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ปจจุบันขอมูลของจีโนไทปมีขนาดใหญมากขึ้น ทําใหการอนุมานจํานวนกลุมประชากร
ยอยและการจําแนกคนเขาในกลุมประชากรยอยเปนเรือ่งยาก วิธกีารที่เปนที่นยิมและมี
ประสิทธิภาพในการคํานวนขอมูลที่มีขนาดใหญคือ Principal Components Analysis (PCA)  ใน
ปจจุบันนี้ PCA สามารถตรวจจับหาโครงสรางของประชากรไดเทานัน้ไมสามารถที่จะหาจํานวน
กลุมของประชากรยอยได  ดังนั้นคณะวิจัยจึงทําการพัฒนาระเบียบวิธีโดยปรับเปลีย่นเทคนิค
ของ PCA เพ่ือทําการหาจํานวนกลุมประชากรยอยและสามารถตรวจสอบหากลุมประชากรที่
เหมาะสมกับบุคคลได ระเบียบวิธีทีท่ําการพัฒนาขึ้นน้ีเรียกวา iterative pruning PCA (ipPCA) 
สามารถใชกับขอมูลจีโนไทปมีขนาดใหญไดอยางมีประสิทธิภาพ โดยระเบียบวธิี ipPCA ไดถูก
ทดสอบประสทิธิภาพกับขอมูลจําลอง ผลการทดลองแสดงใหเห็นวาสําหรับขอมูลกลุมประชากร
ที่ไมซับซอนผลที่ไดสอดคลองกับระเบียบวิธี STRUCTURE และ AWclust  อยางไรก็ตาม สําหรับ
ขอมูลของกลุมประชากรทีซ่ับซอน มีเพียงระเบียบวธิี ipPCA เทานั้นที่สามารถจําแนกกลุม
ประชากรไดอยางถูกตอง นอกจากนี้ระเบียบวิธี ipPCA ถูกทดสอบกับขอมูลจริงที่มีขนาดของ
ขอมูลจีโนไทปใหญมากซึ่งไมสามารถวิเคราะหไดโดยระเบียบวธิี STRUCTURE และ AWclust   
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Abstract 
 

Project Code : TRG5180005 
Project Title :  
Investigator : Apichart.intarapanich National Electronics and Computer Technology 
Center 
E-mail address: apichart.intarapanich@nectec.or.th
Project Period : 1 year 

As genotypic datasets become ever larger, it is increasingly difficult to correctly 
estimate the number of subpopulations and assigning individuals to them. The 
computationally efficient non-parametric, chiefly Principal Components Analysis (PCA)-
based methods are thus becoming increasingly relied upon for population structure 
analysis. Current PCA-based methods can accurately detect structure; however, the 
accuracy in resolving subpopulations and assigning individuals to them is wanting. 
When subpopulations are closely related to one another, they overlap in PCA space 
and appear as a conglomerate. This problem is exacerbated when some 
subpopulations in the dataset are genetically far removed from others. We propose a 
novel PCA-based framework which addresses this shortcoming.  

A novel population clustering program called iterative pruning PCA (ipPCA) was 
developed which assigns individuals to subpopulations and infers the total number of 
subpopulations present. Genotypic data from simulated and real population datasets 
with different degrees of structure were analyzed by the proposed method. For datasets 
with simple structures, the subpopulation assignments of individuals made by ipPCA 
were consistent with the STRUCTURE and AWclust algorithms. On the other hand, 
highly structured populations containing many closely related subpopulations could be 
accurately resolved only by ipPCA, and not by other methods. The algorithm is 
computationally efficient and not constrained by the dataset complexity. This systematic 
clustering approach removes the need for prior population labels, which could be 
advantageous when cryptic stratification is encountered in datasets of individuals 
otherwise assumed to be homogenous. 

iii  

mailto:apichart.intarapanich@nectec.or.th


สารบัญ 
บทที่ 1 บทนาํ........................................................................................................................1 

บทที่ 2 ระเบยีบวธิี .................................................................................................................3 

ขั้นตอนการแปลงขอมูลจีโนไทป ...........................................................................................3 

ขั้นตอนวิธีในการคนหาโครงสรางประชากรและจํานวนของประชากร ( ) ......................................5 

บทที่ 3 การทดสอบกับขอมูลจําลอง .......................................................................................8 

บทที่ 4 การทดสอบกับขอมูลจริง..........................................................................................12 

บทที่ 5 วเิคราะหและสรุปผล ................................................................................................22 

การเปรียบเที่ยบระเบียบวิธี ipPCA กับระเบียบวีธีอื่น ๆ .............................................................22 

การปรับปรุงการจัดกลุมดวยการเลือก Principal Component  (PC) ที่เหมาะสม..........................22 

การอนุมานหาจํานวนกลุมประชากรยอย ................................................................................22 

ความถูกตองของการกําหนดบุคคลไปยังกลุมประชากรยอย .........................................................23 

การหากลุมประชากรยอยตามลักษณะของระยะทางทางพันธุกรรมและประวัติของกลุมประชากร ............24 

เอกสารอางอิง......................................................................................................................26 

ภาคผนวก ...........................................................................................................................27 

Manuscript Submitted to BMC Bioinformatics............................................................27 

iv  



 

บทที่ 1 บทนํา 
 

ความถี่ของอัลลีลในแตละประชากรนั้นมีความแตกตางกันเนื่องจากกลไกของ
วิวัฒนาการ เชน การอพยพยานถิ่นฐาน การคัดเลอืกโดยธรรมชาติ ภัยพิบตัแิละโรคระบาด 
ดังนั้นกลุมตัวอยางในประชากรจึงสามารถถูกปรับเปลีย่นเปนโครงสรางประชากรยอย 
การศึกษาวิวฒันาการของประชากรใดๆ จําเปนจะตองอาศัยระเบียบวิธทีี่มีประสิทธิภาพ
พอเพียงเพ่ือการบงชี้การมีอยูของโครงสรางประชากรยอย และยิ่งไปกวานั้นโครงสรางประชากร
ยอยยังเปนปจจัยหลักสําหรับการศึกษาระบาดวิทยาเชิงพันธุกรรมที่สามารถสรางความ
คลุมเครือในการวิเคราะหหาการเกี่ยวเนือ่งระหวางยีนและโรคได [1] การวิเคราะหหาโครงสราง
ประชากรโดยทั่วไปแลวประกอบดวย 4 เปาหมายหลักคือ 1) การตรวจหาโครงสรางประชากร 
2) การกําหนดกลุมประชากรใหกับตวัอยาง 3) หาจํานวนกลุมของประชากรยอย และ 4) 
สามารถหาสัดสวนของประชากรในแตละกลุมประชากร [2] จากเทคโนโลยีของการจีโนไทปใน
ปจจุบันที่สามารถทําไดทีละหลายๆ สนปิพรอมๆ กันถึงครั้งละหาแสนสนิปในหนึ่งแผนอารเรย 
ทําใหขอมูลจีโนไทปมีปริมาณเพิ่มขึ้นมหาศาลในเวลาอันรวดเร็ว ยิ่งเพ่ิมความยากลําบากใน
วิเคราะหขอมูลเพ่ือตอบคําถามดานพันธุศาสตรประชากร รวมไปถึงระบาดวิทยาเชิงพันธุศาสตร
มากขึ้น ดังนั้นการพัฒนาระเบียบวธิีทีมี่อยูแลวรวมไปถึงการคิดคนระเบียบวธิีใหมๆ ที่มี
ประสิทธิภาพมากกวาเดิมเพ่ือใชในการคนหาโครงสรางประชากรจึงเปนเรื่องที่จําเปนอยางยิ่ง 
หลายๆ ระเบียบวิธีในการคํานวณเพื่อคนหาโครงสรางประชากรไดถูกเสนอขึ้น โดยทั่วไปแลว
แบงเปนสองแบบคืออางอิงโมเดลและแบบไมอางอิงโมเดล วธิีการแบบอางอิงโมเดลนั้นถือวา
เปนวธิีที่ไดรับความนิยมสูงเนื่องจากเปนเทคนิคทางดานสถิติโดยอาศัยความถี่ของอัลลี
ลเพื่อการตรวจสอบโครงสรางและกําหนดกลุมของประชากรใหกับแตละตวัอยาง วิธีนี้มีความ
แมนยําสูงแตอยางไรก็ตามการทํานายจํานวนแทจริงของประชากรยอย (K) นั้นยังไมเที่ยงตรง
มากนัก เน่ืองจากเปนวีธอีนุมานคาจากสถิติจึงตองมีการคํานวณหลายๆ ครั้งแลวนําผลที่ได
บอยครั้งที่สุดเปนคําตอบ และยังอางอิงขอสรุปของฮารดี-ไวนเบิรกซึ่งอาจไมเปนจริงตามนั้นใน
หลายๆ ขอมูล ยกตวัอยางเชน การสุมตัวอยางขอมูลแบบมีอคติเนื่องจากขอจํากัดของการทํา
การทดลอง ยิ่งไปกวานั้นวิธีการแบบอางอิงโมเดลยังใชทรัพยากรเวลาในการคํานวณสงูเม่ือ
เทียบกบัแบบไมอางอิงโมเดล 
 สําหรับการคนหาโครงสรางประชากรดวยวิธีการแบบไมอางอิงโมเดลที่นิยมใชมากที่สุด
คือการประยุกตเอาการวิเคราะหของไอเกนมาใช ยกตัวอยางเชน principal component 
analysis (PCA) และวิธกีารที่เกี่ยวเน่ืองกันที่ชื่อวา singular value decomposition (SVD) 
โดยทั่วไปแลววิธีการนี้สามารถคํานวณกับขอมูลขนาดใหญโดยใชเวลาไมมากนัก แต PCA 
เพียงอยางเดียวก็ยังไมสามารถที่จะประมาณคา K ได ดังนั้นระเบียบวธิีการจัดกลุมจึงถูก
นํามาใชในการจําแนกตัวอยางสูประชากรยอย ขอมูลจะถูกเชื่อมโยงความสัมพันธตามระยะหาง
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ของพันธุกรรมโดยอาศัยการทํางานของ PCA และดวยจํานวนแกนสําคัญ (principal 
component) เพียงไมมาก PCA จะสามารถแสดงตัวอยางใหอยูตามกลุมของประชากรยอย โดย
ถาประชากรยอยที่หางกันมากบนแกนสําคัญจะแสดงถงึการมีระยะหางของพันธุกรรมมาก 
ในทางตรงกันขามถาประชากรยอยที่ใกลกันบนแกนสําคัญจะแสดงถงึการมีระยะหางของ
พันธุกรรมนอยตามไปดวย ในกลุมของประชากรยอยที่ใกลกันมากๆ การที่จะชี้ชัดใหเห็นถึง
ความแตกตางและแยกยอยออกไปไดนั้นจะตองอาศัยจํานวนแกนสําคัญจํานวนมากกวาเดิมซ่ึง
สามารถหาจํานวนไดโดยมีการทดลองมากอน วิธีการจัดกลุมจะถูกประยุกตใชดวยจํานวนแกน
สําคัญที่ตองเหมาะสมตอขอมูลเทานั้น เน่ืองจากการเพิ่มจํานวนแกนมากเกินไปอาจเปนการ
รบกวนการวิเคราะหขอมูลโครงสรางดวยขอมูลที่ไมมีความสําคัญอ่ืนๆ ซึ่งเราทราบดีอยูแลววา
ขอมูลโครงสรางประชากรทีส่ําคัญน้ันมีจํานวนนอยกวาขอมูลที่ไมมีความสําคัญมาก ดังนั้นการ
ใชแกนที่สําคญัจํานวนมากๆ กับวธิีการจัดกลุมน้ันไมสามารถเพิ่มความแมนยําของการคนหา
โครงสรางประชากรแตอยางใด 
 วิธีหนึ่งซึ่งสามารถเพิ่มประสิทธิภาพในการแยกยอยกลุมประชากรที่ใกลชิดกันใด
ถูกตองยิ่งขึ้นคือการกําจัดประชากรยอยที่มีระยะหางทางพันธุกรรมมากที่สุดออกกอน จากน้ัน
จึงประยุกต PCA บนขอมูลที่เหลือ วธิีการนี้สามารถชวยทําใหการแยกยอยกลุมประชากรที่
ใกลชิดทีเ่หลืออยูไดดีขึ้น วิธีการตดัออกเชนน้ีถือวาเปนประโยชนกับการวิเคราะหในระดบัที่
ตองการความละเอียดสูง อยางไรก็ตามวิธีนี้ยังจําเปนตองใชขอมูลฉลากเพื่อบอกวาตวัอยางใด
ควรตัดออกกอนบาง วิธีนี้จึงไมสามารถใชไดในกรณีที่ขอมูลมีฉลากที่เหมือนกันได ยกตัวอยาง
เชน การศึกษาความเกี่ยวเนื่องกันของยีนและโรค โดยมีตัวแปรควบคุมคือเชื้อชาติและภูมิภาคที่
กําเนิด 
ทั้งๆ ขอดีของวิธีการหาโครงสรางประชากรแบบไมอางอิงโมเดลมีมากมาย แตก็ไมมีวิธใีดที่
สามารถที่จะกาํหนดประชากรยอยใหกับตัวอยางไดอยางสมบูรณและเปนระบบ สิ่งที่ตามมาคอื
วิธีเหลานี้ก็ยังมีความสามารถไมเพียงพอที่จะหาจํานวนประชากร K ไดอยางถูกตองนั่นเอง 

