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  (a)  (b)  (c)  (d) 

Fig. 5.31  Stream function contours of uniform arrangement (V0 = 17.5 kV and N = 5) (a) 

Ra = 104, (b) Ra = 105, (c) Ra = 106, (d) Ra = 107.

  (a)  (b)  (c)  (d) 

Fig. 5.32  Temperature distributions of uniform arrangement (V0 = 17.5 kV and N = 5) (a) 

Ra = 104, (b) Ra = 105, (c) Ra = 106, (d) Ra = 107.
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  (a)  (b)  (c)  (d) 

Fig. 5.33  Stream function contours of unequal number of electrodes (V0 = 17.5 kV and Ra 

= 106) (a) N = 5, (b) N = 9, (c) N = 17, (d) N = 33. 

  (a)  (b)  (c)  (d) 

Fig. 5.34  Temperature distributions of unequal number of electrodes (V0 = 17.5 kV and Ra 

= 106) (a) N = 5, (b) N = 9, (c) N = 17, (d) N = 33. 
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  (a)  (b)  (c)  (d) 

Fig. 5.35  Stream function contours of various electrode arrangements (V0 = 17.5 kV, Ra = 

106, and N = 17) (a) bottom denseness, (b) top denseness, (c) ends denseness, (d) middle 

denseness.

  (a)  (b)  (c)  (d) 

Fig. 5.36  Temperature distributions of various electrode arrangements (V0 = 17.5 kV, Ra = 

106, and N = 17) (a) bottom denseness, (b) top denseness, (c) ends denseness, (d) middle 

denseness.
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Fig. 5.38  Electrode arrangement effect to the heat transfer (V0 = 17.5 kV and N = 17). 

Fig. 5.39  Augmented ratio in relation with aspect ratio (V0 = 17.5 kV and W = 5 cm). 



 84

 Fig. 5.40 conducts the flow and temperature fields of four different electrode 

positions; (x = 3.5 cm, y is between the fins), (x = 3.5 cm, y is on the fin strip), (x = 2.5 cm, 

y is between the fins), and (x = 1.0 cm, y is between the fins) when the numbers of fins and 

electrodes are also kept at seven (V0 = 12.0 kV, Ra = 106, Nf = 7, Ne = 7, Lf = 0.4, and � = 

90�). It can be observed that the third arrangement (Fig. 5.40(c)) performs a maximum 

volume flow rate from a highest velocity along a hot wall compared with other 

arrangement due to the circulation below the fins is relatively stronger and more complete, 

as a result of which the flow around the fins is with a vortex formed on the fins, while the 

last arrangement (Fig. 5.40(d)) yields the pair of vortices which reduces the flow structure 

from a high intensity of electric field. 

 The oscillatory stream function and isotherm line contours for various numbers of 

electrodes as 1, 3, 13, and 26 are expressed in Fig. 5.41 (V0 = 12.0 kV, Ra = 106, Nf = 7, Lf

= 0.4, and � = 90�). Effect of the number of electrodes plays much important role on the 

flow pattern of air inside a vertical channel. It can be observed that the number of vortices 

increases when the number of electrodes is augmenting from 1 to 13, but the vortices are 

combining when the number of electrodes reaches a sufficient value in Fig. 5.41(d) which 

the large vortices occur especially around the extremes of an electrode strip. The isotherm 

lines show a formation of the boundary layer heat transfer along a hot wall. As seen that 

temperature gradient at a hot wall of Fig. 5.41(c) has a highest value, it means that this 

categories also achieves a maximum heat transfer coefficient. Therefore, it can be 

concluded that the number of electrodes has more significant at an optimum value. 

However, it should be compared between the extra received heat transfer and power of 

electrical energy input for an optimized design. 

 A non-equivalent number of fins dominates the different flow patterns to occur in the 

channels of Fig. 5.42 (V0 = 12.0 kV, Ra = 106, Ne = 7, Lf = 0.4, and � = 90�): (a) Nf = 1, (b) 

Nf = 3, (c) Nf = 5, and (d) Nf = 13. Temperature contours along the channel of Fig. 5.42(a) 

is quite similarly with the case of no fin attached from the less remarkable effect by a 

single fin. The separation points over the fins are enhanced accordingly with the number of 

fins. In Fig. 5.43 (V0 = 12.0 kV, Ra = 106, Nf = 7, Ne = 7, and � = 90�): (a) Lf = 0.1, (b) Lf = 

0.2, (c) Lf = 0.6, and (d) Lf = 0.8, a character of the clockwise and counter-clockwise 

rotating vortices is unaltered, with longer fins bringing about more change to the flow 

compared with shorter fins. For shorter fins, almost all positions only change the 

temperature distribution locally and the rest of a hot wall remains unaffected. This is 
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because the primary flow cannot alter too much upon introduction of a short length and the 

fins only change the velocity distribution locally. It is noticed that for Lf > 0.5 (Fig. 5.43(c) 

and (d)), many recirculating vortices are found above the fins and a long length has more 

remarkable effects on the flow field. 

