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Abstract

Project Code : TRG5180005

Project Title :

Investigator : Apichart.intarapanich National Electronics and Computer Technology
Center

E-mail address: apichart.intarapanich@nectec.or.th

Project Period : 1 year

As genotypic datasets become ever larger, it is increasingly difficult to correctly
estimate the number of subpopulations and assigning individuals to them. The
computationally efficient non-parametric, chiefly Principal Components Analysis (PCA)-
based methods are thus becoming increasingly relied upon for population structure
analysis. Current PCA-based methods can accurately detect structure; however, the
accuracy in resolving subpopulations and assigning individuals to them is wanting.
When subpopulations are closely related to one another, they overlap in PCA space
and appear as a conglomerate. This problem is exacerbated when some
subpopulations in the dataset are genetically far removed from others. We propose a
novel PCA-based framework which addresses this shortcoming.

A novel population clustering program called iterative pruning PCA (ipPCA) was
developed which assigns individuals to subpopulations and infers the total number of
subpopulations present. Genotypic data from simulated and real population datasets
with different degrees of structure were analyzed by the proposed method. For datasets
with simple structures, the subpopulation assignments of individuals made by ipPCA
were consistent with the STRUCTURE and AWclust algorithms. On the other hand,
highly structured populations containing many closely related subpopulations could be
accurately resolved only by ipPCA, and not by other methods. The algorithm is
computationally efficient and not constrained by the dataset complexity. This systematic
clustering approach removes the need for prior population labels, which could be
advantageous when cryptic stratification is encountered in datasets of individuals

otherwise assumed to be homogenous.
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a3wh 1 WReufsunanIengulzmnyvassedouitans 9 (AWclust,

STRUCTURE, uaz ipPCA) E%m%‘umsmgmuma"m’mnq’uﬂs:"mﬂsziazl

Dataset AWclust STRUCTURE ipPCA
model 1 simulated (3 subpopulations) 3 3 3
model 2 simulated (5 subpopulations) 5 6 5
model 3 simulated (20 subpopulations, 30 datasets) ~ N/A' N/D 20°
HapMap (4 population labels with 50000 SNPs) 3 3 4
bovine (9 population labels with 9329 SNPs) N/A1 10 9
Shriver’s (14 population labels with 11555 SNPs) N/A1 144 12

1 Not applicable since AWclust gap statistics limits K< 8
? Not done owing to the STRUCTURE computational constraint
’ Modal value from 30 simulated datasets

4There are two subpopulation groups with no individuals assigned to them
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Abstract
Background

Non-random patterns of genetic variation exist among individuals in a
population owing to a variety of evolutionary factors. Therefore, populations are
structured into genetically distinct subpopulations. As genotypic datasets become ever
larger, it is increasingly difficult to correctly estimate the number of subpopulations
and assigning individuals to them. The computationally efficient non-parametric,
chiefly Principal Components Analysis (PCA)-based methods are thus becoming
increasingly relied upon for population structure analysis. Current PCA-based
methods can accurately detect structure; however, the accuracy in resolving
subpopulations and assigning individuals to them is wanting. When subpopulations
are closely related to one another, they overlap in PCA space and appear as a
conglomerate. This problem is exacerbated when some subpopulations in the dataset
are genetically far removed from others. We propose a novel PCA-based framework

which addresses this shortcoming.

Results

A novel population clustering program called iterative pruning PCA (ipPCA) was
developed which assigns individuals to subpopulations and infers the total number of
subpopulations present. Genotypic data from simulated and real population datasets
with different degrees of structure were analyzed by the proposed method. For
datasets with simple structures, the subpopulation assignments of individuals made by
ipPCA were consistent with the STRUCTURE and AWCclust algorithms. On the other
hand, highly structured populations containing many closely related subpopulations

could be accurately resolved only by ipPCA, and not by other methods.

-2-



Conclusions

The algorithm is computationally efficient and not constrained by the dataset
complexity. This systematic clustering approach removes the need for prior
population labels, which could be advantageous when cryptic stratification is

encountered in datasets of individuals otherwise assumed to be homogenous.



Background

Allele frequencies vary across populations because of systematic differences in
ancestry; these differences arise from many factors such as migration, selection and
drift. Hence, populations are genetically substructured. The information obtained from
resolving population substructure can be used to infer population history.
Furthermore, human disease association studies must account and correct for the
population substructure to reduce spurious associations and reveal the predisposing
factors of disease [1]. Analysis of population stratification must meet four main
challenges namely: (i) detecting structure, (ii) assigning individuals to subpopulations,
(iii) determining the number of optimal, or primal, subpopulations (K) and (iv)
determining the extent of subpopulation admixture [2].

