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Abstract

We study some consequences of high energy physics on the observable universe. We
are interested in two independent topics. First we consider the coincidence problem in the
interacting holographic dark energy model. To alleviate the coincidence problem, we
suppose that holographic dark energy has an interaction with dark matter, We analyze
the cosmic evolution for this interacting dark energy model and compare the region of
parameters of the interaction terms for which the cosmic evolution has an attractor within
the parameter region that satisfies the observational constraints. We have shown that for
holographic dark energy model, which is inspired by holographic principle in high energy
theory, a general form of the interaction between holographic dark energy and dark
matter can lead to alleviation of the coincidence problem for restricted range of
parameters. This implies that the introduction of interaction between dark energy and
dark matter in holographic dark energy model is not so effective in alleviating coincidence
problem in as the usual dark energy models.

In the second topic, we consider the effects of spacetime noncommutativity on
statistical properties of Cosmic Microwave Background (CMB). We investigate the
primordial power spectrum of the density perturbations based on the assumption that
spacetime is noncommutative in the early stage of inflation. For k-inflation model, we
show that the deviation from rotational invariance of the primordial power spectrum due to
spacetime noncommutativity depends on the noncommutative length scale and sound
speed of inflaton. We use five-year WMAP CMB maps to constrain the contributions from
spacetime noncommutativity in this power spectrum and find that the upper bound for the

-27
noncommutative length scale should be less than 10  cm at 99.7 % confidence level.

Keywords: cosmology, interacting dark energy, noncommutative inflation,

observational constraints on cosmological models
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dark energy model whose interaction term is @ = 3H(Agpq + Acpc), where
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the cosmic microwave background shift parameter and baryon acoustic oscillation
measurements, if A\ = Ag or Ag, A\c > 0, the cosmic evolution will only reach
the attractor in the future and the ratio p./pq cannot be slowly varying at
present. Since the cosmic attractor can be reached in the future even when
the present values of the cosmological parameters do not satisfy the observational
constraints, the coincidence problem is not really alleviated in this case. However,
if \e # A\q and they are allowed to be negative, the ratio p./pq can be slowly
varying at present and the cosmic attractor can be reached near the present
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1. Introduction

Observations suggest that the expansion of the universe is accelerating [1,2]. The
acceleration of the universe may be explained by supposing that the present universe
is dominated by a mysterious form of energy whose pressure is negative, known as dark
energy. One of the weaknesses of the dark energy model is the coincidence problem, which
is the problem why the dark energy density and matter density are of the same order of
magnitude in the present epoch although they evolve differently during the expansion of
the universe. A possible way to alleviate the coincidence problem is to suppose that there
is an interaction between matter and dark energy. The cosmic coincidence can then be
alleviated by appropriate choice of the form of the interaction between matter and dark
energy leading to a nearly constant ratio r = p./pq during the present epoch [3]-[5] or
giving rise to an attractor of the cosmic evolution at late time [6,7]. Since the existence
of the cosmic attractor implies constant r but the attractor does not always occur at the
present epoch, we first find a range of dark energy parameters for which the attractor
occurs and then check the evolution of r during the present epoch.

On the basis of holographic ideas [8,9], one can determine the dark energy density
in terms of the horizon radius of the universe. This type of dark energy is holographic
dark energy [10]-[14]. Choosing the Hubble radius as the cosmological horizon, the present
amount of dark energy density agrees with observations. Nevertheless, dark energy evolves
like matter at present, so it cannot lead to an accelerated expansion. However, if the
particle horizon is chosen to be the cosmological horizon, the equation of state parameter
of dark energy can become negative but not negative enough to drive an accelerating
universe. The situation is better when one uses the event horizon as the cosmological
horizon. In this case, dark energy can drive the present accelerated expansion, and the
coincidence problem can be resolved by assuming an appropriate number of e-foldings
of inflation. Roughly speaking, the coincidence problem can be resolved because the
size of the cosmological horizon during the present epoch depends on the amount of e-
folds of inflation, and the amount of holographic dark energy depends on the horizon
size. Nevertheless, the second law of thermodynamics will be violated if wg < —1 [9,15].
Hence, wy should not cross the boundary wq = —1. The boundary wq = —1 can be
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crossed if dark energy interacts with matter. Since now the horizon size has a dependence
on the interaction terms, the alleviation of cosmic coincidence should also depend on the
interaction term.

In this work we suppose that the holographic dark energy interacts only with cold
dark matter (CDM) and treat baryons as non-interacting matter components. Our
objective is to compare the region of dark energy parameters for which the cosmic
evolution has an attractor within the parameter region that satisfies the observational
constraints from combined analysis of SNIa data [16], the CMB shift parameter [17] and
BAO measurements [18]. The results of the comparison can tell us about the range of
parameters that alleviate the cosmic coincidence.

2. The autonomous equations

In this section, we derive the first-order differential equations that describe the evolutions
of radiation, baryon, CDM and dark energy densities in the universe. By analysing these
equations, one can estimate the asymptotic evolution of the universe. To proceed, we
start from the Friedmann equation

K

1
H2+?=3m (pr + P+ pe + pa) (1)
p

where H is the Hubble parameter and the subscripts r, b, ¢ and d correspond to the
radiation, baryons, CDM and dark energy respectively. The parameter K denotes the
curvature of the universe, where K = —1,0,+1 for the close, flat and open universe
respectively. The above equation can be written in terms of the density parameters
Qx = K/(a®H?) and Q, = po/(3m2H?) as
L4+ Q= D Qo=+ + Q%+ Q. (2)
a=r,b,c,d

The index a runs over the four species, namely radiation, baryons, CDM and dark
energy. We now derive the autonomous equations for the dynamical variables 25 and
Q,. Differentiating Qx = K/(a>?H?) with respect to Ina, we get

2K [ a H H
r _
7S (H ’ H) = (1 ’ ?) ’ )
where the prime and dot denote the derivatives with respect to In a and time respectively.
From the definition of the density parameter, one can show that

P b
Q. =Q, —-2—1. 4
« <H Pa H 2) (4)
To study the evolution of the universe at late time, we will search for the fixed points of

the above autonomous equations and check the stability of these fixed points. The fixed
points of equations (3) and (4) are the points (Qge, 2ac) at which

Qe =, =0. (5)

It follows from equation (3) that Q% = 0 at Qx = 0 or 1+ H/H? = 0. Hence, possible
fixed points at Qx # 0 correspond to the non-accelerating universe, i.e. 1+H/H? oc a = 0.
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Since the expansion of the universe is accelerating today, we consider only the fixed points
at Qx = 0, and therefore neglect (2 in our consideration for simplicity.

