทานต่อยาปฏิชีวนะ⁵ เมื่อเชื้อดังกล่าวติดต่อกماสู่ผู้บริโภค⁶ อาจทำให้เกิดโรคติดเชื้อในทางเดินอาหารที่ไม่สามารถรักษาด้วยยาปฏิชีวนะ^{7,8} หรือทำให้เกิดการป่วยที่มีความรุนแรงกว่าเป็นระยะเวลานานกว่าการติดเชื้อที่ไม่สามารถต้านทานต่อยาปฏิชีวนะ⁹ นอกจากนี้เชื้อที่ต้านทานต่อยาปฏิชีวนะเหล่านี้ เมื่อปนเปื้อนในสิ่งแวดล้อมอาจถ่ายทอดความสามารถในการต้านทานต่อยาปฏิชีวนะให้เชื้ออื่น¹⁰ ซึ่งเป็นอันตรายต่อคนและสัตว์ต่อไป

ความต้านทานต่อยาปฏิชีวนะหมายถึงความสามารถเจริญเติบโตของเชื้อในสภาพที่น่าจะถูกยับยั้งโดยยาปฏิชีวนะ¹¹ ทั้งนี้ก่อให้การต้านทานต่อยาปฏิชีวนะที่สำคัญในเชื้อแบคทีเรียแกรมลบ¹² ได้แก่ การขับยาออกจากระดับเซลล์ (Efflux pump) การเปลี่ยนแปลงผิวของเซลล์ (Outer membrane protein) เพื่อป้องกันยาเข้าสู่เซลล์ การเปลี่ยนแปลงสารพันธุกรรมเพื่อให้ยาไม่สามารถจับกับเป้าหมายได้ (Target mutation) และการสร้างเอนไซม์หรือโปรตีนเพื่อทำลายหรือทำให้ยาไม่สามารถออกฤทธิ์ได้¹³ ซึ่งสารพันธุกรรมที่จำเป็นสำหรับการสร้างเอนไซม์หรือโปรตีนดังกล่าวมักอยู่บนสารพันธุกรรมที่เคลื่อนที่ได้ เช่น Integron, transposon หรือ R-plasmid¹⁴ ทั้งนี้ในเชื้อแบคทีเรียตัวเดียวอาจมีกลไกการต้านทานต่อยาปฏิชีวนะชนิดเดียวกันก็ได้ ทำให้สามารถต้านทานต่อยาปฏิชีวนะในความเข้มข้นสูง^{12,15} หรืออาจมีการสะสมยืนดื้อยาหลายยืนทำให้สามารถต้านทานต่อยาปฏิชีวนะได้หลายชนิด¹⁶ จากการศึกษาเชื้อ *E. coli* ที่พบในโค¹⁷ และสุกร¹⁸ พบว่ามีการสะสมยืนดื้อยาบนสารพันธุกรรมที่เคลื่อนที่ได้ (Integron) ซึ่งทำให้ความสามารถในการต้านทานต่อยาปฏิชีวนะยังคงอยู่แม้ว่าจะไม่มีการใช้ยาดังกล่าว และมีการค้นพบการสะสมของยืนดื้อยาในเชื้อ *Salmonella* ที่แยกได้จากผู้ป่วยในต่างประเทศ¹⁹ อย่างไรก็ตามยังไม่มีรายงานการพบการสะสมของยืนดื้อยาในเชื้อ *E. coli* และ *Salmonella* ที่แยกได้จากสัตว์ในประเทศไทย

จากการศึกษาเบื้องต้นของเชื้อก่อโรคที่แยกได้ในประเทศไทย พบว่าเชื้อแบคทีเรียก่อโรคในอาหาร เช่น เชื้อ *Salmonella* สามารถต้านทานต่อยาปฏิชีวนะหลายชนิด ได้แก่ Ampicillin, Tetracycline, Chloramphenicol นอกจากนี้ยังพบว่าการต้านทานต่อยาปฏิชีวนะในกลุ่ม Fluoroquinolone เช่น Ciprofloxacin มีความสามารถกับการต้านทานต่อยาปฏิชีวนะในกลุ่ม Macrolide เช่น Azithromycin²⁰ และแสดงว่าอาจมีการสะสมของยืนดื้อยาในเชื้อดังกล่าว ทั้งนี้มี

การศึกษาพบกลไกของการต่ออายุของเชื้อ *P. aeruginosa*^{16, 21, 22} และเชื้อในกลุ่ม *Enterobacteriaceae*²³⁻²⁵ เป็นลักษณะที่เชื้อเหล่านี้ได้รับเอา integron elements ซึ่งผ่านเข้ามาสู่ เชลล์ของเชื้อแบคทีเรียเหล่านี้โดยกระบวนการ conjugation ยืนที่ได้มีการคันพับแล้วว่ามีอยู่ในเชื้อที่ แยกได้จากโรงพยาบาลในประเทศไทยได้แก่ยืนที่สร้าง VEB-1/CEF-1, TEM, SHV, OXA และ CTX-M ซึ่งเป็น ESBL ที่ทำให้เชื้อติดต่ออย่าง extended-spectrum cephalosporins^{24, 26} นอกจากนี้ยัง พบว่ามียืน *aadA2*, *aadB*, *aph*, *sul1*, *qacE*, *cmlA*, *arr-2*, *bla*_{OXA-10}, *bla*_{PSE-1} ซึ่งทำให้เชื้อติดต่ออย่าง streptomycin, gentamicin, kanamycin, sulfonamides, ammonium compound antiseptics, chloramphenicol, rifampin, oxacillin และ penicillin²¹ ตามลำดับ การศึกษาเปรียบเทียบยืนต่ออย่าง ที่แยกได้จากการปศุสัตว์อาจมีความสำคัญอย่างยิ่งในเรื่องของความสมัมพันธ์ของเชื้อและยืนต่ออย่างที่ได้ จากการปศุสัตว์และทางการแพทย์ว่ามีความเกี่ยวข้องกันหรือไม่²⁷ มีการถ่ายทอดเชื้อหรือยืนต่ออย่าง จากสัตว์มาสู่คนหรือไม่ มีโอกาสที่เชื้อจากทางปศุสัตว์จะเป็นเชื้อก่อโรคที่ติดต่ออย่างในการติดเชื้อแบบ community-acquired สูงมากน้อยเพียงใด นอกจากนี้ยังอาจนำไปสู่การคันหายาปฏิชีวนะใหม่ที่ สามารถหลีกเลี่ยงกลไกการต้านทานต่อยาปฏิชีวนะของเชื้อแบคทีเรียดังกล่าวได้²⁸

วิธีการศึกษา

เชื้อที่ทำการศึกษา

ทำการเพาะเชื้อ *E. coli* และ *Salmonella* ที่เก็บในระหว่างปี 2000 – 2006 จากฟาร์มไก่และ สุกรในจังหวัดเชียงใหม่และลำพูน ซึ่งผ่านการตรวจจำแนกชนิดของเชื้อมาแล้วบนอาหารเลี้ยงเชื้อ (Nutrient agar) ทำการตรวจยืนยันเชื้อเบื้องต้น โดยเพาะเชื้อบนอาหาร Triple sugar iron²⁹ และ ทำให้บริสุทธิ์โดยเลือกโคลนเดี่ยวจากอาหารเลี้ยงเชื้อ(Nutrient agar) เพื่อทำการทดสอบความ ต้านทานต่อยาปฏิชีวนะต่อไป จำนวนเชื้อที่ทำการทดสอบชนิดละ 300 ตัวอย่าง จะสามารถตรวจพบ Integron ของการต่ออย่างได้ที่ระดับความเชื่อมั่น 100% เมื่อความชุกของ Integron เท่ากับ 1% และจะ สามารถประมาณความชุกของ Integron ของการต่ออย่างได้ด้วยความดลาดเคลื่อนไม่เกิน 1.5% เมื่อ ความชุกของ Integron ประมาณ 1% ที่ระดับความเชื่อมั่น 95%³⁰ จำนวนเชื้อที่ทำการศึกษาได้ผล ครบและนำมาใช้ในการวิเคราะห์ข้อมูล ได้เป็นไปตามตารางที่ 1

ตรวจยืนยันคุณสมบัติการต้านทานต่อยาต้านจุลชีพ

ทำการทดสอบคุณสมบัติการต้านทานต่อยาด้วยเทคนิค Disk diffusion ตามวิธีของ US National Committee on Clinical Laboratory Standard³¹ โดยทำการเจือจางเชื้อที่อยู่ในระยะเดิบโต(log phase)ในน้ำเกลือ แล้วเพาะเชื้อที่ต้องการทดสอบบน Mueller Hinton agar พร้อมแผ่นยาปฏิชีวนะที่ ทราบความเข้มข้น ทำการบ่มเชื้อในสภาพที่มีอากาศ อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 16-20 ชั่วโมงแล้วทำการอ่านผลโดยการวัดบริเวณที่เชื้อไม่สามารถเจริญได้รอบแผ่นยา แบ่งกลุ่มเชื้อที่ต่ออย่าง ตามมาตรฐานของ US National Antimicrobial Resistance Monitoring System M31-A³² ใช้เชื้อ *E. coli* ATCC 25922 และเชื้อ *S. aureus* ATCC 25923 เป็นเชื้อควบคุมคุณภาพการทดสอบ ยา

ปฏิชีวนะที่ทำการทดสอบได้แก่ Ceftiofur Chloramphenicol Enrofloxacin Erythromycin Gentamycin Oxacillin Trimethoprim-sulfamethoxazole และ Tetracycline โดยมีเกณฑ์การแบ่งเชื้อ ดื้อยาตามตารางที่ 2

การตรวจยืนยันการมี *integron element* ในเชื้อกรัมลบโดยการใช้ *integrase gene* และ *resistance gene cassettes* ด้วยวิธี *polymerase chain reaction (PCR)*.

ทำการตรวจหา plasmid โดยสกัดเอา plasmid ด้วยชุด Nucleospin plasmid extraction kit แล้วนำไป resuspend ด้วย 50 micrliter ของ elution buffer จากนั้นนำไปทำ gel electrophoresis ใน 1% agarose gel ใช้ 1 kb DNA ladder เป็น marker ตามที่แสดงในแผนภาพที่ 1

ตรวจหา *integron integrase gene (intI)* ซึ่งเป็นส่วนสำคัญของ *integron element* ที่อยู่ในส่วนของ 5' conserved sequence (5'CS) โดยใช้ primers ที่จำเพาะต่อ class 1 integrase gene (Forward – AAG GAT CGG GCC TTG ATG TT, Reverse – CAG CGC ATC AAG CGG TGA GC)³³ ได้ผลตามที่แสดงในแผนภาพที่ 2

ตรวจหา antibiotic resistance gene cassettes ที่อยู่ในส่วนกลางของ *integron element* ซึ่งส่วนนี้จะเป็น variable region ของ *integron element* แต่ละชนิดที่จะมีจำนวนและชนิดของยีนดื้อยาไม่เหมือนกัน³⁴⁻³⁷ การตรวจหา variable region นี้สามารถใช้ primers ที่จำเพาะต่อส่วน 5'CS และ 3'CS (Forward primer – GGC ATC CAA GCA GCA AG, Reverse – AAG CAG ACT TGA CCT GA) ได้ PCR products ตามตัวอย่างที่แสดงในแผนภาพที่ 3 จากนั้นทำการตรวจลำดับเบสของ PCR product บางส่วนเพื่อหาชนิดของ *resistance gene cassette* ที่น่าจะพบ แล้วตรวจยืนยันชนิดของ *resistance gene cassette* ด้วย dot-blot hybridization

การตรวจหา *integron element* และยืนดื้อยาที่สำคัญด้วยวิธี *Dot-blot hybridization*

เชื้อดื้อยาจะถูกนำมาสกัดให้ได้ genomic DNA หรือเพาะเลี้ยงใน microtiter plate (96-well plate) และจะถูกนำไป hybrid ด้วย dot blot บน positively-charged nylon membrane หลายแผ่น ทำให้เชื้อแตกและปล่อยสาย DNA ออกมานบน membrane เพื่อที่จะนำมาทำ hybridization ด้วย probe ที่จะตัวด้วยการใช้ชิ้นส่วน DNA ของ *integrase gene* หรือ *resistance gene* ดังกล่าวไว้ ข้างต้นมาทำเป็น hybridization probes ด้วย chemiluminescent labeling kit (Roche fluorescein random priming kit) Probe ที่ใช้ได้แก่ Integrase genes of integron elements (*intI 1*) ขนาด 471 bp³³ และ *Integron cassettes* ได้แก่ *dfrA12-orf-aadA2* ขนาด 1.9 kbp Probe ที่ใช้เลือกโดยพิจารณาผลการตรวจลำดับเบสของ PCR product ของ variable region ได้ผลดังแสดงในแผนภาพที่ 4

การวิเคราะห์ข้อมูลทางสถิติ

ทำการคำนวณความชุกของเชื้อที่ต้านทานต่อยาต้านจุลชีพ มี integron และ resistance gene cassette ชนิดต่างๆ โดยการหาระบบจำนวนเชื้อที่ตรวจได้ผลบวกด้วยจำนวนเชื้อทั้งหมดที่ตรวจ เชื้อที่ต้านทานต่อยาต้านจุลชีพมากกว่า 2 ชนิดขึ้นไปจะถูกจัดให้อยู่ในกลุ่ม Multi-resistance (MDR) จากนั้นหาเรียลลิช์ของความสัมพันธ์ระหว่าง แหล่งที่มาและการต้านทานต่อยาต้านจุลชีพ กับการมี integron และ resistance gene cassette ชนิดต่างๆ ด้วย Fisher's exact test และ Mantel-Haenszel test for homogeneity of Odds ratio