With the advent of high throughput genotyping, increasingly large genotypic
datasets (e.g. HapMap dataset of 3.5 million single nucleotide polymorphism (SNP)
arrays from 270 individuals [3] ) will provide progressively difficult challenges for
population structure analysis. Therefore, to keep abreast with the ever increasing size
and complexity of genotypic data, refinement of existing analytical methods and
entirely novel approaches will be needed to resolve subpopulations. Several different
methods have been proposed to address some aspects of the population substructure
problem. These methods can be categorized into two main approaches, namely
parametric and non-parametric-based. STRUCTURE is the “gold standard”
parametric-based algorithm for population stratification analysis [2, 4], because it can
address all four substructure analysis challenges. However, STRUCTURE imposes
high computational burden and it is thus impractical for the large datasets typically

analyzed nowadays. STRUCTURE also has other weaknesses, mainly its inference of
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primal K, which requires extensive statistical testing of several STRUCTURE runs
performed with increasing K. STRUCTURE’s inference of K can also vary according
to the model used [4], hence the determination of admixture, which is highly
dependent on the K value used needs to be interpreted with caution. Other parametric
methods, such as L-POP [5], PSMIX [6] and frappe [7] employ different parametric
approaches and are more computationally efficient, although they address only
specific population structure problems not adequately solved by STRUCTURE, such
as admixture [5].

For non-parametric methods, the algorithms in this class do not require model
assumptions. Principal Components Analysis (PCA) is the most widely used method
for visualizing structure which uses a covariance matrix for eigenanalysis, allowing
representation of individuals as data points in scatter-plots. Principal Coordinate
Analysis (PCoA) is an alternative method for eigenanalysis which uses an allele-
sharing distance (ASD) matrix, and gives different scatter-plot patterns from PCA [8,
9]. PCA is not a method for assigning individuals nor estimating K and is often used
merely to visualize the population structure trend. The most popular PCA-based
algorithm applied to population structure analysis is EIGENSTRAT/SmartPCA [10,
11], which has been used by several investigators for large datasets typically required
for studies of human population structure and genome association [12-14]. This
algorithm employs a computationally-efficient variant of eigenanalysis to report the
probability of population substructure according to Tracy-Widom (TW) distribution.

In a typical population dataset, genetic distances vary among subpopulations
and PCA scatter-plots can reveal the most genetically isolated subpopulations as
distinct clusters of individuals in a small number of principal components. Hence,

supervised clustered with prior assumption of the number of K subpopulation clusters



can be done to assign individuals. Conversely, closely related subpopulations will
occupy a confined feature space and appear as a conglomerate. For example, in the
scatter plot of PC1 versus PC2, conglomerates containing individuals with different
population labels are frequently observed. In some cases, the distinction between
closely related subpopulations is apparent in a greater number of principal
components [15]. Thus, in order to resolve closely related subpopulations, individuals
must be separated using a clustering algorithm working in multidimensional PCA
space [16-18]. However, clustering algorithms perform inconsistently when too
many axes of variation are used [19]. Clustering algorithms require separation in axes
of variation. However, clusters in some axes may merge into a single cluster, and
hence clustering algorithms can become confused. Generally the informative axes of
variation are contained within the rank of matrix [20]. Therefore, the number of
principal components should be optimized and not exceed a certain number for each
dataset.

One way to improve the resolution of closely-related subpopulations in PCA
scatter-plots is by removing genetically distant individuals from the dataset. In the
investigation of European human genetic substructure using 300K SNP arrays [21], it
was found that prior exclusion of individuals belonging to certain groups improved
substructure resolution of the other groups, e.g. removal of Ashkenazi Jewish
individuals led to clearer substructuring of other northern European groups. This data
“cleaning” approach is clearly advantageous, although the method as described in [21]
is ad hoc and unable to detect and remove subtle outliers [22]. Clearly, this approach
is not feasible for datasets composed of individuals presumed to belong to a
homogenous population without any distinguishing labels, for instance disease

association studies carefully controlled for ethnicity and geographical origin. With



sufficient number of markers and individuals, cryptic structure in an apparently
homogenous population can be detected using PCA [10, 11], which cannot be
resolved by current unsupervised clustering methods, with no assumptions of K [18].