Now we come to the case of interacting holographic dark energy and use equation (4)
to obtain the autonomous equation for this case. In the holographic dark energy scenario,
the energy density of dark energy is related to the cosmological horizon L by

pa = 3EmEL2, (6)

where ¢ is a positive constant. Differentiating the above equation with respect to time,
we obtain

, L
Pd = _2sz' (7)

We take the cosmological horizon to be the event horizon, which is defined as Ro(t) =
a(t) [ dt/a(t). Hence,

L R, 1
L S —
L R, R. (8)

We therefore get

p3/2
pa = —2Hpa +2— (9)

\/gcmp '

When dark energy has an interaction with CDM, the continuity equations yield

pe = —3Hp. + Q, (10)

pa = —3H(1 +wa)pa — Q, (11)

where @@ = 3H(Agpa + Acpe). Usually, one supposes that Q > 0 because the second
law of thermodynamics might be violated if energy transfers from matter to dark energy
(@ < 0). However, for generality, we will not restrict ) to be positive in our consideration.
Comparing equation (9) with equation (11), we get

1 \/ﬁd )\de + )\CQC
Wq = ——= — 2 — .
3 3c Qd

(12)
We assume that radiation and baryons have no interaction with dark energy, so that they
obey the continuity equations

pr = _4Hpr and pb = _3Hpb- (13)
From equation (1), one can show that

H o (HY 0y
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In the above equation, we set Qx = 0. Using equations (4), (9), (13) and (14), we obtain

Q1/2 Q3/2
Q= Qa | 14+2-0 — Q0 — 2= = 3(MQa+ All) + O | | (15)

3 QS/Q
QO =Q, <Q—(Ade + Af) — Qg — 2% —3( A + Af) + Q) ., (16)

Q3/2
Q; =0, <—1 — Qg — o—d 3()\de + /\ch) + Qr> , (17)
&
Q3/2
Q= (—Qd — 2% — 3N + A2) + Q) . (18)

The fixed points of the above equations are (Qq, e, 2, Q) = (0,0, 2, 0), (0,0,0, )
and (Qqc, Q2ce, 0,0). Since we are interested in the late time evolution of the universe,
we will consider only the fixed point (£q4c, e, 0,0). This fixed point can occur at late
time, i.e., about the present or in the future, because /€. usually decreases with time
and €,/ can decrease with time if @) > 0. Using equations (15) and (16), the relation
between 4. and Q.. can be written as

Q23
1424 =
c Qee

()\dec + )\CQCC>' (19)

From equation (2), we have Q4. + Q. = 1 and hence

0Y/?2 Q3/2
=3\ +2—% — (143N —3\)Qqc — 29 = 0. (20)
C C

The solution of equation (20) gives Qq. in terms of Ay, Ac and c¢. Instead of finding the
solution of this equation, we will use equation (19) to compute the cosmological parameters
of interest in the following section. The basic idea is that there are various values of ¢, \g
and A. that satisfy equation (19) for given Q4. and Q... Changes in the values of ¢, A\q and
Ac lead to a different cosmological evolutions, i.e. a different wy for a given Q4. and €2..

The stability of this fixed point can be investigated by linearizing equations (15)—
(18) around the fixed point and studying how the fluctuations around the fixed point
evolve in time. If the amplitude of the fluctuations decreases in time, the fixed point is
a stable fixed point or attractor. Linearizing equations (15)—(18) around (Qqc, Qec, 0, 0),
we get

Q1/2 Q3/2
S = | =2 — Qe — 379 — 3014 | 004 — 3AQae0 + Qb8 (21)
C C

Q1/2 Q1/2
SU = =129 43X Qe | 6% + [ 3Md — Qe — 30— — 3XaQc | 62 + Qb2
C C
(22)
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Q1/2
5 = -2 (1 + L) 5, (23)
&
Q1/2
0 = — (1 + 92 de )mb, (24)
C

where 002, = Q, — Q4. denote fluctuations around the fixed point. The above linear
equations can be written as

5, = MasdQ, (25)

where o and 3 run over the four species. The eigenvalues of the matrix M govern how
the amplitude of the fluctuations around the fixed point changes with time. The fixed
point is a stable, saddle or unstable point if all the eigenvalues are negative, some of
the eigenvalues are positive or all the eigenvalues are positive, respectively (since we are
dealing with real eigenvalues). The eigenvalues of the matrix M are

Ql/2 93/2
A== — (143N — 3Ac)Qqe — 39,
c c
0OL/2 QL2 (26)
/\2:/\4:—1—2$7 A3:—2<1+&>
c c

Hence, the fixed point (Qqc, Qee, 0,0) is a stable point when A\; < 0 and a saddle point
when A; > 0. Using equation (19), A\; can be written as

3(Aae + Aefec) (1 ) 1 Q)2

Al = 5 o 30— M) Qe (27)

It is not easy to determine the sign of A\; in general. Thus, we will determine it in particular
cases in the next section.

3. The attractor of cosmic evolution

We now consider the fixed point and stability of the cosmic evolution around the present
epoch. For simplicity, we first consider the case where \y = A\, = b%. In this case,
equation (19) becomes

OY? 32
14 22de — . 28
+ . 0. (28)

Since ¢ > 0, equation (28) implies that b* > Q../3. This is the lower limit of b? for the
existence of the fixed point. From equations (12) and (28), it is easy to show that

b2
wq = — . 29
Qcchc ( )
The equation of state parameter of the universe is defined as
Ptotal
w = = Welly, 30
Ptotal Z ( )

a=r,b,m,d
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where w, = Po/pa- Since wy, = w. = 0 and €, can be neglected at late time, we have
w = wqflq and therefore

b2
w=—g (31)

From the lower bound of b?, we get w < 1/3. This means that the fixed point corresponds
to cosmic acceleration. Moreover, one can see that the universe will be in the phantom
phase, i.e., w < —1, if b* > Q. or equivalently Q(lf > c¢. Since the observations seem to
indicate that wqg < —1 today, we find the value of ? that makes wq < —1 at the fixed
point. It follows from equation (29) that wq < —1 if 0 > Q. Qqe. We now check the
stability of the fixed point. In this case, equation (27) becomes

302 /1 1 Q¥

It can be seen that it is not easy to find a point at which \; changes sign. However, \; is
negative for any 0? or ¢ if Qqc > 1/2, i.e. Qg > Qce. This means that the fixed point at
which 4. > €. is a stable fixed point or attractor, since the fixed point will occur when
@ is positive and €2, = €, = 0. At the present epoch €2, is small and can be neglected, and
with positive @) the ratio €,/ decreases with time, so the fixed point (Qqe, Qcc, 0, 0) will
be reached in the future. From equations (15)—(18), one can see that if b* is large, )}, can
decrease quickly with time compared with 2.. As a result, the fixed point can be reached
quickly near the present epoch. However, the CDM dominated epoch will disappear and
the baryon fraction will be larger than the CDM fraction in the last scattering epoch due
to the rapid decrease of p,/p. with time. This is excluded by the observed peak height
ratio of the CMB power spectrum. Thus, on the basis of observations, the fixed point
cannot be reached near the present for this case. We will see in the next section that
small b? or equivalently small €. is required by observations. Substituting Qc. = 1 — Qqe
into equation (28), we get