ในงานวิจัยนีน้ําเสนอระเบยีบวธิีที่ไมอางอิงโมเดลที่เรียกวา iterative pruning PCA 
(ipPCA) ซึ่งสามารถตรวจสอบการมีอยูของโครงสรางประชากร การกําหนดกลุมของประชากร
ยอยใหตัวอยาง การทํานายจํานวนของประชากรยอย (K) ดวยความแมนยํามากกวาวธิีอ่ืนๆ 
ipPCA ใชวธิแีบบฮิวริสติคเพื่อการคนหาประชากรยอยในระดับทีเ่หมาะสมกับความเปนจริงของ
ขอมูลจีโนไทปดวยระเบียบวีธีแบบทําซ้ําจนหยุดกระบวนการ 
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บทที่ 2 ระเบียบวิธี 
 

ในงานวิจัยนี้ไดทําการพัฒนาระเบียบวธิีเพื่อทําการหาจํานวนกลุมประชากรยอยจาก
ขอมูลของกลุมประชากรทีมี่โดยที่ไมจําเปนตองทราบจํานอนของกลุมประชากรยอยลวงหนา 
นอกเหนือจากนี้ระเบียบวธินีี้ยังสามารถระบุบุคคลไปอยูในกลุมประชากรยอยที่เหมาะสมได 
ระเบียบวธิีทีท่ําการพัฒนาขึ้นน้ี เปนแบบที่ไมขึ้นกับขอสมติฐานของกลุมประชากร โดยการ
พิจารณาวากลุมประชากรยอยที่เหมาะสมนี้จะดูจากความคลายคลึงกันทางพันธุกรรม ซึ่งกลุม
ประชากรยอยเดียวกันจะมีความคลายคลึงกันทางพันธุกรรมมากที่สุด 

ระเบียบวธิีทีพั่ฒนาขึ้นน้ีนี้ใชขั้นตอนเดียวกับ PCA ซึ่งไดมีการนํามาใชกับการวิเคราะห
กลุมประชากร แตไมสามารถจําแนกหากลุมประชากรยอยไดละเอียด งานวิจัยนี้ไดทําการพัฒนา
ปรับปรุงขั้นตอนของ PCA เพ่ือใหสามารถหาจํานวนกลุมประชากรยอยไดอยางถูกตองแมนยํา
มากขึ้น โดยระเบียบวธิีใหมนี้ไดทําการแยกกลุมประชากรยอยออกไปในแตละขั้นที่ทํา PCA ซึ่ง
จะสามารถทําใหในขั้นตอนตอไปของ PCA จะสามารถเห็นกลุมประชากรยอยทีช่ัดเจนมากขึ้น 
ซึ่งวิธีที่พัฒนาขึ้นมานี้เรียกวา Iterative Pruning PCA หรือ ipPCA เนื่องจากระเบียบวธิี ipPCA 
เปนขั้นตอนทีต่องทําซ้ําไปเรื่อย ๆ ดังนั้นจึงจําเปนตองมีการทดสอบวาจะหยุดการทําซ้ําเม่ือใหร 
ซึ่งเง่ือนใขที่จะหยุดการทําซ้ําของ ipPCA คือการทดสอบวากลุมประชากรยอยที่ไดทําการแบง
ออกมาจากกลุมประชากรทั้งหมดนั้น เปนกลุมประชากรของบุคคลที่มีความคลายคลึงกนัทาง
พันธุกรรม 
 ในแตละขั้นตอนการทํา PCA ผลที่ไดคือ  eigenvalues และ eigenvectors ซึ่ง 
eigenvalues จะเปนคาที่ใชสําหรับทดสอบวากลุมประชากรยอยที่ไดเปนกลุมที่มีความคลายคลึง
กันทางพันธุกรรม โดยวิธีทดสอบนี้จะใชการทดสอบคาทางสถิติทีเ่รยีกวา Tracy-Widom (TW) 
[3] สวนคาของ eigenvectors จะนํามาใชสําหรับการคํานวนหาคาสัมประสิทธเพ่ือใชในการ
คนหากลุมประชากรยอยในแตละขั้นตอนการทํา PCA โดยการหากลุมประชากรยอยในแตละ
ขั้นตอนนั้นจะใชระเบียบวิธกีารจัดกลุมโดยจะใหจะนวนของกลุมที่เปนไปไดเทากับ 2 กลุมเสมอ 
โดยระเบียบวธิีสําหรับหารแยกกลุมน้ีจะใชแบบ fuzzy c-mean [4] ซึ่งเปนระเบียบวธิีทีไ่ม
ซับซอนและใหผลที่ดี  
 

ขั้นตอนการแปลงขอมูลจีโนไทป 

เน่ืองจากขอมูลจีโนไทปเปนขอมูลที่เปนเมตริกซของอักขระดังแสดงในรูปที่ 1 ตามชนิด
ของอัลลีลของสนิปแตละตําแหนง ทางดานแถวจะเปนตัวอยาง สวนทางดานคอลัมนจะเปนสนิป 
จุดประสงคในการแปลงขอมูลจีโนทัยปเพื่อเอ้ือตอการคํานวณคาในหัวขอถัดไป เมตริกซอักขระ
จะถูกแปลงเปน เมตริกซจํานวนเต็ม เพ่ือใหระเบียบวธิ ีPCA สามารถคํานวนได โดยคาที่ใชจะ
เปนตวัเลขดังตอไปน้ี  

3  



 

 
 

 รูปที่ 1 การแทนคาขอมูจีโนไทปดวยตัวเลขจํานวนเตม็ 
 
Homozygous Wild-type ซึ่งเปนอัลลีลทีมี่ความถี่สูงทีสุ่ดใหคา 0  
Heterozygous ใหคาเปน 1  
Homozygous Mutant-type ใหคาเปน 2  
ขอมูลที่ขาดหายไป (Missing-value Data) ใหคาเปน -1  
เราจะเรียกเมตริกซขอมูลทีถู่กแปลงคานีว้าเมตริกซ   ดังสมการที่ 1  
 

  (1) 

โดยที่  X คือเมตริกซของขอมูลสนิป  
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M คือจํานวนสนิป  
N คือจํานวนตัวอยาง  

 คือเวคเตอรของสนิป  
 
ขอมูลที่ขาดหายไปอาจจะมีผลกับการวิเคราะหหากลุมยอยของประชากรได ซึ่งสามารถ

ทดสอบไดโดยการแปลงของมูลจีโนไทป อ่ืน ๆ เปน 0 และแปลงคาของขอมูลทีห่ายไปเปน 1 
จากนั้นใหทําการวิเคราะห PCA และดูการกระจายตัวของสัมประสิทธวามีการแยกกลุมออกมา
หรือไม ถามีกลุมแยกออกมาแสดงวาขอมูบที่หายไปมีผลกับการวิเคราะหจําแนกประชากรกลุม
ยอย ซึ่งอาจจะแกไขโดยการไมรวมกลุมที่แยกออกมาไปในการวิเคราะห 

 

 ขั้นตอนวิธใีนการคนหาโครงสรางประชากรและจํานวนของประชากร ( ) 

ขั้นตอนนี้มีหนาที่หาโครงสรางของประชากรที่มีอยูในขอมูลทั้งหมดรวมถึงจํานวน
ประชากร K โดยไม อาศัยขอมูลปายกํากับ (labels) ซึ่งเปนขอมูลที่ไดมาตั้งแตการเก็บตวัอยาง
ที่บงชีว้าตวัอยางมาจากประชากรกลุมใด เพราะจํานวนของประชากรยอยที่มีอยูในขอมูลน้ันอาจ
มีมากกวาหรือนอยกวาขอมูลปายกํากับก็เปนได ใน ขั้นตอนนี้เราจะอาศัยการวิเคราะหพริน
ซิพัลคอมโพเนนตหรือ Principal Component Analysis (PCA) เปน เครื่องมือดังรูปที่ 3 ซึ่ง
อธิบายขั้นตอนในหัวขอน้ีทัง้หมด  

การวิเคราะหพรินซิพัลคอมโพเนนตหรือ Principal Component Analysis (PCA) เปน
ระเบียบวธิีทาง คณิตศาสตรที่เกีย่วของกับการใชเทคนิคที่ชื่อวาการกระจายเมตริกซแบบซิงกู
ลาร (Singular Value Decomposition) ทําการแปลงตัวแปรที่มีความสัมพันธกันหลายๆตวัใน
ขอมูล ไปยังตวัแปรที่ไมสําพันธกันอีก จํานวนหนึ่งซึ่งมีจํานวนนอยกวาเดิมมาก เราเรียกตวัแปร
นี้วา Principal component โดยวิธีการนี้เราจึงสามารถลด มิติของขอมูลได ในขณะที่ความสํา
พันธของตวัแปรเร่ิมตนยังคงถูกรักษาใว เราสามารถแสดงตัวแปรที่ถูกแปลง มายังโดเมนใหม
จากการวาดกราฟแบบ scatter plot แลวสามารถแยกกลุมอยางมีประสิทธิภาพดวยขั้นตอน
วิธีการ จัดกลุม PCA สรางโดเมนใหมไดจากการคํานวณเมตริกซโควาเรียนซ (Covariance 
Matrix) โดยใชขอมูลสนิปที ่ถูกดัดแปลงใหเปนตัวเลข 0, 1 และ 2 ตามสมการที่ 1  

เน่ืองจากเมตริกซโควาเรียนซโดยทั่วไปจะมีขนาดใหญ ทําใหอยากทีจ่ะทําการ
คํานวณหาโดเมนใหม อยางไรก็ตามเราสามารถใชเทคนิคทางเมตริกซเขามาชวยในการลด
จํานวนครั้งของการคํานวณโดยการหาเมตริกซ ของ  ซึ่งมีขนาดเล็กลงมากเมื่อเทียบกับ
การคํานวณเมตริกซโควาเรียนซของ  โดยตรง อาศัยคุณสมบตั ิ ของ Singular value 
decomposition (SVD) ของเมตริกซใดๆ ตามสมการดังตอไปน้ี 

  (2) 
จะไดวา  
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  (3) 

โดยที่ U คือ เมทริกซยูนิแทรีดานขวา  
       S คือ เมทริกซเฉียงทีมี่จํานวนจริงที่ไมเปนลบอยูที่ตําแหนงเฉียง  
       V คือ เมทริกซยูนิแทรดีานซาย  
ดังนั้นเราสามารถคํานวนณหาคือ เมทริกซยูนิแทรีดานซาย V เพ่ือสรางโดเมนใหมไดจาก
สมการที่ 4  

  (4) 
โดยที่  คือแรงคของเมตริกซ S  
       : คือสัญลักษณแทนการตอเน่ืองของดัชนีในแถวหรือหลักของเมตริกซ  
จากนั้นเราจะสามารถแปลงขอมูลไดดังสมการที่ 5  

  (5) 
โดยที่  คือขอมูลสนิปที่ถูกแปลงแลว โดยคา  ที่ไดนี้ จะถูกนํามาหากลุมยอยของ
ประชากรโดยระเบียบวธิีการจัดกลุม fuzzy c-mean ซึ่งจะทําการแบงกลุมของประชากรออกเปน 
2 กลุมยอยและทําการทดสอบวากลุมประชากรยอยที่ไดแตละกลุมมีความเปนกลุมที่มาความ
คลายคลึงกันทางพันธุกรรมหรือไมโดยใชการทดสอบทางสถิติแบบ TW 
 การทดสอบทางสถิติแบบ TW จะใชคาของ eigenvalue ซึ่งก็คือคาในแนวเสนทะแยงมุม
ของเมตริกซ  ซึ่งก็คือคา eigenvalue ซึ่ง [3] ไดแสดงวา
คาของ eigenvalue ที่ใหญที่สุดเม่ือไดทําการปรับคาอยางเหมาะสมแลวจะมีคาการกระจายตัว
แบบ TW โดยที่คานี้จะถูกคํานวนดังขั้นตอนดังตอไปน้ี 
 

  (6) 

 

 (7) 

 
คาทดสอบทางสถิติของ TW จะถูกคํานวนโดย 
 

  (8) 