ผลการศึกษา

การต้านทานต่อยาต้านจุลชีพการมี Integron และ resistance gene cassette

เชื้อ *E.coli*(n=292) และ *Salmonella*(n=267) ทั้งหมดที่ทำการศึกษาสามารถต้านทานต่อยาต้านจุลชีพอย่างน้อย 1 ชนิด เชื้อ *E.coli* สามารถต้านทานต่อยาต้านจุลชีพได้สูงสุดถึง 7 ชนิด ส่วน เชื้อ *Salmonella* สามารถต้านทานต่อยาต้านจุลชีพได้สูงสุด 6 ชนิด ความชุกของเชื้อ *E.coli* และ *Salmonella* ที่ต้านทานต่อยาต้านจุลชีพชนิดต่างๆ แสดงไว้ในตารางที่ 3 โดยพบความต้านทานต่อ Oxacillin และ Erythromycin สูงที่สุด 2 ลำดับแรกในเชื้อทั้ง 2 ชนิด นอกจากนี้ยังพบความต้านทานต่อ tetracycline และ sulfa-trimethoprim ในระดับสูง การต้านทานต่อ enrofloxacin ซึ่งเป็นยาในกลุ่ม fluoroquinolone นั้นพบเฉพาะในเชื้อ *E.coli* แผนภาพที่ 5 แสดงการกระจายของเชื้อ *E.coli* และ *Salmonella* ตามจำนวนยาที่ต้านทาน ค่ามัธยฐานของจำนวนยาที่เชื้อ *E.coli* ต้านทานได้เท่ากับ 4 ในขณะที่มัธยฐานของจำนวนยาที่เชื้อ *Salmonella* ต้านทานได้เท่ากับ 5 สัดส่วนของเชื้อ *E.coli* และ *Salmonella* ในกลุ่ม MDR เท่ากับ 80% และ 91% ตามลำดับ

จากเชื้อ *E.coli*(n=292) และ *Salmonella*(n=197) ทั้งหมดที่ทำการตรวจ integron และ resistance gene cassette พบ class 1 integron ในเชื้อ *E.coli* 35% และเชื้อ *Salmonella* 95% และ พบ resistance gene cassette ดังแสดงในตารางที่ 4 โดยพบ gene *dfrA12* และ *aadA2* ร่วมกันเป็น สัดส่วนมากที่สุดทั้งในเชื้อ *E.coli* (46%; n=35) และ *Salmonella*(99%; n=197)

ความสัมพันธ์ระหว่างแหล่งที่มาและการต้านทานต่อยาต้านจุลชีพกับการมี class 1 integron และ resistance gene cassette

การมี class 1 integron มีความสัมพันธ์กับการต้านทานต่อยาต้านจุลชีพมากกว่า 2 ชนิด (MDR) อย่างมีนัยสำคัญทั้งในเชื้อ *E.coli* ($p=0.014$) และ *Salmonella* ($p=0.006$) ดังแสดงในตารางที่ 5 ทั้งนี้ Serogroup และ serotype ของเชื้อ *Salmonella* ไม่มีผลต่อความสัมพันธ์ระหว่าง class 1 integron กับ MDR ดังแสดงในตารางที่ 6 อย่างไรก็ตามเมื่อพิจารณาความสัมพันธ์ระหว่างการต้านทานต่อ gentamycin และ trimethoprim กับการพบ gene *dfr* และ *aad* แล้วไม่พบความสัมพันธ์อย่างมีนัยสำคัญ ตามที่แสดงในตารางที่ 7 นอกจากนี้ความสัมพันธ์ระหว่างการมี class 1 integron

กับการต้านทานต่อยาต้านจุลชีพมากกว่า 2 ชนิด (MDR) ของเชื้อ *E.coli* และ *Salmonella* จากแหล่งที่มาต่างๆ ไม่แตกต่างกันอย่างมีนัยสำคัญตามที่แสดงในแผนภาพที่ 6 และแผนภาพที่ 7

วิจารย์และสรุป

การศึกษานี้ใช้เชื้อ *E.coli* และ *Salmonella* ที่เก็บไว้ตั้งแต่ปี 2000 – 2006 ซึ่งเชื้อ *E.coli* และ *Salmonella* ที่ใช้ไม่ได้มาจากการแหล่งเดียวกันเสมอไป จึงไม่อาจเปรียบเทียบผลการศึกษาระหว่างเชื้อ 2 ชนิดนี้โดยตรงแต่อาจเปรียบเทียบเชื้อที่เก็บมาจากการแหล่งที่ต่างกันแทน อย่างไรก็ตามผลการศึกษาได้แสดงให้เห็นถึงการแพร่กระจายของความต้านทานต่อยาต้านจุลชีพ และสารพันธุกรรมเคลื่อนที่ (Class 1 integron) ที่อาจมีบทบาทสำคัญในการแพร่ความต้านทานต่อยาต้านจุลชีพ ดังกล่าว

จากผลการศึกษาพบว่าเชื้อ *E.coli* และ *Salmonella* สามารถต้านทานต่อยา Erythromycin ซึ่งเป็นยาในกลุ่ม Macrolide ที่เป็นยาสำหรับรักษาการติดเชื้อในทางเดินอาหารชนิดรุนแรง ซึ่งอาจทำให้ไม่สามารถรักษาผู้ที่ติดเชื้อได้ ทั้งนี้มีรายงานว่าเชื้อ non-typhoidal *Salmonella* ที่พบในผู้ป่วยที่ติดเชื้อในประเทศไทยถึง 30% สามารถต้านทานต่อยาต้านจุลชีพมากกว่า 2 ชนิด³⁸ โดยพบเชื้อในกลุ่มที่สามารถสร้าง Extended spectrum beta lactamase (ESBL) จำนวนมาก³⁹ ซึ่งหากไม่สามารถใช้ Cephalosporin ในการรักษาอาจต้องใช้ยาในกลุ่ม Macrolide แทน ทั้งนี้ยาในกลุ่ม Macrolide (Lincomycin) มีการใช้ผสมในอาหารสุกรและไก่มาเป็นเวลานาน จึงอาจมีการสะสมของเชื้อที่สามารถต้านทานต่อยาในกลุ่มนี้ในระบบการเลี้ยงสุกรและไก่ สำหรับในการเลี้ยงไก่นั้นมีการใช้ยาในกลุ่ม Sulfa-trimethoprim อย่างกว้างขวาง และพบว่าเชื้อ *E.coli* และ *Salmonella* สามารถต้านทานต่อยาในกลุ่มนี้เป็นสัดส่วนที่สูงเช่นเดียวกัน

เชื้อ *E.coli* ที่ทำการศึกษาในครั้งนี้เก็บมาก่อนหน้าเชื้อ *Salmonella* ประมาณ 3 ปี จึงพบความชุกของ class 1 integron ต่ำกว่าที่เคยมีรายงานในประเทศไทยทั้งในผู้ป่วย (51-99%)^{24, 40} และในสัตว์บริโภค (57-84%)^{17, 41} ส่วนเชื้อ *Salmonella* จากสัตว์บริโภคที่เก็บในช่วงเวลาหลังจากเชื้อ *E.coli* ที่ทำการศึกษามีความชุกของ class 1 integron สูงถึง 95% ซึ่งสูงกว่าที่เคยมีรายงานในสัตว์บริโภคในทวีปยุโรป (15 - 73%)^{42, 43} และอเมริกา (53%)⁴⁴ อเมริกา (0-20%)^{45, 46} และเชื้อ *Salmonella* ที่เก็บจากภูมิภาคอื่นในประเทศไทย (26%)⁴⁷ ซึ่งอาจเป็นผลมาจากการลักษณะการเลี้ยงไก่และสุกรเพื่อบริโภคในภาคเหนือที่แตกต่างจากระบบการเลี้ยงเพื่อส่งออกในภูมิภาคอื่นของประเทศไทย

Class 1 integron เป็นหน่วยของสารพันธุกรรมที่ประกอบด้วย integrase และ gene cassette ที่สามารถสะสม resistance gene cassette โดย recombination⁴⁸ และถ่ายทอด gene cassette ดังกล่าวโดยขบวนการ conjugation ไปพร้อมกับ plasmid⁴⁹ ความสัมพันธ์ระหว่าง class 1 integron กับ MDR เคยมีรายงานมาก่อนหน้านี้ทั้งในเชื้อ *E.coli*^{17, 40, 41} และ *Salmonella*^{43, 44, 50} ซึ่งแสดงให้เห็นบทบาทสำคัญของสารพันธุกรรมเคลื่อนที่ (Class 1 integron) ที่อาจมีในการสะสม และเผยแพร่ความต้านทานต่อยาต้านจุลชีพในเชื้อกรุ่นนี้ ทั้งนี้มีรายงานก่อนหน้านี้ว่า nok จากเชื้อแบคทีเรียแกรมลบแล้ว เชื้อแบคทีเรียแกรมบวกก็อาจเป็นแหล่งสะสมและเผยแพร่ความต้านทานต่อ

ยาต้านจุลชีพในสัตว์บริโภค เช่น กัน⁵¹ ทั้งนี้หากมีการใช้ยาต้านจุลชีพแล้วส่งผลให้มีการคัดเลือกเชื้อที่มีสารพันธุกรรมเคลื่อนที่

Resistance gene cassette ที่พบในการศึกษานี้ (*dfr – aad*) มีรายงานการปรากฏในเชื้อ *E.coli*¹⁷ และ *Salmonella*⁴³ ซึ่ง resistance gene cassette ดังกล่าวสามารถทำให้เชื้อต้านทานต่อยาในกลุ่ม trimethoprim และ aminoglycoside เช่น gentamycin ตามลำดับ อย่างไรก็ตามในการศึกษา นี้ไม่พบความสัมพันธ์ระหว่าง *dfr-aad* gene cassette กับการต้านทานต่อ trimethoprim และ aminoglycoside ทั้งนี้อาจเป็นผลมาจากการมีกลไกอื่นในการต้านทานต่อยาต้านจุลชีพ เช่น Efflux mechanism⁵² ในเชื้อที่ไม่พบ *dfr-aad* gene cassette ซึ่งอาจทำให้เชื้อสามารถต้านทานต่อยาต้านจุลชีพได้หลายชนิดพร้อมกัน

โดยสรุปเชื้อ *E.coli* และ *Salmonella* ที่แยกจากสัตว์บริโภคและสิ่งแวดล้อมในฟาร์ม มีการต้านทานต่อยาต้านจุลชีพหลายชนิดและมีสารพันธุกรรมเคลื่อนที่ที่สามารถสะสูมความต้านทานต่อยาต้านจุลชีพ จำนวนมาก โดยมี integron และ resistance gene cassette มีลักษณะคล้ายคลึงกัน สัตว์บริโภคอาจเป็นแหล่งของเชื้อดื/oยาที่สำคัญ แต่การต้านทานต่อยาชนิดต่างๆ อาจมีกลไกอื่นที่ไม่พบบน integron

ผลการศึกษานี้สามารถนำไปใช้ประกอบการประเมินความเสี่ยงของการติดเชื้อดื/oยาจากสัตว์บริโภค ตลอดจนเป็นแนวทางในการเลือกใช้ยาปฏิชีวนะทั้งในการรักษาผู้ป่วยที่ติดเชื้อจากสัตว์ และการรักษาสัตว์บริโภค คณะผู้วิจัยมีแผนการศึกษาการเกิดและการแพร่กระจายของเชื้อดื/oยาในขบวนการเลี้ยงสัตว์เพื่อบริโภค โดยได้รับการสนับสนุนจากสภาวิจัยแห่งชาติในปี 2552 และจะทำการประเมินความเสี่ยงของการติดเชื้อดื/oยาจากสัตว์บริโภค โดยขอรับการสนับสนุนจากสภาร.ต่อไป

เอกสารอ้างอิง

1. Levy SB. The challenge of antibiotic resistance. *Scientific american* 1998; 46-53.
2. Schroeder C, White D, Meng J. Retail meat and poultry as reservoir of antimicrobial-resistant *Escherichia coli*. *Food microbiology* 2004; 21: 249-55.
3. Hanson R, Kaneeene J, Padungtod P et al. Prevalence of *Salmonella* and *E.coli* and their resistance to antimicrobial agent, in farming communities in Northern Thailand. *Southeast Asian journal of tropical medicine and public health* 2002; 33: 120-6.
4. Padungtod P, Kaneeene J. *Campylobacter* spp in human, chickens, pigs and their antimicrobial resistance. *Journal of veterinary medical science* 2003; 65: 161-70.
5. Aarestrup F, Wegener H. The effects of antimicrobial usage in food animals on the development of antimicrobial resistance of importance for humans in *Campylobacter* and *Escherichia coli*. *Microbes and infection* 1999; 1: 639-44.

