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Abstract 
Project Code :  TRG5180007 
 
Project Title :  Simulation and control of convective heat transfer using low-
dimensional model 
 
Investigator : Sirod Sirisup,  National Electronics and Computer Technology Center 
 
E-mail Address : sirod.sirisup@nectec.or.th 
 
Project Period : May 2008- May 2010 ( 2 years) 

Convective heat transfer is a scientific field of major interest to engineering and 
scientific researchers, as well as designers, developers, and manufacturers.  Ability to 
predict the convective heat transfer behavior correctly will thus bring many new efficient 
innovations that will directly affect our daily life especially in energy consumption issues. 
 Simulation-based study has now been widely used in many fields of research 
including convective heat transfer. However, there are two main limitations of numerical 
simulation. First, even simulation can provide detailed data for interested variables such 
data may not readily imbue the investigator with an increased level of understanding the 
physics essential to a given phenomenon which usually relate to the gigantic size of 
computed data sets. Second, without the dedication of massive resources, numerical 
simulation of large or non-linear systems remains far too computationally expensive. 

A lower-order or low-dimensional models for a given phenomenon is thus 
constructed to overcome such problems and serve as the basis for additional analysis. 
Recently, low-dimensional models has been constructed and widely applied to both 
simulation and control of fluid flow problems.  
 In this research, we have successfully constructed a low-dimensional model based 
on the proper orthogonal decomposition (POD) technique to provide accurate descriptions 
of the dynamics of both free and forced convective heat transfers with only a handful 
degree of freedoms. However, a bifurcation analysis on the POD-based model with respect 
to its parameter(s) indicates that this model is rather suitable for simulation not control 
purpose.  
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การศกึษาเพือ่ใหเ้ขา้ใจถงึหลกัการพืน้ฐานของการพาความรอ้นอนัจะไดม้าซึง่ความสามารถ
ในการพยากรณ์คุณลกัษณะของการพาความรอ้นทีถู่กตอ้งและแมน่ย านัน้ แบ่งออกไดเ้ป็นสอง
รปูแบบหลกัๆคอื การทดลอง (experiment) และ การจ าลอง (simulation) โดยการใชร้ะเบยีบวธิเีชงิ
ตวัเลขเพือ่หาค าตอบจากสมการเชงิอนุพนัธ(์partial differential equations) ซึง่การศกึษาโดยใชก้าร
จ าลองนัน้เพิง่จะมกีารท ากนัอยา่งกวา้งขวางในไมน่านมาน้ี เน่ืองจากการจ าลองมขีอ้ไดเ้ปรยีบหลาย
อยา่งเมือ่เทยีบกบัการทดลอง เชน่ คา่ใชจ้่ายของการท าการทดลองนัน้ มมีลูคา่ทีส่งูกวา่การท าการ
จ าลองมาก 
 อยา่งไรกต็ามการจ าลองน้ียงัคงมขีอ้จ ากดัหลกัๆ สองขอ้ดงัน้ี ขอ้แรก ถงึแมว้า่การจ าลองจะ
ใหข้อ้มลูของตวัแปรทีม่รีายละเอยีดมากแต่กย็งัจ าเป็นตอ้งมกีารวเิคราะหข์อ้มลูนัน้ๆเพือ่ใหไ้ดซ้ึง่
ความเขา้ใจแต่อาจตอ้งใชเ้วลามากหรอืเป็นไปไดย้ากเน่ืองจากขอ้มลูมจี านวนมากมายมหาศาล  
สว่นขอ้สองนัน้เป็นผลมาจากการแกป้ญัหาสมการเชงิอนุพนัธท์ีม่ขีนาดใหญ่ทีต่อ้งการระบบ
คอมพวิเตอรท์ีช่ว่ยค านวณและระบบเกบ็ขอ้มลูทีม่ปีระสทิธภิาพสงูทีม่รีาคาแพงมาก เพือ่
แกไ้ขขอ้จ ากดัทัง้สองขอ้ทีก่ล่าวมาขา้งตน้ของการท าแบบจ าลองโดยการใชร้ะเบยีบวธิเีชงิตวัเลข
เพือ่หาค าตอบจากสมการเชงิอนุพนัธท์ีค่วบคุมปรากฏการณ์นัน้ การสรา้งแบบจ าลองมติติ ่า (low-
dimensional models) ไดถู้กน าเสนอเพือ่เป็นทางเลอืกในการวเิคราะหป์รากฏการณ์นัน้อกีทางหน่ีง 

ผลการวจิยัชิน้น้ีจะกล่าวถงึการสรา้งแบบจ าลองมติติ ่าโดยใชเ้ทคนิค proper orthogonal 
decomposition ส าหรบัปญัหาการพาความรอ้นแบบอสิระและแบบถูกบงัคบั ซึง่การสรา้ง
แบบจ าลองมติติ ่าน้ี จะมุง่เน้นไปในปญัหาการพาความรอ้นทีม่คีา่ขอบซบัซอ้นทีม่คีา่ขอบนัน้ขึน้อยู่
กบัเวลา ซึง่จากผลการศกึษาปรากฏวา่ แบบจ าลองมติติ ่าทีส่รา้งขึน้สามารถน าไปใชใ้นงาน 
simulation ไดเ้ป็นอยา่งด ีอยา่งไรกต็ามเมือ่ใชเ้ทคนิค bifurcation analysis วเิคราะหแ์บบจ าลองมติิ
ต ่าทีถู่กสรา้งขึน้มานัน้ปรากฏวา่แบบจ าลองทีถู่กสรา้งขึน้อาจมสีมบตัไิมเ่หมาะสมกบัการใชง้านใน
ดา้นการควบคุม 
ค าส าคญั:  แบบจ าลองมิติต า่, การแบง่แยกตัง้ฉากเหมาะสม, การพาความรอ้น 

โครงการ การจ าลอง และ การควบคมุการพาความร้อนโดยใช้แบบจ าลองมิติต า่ 



บทน า 

 ในปจัจุบนัมนุษย์ได้ด ารงชวีติอย่างสะดวกสบายบนพื้นฐานของอุปกรณ์อ านวยความสะดวก

ต่างๆ เช่น เครื่องท าน ้าอุ่น หม้อหุงข้าว หม้อต้มน ้าร้อน และ เครื่องปรบัอากาศเป็นต้น ซึ่งอุปกรณ์

เหล่าน้ี ตอ้งใชพ้ลงังานไฟฟ้า หรอืพลงังานในรปูแบบอื่นเพื่อใหส้ามารถท างานตามทีไ่ดร้บัการออกแบบ

ไว ้ ทัง้น้ีการออกแบบอุปกรณ์มผีลกระทบอย่างมากต่อประสทิธภิาพในการเปลีย่นพลงังานไฟฟ้า หรอื 

พลงังานในรปูแบบอื่นใหอ้ยู่ในรปูของพลงังานความรอ้น  ดงันัน้เพื่อไดม้าซึง่อุปกรณ์ทีส่ามารถควบคุม

การพาความรอ้น (convective heat transfer) ไดอ้ย่างมปีระสทิธภิาพสูงสุด เราจ าเป็นต้องมี

ความสามารถในการพยากรณ์คุณลกัษณะของการพาความรอ้น นัน้ ไดอ้ย่างถูกต้องและแม่นย า ซึ่งจะ

ก่อใหเ้กดินวตักรรมใหมท่ีน่ าไปสูก่ารประหยดัพลงังานต่อไป ตลอดจนการบรรเทาภาวะโลกรอ้นอนัเป็น

ปญัหาใหญ่ของประเทศต่างๆทัว่โลกอยูใ่นขณะน้ี 

 ในการศกึษาเพื่อใหเ้ขา้ใจถงึหลกัการพืน้ฐานของการพาความรอ้นอนัจะไดม้าซึง่ความสามารถ

ในการพยากรณ์คุณลกัษณะของการพาความรอ้นทีถู่กต้องและแม่นย านัน้ แบ่งออกไดเ้ป็นสองรูปแบบ

หลกัๆคอื การทดลอง (experiment) และ การจ าลอง (simulation) โดยการใชร้ะเบยีบวธิเีชงิตวัเลขเพื่อ

หาค าตอบจากสมการเชงิอนุพนัธ์(partial differential equations) ซึง่การศกึษาโดยใชก้ารจ าลองนัน้เพิง่

จะมกีารท ากนัอยา่งกวา้งขวางในไมน่านมาน้ี เน่ืองจากการจ าลองมขีอ้ไดเ้ปรยีบหลายอยา่งเมื่อเทยีบกบั

การทดลอง เชน่ ค่าใชจ้่ายของการท าการทดลองนัน้ มมีลูคา่ทีส่งูกวา่การท าการจ าลองมาก   

 การจ าลอง (simulation) โดยการใชร้ะเบยีบวธิเีชงิตวัเลขเพื่อหาค าตอบจากสมการเชงิอนุพนัธท์ี่

ควบคุมปรากฏการณ์นัน้ๆ ไดม้กีารใชก้นัอย่างกวา้งขวางไม่ว่าจะเป็นทางดา้นศาสตรข์องการพาความ

รอ้นเองหรอื ศาสตรอ์ื่นๆ เช่น กลศาสตรข์องไหล (fluid dynamics) แต่การจ าลองน้ียงัคงมขีอ้จ ากดั

หลกัๆ สองขอ้ดงันี้ ขอ้แรก ถงึแมว้่าการจ าลองจะใหข้อ้มลูของตวัแปรทีม่รีายละเอยีดมาก แต่นัน่กไ็มไ่ด้

หมายความว่า ขอ้มูลนัน้จะท าใหน้ักวจิยัเขา้ใจหลกัการพืน้ฐานของปญัหานัน้ทนัท ีหากแต่ว่านักวจิยั

จะต้องท าการวเิคราะหอ์ย่างละเอยีด เพื่อใหไ้ดม้าซึ่งแบบจ าลองที่ง่ายต่อน ามาอธบิาย และ พยากรณ์

ปรากฏการณ์นัน้ ซึ่งการวเิคราะห์น้ีต้องใช้เวลาอย่างมากหรอืเป็นไปได้ยากเน่ืองจากขอ้มูลมจี านวน

มากมายมหาศาล  ส่วนขอ้สองนัน้เป็นผลมาจากการทีก่ารจ าลองนัน้ตอ้งการ ระบบคอมพวิเตอรท์ีช่่วย

ค านวณและระบบเกบ็ขอ้มูลทีม่ปีระสทิธภิาพสูง เพื่อท าการแกป้ญัหาสมการเชงิอนุพนัธ์ทีม่ขีนาดใหญ่

และซบัซอ้น หรอืปญัหาสมการเชงิอนุพนัธท์ีม่คีวามไมเ่ชงิเสน้สงู(highly non-linear) ซึง่ระบบเหล่าน้ีใน

ปจัจุบนัยงัมรีาคาทีแ่พงอยูม่าก 



 เพื่อแกไ้ขขอ้จ ากดัทัง้สองขอ้ทีก่ล่าวมาขา้งต้นของการท าแบบจ าลองโดยการใชร้ะเบยีบวธิเีชงิ