อยางไรก็ตามเพื่อที่จะใหคาทดสอบทางสถิติเปน TW สมการที่ (8) จะถูกแทนที่โดย [3] 
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  (9) 

โดยที่ 

  (10) 

 
ระเบียบวธิี ipPCA สามารถสรุปไดดังตอไปน้ี 
 
ขั้นตอนกอนการวิเคราะห 
 ใหทําการทดสอบวาขอมูลที่หายไปมีผลตอการวิเคราะหขอมูลหรือไมโดยทําการแทนคา
ขอมูลจีโนไทปอ่ืน ๆ ดวย 0 และแทนคาขอมูลที่หายไปดวย 1 จากนั้นใหทําการวิเคราะห PCA 
เพ่ือทําการสังเกตุดูวาคาทีห่ายไปทําใหเกิดกลุมที่แยกออกมาจากขอมูลอ่ืน ๆ หรือไม ถาเกิดมี
กลุมแยกออกมา แสดงวาขอมูลที่หายไปจะมีผลกระทบกับการวเิคราะหกลุมประชากรยอย ซึ่ง
อาจจะแกใขไดโดยการไมรวมขอมูลที่แยกออกมาดังกลาวเขาไปในการวิเคราะห [3] 
 
ขั้นตอนของ ipPCA 

1. สรางเมตริกซ  สําหรับขอมูลที่ยังไมไดทาํการหยุด 
2. ทําการใช SVD [5] เพ่ือแยกหาคา eigenvalue และ eigenvectors ตามสมการที 

(2) คือ  
3. คํานวนคาสัมประสิทธของแตละบุคคลใน PCA เพ่ือทําการแยกกลุมโดยใชจํานวน

ของ principal components เทากันแรงคของเมตริกซ 
4. ทดสอบวาหลงัจากแยกกลุมแลว กลุมที่ไดมีความคลายกันทางพันธกุรรมหรือยัง

โดยการใชการทดสอบทางสถิติแบบ TW [3] ซึ่งจะทําการหยุดถาคาทดสอบทาง
สถิติมีความสาํคัญคือคา p-value <  ถาคา p-value สูงกวานี้ก็ใหทําการ
แยกกลุมโดยขั้นตอนตอไป 

5. ทําการแยกกลุมที่ไมไดถูกหยุดออกเปนสองกลุมโดยใชระเบียบวธิี fuzzy c-mean 
[6]  

6. ทําซ้ําขั้นตอนที่หนึ่งจนกระทั่งทุก ๆ ขอมูลมีความคลายคลึงกันทางพันธุกรรม 
7. จํานวนของกลุมประชากรยอย (K)สามารถหาไดโดยการนับจํานวนของกลุมที่มี

ความคลายคลึงกันทางพันธุกรรมทุก ๆ กลุม 
 
  
ขั้นตอนการทาํ ipPCA นี้อาจจะตองทําหลายครั้งเพ่ือดูถูกตองของผลการวิเคราะห 
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บทที่ 3 การทดสอบกับขอมูลจําลอง 
 
 เพ่ือทําการทดสอบระเบียบวธิีที่ไดทําการพัฒนาขึ้มใหม ขอมูลของกลุมประชากรไดถูก
จําลองขึ้นมาโดยใชซอฟแวร GENOME [7] โดยซอฟแวร GENOME จะเปนการสรางประชากร
จําลองแบบยอนกลับเวลา ipPCA ไดถูกทําการทดสอบดวยขอมูลประชากรจําลองจํานวน 3 ชดุ 
โดยมีรายละเอียดดังนี้ ขอมูลชุดแรกจะเปนแบบที่มีการผสมกันของกลุมประชากรแตมีจํานวน
กลุมประชากรไมมากคือ 3 กลุม ขอมูลชุดที่ 2 จะเปนขอมูลที่ไมมีการผสมกันของกลุมประชากร
โดยมีจํานวนกลุมประชากรยอยทั้งหมด 5 กลุมขอมูลชุดที่ 3 เปนขอมูลที่มีความสลับซับซอนสงู
โดยมีจํานวนของกลุมประชากรยอย ทัง้หมด 20 กลุมและมีการผสมกันระหวางกลุมประชากร 
ขอมูลทั้ง 3 ชุดนี้จะเรียกวา Model 1, Model 2 และ Model 3 ตามลําดับ โดยโครงสรางของ
ประชากรทั้ง 3 กลุม แสดงในรูปที่ 2  
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รูปที่ 2 โครงสรางของกลุมประชากรที่ทําการทดสอบ 
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พารามิเตอรทีใ่ชในการรัน GONOME มีดังตอไปนี้ 
 
 

The model 1 dataset parameters: 
-pop 3 50 50 50 –c 20 –s 500 –N model1.txt 
 
The model 2 dataset parameters: 
-pop 5 50 50 50 50 50 –c 20 –s 500 –N model2.txt 
 
The model 3 dataset parameters: 
-pop 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50  -c 20 –s 500 
–N model3.txt 
 

โดยพารามิเตอรขางบนจะใหขอมูลหนาด 10000 สนิปซสําหรับแตละบุคคล โดยทีข่อมูล Model 
3 ไดทําการจําลองทั้งหมด 30 ชุดเพ่ือทําการทดสอบผลลัพทที่สอดคลองกันของระเบียบวิธี  
ipPCA 
 
 เพ่ือที่จะทดสอบความถูกตองของระเบียบวธิี ipPCA ขอมูลจําลองที่มีจํานวนกลุม
ประชากรยอยไมมากคือ 3 และ 5 กลุมไดถูกนํามาวิเคราะหโดยระเบียบวิธี ipPCA ซึ่งสําหรับ
ขอมูลน้ีระเบียบวธิี ipPCA ทําการหาจํานวนของกลุมประชากรยอยไดอยางถูกตองสอดคลองกับ
คาของพารามิเตอรที่ใชในการจําลอง นอกจากนี้ผลการหาวาแตละบุคคลอยูในกลุมประชากร
ยอยใดก็เปนไปอยางถูกตอง ดังแสดงในรูปที่ 3 และ 4 ซึ่งเปนผลของกลุมประชากรจากการ
ทดสอบวิเคราะหดวย ipPCA จํานวน 10 ครั้ง สําหรับกลุมประชากรที่ซับซอน (Model 3) 
ระเบียบวธิี ipPCA ไดถูกทดสอบกัลขอมูลจําลองของ Model 3 จํานวน 30 กลุมขอมูล โดยที่ผล
การทดสอบแสดงใหเห็นวาระเบียบวธิี ipPCA สามารถกาจํานวนกลุมไดอยางสอดคลองกันใน
ทุก ๆ กลุมขอมูล นอกจากนี้ยังสามารถจําแนกบุคคลเขาสูกลุมประชากรยอยไดอยางสอดคลอง
กันดวย โดยที่จํานวนกลุมประชากรที่หาไดมีคา mode เทากับ 20 โดยที่มีคาอยูระหวาง 19 ถึง 
22 และมีอัตราการผิดพลาดของการจําแนกบุคคลเฉลีย่อยูที่ 6.07% โดยทีอัตตราผิดพลาดมีคา
อยูระหวาง 1.9% - 17.5% 
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รูปที่ 3 ผลการทดสอบการวิเคราะหขอมูลประชากรดวย ipPCA จํานวน 10 ครั้งโดยผลที่นํามา
แสดงเปนผลจากผลการวิเคราะหสวนใหญ A) แผนภูมิตนไมของประชากรโดยแตละชองคือกลุม
ประชากรยอย กลุมประชากรยอย SP-1, SP-2 และ SP-3 คือปายขอมูลของประชาการยอยที่ใช
ในการจําลอง B) เปนผลการพลอตแบบกระจายของแตละบุคคลใน PC1 และ PC2 โดยแตละจุด
แทนแตละบุคคลในกลุมประชากร 

10  



0 1 2 3

1
POP2 (50)
POP5 (50)
POP3 (50)
POP1 (50)
POP4 (50)

R2
POP2 (50)
POP5 (50)
POP1 (50)

R4
POP2 (50)

L5
POP5 (50)
POP1 (50)

R10
POP5 (50)

L11
POP1 (50)

L3
POP3 (50)
POP4 (50)

R6
POP3 (50)

L7
POP4 (50)

0 1 2 3

-60 -40 -20 0 20 40 60
-40

-20

0

20

40

60

80

100

 

 
POP2
POP5
POP3
POP1
POP4

A

B  
รูปที่ 4 ผลการทดสอบการวิเคราะหขอมูลประชากรดวย ipPCA จํานวน 10 ครั้งโดยผลที่นํามา
แสดงเปนผลจากผลการวิเคราะหสวนใหญ A) แผนภูมิตนไมของประชากรโดยแตละชองคือกลุม
ประชากรยอย กลุมประชากรยอย SP-1, SP-2, SP-3, SP-4 และ SP-5 คือปายขอมูลของ
ประชาการยอยที่ใชในการจําลอง B) เปนผลการพลอตแบบกระจายของแตละบุคคลใน PC1 
และ PC2 โดยแตละจุดแทนแตละบุคคลในกลุมประชากร 
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บทที่ 4 การทดสอบกับขอมูลจริง 
 

เพ่ือที่จะทดสอบวาระเบียบวิธีใหมนี้มีประสิทธิภาพกบัขอมูลจริงเปนอยางไร จึงไดทํา
การทดสอบกับขอมูลจริงจํานวน 3 ชุดขอมูล โดยทําการเปรียบเทยีบกับระเบียบวธิี 
STRUCTURE [2] และ AWclust [8] โดยโปรแกรม STRUCTURE เปน version 2.2 โดยใช
พารามิเตอรดังตอไปน้ี 100000 burn-ins 100000 runs with admixture model, no LD model 
โปรแกรม AWclust ถูใชวเิคราะหขอมูลโดยใชพารามิเตอรที่มากับโปรแกรม  

ระเบียบวธิี ipPCA ไดถูกทําการทดสอบกับขอมูลจรงิจํานวน 3 ขอมูลคือ กลาวคือ 
HapMap, Bovine (วัว) และขอมูลของ Shriver โดยที่ขอมูลของ HapMap ไดมากจาก [9] โดยที่
ขอมูล HapMap ประกอบไปดวยกลุมประชากรยอยจํานวน 4 กลุมคือ Han Chinese from 
Beijing (CHB), Japanese from Tokyo (JPT), Caucasian European from Utah (CEU), and 
Yoruba from Ibadan (YRI) โดยมีจํานวนสนิปซทั้งหมด 1533661 สนิปซ  ในการวิเคราะห
ขอมูลของ HapMap จะแบงออกเปน 2 แบบคือใชจํานวนสนิปซ 50000 สนิปซโดยทําการเลือก
มากจาก 1533661 สนิปซ และ ในสวนทีส่องคือใชจํานวนสนิปซทั้งหมด 1533661 สนิปซ โดยที่
กอนทําการวิเคราะหไดมีการทําขบวนการกอนการวิเคราะหและไดทาํการเอาบุคคล 2 คนที่เปน 
JPT ออกจากขอมูล 

สําหรับขอมูลวัวจะ download จาก [10] ซึ่งจะประกอบไปดวยจํานวนสนิปซทัง้หมด 
9329 สนิปซ หลังจากที่ไดทําการวิเคราะหแลวสามารถตรวจสอบขอมูลที่แตกตางได จึงทําการ
วิเคราะหขอมูลทั้งหมด สําหรับขอมูลประชากรของ Shriver ประกอบไปดวยจํานวนคนทั้งสิน้ 
307 คน จาก 14 กลุมประชากรยอยทีต่างกันทางภาษาและภูมิภาค โดยขอมูลทั้งหมดไดรับ
ความอนุเคราะหจาก Prof. Mark D. Shriver ซึ่งเปนขอมูลใหมลาสุดจากผลงานที่ตีพิมพ [11] 
ขอมูลน้ีประกอบไปดวย 11555 สนิปซสําหรับแตละบุคคลซึ่งกระจายทั่วฃจีโนม หลังจากที่ไดทํา
การทดสอบแลว ขอมูลชุดนี้ไมมีบุคคลทีต่างจากพวก จึงทําการวิเคราะหขอมูลทัง้หมด 

หลงจากที่ขอมูล HapMap ไดถูกวิเคราะห็โดย ipPCA แตละบุคคลที่แตกตางกันตามภูมื
ภาคไดถูกแยกอยูในกลุมประชากรยอย 4 กลุมโดยที่แตละกลุมจะมีแตเฉพาะคนที่มีสัญลักษณ
เดียวกัน (รูปที่ 5)  กลุมประชากรยอย YRI สามารถตรวจเจอไดในรอบแรกของการวิเคราะห 
ipPCA ขณะที่ กลุมประชากรยอย CEU สามารถตรวจเจอไดในรอบที่ 2 และสุดทายกลุม
ประชากรยอย CHB และ JPT อยูในรอบที่ 3 สําหรับการวิเคราะหขอมูลขนาด 1533661 สนิปซ
นั้นใหผลเหมือนกับการวิเคราะหขอมูลที่ 50000 สนิปซ 