6. Van Den Bogaard A, London N, Driessen C et al. Antibiotic resistance of faecal *Escherichia coli* in poultry, poultry farmers and poultry slaughterers. *Journal of antimicrobial chemotherapy* 2001; 47: 763-71.
7. Butt T, Ahmad R, Mahmood M et al. Ciprofloxacin treatment failure in Typhoid fever case, Pakistan. *Emerging infectious diseases* 2003; 9: 1621-2.
8. Vasallo FJ, Rabadian PM, Alcala L et al. Failure of ciprofloxacin therapy for invasive nontyphoidal Salmonellosis. *Clinical infectious diseases* 1998; 26: 535-6.
9. Barza M, Travers K. Excess infections due to antimicrobial resistance : The attributable fraction. *Clinical infectious diseases* 2002; 34: s126-s30.
10. Avrain L, Vernozy-Rozand C, Kempf I. Evidence for natural horizontal transfer of tetO gene between *Campylobacter jejuni* strains in chickens. *Journal of applied microbiology* 2004; 97: 134-40.
11. Cloete T. Resistance mechanisms of bacteria to antimicrobial compounds. *International biodeterioration and biodegradation* 2003; 51: 277-82.
12. Gootz T. The forgotten gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. *Biochemical pharmacology* 2005; **In press**.
13. Weldhagen G. Integrons and B-lactamases - a novel perspective on resistance. *International journal of antimicrobial agents* 2004; 23: 556-62.
14. Sorum H, L'Abee-Lund T. Antibiotic resistance in food-related bacteria - a result of interfering with the global web of bacterial genetics. *International journal of food microbiology* 2002; 78: 43-56.
15. Li X. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. *International journal of antimicrobial agents* 2005; 25: 453-63.
16. Girlich D, Naas T, Leelaporn A et al. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum B-lactamase in *Pseudomonas aeruginosa* in Thailand. *Clinical infectious diseases* 2002; 34: 603-11.
17. Du X, Shen Z, Wu B et al. Characterization of class 1 integrons-mediated antibiotic resistance among calf pathogenic *E.coli*. *FEMS microbiology letters* 2005; 245: 295-8.
18. Bischoff K, White D, Hume M et al. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine *Escherichia coli*. *FEMS microbiology letters* 2005; 243: 285-91.
19. Guerri M, Aladuena A, Echeita A et al. Detection of integrons and antibiotic resistance genes in *Salmonella enterica* serovar *typhimurium* isolates with resistance

to ampicillin and variable susceptibility to amoxycillin-clavulanate. *International journal of antimicrobial agents* 2004; 24: 327-33.

20. Isenbarger D, Hoge C, Srijan A et al. Comparative antibiotic resistance of diarrhea pathogens from Veitnam and Thailand,1996-1999. *Emerging infectious diseases* 2002; 8: 175-80.
21. Tribuddharat C. Mechanisms of antibiotic resistance in *Pseudomonas aeruginosa*. *The Chicago medical school*. Chicago, IL: North Chicago: Finch university of health science, 1999.
22. Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in *Pseudomonas aeruginosa*. *Antimicrobial agents chemotherapy* 1999; 43: 960-2.
23. Poirel L, Naas T, Guibert M et al. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encodeed by an *Escherichia coli* integron gene. *Antimicrobial agents chemotherapy* 1999; 43: 573-81.
24. Girlich D, Poirel L, Leelaporn A et al. Molecular epidemiology of the integron-located VEB-1 extended spectrum beta-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. *Journal of clinical microbiology* 2001; 39: 175-82.
25. Chokephaibulkit K, Danchaivijitr S, Boonpragaigaew G et al. The outbreak of *serratia marcescens* bacteremia in a pediatric ward, siriraj hospital 1997. *Journal of Medical Association Thailand* 2002; 85: s674-s81.
26. Chanawong A, M'Zali F, Heritage J et al. SHV-12, SHV-5, SHV2a and VEB-1 extended spectrum beta-lactamases in gram-negative bacteria isolated in a university hospital in Thailand. *Journal of antimicrobial chemotherapy* 2001; 48: 839-52.
27. Boerlin P. Molecular epidemiology of antimicrobial resistance in veterinary medicine: where do we go? *Animal health research review* 2004; 5: 95-102.
28. Tan Y, Tillett D, McKay I. Molecular strategies for overcoming antibiotic resistance in bacteria. *Molecular medicine today* 2000; 6: 309-14.
29. Quinn P, Carter ME, Markey BA et al. *Clinical veterinary microbiology*. London: Wolfe publishing, 1994.
30. Smith RD. *Veterinary Clinical Epidemiology*. Ann Arbor: CRC press, 1995.
31. NCCLS. *Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M7-A5)*. Wayne, PA: NCCLS, 2000.
32. NARMS. Veterinary isolates table of content.
<http://wwwfdagov/cvm/index/narms/narmshtml> 2003.

33. Levesque C, Piche L, Larose C et al. PCR mapping of integrons reveals several novel combinations of resistance genes. *Antimicrobial agents chemotherapy* 1995; 39: 185-91.
34. Stokes H, Hall R. A novel family of potentially mobile DNA elements encoding site specific gene integration function: integrons. *Molecular microbiology* 1989; 3: 1669-83.
35. Gibb A, Tribuddharat C, Moore R et al. Nosocomial outbreak of Carbapenem resistant *Pseudomonas aeruginosa* with a new bla-imp allele, bla-IMP7. *Antimicrobial agents chemotherapy* 2002; 46: 255-8.
36. Yan J, Hsueh P, Ko W et al. Metallo-beta-lactamases in clinical *Pseudomonas* isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. *Antimicrobial agents chemotherapy* 2001; 45: 2224-8.
37. Tosini F, Venanzi S, Boschi A et al. The upv1 gene on the R46 plasmid encodes a resolvase that catalyzes site specific resolution involving the 5'-conserved segment of the adjacent integron In1. *Molecular genetic* 1998; 258: 404-11.
38. Kiratisin P. Bacteraemia due to non-typhoidal *Salmonella* in Thailand: clinical and microbiological analysis. *Trans R Soc Trop Med Hyg* 2008; 102: 384-8.
39. Kiratisin P, Apisarnthanarak A, Laesripa C et al. Molecular characterization and epidemiology of extended-spectrum beta-lactamase producing *Escherichia coli* and *Klebsiella pneumoniae* causing healthcare associated infection in Thailand: and endemic area of CTX-M. *Antimicrobial agents chemotherapy* 2008.
40. Pongpech P, Naenna N, Taipobsakul Y et al. Prevalence of extended-spectrum beta-lactamase and class 1 integron integrase gene intI1 in *Escherichia coli* from Thai patients and healthy adults. *Southeast Asian journal of tropical medicine and public health* 2008; 39: 425-33.
41. Phongpaichit S, Liamthong S, Mathew A et al. Prevalence of class 1 integrons in commensal *Escherichia coli* from pigs and pig farmers in Thailand. *Journal of food protection* 2007; 70: 292-9.
42. Rodriguez I, Rodicio M, Herrera-Leon S et al. Class 1 integrons in multidrug resistant non-typhoidal *Salmonella enterica* isolated in Spain between 2002 and 2004. *International journal of antimicrobial agents* 2008; 32: 158-64.
43. Vo A, Duijkeren E, Fluit A et al. Antibiotic resistance, integrons and *Salmonella* genomic island 1 among non-typhoidal *Salmonella* serovars in the Netherlands. *International journal of antimicrobial agents* 2006; 28: 172-9.

44. Molla B, Miko A, Pries K et al. Class 1 integrons and resistance gene cassettes among multidrug resistant *Salmonella* serovars isolated from slaughter animals and food of animal origin in Ethiopia. *Acta tropica* 2007; 103: 142-9.
45. Diarrassouba F, Diarra M, Bach S et al. Antibiotic resistance and virulence genes in commercial *Escherichia coli* and *Salmonella* isolates from commercial broiler chicken farms. *Journal of food protection* 2007; 70: 1316-27.
46. San-Martin B, Lapierre L, Cornejo J et al. Characterization of antibiotic resistance genes linked to class 1 and 2 integrons in strains of *Salmonella* spp. isolated from swine. *Canadian journal of microbiology* 2008; 54: 569-76.
47. Khemtong S, Chuanchuen R. Class 1 integrons and *Salmonella* genomic island 1 among *Salmonella enterica* isolated from poultry and swine. *Microbial drug resistance* 2008; 14: 65-70.
48. Carattoli. Plasmid-mediated antimicrobial resistance in *Salmonella enterica*. *Current issues in molecular biology* 2003; 5: 113-22.
49. Bennett P. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. *British journal of pharmacology* 2008; 153: s347-s57.
50. Tamang M, Oh J, Seol S et al. Emergence of multidrug resistant *Salmonella enterica* serovar Typhi associated with a class 1 integron carrying the dfrA7 gene cassette in Nepal. *International journal of antimicrobial agents* 2007; 30: 330-5.
51. Nandi S, Maurer J, Hofacre C et al. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. 2004.
52. Alekshun M, Levy S. Molecular mechanisms of antibacterial multidrug resistance. *Cell* 2007; 128: 1037-50.

ตารางที่ 1 จำนวนเชื้อที่ทำการเพาะและทดสอบ

แหล่งของเชื้อ	จำนวน <i>E.coli</i>	จำนวน <i>Salmonella</i>	รวม
สุกร	75	130	205
ไก่	185	0	185
คน	6	0	6
สิ่งแวดล้อม	26	137	163
รวม	292	267	559

ตารางที่ 2 Zone size (mm) ของการทดสอบความต้านทานต่อยาต้านจุลชีพด้วยวิธี Disk diffusion

Antimicrobial agents	<i>E. coli</i> 25922	<i>S. aureus</i> 25923	Resistance Breakpoint (mm)
Ceftiofur (30 µg)	26-31	27-31	≤17
Chloramphenicol (30 µg)	21-27	19-26	≤12
Enrofloxacin (5 µg)	32-40	27-31	≤16
Erythromycin (15 µg)	-	22-30	≤13
Gentamicin (10 µg)	19-26	19-27	≤12
Oxacillin (1µg)	-	18-24	≤10
Trimethoprim-sulfamethoxazole	15-23	24-34	≤10
Tetracycline (30 µg)	18-25	24-30	≤14

ตารางที่ 3 ผลการทดสอบความต้านทานต่อยาต้านจุลชีพ

Antimicrobial	No.resistance	% resistance	No.resistance	% resistance
	<i>E.coli</i> (n=292)	<i>E.coli</i>	<i>Salmonella</i>	<i>Salmonella</i> (n=267)
Ceftriaxone	4	1.4	0	0
Chloramphenicol	87	29.8	112	55.8
Enrofloxacin	109	37.3	0	0
Erythromycin	259	88.7	195	98.1
Gentamycin	15	5.1	29	13.1
Oxacillin	243	83.2	196	100.0
Sulfa-trimethoprim	210	71.9	157	75.3
Tetracycline	190	65.1	175	87.6

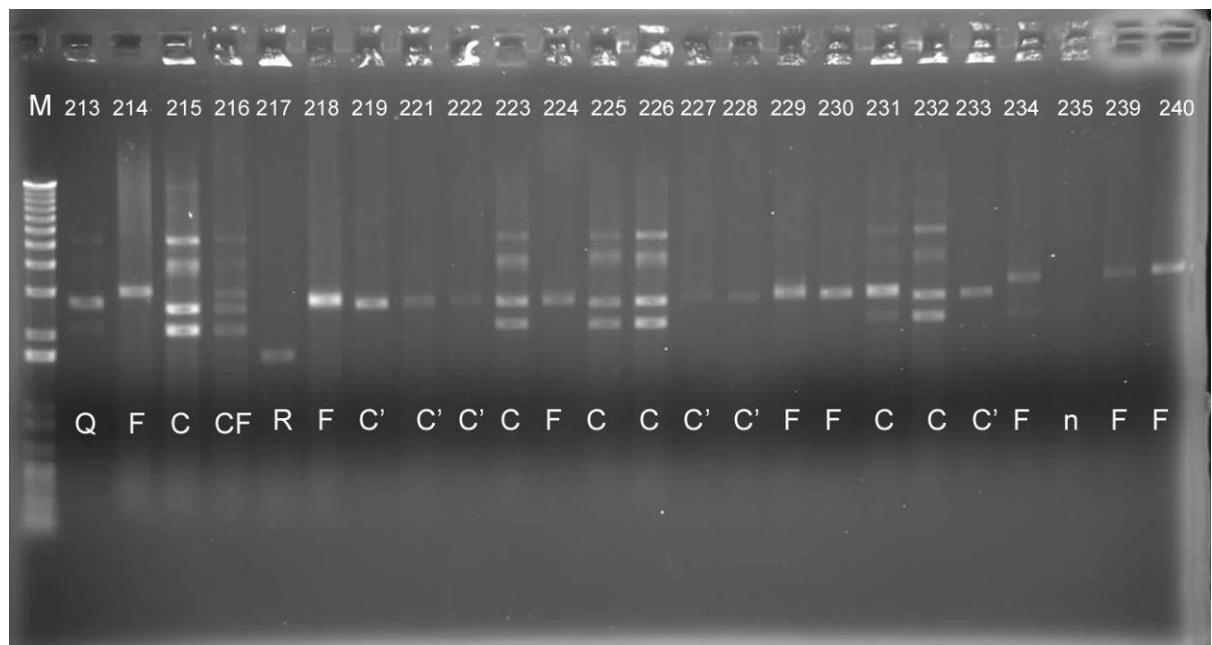
ตารางที่ 4 ผลการตรวจ resistance gene cassette ใน class 1 integrons จากเชื้อ *E.coli* และ *Salmonella*

	<i>E.coli</i> (n=35)		<i>Salmonella</i> (n=197)	
	n	%	n	%
<i>aacA4, catB3, dfrA1</i>	1	3	-	-
<i>aadA2, Lnu</i>	2	6	-	-
<i>aadA23</i>	1	3	-	-
<i>dfr17,aadA5</i>	5	14	-	-
<i>dfrA1, aadA1</i>	5	14	-	-
<i>dfrA12-aadA2</i>	16	46	196	99
<i>dfrA17-aadA5</i>	1	3	-	-
<i>dfrV</i>	2	6	-	-
<i>sat-sch_054-aadA2</i>	2	6	-	-