 In Fig. 5.44 (V0 = 12.0 kV, Nf = 7, Ne = 7, Lf = 0.4, and � = 90�), the electrode 

arrangement in Fig. 5.40(c) becomes a most remarkable effect with a rising of the 

convective heat transfer rate due to the fact that it has a minimum thermal boundary layer 

thickness along a channel. Fig. 5.45 demonstrates relation between the heat transfer and 

number of electrodes (V0 = 12.0 kV, Nf = 7, Lf = 0.4, and � = 90�). Nusselt number varies 

accordingly with respect to the number of electrodes. The trend of curve also reaches a 

maximum point at an intermediate number and becomes rising again when the number of 

electrode is rather high from the high intensity of electric field. This phenomenon can be 

analyzed by considering the isotherm line density in Fig. 5.41(c) at N = 13 which found to 

be higher than at N = 1 (Fig. 5.41(a)) due to lower heat trap that causes higher heat transfer 

coefficient. Since the number of electrodes is rather high as N = 26, many vortices are 

formulated along the channel and combined even though there is a good turbulent mixing, 

but the flows are recirculating and oscillating especially around the top and bottom zones. 

Surprisingly, at a high number of electrodes, the Nusselt number is slightly tapered off that 

is not occurred in the case for no fin attached, the reason for which follows the observation 

made in Fig. 5.41 regarding the effect of number of fins and fin length that will be 

discussed later. 

 Fig. 5.46 conduct relation between the heat transfer with the number of fins at the 

same fin length (Ne = 7, Lf = 0.4, and � = 90�). The Nusselt number decreases 

monotonously with the number of fins due to a low convective heat transfer that occurred 

at a high number of fins. The effect of fin length on the electrohydrodynamic enhanced 

heat transfer is conducted in Fig. 5.47 (Nf = 7, Ne = 7, and � = 90�). Nusselt number is also 

a decreasing function of the fin length because it is dominated by the conduction at a long 

fin length but which is considerably improved by the electric field when explaining in term 

of the ratio between EHD per non-EHD. 
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  (a)  (b)  (c)  (d) 

Fig. 5.40  Effect of the electrode arrangement on the flow and temperature fields (V0 = 12.0 

kV, Ra = 106, Nf = 7, Ne = 7, Lf = 0.4, and � = 90�): (a) x = 3.5 cm, y is between the fins, 

��  = 2.0 � 10-4, ��  = 2.5 � 10-2, (b) x = 3.5 cm, y is on the fin strip, ��  = 2.0 � 10-4,

��  = 2.5 � 10-2, (c) x = 2.5 cm, y is between the fins, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2,

and (d) x = 1.0 cm, y is between the fins, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2.



 87

  (a)  (b)  (c)  (d) 

Fig. 5.41  Number of electrodes effect on the flow and temperature fields inside the finned 

vertical channels (V0 = 12.0 kV, Ra = 106, Nf = 7, Lf = 0.4, and � = 90�): (a) Ne = 1, ��  = 

1.5 � 10-4, ��  = 2.5 � 10-2, (b) Ne = 3, ��  = 1.7 � 10-4, ��  = 2.5 � 10-2, (c) Ne = 13, ��

= 2.2 � 10-4, ��  = 2.5 � 10-2, and (d) Ne = 26, ��  = 2.8 � 10-4, ��  = 2.5 � 10-2.
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  (a)  (b)  (c)  (d) 

Fig. 5.42  Number of fins effect on the flow and temperature fields inside the finned 

vertical channels (V0 = 12.0 kV, Ra = 106, Ne = 7, Lf = 0.4, and � = 90�): (a) Nf = 1, ��  = 

2.0 � 10-4, ��  = 2.5 � 10-2, (b) Nf = 3, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2, (c) Nf = 5, ��  = 