ตวัเลขเพือ่หาค าตอบจากสมการเชงิอนุพนัธท์ีค่วบคุมปรากฏการณ์นัน้ การสรา้งแบบจ าลองมติติ ่า (low-

dimensional models) ไดถู้กน าเสนอเพือ่เป็นทางเลอืกในการวเิคราะหป์รากฏการณ์นัน้อกีทางหน่ีง โดย

การสร้างแบบจ าลองมิติต ่ านัน้มีเป้าหมายหลักอยู่สองข้อคือ ข้อแรก การสร้างแบบจ าลองที่มี

ความสามารถในการใหร้ายละเอยีดเกีย่วกบัปรากฎการณ์นัน้ เช่น ปรากฎการณ์การพาความรอ้น อยา่ง

ถูกต้องและแม่นย า โดยมคีวามตอ้งการทางดา้นการค านวณต ่ากว่าแบบจ าลองทีม่าจากการใชร้ะเบยีบ

วธิเีชงิตวัเลขเพือ่หาค าตอบจากสมการเชงิอนุพนัธม์าก และ ขอ้สอง การสรา้งแบบจ าลองมติติ ่า จะน ามา

ซึง่การวเิคราะหก์ารเปลีย่นแปลงของปรากฏการณ์นัน้ไดโ้ดยตรง ซึง่ไมจ่ าเป็นตอ้งท าการวเิคราะหข์อ้มลู

มจี านวนมากมายมหาศาลอกี ท าใหแ้บบจ าลองมติติ ่าน้ีมคีวามคล่องตวัสงูสามารถน าไปประยุกต์ใชก้บั

ปญัหาทีเ่กีย่วขอ้งกบัการควบคุม(control) ไดโ้ดยตรง 

 การสรา้งแบบจ าลองมติิต ่านัน้ สามารถท าได้โดยลหากหลายวิธี แต่วธิีที่มคีวามนิยม คอื วธิี

สรา้งโดยใช ้Proprer orthogonal decompositon เทคนิค Proprer orthogonal decompositon เทคนิคน้ี

เป็นเครื่องมอืทาง stochastic ที่สามารถน ามาใช้พื่อลดความต้องการการใช้คอมพวิเตอร์ในงาน 

simulation ส าหรบัรายละเอยีดเพิม่เตมินัน้ใหด้จูาก [1]  

 การสรา้งและประยุกต์ใชแ้บบจ าลองมติติ ่า ส าหรบัปญัหาของไหล มกีารท ากนัอย่างแพร่หลาย

ในสบิปีทีผ่า่นมาน้ี ทัง้ในรปูแบบของการจ าลองโดยใชแ้บบจ าลองมติติ ่า หรอื การประยุกตใ์ชแ้บบจ าลอง

มติิต ่าในการควบคุมการไหลของของไหล  ตวัอย่างเช่น [2-4] หากแต่ว่าการสรา้งและประยุกต์ใช้

แบบจ าลองมติติ ่าต่อปญัหา การพาความรอ้นนัน้ ยงัมไีมม่ากนกั ตวัอยา่งของการศกึษา แบบจ าลองมติิ

ต ่าในการถ่ายเทความรอ้น ไดแ้ก่  ปญัหาการน าความรอ้น [5]  

ปญัหาการพาความรอ้นแบบถูกบงัคบั [6] และปญัหาการพาความรอ้นแบบอสิระ [7-8] อย่างไรกต็าม

การศกึษาทีผ่่านมานัน้ยงัไม่ไดม้กีารศกึษาการสรา้งแบบจ าลองส าหรบัการพาความรอ้นทีเ่หมาะสมกบั

การ simulation ทีม่ปีญัหาคา่ขอบทีซ่บัซอ้น 

 ในงานวจิยัชิ้นน้ี จะกล่าวถึงการสรา้งแบบจ าลองมติิต ่า โดยใชเ้ทคนิค proper orthogonal 

decomposition ส าหรบัปญัหาการพาความรอ้นแบบอสิระ และแบบถูกบงัคบั ซึง่การสรา้งแบบจ าลองมติิ

ต ่าน้ี จะมุ่งเน้นไปในปญัหาการพาความรอ้นทีม่คี่าขอบซบัซอ้น กล่าวคอื ค่าขอบนัน้ขึน้อยู่กบัเวลา ซึ่ง

การใช้ค่าขอบแบบน้ีปรากฏอยู่ในกระบวนการจ าลองและควบคุมการพาความร้อนโดยทัว่ไป ในการ

แกป้ญัหาค่าขอบแบบน้ี เราจะใชเ้ทคนิค penalty Galerkin ในการทีจ่ะดงึค่าขอบเขตเขา้มาในสมการ

ควบคุม ซึง่แนวทางน้ีไดม้กีารศกึษากบัปญัหาของไหลเพยีงอยา่งเดยีวมาแลว้ [9]  



 การ implement ปญัหาค่าขอบที่มคีวามซบัซ้อนกบัแนวทางแบบ Galerkin นัน้ไดม้กีาร

วพิากษ์วจิารณ์ถงึความเหมาะสมเป็นวงกวา้งในวงการ Numerical  analysis ซึง่สามารถดรูายละเอยีด

ไดจ้าก [10] และ รายละเอยีดจากขอ้มลูการตดิต่อระหว่างผูเ้ขยีนและผูซ้กัถามจากบทความนัน้  การ

ศกึษาป ญหาค่าขอบเขตของ ระบบ POD Galerkin นัน้ไดม้กีารท าการศกึษาโดยละเอยีดโดย [11] อกี

ดว้ย ส าหรบังานวจิยัชิน้น้ีทางผูว้จิยัจะสรา้งแบบจ าลองมติติ ่าส าหรบัปญัหาค่าขอบีข่ ึน้อยูก่บัเวลาดว้ยวธิ ี

Penalty method ซึง่โดยรวมแลว้วธินีน้ีมคีวามคลา้ยคลงึกบัเทคนิคทีเ่รยีกว่า Tau method ในระเบยีบ

วธิเีชงิตวัเลขแบบ spectal method นัน่เอง อยา่งไรกต็าม วธิ ีPenalty method นัน้จะมคีวามหยดืหยุน่

มากกวา่ ดงัทีเ่ราจะไดเ้หน็จากการศกึษาในครัง้น้ี นัน่เอง 

 การสรา้งแบบจ าลองมติติ ่าในครัง้น้ีเราจะใช้ วธิ ีPenalty method อย่างไรกต็ามเรามคีวาม

จ าเป็นตอ้งศกึษา sentivity ของแบบจ าลองมติติ ่าทีส่รา้งขึน้ไหม่เทยีบกบั parameter ทีไ่ดม้าจากการใช ้

penalty methodสรา้งแบบจ าลองขึน้มา ซึง่จะท าการศกึษาโดยใช ้Bifurcation analysis อนัเป็นเครือ่งมอื

ทาง non-linear dynamical systems ซึง่สามารถบ่งชีค้วามเหมาะสมของแบบจ าลองกบัการน าไปใชง้าน

ในการควบคุมอกีดว้ย 

 ส าหรบัรายงานน้ี ในบทถดัไป เราจะรายงานผลการวจิยัเกี่ยวกบัแนวทางการสรา้งแบบจ าลอง

มติิต ่าส าหรบัปญัหาการพาความร้อนโดยเน้นไปที่ปญัหาค่าขอบเขตแบบซบัซ้อนโดยการใช้เทคนิค 

Penalty method ซึง่แนวทางการสรา้งแบบจ าลองน้ีนัน้จะศกึษาการสรา้งแบบจ าลองมติติ ่าส าหรบัการ

พาความร้อนทัง้ในแบบถูกบงัคบั และ แบบอสิระ หลงัจากนัน้จะน าเขา้สู่การน าแบบจ าลองมติิต ่าไป

ประยุกต์ใชก้บังานทางดา้น simulation ดา้นการพาความรอ้น จากนัน้จะกล่าวถงึการศกึษา senstity 

analysis ของแบบจ าลองที่ได้ถูกสรา้งขึน้โดยใช้ Bifurcation analysisอกีด้วย โดยจะกล่าวถึง

รายละเอียดในการเตรียมแบบจ าลองมิติต ่ าให้อยู่ในรูปแบบที่เหมาะสมกับการศึกษา Bifurcation 

analysis จากซอฟทแ์วรเ์ฉพาะดา้น และรายงานผลการศกึษาจาก Bifurcation analysis จากแบบจ าลอง

มติติ ่าทีถู่กสรา้งขึน้มา  และจะปิดทา้ยดว้ยสรปุผลการวจิยั 

 

 

 

 

 



ระเบียบวิธีท่ีเก่ียวข้อง 

เทคนิค Proper Orthogonal decomposition 

 ก่อนทีจ่ะไปยงัรายละเอยีดในการสรา้งแบบจ าลองมติติ ่าโดยโดยใชเ้ทคนิค proper orthogonal 

decomposition นัน้ เราควรจะทราบรายละเอยีดของเทคนิค proper orthogonal decomposition ก่อน  

 โดยใชเ้ทคนิค proper oothrogonal decomposition (POD) นัน้ เป็นกระบวนการในการสกดั 

โครงสรา้งเชงิตัง้ฉากหลกัของขอ้มลูแบบชุด (ensemble) ใดๆ ซึง่กระบวนการในการสกดัทีไ่ดโ้ครงสรา้ง

หลกัเชงิตัง้ฉากน้ีมคีวามส าคญัมาก เพราะนอกเหนือจาก การทีเ่ราจะไดโ้ครงสรา้งเชงิตัง้ฉากแลว้ เรายงั

ไดโ้ครงสรา้งเชงิตัง้ฉากทีม่คีวามเหมาะสมทีส่ดุเมือ่เทยีบกบัโครงสรา้งแบบอื่นๆ ในการใชท้ าฐานส าหรบั

การประมาณคา่ใน L2 sense อกีดว้ย 

 ส าหรบัการสกดัโครงสรา้งหลกัโดยเทคนิค proper oothrogonal decomposition เราจะเริม่จาก

การเขยีนตวัแปรของการไหล u(x,t) = ( u(x,t), v(x,t), w(x,t)) ซึง่แทนความเรว็ในการไหลตามแนวแกน 

x, y และ z ตามล าดบั ในรปูแบบของการประมาณค่าดว้ยผลบวกเชงิเสน้ดงัน้ี 

 

โดย  คอืฐานทีเ่ราตอ้งการทีไ่ดม้าจากเทคนิค proper oothrogonal decomposition ซึง่ไดม้าจาก

การแกป้ญัหา eigenvalue ดงัต่อไปน้ี 

 

โดยที ่aj(t) เป็น mode เชงิเวลา (หรอืในมุมมองของผลบวกเชงิเสน้จะป็นค่าสมัประสทิธข์องผลบวกเชงิ

เสน้) และ A เป็นช่วงเวลาในการสงัเกตขอ้มลูเวลาแบบชุด (ensemble) ทีก่ าหนดให ้ และ C(t,t') เป็น 

correlation function ทีค่ านวณมาจากขอ้มลูแบบชุดนัน้ๆ ซึง่มสีตูรค านวณโดย 

 