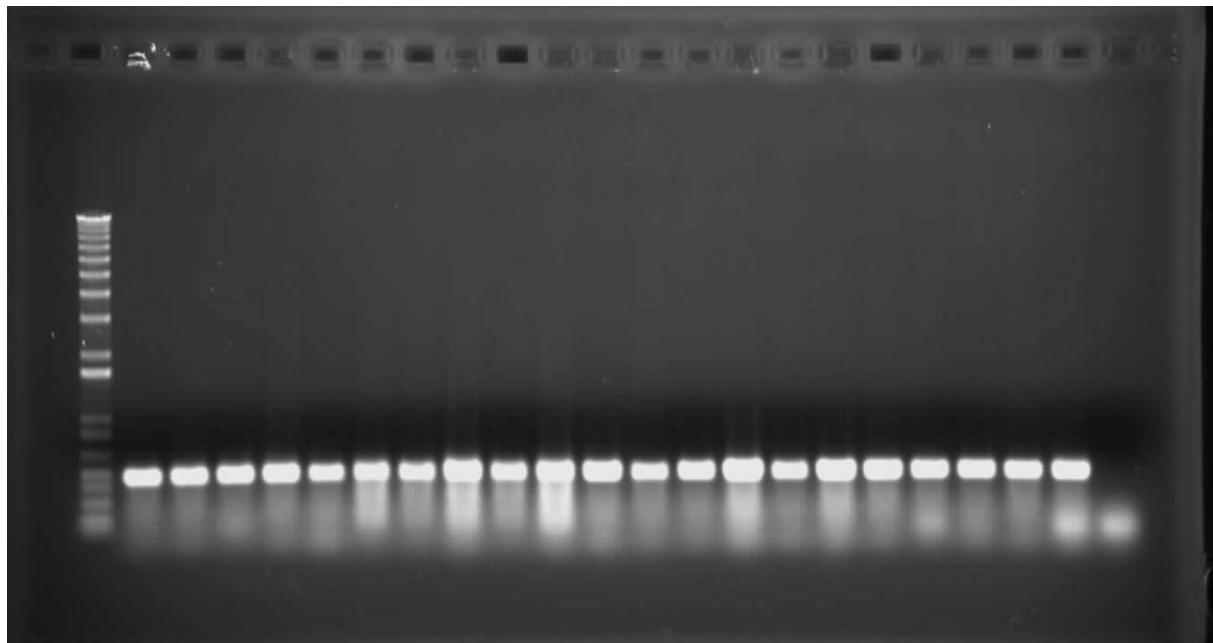
ตารางที่ 5 สัดส่วนเชื้อที่มี class 1 integron และ เป็นเชื้อที่ต้านทานต่อยามากกว่า 2 ชนิด (Multi-resistance)

	No. of <i>E.coli</i>	% <i>E.coli</i>	No. of	% <i>Salmonella</i>
			<i>Salmonella</i>	
n	292	100.0	197	100.0
Class 1 integron	100	34	180	91
Multi-resistance	233	80	187	95
Both*	88	30	174	88

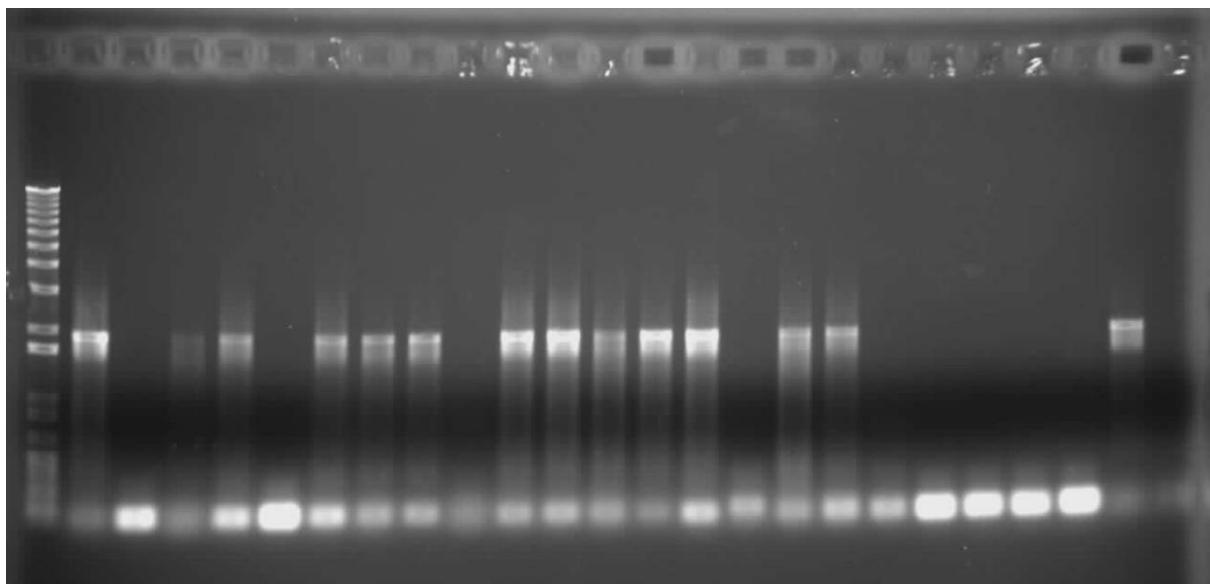
* Fisher's exact test $p < 0.05$

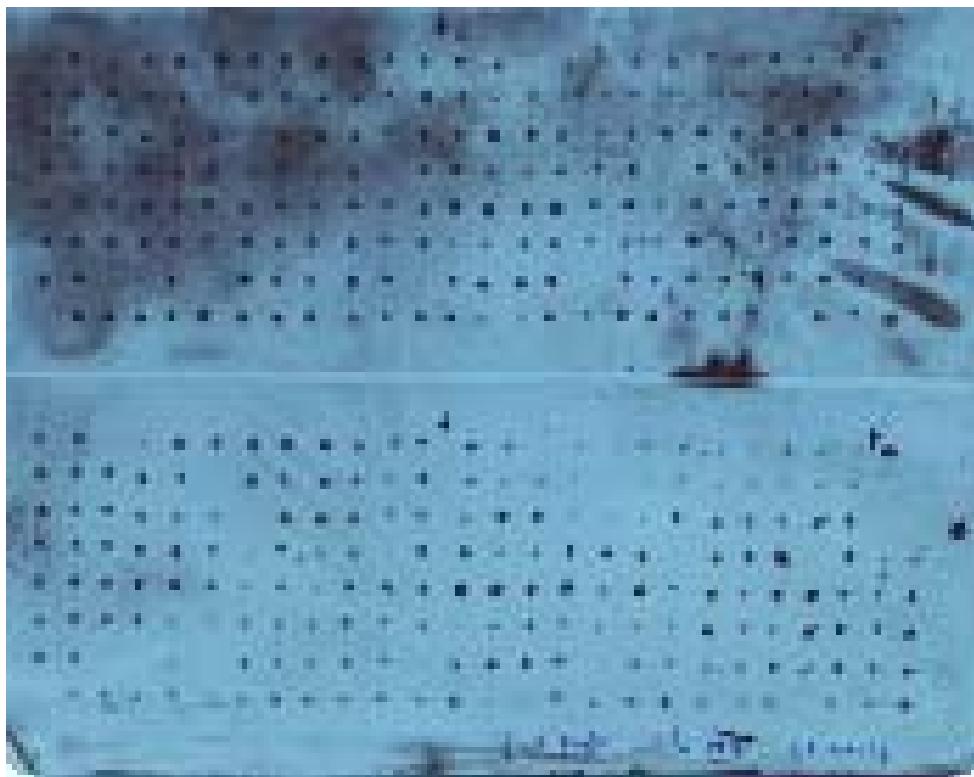

ตารางที่ 6 Serogroup และ Serovar ของเชื้อซัลโมเนลลาที่ทำการศึกษา (MH test p-value = 0.877)

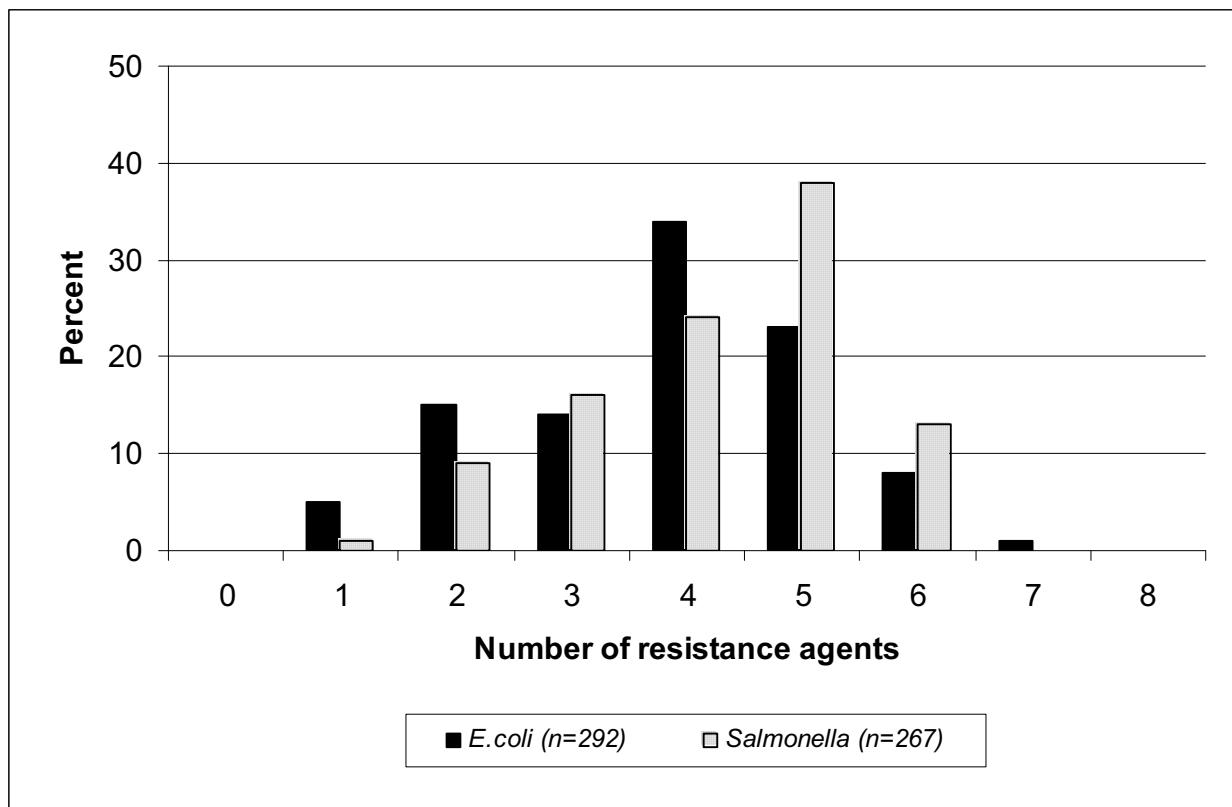
		n	%	%with integrons	%MDR
Serogroup	B	96	34	94	96
	C	139	49	100	93
	D	6	2	100	83
	E	43	15	71	74
Serovar	Rissen	138	49	100	93
	Typhimurium	54	19	97	100
	Stanley	34	12	88	88
	Others	55	20	40	100

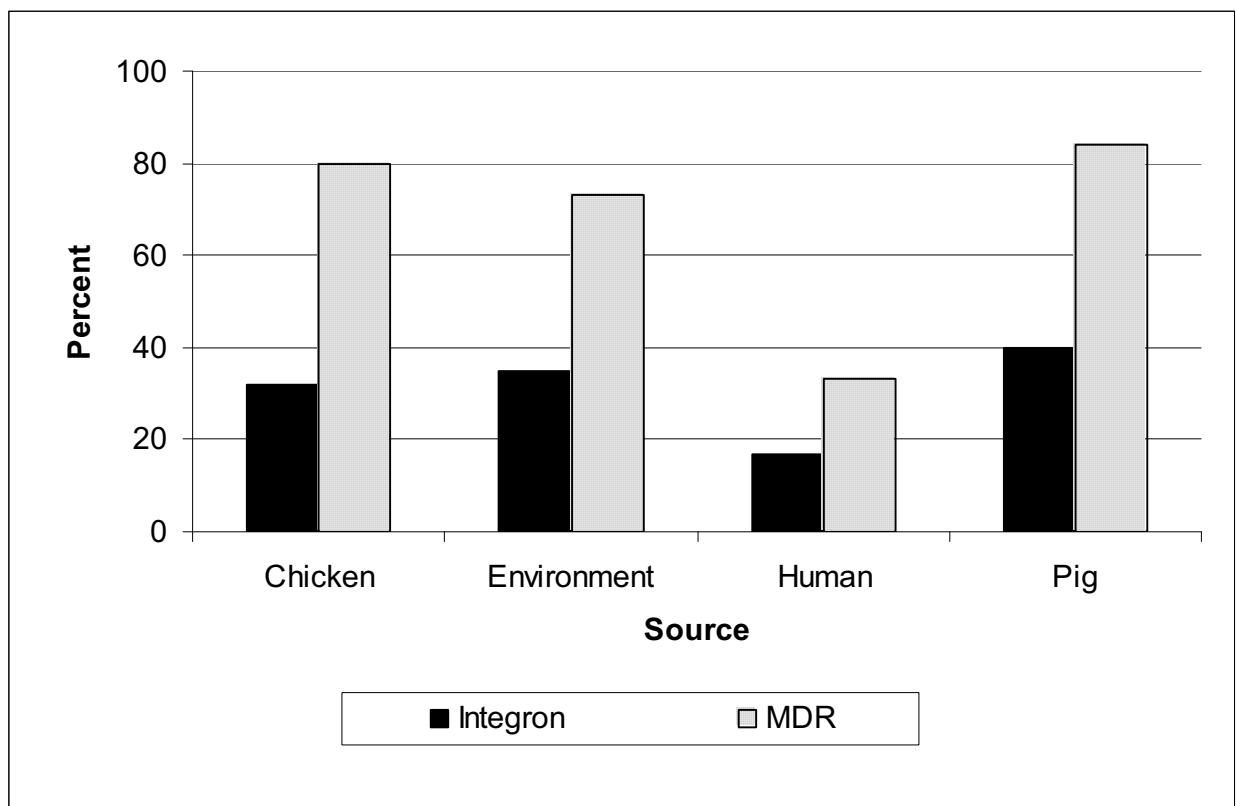

ตารางที่ 7 ความสัมพันธ์ระหว่างการต้านทานต่อ gentamycin และ trimethoprim กับการพบ gene *dfr* และ *aad*