2.0 � 10-4, ��  = 2.5 � 10-2, and (d) Nf = 13, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2.
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  (a)  (b)  (c)  (d) 

Fig. 5.43  Stream function and isotherm line contours inside the finned vertical channels 

for various fin lengths (V0 = 12.0 kV, Ra = 106, Nf = 7, Ne = 7, and � = 90�): (a) Lf = 0.1, 

��  = 2.0 � 10-4, ��  = 2.5 � 10-2, (b) Lf = 0.2, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2, (c) Lf = 

0.6, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2, and (d) Lf = 0.8, ��  = 2.0 � 10-4, ��  = 2.5 � 10-2.
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Fig. 5.47  Nusselt number at each fin length (Nf = 7, Ne = 7, and � = 90�).

5.4  Open Cavity Configuration 

 Fig. 5.48 investigates the computational domain and concerning boundary conditions 

of partially open square cavities. The left plate is maintained at uniform temperature and 

the right opening is also kept at uniform temperature of 300 K. Left plate is electrically 

grounded and upper, lower, and right plates are thermally and electrically insulated. The 

dimension of an open square cavity is 15 × 15 cm2. To validate the numerical code, the 

numerical results of non-EHD effect are validated against with the benchmark numerical 

solutions of the horizontal open square cavity with an extended computational domain. It is 

found that the highest percentage difference of the Nusselt numbers is 4.6% for Ra =104

and the lowest is 0.3% for Ra =107. Fig. 5.49 investigates the stream function and isotherm 

lines contours from applying the EHD effect while the Rayleigh numbers is varied between 

104 to 107, in which the effect of Joule heating at the wire electrode is neglected (V0 = 15.0 

kV, N = 3, � = 90�, AR = 0.5, and AH = 0.5). There is an effect of the secondary flow 

induced by the ionic wind at the wire electrodes, which causes four rotating cellular 

motions in Fig. 5.49(a). In next cases, where the Rayleigh number is increased further, the 

fluid inside cavity is dominated by the effect of Rayleigh number instead of an electric 

field. The flow patterns are oscillatory due to the interaction between the thermal buoyancy 

force and electrical body force. Two categories of oscillations are observed in these 

figures; periodic state (Figs. 5.49(a)-(b)) and non periodic state (Figs. 5.49(c)-(d)). The 

thermal boundary layer is perturbed by the electric field when it extends over the 

recirculation region. It can be seen that temperature gradient (line density) at the left plate 
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becomes larger with an increasing of Rayleigh number, which causes high heat transfer 

coefficient. It can be concluded that for low Rayleigh number, the flow and temperature 

fields have been substantially affected due to an electric field. However, the effect of EHD 

is diminished at high Rayleigh number which can be indicated that no significantly change 

in the heat transfer enhancement. 

 Fig. 5.50 performs the effect of aperture size and aperture position to flow pattern 

and temperature distribution in the open square cavities with (a) AR = 0.5, AH = 0.25, (b) 

AR = 0.5, AH = 0.75, (c) AR = 0.75, AH = 0.5, and (d) AR = 0.25, AH = 0.5 (V0 = 15.0 

kV, Ra = 106, N = 3, and � = 90�). The effect of the aperture position is presented in Figs. 

5.50(a) and (b) (AR = 0.5) for AH = 0.25 and 0.75, respectively. In Fig. 5.50(a), the air 

enters the cavity at the lower part paralleled to the lower wall, heated up at the hot wall and 

moves up to the top, and exit at the upper part of the opening, which similarly in Fig. 

5.50(b) but the flow strength is weakness than the first case. Thus, at low aperture position, 

the convection is highest, as a result of which heat transfer should be better. The effect of 

aperture size is shown in Figs. 5.50(c) and (d) for AR = 0.75 and 0.25, respectively. It can 

be seen that convection is enhanced with larger aperture. 