ซื่งฐานทีไ่ดม้าจากเทคนิค proper oothrogonal decomposition กจ็ะคดิมาจากสตูร  

 



ทฤษฎ ี Hilbert-Schmidt ไดก้ล่าวไวว้า่ค าตอบของปญัหา eigenvalue ขา้งบนนัน้มจี านวนค าตอบเป็น

จ านวนอนนัต ์ และจากคุณสมบตัขิอง correlation function C(t,t’) ทีเ่ป็น positive definite เราจะไดว้า่

ค าตอบของปญัหา eigenvalues นัน้ สามารถเรยีงล าดบัจากมากไปหาน้อยไดด้ว้ย eigenvalue ที่

สอดคลอ้งกบัฐาน POD โดยที ่  ดงันัน้ เราสามารถจะลดพจน์ในการประมาณค่าใหเ้หลอื N 

พจน์เทา่นัน้ โดยใชข้อ้มลูในการลดพจน์ทีพ่อเพยีงจาก eigenvalue เหล่าน้ี  

กระบวนการสรา้งฐานน้ีสามารถน าไปใชก้บัตวัแปรอื่นๆทีไ่มใ่ชต่วัแปรแบบเวกเตอรไ์ดอ้กีดว้ย 

เชน่ ตวัแปรอณุหภมูทิีเ่ป็นตวัแปรแบบ scalar อยา่งไรกต็าม ฐาน POD ทีไ่ดม้าจากกระบวนการสกดั

โครงสรา้งหลกัโดยเทคนิค proper orthrogonal decomposition ส าหรบัขอ้มลูนี้ กจ็ะมลีกัษณะเป็น 

scalar ดว้ยเชน่กนั 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ผลการวิจยั 

การสร้างแบบจ าลองมิติต า่ส าหรบัปัญหาการพาความร้อนแบบถกูบงัคบั 

 ในการที่จะสรา้งแบบจ าลองมติิต ่าส าหรบัปญัหาที่มคี่าขอบเขตขึน้อยู่กบัเวลานัน้ เราจ าเป็นที่

จะตอ้งสรา้งแนวทางใหมส่ าหรบัแนวทางการสรา้งแบบจ าลองโดยใชร้ะเบยีบวธิแีบบ Galerkin เน่ืองจาก 

ระเบยีบวธิแีบบ Galerkin นัน้จะใหฐ้าน (expansion basis) เป็นตวัจดัการกบัปญัหาค่าขอบเขต อยา่งไร

ก็ตามเมื่อค่าขอบเขตที่ขึ้นกบัเวลาแล้ว การจะให้ฐานเป็นตวัจดัการกบัค่าขอบเขตย่อมเป็นไปไม่ได ้

ส าหรบัแนวทางแกป้ญัหานัน้เราจะรวมคา่ขอบเขตทีข่ ึน้อยูก่บัเวลาใหเ้ขา้กบัสมการควบคุมเลย โดยใชว้ธิ ี

penalty method 

 สมการควบคุมปญัหาการพาความรอ้นนัน้สามารถเขยีนอยูใ่นรปูแบบดงัน้ี 

 

จะเหน็ไดว้า่สมการควบคุมนัน้ เป็นระบบสมการเชงิอนุพนัธ ์ทีม่คีวามไมเ่ชงิเสน้อยูด่ว้ย คอืสมการทีส่อง 

นอกเหนือจากน้ีสมการม ีparameter ทีส่ าคญัอยูส่องตวัคอื Re เลขเรยโนย ์เป็น parameter ทีเ่กีย่วขอ้ง

กบัความเรว็ของการไหลของของไหลในกระบวนการพาความรอ้น Pr Pandtl number ซึง่เป็น 

parameter ทีเ่กยีวของกบัการกระจายตวัของความรอ้นในของไหลนัน้ๆ 

 ในการทีจ่ะสรา้งแบบจ าลองมติติ ่านัน้ ก่อนอื่นเราเขยีนตวัแปรการไหล และตวัแปรอุหณภมูใิห้

อยูใ่นรปูของคา่เฉลีย่และ fluctuation ดงัน้ี 

 

โดยที ่U0 และ T0 เป็นคา่ความเรว็และอุหภูมเิฉลีย่ และ u(x,t)  เป็น fluctuation ของตวัแปรความเรว็ของ

การไหล และ T(x,t) เป็น fluctuation ของตวัแปรอุหภูม ิซึง่ ในทีน่ี่เราจะเขยีน fluctuation อยูใ่นรปูแบบ

ผลบวกเชงิเสน้ของฐานทีไ่ดม้าจากเทคนิค proper oothrogonal decomposition ซึง่ส าหรบัปญัหาสอง

มติสิามารถเขยีนไดด้งัน้ี 



 

ในรปูแบบของสามมติกิส็ามารถ เขยีนในรปูแบบนี้ไดเ้ชน่กนั คอื 

             
              

             
              

             
               

             
               

ซึง่กระบวนการในการสรา้งแบบจ าลองมติติ ่ากส็ามารถท าไดโ้ดยใชแ้นวทางเดยีวกนัน้ี ซึง่ในกระจายโดย

ผลบวกเชงิเสน้ของฐานทีไ่ดม้าจากเทคนิค proper orthogonal decomposition นัน้ เราจะไดว้่า aj และ 

bj เป็นตวัแปรไมท่ราบค่า ซึง่จ าเป็นตอ้งสรา้งสมการเพื่อก าหนดค่าของสมัประสทิธิส์ าหรบั aj และ bj 

ต่อไป 

กระบวนการสร้างสมการเพื่อก าหนดค่าสมัปประสิทธิใ์นแต่เวลาต่างๆดงักล่าวนัน้สามารถ

ก าหนดจากสมการควบคุม กระบวนการถดัไปคอืการสรา้งแบบจ าลองมติติ ่า ซึง่ในทีน้ี่กห็มายถงึสมการ

ควบคุมส าหรบัก าหนดค่าของ aj และ bj ในกระบวนการต่อไปน้ีเราจะสรา้งแบบจ าลองมติติ ่าส าหรบั

ปญัหาการพาความรอ้น แบบมคึา่ขอบทีข่ ึน้อยูก่บัเวลา  

 เพื่อใหเ้ขา้ใจงา่ย สมมตวิ่า สว่นของขอบของโดเมนทีส่นใจ Ω มคี่าขอบขึน้อยูก่บัเวลานัน้อยูใ่น

แนวเดยีวกนักบัแกน x ซึง่ถา้สว่นขของขอบทีม่คี่าขึน้อยู่กบัเวลากเ็พยีงแค่เปลีย่นการ อนิทเิกรตตาม

เสน้ใหเ้หมาะสมเท่านัน้ ตามทีจ่ะไดเ้หน็ต่อไป การสรา้งแบบจ าลองมติติ ่านัน้สามารถท าไดโ้ดย Galerkin 

projection สมการควบคุมทีน่ าเอาค่าขอบเขตมาใส่ในสมการควบคุมแลว้ ลงบนฐาน POD ตวัที ่j ซึง่

สามารถเขยีนไดด้งัสมการต่อไปน้ี ซึง่ในทีน่ี่แต่ละสมการจะใช ้Galerkin projection ลงไปสู่ฐาน POD

ของตวัแปรนัน้ๆดงัน้ี 

 



 

ในกรณีน้ีเราไดน้ าค่าขอบเขตทีข่ ึน้อยู่กบัเวลาผนวคเขา้กบัสมการควบคุมส าหรบัอุณหภูมเิรยีบรอ้ยแลว้

ซึง่เราจะเรยีกวา่ penalty term ซึง่จะประกอบไปดว้ย  penalty parameter    คา่ขอบเขตทีข่ ึน้กบัเวลา 

TΓ  และฟงักช์ัน่เฉพาะ Ψ(x) ซึง่จะมคีา่เป็นศนูยเ์มือ่อยูภ่ายในโดเมนและขอบเขตอื่นๆทีไ่มใ่ชข่อบเขตที่

มคีา่ขอบเขตทีข่ ึน้อยูก่บัเวลาทีก่ าลงัพจิารณาอยูใ่นขณะนี้ และมคีา่เป็นหน่ึงทีข่อบเขต Γ 

 จากนัน้เราจะพจิารณาพจน์ของการฉายของความดนัลงบนฐาน POD ซึง่พจิารณาจากสมการ 

 

ซึง่จะเหน็ไดว้า่พจน์แรกนัน้สามารถเป็นศูนยเ์น่ืองจากฐาน POD นัน้สรา้งมาจากขอ้มลูของความเรว็ทีม่ ี

divergence free อยูแ่ลว้ดงัทีก่ล่าวมาในบทก่อน กล่าวคอืขอ้มลูของความเรว็ไดม้าจากการจ าลองแบบ

เตม็ของการพาความรอ้นในของไหลแบบบบีอดัตวัไมไ่ด ้ดงันัน้ท าให ้divergence ของ ฐาน POD กเ็ป็น 

0 ดว้ยเชน่กนันอกเหนือจากน้ีในบางกรณ ีทีค่า่ขอบเขตของการพาความรอ้นทีใ่หพ้จน์ทีส่องนัน้เป็นศนูย์

ดว้ยเชน่กนั ตวัอยา่งของค่าขอบเขตทีก่ล่าวมาคอื ค่าขอบแบบ wall boundary คา่ขอบทีไ่มข่ึน้กบัเวลา 

คา่ขอบเขตแบบ outflow  และ รวมไปถงึคา่ขอบเขตแบบสมมาตรของขอบเขตสองขอบเขตทีข่นานกนั 

หลงัจากนัน้เราจะไดแ้บบจ าลองมติติ ่าในรปูแบบของระบบพลวตั ิทีส่ามารถอธบิายการพาความ

รอ้นแบบถูกบงัคบัทีม่คีา่ขอบขึน้อยูก่บัเวลาดงัน้ี 

 

โดยที ่a=(a1,a2,…,aM) และ b=(b1,b2,…,bM) ซึง่ M เป็นจ านวนของ ฐาน POD ทีใ่ชใ้นผลบวกเชงิเสน้ใน

การประมาณค่าของความเรว็ของของไหลและอุณหภูมขิองของไหลซึง่โดยทัว่ไปแลว้จ านวน M  ยิง่มาก

ยิง่จะท าใหผ้ลทีไ่ดจ้าก การจ าลอทีไ่ดจ้ากแบบจ าลองมติติ ่ามคีวามถูกต้องไกลเ้คยีงกบัการจ าลองแบบ

เตม็ (full model) โดยปรกตแิลว้จ านวน M ทีใ่ชน้ัน้จะมจี านวนน้อยกว่า degree of freedoms ทีใ่ชใ้น

กระบวนการ simulation ของระบบเตม็ (full model) เพื่อสรา้งขอ้มูลการพาความรอ้นอยู่อย่างมาก 

ตวัอยา่งเช่น M อาจมคี่าเพยีงแต่ 6 แต่ค่า degree of freedoms ของการท าการจ าลองเพื่อสรา้งขอ้มลู