A

Ql/2 Q3/2
1—3b2+2%—9dc—2 de

= 0. (33)

The above third-degree polynomial for Qé{f will have one positive real root if 1 > 3b%. This
root is the previously considered fixed point. In contrast, if 1 < 3b? the above equation
will have one additional real root. This root gives another fixed point at smaller Qg.. It
is not hard to show that this fixed point is not stable and we will not consider it here.
Let us now consider the case where A\q # A.. In this case, equation (19) becomes

1/2
14249 =
C

O (NaQ4c + Aefec) - (34)

Hence, the fixed point occurs when AgQqc + Acfec > Qec/3. Using equations (12) and (34),
we get

)\dec + )\chc

Qcchc ’

Wq =

(35)
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and therefore
)\dec + )\CQCC
QCC '

Like for the case when Ay = ., one can show that the fixed point occurs when
wq < —1/(3Qq.) or w < —1/3. Since the terms \gQq. and Q. from the interaction
dominate at different times, the parameters \q and A, can be chosen such that the baryon
fraction is smaller than the CDM fraction during the last scattering epoch although ..
need not be very small. Thus, in this case, the attractor can be reached faster than for
the case of A\ = \q. From equation (27), we see that the fixed point is the stable fixed
point when Q4. > €. and )\, is not much larger than Aq4.

(36)

w =

4. The observational constraints

We now check the range of parameters for which the cosmic evolution has an attractor
for compatibility with observations. We constrain the parameters of the interacting
holographic dark energy using the latest observational data from SNIa [16] combined with
the CMB shift parameter derived from three-year WMAP [17] and the baryon acoustic
oscillations (BAO) from SDSS LRG [18].

The SNIa observations measure the apparent magnitude m of a supernova and its
redshift z. The apparent magnitude m is related to the distance modulus p and luminosity
distance dj, of the supernova by

w(z) =m(z) — M = 5logy,(dL(z)/Mpc) + 25, (37)

where M is the absolute magnitude of the supernova. For flat spacetime, the luminosity
distance is given by
® dz
dp(z) = Hy'(1 : 38
W=t [ 55 (38)

Here, Hy is the present value of the Hubble parameter and E(z) = H(z)/Hy. To
constrain the holographic dark energy model, we perform a y? fit for the parameters
Ad; Ae, € 2o, o, where the subscript 0 denotes the present value. For €., we compute
its value from the CMB and neutrino temperatures. Using equation (2), one can compute
Qqo from Q.o, Qo and Q9. We have to include radiation in our consideration because it
should not be neglected when we compute the CMB shift parameter. For the SNIa data,
the parameter Hj is the nuisance parameter which needs to be marginalized out. Since
the fit of holographic dark energy to SNla data is sensitive to Hy [19], we have to add
constraints from other observations to improve the fit. For this reason, we include the
constraints from the CMB shift parameter and BAO measurements in our analysis.

The CMB shift parameter is a quantity derived from CMB data that has been shown
to be model independent, so it can be used to constrain cosmological models. The CMB
shift parameter is defined as [20]

ZCMB dg
R=Q / — 39
mO0 0 E(g)’ ( )

where Q0 = Qo + Qo and zoup = 1089 is the redshift at recombination. The estimated
value of R from three-year WMAP data is 1.70 4+ 0.03. From the SDSS data, the
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measurement of the BAO peak in the distribution of SDSS LRG can be used to derive
the model independent parameter A which is defined as [1§]

1 ZBAO 3 2/3
A=0Vp 173 / 40
m0 (ZBAO) 2840 Jo E(g) ) ( )

where zpao = 0.35. The estimated A is A = 0.469(n,/0.98)7%3% 4+ 0.017. According to
the three-year WMAP data, the scalar spectral index is chosen to be ng = 0.95.

We first consider the case where Ay = \. = b*. For simplicity, we start by neglecting
baryons in our consideration. Hence the attractor becomes (Qq, e, ;) = (Qqc, Qee, 0),
where Q4. and Q. satisfy equation (28). The region of * and €. for which the fixed
point exists and the 99.7% confidence regions from the combined constraints are shown
in figure 1. From this figure, one sees that a small b? is required by observations, so that
the attractor that satisfies the observational constraints occurs at low (... This implies
that the attractor cannot occur at present, where €. =~ 0.3. In the future, (2. can become
small, so the fixed point can exist. Nevertheless, if the attractor is reached in the far
future, the cosmic coincidence may not be alleviated because the present values of (2.
and wq may not satisfy the observational constraints. In the following consideration, we
will study how the ratio r evolves during the present epoch to check the possibility of
alleviating the cosmic coincidence. Since the physical fixed point cannot occur if b < 0,
we perform another fit by supposing that 4> > 0. The result is shown in figure 1. It can
be seen that the above conclusions for the case of arbitrary b? are also valid for the case
of b* > 0.

The situation changes a bit when we include baryons in our consideration. From
the previous section, we know that the cosmic evolution reaches the attractor at
(Qa, e, U, ) = (e, e, 0,0). Since the present value of €, does not vanish, this
attractor cannot occur at present. However, the attractor can occur in the future because
the ratio €2,/ decreases with time due to the positive (). It can be seen that the ratio
0,/ decreases faster when b? increases. According to the observational constraints, a
small b? is also required in this case, so that the attractor is slowly reached in the future.
In order to perform a fit for this case, we use a prior 2,0 = 0.047+0.006 from the one-year
WMAP data [21] because €2, cannot be constrained very well by using only SNIa data,
the CMB shift parameter and BAO measurements. It can be seen from figure 1 that the
shape of the confidence contours does not change much when we include non-interacting
baryons in our consideration. Obviously, the contours move to the left when the amount
of )¢ increases. This is because the amount of €),; decreases.

We now consider the case of arbitrary Aq and A\.. We also perform a y? fit for the case
with baryons and without baryons. For the case where baryons are neglected, it follows
from figure 2 that the attractor can occur at present (€. ~ 0.3) for a narrow range of
Aq and A.. Nevertheless, a small .. is required by observations if we restrict A\q and A,
to being positive. This implies that the attractor must occur in the future. Similarly
to the case for \y = A\, = b?, the attractor cannot be reached at present if baryons are
included in the consideration. Nevertheless, for suitable values of A\, and A\q which satisfy
the observational constraints, the attractor in this case can be reached faster than for the
case of A\c = A\q.