To determine the primal K for unsupervised clustering, the gap statistic [23] is
employed on the AWclust results [16] and Density-Based Means clustering results
[18]. Alternatively, the Bayesian Information Criterion (BIC) approach for
determining K can be applied to the clustering results [17]. Calculating the gap
statistic and BIC are computationally intensive, thus these approaches are impractical
for highly structured datasets. Furthermore, these approaches are sensitive to noisy
non-informative PCs, which may explain why they are not appropriate for highly
structured datasets with a large K. All unsupervised clustering approaches currently
applied to PCA do not assign individuals into subpopulations according to genetic
distance between subpopulations in a fully comprehensive and systematic fashion.
These algorithms thus have insufficient discriminatory power to assign individuals to
subpopulations and determine K for highly structured datasets.

In this study, we propose a non-parametric analytical framework which
incorporates several key refinements of the PCA-based approach. The new algorithm,
which we call iterative pruning PCA (ipPCA) addresses three of the main challenges
for population structure analysis, namely detection of structure, assigning individuals
to subpopulations and determining the primal K with greater accuracy than previously
proposed algorithms. The ipPCA algorithm utilizes a novel unsupervised clustering
heuristic which markedly improves resolution of population substructure by an
iterative process. In this method, individuals are systematically bisected according to

genetic similarity at each step, continuing until all subpopulations are revealed.



Results

Algorithm
The ipPCA algorithm is a PCA framework which utilizes non-redundant principal

components to construct a transformed domain of the input data, which can be
mapped to PCA space. By means of selecting a limited number of principal
components, dimension reduction can be achieved. The PCA domain allows each
input individual to be represented as a single datum point in a scatter-plot, or in
clustering analysis. The ipPCA technique constructs the transformed domain based on
a covariance matrix of the data matrix containing SNP genotypic data encoded as 0, 1

or 2 elements.

GenotypeData
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where M and N are the number of markers and individuals respectively. Note that M is
normally much larger than N.

Since the covariance matrix is usually a large square matrix, it is memory and
computationally intensive to compute the PCA space. However, there is an alternative
technique to compute the transformed domain without computational burden [20].
Instead of using the data covariance matrix, the PCA space can be constructed by
decomposing a modified data matrix X X7, which is much smaller than the
covariance matrix. For example, a dataset with 200 individuals and 1000000 markers
would have 1000000 x 1000000 elements in the covariance matrix compared to
200 x 200 elements in the X X matrix. The modified data matrix can be factored as
USVT = X X7T. Then, the eigenvectors can be computed by

E=S1:k1:k)U(1:E)X

-8-



where k is the rank of the data matrix and £ = [¢}. @, . . ., €] are the eigenvectors.
Here, we use the “colon” notation [20] to specify a column or row of a matrix. Then,
the PCA space is constructed based on these eigenvectors.

Because ipPCA is sensitive to the data pattern, data quality is crucial for
accuracy of the algorithm. Typically, it is necessary to clean the data before
performing ipPCA. Technical limitations in genotyping occasionally lead to missing
values at some loci. To check whether missing data by itself can create substructure,
all missing data are encoded as zero and other loci are encoded as one. The zero and
one (abbreviated as 0-1) encoded dataset is analyzed by SmartPCA [10]. If
substructure can be observed as clear outlier individuals on the periphery of the two
PC scatter-plot, these individuals can be removed from the dataset, as suggested by
[10].

Before performing ipPCA, a quality control check is performed on the 0-1-2
encoded data matrix. In this case, frequency counts are computed on each locus to
ensure that entries encoded as zero are homozygous major allele (wild-type), entries
encoded as one are heterozygous and entries encoded as two are homozygous minor
allele. The pre-processing steps and the ipPCA framework can be summarized as
follows:

Pre-processing steps:
Check if missing values in the input dataset cause detectable substructure using
EIGENSTRAT/SmartPCA and if significant substructure is reported, remove
individuals with missing data which cause substructure (identified as outliers on

PC1-PC2 scatter-plot).

ipPCA steps:



1. Make matrix X; for each non-terminating data group
2. Use singular value decomposition (SVD) [20] to factorize the X; X data into
U;S;v;r
3. Project all individuals into PC space using the number of PCs equal to the data
matrix rank [15].
4. Check terminating condition on the S; using the TW test statistic implemented
in EIGENSTRAT/SmartPCA ([10])
(a) Terminate if TW test statistic is insignificant for the first PC (p>10?)
(b) Otherwise, proceed to the next step
5. Apply fuzzy c-means [24] to split individuals X; into two clusters
6. Repeat from step 1 until all the data are terminated
7. When all the iterative processes are terminated, the number of subpopulations
can be determined by counting all the terminal nodes (determination of K). Note that
replicated ipPCA runs are typically performed to test the robustness of the clustering

algorithm.