อาจอยูท่ีป่ระมาณ 1,000,000 degree of freedoms กเ็ป็นได ้จงึเป็นทีม่าของการสรา้งแบบจ าลองมติติ ่า 

อย่างไรกต็ามแบบจ าลองมติติ ่านัน้ถงึแมว้่าจะมจี านวน degree of freedoms น้อยกว่ามากแต่กย็งั

สามารถใชใ้นการจ าลองทีใ่หค้ าตอบไดอ้ย่างแม่นย ากล่าวคอื ค านวณหาค่า ว่า aj และ bj และใชใ้น

ผลบวกเชงิเสน้เพือ่ใชค้ านวณหาค่าของตวัแปรความเรว็และอุณหภูมติามล าดบั 

 ในแบบจ าลองมติติ ่านัน้เรายงัสามารถบ่งชีไ้ดว้่า f และ g เป็นฟงักชืัน่ทีม่าจาก  convective 

(non-linear) และ dissipative (linear) terms ส าหรบัสมการของตวัแปรความเรว็ และ ตวัแปรอุณหภูม ิ

โดยทัว่ไปแลว้ ฟงักช์ัน่ f จะอยูใ่นรปูของพจน์ต่อไปน้ี 

 

ในสว่นของฟงักช์ัน่ g กเ็ชน่กนั ยกเวน้ในพจน์แรกทีจ่ะมคีา่ของความเรว็อยู่ดว้ย ดงันัน้จงึเป็นฟงักช์ัน่ใน

รปูแบบ g(a,b) 

ส าหรบัในสว่นของฟงักชัน่ G ซึง่เป็นพจน์ทีไ่ดม้าจากการเพิม่พจน์ penalty ลงไปในระบบสมการควบคุม

โดยตรงนัน้จะมรีปูแบบดงัน้ี 

 

เน่ืองจากพจน์ TΓ ขึน้อยูก่บัเวลาดงันัน้จงึท าให ้G(b,t) ขึน้อยูก่บัเวลาดว้ย ซึง่สุดทา้ยแลว้รปูแบบของ

แบบจ าลองมติติ ่าทีไ่ดม้าจะอยูใ่นรปูแบบทีเ่รยีกว่า  Non-autonomous systems เน่ืองจากมตีวัแปรของ

เวลาเขา้มาเกีย่วขอ้ง 

 จากกระบวนการการสร้างแบบจ าลองมติิต ่าที่ผ่านจะเหน็ได้ว่าการที่มคี่าขอบเขตที่ขึน้อยู่กบั

เวลานัน้เราสามารถจะสรา้งแบบจ าลองมติติ ่าแบบ Non-autonomous system ได ้โดยค่าขอบเขตที่

ขึน้อยูก่บัเวลานัน้เราสามารถใชเ้ทคนิค penalty method รองรบัไดอ้ยา่งมปีระสทิธภิาพ 

 ส าหรบัปญัหาทีม่คีา่ขอบเขตทีข่ ึน้อยูก่บัเวลา อยูใ่นหลายๆขอบเขตนัน้กส็ามารถใชแ้นวทางการ

สรา้งแบบจ าลองมติติ ่าน้ีไดโ้ดยตรงกล่าวคอื จะเหน็ว่าจ านวนพจน์ทีไ่ดจ้ากการใช ้penalty method นัน้

จะขึน้อยูก่บัจ านวนของขอบเขตทีม่คีา่ขอบทีข่ ึน้อยูก่บัเวลา กล่าวคอืถา้มขีอบเขตทีข่ ีน้อยูก่บัเวลาจ านวน 

N ขอบเขต กจ็ะมพีจน์ทีเ่กดิจากการใช ้penalty method เพื่อรองรบักบัปญัหาค่าขอบเขตทีข่ ึน้อยูก่บั



เวลาเป้นจะนวน N พจน์เช่นกนั ซึ่งส่งผลใหม้ ีpenalty parameters ทีจ่ะต้องก าหนดค่า จ านวน N 

paramters ดว้ยเช่นกนั จากการศกึษาทีผ่า่นมาพบว่าค่าของ penalty parameter นัน้จะขึน้อยูก่บั ความ

ละเอยีดของการจ าลองนัน้ๆและรวมไปถงึความซบัซอ้นของปญัหาทีท่ าการจ าลอง โดยปรกตแิลว้ค่าของ 

ขนาดของ penalty parameters จะมคี่ามากหรอืน้อยนัน้จะมคีวามหมายเช่นเดยีวกนักบัการการบงัคบั

ค่าขอบทขีึน้อยู่กบัเวลาว่าเป็นการบงัคบัแบบแรงหรอืแบบเบา ในกรณีของการจ าลองทีม่คีวามละเอยีด

สงูหรอื การจ าลองแบบของปญัหาทีม่คีวามซบัซอ้น การบงัคบัค่าขอบทีข่ ึน้กบัเวลาจะตอ้งท าในรปูแบบ

แบบแรงเทา่นัน้ เพือ่ใหไ้ดม้าซึง่ผลการจ าลองทีถู่กตอ้ง 

การสร้างแบบจ าลองมิติต า่ส าหรบัปัญหาการพาความร้อนแบบอิสระ 

 ส าหรบัแนวทางการสร้างแบบจ าลองมติิต ่าส าหรบัปญัหาการพาความร้อนแบบอิสระนัน้เรา

สามารถใชแ้นวทางการสรา้งแบบจ าลองในทศิทางเดยีวกบัการสรา้งแบบจ าลองมติติ ่าส าหรบัปญัหาการ

พาความแบบถูกบงัคบัไดเ้ชน่กนั 

 ซึ่งในกระบวนการสรา้งแบบจ าลองมติติ ่าส าหรบัปญัหาการพาความรอ้นแบบอสิระที่มคี่าขอบ

ขึน้อยู่กบัเวลานัน้เราสามารถเริม่จากการก าหนดสมการควบคุมปญัหาการพาความรอ้นแบบอสิระ ซึง่มี

รปูแบบดงัน้ี 

 

 กระบวนการสรา้งแบบจ าลองมติติ ่าส าหรบัปญัหาการพาความรอ้นแบบอสิระนัน้กเ็ริม่จากการท า

การฉาย Galerkin สมการควบคุมทีน่ าเอาค่าขอบมาใสใ่นสมการควบคุมแลว้ ลงบน ฐานกระจาย POD 

ตวัที ่j ซึง่สามารถเขยีนไดด้งัสมการต่อไปน้ี ซึง่ในทีน่ี่แต่ละสมการจะใช้การฉาย Galerkin ลงไปสูฐ่าน

POD ของตวัแปรนัน้ๆ 

 



 

ในกรณีน้ีเราไดน้ าค่าขอบเขตทีข่ ึน้อยู่กบัเวลาผนวคเขา้กบัสมการควบคุมส าหรบัอุณหภูมเิรยีบรอ้ยแลว้

ซึง่เรยีกว่าพจน์ penalty ซึง่จะประกอบไปดว้ย  penalty parameter   ค่าขอบทีข่ ึน้กบัเวลา TΓ  และ

ฟงัก์ชัน่เฉพาะ Ψ(x) ซึ่งจะมคี่าเป็นศูนย์เมื่ออยู่ภายในโดเมนและขอบเขตอื่นๆที่ไม่ใช่ขอบที่มคี่า

ขอบเขตทีข่ ึน้อยูก่บัเวลาทีก่ าลงัพจิารณาอยูใ่นขณะนี้ และมคีา่เป็นหน่ึงทีข่อบ Γ เชน่เดยีวกนักบัในกรณี

ของการพาความรอ้นแบบถูกบงัคบั ผลของการฉาย Galerkin  ของพจน์ของความดนันัน้สามารถ

พจิารณาไดด้ว้ยบรรทดัฐานเดยีวกนั 

จากนัน้ผลทีไ่ดจ้ากการฉายสมการควบคุมลงบนฐาน POD คอื แบบจ าลองมติติ ่าส าหรบัปญัหา

การพาความรอ้นแบบอสิระทีม่คีา่ขอบขึน้อยูก่บัเวลาในรปูแบบดงัน้ี 

 

โดยที ่a=(a1,a2,…,aM) และ b=(b1,b2,…,bM) ซึง่ M เป็นจ านวนของ ฐาน POD ทีใ่ชใ้นผลบวกเชงิเสน้

ดงักล่าวซึง่โดยทัว่ไปแลว้จ านวน M  และ ค่าของฟงักช์ัน่ k และ h กอ็ยู่ในรปูทีไ่กลเ้คยีงกบัฟงักช์ัน่ f 

และ g ตามล าดบั  

 จะเหน็ไดว้่าแนวทางการสรา้งแบบจ าลองมติติ ่าทีไ่ดน้ าเสนอสามารถน าไปสรา้งแบบจ าลองมติิ

ต ่าส าหรบัการพาความร้อนแบบถูกบงัคบัและแบบอิสระได้ ทัง้ในปญัหา สองมิติและสามมติิโดยไม่

จ าเป็นตอ้งดดัแปลงหรอืแกไ้ขแนวทางการสรา้งแบบจ าลองมติติ ่าเลย 

 

 

 

 



การน าแบบจ าลองมิติต า่ไปใช้งานในงานจ าลอง 

การใช้แบบจ าลองมิติต า่ในการจ าลองการพาความร้อนแบบถกูบงัคบั 

 ในบทน้ีจะรายงานถงึผลการวจิยัในส่วนของการน าแบบจ าลองมติติ ่าไปใชง้านจรงิส าหรบังาน 

จ าลอง ซึง่ในทีน่ี่จะยกตวัอย่างการน าไปใชง้านของการพาความรอ้นแบบถูกบงัคบัของการไหลในท่อ

ผา่นกล่องใหค้วามรอ้น (heated blocks) ซึง่รปูที ่1 ไดแ้สดงถงึบางสว่นของโดเมนทีใ่ชใ้นการจ าลอง ซึง่

ปญัหาแบบน้ีสามารถพบไดโ้ดยทัว่ๆไป เช่น การกระจายตวัของความรอ้นในกล่อง อเิลก็ทรอนิกส ์หรอื 

การกระจายตวัของความรอ้นในเครือ่งคอมพวิเตอร ์เป็นตน้ 

 

 

 

 

 

ซึ่งรายละเอียดทางกายภาพของปญัหาการพาความร้อนน้ีคือ โดเมนที่ใช้ในการจ าลอง มคีวามยาว 

120B  และมคีวามสงูเท่ากบั (H) 4B ในช่วงตรงกลางของท่อจะมกีล่องใหค้วามรอ้น อยู ่4 อนั โดยทีแ่ต่

ละอนัมขีนาดความยาว (L) เป็น 3B และวางหา่งกนัเป็นระยะทาง (S) 3B เช่นกนั ซึง่ในตวัอยา่งนี้ไดม้ี

การการตัง้ค่าของค่าขอบเขตใหข้ึน้อยู่กบัเวลาที่บรเิวณขอบระหว่างกล่องให้ความรอ้นที่ 1 และ ที่ 2 