 The effect for various numbers of electrodes from 5, 9, 17, and 28 are expressed in 

Fig. 5.51 (V0 = 15.0 kV, Ra = 106, � = 90�, AR = 0.5, and AH = 0.25), in which the lower 

aperture position is selected for this study due to the highest volume flow rate and also heat 

transfer coefficient from Fig. 5.50. A non-equivalent number of electrodes cause different 

flow patterns to occur in the cavity. It can be observed that the separation point at the left 

plate appears when the number of electrodes is augmented to 9. The large vortices occur at 

the upper and lower of the cavities of Figs. 5.51(c)-(d), especially around the electrode 

strip that divides recirculating cells in three zones. As seen that temperature gradient along 

the left plate of Fig. 5.51(b) is highest compared with other categories that may results in 

maximum heat transfer coefficient. Moreover, the extra received heat transfer is very larger 

compared with the power input of electrical energy. Fig. 5.52 presents the effect of 

inclination to the flow pattern and temperature distribution in the open square cavities with 

� = 0�, 30�, 60�, and 120� (V0 = 15.0 kV, Ra = 106, N = 3, AR = 0.5, and AH = 0.25). The 

case for � = 0� in Fig. 5.52(a) corresponds that a convective regime is developed and the 

convection strength has strongest at � = 60� in Fig. 5.52(c). In contrast, when the inclined 

angle increases further, especially at 120� (Fig. 5.52(d)), the circulation strength is 

considerably reduced and a non-symmetrical cells occur as same as at � = 60�. This is 
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expected since the cold fluid enters the cavities added by the gravity and the hot fluid exits 

almost horizontally. It can be seen that temperature gradient along the hot plate in case of �

= 60� is highest, thus, convective heat transfer should be highest. At � = 120�, the 

isotherms indicate quasi-conductive regime along the boundaries because the hot plate is 

facing downward on this case. 

 The average volume flow rate and heat transfer enhancements over the period of 

periodic state or over the entire time span of non-periodic state along a cavities for various 

Rayleigh numbers is investigated in Figs. 5.53 and 5.54 (N = 3, � = 90�, AR = 0.5, and AH 

= 0.5), respectively. It can be seen that EHD enhancement of flow and heat transfer plays 

much important role at the low Rayleigh number and high supplied voltage. The number of 

electrodes also has high effect to the total volume flow rate through the cavity in Fig. 5.55 

(V0 = 15.0 kV, � = 90�, AR = 0.5, and AH = 0.25). The enhanced volume flow rate ratio 

increases to a maximum at an intermediate number of electrodes, and decreases at the high 

number of electrodes due to the raising of pressure drop. Fig. 5.56 demonstrates the 

relation between heat transfer enhancement and number of electrodes (V0 = 15.0 kV, � = 

90�, AR = 0.5, and AH = 0.25). Augmented Nusselt number reaches a minimum at an 

intermediate number of, and increases again due to the high intensity of the electric field at 

higher number of electrodes. This phenomenon can be analyzed by considering the 

isotherm line density at the left plate of Fig. 5.51. For the case N = 9, the density is found 

to be higher than at N = 5 due to lower number of vortices and also the smaller heat trap 

that yields a higher heat transfer coefficient. 
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Fig. 5.48  Boundary conditions of the partially open square cavity. 
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(a) 

(b)

(c) 

(d)

Fig. 5.49  Stream function and isotherm line contours inside the cavities for various 

Rayleigh numbers (V0 = 15.0 kV, N = 3, � = 90�, AR = 0.5, and AH = 0.5): (a) Ra = 104,

(b) Ra = 105, (c) Ra = 106, and (d) Ra = 107.
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(a) 

(b)

(c) 

(d)

Fig. 5.50  Effect of the aperture size and aperture position to the flow and temperature 

fields (V0 = 15.0 kV, Ra = 106, N = 3, and � = 90�): (a) AR = 0.5, AH = 0.25, (b) AR = 0.5, 

AH = 0.75, (c) AR = 0.75, AH = 0.5, and (d) AR = 0.25, AH = 0.5. 
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(a) 

(b)

(c) 

(d)

Fig. 5.51  Stream function and isotherm line contours inside the cavities for various 

numbers of electrodes (V0 = 15.0 kV, Ra = 106, � = 90�, AR = 0.5, and AH = 0.25): (a) N = 

5, (b) N = 9, (c) N = 17, and (d) N = 28. 
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(a) 

(b)

(c) 

(d)

Fig. 5.52  Effect of the inclined angle to the flow and temperature fields (V0 = 15.0 kV, Ra 

= 106, N = 3, AR = 0.5, and AH = 0.25): (a) � = 0�, (b) � = 30�, (c) � = 60�, and (d) � = 

120�.
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Fig. 5.53  Volume flow rate as a function of the supplied voltage (N = 3, � = 90�, AR = 
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Fig. 5.56  Heat transfer enhancement as a function of the number of electrodes (V0 = 15.0 kV, � = 

90�, AR = 0.5, and AH = 0.25). 