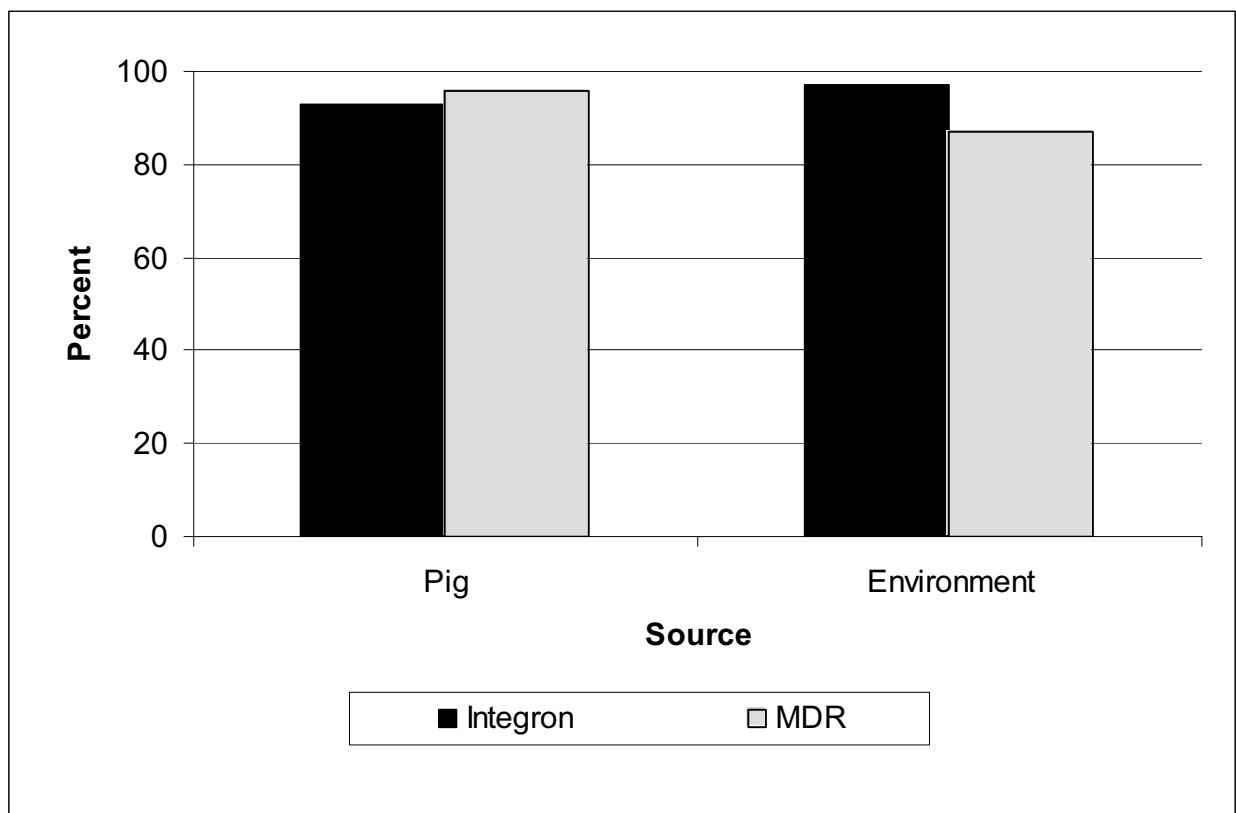
Bacteria	Gene	Agent	% resistance bacteria with resistance gene	p-value
<i>E.coli</i>	<i>aad</i>	Gentamycin	6.25	0.844
	<i>dfr</i>	Trimethoprim	83.3	0.512
<i>Salmonella</i>	<i>aad</i>	Gentamycin	15.2	0.222
	<i>dfr</i>	Trimethoprim	78.8	0.849


แผนภาพที่ 1 ตัวอย่าง plasmid profile ของเชื้อ *Salmonella*


แผนภาพที่ 2 ตัวอย่างผลการทำ PCR โดยการใช้ *int* primers (471 bp product) ของเชื้อ *Salmonella*


แผนภาพที่ 3 ตัวอย่างผลการทำ PCR โดยการใช้ 5'CS และ 3'CS primers ของเชื้อ *Salmonella*


แผนภาพที่ 4 Dot blot hybridization of *Salmonella* DNA using *dfrA12-ORF-aadA2* probe


แผนภาพที่ 5 การกระจายของเชื้อ *E.coli* และ *Salmonella* ตามจำนวนยาที่มีความต้านทาน

แผนภาพที่ 6 สัดส่วนเชื้อ *E.coli* ที่มี class 1 integron และ เป็นเชื้อที่ต้านทานต่อยามากกว่า 2 ชนิด (MDR) จากแหล่งต่างๆ (MH test p-value = 0.073)

แผนภาพที่ 7 สัดส่วนเชื้อ *Salmonella* ที่มี class 1 integron และ เป็นเชื้อที่ต้านทานต่อยามากกว่า 2 ชนิด (MDR) จากแหล่งต่างๆ (MH test p-value = 0.087)

ภาคผนวก ก ร่างบทความเพื่อส่งตีพิมพ์ใน Journal of antimicrobial chemotherapy (อยู่ในระหว่างการตรวจแก้ไขโดยคณะกรรมการผู้วิจัย)

Mechanism of antimicrobial resistance in *Escherichia coli* and *Salmonella* from food animals in northern Thailand.

Padungtod, P.^{1*}, Tribuddharat, C.², Chuanchuen, R.³ and Boonmar, S.⁴

¹ Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.

² Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University

³ Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University

⁴ Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Kasetsart University

Abstract

It has been shown that antimicrobial resistance can be commonly found in foodborne bacteria. Spreading of resistance genes via mobile genetic elements such as integrons may be an important mechanism. Our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from food animals and farm environment in northern Thailand. *E.coli* isolates were collected from broiler farms, fattening pig farms and children with diarrhea. While *Salmonella* isolates were collected from pig farms only. Resistance to ceftiofur, chloraphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline were determined using disk diffusion technique. Detection of class I integrase genes (intI1), 3'conserved regions and other resistance gene cassettes was conducted using polymerase chain reaction and confirmed with restriction endonuclease analysis (REA) , Western blot and nucleotide sequencing.

Resistance to Erythromycin, Oxacillin, Tetracycline and Sulfa-Trimethoprim were prevalent among *E.coli* and *Salmonella*. No *Salmonella* was found to have resistance to Enrofloxacin nor Ceftiofur. Upto 80% of *E.coli* and 91% of *Salmonella* were resistance to more than 2 antimicrobial agents(MDR). Class 1 Integron was identified in 34% of *E.coli* and 95% of *Salmonella* tested. Of 233 MDR *E.coli* 80% had integrons. While 97% of the 180 MDR *Salmonella* had integrons. Possession of integrons was significantly associated with being resistance to more than 2 agents in both *E.coli* ($p < 0.014$) and *Salmonella* ($p = 0.006$). The 2 kb conserved sequence (CS) was observed in 53%of *E.coli*. The most frequently found integron profile was *dfrA12 – aadA2*. Higher proportion of *Salmonella* isolated from the environment possess integron compared to those isolated from pigs, but MDR was found more frequently in pig. Again *dfrA12-aadA2* integron profile was confirmed in 99% of *Salmonella*.

In conclusion, high level of antimicrobial resistance was found in *E.coli* and *Salmonella* isolates from food animals in northern Thailand. And the molecular mechanism for transferation of resistance was abundance particularly in *Salmonella*. Food animals may be an important carrier of mobile molecular mechanism of resistance to antimicrobial agents in northern Thailand. However, resistance to certain agent may require other mechanism not associated with class 1 integron.

INTRODUCTION

Salmonella and *E.coli* are important pathogen causing diarrhea in children age less than 5 years old in Thailand^{1,2}. And food of animal origin was shown to be an important source of these bacteria^{3,4}. While rotavirus may be the most frequently found etiologic agent of diarrhea in children in Thailand and neighbouring countries^{2,5,6}, *Salmonella* was a predominant etiologic agent for bacteraemia particularly in immuno-compromised patients⁷. Furthermore, some of these bacteria may be resistant to various antimicrobial agents as a result of sub-therapeutic use of these agents in livestock production⁸. Previous study in Thailand showed the clonal relationship between *Salmonella* found in human and food animals⁹. Furthermore, antimicrobial resistance is common in farming community in Thailand¹⁰, where they may be resistance to the newer generation of antimicrobial agents for treating severe diarrhea or gastroenteritis such as ciprofloxacin¹¹ and azithromycin¹². Therefore, infection by these resistant bacteria from food animals may be difficult to treat in patients who require antimicrobial treatment. Similar resistance to antimicrobial agents has also been observed in the neighbouring countries including Vietnam¹³,

Nowday, several bacteria may possess sophisticate antimicrobial resistance genes including the efflux pumps, alteration of membrane, regulation of porin and drug inactivation enzymes¹⁴. These resistance genes may accumulate on mobile genetic element such as integrons¹⁵, which may facilitate spreading of resistance genes to antimicrobialagents¹⁶ or other antiseptic¹⁷ without antimicrobial pressure. Recent molecular epidemiological studies showed that these bacteria may be transmitted from food animals to humans through food processing procedures^{18,19}, and genes conferring antimicrobial resistance may be transmitted to humans and to other pathogenic bacteria via mobile genetic elements, presenting the potential to spread across the globe²⁰.

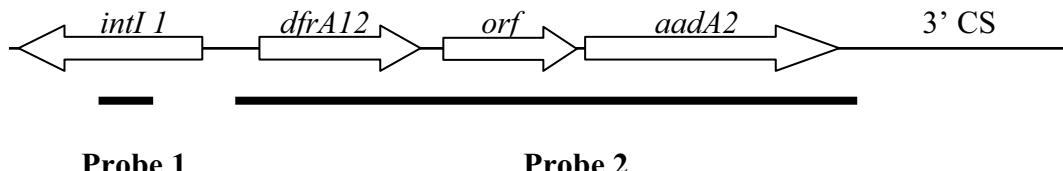
Class 1 integrons has been identified in *E.coli* and *Salmonella* isolated from food animals in Thailand²¹⁻²³ and several other countries in Asia^{24,25} Europe²⁶ America^{27,28} and Africa²⁹. However, there was limited reports of resistant gene cassette found on the integrons in Thailand^{21,23} and Vietnam³⁰. In order to fully determine the contribution of mobile genetic element confering resistance in Thailand, our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from food animals and farm environment in northern Thailand.

MATERIALS AND METHODS

Bacterial isolates (isolation and identification)

E.coli and *Salmonella* used in this study were collected from farming community in Chiangmai area during 2000 to 2006. Isolation and identification of the bacteria was done at the faculty of Veterinary Medicine, Chiangmai University using standard method.

Antimicrobial susceptibility testing


Antimicrobial susceptibility test was done using disk diffusion method³¹. USNARMS breakpoints were used to categorized the bacteria into resistance isolates³². Multidrug resistance (MDR) was defined as isolates being resistant to 3 or more different classes of antibiotics. *E. coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29212 were used as control organisms.

Detection and characterization of integron

All isolates were screened for the presence of *intI1* class 1 integrase gene using specific primers (5'-AAGGATCGGGCCTTGATGTT-3' and 5'-CAGCGCATCAAGCGGTGAGC-3'). Inserted gene cassette region of class 1 integrons were detected by CS-PCR using the 5'-CS and 3'-CS primer pair (5'-GGCATCCAAGCAGCAAG-3' and 5'-AAGCAGACTTGACCTGA-3'). The resulting DNA sequence data were compared to the GenBank Database using the Blast algorithm (www.ncbi.nlm.nih.gov).

E.coli CS-PCR amplicons of the same size were analyzed by restriction fragment-length polymorphism (RFLP) analyses. The PCR products were restricted with at least two different restriction endonuclease enzymes including EcoRI, BamHI, XbaI, BgIII, NcoI and DpnI and separated in a 1.5-2% agarose gel.

Salmonella CS-PCR amplicon were subjected to dot-blot hybridization. The reaction was performed using Fluorescein random priming kit (Roche) with probe 1 (int) and 2 (dfrA12-orf-aadA2) as shown below. CSPD was used as substrate to develop black spot on X-ray film.