In order to check whether the cosmic coincidence can be alleviated for this form of
interaction, we study the evolution of r during the present epoch. Since the evolutions
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Figure 1. A region of parameters b? and ). in which the cosmic evolution
has a late time attractor (the yellow regions above the dashed lines), and the
99.7% confidence levels from the combined analysis of SNIa data, the CMB shift
parameter and BAO measurements. For the yellow region, 2. refers to .., but
Q. refers to ¢y for the confidence levels. The upper panel shows the case of
arbitrary b2, while the lower panel shows the case where b?> > 0. The blue regions
represent the confidence regions for the case that includes baryons and prior
Qo = 0.047 £ 0.006, while the thick dotted lines represent the confidence levels
for the case where baryons are neglected.

of r for the cases with baryons and without baryons have nearly the same features, we
consider only the latter case. We first consider the case where b?> = A\, = \q. Setting b?,
c and Qq equal to their best fit values, i.e. b> = —0.004, ¢ = 0.84 and Qy = 0.3, the
evolutions of  and r' = 7/(rH) are plotted in figure 3. From figure 3, we see that |r/| > 1
during the present epoch because €. is quite different from Q... Due to a negative b2, r
and (2. become negative and consequently reach the attractor at late time. Recall that
Q. > 0 at the attractor if b* > Q.. /3. To solve the coincidence problem, the ratio r should
vary slowly during the present epoch such that |r'| < 1 today [4]. The present value of |r/|
will decrease if the value of Q.. gets closer to the value of €, i.e. the cosmic evolution
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Figure 2. A region of parameters A\g and A. for which the cosmic evolution
has a late time attractor (the yellow regions above the dashed lines), and the
99.7% confidence levels from the combined analysis of SNIa data, the CMB shift
parameter and BAO measurements. The upper panel shows the case for arbitrary
Aq and A., while the lower panel shows the case where A3, A\c > 0. The blue
regions represent the confidence regions for the case that includes baryons and
prior Q9 = 0.047 4+ 0.006, while the thick dotted lines represent the confidence
levels for the case where baryons are neglected. The dashed lines are plotted by
setting .. = 0.27, but the thick dashed line in the lower panel is plotted by
setting 2. = 0.05. We note that the region above the thick dashed line also
represents the region for which the cosmic evolution has an attractor.

reaches the attractor near the present. According to the yellow region in figure 1, the
value of .. will increase and get closer to Q) if b? increases. However, |r/| during the
present epoch will be smaller than 1 only when b? is larger than the observational bound.
The evolution of r for the case where .. is close to € is shown in figure 3. In this
case, the values of ¢ and € are the best fit values, while the value of 0? is larger than
the observational bound but is inside the yellow region in figure 1. From figure 3 we see
that |/| < 1 during the present epoch in this case but the amount of 2. during the early
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-0.2

logio(a)

Figure 3. The upper panel shows the evolutions of r (solid and dashed lines) and
7/(rH) (long dashed and dotted lines), while the lower panel shows the evolutions
of Q¢ (solid and dashed lines) and €4 (long dashed and dotted lines). The solid
and long dashed lines correspond to the case where the values of b2, ¢ and Qg
are equal to their best fit values, while the dashed and dotted lines correspond
to the case where b2 is chosen such that Q. is close to Qc, i.e. Qe = 0.27.

time is too small. For this reason, this case does not satisfy the observational constraints.
Hence, in the case of \. = \q, the coincidence problem is not really alleviated for this
form of interaction terms.

Next, we consider the case where \. # A\q. We first set ¢, A, \q and Q¢ equal to their
best fit values, i.e. ¢ = 0.37, A, = 0.08, \q = —0.45 and €2y = 0.27. This choice of the
parameter value is outside the yellow region in figure 2. Since the interaction term (@) is
dominated by 3H \4€2q during the present epoch, ) becomes negative at present. Hence, r
and also 2. become negative and consequently reach the attractor at late time. Of course,
the attractor in this case does not correspond to the physical attractor. The evolutions of
r and €. are shown in figure 4. Similarly to the case for A, = \q, the present value of ||
for this choice of parameter values is larger than 1 because 2. is quite different from 2.
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Figure 4. The upper panel shows the evolutions of r (solid, dashed and long
dashed—dotted lines) and 7/(rH) (long dashed, dotted and dashed—dotted lines),
while the lower panel shows the evolutions of . (solid, dashed and long dashed—
dotted lines) and €4 (long dashed, dotted and dashed—dotted lines). The solid
and long dashed lines correspond to the case where the values of A¢, A\q, ¢ and Qg
are equal to their best fit values, the dashed and dotted lines correspond to the
case where ¢, A\; and \gq are chosen such that . is close to g, i.e. Q¢ = 0.24,
and the long dashed—-dotted and dashed—dotted lines correspond to the case where
¢, Ac and Ay are chosen such that Q.. = Q.

We now keep €2 fixed and choose the new values of parameters ¢, A\, and A\q such that the
observational constraints are satisfied and the cosmic attractor occurs at €).. = 0.24 near
the present epoch. This choice of the parameter values is inside the intersection between
the yellow region and the confidence region in figure 2. From figure 4, we see that the
present value of |r/| is smaller than 1 and the attractor is reached near the present epoch
for this choice of the parameter values. On the basis of the soft coincidence idea, the
coincidence problem can be alleviated in this case. The coincidence problem is better
alleviated if 2. = (o or equivalently if the cosmic attractor is reached at the present.
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Unfortunately, the parameter values that make .. = {2y do not satisfy the observational
constraints. The evolutions of r and (). for this case are shown in figure 4. From the
figure, it is clear that this case is ruled out by observations. We note that the present
value of |r/| will increase if we include baryons in the above consideration.