 Fig. 5.57 investigates the stream function and isotherm line contours inside the 

cavities with a thin fin attached at the middle of the left wall and has the length of 0.25 W

by applying the EHD effect while the Rayleigh numbers is varied between 104 to 107, in 

which the effect of Joule heating at the wire electrode is neglected (V0 = 12.0 kV, N = 1, �

= 90�, AR = 0.5, and AH = 0.5). For non-EHD, the fluid moves up due to heating on the 

left wall and consequent exiting on the right opening creates a clockwise-rotating vector. 

For low Rayleigh number, the strength of the primary vortex is weakened due to the fin 

obstructs the movement of fluid. This is because the convection not being strong compared 

with the conduction and it has the most remarkable effects on the flow field when it is 

placed at the middle of the left wall. It appears that the stream lines become more packed 

with the increasing of Rayleigh number, thus, the fluid moves faster as natural convection 

is intensified. For applying EHD (the electrode is positioned at the center of cavity), there 

is an effect of the secondary flow induced by the ionic wind at the wire electrodes, which 

causes two rotating cellular motions in Fig. 5.57(a). In next cases, where the Rayleigh 

number is increased further, the fluid inside cavity is dominated by the effect of Rayleigh 

number instead of an electric field. The flow patterns are oscillatory due to the interaction 

between thermal buoyancy force and electrical body force. The thermal boundary layer is 

perturbed by the electric field when it extends over the recirculation region. It can be 

concluded that for low Rayleigh number, the flow and temperature fields have been 

substantially affected by the electric field. However, the effect of EHD is diminished at 

high Rayleigh number which can be indicated that no significantly change in the heat 

transfer enhancement. 
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 Fig. 5.58 conducts the flow and temperature fields with the multiple fins attached 

while the electrodes are placing at the top (x = 1.875 cm), extreme (x = 4.6875 cm), top-

extreme (x = 4.6875 cm), and middle (x = 7.5 cm) arrangements, in which the numbers of 

fins and electrodes are remained at seven (V0 = 12.0 kV, Ra = 106, N = 7, � = 90�, AR = 

0.5, and AH = 0.5). It can be observed that the top arrangement positioned yields the 

multiple vortices which reduces the flow structure, while the extreme arrangement 

performs the maximum volume flow rate from the high velocity along the hot wall 

compared with other arrangements. Fig. 5.59 presents the effect of inclination to the flow 

pattern and temperature distribution in the open cavities of � = 0�, 30�, 60�, and 120� that 

has the top electrode arrangement (V0 = 12.0 kV, Ra = 106, N = 7, AR = 0.5, and AH = 

0.5). The case for � = 0� in Fig. 5.59(a) corresponds that a convective regime is developed 

and the convection strength has strongest at � = 60� in Fig. 5.59(b). In contrast, when the 

inclined angle increases further, especially at 120� (Fig. 5.59(d)), the circulation strength is 

considerably reduced and a non-symmetrical cells occur as same as at � = 60�. This is 

expected since the cold fluid enters the cavities added by the gravity and the hot fluid exits 

almost horizontally. It can be seen that temperature gradient along the hot wall in case of �

= 60� is highest, thus the convective heat transfer should be highest. At � = 120�, the 

isotherm lines indicate quasi-conductive regime along the boundaries because the hot wall 

is facing downward on this case. 

 The average volume flow rate and heat transfer enhancements over the period of 

periodic state or over the entire time span of non-periodic state (evaluated using the ratio of 

the average Nusselt number in the presence of an electric field to that without an electric 

field) along a cavity for various Rayleigh numbers is shown in Figs. 5.60 and 5.61 (N = 1, 

� = 90�, AR = 0.5, and AH = 0.5). For non-EHD, placing a fin on the left wall always 

reduces the heat transfer on the left wall. The average Nusselt number for the left wall 

becomes smaller with the increasing of the fin length due to the fin obstructs flow and also 

reduces convective strength. However, the effect of fin becomes less remarkable with the 

rising of the Rayleigh number because the primary flow is enhanced with compensate the 

effect of blocking by the fin. Thus, for high Rayleigh number, the flow field is augmented 

regardless of the length and position of fin. Therefore, it is found that EHD augmented 

flow and heat transfer play much important role at the low Rayleigh number region, and 

this phenomenon is consequently influenced at the high supplied voltage. 
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 In Fig. 5.62, one can see that the effect of the electrode arrangement on the multiple 

fins becomes more remarkable with the rising of the volume flow rate due to the fact that it 

has minimum thermal boundary layer thickness along the fin. Augmented distributions of 

the heat transfer for various inclined angles is indicated in Fig. 5.63 (V0 = 12.0 kV, N = 7, 