Testing

The power and robustness of the proposed ipPCA algorithm was explored and
optimized using simulated datasets. The performance of ipPCA was then tested on
three real datasets, namely HapMap, bovine, and Shriver’s datasets. Finally, we
compared the results of our algorithm with the results from existing tools:
STRUCTURE and AWCclust. STRUCTURE version 2.2 was downloaded from J.
Pritchard’s website [25] and applied using the following parameters: 100000 burn-ins,
100000 runs, with admixture model, no LD model. For AWClust analysis,

AWClust was downloaded from [26] and the algorithm’s default parameters were

selected.
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Iterative pruning PCA clustering: a way to improve discriminatory power

The program GENOME [27] was employed to generate simulated genotypic data
under the Wright-Fisher neutral coalescent model (backward in time) [28]. Three
evolutionary models (called population histories in GENOME) were constructed
(Figure 1). The model 1 dataset (Figure 1A) contains three subpopulations derived
from two ancestral populations. The model 2 dataset (Figure 1B) contains five
independent subpopulations with no admixture. The model 3 datasets (Figure 1C)
contain 20 subpopulations derived from three ancestral populations. Parameter
settings used to generate each model are as follows:

The model 1 dataset parameters:

-pop 3 50 50 50 —c 20 —s 500 —N modell.txt

The model 2 dataset parameters:

-pop 5 50 50 50 50 50 —c 20 —s 500 —N model2._txt
The model 3 dataset parameters:

-pop 20 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

-c 20 —s 500 —N model3.txt

Using the above parameters, we generated 10000 SNPs for each simulated dataset.
Note that the model 3 population history was used to generate 30 datasets to test the
robustness of ipPCA. All simulated datasets and the population history files
(modell.txt, model2.txt, and model3.txt) analyzed in this study can be downloaded
from [29].

The performance and robustness of ipPCA to resolve structure were
investigated using simulated datasets of increasing complexity. Two simple

population structure models (K=3 and 5 subpopulations) and one complex model
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(K=20 subpopulations) were simulated using the GENOME tool [27] . For the first
two simple models (models 1 and 2), ipPCA can resolve K consistent with the models
and assign all individuals correctly to the corresponding subpopulations (Figures 2
and 3). For the highly complex model (model 3), 30 simulated datasets were
generated using the same evolutionary model. The structure resolved by ipPCA was
highly consistent with the model, for both number of inferred K and the individuals
assigned to each subpopulation (mode K=20, range 19-22; mean mis-assignment rate
6.07%, range 1.9%-17.5%), see additional file 1). To test the reproducibility of the
clustering algorithm, ten replicated ipPCA experiments were performed on each data
set. The results were reproduced exactly for all ten runs in each model (data not

shown).

Assignment of individuals to subpopulations in real datasets is reproducible
and consistent with population labels

Three real datasets, namely HapMap, bovine, and Shriver’s, were analyzed in
this work. The HapMap dataset, retrieved from [30], comprises individuals with four
population labels: Han Chinese from Beijing (CHB), Japanese from Tokyo (JPT),
Caucasian European from Utah (CEU), and Yoruba from Ibadan (YRI) with 1533661
SNPs. Fifty thousand SNPs were uniformly re-sampled from this SNP pool [3].
Starting from the first marker, a moving window was used to select SNPs in an even
spacing fashion, such that every 30™ marker was selected from the 1533661 markers
(for full list of SNP markers used see additional file 2). Data pre-processing ipPCA
was performed and two outlier JPT individuals were removed.

The bovine dataset was downloaded from [31]. The bovine SNP data (9329 SNPs) are

publicly available as part of the Bovine Genome Project [32]. After data pre-
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processing, no outliers were detected. Shriver’s worldwide human SNP dataset of 307
individuals with 14 different ethnic/geographical labels was provided by Prof. Mark
D. Shriver, which is a dataset expanded from the one originally published in [33].
This dataset consists of 11555 SNPs for each individual, evenly distributed over the
entire genome. After data pre-processing, no outliers were detected.

The HapMap dataset was analyzed by ipPCA, which contains individuals from four
distinct geographical regions (YRI, CEU, CHB, and JPT). All individuals in each of
the four subpopulations defined by ipPCA share the same distinguishing population
label (Figure 4). The YRI subpopulation was defined in iteration 1 while the CEU was
defined in iteration 2. Finally, the CHB and JPT subpopulations were defined in
iteration 3. Exactly the same assignment results were obtained from for ten replicated
runs using 50000 SNPs and a single ipPCA run using the entire 1533661 SNP
collection (data not shown).