Finally, we estimate whether |r/| can be smaller than 1 at present if we constrain
the parameters of dark energy using the SDSS matter power spectrum. Here, we will
not perform a complete fit for this data set because the nature of the perturbations in
holographic dark energy is not yet completely understood. To write down the evolution
equations for the density perturbation and compute the matter power spectrum for this
interacting dark energy model, we use the assumption below. From the results in [22],
we suppose that the perturbation in holographic dark energy can be neglected when
kR./a > 1, where k is the wavenumber of the perturbation modes. Using equations (1)
and (6) and supposing that radiation can be neglected during matter domination, one can
show that H™'/R., = v/Qq/c, i.e. the Hubble radius is smaller than the event horizon if
VQq < c. Since we use the data from SDSS which measures the matter power spectrum
on scales smaller than the Hubble radius, we neglect the perturbation in holographic
dark energy in the calculation of the matter power spectrum. We write the perturbed
interaction term using the formulae in [23,24], so that the evolution equations for the
perturbation in CDM are

dA, 4
= —kV, + 3HV ()\C + Ad@) —3&2 ()\C + )\dp—d) ~3HAAL,
dn Pe dn Pe Pe (41)
dVe
Ve _ 3y 4 g,
dn

where A, and V. are the gauge-invariant density contrast and velocity perturbation of
CDM, ¥ and ® are the metric perturbations, H = a~!(da/dn) and 7 is the conformal
time. We solve the above equations, compute the matter power spectrum and compare the
matter power spectrum obtained with SDSS data using CMBEASY [25]. By checking the
value of x?, we have found that the best fit parameters for this data set are different
from the best fit parameters from the observational constraints on the homogeneous
universe. Instead of searching for the best fit parameters for this data set, we roughly check
the viability of the parameters by comparing the matter power spectrum of the models
considered with the matter power spectrum for the ACDM model whose parameters are
taken from the best fit value for three-year WMAP and SDSS data [26]. In figure 5, we plot
the fractional difference in matter power spectrum between the interacting holographic
dark energy and ACDM models. From this figure, we see that for suitable ranges of dark
energy parameters, |r’/| can be smaller than 1 at present and the difference in matter
power spectrum can be smaller than the error for the matter power spectrum of SDSS
data. This implies that the alleviation of the coincidence problem by this interacting dark
energy model is not excluded by SDSS data.

5. Conclusions

For the interacting holographic dark energy model, we study the fixed points and their
stability, and compare a range of model parameters for which an attractor exists with
the 99.7% confidence levels from the combined analysis of SNIa data, the CMB shift
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Figure 5. The fractional difference in matter power spectrum [P (k)/P (k)
between the interacting holographic dark energy and ACDM models. For this
plot, the parameters of dark energy are chosen such that |r’| ~ 0.9 at present. The
fractional error for the matter power spectrum |§P(k)/P(k)| = error/spectrum
of SDSS data is represented by dots.

parameter and BAO measurements. Neglecting baryons, the observational constraints
require that the value of €}, at the attractor point must be small if A\q = . or A\g, Ac > 0.
This implies that the cosmic evolution will reach the attractor point in the future when
Q). becomes small. In this case, r cannot be slowly varying during the present epoch and
the cosmic attractor cannot be reached near the present. Hence, the coincidence problem
is not really alleviated for this case. However, if A\q and A, are allowed to be negative, the
cosmic evolution can reach the attractor near the present epoch for a narrow range of A\g
and A.. Therefore, it is possible to alleviate the coincidence problem in this case. Including
baryons in our consideration, the attractor of the cosmic evolution cannot occur at present
due to the non-vanishing baryon fraction. According to observations, the fixed point in
this case is possible only when () is small and positive. Hence, the fixed point will be
slowly reached in the future. These results indicate that for the interacting holographic
dark energy model with the interaction terms considered here, the cosmic coincidence
problem cannot be alleviated very well. We also briefly considered the constraint from
the SDSS matter power spectrum on the dark energy parameters. We have found that

the parameters ranges that lead to the alleviation of the cosmic coincidence are allowed
by SDSS data.
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Abstract.

We investigate the primordial power spectrum of the density perturbations based
on the assumption that spacetime is noncommutative in the early stage of inflation, and
constrain the contribution from spacetime noncommutativity on the CMB anisotropies.
Due to the spacetime noncommutativity, the primordial power spectrum can lose
rotational invariance. Using the power law k-inflation model, we show that the
deviation from rotational invariance of the primordial power spectrum depends on
the ratio L1/c%, where Lg is the noncommutative length scale and cg is the sound
speed of inflaton. We compute the covariance matrix for the harmonic coefficients of
the CMB anisotropies from this direction-dependent primordial power spectrum, and
constrain the contributions from the spacetime noncommutativity on this covariance
matrix using five-year WMAP CMB maps. We find that the upper boundthe for the
ratio Lscg/(ﬁ_l)/ﬁl/2 is 1.4 x 1072%cm at 99.7% confidence level. Taking the values of
cs and 3 to be known precisely, and with 3 being the inverse of the slow-roll parameter,
the upper bound for L, is estimated to be less than 10727cm at 99.7% confidence level.

Keywords: inflation.
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1. Introduction

The inflationary cosmology [Il, [2, B] is the scenario of the very early universe. It
provides a successful mechanism for generating nearly scale invariant primordial density
perturbations, that give rise to galaxy formation and temperature anisotropies in the
CMB which are in agreement with observation []. If the period of inflation is sufficiently
longer than that required for solving the horizon and flatness problems, such that the
wavelengths of perturbations which are observed today emerged from the Planck regime
in the early stages of inflation, the physics on trans-Planckian scales should leave an
imprint on the primordial density perturbations [, 6]. Here, we consider the imprint of
trans-Planckian physics based on noncommutative spacetime.

Near the Planck scale, the properties of spacetime are expected to be modified
due to the quantum nature of gravity [f]. It has been shown that a consequence of
string theory which is a promising candidate of quantum gravity, is that the spacetime
is noncommutative [g]

["L‘M"'L‘V] = Z.@uy(l‘% (1)

where O is an antisymmetric tensor.

The influences of spacetime noncommutativity on the feature of power spectrum of
primordial fluctuations have been studied by many authors [9] - [T6]. For the case where
0% = 0 but ©% # 0 [9, [0, [TT], the contribution from spacetime noncommutativity can
lead to the running of the spectral index of the primordial power spectrum. For the case
where ©% # 0 but ©% = 0 [12,[13], the primordial power spectrum can become direction-
dependent, and consequently the statistics of CMB fluctuations becomes anisotropic.
We are interested in this spacetime noncommutativity induced statistical anisotropy.
@@ Usually, the statistics of the CMB temperature fluctuations is supposed to be
isotropic. Hence, if the non-Gaussianity of the CMB fluctuations is assumed to be
negligible, the statistical properties of the CMB fluctuations will be completely described
by the angular power spectrum [I7]. However, recently there are many attempts to check
whether the statistics of the CMB fluctuations is perfectly isotropic by searching for the
statistical anisotropy contributions in the CMB sky maps [I8, 19, 20]. In the case where
the statistics of the CMB fluctuations is anisotropic, the angular power spectrum does
not contain all the information about the statistical properties of the CMB fluctuations
even when the Gaussianity of the CMB fluctuations is assumed. Some of the estimators
for quantifying the statistical anisotropy contributions in the CMB fluctuations have
been proposed in [21], [0, 22]. According to [I8, [[9], the statistics of the observed CMB
fluctuations does not deviate from isotropy significantly.