สําหรับขอมูล Bovine ประกอบไปดวยประชากรววัจาก 9 สายพนัธุที่มาจากถิน่ที่อยูที่
ตางกัน โดยที่ Brahman (BRM) สืบเชื้อสายมาจาก Zebu (หรือเรียกอีกอยางหนึ่งวา B. 
indicus) ซึ่งเปนสายพันธุทีต่างจากสายพันธุ Taurine มาก สายพันธุ Santa Gertrudis (SGT) 
เปนสายพันธุผสมระหวาง BRM กับ Shorthorn สวนสายพันธุอ่ืน ๆ Angus (ANG), Charolais 
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(CHL), Limousin (LMS), Hereford (HFD), Narwegian red (NRC), Jersey (JER) และ 
Holstein (HOL) เปนกลุม Taurine ที่มีจุดกําเนิดมาจากยุโรปสําหรบรายละเอียดของสายพันธุ
สามารถดูไดจาก[12]  

รูปการพลอตแบบกระจายของกลุมวัวทัง้หมดที่แสดงวัวแตละตวั จะเห็นไดวากลุม
ประชากรยอย HFD, JER, HOL, LMS, ANG, CHL, และ NRC ไดรวมกันเปนกลุมใหญโดยววั
ทั้งหมดนี้มาจากกลุม Taurine ขณะที่กลุม BRM และ SGT ไดปรากฏแยกออกมาตางหาก ดัง
แสดงในรูปที่ 6  ในรูปที่  แสดงแผมภูมิตนไมของกลุมประชากรยอยจากผลที่เหมือนกันจากการ
วิเคราะห 10 ครังดวย ipPCA ซึ่งการวิเคราะหจะตองการ ipPCA ทังหมด 6 รอบเพ่ือที่จะไดเห็น
กลุมประชากรยอยทั้งหมด ซึ่งหลังจากการวิเคราะหรอบที่ 2 กลุมประชากรยอยของ BRM และ 
SGT ก็แยกออกมา นอกจากนี้กลุมประชากรยอยที่ 3 ประกอบไปดวยววัจาก JER ซึ่งเปนกลุม
ประชากรยอยที่แยกออกมาจากกลุมของ taurine หลังจาที่ไดทําการวิเคราะหดวย ipPCA 
จํานวน 6 รอบแลวก็จะไดจํานวนกลุมประชากรยอยออกมาเพิ่มอีก 6 กลุมประชากรยอยซ่ึงแต
ละกลุมประกอบไปดวยวัวที่มาจากสายพันธุเดียวกันเปนสวนใหญ 

สําหรับขอมูลของ Shriver จากการทํา PCA รอบแรก จะเห็นไดวากลุมประชากรยอย
สวนใหญไดรวมกันเปนกลุมใหญตามลักษณะ ทางภูมิศาสตรโดยบางกลุมก็มีการซอนทับกัน
ของประชากรกลุมยอยอยางที่แสดงในรูปที่ 8 หลังจากที่ไดทําการวิเคราะห ipPCA สองรอบก็
ปรากฏเห็นกลุมประชากรยอยของ African Americans และ Puerto Rican  หลังจากที่ไดทํา
การวิเคราะห ipPCA หลายรอบมากขึ้น ก็ปรากฏใหเห็นกลุมประชากรยอยมากขึ้น โดยที่แตละ
กลุมประชากรยอยประกอบไปดวยบุคคลที่มาจากเผาพันธุเดียวกันหรืออยูใกล ๆ กัน หลังจากที่
ไดทําการวิเคราะห ipPCA ไปทั้ง 6 รอบ ก็ไมปรากฏ กลุมประชากรยอยอีก (รูปที่ 9) และการ
หาจํานวนกลุมประชากรยอยน้ีมีความสอดคลองกันจากการวิเคราะห 10 ครั้ง มีเพียงครั้งเดียวที่
ผลแตกตางจากครั้งอ่ืน 

สําหรับการหาจํานวนกลุมประชากรยอยและการนําแตละบุคคลเขาไปอยูในกลุม
ประชากรยอยที่เหมาะสม ที่ไดจาก ipPCA นั้นไดทําการเปรียบเทยีบกับระเบียบวิธีอ่ืน ๆ ที่มีอยู 
โดยผลการเปรียบเทียบแสดงในตารางที ่ 1 ซึ่งแสดงการเปรียบเทียบผลของการหากลุม
ประชากรยอยจากขอมูลทั้งหมด 35 ขอมูล ระเบียบวธิีทั้งหมดใหผลตรงกับเฉพาะขอมูลทีไ่ม
ซับซอน (Model 1) สําหรับขอมูลอ่ืน ๆ แตละระเบียบวิธีกใ็หผลตางกันไป เน่ืองจากแตละ
ระเบียบวธิีใหผลของจํานวนกลุมประชากรไมตรงกัน จึงไดทําการตรวจสอบการนําบุคคลเขาสู
กลุมประชากรยอยที่ได 

สําหรับขอมูลที่ไมซับซอนการนําบุคคลเขาสูกลุมประชากรยอยมีความสอดคลองกันของ
ระเบียบวธิี STRUCTURE, AWclust และ ipPCA สําหรับขอมูลที่มีความซับซอนและมีความไม
สอดคลองกันของจํานวนกลุมประชากรยอย ผลระหวางระเบียบวิธี STRUCTURE และ ipPCA 
ไดถูกเปรียบเทียบ สําหรบัขอมูลที่มีความ ซับซอนมากคือขอมูลของ Shriver โดยการ
เปรียบเทียบไดใชจํานวนกลุมประชากรยอยที่ดีที่สุดของแตละระเบียบวธิี (รูปที่ 10 ) แตละกลุม
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ประชากรยอยจํานวน 12 กลุมที่หาไดจากระเบียบวธิ ี ipPCA จะมีจํานวนบุคคลในแตละกลุม
ใกลเคยีงกันคอืจาก 19 ถึง 46 คน นอกจากนี้ กลุมบุคคลที่อยูในกลุมประชากรยอย SP-4, SP-
5, SP-6, SP-7, SP-8, SP-9, SP-11 และ SP-12 เปนบุคคลที่มาจากสัญลักษณของประชากร
เดียวกัน สําหรับ 4 กลุมที่เหลือคือ SP-1, SP-2, SP-3 และ SP-10 ประกอบดวยบุคคลที่มาจาก
กลุมประชากรมากกวา 1 สัญลักษณขึ้นไป 

สําหรับกลุมประชากรยอยทีไ่ดจากระเบียบวธิี STRUCTURE นั้นมีความแตกตางจาก 
ipPCA คอนขางมาก คือมีจํานวนกลุมประชากรยอยทั้งหมด 14 กลุม และจํานวนบุคคลที่อยูใน
แตละกลุม โดยสองกลุมประชากรยอยไมมีบุคคลใดอยู หากลุมประชากรยอยมีบุคคลอยูนอยกวา 
10 คน และมีสองกลุมประชากรที่มีบุคคลอยูมากกวา 50 คน  สังเกตุไดวาระเบยีบวิธ ี
STUCTURE ไดรวมกลุมออกเปนสามกลุมแยกออกตามแหลงที่อยูตางกันคือ African รวมกับ 
African American และ Puerto Rican โดยที่ ipPCA ไดแยกสามกลุมน้ีออกจากกันในกลุม SP-
4, SP-8 และ SP-9 ตามลาํดับ นอกจากนี้ STRUCTURE ไดแยกกลุมของ Caucasian, Puerto 
Rican, South Altaian และ West African ออกเปนกลุมยอยหลาย ๆ กลุมประชากรยอยมากวา 
ipPCA และ STRUCTURE ยังไดทําการรวมบุคคลจาก Nahua และ Quechua/Peru เปนกลุม
ประชากรยอยเดียวกัน และบุคคลจาก Asian กับ Aouth Altaian รวมเปนกลุมประชากรยอย
เดียวกัน โดยที่ ipPCA สามารถแยกกลุมประชากรยอยเหลานี้ไดสอกคลองกับสัญลักษณของ
บุคคล (SP-5, SP-6, SP-11 และ SP-12) 

เพ่ือที่จะดูความแตกตางระหวางการจัดกลุมแบบไมทําซ้ํากับที่ทําซ้ํา จึงทําการเปรียบ
เที่ยบระหวางสองวิธีนี้ โดยวิธีทีไ่มไดทําซ้ําจะเรียกวา non-iterative (แถวที่ 3 ในรูปที่ 10) ผล
ของการจัดกลุมดวยวีธี fuzzy c-mean โดยมีจํานวนของกลุมประชากรยอยทั้งหมด 12 กลุมซ่ึง
เทากับจํานวนของกลุมประชากรยอยที่ไดจาก ipPCA โดยที่จํานวนกลุมน้ีไมไดถูกหาดวยวธิอ่ืีน
เน่ืองจากเปนขอมูลที่มีความซับซอน Gap Statistic ไมสามารถใชหาจํานวนกลุมได ผลที่ได
แสดงใหเห็นวาการไมทําซ้ําทําใหผลแตกตางกันอยางมากของการนําบุคคลเขาสูกลุมประชากร
ยอย ตัวอยางเชน มีสามกลุมที่มีคนอยูนอยกวา 10 คน (3 Puerto Ricans, 8 East Africans, 
และ 4 New Guinea) และมีกลุมที่รวมกันเปนกลุมใหญกลุมเดียวโดยมีคนที่อยูในกลุมน้ันมาก
ถึง 68 คน (4 Spanish, 11 South Indian Mala, 11 South Indian Brahman และ 42 
Caucasians) นอกจากนี้ บุคคลจาก Asian และ South Altaian ไดถูกนําไปรวมกันเปนกลุม
เดียว ขณะทีค่น East African และ New Guinea ไดแยกออกเปนสองกลุมประชากรยอย  
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รูปที่ 5 ผลการวิเคราะห ipPCA ของขอมูล HapMap  
A) แผนผังตนไมของกลมประชากรยอย โดยที่แตละชองจะมีสัญลักษณของกลุม

ประชากรยอย จํานวนของบุคคลแสดงเปนตัวเลขอยูในวงเลบ็ และจํานวนของ 
PC ที่ใชสําหรับการจักกลุมแสดงอยูในแตละชอง ชองสีน้ําเงินแสดงขอมูลเริ่มตน 
สวนขอมูลทีย่งัไมไดอยุดวิเคราะหแสดงในชองสีเขียว ขณะที่ชองสีแดงคือกลุม
ประชากรยอยที่หาไดโดย ipPCA 

B) การพลอตแบบกระจายโดยใช PC1 และ PC2 โดยที่แตละจุดคือแตละบุคคล 
สัญลักษณของแตละบุคคลแสดงอยูในชอง  
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รูปที่ 6 การพลอตแบบกระจายตัวของขอมูล Bovine ที่การวนรอบที่ศูนย โดยการพลอตนี้ไดใช 
PC1 และ PC2 แตละจุดคือวัวแตละตวัโดยที่สายพันธุของวัวสามารถดูไดจากรูป 
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รูปที่ 7 แผนภูมิตนไมของประชากรของขอมูล Bovine โดยแตละชองจะแสดงสาพันธุววัดวยตัว
ยอ CHL, SGT, JER, HOL, BRM, NRC, HFD, LMS, หรือ ANG จํานวนของววัในแตละกลุม
ประชากรยอยแสดงเปนตัวเลขตอจากสัญลักษณ ชองสีแดงคือขอมูลที่ยังไมไดทํากาวิเคราะห สี
เขียวคือ ขอมูลที่ไมไดหยุด สวนชองสีแดงคือชองที่หยุดแลว 
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รูปที่ 8 การพลอตแบบกระจายตัวของขอมูลของ Shriver ที่การวนรอบที่ศูนย โดยการพลอตนี้
ไดใช PC1 และ PC2 แตละจุดคือวัวแตละตวัโดยที่ชาติพันธุของคนสามารถดูไดจากรูป 
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รูปที่ 9 แผนภูมิตนไมของประชากรของขอมูลของ Shriver โดยแตละชองจะแสดงชาติพันธุ 
African American, African Pygmy, Asian, Caucasian, East African, Nahua, New Guinea, 
Puerto Rican, Quechua/Peru, South Altaian, South Indian Brahmin, South Indian Mala, 
Spanish หรือ West African จํานวนของคนในแตละกลุมประชากรยอยแสดงเปนตัวเลขตอจาก
สัญลักษณ ชองสีแดงคือขอมูลที่ยังไมไดทํากาวิเคราะห สีเขียวคือ ขอมูลที่ไมไดหยุด สวนชองสี
แดงคือชองที่หยุดแลว 
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ตารางที่ 1 เปรียบเทียบผลการจัดกลุมประชากรของระเบียบวธิีตาง ๆ (AWclust, 
STRUCTURE, และ ipPCA) สําหรับการอนุมานหาจํานวนกลุมประชากรยอย 
 