(ตามภาพ) โดยเราจะใหค้า่ขอบทีข่ ึน้อยูก่บัเวลาอยูใ่นรปูของ             

ส าหรบัคา่ขอบอื่นๆไดม้กีารก าหนดดงัน้ี  

 ค่าขอบส าหรบัความเรว็ของของไหลไดม้กีารก าหนดค่าขอบ ที่บรเิวณไหลเขา้เป็น การไหลเขา้

แบบราบเรยีบและ ในส่วนของขอบเขตทีไ่หลออกไดม้กีารก าหนดค่าขอบเป็น Neumann condition ที่

ก าหนดให ้คา่ของอนุพนัธข์องความเรว็เทยีบกบัทศิทางของ unit vector ทีช่ีอ้อกจากขอบนัน้มคี่าเท่ากบั 

0 สว่น คา่ขอบของขอบเขตนอกเหนือจากน้ีใหก้ าหนดเป็นสภาวะแบบก าแพง 

 ค่าขอบส าหรบัอุณหภูม ิค่าของ (normalized temperature) อุณหภูมทิีก่ล่องใหค้วามรอ้นทัง้สี่

ก าหนดใหเ้ป็นหนึ่ง ซึง่เป็นค่า normalized และในสว่นค่าขอบเขตอื่นๆ นอกเหนือจากขอบเขตระหว่าง

กล่องใหค้วามรอ้นทีห่น่ึงและทีส่องใหถู้กก าหนดเป็นคา่ขอบเขตแบบ adiabatic  

Figure 1 บางส่วนของโดเมนที่ใช้ในการจ าลอง 



ในการที่จะสร้างขอ้มูลที่จะน ามาสร้างแบบจ าลองมติิต ่าในตวัอย่างน้ีเราได้ท าการจ าลองด้วยสมการ

ควบคุมการพาความแบบถูกบงัคบัดว้ยระเบยีบวธิเีชงิตวัเลขแบบ spectral finite element ซึง่ในทีน้ี่เรา

ใดใ้ช ้Jacobi polynomial ดกีร ี7 ในการจ าลอง 

 ตวัอยา่งการพาความรอ้นทีย่กมาน้ีนัน้เป็นตวัอยา่งของการพาความรอ้นแบบถูกบงัคบัอยา่งงา่ย

เน่ืองจากผลเฉลยของการพาความร้อนนัน้มีคุณสมบัติดงัน้ี ส าหรบัตัวแปรความเร็ว ผลเผลยของ

ความเรว็จะเป็นผลเฉลยแบบไม่ขึ้นกบัเวลา แต่อย่างไรก็ตามผลเฉลยของอุณหภูมจิะเป็นผลเฉลยที่

ขึน้อยูก่บัเวลาและจะมคีาบเท่ากบัคาบของค่าขอบเขตทีข่ ึน้กบัเวลาทีก่ าหนดให ้ซึง่ผลเฉลยทีไ่ดจ้ากการ

จ าลองแบบ ณ เวลาหน่ึงนัน้ไดแ้สดงไวใ้นรปูที ่2 ซึง่เป็นผลเฉลยเชงิตวัเลขของตวัแปรอุณหภมู ิ

 

Figure 2 ผลเฉลยที่ได้จากการจ าลองแบบเต็ม 

  

 แบบจ าลองมติติ ่าของการการพาความรอ้นแบบถูกบงัคบัและมคี่าขอบทีข่ ึน้อยู่กบัเวลานัน้ไดถู้ก

สรา้งขึน้โดยใชข้อ้มลูผลเฉลยจากการการจ าลองแบบโดยใชร้ะเบยีบวธิเีชงิตวัเลขแบบ spectral finite 

element จ านวน 20 ชุดต่อคาบของคา่ขอบทีถู่กก าหนดใหอ้ยูใ่นรปูของ             

 จากขอ้มูลที่ไดจ้ากผลเฉลยโดยการจ าลองโดยใชร้ะเบยีบวธิเีชงิตวัเลขแบบ spectral finite 

element เราสามารถท าการสกดั ฐาน POD โดยระเบยีบวธิทีี่ไดก้ล่าวมาแล้วขัน้ต้นและ ฐาน POD 

ส าหรบัตวัแปรความรอ้น ฐานที ่1 และ ฐานทีส่อง ไดถู้กแสดงในรปูที ่3 และ 4 ตามล าดบั ซึง่ในทีน่ี่ฐาน 

POD ของตวัแปรความเรว็จะมคี่าเป็น 0 เน่ืองจากว่าผลเฉลยของตวัแปรความเรว็ไม่ขึน้อยู่กบัเวลา

นัน่เอง 

x

y

16 18 20 22 24 26 28 30 32 34 36

0

2

4

6

8

10

12

14

16

18



 จากรปูที ่3 และ 4 จะเหน็ไดว้่า ฐาน POD ทีห่นึ่ง และ ฐาน POD ทีส่องนัน้จะมคี่ามากทีบ่รเิวณ

ขอบทีม่กีารเปลี่ยนแปลงของค่าขอบทีข่ ึน้อยู่กบัเวลาเท่านัน้ในบรเิวณอื่นๆของ บรเิวณทีท่ าการจ าลอง

คา่ของฐาน POD ทีห่น่ึงและทีส่องจะเปลีย่นแปลงไมม่ากนกัหรอืไมเ่ปลีย่นแปลงเลย 

 

 

Figure 3 ฐาน POD ที่หน่ึงของการพาความร้อนแบบบังคับในท่อที่มีกล่องให้ความร้อน 

 

Figure 4 ฐาน POD ที่สองของการพาความร้อนแบบบังคับในท่อที่มีกล่องให้ความร้อน 

หลงัจากแบบจ าลองมติติ ่าส าหรบัปญัหาการพาความรอ้นแบบถูกบงัคบัไดส้รา้งขึน้ส าหรบัปญัหาน้ีโดยใช้

ข้อมูลผลเฉลยจากปญัหาการพาความร้อนในท่อที่มีกล่องให้ความร้อนแล้วนัน้ เราก็สามารถใช้

แบบจ าลองในการท า simuation ส าหรบัปญัหาเดยีวกนั โดยเลอืกใช ้ penalty parameter ทีเ่หมาะสม 

ซื่งผลการจ าลองไดแ้สดงในรปูที ่5 

 

Figure 5 ผลการจ าลองโดยใช้แบบจ าลองมติติ ่าเทยีบกับผลการจ าลองจากcแบบจ าลองแบบเตม็ (Full model) 
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จากผลการจ าลองทีแ่สดงไวใ้นรปูที ่5 สามารถอธบิายไดเ้พิม่เตมิดงันี้ รปูที ่5 เป็นรปูทีแ่สดง Limit cycle 

ของสมัประสทิธท์ีจ่ะใชใ้นผลบวกเชงิเสน้ของฐาน POD ทีไ่ดก้ล่าวมาขา้งตน้ ซึ่งในรปูที ่5 นัน้ไดแ้สดงถงึ

ผลการจ าลองทีเ่ปรยีบเทยีบระหว่างค่าของสมัประสทิธท์ีไ่ดจ้ากแบบจ าลองมติติ ่าทีส่รา้งขึน้ ทีแ่สดงโดย 

เสน้สนี ้าเงนิ และ ค่าของสมัประสทิธิท์ีไ่ดจ้ากการท าการจ าลองจากแบบจ าลองแบบเตม็ (Full model)ที่

แสดงโดยวงกลมสนี ้าเงนิ ซึง่จะเหน็ไดว้า่ มผีลไกลเ้คยีงกนัมาก 

 การทีแ่สดงผลเป็น limit cycle นัน้เน่ืองมาจากว่าผลเฉลยของอุณหภูมจิะขึน้อยู่กบัเวลาทีม่ี

ลักษณเป็นฟงัก์ชันของคาบ ที่มีคาบเท่ากับคาบที่ให้ไปในค่าขอบเขตที่ขึ้นอยู่กับเวลา ดังนัน้การ

เปรยีบเทยีบระหว่างสมัประสทิธ์ของฐาน POD ทีใ่ชใ้นผลบวกเชงิเสน้ทีไ่ดม้าจากผลการจ าลองจาก

แบบจ าลองมติติ ่ากบัสมัประสทิธข์องฐาน POD ทีใ่ชใ้นผลบวกเชงิเสน้ทีไ่ดม้าจากแบบจ าลองแบบเตม็จงึ

มคีวามพอเพยีงเน่ืองจากถ้าเราต้องการหาค่าของอุหภูม ิณ เวลาใด หรอื ณ ต าแหน่งใดๆ กท็ าไดโ้ดย

การท าการบวกเชงิเสน้ของฐาน POD โดยใชข้อ้มลูจากสมัประสทิธข์องฐานทีไ่ดม้าจากแบบจ าลองมติติ ่า 

ณ เวลาใดๆ 

 จะเหน็ไดว้่าแบบจ าลองมติติ ่าทีถู่กสรา้งขึน้มคีวามสมารถในการจ าลองเทยีบเท่ากบัแบบจ าลอง

แบบเตม็ ซึ่ง ถ้าจะเปรยีบเทยีบ ความซบัซ้อนของแบบจ าลองนัน้สามารถเปรยีบเทยีบไดโ้ดยตรงจาก

จ านวน degree of freedoms หรอื ตวัแปร ทีจ่ าเป็นตอ้งแกใ้นการท าการจ าลอง จากตวัอยา่งนี้เราไดว้่า

แบบจ าลองแบบเตม็ม ีdegree of freedoms อยุท่ีป่ระมาณ 210,000 degree of freedoms ในขณะที ่

แบบจ าลองมติติ ่านัน้ม ีdegree of freedoms อยูแ่ค่เพยีง 0+2 degree of freedoms (0 ส าหรบัตวัแปร

การไหล และ 2 ส าหรบัตวัแปรอุณหภูมิ) เท่านัน้ ซึ่งส่งผลโดยตรงต่อระยะเวลาในการค านวณ และ 

ขนาดของหน่วยความจ าที่ต้องใช้ในการจ าลองซึ่ง ระยะเวลาในการค านวณของแบบจ าลองเต็มนัน้

ประมาณ สามชัว่โมงต่อ หนึ่งคาบเวลา ซึง่ส าหรบัแบบจ าลองมติติ ่านัน้สามารถใหผ้ลการจ าลองต่อหน่ึง

คาบเวลาได้ภายใน 1/10 วนิาทเีท่านัน้ ดงันัน้จะเห้นไดว้่าแบบจ าลองมติิต ่าที่ถูกสรา้งขึน้นัน้สามารถ

น าไปใชง้านในการท าการจ าลองไดอ้ยา่งถูกตอ้งแมน่ย า และ รวดเรว็ 

 

 

 

 

 



การใช้แบบจ าลองมิติต า่ในการจ าลองการพาความร้อนท่ีมีความซบัซ้อน 

 ส าหรบัปญัหาทีจ่ะน าแบบจ าลองมติติ ่าไปใชง้านในงานจ าลองอนัถดัไปจะขอยกตวัอยา่งในกรณี