In this work, we constrain the contributions from spacetime noncommutativity on
CMB temperature fluctuations using five-year WMAP CMB maps. In the next section,
we compute the primordial power spectrum of the power law k-inflation by taking the
spacetime noncommutativity of the form ©% # 0 and ©% = 0. In section 3, we compute
the covariance matrix for the harmonic coefficients of the CMB temperature fluctuations
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(af apm), and constrain the contributions from spacetime noncommutativity using
CMB maps. Finally, we conclude in section 4.

2. The contributions from spacetime noncommutativity

We now investigate the contributions from spacetime noncommutativity on the
primordial power spectrum of the k-inflaton whose action is givven by [23]

S:/d‘lx\/—_g[

where m, = (87G)~'/? is the reduced Planck mass, ¢ is the inflaton field and

X = (1/2)¢"0,¢0,¢. The effect of spacetime noncommutativity can be taken into

2
my
2

+ P(X, gb)] : (2)

account in the action (B) by replacing the ordinary products in the action with the star
products. In curved spacetime, the star product can be expanded as [I2]

f*gzzy (5) OHIVL . OHKVE (DmDM}cf) (Dleykg)’ (3)
k=0

where D), is the covariant derivative. In our consideration, we suppose that the nonzero
components of O are ©'2 = -0 = 1/(A?%a?), where a is the cosmic scale factor and
A~ = L, is the noncommutative length scale [T2].

To study the evolution of density perturbations during inflation, one splits the
metric and the inflaton field in the action into the background and the perturbed parts,
e.g., for the inflaton field we write ¢(x,t) = ¢o(t)+d¢p(x,t). The action for the perturbed
field can be obtained by expanding the action () around the background. In our
consideration the effect of spacetime noncommutativity can be incorporated by just
replacing the ordinary product between perturbed variables in the action with the star
product. Since we consider the case where ©% = 0, it follows from eq. (B]) that the star
product of the background quantity with any field variable is just the ordinary product
between functions.

Instead of directly expanding the action (B) around the background, we start from
the second order perturbed action for k-inflaton [24], 25],

1 . .
55@ — 5/c734:1:a,22 [Cz + c50,¢0'¢| (4)

where the dot denotes derivative with respect to time, ( is the curvature perturbation
in the comoving gauge, z = a(P + p)*/?/(csH), H = a/a is the Hubble parameter
and cg is the sound speed, defined by ¢% = Px/px. Here, the subscript , X denotes
a derivative with respect to X and p is the energy density of the inflaton. Using the
relation (H/ ¢0)5¢ = ad¢ = ( between the scalar field perturbation in the uniform
curvature gauge and the curvature perturbation in the comoving gauge, the action for
the perturbed inflaton field in the uniform curvature gauge can be written as
Q

st o 6 ccnsn-[(32) o] o
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Replacing the products between the perturbed field variables with the star products,
the above action becomes

S = Sy+ 05k + 05y + O (0'), (6)

where 05k and §Sy represent the lowest nonzero corrections (O(6?)) to the kinetic and
potential terms in S respectively. We follow the procedure in [I2] to compute the star
products in the action (H). The correction to the potential and kinetic terms are then

given by
2 2 2
58y = _% d%“zAf‘ H? (016¢0"6¢ + 0:600%5¢) | (7)
where m? = (H + 22/z)(a/a) + &/,
1 4 az’ o’ 2 p 20 2 p i
0SK = 0 d*z 0 H [@,c%&ba "0 + €50,0;00pP D' 0 ¢

— 2HP5$0,D,0¢ + H28p5¢8p5¢] , 8)

where p = 1,2. Expressing the action (@) in terms of the new variable v = z{ = zad¢p
and expanding v in Fourier space as

U(X7 t) = /(;f% (akUk(t)eik'X + hC) y (9)

where ay, alT( satisfy the canonical commutation relations, the action (@), evaluated in
the vacuum after normal ordering, becomes

3 12 2" 27.2 2 HZki 112 272112
S = [ dndk|oi? + (= = k) fol? = Sy (okl? = 3kl

+ ((%ﬂ - 2(Ha)2> (5 + %) + Z;H) \vk\Q)}, (10)

where the prime denotes derivative with respect to the conformal time n = [ da/a and

k* = k? + k3. In the above action, we have used p + P = 2Xc%p x. The expression
for p x/(Hp,x) in the above action can be simplified, once the model of k-inflation is
specified. Hence, in the following consideration we will perform the calculation using a
power law k-inflation model. For power law inflation, the scale factor evolves as

a o tP (11)

where [ is a constant parameter, so that H = (3/t. From the Friedman equation,
H?>=p/ (3m§), one sees that the energy density of power law inflaton evolves as

1
p= 3m§ﬁ2t—2. (12)
It follows from the continuity equation, p = —3H (p + P) and eq. (Z), that
Ip=(p+P)=2XPx, (13)

where I is constant. Since X and cg are constant for the power law k-inflation, one can
show that
) P : 2
P.x _ X P __Z (14)
Hpx HPx Hp B
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Since (p + P)l/ 2 and H evolve much slower than a during inflation, we suppose that
2"/z =~ a"/a. Using eq. (), it can be shown that a”/a = 5(28 — 1)(1 — 8)7%/n* and
Ha = /(1 — )n. The action (I) can be written in terms of the variable

ye(n) = (1= (k) ui(n), (15)
where ¢ = H?/(8A%?), up to second order in € as
28— 1)
— d d3k 12 2k2 . L 1
S = [ ant [l = (k- 72 (16)

+ K2 (1 - % + 552) O(e)) ll?|.
Here, we have set €2 = é232/((1 — 3)*y*) = H*/(8A*), and have expanded €*k? /(1 —
k%) ~ €2k? + O(e'). Let us now make some approximation. For the power law
k-inflation model, the relation between the spectral index of the primordial density
perturbation and (3 is ny — 1 = 2/(1 — [3). Hence, using the best fit value of ng from the
five-year WMAP results, we get 3 = 2/(1 —0.96) + 1 ~ 51 and €? oc H* o< 1/7* (=%

n%%. Since €2

evolves much slower than the third term on the RHS of the action
(@), we take € to be approximately constant. Moreover, for this value of 3, we have
1—1/8+5/8% = 1.02, so that we can set this term equal to one without significantly
changing the final result. Using the above approximation, the evolution equation for y

can be written in the form of the Bessel equation as

1\ 1
Yy + {C%kz’ﬁ — (V2 — Z) ﬁ} Yk = 0, (17)

where v = (3/2) +1/(8 — 1), 4* = 1 + €Zsin*(0)/c and sin*(§) = k?/k? denotes the
angle between the vectors k and k3. Following the standard procedure, the solution of
eq. (D) is given by [26]