RESULTS

Resistance to Erythromycin, Oxacillin, Tetracycline and Sulfa-Trimethoprim were prevalent among *E.coli* and *Salmonella*. No *Salmonella* was found to have resistance to Enrofloxacin nor Ceftiofur. Resistance to aminoglycoside such as gentamycin was found at low level.

Upto 80% of *E.coli* and 91% of *Salmonella* were resistance to more than 2 antimicrobial agents (Multidrug resistance - MDR). *E.coli* were most frequently resistance to 4 agents, while *Salmonella* were most frequently resistance to 5 agents.

Integron was identified in 35% of *E.coli* and 95% of *Salmonella*. Of 233 MDR *E.coli* only 38% had integrons. While 97% of the 180 MDR *Salmonella* had integrons.

Both integrons and MDR *E.coli* were commonly found in various source. Possession of integrons was significantly associated($p = 0.014$) with being resistance to more than 2 agents (MDR).

The 2 kb conserved sequence (CS) was observed in 53% of *E.coli*. RFLP analysis of *E.coli* conserved sequence and nucleotide sequencing showed 9 integron profiles. The most frequently found profile was *dfrA12 – aadA2*.

The majority of *Salmonella* in this study were S. Rissen or group C. Integrons and MDR were commonly found in all serovar examined. Higher proportion of *Salmonella* isolated from the environment possess integron compared to those isolated from pigs, but MDR was found more frequently in pig. Possession of integrons was also significantly associated ($p = 0.006$) with being resistance to more than 2 agents (MDR).

The 1.9 kb CS fragment was observed in 72% of *Salmonella* tested. Again *dfrA12-aadA2* integron profile was confirmed in 97% of *Salmonella* using dot-blot hybridization.

DISCUSSION AND CONCLUSION

Integrons are genetic element capable of capturing genes cassettes through recombination. These element comprise recombinase gene (*int1*), which is used for identification and typing¹⁵. The conserved sequence of integrons obtained from *E.coli* were sequenced, and specific integron profile were obtained. However, Similar procedures were not possible with several integrons obtained from *Salmonella*. Therefore, it is possible that not all resistance genes were identified.

Previous study in *E.coli* isolated from calves in China also identify *dfrA* as the most prevalent gene cassette found in integrons³³, which is similar to our finding. *dfrA* were commonly found in both *E.coli* and *Salmonella*, which may confer resistance to trimethoprim by production of dihydrofolate reductase³⁴. *aadA* was also commonly found in *E.coli* and *Salmonella*. Unfortunately we did not test the susceptibility against streptomycin nor spectinomycin.

There were several MDR *E.coli* which did not possess integrons, therefore there may be other method of resistance dissemination or accumulation. While integrons was common in *Salmonella*, which may facilitate the spread of resistance gene cassette harbour in either the food animal or farm environment³⁵. Other mechanism of resistance apart from those residing on mobile genetic element should also be investigated along with further investigation of gene cassette may reveal the mechanism of dissemination or accumulation of resistance genes in these bacteria.

ACKNOWLEDGEMENT

This study was supported by Thai Research Fund (TRG4800001). The author would like to thank the Center for Comparative Epidemiology at Michigan State University and the Veterinary Public Health Center for Asia Pacific (VPH_CAP) at Chiangmai University for providing part of the bacteria and susceptibility test result.

REFERENCES

1. Thepsoontorn S, Hinjoy S, Bangtrakulnonth A et al. Epidemic features of bacterial infections among patients with acute diarrhea in hospitals. *Journal of health science* 2005; **14**: 182-93.
2. Pruksananonda P, Athirakul K, Worawattanakul M et al. Diarrhea among children admitted to a private tertiary-care hospital, Bangkok, Thailand: a case series. *Southeast Asai journal of tropical medicine and public health* 2008; **39**: 434-42.
3. Rasrinaul L, Suthienkul O, Echeverria PD et al. Foods as a source of enteropathogens causing childhood diarrhea in Thailand. *Am J Trop Med Hyg* 1988; **39**: 97-102.
4. Vindigni S, Srijan A, Wongstitwairoong B et al. Prevalence of foodborne microorganisms in retail foods in Thailand. *Foodborne pathogenic diseases* 2007; **4**: 208-15.
5. Phetsouvanh R, Midorikawa Y, Nakamura S. The seasonal variation in the microbial agents implicated in the etiology of diarrheal diseases among children in Lao people's Democratic Republic. *Southeast Asai journal of tropical medicine and public health* 1999; **30**: 319-23.
6. Vu-Nguyen T, Le-Van P, Le-Huy C et al. Etiology and epidemiology of diarrhea children in Hanoi, Vietnam. *International journal of infectious diseases* 2006; **10**: 298-308.
7. Kiratisin P. Bacteraemia due to non-typhoidal *Salmonella* in Thailand: clinical and microbiological analysis. *Trans R Soc Trop Med Hyg* 2008; **102**: 384-8.
8. Aarestrup F, Bager F, Anderson J. Association between the use of avilamycin for growth promotion and the occurrence of resistance among *Enterococcus faecium* from broilers: epidemiological study and changes over time. *Microbial drug resistance* 2000; **6**: 71-5.
9. Pornreongwong S, Sriyapai T, Pulsrikarn C et al. The epidemiological relationship between *Salmonella enterica* serovar typhimurium and *Salmonella enterica* serovar 4,[5], 12:i:- isolates from human and swine in Thailand. *Southeast Asai journal of tropical medicine and public health* 2008; **39**: 288-96.
10. Hanson R, Kaneene J, Padungtod P et al. Prevalence of *Salmonella* and *E.coli* and their resistance to antimicrobial agent, in farming communities in Northern Thailand. *Southeast Asai journal of tropical medicine and public health* 2002; **33**: 120-6.
11. Padungtod P, Kaneene JB, Wilson DL et al. Determination of ciprofloxacin and nalidixic acid resistance in *Campylobacter jejuni* with a fluorogenic polymerase chain reaction assay. *J Food Prot* 2003; **66**: 319-23.
12. Murphy GS, Jr., Echeverria P, Jackson LR et al. Ciprofloxacin- and azithromycin-resistant *Campylobacter* causing traveler's diarrhea in U.S. troops deployed to Thailand in 1994. *Clin Infect Dis* 1996; **22**: 868-9.
13. Isenbarger D, Hoge C, Srijan A et al. Comparative antibiotic resistance of diarrhea pathogens from Veitnam and Thailand,1996-1999. *Emerging infectious diseases* 2002; **8**: 175-80.
14. Gootz T. The forgotten gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. *Biochemical pharmacology* 2005; **In press**.

15. Depardieu F, Podglajen I, Leclercq R et al. Modes and modulations of antibiotic resistance gene expression. *Clinical microbiology reviews* 2007; **20**: 79-114.
16. Bischoff K, White D, Hume M et al. The chloramphenicol resistance gene *cmlA* is disseminated on transferable plasmids that confer multiple-drug resistance in swine *Escherichia coli*. *FEMS microbiology letters* 2005; **243**: 285-91.
17. Chuanchuen R, Khemtong S, Padungtod P. Occurrence of *qacE/qacD1* genes and their correlation with class 1 integrons in *Salmonella enterica* isolates from poultry and swine. *Southeast Asian journal of tropical medicine and public health* 2007; **38**: 855-62.
18. Wang H, Manuzon M, Lehman M et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. *FEMS microbiology letters* 2006; **254**: 328.
19. Padungtod P, Kaneene JB, Hanson R et al. Antimicrobial resistance in *Campylobacter* isolated from food animals and humans in northern Thailand. *FEMS Immunol Med Microbiol* 2006; **47**: 217-25.
20. Archambault M, Petrov P, Hendriksen R et al. Molecular characterization and occurrence of extended-spectrum B-Lactamase resistance genes among *Salmonella enterica* serovar Corvallis from Thailand, Bulgaria and Denmark. *microbial drug resistance* 2006; **12**: 192-8.
21. Khemtong S, Chuanchuen R. Class 1 integrons and *Salmonella* genomic island 1 among *Salmonella enterica* isolated from poultry and swine. *Microbial drug resistance* 2008; **14**: 65-70.
22. Phongpaichit S, Wuttananupan K, Samasanti W. Class1 integrons and multidrug resistance among *Escherichia coli* isolates from human stools. *Southeast Asian journal of tropical medicine and public health* 2008; **39**: 279-87.
23. Pongpech P, Naenna N, Taipobsakul Y et al. Prevalence of extended-spectrum beta-lactamase and class 1 integron integrase gene *intl1* in *Escherichia coli* from Thai patients and healthy adults. *Southeast Asian journal of tropical medicine and public health* 2008; **39**: 425-33.
24. Cui S, Li J, Sun Z et al. Ciprofloxacin-resistant *Salmonella enterica* serotype Typhimurium, China. *Emerging infectious diseases* 2008; **14**: 493-5.
25. Vo A, VanDuijkeren E, Fluit A et al. Antimicrobial resistance, class 1 integrons and a novel variant of genomic island 1 in *Salmonella* isolates from Vietnam. *Antimicrobial agents chemotherapy* 2007.
26. VanEssen-Zandbergen A, Smith H, Veldman K et al. Occurrence and characteristics of class 1, 2 and 3 integrons in *Escherichia coli*, *Salmonella* and *Campylobacter* spp. in the Netherlands. *Journal of antimicrobial chemotherapy* 2007; **59**: 746-50.
27. Srinivasan V, Gillespie B, Nguyen L et al. Characterization of antimicrobial resistance patterns and class 1 integrons in *Escherichia coli* O26 isolated from humans and animals. *International journal of antimicrobial agents* 2007; **29**: 254-62.
28. O`Mahony R, Quinn T, Drudy D et al. Antimicrobial resistance in nontyphoidal *Salmonella* from food sources in Colombia : evidence for an unusual plasmid localized class 1 integron in serotypes Typhimurium and Anatum. *Microbial drug resistance* 2006; **12**: 269-77.

29. Molla B, Miko A, Pries K et al. Class 1 integrons and resistance gene cassettes among multidrug resistant *Salmonella* serovars isolated from slaughter animals and food of animal origin in Ethiopia. *Acta tropica* 2007; **103**: 142-9.
30. Van T, Moutafis G, LT T et al. Antibiotic resistance in food-borne bacterial contaminants in Vietnam. *Applied and environmental microbiology* 2007; **73**: 7906-11.
31. CLSI. *Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M7-A5)*. Wayne, PA: NCCLS, 2000.
32. NARMS. Veterinary isolates table of content. <http://wwwfdagov/cvm/index/narms/narmshtml> 2003.
33. Du X, Shen Z, Wu B et al. Characterization of class 1 integrons-mediated antibiotic resistance among calf pathogenic *E.coli*. *FEMS microbiology letters* 2005; **245**: 295-8.
34. Michael G, Butaye P, Cloeckaert A et al. Genes and mutations conferring antimicrobial resistance in *Salmonella*: An update. *Microb and Infection* 2006; **8**: 1898-914.
35. Nandi S, Maurer J, Hofacre C et al. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. *Proceeding of the National Academy of Science* 2004; **101**: 7118-22.

ภาคผนวก ข ICID 13th poster วันที่ 18 มิย 2551 ณ ประเทศไทย

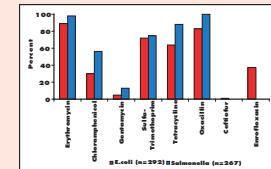
Mechanism of antimicrobial resistance in *Escherichia coli* and *Salmonella* from food animals in Thailand.

Padungtod, P.*, Tribuddharat, C.**, Chuanchuen, R.***

* Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand. padungtod@chiangmai.ac.th

** Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University

*** Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University

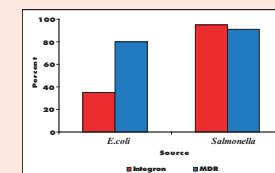

Abstract

It has been shown that antimicrobial resistance can be commonly found in foodborne bacteria. Spreading of resistance genes via mobile genetic elements such as integrons may be an important mechanism. Our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from food animals and farm environment in northern Thailand. Resistance to cefotiofur, chloramphenicol, enrofloxacin, erythromycin, gentamicin, oxacillin, trimethoprim-sulfamethoxazole and tetracycline were determined using disk diffusion technique. Detection of class 1 integrase genes (*intI1*), 3' conserved regions and other resistance gene cassettes was conducted using polymerase chain reaction and confirmed with restriction fragment-length polymorphism (RFLP) and nucleotide sequencing.

Resistance to Erythromycin, Oxacillin, Tetracycline and Sulfa-Triphethoprim were prevalent among *E. coli* and *Salmonella* as shown in Figure 1. No *Salmonella* was found to have resistance to Enrofloxacin nor Cefotiofur. Upto 80% of *E. coli* and 91% of *Salmonella* were resistance to more than 2 antimicrobial agents. Integron was identified in 35% of *E. coli* and 95% of *Salmonella*. Of 233 MDR *E. coli* only 38% had integrons. While 97% of the 180 MDR *Salmonella* had integrons. Possession of integrons was significantly associated (McNemar test $p = 0.000$) with being resistance to more than 2 agents (MDR) in both *E. coli* and *Salmonella*. The 2 kb conserved sequence (CS) was observed in 53% of *E. coli*. RFLP analysis of *E. coli* conserved sequence and nucleotide sequencing showed 9 integron profiles. The most frequently found profile was *dfrA12-aadA2* (Table 2 and Figure 5).

Figure 1 Proportion of Bacteria with resistance to antimicrobial agents

Figure 2 Proportion of bacteria versus number of resistance agents



Upto 80% of *E. coli* and 91% of *Salmonella* were resistance to more than 2 antimicrobial agents (Multidrug resistance) as shown in Figure 2. *E. coli* were most frequently resistance to 4 agents, while *Salmonella* were most frequently resistance to 3 agents.