ของการพาความรอ้นทีม่คีวามซบัซอ้นมากขึน้ ซึง่ตวัอย่างของการพาความรอ้นน้ีคอื การพาความรอ้น

จากท่อรูปเหลีย่ม ซึ่ง พบในการประยุกต์ใชใ้นหลายๆ กรณีเช่น การระบายความรอ้นจากแท่งปฏกิรณ์

นิวเคยีล ์หรอื การระบายความรอ้นของตกึสงูในต่อบรรยากาศรอบๆขา้ง 

 ส าหรบับางส่วนของโดเมนทีใ่ชใ้นการจ าลองในปญัหาน้ีไดแ้สดงไวใ้นรูปที ่6 ซึง่แสดงถงึท่อรูป

เหลีย่มและบรเิวณรอบของทอ่รปูเหลีย่ม 

 

Figure 6 บางส่วนของโดเมนที่ใช้ในการจ าลองของปัณหาที่มีความซับซ้อน 

ส าหรบัคา่ขอบเขตของปญัหาน้ีไดม้กีารก าหนดดงัน้ี 

ค่าขอบเขตส าหรบัความเร็ว ได้มีการก าหนดค่าขอบ ที่ขอบเขตของไหลเข้าเป็น Uniform 

steady inflow และ ในส่วนของขอบเขตของไหลออกไดม้กีารก าหนดค่าขอบเขตเป็น Neumann 

condition ทีก่ าหนดให ้ค่าของอนุพนัธข์องความเรว็เทยีบกบัทศิทางของ unit vector ทีช่ีอ้อกจาก

ขอบเขตนัน้มคี่าเท่ากบั 0 ส่วน ค่าขอบเขตของท่อรูปเหลี่ยมได้ถูกก าหนดเป็นก าแพงและ ได้มกีาร

ก าหนดคา่ขอบเขตแบบสมมาตรส าหรบัขอบเขตทีข่นานไปกบัทศิทางการไหลในแนวแกน x 
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 คา่ขอบเขตส าหรบัอุณหภมู ิคา่ของ (normalized temperature) อุณหภูมทิีท่อ่รปูเหลีย่มใหค้วาม

รอ้นที่สี่ก าหนดใหเ้ป็นหน่ึง ซึ่งเป็นค่า normalized นอกเหนือจากน้ียงัก าหนดใหค้่าของอุหภูม ิณ 

ขอบเขตล่างของท่อรปูเหลีย่มมคี่าทีข่ ึน้อยู่กบัเวลาซึ่งอยู่ในรูปของ               และในส่วนค่า

ขอบเขตอื่นๆ นอกเหนือจากน้ีถูกก าหนดเป็นคา่ขอบเขตแบบ adiabatic  

 ในการที่จะสร้างขอ้มูลที่จะน ามาสรา้งแบบจ าลองมติิต ่าในตวัอย่างน้ีเราได้ท าการจ าลองด้วย

สมการควบคุมการพาความแบบถูกบงัคบัดว้ยระเบยีบวธิเีชงิตวัเลขแบบ spectral finite element ซึง่ใน

ทีน้ี่เราใดใ้ช ้Jacobi Polynomial ดกีร ี12 ในการจ าลอง 

 ผลเฉลยเชงิตวัเลขของแบบจ าลองแบบเตม็ทีไ่ดจ้ากการจ าลองดว้ยสมการควบคุมการพาความ

แบบถูกบงัคบัดว้ยระเบยีบวธิเีชงิตวัเลขแบบ spectral finite element นัน้ไดแ้สดงในรปู 7 และ 8 ส าหรบั

ตวัแปรของการไหลตามแนว x และ ตวัแปรอุรหภูม ิในเวลาแตกต่างกนั 

 

Figure 7 แสดงตัวแปรของการไหลตามแนวแกน x ในเวลาที่แตกต่างกัน 

 

Figure 8 แสดงตัวแปรอุณหภมู ิในเวลาที่แตกต่างกัน 
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ซึง่จะเหน็ไดจ้ากรปูที ่7 และ 8 วา่ ผลเฉลยเชงิตวัเลขส าหรบัปญัหาน้ีนัน้มคีวามซบัซอ้นกวา่ตวัอยา่งที่

แลว้มากเน่ืองจากเป็นผลเฉลยทีข่ ึน้อยูก่บัเวลาและมทีัง้จาก คา่ของคาบทีใ่หไ้ปทีค่า่ขอบเขต และ ค่าของ

คาบทีไ่ดม้าจาก vortex shedding จากลกัษณะการไหลแบบน้ี ซึง่ในการวจิยัน้ีไดก้ าหนดใหค้าบของคา่

ขอบเขตทีข่ ึน้อยูก่บัเวลาใหม้คีา่เทา่กบัคาบทีไ่ดม้าจาก vortex shedding หรอื การใชค้าบแบบ lock-in  

 หลงัจากทีไ่ดผ้ลเฉลยเชงิตวัเลขจากแบบจ าลองรปูแบบเตม็แลว้นัน้เราสามารถท าการสกดัฐาน 

POD โดยระเบยีบวธิทีีไ่ดก้ล่าวมาแลว้ขัน้ตน้จากขอ้มลูการจ าลองแบบจ าลองแบบเตม็จ านวน 26 ชุดและ 

ฐาน POD ส าหรบัตวัแปรความรอ้น ฐานที ่1 และ ฐานทีส่อง ไดถู้กแสดงในรปูที ่8 และ 9 ตามล าดบั 

และ และ ฐาน POD ส าหรบัตวัแปรความเรว็ในแนวแกน x ฐานที ่1 และ ฐานทีส่อง ไดถู้กแสดงในรปูที ่

10 และ 11 ตามล าดบั  

 

Figure 9 ฐาน POD ของความร้อน ฐานที่ 1 ซ้าย และ ฐานที่ 2 ขวา 

 

Figure 10 ฐาน POD ส าหรับความเร็วในแนวแกน x ฐานที่  1 ซ้าย และ ฐานท ี2 ขวา 

จากรปูที ่9 และ 10 จะเหน็ไดว้่าส าหรบัฐาน POD ส าหรบัตวัแปรความเรว็นัน้มคีวามเป็นสมมาตรแต่

เน่ืองจากเราไดใ้ส่ค่าขอบทีข่ ึน้อยู่กบัเวลาของตวัแปรอุณหภูมเิขา้ไปทีบ่รเิวณขอบล่างของท่อรปูเหลีย่ม

ท าใหค้วามสมมาตรของ ฐาน POD ส าหรบัตวัแปรอุณหภมูหิายไป 



 หลงัจากทีไ่ดฐ้าน POD ส าหรบัปญัหาน้ีมาเป็นทีเ่รยีบรอ้ยแลว้เรากส็ามารถสรา้งแบบจ าลองมติิ

ต ่าส าหรบัปญัหาการพอความรอ้นแบบมคี่าขอบทีข่ ึน้อยู่กบัเวลาไดโ้ดยใชห้ลกัการดงัที่กล่าวมาขัน้ต้น

แลว้ และน ามาใชใ้นการจ าลองโดยเลอืกใช ้penalty parameter ทีเ่หมาะสม  

 ผลการจ าลองดว้ยแบบจ าลองมติติ ่าทีถู่กสรา้งขึน้ไดแ้สดงในรปูที ่11 และ 12 ส าหรบัสมัประสทิธ์

ของตวัแปรความเรว็ละอุณหภูม ิ เช่นเดยีวกนักบัตวัอย่างทีผ่่านมาผลการจ าลองจะแสดงอยู่ในรูปแบบ

ของการเปรยีบเทยีบ limit cycle ของสมัประสทิธก์ารกระจายของฐาน POD  

 

Figure 11 ผลการจ าลองจากแบบจ าลองมติติ ่าเทยีบกับผลการจ าลองจากแบบจ าลองแบบเต็มของตัวแปรความเร็ว แสดงสัมประสิทธ์ิของ
ฐาน POD ที่ 1-5 เท่านัน้ 

ส าหรบัปญัหาน้ีถา้เปรยีบเทยีบ จ านวน degree of freedoms ทีใ่ชใ้นการจ าลองจากแบบจ าลองแบบเตม็

จะอยูท่ีร่ะหวา่ง  480,000 degree of freedoms ส าหรบัแบบจ าลองแบบเตม็และ 12 (6+6) degree of 

freedoms (6 ส าหรบัตวัแปรการไหล และ 6 ส าหรบัตวัแปรอุณหภมู)ิ ส าหรบัแบบจ าลองมติติ ่า จะใหไ้ด้

วา่เราสามารถลดความซบัซอ้นในการจ าลองไดอ้ยา่งมาก 

จากผลการการจ าลองของตวัอยา่งทัง้สองท าใหส้รปุไดว้า่แบบจ าลองมติติ ่าทีส่รา้งขึน้นัน้สามารถ

น าไปใชง้านในดา้นการจ าลองของการพาความรอ้นไดจ้รงิ และขอ้ไดเ้ปรยีบจากการใชแ้บบจ าลองมติติ ่า

คอืจ านวน degree of freedoms ทีน้่อย สามารถท าการจ าลองไดอ้ยา่งรวดเรว็ โดยทีม่คีา่ความถูกตอ้ง

สงู 



 

Figure 12 ผลการจ าลองจากแบบจ าลองมติติ ่าเทยีบกับผลการจ าลองจากแบบจ าลองแบบเต็มของตัวแปรอุณหภมู ิแสดงสัมประสิทธ์ิของ
ฐาน POD ที่ 1-5 เท่านัน้ 

นอกเหนือจากน้ี ฐาน POD ยงัสามารถน าไปวเิคราะหเ์พือ่บ่งบอกพฤตกิรรมของการพาความ

รอ้นทีใ่นบางครัง้ไมส่ามารถมองเหน็หรอืสงัเกตุไดง้า่ยอกีดว้ย ซึง่ กระบวนการวเิคราะห ์ฐาน POD น้ี

สามารถน าไปประยกุตใ์ชใ้นงานประยกุตห์ลายๆ ดา้น เชน่ image processing, biomechanics เป็นตน้ 

 

 

 

 

 

 

 

 

 

 

 



การวิเคราะหแ์บบจ าลองมิติต า่ด้วยเทคนิค Bifurcation analysis 

 จากแบบจ าลองมิติต ่ าที่สร้างขึ้นทัง้สองแบบจะเห็นได้ว่า ทัง้สองแบบจ าลองยงัมี penalty 

parameter ที่ยงัคงต้องการการก าหนดค่าทีแ่น่นอนเพื่อใหไ้ดผ้ลการจ าลองทีถู่กต้องมากที่สุด ซึ่งใน

กระบวนการวเิคราะห์ความอ่อนไหวดว้ยการท า bifurcation analysis นัน้จะใชซ้อฟทแ์วร ์opensource 

AUTO07p [12] ซึง่เป็นซอฟทแ์วรส์ าหรบัการศกึษา continuation and bifurcation ส าหรบั system of 

ordinary differential equationsโดยเฉพาะซึ่งแบบจ าลองมติติ ่าทีถู่กสรา้งขึน้นัน้กเ็ป็น system of 

ordinary differential equations เชน่กนั นอกเหนือจากน้ี กระบวนกา วเิคราะหแ์บบจ าลองมติติ ่าในกรณี