T i(prl)zm
Yk = g ¢ 43)3 = HD (—cshm), (18)

where H." is the Hankel function of the first kind. The argument of the Hankel function
can be written as

1 €2 sin’(0)
2 &
where ¢ denotes a small contribution from €?sin®(0)/2c¢%. We expand the Hankel
function around & as

— cshyn = —cgkn ( ) =&+ ¢, (19)

() (er
HY (—eskom) = HO(E) + D o 20
)
=) + (vHO©) - HIL©F) T

Since we are interested in the long wavelength perturbation modes, we express the
hankel function in the asymptotic form [26],

HO (€ < 1) ~ /2fme zv%u (21)
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so that the curvature perturbation is given by

_ U gil-1)3g0-4) L)
Ck—?_e( ) 2( >F(3/2) %

(—cskn)z™ €2 sin(0)
Svaer (72 &

and finally we obtain the primordial power spectrum

Tw) |*(B—1\71| GH? 15
T(3/2) ( 3 ) .

= €2 sin’(0)
(5) 07

= Ap.es) (£) _ (-0, (23

Cs
where the subscript 1 denotes the evaluation at the time when the wavenumber k; crosses

™

P = [2;1

the horizon. It can be seen that the obtained power spectrum is direction-dependent
due to the spacetime noncommutativity. The magnitude of the noncommutative
contribution depends on the angle between the vectors k and k3, and also depends
on the sound speed for the k-inflation. Neglecting the contributions from spacetime
noncommutativity, the above power spectrum gives rise to the usual power spectrum as
in [24].

3. The CMB constraints

In this section, we will constrain the contributions from spacetime noncommutativity
on CMB anisotropies using the CMB data. It is well known that if the primordial power
spectrum is direction-dependent, the statistics of CMB will become anisotropic, i.e., the
two-point function of the temperature fluctuations is no longer rotationally invariant.
Here, we consider only the two-point function because we assume the non-Gaussianity
of the CMB fluctuations to be negligible. In addition to spacetime noncommutativity,
the direction-dependent primordial power spectrum can also be a consequence of many
phenomena in the early universe, for example see [27] - [28]. To compare theoretical
prediction with the observation, it is convenient to expand the temperature anisotropy
into spherical harmonics

AT(R) =T(R) — Ty =Y a1mYim() , (24)
Im
where Tj is the mean temperature of the CMB. If we write the direction-dependent
primordial power spectrum as [27, 22]

P(k) = A(k)

1+ ZQLMYLM(I%)] ; (25)

LM
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the covariance matrix of a;,, will be
* =l LM
<a11m1 a’lgmg) - 511l25m1m2 Cll + Z :‘l;z;LMDlllg : (26)
LM
Here, (), is the CMB angular power spectrum, given by

Gy, = (4r)’ / Ak RAR)T () (27)

where Tj, is the CMB transfer function which is taken to be rotationally invariant. It is
known that if the two-point function of the temperature anisotropy is not rotationally
invariant, the covariance matrix of a;,, will not be diagonal. The off diagonal elements
of the covariance matrix appear in the second term of eq. (28) This term is given by

DY = (mpP (=0~ [ kB AR g Ty (9T (6), (28)
0

and

—lsm CL+1D2+1) 40 em

"‘l?m?lgmg = \/ 471'(2[3 + 1) Ql?olQOQl?mTZQWQ’ (29)
where Qﬁémi lym, are the Clebsch-Gordan coefficients. Comparing the power spectrum in
eq. (23) with the one in eq. (Z3)), we find that the non zero components of gy, are

44/T ve? 4 [mve
- _ o d = ==, 30
Joo 3 & and - g0 V52 (30)

We see that the contributions from spacetime noncommutativity also influence the
diagonal elements of the covariance matrix, i.e. they modify the amplitude of Cj.

Substituting gz from eq. (B0) into eq. (Z8), we obtain the covariance matrix
2
ve

<a11m1a2k2m2> =~ Cl, {5l1l26m1m2 [1 + m -

<(l1—|—1)2—mf +lf—m% _1”

20, + 3 20, — 1
1/62011
) Oy~ 31
(11 22 122(2l1_1)x ( )

((h = 1)* = m})(if —md)
\/ oh-3h+1 T lz) }

where Cp,, = (47T)2 fooo dkaA(k)Tll( )Tl2( )/Cll

We next constrain the contributions from spacetime noncommutativity in this
covariance matrix using the five-year WMAP foreground-reduced maps [3(]. Since the
spacetime noncommutativity also influences the diagonal elements of the covariance
matrix and € o H? we use eq. (Z3) to write the contribution from spacetime
noncommutativity as

3 2
QL ~ A%y, (32)
Cs
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where A, is the amplitude of the primordial power spectrum and

3/ 7\° T
3~ o (G—ﬁ) Licg™. (33)

In the above two equations, we have used 8 > 1. We adopt the procedures in [I9]
to compute the posterior probability of the parameters ¥ and A,, given the observed
temperature anisotropies a,

P(5|a) x L(al7)P(5), (34)

where ¢ = X, A, is the set of parameters, L(a|d) is the likelihood and P(&) is the prior.
Since the galactic contamination cannot be completely removed from some regions of
the sky, one does not have the full-sky CMB maps with well-defined error properties.
To reduce the galactic contamination, one masks the contaminated regions as

where 7 is the pixel index, ¢; is the masked CMB map, AT; is the full-sky map and M;

is a mask which is zero at the contaminated points and is one elsewhere. The above
relation can be written in harmonic space as

Cim = Mlm,l’m/bl/m/a (36)
where the matrix My, i1, is given by
My =Y MisrZ 5 - (37)
LM

Here, ¢n, My, and by, are the spherical harmonic coefficients of ¢;, M; and AT;
respectively. Moreover, due to the instrument noise, the finite beams resolution and
the discreteness of the temperature maps, the contributions to the unmasked CMB map
come from the sum of the instrument noise with the convolution between the signal of
the CMB anisotropies and the window function, such that

AT =Wa+ N, (38)

where W is the window function and N is the instrument noise. We suppose that the
contributions from the beam and the pixel asymmetries are negligible. Using eqs. (Bf)
and (BY), the covariance matrix of the masked temperature multipoles can be written
as

* *
Clm,l’m’ = E Mlm,llml |:VV11 <a11m1algm2>VVl2+Nl1m1,12m2 Mlgmg,l/m/’ (39)
limilame
where Ny m, 1,m, i the pixel noise covariance matrix, given by

_ =limy
N11m1,l2m2 = Aa ‘—‘LMlgmgNLM' (40)
LM

Here, Aa is the area of each pixel in the temperature map, and Ny, is defined as

2
0 N
NLM = ZA(I”Q—%SYLM(TZ'), (41)
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where oy is the rms noise of a single observation and n¢™ is the number of observations
of pixel i.