Dataset AWclust STRUCTURE ipPCA 

model 1 simulated (3 subpopulations) 3 3 3 
model 2 simulated (5 subpopulations) 5 6 5 
model 3 simulated (20 subpopulations, 30 datasets) N/A1 N/D2 203

HapMap (4 population labels with 50000 SNPs) 3 3 4 
bovine (9 population labels with 9329 SNPs) N/A1 10 9 
Shriver’s (14 population labels with 11555 SNPs) N/A1 144 12 

 

1 Not applicable since AWclust gap statistics limits K < 8 
2 Not done owing to the STRUCTURE computational constraint 
3 Modal value from 30 simulated datasets 
4 There are two subpopulation groups with no individuals assigned to them 
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AFA(23)
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PTR(11)
CCS(34)

CCS(6)
AFA(19)

WAF(21)

PTR(1)

EAF(13)
AFP(20)

QPE(20)

NAH(20)

NGU(19)

EAF(7)
CCS(1)
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SIB(11)
SAT(14)
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African American AFA 
African Pygmy AFP 
Asian ASN 
Caucasian CCS 
East African EAF 
Nahua NAH 
New Guinea NGU 
Puerto Rican PTR 
Quechua/Peru QPE 
South Antain SAT 
South Indian Brahmin SIB 
South Indian Mala SIM 
Spanish SPN 
West African WAF 

 
 
รูปที่ 10 เปรียบเทียบการระบุบุคคลเขาสูกลุมประชากรยอยของระเบียบวิธี ipPCA, 
STRUCTURE และ non-iterative PCA  

A) Log probability ของการอนุมานหาจํานวนกลุมประชากรยอย 
B) เปรียบเที่ยบการระบุบุคคลเขาสูกลุมประชากรยอย 
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บทที่ 5 วิเคราะหและสรุปผล 
 

การเปรียบเที่ยบระเบยีบวิธี ipPCA กับระเบียบวีธีอ่ืน ๆ 

ในงานวิจัยนี้เราไดแสดงใหเห็นวาระเบียบวธิี ipPCA สามารถจําแนกประชากรไดอยาง
ถูกตองสําหรับขอมูลประชากรที่ซับซอนและไมซับซอน โดยระเบียบวธิีนี้สามรถหาจํานวนกลุม
ประชากรยอยไดอยางถูกตองและยังสามารถหาไดวาบลุคลในกลุมประชากรอยูในกลุมประชากร
ยอยใด  นอกจากนี้ระเบียบวิธี ipPCA ยังสามารถคํานวนไดอยางรวดเร็วและยังสามารถนําไปใช
ไดกับขอมูลขนาดใหญซึ่งใมเหมือนระเบียบวธิีอ่ืนที่ไมสามมาถใชไดกับขอมูลที่มีขนาดใหญมาก
ได ตัวอยางเชนระเบียบวธิ ี AWclust ไมสามารถใชกับขอมูลที่มีจะนวนกลุมประชากรยอยได
มากกวา 7 และระเบียบวธิี STRUCTURE จะใชเวลานานมากสําหรับขอมูลทีมี่จํานวนสนิปซ
มาก สําหรับขอมูลชุดที่สามารถถูกวิเคราะหไดดวยระเบียบวิธี AWclust และ STRUCTURE 
นั้น ผลของการวิเคราะหห็าจํานวนกลุมประชากรยอยดวยระเบียบวิธีดังกลาวสอดคลองกันกับ 
ipPCA  สําหรับขอมูลที่มีจํานวนสนิปซมากและมีความซับซอนมากระเบียบวธีี ipPCA สามารถ
วิเคราะหขอมูลไดเร็วกวาระเบียบวิธี AWclust และ STRUCTURE มาก ตัวอยางเชนขอมูล
ประชากรของ Shriver นั้น STRUCTURE ใชเวลาในการวิเคราะหประมาณ 3 วันในขณะที่ 
ipPCA ใชเวลานอยกวา 10 นาทีในการวเิคราะหขอมูลชุดเดียวกัน บนเครื่อง 32-core AMD 2.3 
GHz Opteron โดยมีหนวยความจํา 64 GByte และใช CentOS เปนระบบประฏบิัตการ 

การปรับปรุงการจัดกลุมดวยการเลือก Principal Component  (PC) ที่เหมาะสม 

 จากการสังเกตุจะเห็นวาในการทําซ้ํารอบแรก ๆ จะตองการจํานวน PC เปนจํานวน
มากกวารอบหลัง ๆ ในการแบงกลุม (รูปที่ 3, 4, 5, 7 และ9) ซึ่งผลที่ไดนี้สอดคลองกับผูแตง 
EIGENSTRAT/SmartPCA ซึ่งแสดงวาจํานวนของ eigenvector ที่สําคัญมีความสัมพันธุกบั
จํานวนของกลุมประชากรยอย [3, 13] อยางไรก็ตามจํานวนของกลุมประชากรยอยไมสามารถ
หาไดงาย ๆ จากจํานวนของ PC ที่สาํคัญ เพราะวาจํานวนของ PC ที่สําคัญเปลี่ยนไปในแต
ละชอมูล ในระเบียบวธิี ipPCA นั้นขั้นตอนการแบงกลุมน้ันจะใชจะนวนของ PC เทากับ Rank 
ของเมตริกซซึ่งจะเปลียนไปตามขอมูลและขึ้นอยูกับจํานวนของบุคคลในแตละรอบของการ
วิเคราะห หลงัจากแตละรอบของการทํา ipPCA ขอมูลจะมีความซับซอนนอยลงดังนั้นนจํานวน 
PC ที่ใชในการแบงกลุมก็จะมีจํานวนนอนลงไปดวย 

การอนุมานหาจํานวนกลุมประชากรยอย 

 การหากลุมประชากกรยอยหรือ K ที่เหมาะสมกับกลุมประชากรจะขึ้นอยูกับความ
ถูกตองของการหาวาบุคคลอยูในกลุมประชากรยอยใด ถาคาความถูกตองนี้มีคาสูงการอนุมาน
หาจํานวนกลุมประชากรยอยก็จะมีความถูกตองดวย ระเบียบวธิี STRUCTURE และ AWclust  

22  



มีคาความถูกตองนี้ต่ํากวา ipPCA ดังนั้นการอนุมานหาจํานวนกลุมประชากรยอยจึงไมคอย
ถูกตอง ตัวอยางเชน ทั้งระเบียบวธิี STRUCTURE และ AWclust อนุมานจํานวนกลุมประชากร
ยอยของขอมูล HapMap ไดเทากับ 3 กลุม โดยที่ไมสามารถแยกกลุมของ CHB และ JPT ออก
จากกันได ซึ่งการที่ระเบียบวธิี ipPCA สามารถแยกทั้ง CHB และ JPT ออกจากกันไดนี้ก็
สอดคลองกลับผลที่รายงานใน [14]  ซึ่งไดสามารถหาสนิปซที่เหมาะสมที่จะทําการแยก
ประชากรทั้งสองกลุมน้ีออกจากกันได 
 ระเบียบวธิี ipPCA สามารถหากลุมประชากรที่มีความคลายคลึงกันทางพันธุกรรมได
โดยดูจากการจะจายตัวของ eigenvalue ดวยวธิีนี้กลุมประชากรยอยจะถูกกําหนดโดยวิธี
มาตราฐานซึ่งสามารถแสดงใหเห็นถึงกลุมประชากรที่มีความคลายคลึงกันทางพันธุกรรมโดยไม
คํานึงถึงขอมูลอ่ืน ๆ อยางไรก็ตามการกําหนดกลุมประชากรยอยในปจจุบันนีก้็ยังไมสมบูรณ 
[37] จากเหตุผลอันน้ีทําใหการหาจํานวนกลุมของประชากรยอย เปนเรื่องทีส่ําคัญและทาทาย 
[15, 16] 

ความถูกตองของการกําหนดบุคคลไปยังกลุมประชากรยอย 

ในแงของการกําหนดบุคคลจะเห็นไดจากขอมูลของ Shriver ไดวามีความแตกตางกัน
ระหวางระเบยีบวธิี ipPCA และ STRUCTURE โดยที่ STRUCTURE ไดอนุมานจะนวนของ
กลุมประชากรยอยได 14 กลุม โดยที่การกํานดบุคคลโดย STUCTURE นั้นไมสอดคลองกับวิธี
อ่ืน ๆ [11, 17] นอกจากนี้การกําหนดบุคคลยังไมคอยจะมีความหมาย เชน มีสองกลุมที่ 
STRUCTURE ไมไดกําหนดบุคคลไป และมีถึง 5 กลุมที่ STRCUTURE กําหนดบุคคลไปนอย
กวา 10 คน (รูปที 9)  โดยการใชจํานวนกลุมประชากรยอยเทากบั 12 กลุมอยางที่อนุมานได
โดย ipPCA การกําหนดบุคคลเขาสูกลุมโดย STRUCTURE จะเปลี่ยนไปโดยที่จะไมมีกลุมที่วาง
เหลืออยูนอกจากนี้กลุม south Altaian ก็ไดแยกออกมาตางหาก อยางไรก็ตามก็ยังมีความไม
สอดคลองกันกับผลที่ไดตัวอยางเชนกลุมประชากรของ pan-African 

การจัดกลุมของ ipPCA นี้แตกตางจากการจักกลุมโดยการใช PCA อ่ืน ๆ ตัวอยางเชน 
[18] ซึ่งทําการจัดกลุมโดยใชขอมูลทั้งหมดและใชจํานวนของ PC เปนจํานวนมาก ถาขอมูลของ
ประชากรมีความซับซอนมากการทําเชนน้ีไมสามารถกําหนดบุคคลเขาสูกลุมประชากรยอยได
อยางถูกตองไมวาจะใชระเบยีบวธิีการจัดกลุมใดก็ตาม (เชน k-mean, soft k-mean, spectral k-
mean) เพราะวากลุมประชากรที่มีความใกลชิดกันก็จะมาอยูรวมกันในเสปซใหมที่สรางขึ้น 
นอกจากนี้ปญหาใหญที่สดุของ NI-PCA คือการหาจํานวนกลุมประชากรยอยทีเ่หมาะสมกอนที่
จะทําการจดักลุม ซึ่งงานวิจัยนี้ก็แสดงใหเห็นวา NI-PCA ไมสามรถกําหนดบุคคลไปยังกลุม
ประชากรยอยไดอยางถูกตอง ถึงแมวาจะใชจํานวนของกลุมประชากรที่ถูกตองที่ไดจาก ipPCA 
ก็ตาม สําหรับ ipPCA นั้นไดเลือกใชระเบียบวธิี  fuzzy c-mean สําหรับการจัดกลุมเพราะวา
จํานวนกลุมทีจ่ะทําการแยกในแตละรอบจะเทากับ 2 กลุมเสมอ เพราะฉะนั้นระเบียบวิธีการจดั
กลุมที่ไมซับซอนก็มีประสอทธิภาพเพียงพอที่จะแบงกลุมได นอกจากนี้จุดศูนยกลางของกลุมที่
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ไดจาก fuzzy c-mean ก็มีความสอดคลองกันเม่ือเทียบกับระเบยีบวิธ ีk-mean ที่ใชกันโดยทั่วไป 

การหากลุมประชากรยอยตามลักษณะของระยะทางทางพันธุกรรมและประวัติ
ของกลุมประชากร 

การวิเคราะหแบบวนซ้ําโดยการตัดกลุมประชากรยอยออกนี้ไดทําการกําหนดกลุมของ
กลุมประชากรยอยโดยสะทอนถึงการวิวฒันาการและจุดกําเนิดของประชากร ซึ่งสามารถเห็นได
จากการวิเคราะหขอมูลจําลอง (รูปที่ 3) และจากขอมูลจริง (รูปที่ 5 - 9) จะเห็นไดวากลุม
ประชากรที่ใกลกันจะแยกออกหลังจากกลุมประชากรที่ใกลกวาไดถกูแยกออกไปแลว การ
วิเคราะหแบบวนซ้ําโดยการตัดกลุมประชากรยอยออกนี้ไดชวยใหการแยกกลุมประชากร
สามารถทําไดอยางมีระบบสอดคลองกับความเกี่ยวของกันของกลุมประชากร กลุมประชากร
สามารถแยกไดโดยการแยกเอากลุมประชากรที่อยูใกลกวาออกไปกอนจากนั้นจึงแยกกลุม
ประชากรที่เหลืออยูออกจากกัน ดังนั้นวิธีนี้จึงสามารถหากลุมประชากรยอยที่ไมสามารถหาได
โดยวิธีอ่ืนได 