Figure 2 Proportion of bacteria versus number of resistance agents

Integron was identified in 35% of *E. coli* and 95% of *Salmonella*. Of 233 MDR *E. coli* only 38% had integrons. While 97% of the 180 MDR *Salmonella* had integrons (Figure 3).

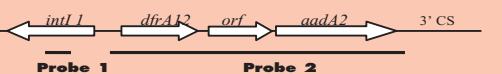
Figure 3 Proportion of bacterial with integrons and Multidrug resistance (MDR)

Introduction

Salmonella and *E. coli* are important pathogen causing diarrhea in children age less than 5 years old in Thailand (Thepsontorn et al., 2005). And food of animal origin was shown to be an important source of these bacteria (Rasrinual et al., 1988). Previous study in Thailand showed that antimicrobial resistance is common in farming community in Thailand (Hanson et al., 2002), where resistance may accumulate under the pressure of antimicrobial used during food animal production (Padungtod and Kaneene, 2006). Nowadays, several bacteria may possess sophisticated antimicrobial resistance genes including the efflux pumps, alteration of membrane, regulation of porin and drug inactivation enzymes (Goetz, 2005). These resistance genes may accumulate on mobile genetic element such as integrons (Depardieu et al., 2007), which may facilitate spreading of resistance genes without antimicrobial pressure (Bischoff et al., 2005). Recently, class 1 integrons has been identified in *E. coli* and *Salmonella* isolated from food animal in Thailand (Phengpaichit et al., 2007; Khemtong and Chuanchuen, 2008). Our study was designed to investigate the presence of integrons and resistance gene cassettes, and determine the relationship between gene cassette and antimicrobial resistance in *E. coli* and *Salmonella* isolated from food animals and farm environment in northern Thailand.

Material and method

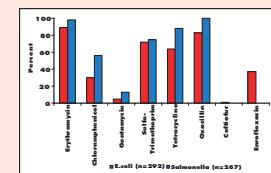
Table 1 showed the number of *E. coli* and *Salmonella* used in this study. The bacteria were collected from farming community in Chiangmai area during 2000 to 2006. Isolation and identification of the bacteria was done at the faculty of Veterinary Medicine, Chiangmai University using standard method.


Table 1 Number of bacteria used

Bacteria	Source	n	%
<i>E. coli</i>	Chicken	183	63
	Environment	26	9
	Human	6	2
	Pig	75	26
Total	290		
<i>Salmonella</i>	Pig	117	41
	Environment	167	59
Total	284		

Antimicrobial susceptibility test was done using disk diffusion method (CLSI, 2000). USNARMS breakpoints were used to categorized the bacteria into resistance isolates (NARMS, 2003). Multidrug resistance (MDR) was defined as isolates being resistant to 3 or more different classes of antibiotics. *E. coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29212 were used as control organisms. All isolates were screened for the presence of *intI1* class 1 integrase gene using specific primers (5'-AAGGATCGGGCTTGATGTT-3' and 5'-CAGCGCATCAAGCGGTGAGC-3') Inserted gene cassette region of class 1 integrons were detected by CS-PCR using the 5'-CS and 3'-CS primer pair (5'-GGC ATC CAA GCA GCA AG-3' and 5'-AAG CAG ACT TGA CCT GA-3'). The resulting DNA sequence data were compared to the GenBank Database using the Blast algorithm. (www.ncbi.nlm.nih.gov).

E. coli CS-PCR amplicons of the same size were analyzed by restriction fragment-length polymorphism (RFLP) analyses. The PCR products were restricted with at least two different restriction endonuclease enzymes including EcoRI, BamHI, BglII, NcoI and DpnI.


Salmonella CS-PCR amplicon were subjected to dot-blot hybridization using plasmid and int and *dfrA12* probes. The reaction was performed using Fluorescein random priming kit (Roche) with probe 1 (int) and 2 (*dfrA12-orf-aadA2*) as shown below. CSDP was used as substrate to develop black spot on X-ray film.

Results

Resistance to Erythromycin, Oxacillin, Tetracycline and Sulfa-Triphethoprim were prevalent among *E. coli* and *Salmonella* as shown in Figure 1. No *Salmonella* was found to have resistance to Enrofloxacin nor Cefotiofur. Upto 80% of *E. coli* and 91% of *Salmonella* were resistance to more than 2 antimicrobial agents.

Figure 1 Proportion of Bacteria with resistance to antimicrobial agents

Both integrons and MDR *E. coli* were commonly found in various source as shown in Figure 4. Possession of integrons was significantly associated (McNemar test $p = 0.000$) with being resistance to more than 2 agents (MDR).

The 2 kb conserved sequence (CS) was observed in 53% of *E. coli*. RFLP analysis of *E. coli* conserved sequence and nucleotide sequencing showed 9 integron profiles. The most frequently found profile was *dfrA12-aadA2* (Table 2 and Figure 5).

Figure 4 Proportion of *E. coli* with integrons and resistance to more than 2 agents (MDR)

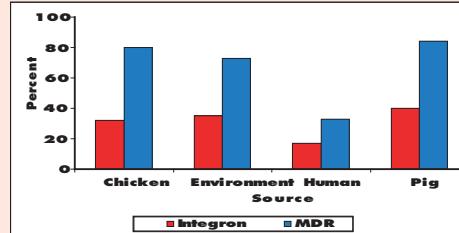
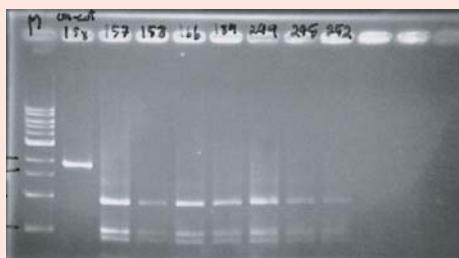
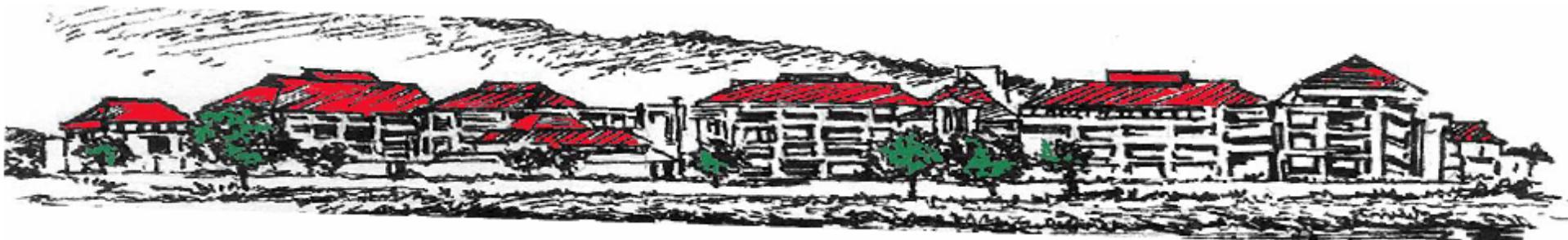



Figure 5 RFLP analysis of *E. coli* conserved sequence showing bands specific to *dfrA12* and *aad* genes on the integrons

ภาคผนวก ค Powerpoint นำเสนอในการประชุมนักวิจัยฯ วันที่ 1 ตค 2551

Mechanism of antimicrobial resistance in *Escherichia coli* and *Salmonella* from food animals in Northern Thailand



Padungtod, P.¹, Tribuddharat, C.², Chuanchuen, R.³

¹ Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.

² Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University

³ Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University

Food safety

SUMMER JOURNEY

The Food Chains That Link Us All

Food is not just what we eat. It is an expression of who we are, how we live, and the world we inhabit

BY MARK KURLANSKY

Illustration by Amy

Photo-illustration for TIME by Dennis Wong. Sushi by David Loftus Limited—StockFood UK

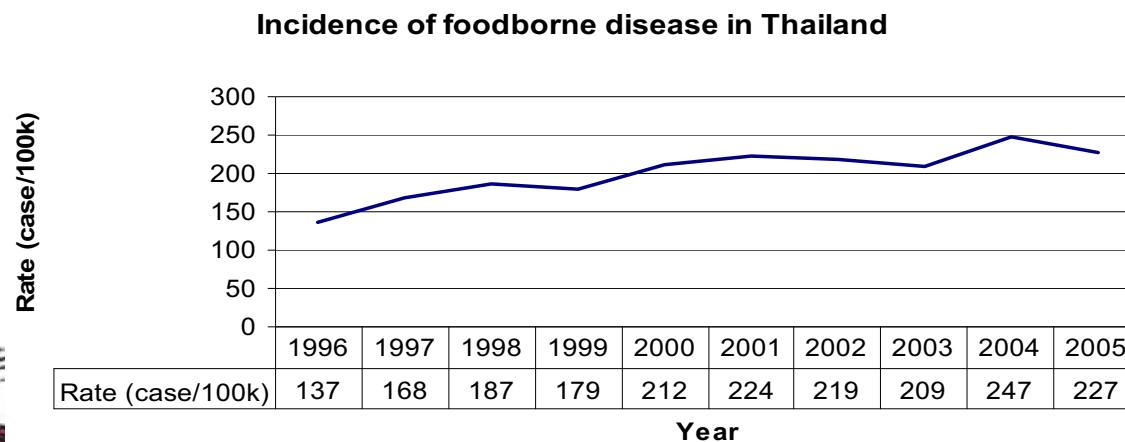
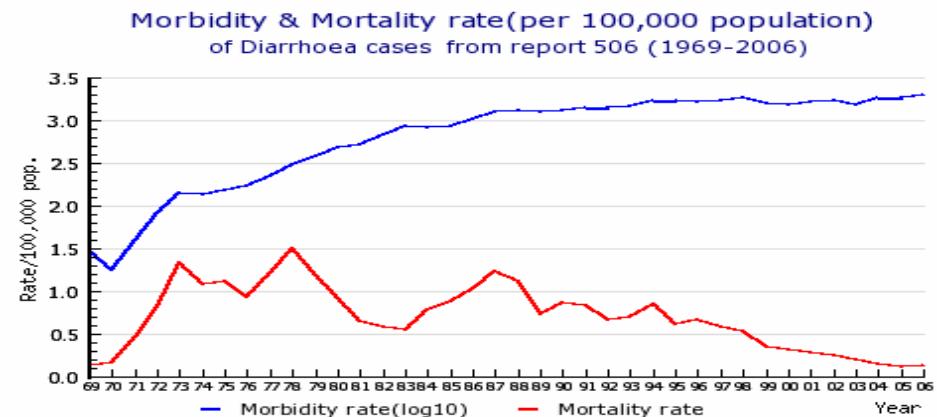
2

SUBSCRIBER COPY NOT FOR RESALE

JUNE 25-JULY 2, 2003

SUMMER JOURNEY SPECIAL ISSUE

TIME



We Are What We Eat

From seaweed to chicken and chili, our food—how we find it, cook it and eat it—tells the story of the modern world

Foodborne disease in Thailand

Ministry of Public Health, 2007

Bacterial diarrhea in Thailand

	% all		% Children
<i>Salmonella</i> spp.	39.9	Rotavirus	28
<i>V. parahaemolyticus</i>	33.1	<i>E. coli</i>	23
<i>E. coli</i>	18.0	<i>C. jejuni</i>	23
<i>Shigella</i> spp.	2.5	<i>Shigella</i>	21
<i>V. cholera</i>	1.8	<i>Salmonella</i>	5

(Thepsuntoorn, 2005)

Salmonella in meat (%)

	Pork	Chicken meat
Thailand	29	57
Lao	66.1	-
Vietnam	70	43
Cambodia	-	-

(Padungtod, 2008)