In order to compute the likelihood, the inversion of the covariance matrix is
required. Since the inversion of the large matrix is time consuming, we avoid to inverse
the large covariance matrix by writing the likelihood function in terms of the reduced
bipolar coefficients instead of ¢;,,,. The reduced bipolar coefficients are defined as [I§]

ALM = Z ( ) dllmldl2m2¢l1mllg —mg>? (42)
limiloma
where d;,,, are the harmonic coefficients of the temperature anisotropies. For the full-sky
and noiseless case, the mean of the reduced bipolar coefficients for the noncommutative
k-inflation can be computed using eq. (BIl), and the non zero components are

(o) = S~V T T (1 _ %Agz) | (43)

l

) (I+1)(20 + 1)
(Ago) = — 2458 Z \/45 20 —1)(20 + 3)
_ 2A222 % (44
>4

In the more realistic case, the mask and the instrument noise must be taken into account,
so that the reduced bipolar coefficients are computed from ¢y, in eq. (B@) and their mean
is
<ALM> = Z ( ) Cllml 12m2¢l1m112 —mag* (45)
l1lomimes
It can be seen from the above equation that due to the effect of the mask, (Agy) and
(Ago) will not be the only non zero components of (Ar).

We define
ALy = Ay — (Arm), (46)
and write the covariance matrix for 04y, as

(OALMOAT ) = Crmnmr

L/M/
- E E Q:llmllgmg lzm3zlamy

limilomsa Il3msglymy

X (Clﬂm lamsg Clz ma,lamy

+ Cl1m1,14m4 012m2,13m3> : (47)
Therefore, the posterior probability function takes the form
~ exp (—32?)
Z2 = Z (SALM (Cil)LM,L/M/ 5AL/M/.

LML'M'
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Here, we have used a flat prior on ¥ and a Gaussian prior on A,. For the Gaussian prior,
the mean and variance of A, are taken from the five-year WMAP results [33]. Since the
contributions from spacetime noncommutativity mainly appear in the (Ag) and (As),
we restrict the multipole index L of Apys to be less than 4. We note that the parallel
computing of covariance matrices Cj,m, 1,m, and Crasrar can be easily implemented
in the Healpix package [31]. The data that are used to computed d Ay, are the five-
year WMAP foreground-reduced V2 and W1 differential assembly temperature maps
[30]. These maps are masked using the band-limited masks in [I9]. According to [19],
we limit the multipole index of ¢, and My, to be [ < 62 and L < 92 respectively.
The covariance matrix C can be computed from the covariance matrix in eq. (E0).
Since the spacetime noncommutativity does not affect the cosmic evolution after the
inflationary epoch, we can use CMBEASY [32] to compute the CMB transfer function
and ¢; by supposing that the cosmic evolution after inflation obeys the ACDM model
whose parameters are taken from the best fit value of the five-year WMAP results [33].
However, recall that the amplitude of the primordial power spectrum is treated as a free
parameter. We compute the posterior probability function for & and marginalize it over
As to obtain the marginalized posterior probability function for . The marginalized
posterior probability functions for Y obtained from V2 and W1 maps have a peak at
negative X, i.e. negative c?q. However we restrict ourselves to the case where c% > 0, so
that the confidence intervals for ¥ can be obtained from the areas under the curves of
The marginalized posterior probability functions in figure 1.

Since the parameters 3 and cg cannot be constrained using the above analysis, the
upper bound for the noncommutative length scale L, can be computed from the upper
bound for ¥ if the values of 3 and cg are specified. For simplicity, we suppose that the
values of § and cg are known precisely, so that the upper bound for L, can be written
as Ly < 1.4x 10451/2015/(1_ﬂ)/mp(}ev_1 ~ 1.4 x 10*2851/2015/(1_ﬂ)cm at 99.7% confidence
level. Here, m,, is the Planck mass. It can be seen that if inflaton evolves more slowly,
the upper bound for L, will increase and the dependence of this upper bound on cg
becomes weaker. We note that 3 is the inverse of the slow-roll parameter. As shown
n [24], the ratio of the tensor to scalar perturbations amplitudes r depends on cg. We
roughly estimate the values of 3 and cg using the values of ng and r from the five-year
WMAP results, and obtain L, < 1072"cm at 99.7% confidence level.

68%CL 95%CL 99.9%CL
W1 0.024 0.048 0.070
V2 0.029 0.055 0.78

Table 1. The upper bound for the parameter ¥ x 10*® from W1 and V2 maps.
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Figure 1. The marginalized posterior probability functions for . The solid line
represents the probability function from W1 map, while the long dashed line represents
the probability function from V2 map. Here, X is restricted to be positive.

4. Conclusions

In this work, we study the effect of spacetime noncommutativity on the rotational
invariance of the primordial power spectrum, and constrain the contributions from
this effect using CMB data. For the power law k-inflation model, the deviation
from rotational invariance of the primordial power spectrum due to the spacetime
noncommutativity effect depends on the factor vH{L%/(8¢%). This result will give rise
to the result in [I2] if ¢ = 1, and will be invalid if the Hubble parameter does not
evolve sufficiently slow during inflation.

Since the primordial power spectrum is direction-dependent in our consideration,
the covariance matrix for the harmonic coefficients of the CMB temperature anisotropies
has off diagonal elements. In our case, these off diagonal elements arise from the
spacetime noncommutativity contributions. As is well known, this implies that statistics
of the CMB anisotropies become anisotropic. The spacetime noncommutativity also
contributes to the diagonal elements of the covariant matrix suggestting that the
noncommutative contribution also modifies the amplitude of the CMB angular power
spectrum.

Both contributions from spacetime noncommutativity are simultaneously con-
strained using five-year WMAP foreground-reduced V2 and W1 maps. The upper bound
for the ratio Lsc;/ (5=1) /B2 is approximately 1.4 x 1072®cm at 99.7% confidence level.
If we suppose that the values of 3 and cg are known precisely, the upper bound for the
noncommutative length scale can be written as L, < 1.4 x 10-2%2¢/"Pem at 99.7%
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confidence level. This shows that if inflaton evolves more slowly, the upper bound for L,
will increase and the dependence of this upper bound on cg becomes weaker. Estimat-
ing the values of 3 and cg using the best fit cosmological parameters from the five-year
WMAP results, we obtain L, < 1072"cm at 99.7% confidence level.
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