ทัว่ไปดว้ย AUTO07p นัน้กส็ามารถเปรยีบเสมอืนการศกึษา Bifurcation analysis ของระบบสมการเชงิ

อนุพนัธย์อ่ยทีเ่ป็นสมการควบคุมปรากฏการณ์ทางฟิสกิสอ์ื่นๆ ดว้ยเช่นกนั เช่นการศกึษา attractor ที่

แทจ้รงิของแบบจ าลองมติติ ่าส าหรบัปญัหาของไหลเป็นตน้ 

 อย่างไรกต็าม AUTO07p นัน้มคีวามเหมาะสมกบัการใชง้านส าหรบั system of ordinary 

differential equations ในรปูแบบของ autonomous systems เท่านัน้กล่าวคอืตอ้งไมม่พีจน์ทีม่ตีวัแปร

ของเวลาเขา้มาเกี่ยวขอ้งดว้ย ดงันัน้ จงึจ าเป็นต้องแปลงแบบจ าลองมติติ ่าที่มอียู่ใหอ้ยู่ในรูปแบบของ 

system of differential equation ทีอ่ยู่ในรปูแบบของ autonomous system ในการศกึษาน้ีเราจะ

ท าการศกึษาในกรณีของปญัหาค่าขอบทีข่ ึน้อยูก่บัเวลาทีเ่ป็นฟงักช์ัน่ของ sin หรอื cos เท่านัน้ ส าหรบั

ปญัหาในรปูแบบอื่นกส็ามารถท าไดใ้นท านองเดยีวกนัเกล่าวคอื สรา้งระบบสมการ differential equation 

ทีอ่ยูใ่นรปูของ autonomous system ทีม่ผีลเฉลยเป็น ฟงักช์ัน่ sin หรอื cos  หรอื ฟงักช์ัน่รปูแบบอื่นที่

ตอ้งการ 

 ส าหรบัฟงักช์ัน่ทีม่ผีลเฉลยเป็นฟงักช์ัน่ sin หรอื cos คอืระบบสมการทีม่รีปูแบบดงัน้ี 

 

 โดยระบบสมการน้ีจะมผีลเฉลยเป็น  

 



 ดงันัน้จากแบบจ าลองมติติ ่าส าหรบัการพาความรอ้นแบบถูกบงัคบัทีม่ปีญัหาค่าขอบขึน้กบัเวลา

เราสามารถแปลงใหอ้ยูใ่นรปูแบบของแบบจ าลองมติติ ่าส าหรบัการพาความรอ้นแบบถูกบงัคบัทีม่ปีญัหา

คา่ขอบเขตขึน้กบัเวลาทีเ่ป็น autonomous system ไดด้งัน้ี 

 

และในท านองเดยีวกนัรูปแบบของแบบจ าลองมติติ ่าส าหรบัการพาความรอ้นแบบถูกอสิระที่มี

ปญัหาคา่ขอบเขตขึน้กบัเวลามรีปูแบบทีเ่ป็น autonomous system ดงัน้ี 

 

ในบทน้ีจะแสดงถงึผลของการวเิคราะหแ์บบจ าลองมติติ ่าทีถู่กสรา้งขึน้โดยเลอืกใชป้ญัหาการพา

ความร้อนที่มคีวามซบัซ้อนดงัที่กล่าวมาข้างต้นแล้วเป็นต้นแบบของการวิเคราะห์แบบจ าลองมติิต ่า

ส าหรบัการพาความรอ้น 

 ในการวเิคราะห ์ดว้ย Bifurcation analysis ดว้ย AUTO07p นัน้นอกเหนือจากการก าหนดให้

ระบบรู้จกั ระบบสมการที่เราต้องการจะวิเคราะห์แล้วยงัจ าเป็นต้องให้ค่าเริม่ต้นของระบบสมการที่

ต้องการวิเคราะห์เสยีก่อน ซึ่งในที่น้ีเราจะให้ค่าเริม่ต้นของระบบสมการโดยเลือกใช้ค่าค าตอบจาก

แบบจ าลองมติติ ่าจากการใช ้penalty parameter ในแบบจ าลองมติติ ่าเป็นคา่คงทีค่า่ใดคา่หน่ึง 



 ในสว่นของการท า Bifurcation analysis นัน้ เรามุง่เน้นไปทีก่ารศกึษา bifurcation analysis 

ของผลเฉลยหรอืค่าของสมัประสทิธท์ีใ่ชใ้นผลบวกเชงิเสน้ของตวัแปรความเรว็ของการไหลและตวัแปร

ของอุณหภมู ิเทยีบกบั penalty parameter ซึง่เป็น พารามเิตอรไ์ดม้าจากการสรา้งแบบจ าลองมติติ ่าโดย

ใช ้Penalty method ดงัทีก่ล่าวมา 

 ผลของการวเิคราะหด์ว้ย Bifurcation analysis ไดแ้สดงไวใ้นรปูที ่13 ส าหรบัสมัประสทิธท์ีใ่ชใ้น

ผลบวกเชงิเสน้ของตวัแปรของอุณหภูม ิซึ่งขอ้มูลจากการวเิคราะห ์bifurcation analysis โดยใช ้

AUTO07p นัน้จะใหข้อ้มลูของค่า magnitude ทีม่ากทีสุ่ดของตวัแปร (ในทีน้ี่คอืส าหรบัสมัประสทิธท์ีใ่ช้

ในผลบวกเชงิเสน้ของตวัแปรความเรว็ของการไหลและตวัแปรของอุณหภูมิ) ทีก่ าลงัท าการศกึษาเทยีบ

กบัคา่ต่างของ penalty parameter 

 

Figure 13 ผลการวเิคราะห์ Bifurcation analysis ของสัมประสิทธ์ของฐาน POD ของอุณหภมู ิ 

แสดงสัมประสิทธ์ิของฐาน POD ที่ 1-5 เท่านัน้ 

จากผลการการศกึษา Bifurcation analysis จะเหน็ว่าค่า penalty parameter ทีท่ าใหค้่ามากทีสุ่ดของสมั

ประสทิธข์องแต่ละฐาน POD ทีม่คี่าไกลเ้คยีงกบัค่ามากทีสุ่ดของค่าสมัประสทิธข์องฐาน POD ทีม่าจาก

การจ าลองแบบเต็มนัน้อยู่ที่ประมาณ 10,000 อย่างไรก็ตามเราจะเห็นจากผลการศึกษา bifurcation 
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analysis ว่า ค่าค าตอบทีไ่ดจ้ากแบบจ าลองมติติ ่านัน้มกีารขึน้อยู่กบัค่าของ penalty parameter เป็น

อยา่งมาก การเปลีย่นแปลง penalty parameter เพยีงไมม่านัน้อาจท าให ้ผลเฉลย ทีไ่ดน้ัน้คลาดเคลื่อน 

ออกไปจากผลเฉลยทีไ่ดจ้ากแบบจ าลองแบบเตม็ได ้จะเหน็ว่าถา้น าแบบจ าลองมติติ ่าทีส่รา้งขึน้มานัน้ไป

ใช้งานกับการควบคุมการพาความร้อนอาจมีปญัหาเน่ืองจากว่าผลของการเปลี่ยนแปลงค่าจะ

กระบวนการควบคุมอาจสง่ไปเช่นเดยีวกนัการเปลีย่นแปลงค่า penalty parameter ทีใ่ชใ้นแบบจ าลอง

ท าใหไ้ม่ทราบแน่นอนว่าผลเฉลยทีไ่ดจ้ากการควบคุมนัน้เป็นผลกระทบมาจากระบบใด อย่างไรกต็าม

แบบจ าลองมติติ ่าทีถู่กสรา้งขึน้นัน้ยงัจะสามารถใหค้ าตอบทีไ่กลเ้คยีงกบัค าตอบจากแบบจ าลองแบบเตม็

ไดส้ าหรบัค่า penalty parameter ทีเ่หมาะสมดงันัน้แบบจ าลองใหมท่ีถู่กสรา้งขึน้มาน้ีนัน้จงึเหมาะสมใน

กระบวนการจ าลองมากกวา่ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ข้อสรปุผลการวิจยั 

จากผลการวจิยัครัง้น้ีพบว่าเราสามารถสรา้งแบบจ าลองมติติ ่าส าหรบัปญัหาการพาความรอ้นแบบถูก

บงัคบัและแบบอสิระ ทีเ่หมาะกบัปญัหาทีม่คีา่ขอบทีข่ ึน้อยูก่บัเวลาได ้และแบบจ าลองมติติ ่าทีส่รา้งขึน้มา

สามารถน าไปใช้ในการจ าลองแบบส าหรบัปญัหาการพาความรอ้นได้เป็นอย่างด ีและ ถูกต้อง โดยที่

สามารถลด degree of freedoms ทีจ่ าเป็นตอ้งใชง้านส าหรบัการจ าลองแบบไดม้ากกว่า 10000 เท่า ท า

ใหแ้บบจ าลองทีถู่กสรา้งขึน้นัน้มขีนาดเลก็และลดความจ าเป็นในการใชห้น่วยความจ าทีม่ขีนาดใหญ่ ซึง่

แบบจ าลองทีถู่กสรา้งขึน้นัน้มขีนาดเลก็เหมาะส าหรบัการน าไปใชง้านในดา้นของ embedded systems 

หรอืงานทีม่ลีกัษณะความตอ้งการแบบจ าลองทีม่ขีนาดเลก็ 

 อยา่งไรกต็ามจากผลการวเิคราะหแ์บบจ าลองโดยใชเ้ทคนิค Bifurcation analysis นัน้ปรากฏว่า

แบบจ าลองทีถู่กสรา้งขึน้นัน้มคีวามขึน้ตรงกบัพารามเิตอรท์ีใ่ชส้รา้งแบบจ าลองมติติ ่าของการพาความ

รอ้นเป็นอย่างมากซึ่งอาจไม่เหมาะส าหรบัการใชแ้บบจ าลองชนิดน้ีในกระบวนการควบคุมเน่ืองจากใน

กระบวนการควบคุมนัน้จะมกีารเปลีย่นแปลงค่าของฟงักช์ัน่ทีใ่ชค้วบคุมการพาความรอ้นที่ขอบเขตของ 

โดเมนทีต่อ้งการ ซึง่อาจสง่ผลใหค้า่ของพารามเิตอรท์ีเ่หมาะสมส าหรบัปญัหานัน้ๆของแบบจ าลองมติติ ่า

เปลี่ยนแปลงไปดว้ยจงึท าใหไ้ม่สามารถระบุไดอ้ย่างชดัเจนว่าผลของการจ าลองที่มกีารควบคุมการพา

ความรอ้นอยูด่ว้ยนัน้เป็นผลมาจากการควบคุม หรอื วา่ ผลจากค่าของพารามเิตอรข์องแบบจ าลองมติติ ่า

ทีเ่ปลีย่นไป 
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Abstract

Incompressible flow around a pair of circular cylinders in staggered arrange-
ments with heated upstream cylinder is investigated in this study. Three
dimensional direct numerical simulation (DNS) is performed based on the
spectral/hp element method with the Reynolds numbers, Re, of 500 and the
Prandtl number, Pr, of 0.71. The longitudinal separation (L) to diameter
(D) ratio (L/D) and transverse separation (T ) to diameter (D) ratio (T/D)
are varied from 2.5 to 5 and from 0.5 to 1, respectively. The first investiga-
tion focuses on the effects of cylinders placement on both flow structures and
local heat transfer characteristics of both cylinders. Later, the identification
of major spatially distributed features is done by extracting the proper or-
thogonal decomposition (POD) modes from ensemble of simulation solutions.
The correlation between flow, heat transfer characteristics and POD modes
is studied.
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1. Introduction

Wake vortex dynamics have long been major subject of interest to engi-
neers and scientists for many years. Understanding wake dynamics behind a
bluff body has been great challenge for decades. Despite of its simple geome-
try, circular cylinder wake flows exhibit rich flow features and yet have many
direct engineering and science applications. The alternate shedding pattern
of vortices in the wake region leads to large fluctuating pressure forces in
a direction transverse to the flow and may cause vortex-induced vibrations
which in some cases can trigger structural failures [1].