สําหรับขอมูลที่มีการผสมกันระหวางกลุมประชากรยอยน้ัน ระเบียบวธิี ipPCA ก็
สามารถแยกประชากรที่ผสมกันน้ีออกจากประชากรยอยกลุมอ่ืนได เชน กลุมประชากรยอยสอง
กลุมที่ไดจากขอมูล Bovine นั้นมีวัวที่มาจากฉลากทีต่างกัน การที่วัว NRC และ HOL ทับกันน้ัน
ก็ไมไดนาแปลกใจเพราะวากลุม NRC ไมไดเปนสายพันธุที่บริสทุธโดยสืบสายพันธุมาจาก HOL 
และ การที่มีวัวบางสวนจากสายพันธุ SGT ไดถูกกําหนดใหอยูกับกลุมประชากรยอยของกลุม
สายพันธุหลัก taurine ก็แสดงใหเห็นวาววัสายพันธุ SGT นั้นมาจากสองสายพันธุคือ zebu กับ 
taurine  

สําหรับขอมูลของ Shriver ซึ่งมีความซับซอนมากกวาของ Bovine นั้น ระเบยีบวธิ ี
ipPCA สามารถหาจํานวนกลุมประชากรยอยไดทั้งหมด 12 กลุม และ  แตละบุคคลไดถูก
กําหนดไปอยูในกลุมประชากรยอยโดยสอดคลองกับปายซื่อและ neighbor-joining tree ที่อยูใน 
[11] โดยมี 4 กลุมประชากรยอยที่เปนกลุมผสมโดยมีปายชื่อที่ตางกันอยูในกลุมเหลานี้ ใน
ระหวาง 4 กลุมน้ีคน Puerto Rican ไดถูกกําหนดไปอยูในกลุมประชากรยอย 2 กลุม การ
กําหนดบุคคลของกลุม Puerto Rican นี้แสดงใหเห็นวาจีโนมของ Puerto Rican ยังคงมี
บรรพบุรุษเปน European และ African [11, 19] 

 
สรุป  

ในงานวิจัยนี้ไดทําการพัฒนาระเบียบวธิีใหมโดยการปรับปรุงเพ่ิมเตมิขั้นตอนในการทํา 
PCA เพ่ือใหสามารถทําการกากลุมประชากรไดอยางถูกตอง โดยวิธีการใหมนี้สามารถระบุ
บุคคลไปยังกลุมประชากรยอยไดอยางวเหมาะสมและถูกตองแมนยํา และหาจํานวนกลุม
ประชากรยอยที่เหมาะสมได โดยไมคํานึงถึงสมติฐานใด ๆ ของจุดกําเนิดของกลุมประชากรยอย 
ระเบียบวธิีใหมนี้ไดถูกทดสอบกับขอมูลจําลองที่รูกลุมประชากรที่แนนอนแลว และยังไดทดสอบ
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กับขอมูลจริงซึ่งไดผลเปนที่นาพอใจ 
สําหรับงานวิจัยในอนาคตทีเ่ปนไปไดคือการพัฒนาระเบยีบวธีีนี้ใหสามารถหาอัตตรา

สวนการผสมกันของกลุมประชากรยอยได ซึ่งขณะนี้ทางคณะผูทาํการวิจัยไดทาํการพัฒนาอยู
ซึ่งถาทําสําเรจ็จะเปนการใช PCA สําหรับการแกปญหาทางประชากรไดอยางมีประสิธิภาพสูงใน
ระดับหน่ึง 
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Abstract  
Background 

Non-random patterns of genetic variation exist among individuals in a 

population owing to a variety of evolutionary factors. Therefore, populations are 

structured into genetically distinct subpopulations. As genotypic datasets become ever 

larger, it is increasingly difficult to correctly estimate the number of subpopulations 

and assigning individuals to them. The computationally efficient non-parametric, 

chiefly Principal Components Analysis (PCA)-based methods are thus becoming 

increasingly relied upon for population structure analysis. Current PCA-based 

methods can accurately detect structure; however, the accuracy in resolving 

subpopulations and assigning individuals to them is wanting. When subpopulations 

are closely related to one another, they overlap in PCA space and appear as a 

conglomerate. This problem is exacerbated when some subpopulations in the dataset 

are genetically far removed from others. We propose a novel PCA-based framework 

which addresses this shortcoming.  

Results 

A novel population clustering program called iterative pruning PCA (ipPCA) was 

developed which assigns individuals to subpopulations and infers the total number of 

subpopulations present. Genotypic data from simulated and real population datasets 

with different degrees of structure were analyzed by the proposed method. For 

datasets with simple structures, the subpopulation assignments of individuals made by 

ipPCA were consistent with the STRUCTURE and AWclust algorithms. On the other 

hand, highly structured populations containing many closely related subpopulations 

could be accurately resolved only by ipPCA, and not by other methods. 
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Conclusions 

The algorithm is computationally efficient and not constrained by the dataset 

complexity. This systematic clustering approach removes the need for prior 

population labels, which could be advantageous when cryptic stratification is 

encountered in datasets of individuals otherwise assumed to be homogenous. 
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Background  
Allele frequencies vary across populations because of systematic differences in 

ancestry; these differences arise from many factors such as migration, selection and 

drift. Hence, populations are genetically substructured. The information obtained from 

resolving population substructure can be used to infer population history. 

Furthermore, human disease association studies must account and correct for the 

population substructure to reduce spurious associations and reveal the predisposing 

factors of disease [1]. Analysis of population stratification must meet four main 

challenges namely: (i) detecting structure, (ii) assigning individuals to subpopulations, 

(iii) determining the number of optimal, or primal, subpopulations (K) and (iv) 

determining the extent of subpopulation admixture [2].  

With the advent of high throughput genotyping, increasingly large genotypic 

datasets (e.g. HapMap dataset of 3.5 million single nucleotide polymorphism (SNP) 

arrays from 270 individuals [3]  ) will provide progressively difficult challenges for 

population structure analysis. Therefore, to keep abreast with the ever increasing size 

and complexity of genotypic data, refinement of existing analytical methods and 

entirely novel approaches will be needed to resolve subpopulations. Several different 

methods have been proposed to address some aspects of the population substructure 

problem. These methods can be categorized into two main approaches, namely 

parametric and non-parametric-based. STRUCTURE is the “gold standard” 

parametric-based algorithm for population stratification analysis [2, 4], because it can 

address all four substructure analysis challenges. However, STRUCTURE imposes 

high computational burden and it is thus impractical for the large datasets typically 

analyzed nowadays. STRUCTURE also has other weaknesses, mainly its inference of 
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primal K, which requires extensive statistical testing of several STRUCTURE runs 

performed with increasing K. STRUCTURE’s inference of K can also vary according 

to the model used [4], hence the determination of admixture, which is highly 

dependent on the K value used needs to be interpreted with caution. Other parametric 

methods, such as L-POP [5], PSMIX [6] and  frappe [7] employ different parametric 

approaches and are more computationally efficient, although they address only 

specific population structure problems not adequately solved by STRUCTURE, such 

as admixture [5].  

For non-parametric methods, the algorithms in this class do not require model 

assumptions. Principal Components Analysis (PCA) is the most widely used method 

for visualizing structure which uses a covariance matrix for eigenanalysis, allowing 

representation of individuals as data points in scatter-plots. Principal Coordinate 

Analysis (PCoA) is an alternative method for eigenanalysis which uses an allele-

sharing distance (ASD) matrix, and gives different scatter-plot patterns from PCA [8, 

9]. PCA is not a method for assigning individuals nor estimating K and is often used 

merely to visualize the population structure trend. The most popular PCA-based 

algorithm applied to population structure analysis is EIGENSTRAT/SmartPCA [10, 

11], which has been used by several investigators for large datasets typically required 

for studies of human population structure and genome association [12-14]. This 

algorithm employs a computationally-efficient variant of eigenanalysis to report the 

probability of population substructure according to Tracy-Widom (TW) distribution.  

In a typical population dataset, genetic distances vary among subpopulations 

and PCA scatter-plots can reveal the most genetically isolated subpopulations as 

distinct clusters of individuals in a small number of principal components. Hence, 

supervised clustered with prior assumption of the number of K subpopulation clusters 
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can be done to assign individuals. Conversely, closely related subpopulations will 

occupy a confined feature space and appear as a conglomerate. For example, in the 

scatter plot of PC1 versus PC2, conglomerates containing individuals with different 

population labels are frequently observed. In some cases, the distinction between 

closely related subpopulations is apparent in a greater number of principal 

components [15]. Thus, in order to resolve closely related subpopulations, individuals 

must be separated using a clustering algorithm working in multidimensional PCA 

space  [16-18].  However, clustering algorithms perform inconsistently when too 

many axes of variation are used [19].  Clustering algorithms require separation in axes 

of variation. However, clusters in some axes may merge into a single cluster, and 

hence clustering algorithms can become confused.  Generally the informative axes of 

variation are contained within the rank of matrix [20].  Therefore, the number of 

principal components should be optimized and not exceed a certain number for each 

dataset.  

One way to improve the resolution of closely-related subpopulations in PCA 

scatter-plots is by removing genetically distant individuals from the dataset. In the 

investigation of European human genetic substructure using 300K SNP arrays [21], it 

was found that prior exclusion of individuals belonging to certain groups improved 

substructure resolution of the other groups, e.g. removal of Ashkenazi Jewish 

individuals led to clearer substructuring of other northern European groups.  This data 

“cleaning” approach is clearly advantageous, although the method as described in [21] 

is ad hoc and unable to detect and remove subtle outliers [22]. Clearly, this approach 

is not feasible for datasets composed of individuals presumed to belong to a 

homogenous population without any distinguishing labels, for instance disease 

association studies carefully controlled for ethnicity and geographical origin. With 

 - 6 - 



sufficient number of markers and individuals, cryptic structure in an apparently 

homogenous population can be detected using PCA [10, 11], which cannot be 

resolved by current unsupervised clustering methods, with no assumptions of K  [18].   

To determine the primal K for unsupervised clustering, the gap statistic [23] is 

employed on the AWclust results [16] and Density-Based Means clustering results 

[18]. Alternatively, the Bayesian Information Criterion (BIC) approach for 

determining K can be applied to the clustering results [17].   Calculating the gap 

statistic and BIC are computationally intensive, thus these approaches are impractical 

for highly structured datasets. Furthermore, these approaches are sensitive to noisy 

non-informative PCs, which may explain why they are not appropriate for highly 

structured datasets with a large K. All unsupervised clustering approaches currently 

applied to PCA do not assign individuals into subpopulations according to genetic 

distance between subpopulations in a fully comprehensive and systematic fashion. 

These algorithms thus have insufficient discriminatory power to assign individuals to 

subpopulations and determine K for highly structured datasets. 

In this study, we propose a non-parametric analytical framework which 

incorporates several key refinements of the PCA-based approach. The new algorithm, 

which we call iterative pruning PCA (ipPCA) addresses three of the main challenges 

for population structure analysis, namely detection of structure, assigning individuals 

to subpopulations and determining the primal K with greater accuracy than previously 

proposed algorithms. The ipPCA algorithm utilizes a novel unsupervised clustering 

heuristic which markedly improves resolution of population substructure by an 

iterative process. In this method, individuals are systematically bisected according to 

genetic similarity at each step, continuing until all subpopulations are revealed.  
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Results  
Algorithm 
The ipPCA algorithm is a PCA framework which utilizes non-redundant principal 

components to construct a transformed domain of the input data, which can be 

mapped to PCA space. By means of selecting a limited number of principal 

components, dimension reduction can be achieved. The PCA domain allows each 

input individual to be represented as a single datum point in a scatter-plot, or in 

clustering analysis. The ipPCA technique constructs the transformed domain based on 

a covariance matrix of the data matrix containing SNP genotypic data encoded as 0, 1 

or 2 elements.  

   

where M and N are the number of markers and individuals respectively. Note that M is 

normally much larger than N. 

Since the covariance matrix is usually a large square matrix, it is memory and 

computationally intensive to compute the PCA space. However, there is an alternative 

technique to compute the transformed domain without computational burden [20]. 

Instead of using the data covariance matrix, the PCA space can be constructed by 

decomposing a modified data matrix , which is much smaller than the 

covariance matrix. For example, a dataset with 200 individuals and 1000000 markers 

would have  elements in the covariance matrix compared to 

 elements in the  matrix. The modified data matrix can be factored as 

. Then, the eigenvectors can be computed by   
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where  is the rank of the data matrix and  are the eigenvectors. 

Here, we use the “colon” notation [20] to specify a column or row of a matrix. Then, 

the PCA space is constructed based on these eigenvectors.   