Antimicrobial resistance

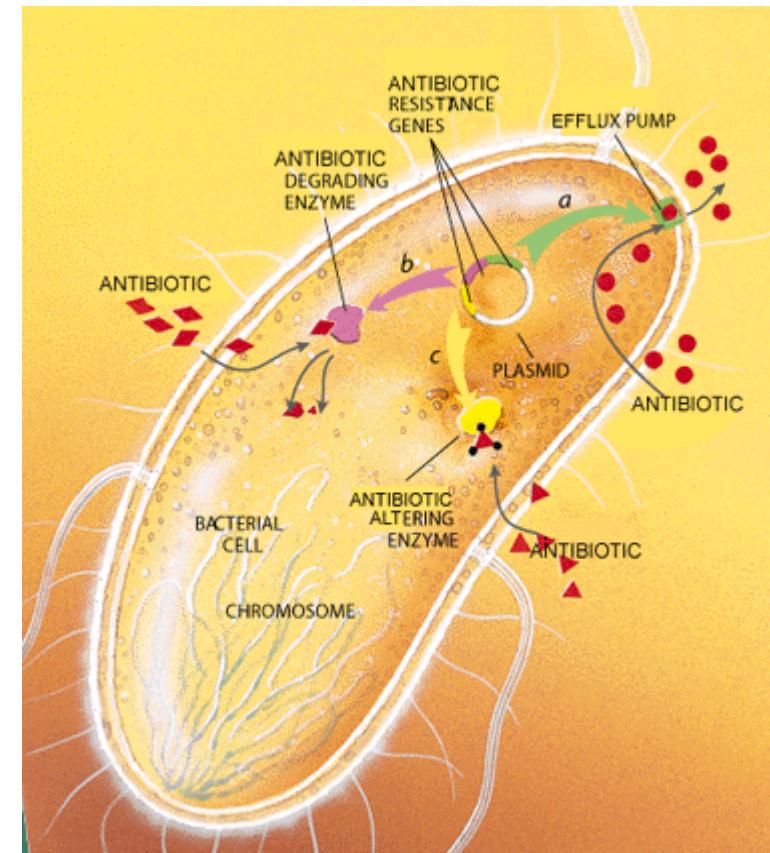
***Salmonella* resistance development**

MDR *Salmonella* →

Antimicrobial in feed selects for resistant strain

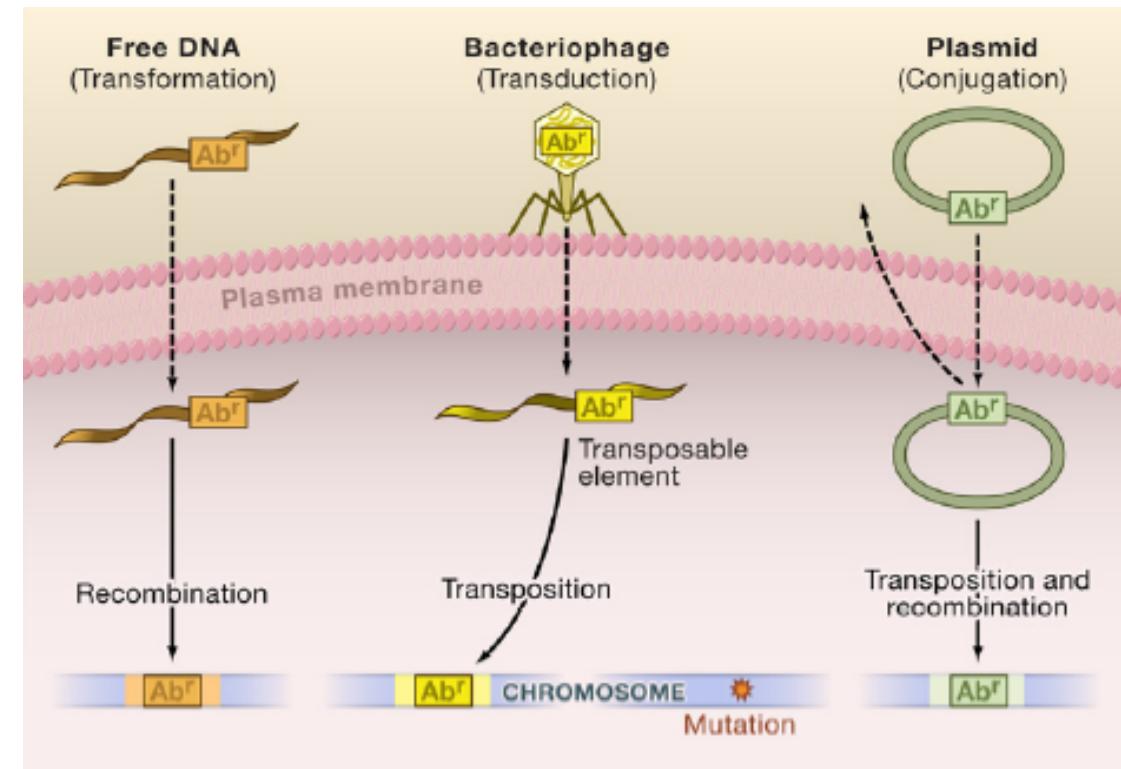
MDR *Salmonella* infected food animals

**MDR *Salmonella*
Other pathogens infected in people**


Veterinary Drugs Directorate, Health Canada (2002)

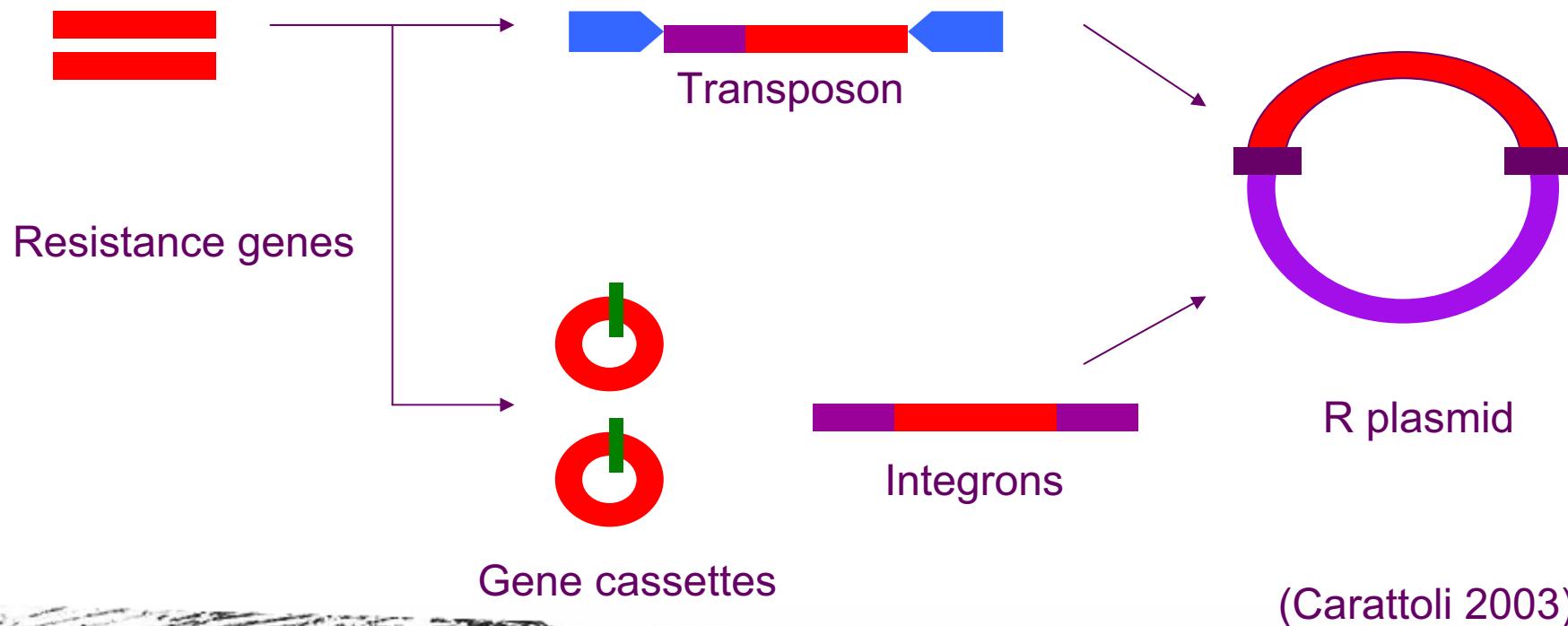
RC 23

Antimicrobial resistance mechanism

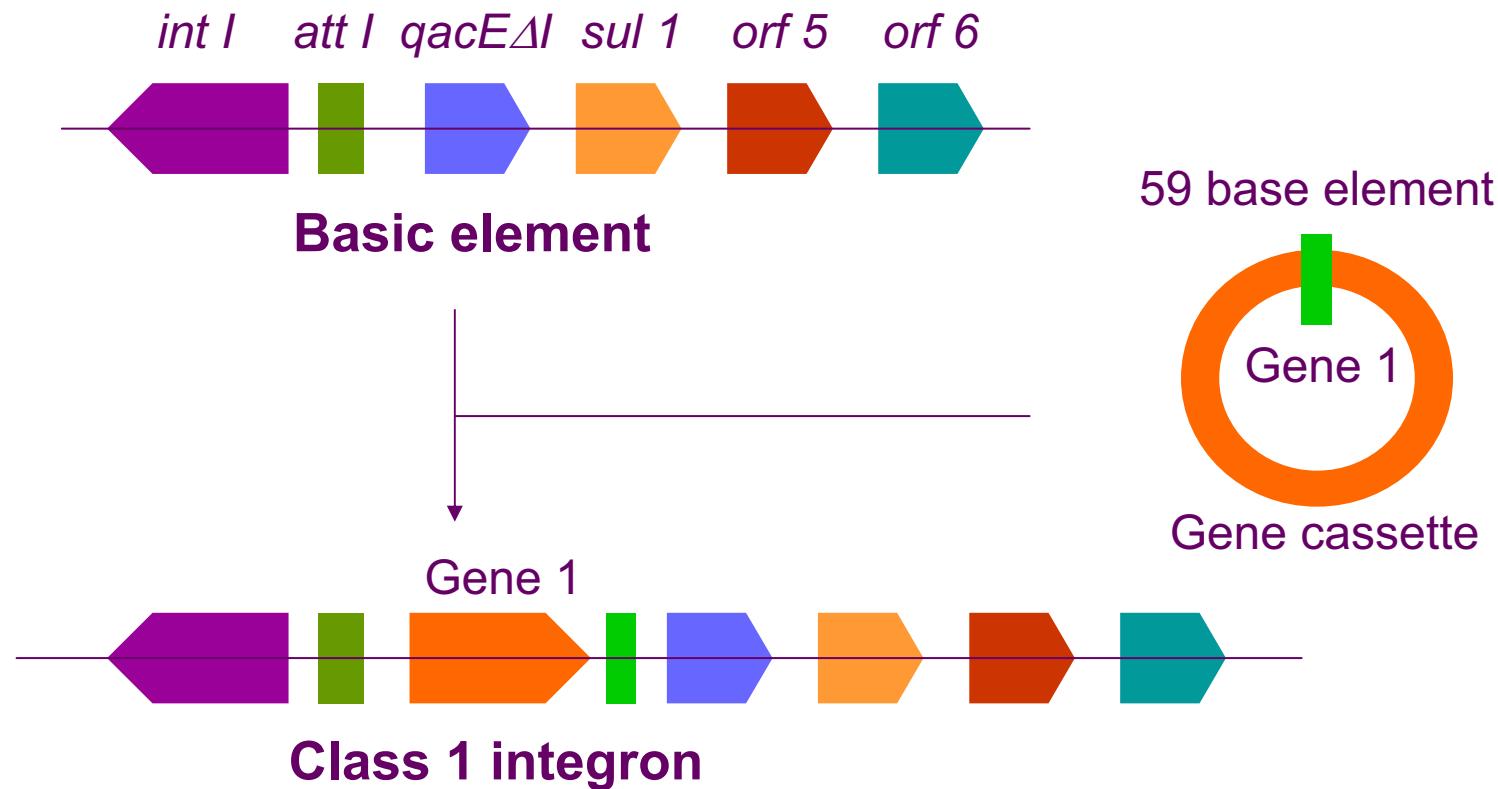

- Efflux pump
- Inactivation
 - Beta lactamase
- Target alteration
 - *gyrA* mutation
- Reduce permeability

Transfer of resistance gene

- Transposons
- Integrons
- *ISCR* (Insertion sequence common region)

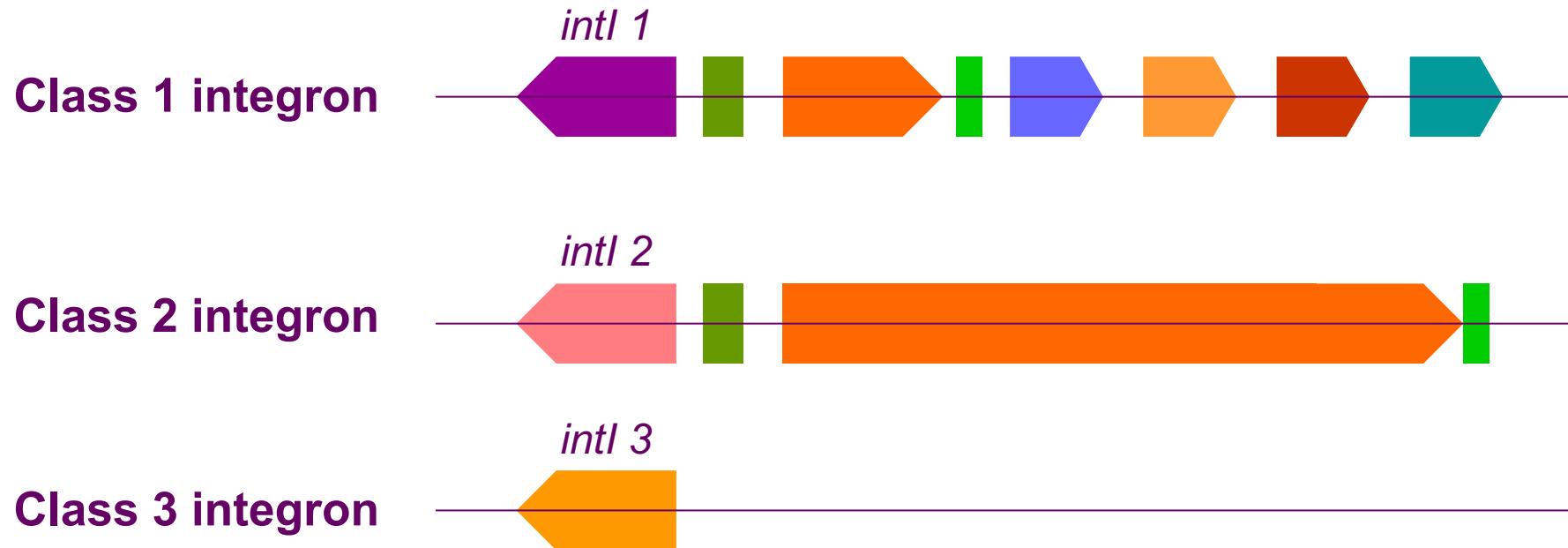


(Alekshun and Levy, 2007)



Resistance Plasmid

Integron



(Bennett, 1999)

Integron