The bovine dataset contains individuals from nine breeds considered to be
genetically distinct subpopulations. The Brahman (BRM) breed cattle are zebu (also
known as B. indicus), considered a sub-species very distinct from the taurine cattle
breeds. Santa Gertrudis (SGT) is a composite breed derived from BRM and Shorthorn
breed cattle. The other breeds, Angus (ANG), Charolais (CHL), Limousin (LMS),
Hereford (HFD), Norwegian red (NRC), Jersey (JER) and Holstein (HOL) are taurine
cattle and European in origin (for breed descriptions see [34]).

Scatter-plot analysis of the entire bovine dataset showed that individuals from
the HFD, JER, HOL, LMS, ANG, CHL and NRC taurine breeds appear as a
conglomerate and are separated from BRM and SGT individuals (Figure 5). Figure 6
shows the resulting consensus subpopulation tree from ten replicated ipPCA runs,

which all gave the same results (data not shown). Each ipPCA run requires six
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successive iterations of ipPCA to define all subpopulations. After the second iteration,
the BRM and SGT cluster was divided satisfying the termination criterion, thus
defining two subpopulations composed of BRM and SGT individuals, respectively.
Additionally, a third subpopulation composed of JER individuals was defined and
separated from the taurine cluster. After more iterations of ipPCA, a further six
subpopulations were defined in which each subpopulation is largely composed of
individuals of the same breed.

Shriver’s dataset was then analyzed by ipPCA. From the scatter-plot analysis
of the entire dataset, it can be observed that individuals are broadly grouped according
to their geographical origins with some overlap between individuals with different
labels (Figure 7). The consensus ipPCA result showed that after the second iteration
of ipPCA, a subpopulation composed of African Americans and a Puerto Rican
individual was defined. After further iterations of ipPCA, more subpopulations were
defined with each containing individuals with shared geographical and/or ethnic
origins. After six iterations, twelve subpopulations were defined with no further
substructure found (see Figure 8). Subpopulation assignments were robust. Only one
ipPCA run differed from the consensus (see additional file 3)

The number of predicted K and assignment of individuals to subpopulations
were compared with other algorithms. Table 1 shows comparison between different
algorithms for inferring K from 35 datasets. All algorithms agreed with the same K
value only for the least complex dataset (model 1). For all others, there was no
concordance between the algorithms. Given the discordances between the algorithms
we then investigated the individual assignments made by each algorithm.

For datasets of low complexity, assignment of individuals to subpopulations

was largely consistent among the STRUCTURE, AWclust, and ipPCA algorithms
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(see additional file 4 for AWclust results and additional file 5 for STRUCTURE
results). Given the greater discordance between algorithms for inference of K from
highly structured datasets, a more detailed comparison of individual assignments to
subpopulations was made between STRUCTURE and ipPCA. The comparison was
made using Shriver’s highly structured dataset for the optimal number of K reported
by each algorithm (Figure 9). Each of the twelve subpopulations defined by ipPCA
contain similar number of individuals (range 19-46), and the assignments of
individuals to subpopulations SP-4, SP-5, SP-6, SP-7, SP-8, SP-9, SP-11 and SP-12
are consistent with the population labels. Four subpopulations, namely SP-1, SP-2,
SP-3 and SP-10 contain individuals with more than one population label.

The 14 subpopulations assigned by STRUCTURE differed markedly to ipPCA
in the number of individuals contained within each. Two subpopulations have no
assigned individuals, five subpopulations have fewer than ten individuals and two
subpopulations have more than 50 assigned individuals. Inspection of the population
labels of the assigned individuals shows that STRUCTURE assigned a subpopulation
containing individuals from three geographically disparate African locations together
with African Americans and a Puerto Rican in contrast to ipPCA, which assigns
African Pygmy, West African and East African individuals as separate subpopulations
SP-4, SP-8 and SP-9, respectively. STRUCTURE also assigned Caucasian, Puerto
Rican, South Altaian and West African individuals among more subpopulations than
ipPCA. STRUCTURE also grouped Nahua and Quechua/Peru individuals as one
subpopulation and Asian and South Altaian individuals as another subpopulation.
However, ipPCA assigned these individuals to four separate subpopulations consistent

with population labels (SP-5, SP-6, SP-11, SP-12).
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In order to demonstrate the power of the iterative clustering approach, a
comparison was made between the individual subpopulation assignments by ipPCA
and PCA clustering done in a non-iterative fashion (third column in Figure 9). The
PCA results from Shriver’s entire dataset were clustered using the same fuzzy c-
means clustering algorithm to assign individuals into 12 clusters (the number inferred
by ipPCA). The number of clusters to be used for clustering was not calculated
independently, e.g. using the gap statistic since this was not feasible for such a
complex dataset. It can be observed that clustering on non-iterative PCA (NI-PCA)
results leads to notable differences in individual assignment. For instance, there are
three groups with fewer than ten individuals (3 Puerto Ricans, 8 East Africans, and 4
New Guinea) and one conglomerate group containing 68 individuals (4 Spanish, 11
South Indian Mala, 11 South Indian Brahman, and 42 Caucasians). Furthermore,
Asian and South Altaian individuals were assigned together, whereas East African

and New Guinea individuals were each separated into two subpopulations.