Because ipPCA is sensitive to the data pattern, data quality is crucial for 

accuracy of the algorithm. Typically, it is necessary to clean the data before 

performing ipPCA. Technical limitations in genotyping occasionally lead to missing 

values at some loci. To check whether missing data by itself can create substructure, 

all missing data are encoded as zero and other loci are encoded as one. The zero and 

one (abbreviated as 0-1) encoded dataset is analyzed by SmartPCA [10]. If 

substructure can be observed as clear outlier individuals on the periphery of the two 

PC scatter-plot, these individuals can be removed from the dataset, as suggested by 

[10]. 

Before performing ipPCA, a quality control check is performed on the 0-1-2 

encoded data matrix. In this case, frequency counts are computed on each locus to 

ensure that entries encoded as zero are homozygous major allele (wild-type), entries 

encoded as one are heterozygous and entries encoded as two are homozygous minor 

allele. The pre-processing steps and the ipPCA framework can be summarized as 

follows:   

Pre-processing steps: 

Check if missing values in the input dataset cause detectable substructure using 

EIGENSTRAT/SmartPCA and if significant substructure is reported, remove 

individuals with missing data which cause substructure (identified as outliers on 

PC1-PC2 scatter-plot).  

 

ipPCA steps:  
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1. Make matrix  for each non-terminating data group 

2. Use singular value decomposition (SVD) [20] to factorize the  data into 

 

3. Project all individuals into PC space using the number of PCs equal to the data 

matrix rank [15].  

4. Check terminating condition on the  using the TW test statistic implemented 

in EIGENSTRAT/SmartPCA ([10]) 

(a)  Terminate if TW test statistic is insignificant for the first PC (p>10-12) 

(b)  Otherwise, proceed to the next step 

5. Apply fuzzy c-means [24] to split individuals  into two clusters 

6. Repeat from step 1 until all the data are terminated 

       7. When all the iterative processes are terminated, the number of subpopulations 

can be determined by counting all the terminal nodes (determination of K). Note that 

replicated ipPCA runs are typically performed to test the robustness of the clustering 

algorithm.  

Testing 

The power and robustness of the proposed ipPCA algorithm was explored and 

optimized using simulated datasets. The performance of ipPCA was then tested on 

three real datasets, namely HapMap, bovine, and Shriver’s datasets. Finally, we 

compared the results of our algorithm with the results from existing tools: 

STRUCTURE and AWclust. STRUCTURE version 2.2 was downloaded from J. 

Pritchard’s website [25] and applied using the following parameters: 100000 burn-ins, 

100000 runs, with admixture model, no LD model. For AWClust analysis,  

AWClust was downloaded from [26] and the algorithm’s default parameters were 

selected.  
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Iterative pruning PCA clustering: a way to improve discriminatory power 

The program GENOME [27] was employed to generate simulated genotypic data 

under the Wright-Fisher neutral coalescent model (backward in time) [28]. Three 

evolutionary models (called population histories in GENOME) were constructed 

(Figure 1). The model 1 dataset (Figure 1A) contains three subpopulations derived 

from two ancestral populations. The model 2 dataset (Figure 1B) contains five 

independent subpopulations with no admixture. The model 3 datasets (Figure 1C) 

contain 20 subpopulations derived from three ancestral populations. Parameter 

settings used to generate each model are as follows: 

The model 1 dataset parameters: 

-pop 3 50 50 50 –c 20 –s 500 –N model1.txt 

The model 2 dataset parameters: 

-pop 5 50 50 50 50 50 –c 20 –s 500 –N model2.txt 

The model 3 dataset parameters: 

-pop 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50  

-c 20 –s 500 –N model3.txt 

Using the above parameters, we generated 10000 SNPs for each simulated dataset. 

Note that the model 3 population history was used to generate 30 datasets to test the 

robustness of ipPCA. All simulated datasets and the population history files 

(model1.txt, model2.txt, and model3.txt) analyzed in this study can be downloaded 

from [29]. 

The performance and robustness of ipPCA to resolve structure were 

investigated using simulated datasets of increasing complexity. Two simple 

population structure models (K=3 and 5 subpopulations) and one complex model 
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(K=20 subpopulations) were simulated using the GENOME tool [27] . For the first 

two simple models (models 1 and 2), ipPCA can resolve K consistent with the models 

and assign all individuals correctly to the corresponding subpopulations (Figures 2 

and 3). For the highly complex model (model 3), 30 simulated datasets were 

generated using the same evolutionary model. The structure resolved by ipPCA was 

highly consistent with the model, for both number of inferred K and the individuals 

assigned to each subpopulation (mode K=20, range 19-22; mean mis-assignment rate 

6.07%, range 1.9%-17.5%), see additional file 1).  To test the reproducibility of the 

clustering algorithm, ten replicated ipPCA experiments were performed on each data 

set. The results were reproduced exactly for all ten runs in each model (data not 

shown).  

 

Assignment of individuals to subpopulations in real datasets is reproducible 

and consistent with population labels 

Three real datasets, namely HapMap, bovine, and Shriver’s, were analyzed in 

this work. The HapMap dataset, retrieved from [30], comprises individuals with four 

population labels: Han Chinese from Beijing (CHB), Japanese from Tokyo (JPT), 

Caucasian European from Utah (CEU), and Yoruba from Ibadan (YRI) with 1533661 

SNPs.  Fifty thousand SNPs were uniformly re-sampled from this SNP pool [3]. 

Starting from the first marker, a moving window was used to select SNPs in an even 

spacing fashion, such that every 30th marker was selected from the 1533661 markers 

(for full list of SNP markers used see additional file 2). Data pre-processing ipPCA 

was performed and two outlier JPT individuals were removed.  

The bovine dataset was downloaded from [31]. The bovine SNP data (9329 SNPs) are 

publicly available as part of the Bovine Genome Project [32]. After data pre-
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processing, no outliers were detected. Shriver’s worldwide human SNP dataset of 307 

individuals with 14 different ethnic/geographical labels was provided by Prof. Mark 

D. Shriver, which is a dataset expanded from the one originally published in [33]. 

This dataset consists of 11555 SNPs for each individual, evenly distributed over the 

entire genome. After data pre-processing, no outliers were detected.  

The HapMap dataset was analyzed by ipPCA, which contains individuals from four 

distinct geographical regions (YRI, CEU, CHB, and JPT). All individuals in each of 

the four subpopulations defined by ipPCA share the same distinguishing population 

label (Figure 4). The YRI subpopulation was defined in iteration 1 while the CEU was 

defined in iteration 2. Finally, the CHB and JPT subpopulations were defined in 

iteration 3. Exactly the same assignment results were obtained from for ten replicated 

runs using 50000 SNPs and a single ipPCA run using the entire 1533661 SNP 

collection (data not shown). 

The bovine dataset contains individuals from nine breeds considered to be 

genetically distinct subpopulations. The Brahman (BRM) breed cattle are zebu (also 

known as B. indicus), considered a sub-species very distinct from the taurine cattle 

breeds. Santa Gertrudis (SGT) is a composite breed derived from BRM and Shorthorn 

breed cattle. The other breeds, Angus (ANG), Charolais (CHL), Limousin (LMS), 

Hereford (HFD), Norwegian red (NRC), Jersey (JER) and Holstein (HOL) are taurine 

cattle and European in origin (for breed descriptions see [34]).  

Scatter-plot analysis of the entire bovine dataset showed that individuals from 

the HFD, JER, HOL, LMS, ANG, CHL and NRC taurine breeds appear as a 

conglomerate and are separated from BRM and SGT individuals (Figure 5). Figure 6 

shows the resulting consensus subpopulation tree from ten replicated ipPCA runs, 

which all gave the same results (data not shown). Each ipPCA run requires six 
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successive iterations of ipPCA to define all subpopulations. After the second iteration, 

the BRM and SGT cluster was divided satisfying the termination criterion, thus 

defining two subpopulations composed of BRM and SGT individuals, respectively. 

Additionally, a third subpopulation composed of JER individuals was defined and 

separated from the taurine cluster. After more iterations of ipPCA, a further six 

subpopulations were defined in which each subpopulation is largely composed of 

individuals of the same breed.   

Shriver’s dataset was then analyzed by ipPCA. From the scatter-plot analysis 

of the entire dataset, it can be observed that individuals are broadly grouped according 

to their geographical origins with some overlap between individuals with different 

labels (Figure 7). The consensus ipPCA result showed that after the second iteration 

of ipPCA, a subpopulation composed of African Americans and a Puerto Rican 

individual was defined. After further iterations of ipPCA, more subpopulations were 

defined with each containing individuals with shared geographical and/or ethnic 

origins. After six iterations, twelve subpopulations were defined with no further 

substructure found (see Figure 8).  Subpopulation assignments were robust.  Only one 

ipPCA run differed from the consensus (see additional file 3)  

 The number of predicted K and assignment of individuals to subpopulations 

were compared with other algorithms. Table 1 shows comparison between different 

algorithms for inferring K from 35 datasets. All algorithms agreed with the same K 

value only for the least complex dataset (model 1).  For all others, there was no 

concordance between the algorithms. Given the discordances between the algorithms 

we then investigated the individual assignments made by each algorithm. 

For datasets of low complexity, assignment of individuals to subpopulations 

was largely consistent among the STRUCTURE, AWclust, and ipPCA algorithms 
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(see additional file 4 for AWclust results and additional file 5 for STRUCTURE 

results).  Given the greater discordance between algorithms for inference of K from 

highly structured datasets, a more detailed comparison of individual assignments to 

subpopulations was made between STRUCTURE and ipPCA. The comparison was 

made using Shriver’s highly structured dataset for the optimal number of K reported 

by each algorithm (Figure 9). Each of the twelve subpopulations defined by ipPCA 

contain similar number of individuals (range 19-46), and the assignments of 

individuals to subpopulations SP-4, SP-5, SP-6, SP-7, SP-8, SP-9, SP-11 and SP-12 

are consistent with the population labels. Four subpopulations, namely SP-1, SP-2, 

SP-3 and SP-10 contain individuals with more than one population label.  

The 14 subpopulations assigned by STRUCTURE differed markedly to ipPCA 

in the number of individuals contained within each. Two subpopulations have no 

assigned individuals, five subpopulations have fewer than ten individuals and two 

subpopulations have more than 50 assigned individuals. Inspection of the population 

labels of the assigned individuals shows that STRUCTURE assigned a subpopulation 

containing individuals from three geographically disparate African locations together 

with African Americans and a Puerto Rican in contrast to ipPCA, which assigns 

African Pygmy, West African and East African individuals as separate subpopulations 

SP-4, SP-8 and SP-9, respectively. STRUCTURE also assigned Caucasian, Puerto 

Rican, South Altaian and West African individuals among more subpopulations than 

ipPCA. STRUCTURE also grouped Nahua and Quechua/Peru individuals as one 

subpopulation and Asian and South Altaian individuals as another subpopulation. 

However, ipPCA assigned these individuals to four separate subpopulations consistent 

with population labels (SP-5, SP-6, SP-11, SP-12).  
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In order to demonstrate the power of the iterative clustering approach, a 

comparison was made between the individual subpopulation assignments by ipPCA 

and PCA clustering done in a non-iterative fashion (third column in Figure 9). The 

PCA results from Shriver’s entire dataset were clustered using the same fuzzy c-

means clustering algorithm to assign individuals into 12 clusters (the number inferred 

by ipPCA). The number of clusters to be used for clustering was not calculated 

independently, e.g. using the gap statistic since this was not feasible for such a 

complex dataset. It can be observed that clustering on non-iterative PCA (NI-PCA) 

results leads to notable differences in individual assignment. For instance, there are 

three groups with fewer than ten individuals (3 Puerto Ricans, 8 East Africans, and 4 

New Guinea) and one conglomerate group containing 68 individuals (4 Spanish, 11 

South Indian Mala, 11 South Indian Brahman, and 42 Caucasians). Furthermore, 

Asian and South Altaian individuals were assigned together, whereas East African 

and New Guinea individuals were each separated into two subpopulations. 

 

Implementation 

ipPCA was implemented in MATLAB version 2007a. It is available in both graphical 

user interface (GUI) and MATLAB function. GUI ipPCA is suitable for small 

datasets, e.g. 50000 makers, while MATLAB function ipPCA can be used for larger 

datasets. The source codes for both versions are available on request.  