AR = 0.5, and AH = 0.5). For varying an inclined angle from 0� to 120�, the volume flow 

rate in non-EHD increases rapidly with the increasing of Rayleigh number and thereafter 

taper on. The volume flow rate is generally higher when the hot wall facing up and lower 

when facing down, heat transfer coefficient follows a similar trend to that of volume flow 

rate. Therefore, the optimum inclined angle is appeared at � = 60� and the worse case 

occurs at � = 120� on both categories. However, when the attention is brought on to an 

enhanced ratio, the maximum value is found at � =120� due to the lowest value from non-

EHD phenomenon. 
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(a) 

(b)

(c) 

(d)

Fig. 5.57  Stream function and isotherm line contours inside the cavities for various 

Rayleigh numbers (V0 = 12.0 kV, N = 1, � = 90�, AR = 0.5, and AH = 0.5): (a) Ra = 104,

(b) Ra = 105, (c) Ra = 106, and (d) Ra = 107.
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(a) 

(b)

(c) 

(d)

Fig. 5.58  Electrode arrangement effect on the flow and temperature fields of the multiple 

fins (V0 = 12.0 kV, Ra = 106, N = 7, � = 90�, AR = 0.5, and AH = 0.5): (a) top, (b) extreme, 

(c) top-extreme, and (d) middle. 
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(a) 

(b)

(c) 

(d)

Fig. 5.59  Stream function and isotherm line contours inside the cavities for various 

inclined angles (V0 = 12.0 kV, Ra = 106, N = 7, AR = 0.5, and AH = 0.5): (a) � = 0�, (b) �

= 30�, (c) � = 60�, and (d) � = 120�.
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Fig. 5.60  Volume flow rate as a function of Rayleigh number (N = 1, � = 90�, AR = 0.5, 

and AH = 0.5). 
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Fig. 5.61  Nusselt number as a function of Rayleigh number (N = 1, � = 90�, AR = 0.5, and 

AH = 0.5). 
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Fig. 5.62  Heat transfer enhancement for various electrode arrangements (V0 = 12.0 kV, N

= 7, � = 90�, AR = 0.5, and AH = 0.5). 
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Fig. 5.63  Effect of the inclined angle on the augmented heat transfer (V0 = 12.0 kV, N = 7, 

AR = 0.5, and AH = 0.5). 
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CHAPTER 6  CONCLUSION AND RECOMMENDATION 

6.1  Conclusion

6.1.1 Flow pattern of the fluid is affected by the supplied voltage. The thermal boundary 

layer along the surface is perturbed by the electric field effect and also decreases at high 

supplied voltage. 

6.1.2 The enhancement of heat transfer coefficient with the presence of an electric field 

increases in relation with the higher supplied voltage but decreases when the Reynolds 

number and Rayleigh number is augmented. 

6.1.3 Channel height affects to the collector efficiency. Lower the height gives stronger 

strength of the electric field which results in better thermal performance. 

6.1.4 The heat transfer also depends on the electrode arrangement, number of electrodes, 

and grounded surface geometry. 

6.1.5 For open channel and open cavity, the volume flow rate enhancement reaches to a 

maximum at an intermediate number of electrodes and reduces furthermore when the 

number of electrodes is rather high due to the pressure drop effect. 

6.1.6 The best augmented heat transfer for a fixed number of electrodes yields a 

recommended ratio of unity for the distance between wire electrodes to the distance 

between the grounded plates. 

6.1.7 For optimum design of finned configuration, it should be considering the constraint 

between all concerning parameters. 

6.2  Recommendation 

6.2.1 From these results, placing electrodes into the appropriate arrangement with the 

optimum number reveals the best performance on both efficiency and economy. 

6.2.2 This research can be developed for further applications to find out the optimized 

condition of the combination between electrohydrodynamic, extended surface, and other 

(such as magnetohydrodynamic) techniques of fluid flow through the extended surfaces. 
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