Implementation

ipPCA was implemented in MATLAB version 2007a. It is available in both graphical
user interface (GUI) and MATLAB function. GUI ipPCA is suitable for small
datasets, e.g. 50000 makers, while MATLAB function ipPCA can be used for larger

datasets. The source codes for both versions are available on request.

Discussion

Practicality of ipPCA comparing with other algorithms
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We have demonstrated a novel PCA-based analytical framework that accurately
resolves population stratification including that of highly structured datasets. With
this tool, individuals are assigned to subpopulations and K is determined with high
accuracy. Moreover, minimal computational effort is required. The computational
time and the complexity of the datasets were not limitations for ipPCA, unlike other
algorithms. For example, AWCclust limits the number of inferred K to seven or less
while STRUCTURE takes too long to compute when K and the number of markers
are large. For datasets in which comparison can be made between different
algorithms, the K values reported by ipPCA were consistent with other algorithms
(STRUCTURE and AWclust) and the presumed K. For highly structured datasets
requiring many SNPs, the proposed algorithm performs faster than STRUCTURE and
AWclust algorithms. For example, Shriver’s dataset requires approximately three
days to compute by STRUCTURE while ipPCA needed less than ten minutes on a 32-
core AMD 2.3 gigahertz Opteron with 64 gigabytes of memory running Linux

CentOS operating system.

Improved clustering through PC selection

The trend observed among datasets analyzed in this study is that early iterations
require more PCs for clustering than later ones (Figures 2, 3, 4, 6, and 8). Thisis in
agreement with the findings of the authors of EIGENSTRAT/SmartPCA, who showed
that the number of significant eigenvectors (PCs) to resolve structure reflects the
number of subpopulations [10, 35]. However, the number of K is not simply defined
by the number of significant PCs, since the actual number of PCs needed to reveal
subpopulations varies in each case. In ipPCA, the clustering process utilizes the

optimal number of PCs (determined to be the matrix rank), which varies among
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nested datasets according to the number of individuals at each iteration. After each
iteration of ipPCA, the nested datasets have progressively simpler structures so that

fewer principal components are used for clustering.

Inference of K

The inference of the number of optimal, or primal, K subpopulations is
critically dependent on the assignment accuracy of individuals. High assignment
accuracy allows the correct value of primal K to be inferred. The STRUCTURE and
AWCclust algorithms have lower assignment accuracy than ipPCA, and thus their
inferences of K were incorrect. For example, STRUCTURE and AWCclust reported
K=3 for the HapMap dataset and could not resolve CHB and JPT as separate
subpopulations. The resolution of CHB and JPT subpopulations by ipPCA was
consistent with the finding of [36], who identified the subset of informative markers
for separating these individuals as two subpopulations.

In order to define subpopulations from the PCA clustering results, ipPCA uses
a novel approach which considers only the eigenvalue distribution. By this approach,
subpopulations are defined by a standard criterion thus removing subjectivity from the
definitions. Rigorous subpopulation definitions are currently lacking, since there is no
agreement as to precisely what genetic variation accounts for population structure
[37]. The difficulty in defining subpopulations is the main reason why determining K

is considered very challenging [2, 4].

Assignment accuracy

In terms of individual assignments, there were some notable differences

between ipPCA and STRUCTURE for Shriver’s dataset. For the optimal number of
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subpopulations reported by STRUCTURE (K=14) (see additional file 6), assignments
were inconsistent with what have been reported by other methods [33, 38]. From a
population evolutionary perspective, some of the assignments made by STRUCTURE
were not meaningful. For instance, there were two groups that STRUCTURE
assigned no individuals to, while five other groups contained fewer than ten
individuals (Figure 8). By limiting K to twelve as what ipPCA predicted, the
assignments made by STRUCTURE changed with removal of the empty groups and
amalgamation of south Altaian individuals into one subpopulation (see additional file
7). However, some inconsistencies with accepted patterns of human population
structure remained. For example, the subpopulation with pan-African individuals
remained.