 

Discussion  
 

Practicality of ipPCA comparing with other algorithms 
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We have demonstrated a novel PCA-based analytical framework that accurately 

resolves population stratification including that of highly structured datasets. With 

this tool, individuals are assigned to subpopulations and K is determined with high 

accuracy. Moreover, minimal computational effort is required. The computational 

time and the complexity of the datasets were not limitations for ipPCA, unlike other 

algorithms. For example, AWclust limits the number of inferred K to seven or less 

while STRUCTURE takes too long to compute when K and the number of markers 

are large. For datasets in which comparison can be made between different 

algorithms, the K values reported by ipPCA were consistent with other algorithms 

(STRUCTURE and AWclust) and the presumed K. For highly structured datasets 

requiring many SNPs, the proposed algorithm performs faster than STRUCTURE and 

AWclust algorithms. For example, Shriver’s dataset requires approximately three 

days to compute by STRUCTURE while ipPCA needed less than ten minutes on a 32-

core AMD 2.3 gigahertz Opteron with 64 gigabytes of memory running Linux 

CentOS operating system.  

 

Improved clustering through PC selection 

The trend observed among datasets analyzed in this study is that early iterations 

require more PCs for clustering than later ones (Figures 2, 3, 4, 6, and 8).  This is in 

agreement with the findings of the authors of EIGENSTRAT/SmartPCA, who showed 

that the number of significant eigenvectors (PCs) to resolve structure reflects the 

number of subpopulations [10, 35]. However, the number of K is not simply defined 

by the number of significant PCs, since the actual number of PCs needed to reveal 

subpopulations varies in each case. In ipPCA, the clustering process utilizes the 

optimal number of PCs (determined to be the matrix rank), which varies among 
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nested datasets according to the number of individuals at each iteration. After each 

iteration of ipPCA, the nested datasets have progressively simpler structures so that 

fewer principal components are used for clustering.  

 

Inference of K 

The inference of the number of optimal, or primal, K subpopulations is 

critically dependent on the assignment accuracy of individuals. High assignment 

accuracy allows the correct value of primal K to be inferred. The STRUCTURE and 

AWclust algorithms have lower assignment accuracy than ipPCA, and thus their 

inferences of K were incorrect. For example, STRUCTURE and AWclust reported 

K=3 for the HapMap dataset and could not resolve CHB and JPT as separate 

subpopulations. The resolution of CHB and JPT subpopulations by ipPCA was 

consistent with the finding of [36], who identified the subset of informative markers 

for separating these individuals as two subpopulations.   

In order to define subpopulations from the PCA clustering results, ipPCA uses 

a novel approach which considers only the eigenvalue distribution. By this approach, 

subpopulations are defined by a standard criterion thus removing subjectivity from the 

definitions. Rigorous subpopulation definitions are currently lacking, since there is no 

agreement as to precisely what genetic variation accounts for population structure 

[37]. The difficulty in defining subpopulations is the main reason why determining K 

is considered very challenging [2, 4]. 

 

Assignment accuracy 

In terms of individual assignments, there were some notable differences 

between ipPCA and STRUCTURE for Shriver’s dataset. For the optimal number of 
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subpopulations reported by STRUCTURE (K=14) (see additional file 6), assignments 

were inconsistent with what have been reported by other methods [33, 38]. From a 

population evolutionary perspective, some of the assignments made by STRUCTURE 

were not meaningful. For instance, there were two groups that STRUCTURE 

assigned no individuals to, while five other groups contained fewer than ten 

individuals (Figure 8). By limiting K to twelve as what ipPCA predicted, the 

assignments made by STRUCTURE changed with removal of the empty groups and 

amalgamation of south Altaian individuals into one subpopulation (see additional file 

7). However, some inconsistencies with accepted patterns of human population 

structure remained. For example, the subpopulation with pan-African individuals 

remained. 

The ipPCA clustering approach differs from the approaches used by others for 

clustering PCA results, e.g.[17]  who performed clustering on the entire dataset using 

a large number of PCs. For highly structured populations, this kind of approach is not 

able to accurately assign individuals to subpopulations, irrespective of the clustering 

algorithm used (e.g. k-means, soft k-means, spectral k-means) since the closely related 

subpopulations are confined in a small region of feature space (see Background 

section). The greatest problem for the NI-PCA approach is in knowing the number of 

clusters to be used in clustering. Indeed, the analysis of highly structured datasets in 

this paper shows that NI-PCA approach fails to accurately assign individuals, even 

when using the correct K inferred by ipPCA (for analysis of simulated data Model 3, 

see additional file 8). We chose fuzzy c-means for clustering since the number of 

clusters in each ipPCA iteration is restricted to two, hence a simple algorithm is 

sufficient. Furthermore, the cluster centroids determined by fuzzy c-means are more 
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consistent compared with the commonly used k-means algorithm [39], which is most 

important for subpopulation assignment in our case.  

 

 

Definition of subpopulations according to genetic distance and population 

history 

The iterative pruning approach also defines subpopulations in a manner 

reflecting the probable evolutionary origin of each subpopulation. As can be seen 

from the analysis of simulated datasets (Figure 2 and additional file 1) and real 

datasets in Figures 4-8, closely related subpopulations are defined after more distantly 

related ones. This iterative pruning process thus offers a systematic way to define 

subpopulations according to their degrees of relatedness to one another. By removing 

the most distant individuals to create nested datasets, one is able to resolve 

substructure, which would not be revealed otherwise.  

For more complex datasets containing subpopulations with individuals of 

recent admixed origins, these were shown by ipPCA as those which contain assigned 

individuals with different population labels. For instance, two subpopulations were 

defined from the bovine dataset containing individuals with different breed labels. 

The overlap of NRC and HOL individuals in a subpopulation is not unexpected, since 

NRC is not a pure breed and has HOL ancestry. Similarly, the assignment of some 

SGT individuals to a subpopulation with taurine cattle reflects the fact that SGT is a 

composite zebu/taurine breed. 

For Shriver’s dataset which has a more complex structure than the bovine 

dataset, twelve subpopulations were defined by ipPCA with individuals assigned 

consistent with the group labels and the neighbor-joining tree shown in [33]. Four 
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subpopulations appeared to be admixed containing individuals with different labels. 

Among these four admixed subpopulations, Puerto Rican individuals were assigned to 

two subpopulations.  These assignments reflect the Puerto Rican population history, 

in which their genomes still contain the signatures of ancestral European and African 

migrants [33, 40]. We are currently developing an admixture extension to ipPCA, 

which is outside the scope of this paper. In this paper, we wished to provide a solid 

platform for ipPCA to demonstrate its accuracy in resolving all K primal 

subpopulations, which is crucial for admixture testing. 

 

Conclusions  

We propose some key refinements to the PCA-based algorithm for improved 

resolution of population genetic stratification. With this new method, individuals can 

be accurately assigned to subpopulations systematically, thus defining the optimal, or 

primal, K without any assumptions of individuals’ origins or degree of relatedness to 

one another. The power of the technique was demonstrated using datasets with known 

structure, although we think there is potential to reveal structure in datasets with 

cryptic stratification.  
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Figures 

Figure 1. Population history trees for generating simulated datasets.  

The GENOME tool [27] was used to generate the simulated datasets. 

A) three subpopulations mixed model (model 1) 

B) five independent subpopulations (model 2)   

C) twenty subpopulations (model 3)  

 

Figure 2. ipPCA analysis of simulated data model 1 with 3 subpopulations. 

A) Consensus subpopulation tree from ten replicated ipPCA runs. Each cell contains 

labels SP-1, SP-2 or SP-3 referring to subpopulation labels used in simulation. The 

number of individuals is presented in the parentheses next to each label. The number 

of PCs used for clustering is indicated in the parentheses in each cell. The blue cell 

indicates the entire dataset. Non-terminated sub-datasets are presented in green cells 

while the terminated ones (resolved subpopulations) are in red cells. 

B) Scatter-plot using the first and second principal components (PC1 vs. PC2) of the 

entire dataset (iteration 0 of ipPCA). Each datum point represents an individual. Each 

subpopulation label is denoted by a separate symbol (see inset). 

 

Figure 3. ipPCA analysis of simulated data model 2 with 5 subpopulations. 

A) Consensus subpopulation tree on ten replicated ipPCA runs. Each cell contains 

labels SP-1, SP-2, SP-3, SP-4 or SP-5 referring to subpopulation labels used in 

simulation. The number of individuals is presented in the parentheses next to each 

label. The number of PCs used for clustering is indicated in the parentheses in each 

cell. The blue cell indicates the entire dataset. Non-terminated sub-datasets are 
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presented in green cells while the terminated ones (resolved subpopulations) are in red 

cells. 

B) Scatter-plot using the first and second principal components (PC1 vs. PC2) of the 

entire dataset (iteration 0 of ipPCA). Each datum point represents an individual. Each 

subpopulation label is denoted by a separate symbol (see inset). 

 

 

Figure 4. ipPCA analysis of HapMap human dataset  

A) Consensus subpopulation tree. Each cell contains labels YRI, CEU, CHB, 

or JPT referring to population labels. The number of individuals is presented 

in the parentheses next to each label. The number of PCs used for clustering is 

indicated in the parentheses in each cell. The blue cell indicates the pre-

processed dataset. Non-terminated sub-datasets are presented in green cells 

while the terminated ones (resolved subpopulations) are in red cells. 

B) Scatter-plots using the first and second principal components (PC1 vs. PC2). 

Each datum point represents an individual. Each subpopulation label is 

denoted by a separate symbol (see inset). The blue frame contains a scatter 

plot of ipPCA iteration 0. The green frame contains a scatter plot of the non-

terminated sub-dataset at iteration 1. Scatter plots of resolved subpopulations 

are framed in red. 

 

 

 

 - 26 - 



Figure 5. The PCA scatter-plot of the entire bovine dataset for the zeroth 

iteration of ipPCA. 

The plot was made using the first two principal components (PC1 vs. PC2). Each 

datum point represents an individual. Each subpopulation label is denoted by a 

separate symbol (see inset).  

 

Figure 6. Bovine consensus subpopulation tree on ten replicated ipPCA runs 

Each cell contains labels CHL, SGT, JER, HOL, BRM, NRC, HFD, LMS, or ANG 

referring to population labels. The number of individuals is presented in the 

parentheses next to each label. The number of PCs used for clustering is indicated in 

the parentheses in each cell. The blue cell indicates the pre-processed dataset. Non-

terminated sub-datasets are presented in green cells while the terminated ones 

(resolved subpopulations) are in red cells. 

 

Figure 7. The PCA scatter-plot of the entire Shriver’s dataset for the zeroth 

iteration of ipPCA. 

The plot was made using the first two principal components (PC1 vs. PC2). Each 

datum point represents an individual. Each subpopulation label is denoted by a 

separate symbol (see inset).  

 

Figure 8. Shriver’s consensus subpopulation tree on ten replicated ipPCA runs 

Each cell contains labels African American, African Pygmy, Asian, Caucasian, East 

African, Nahua, New Guinea, Puerto Rican, Quechua/Peru, South Altaian, South 

Indian Brahmin, South Indian Mala, Spanish, or West African referring to population 

labels. The number of individuals is presented in the parentheses next to each label. 

The number of PCs used for clustering is indicated in the parentheses in each cell. The 
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blue cell indicates the pre-processed dataset. Non-terminated sub-datasets are 

presented in green cells while the terminated ones (resolved subpopulations) are in red 

cells. 

 

Figure 9. Population assigment comparison of Shriver’s dataset among ipPCA, 

STRUCTURE, and non-iterative PCA clustering algorithms.  

A) Log probability data plot of inferred K for STRUCTURE results with admixture 

model for K=8 to K=20; STRUCTURE parameters: 100000 simulation iterations for 

burn-ins and 100000 additional iterations for parameter estimation. 

B) Side-by-side comparison of subpopulation assignment by ipPCA, STRUCTURE, 

and non-iterative PCA clustering (NI-PCA). Population labels given in [33] are 

abbreviated as follow: AFA (African American); AFP (African Pygmy); ASN 

(Asian); CCS (Caucasian); EAF (East African); NAH (Nahua); NGU (New Guinea); 

PTR (Puerto Rican); QPE (Quechua/Peru); SAT (South Altaian); SIB (South Indian 

Brahmin); SIM (South Indian Mala); SPN (Spanish); WAF (West African). 
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Tables 
 

Table 1 - Comparison of three algorithms (AWclust, STRUCTURE, and ipPCA) 

for inferring the number of primal subpopulations (K).  

Dataset AWclust STRUCTURE ipPCA

model 1 simulated (3 subpopulations) 3 3 3 

model 2 simulated (5 subpopulations) 5 6 5 

model 3 simulated (20 subpopulations, 30 datasets) N/A1 N/D2 203

HapMap (4 population labels with 50000 SNPs) 3 3 4 

bovine (9 population labels with 9329 SNPs) N/A1 10 9 

Shriver’s (14 population labels with 11555 SNPs) N/A1 144 12 

 

1 Not applicable since AWclust gap statistics limits K < 8 

2 Not done owing to the STRUCTURE computational constraint 

3 Modal value from 30 simulated datasets 

4 There are two subpopulation groups with no individuals assigned to them 
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