

## **Abstract**

**Project Code : TRG5180007**

**Project Title : Simulation and control of convective heat transfer using low-dimensional model**

**Investigator : Sirod Sirisup, National Electronics and Computer Technology Center**

**E-mail Address : sirod.sirisup@nectec.or.th**

**Project Period : May 2008- May 2010 ( 2 years)**

Convective heat transfer is a scientific field of major interest to engineering and scientific researchers, as well as designers, developers, and manufacturers. Ability to predict the convective heat transfer behavior correctly will thus bring many new efficient innovations that will directly affect our daily life especially in energy consumption issues.

Simulation-based study has now been widely used in many fields of research including convective heat transfer. However, there are two main limitations of numerical simulation. First, even simulation can provide detailed data for interested variables such data may not readily imbue the investigator with an increased level of understanding the physics essential to a given phenomenon which usually relate to the gigantic size of computed data sets. Second, without the dedication of massive resources, numerical simulation of large or non-linear systems remains far too computationally expensive.

A lower-order or low-dimensional models for a given phenomenon is thus constructed to overcome such problems and serve as the basis for additional analysis. Recently, low-dimensional models has been constructed and widely applied to both simulation and control of fluid flow problems.

In this research, we have successfully constructed a low-dimensional model based on the proper orthogonal decomposition (POD) technique to provide accurate descriptions of the dynamics of both free and forced convective heat transfers with only a handful degree of freedoms. However, a bifurcation analysis on the POD-based model with respect to its parameter(s) indicates that this model is rather suitable for simulation not control purpose.

**Keywords:** Reduced order model, Proper orthogonal decomposition, heat transfer

## บทคัดย่อ

รหัสโครงการ: TRG5180007

ชื่อโครงการ: การจำลอง และ การควบคุมการพากษาความร้อนโดยใช้แบบจำลองมิติต่ำ

ชื่อหัววิจัย : **Sirod Sirisup, National Electronics and Computer Technology Center**

E-mail Address : [sirod.sirisup@nectec.or.th](mailto:sirod.sirisup@nectec.or.th)

ระยะเวลาโครงการ: May 2008- May 2010 ( 2 years)

การศึกษาเพื่อให้เข้าใจถึงหลักการพื้นฐานของการพากษาความร้อนจะได้มาซึ่งความสามารถในการพยากรณ์คุณลักษณะของการพากษาความร้อนที่ถูกต้องและแม่นยำนั้น แบ่งออกได้เป็นสองรูปแบบหลักๆคือ การทดลอง (experiment) และ การจำลอง (simulation) โดยการใช้ระบบวิธีเชิงตัวเลขเพื่อหาคำตอบจากสมการเชิงอนุพันธ์(partial differential equations) ซึ่งการศึกษาโดยใช้การจำลองนั้นเพิ่งจะมีการทำกันอย่างกว้างขวางในไม่นานมานี้ เนื่องจากการจำลองมีข้อได้เปรียบหลายอย่างเมื่อเทียบกับการทดลอง เช่น ค่าใช้จ่ายของการทำการทดลองนั้น มีมูลค่าที่สูงกว่าการทำการจำลองมาก

อย่างไรก็ตามการจำลองนี้ยังคงมีข้อจำกัดหลักๆ สองข้อดังนี้ ข้อแรก ถึงแม้ว่าการจำลองจะให้ข้อมูลของตัวแปรที่มีรายละเอียดมากแต่ก็ยังจำเป็นต้องมีการวิเคราะห์ข้อมูลนั้นๆเพื่อให้ได้ซึ่งความเข้าใจแต่อาจต้องใช้เวลาอย่างมากหรือเป็นไปได้ยากเนื่องจากข้อมูลมีจำนวนมากมายมหศาล ส่วนข้อสองนั้นเป็นผลมาจากการแก้ปัญหาสมการเชิงอนุพันธ์ที่มีขนาดใหญ่ที่ต้องการระบบคอมพิวเตอร์ที่ช่วยคำนวณและระบบเก็บข้อมูลที่มีประสิทธิภาพสูงที่มีราคาแพงมาก เพื่อแก้ไขข้อจำกัดทั้งสองข้อที่กล่าวมาข้างต้นของการทำแบบจำลองโดยการใช้ระบบวิธีเชิงตัวเลข เพื่อหาคำตอบจากสมการเชิงอนุพันธ์ที่ควบคุมปราศจากการณ์นั้น การสร้างแบบจำลองมิติต่ำ (low-dimensional models) ได้ถูกนำเสนอเพื่อเป็นทางเลือกในการวิเคราะห์ปราศจากการณ์นั้นอีกทางหนึ่ง

ผลการวิจัยนี้จะกล่าวถึงการสร้างแบบจำลองมิติต่ำโดยใช้เทคนิค proper orthogonal decomposition สำหรับปัญหาการพากษาความร้อนแบบอิสระและแบบถูกบังคับ ซึ่งการสร้างแบบจำลองมิติต่ำนี้ จะมุ่งเน้นไปในปัญหาการพากษาความร้อนที่มีค่าข้อมูลซับซ้อนที่มีค่าข้อมูลขึ้นอยู่กับเวลา ซึ่งจากการศึกษาปรากฏว่า แบบจำลองมิติต่ำที่สร้างขึ้นสามารถนำไปใช้ในงาน simulation ได้เป็นอย่างดี อย่างไรก็ตามเมื่อใช้เทคนิค bifurcation analysis วิเคราะห์แบบจำลองมิติต่ำที่ถูกสร้างขึ้นมาดูปรากฏว่าแบบจำลองที่ถูกสร้างขึ้นอาจมีสมบัติไม่เหมาะสมกับการใช้งานในด้านการควบคุม

**คำสำคัญ:** แบบจำลองมิติต่ำ, การแบ่งแยกตัวจากเหมาะสม, การพากษาความร้อน

โครงการ การจำลอง และ การควบคุมการพากษาความร้อนโดยใช้แบบจำลองมิติต่ำ