The ipPCA clustering approach differs from the approaches used by others for
clustering PCA results, e.g.[17] who performed clustering on the entire dataset using
a large number of PCs. For highly structured populations, this kind of approach is not
able to accurately assign individuals to subpopulations, irrespective of the clustering
algorithm used (e.g. k-means, soft k-means, spectral k-means) since the closely related
subpopulations are confined in a small region of feature space (see Background
section). The greatest problem for the NI-PCA approach is in knowing the number of
clusters to be used in clustering. Indeed, the analysis of highly structured datasets in
this paper shows that NI-PCA approach fails to accurately assign individuals, even
when using the correct K inferred by ipPCA (for analysis of simulated data Model 3,
see additional file 8). We chose fuzzy c-means for clustering since the number of
clusters in each ipPCA iteration is restricted to two, hence a simple algorithm is

sufficient. Furthermore, the cluster centroids determined by fuzzy c-means are more
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consistent compared with the commonly used k-means algorithm [39], which is most

important for subpopulation assignment in our case.

Definition of subpopulations according to genetic distance and population
history

The iterative pruning approach also defines subpopulations in a manner
reflecting the probable evolutionary origin of each subpopulation. As can be seen
from the analysis of simulated datasets (Figure 2 and additional file 1) and real
datasets in Figures 4-8, closely related subpopulations are defined after more distantly
related ones. This iterative pruning process thus offers a systematic way to define
subpopulations according to their degrees of relatedness to one another. By removing
the most distant individuals to create nested datasets, one is able to resolve
substructure, which would not be revealed otherwise.

For more complex datasets containing subpopulations with individuals of
recent admixed origins, these were shown by ipPCA as those which contain assigned
individuals with different population labels. For instance, two subpopulations were
defined from the bovine dataset containing individuals with different breed labels.
The overlap of NRC and HOL individuals in a subpopulation is not unexpected, since
NRC is not a pure breed and has HOL ancestry. Similarly, the assignment of some
SGT individuals to a subpopulation with taurine cattle reflects the fact that SGT is a
composite zebu/taurine breed.

For Shriver’s dataset which has a more complex structure than the bovine
dataset, twelve subpopulations were defined by ipPCA with individuals assigned

consistent with the group labels and the neighbor-joining tree shown in [33]. Four
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subpopulations appeared to be admixed containing individuals with different labels.
Among these four admixed subpopulations, Puerto Rican individuals were assigned to
two subpopulations. These assignments reflect the Puerto Rican population history,
in which their genomes still contain the signatures of ancestral European and African
migrants [33, 40]. We are currently developing an admixture extension to ipPCA,
which is outside the scope of this paper. In this paper, we wished to provide a solid
platform for ipPCA to demonstrate its accuracy in resolving all K primal

subpopulations, which is crucial for admixture testing.

Conclusions

We propose some key refinements to the PCA-based algorithm for improved
resolution of population genetic stratification. With this new method, individuals can
be accurately assigned to subpopulations systematically, thus defining the optimal, or
primal, K without any assumptions of individuals’ origins or degree of relatedness to
one another. The power of the technique was demonstrated using datasets with known
structure, although we think there is potential to reveal structure in datasets with

cryptic stratification.
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Figures

Figure 1. Population history trees for generating simulated datasets.

The GENOME tool [27] was used to generate the simulated datasets.
A) three subpopulations mixed model (model 1)
B) five independent subpopulations (model 2)

C) twenty subpopulations (model 3)

Figure 2. ipPCA analysis of simulated data model 1 with 3 subpopulations.

A) Consensus subpopulation tree from ten replicated ipPCA runs. Each cell contains
labels SP-1, SP-2 or SP-3 referring to subpopulation labels used in simulation. The
number of individuals is presented in the parentheses next to each label. The number
of PCs used for clustering is indicated in the parentheses in each cell. The blue cell
indicates the entire dataset. Non-terminated sub-datasets are presented in green cells
while the terminated ones (resolved subpopulations) are in red cells.

B) Scatter-plot using the first and second principal components (PC1 vs. PC2) of the
entire dataset (iteration 0 of ipPCA). Each datum point represents an individual. Each

subpopulation label is denoted by a separate symbol (see inset).

Figure 3. ipPCA analysis of simulated data model 2 with 5 subpopulations.

A) Consensus subpopulation tree on ten replicated ipPCA runs. Each cell contains
labels SP-1, SP-2, SP-3, SP-4 or SP-5 referring to subpopulation labels used in
simulation. The number of individuals is presented in the parentheses next to each
label. The number of PCs used for clustering is indicated in the parentheses in each

cell. The blue cell indicates the entire dataset. Non-terminated sub-datasets are
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presented in green cells while the terminated ones (resolved subpopulations) are in red
cells.

B) Scatter-plot using the first and second principal components (PC1 vs. PC2) of the
entire dataset (iteration 0 of ipPCA). Each datum point represents an individual. Each

subpopulation label is denoted by a separate symbol (see inset).

Figure 4. ipPCA analysis of HapMap human dataset

A) Consensus subpopulation tree. Each cell contains labels YRI, CEU, CHB,
or JPT referring to population labels. The number of individuals is presented
in the parentheses next to each label. The number of PCs used for clustering is
indicated in the parentheses in each cell. The blue cell indicates the pre-
processed dataset. Non-terminated sub-datasets are presented in green cells

while the terminated ones (resolved subpopulations) are in red cells.

B) Scatter-plots using the first and second principal components (PC1 vs. PC2).
Each datum point represents an individual. Each subpopulation label is
denoted by a separate symbol (see inset). The blue frame contains a scatter
plot of ipPCA iteration 0. The green frame contains a scatter plot of the non-
terminated sub-dataset at iteration 1. Scatter plots of resolved subpopulations

are framed in red.
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Figure 5. The PCA scatter-plot of the entire bovine dataset for the zeroth
iteration of ipPCA.

The plot was made using the first two principal components (PC1 vs. PC2). Each
datum point represents an individual. Each subpopulation label is denoted by a

separate symbol (see inset).

Figure 6. Bovine consensus subpopulation tree on ten replicated ipPCA runs

Each cell contains labels CHL, SGT, JER, HOL, BRM, NRC, HFD, LMS, or ANG
referring to population labels. The number of individuals is presented in the
parentheses next to each label. The number of PCs used for clustering is indicated in
the parentheses in each cell. The blue cell indicates the pre-processed dataset. Non-
terminated sub-datasets are presented in green cells while the terminated ones

(resolved subpopulations) are in red cells.

Figure 7. The PCA scatter-plot of the entire Shriver’s dataset for the zeroth
iteration of ipPCA.

The plot was made using the first two principal components (PC1 vs. PC2). Each
datum point represents an individual. Each subpopulation label is denoted by a

separate symbol (see inset).

Figure 8. Shriver’s consensus subpopulation tree on ten replicated ipPCA runs

Each cell contains labels African American, African Pygmy, Asian, Caucasian, East
African, Nahua, New Guinea, Puerto Rican, Quechua/Peru, South Altaian, South
Indian Brahmin, South Indian Mala, Spanish, or West African referring to population
labels. The number of individuals is presented in the parentheses next to each label.

The number of PCs used for clustering is indicated in the parentheses in each cell. The
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blue cell indicates the pre-processed dataset. Non-terminated sub-datasets are
presented in green cells while the terminated ones (resolved subpopulations) are in red

cells.

Figure 9. Population assigment comparison of Shriver’s dataset among ipPCA,
STRUCTURE, and non-iterative PCA clustering algorithms.

A) Log probability data plot of inferred K for STRUCTURE results with admixture
model for K=8 to K=20; STRUCTURE parameters: 100000 simulation iterations for
burn-ins and 100000 additional iterations for parameter estimation.

B) Side-by-side comparison of subpopulation assignment by ipPCA, STRUCTURE,
and non-iterative PCA clustering (NI-PCA). Population labels given in [33] are
abbreviated as follow: AFA (African American); AFP (African Pygmy); ASN
(Asian); CCS (Caucasian); EAF (East African); NAH (Nahua); NGU (New Guinea);
PTR (Puerto Rican); QPE (Quechua/Peru); SAT (South Altaian); SIB (South Indian

Brahmin); SIM (South Indian Mala); SPN (Spanish); WAF (West African).
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Tables

Table 1 - Comparison of three algorithms (AWclust, STRUCTURE, and ipPCA)

for inferring the number of primal subpopulations (K).

Dataset AWclust STRUCTURE ipPCA
model 1 simulated (3 subpopulations) 3 3 3
model 2 simulated (5 subpopulations) 5 6 5
model 3 simulated (20 subpopulations, 30 datasets) ~ N/A! N/D? 20°
HapMap (4 population labels with 50000 SNPs) 3 3 4
bovine (9 population labels with 9329 SNPs) N/A 10 9
Shriver’s (14 population labels with 11555 SNPs) ~ N/A! 14* 12

! Not applicable since AWclust gap statistics limits K < 8
% Not done owing to the STRUCTURE computational constraint
¥ Modal value from 30 simulated datasets

* There are two subpopulation groups with no individuals assigned to them
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