Two staggered cylinders flows have been subject of interest to engineer-
ing and scientific community relevance to fluid mechanics because the flows
can represent many important physical phenomena, such as flow interference,
complicated vortex shedding and transition. In the last decade, several stud-
ies of staggered cylinders flows have been investigated to provide a through
standing of flow structures and interaction of the cylinders’ wakes, [2, 3, 4, 5].
The flow interferences of the staggered cylinders flows are defined into two
basic categories, [6] as:

• Wake interference: One of the cylinders is partially or completely sub-
merged in the wake of the other, and

• Proximity interference: The two cylinders are located close to each
other, but neither is submerged in the wake of the other.

Both types of flows clearly yield complicated flow structures as well as
highly complex wake vortex dynamics. Besides, they also express compli-
cated behavior of mass and energy transfer. The heat transfer characteristics
of the cylinders usually depend on a given interference regime resulted from
cylinders placements. However, the wake vortex dynamics in interference
regime can play important role in changing heat transfer characteristics of
both upstream and downstream cylinders. For example, the thermal energy
is trapped in viscous layer and released from the cylinder surface by eddies
and the fluctuation of heat transfer characteristics, measured by the Nusselt
number, is related to the longitudinal pitch ratio (L/D) between the cylinders
[7, 8].

Recently, experimental studies of heat transfer from two staggered cylin-
der have been performed, [9] where a new classification of interference regimes
as mode S-I,S-II, T-I and T-II and their corresponding heat and momentum
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transportation mechanisms have been proposed and identified for the flow
with Re = 7000.

In present study, we aim to investigate the effects of the cylinder place-
ment on both flow structures and heat transfer characteristics of two cylinders
placed in staggered arrangements at Re = 500 via direct numerical simula-
tion (DNS) approach. Here, we have carried out numerical studies on both
types of interferences. Specifically for proximity interference, we focus on the
biased gap flow and reattachment regimes which exhibit suppression of three
dimensionality. In the studies, the transverse pitch ratio (T/D) and longitu-
dinal pitch ratio (L/D) are systematically varied where the Reynolds number
of the present study is chosen to be Re = 500 where three dimensional effects
are well developed, [10].

We also apply the POD technique to identify dominant spatially dis-
tributed features or POD modes of both flow and temperature fields. The
proper orthogonal decomposition (POD) method is a statistical tool used
to identify low-dimensional descriptions for multidimensional systems, [11].
The method has been successfully applied in wide range of scientific applica-
tions, for example, fluid flows, biomechanics and geophysical fluid dynamics
[12, 13, 14, 15, 16]. The results of analyzing POD modes will allow us to
elucidate the heat transfer mechanism in the problem. The paper is orga-
nized as follows. In next section, we describe the details of the simulation
and analysis methods used in the current investigation. Then, we present
the results with some discussions. Finally, we close the paper with summary
of the investigation.

2. Simulation and Analysis methods

2.1. Computational details

Non-dimensional unsteady, incompressible, momentum and energy equa-
tions without external forcing or buoyancy effects used in this study are:

∇ · u = 0
∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u

∂T

∂t
+ u · ∇T =

1

RePr
∇2T

Where, Re is the Reynolds number, Pr is the Prandtl number. Here Re is

defined through:
DU

ν
and D is the cylinder diameter.
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A computational domain with dimension of 40D×9D×1D (streamwise-
crossflow-spanwise) was employed in this investigation. A pair of cylinders
both with diameter of D = 1 are placed in various staggered arrangements
with longitudinal separation (L) to the cylinder diameter (D) ratio (L/D)
and transverse separation (T) to the cylinder diameter (D) ratio (T/D) of
2.5-5.0 and 0.5-1.0, respectively. In each case, the computational domain is
decomposed into approximately 13000 tetrahedral elements.

Uniform steady inflow is imposed on inflow boundary, zero Neumann con-
dition is imposed on outflow boundary while no-slip condition is imposed to
cylinder walls and symmetry condition is prescribed for crossflow and span-
wise directions. Temperature is set to be unity only for the upstream cylinder
and zero for the downstream cylinder as well as the inflow boundary while
zero Neumann condition on temperature is imposed on the outflow boundary
and symmetry condition is prescribed for crossflow and spanwise directions.
The flow parameters used in this study are Re = 500 with Pr = 0.71. Con-
verged solutions were obtained by solving the governing equations using the
spectral/hp element library [17]. The Characteristic Galerkin method is cho-
sen to be a thermal stabilizer in the solver. The verification of the solver has
been performed and the time-averaged mean Nusselt numbers are compared
with the several experimental data. As shown in figure 1, the numerical
results are in good agreement with the experimental data [18] .
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Figure 1: Comparisons of numerical and experimental data [18]

From the resolution dependency study, we conclude that the Jacobi poly-
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nomial basis of order seven is sufficient for this investigation. Characteristics
of local heat transfer are obtained by measuring the local Nusselt number on
both cylinders’ walls.

2.2. Proper orthogonal decomposition (POD) method

The proper orthogonal decomposition (POD) procedure extracts an em-
pirical orthogonal features from any ensemble of data. This linear procedure
produces useful reduced basis set which is optimal in L2 sense. In the POD
framework for continuous problems, [11], one can represent flow field u(x, t)
(or temperature field T (x, t)) as follows:

u(t,x) =
∞∑

k=0

ak(t)φk(x), (1)

where {φk(x)} is the set of POD basis or dominant spatially distributed
features which are determined by the eigenvalue problem

∫
A

C(t, t′)ak(t
′)dt′ = λ̂kak(t) , t ∈ A , (2)

where {ak(t)} is the set of temporal modes, A is a specified time interval and
C(t, t′) is the correlation function defined by

C(t, t′) =

∫
Ω

u(t,x) · u(t′,x)dx. (3)

The POD basis is thus defined by:

φk(x) =

∫
A

ak(t)u(t,x)dt, ∀k. (4)

The non-negative definiteness of the correlation function (3) allows us to
order the eigenvalues and the corresponding POD modes by λ̂k ≥ λ̂k+1. The
POD modes contain useful information on spatial structures which can also
be physically interpreted.

Here, the POD method is applied to extract dominant features or POD
modes,φk(x), from ensembles of simulation solutions.
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3. Results and discussion

3.1. Vortex dynamics and flow interferences

3.1.1. Proximity interference regime

Reattachment regime: Reattachment flow has been observed in the
case of L/D = 2.5 with T/D = 0.5 , see Figure 2, first row. In this case,
the gap between two cylinders is small enough to induce shear layer sepa-
rating from the upstream cylinder reattaches or interacts with shear layer
of downstream cylinder. This scenario is quite similar to the interference
classification as mode S-Ia [9]. This was also identified as reattachment flow
regime [5]. The development of three dimensional structures is well observed
in the flow. We have observed the vortex structures which are quite (not
exactly) similar to those of the case of single cylinder in the downstream
wake. However, the vortex structures in near wake of the upstream cylinder
is suppressed and there is also a significant interaction between the spanwise
and streamwise vortices. Inner shear layer of the upstream cylinder merges
with some part of the outer shear layer of the upstream cylinder which con-
sequently convected downstream which later enveloping the spanwise vortex
of the downstream cylinder.

Biased gap regime: This flow regime is observed in flow configuration
of L/D = 2.5 with T/D = 1.0, see Figure 2, second row . The shear layer
separating form the inner surface of the upstream cylinder does not reattach
onto the surface of the downstream cylinder. Instead it deflects toward the
upstream cylinder and interacts with outer shear layer of the upstream cylin-
der. The flow in this regime is identified as mode S-II [9] and as the biased
gap regime [5]. The downstream evolution is in such a way that the two
spanwise vortices of the upstream cylinder amalgamate with spanwise vortex
with the vortices shed from the downstream cylinder forming asymmetrical
wake structures. We have observed that streamwise vortex shed from the
outer side of the upstream cylinder envelopes spanwise vortices shed from
the inner side of both cylinders. In this case, the location of the envelopment
is faraway from the downstream cylinder compared to that in the previous
regime.

3.1.2. Wake interference regime

This flow regime is observed in the case of L/D = 5.0 with both of
T/D = 0.5 and T/D = 1.0. In this regime, the downstream cylinder is sub-
merged in the wake of the upstream cylinder, see figure 2, third and fourth
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rows . The flow characteristic is identified as mode S-Ib [9]. We have observed
that the streamwise vortex in the wake of upstream cylinder is fully devel-
oped and for the case of T/D = 1.0, impinges on the downstream cylinder
then brakes into two equal parts, outer and inner parts, upon impingement.
The outer part interacts with the shear layer of the downstream cylinder,
while the inner part sweeps along the inner side of the downstream cylinder.
The spanwise vortex shed from the inner side of the upstream cylinder, only
in the case of T/D = 0.5, impinges directly onto the front surface of the
downstream cylinder, deforms and convected along the surface of the down-
stream cylinder. However, The spanwise vortex shed from the outer side of
the upstream cylinder is convected downstream without interacting with the
downstream cylinder. The structures of vortex street in the outer region of
downstream wake, for the case of T/D = 1.0, compose of the envelopment of
the spanwise vortex of the downstream cylinder by the streamwise vortex of
the upstream cylinder and for the case of T/D = 0.5, compose of the envel-
opment of the spanwise vortex of the downstream cylinder by the spanwise
vortex of the upstream cylinder.

3.2. Local heat transfer characteristics

3.2.1. Proximity interference regime

Reattachment regime: Figure 3, first row, shows an instantaneous
plot of the thermal energy. The thermal energy from the inner side of the
upstream cylinder is released, reattaches onto the front surface of the down-
stream cylinder and also circulates in the gap between the cylinders. This
mechanism directly influences characteristics of heat transfer near the front
surface of downstream cylinder. The thermal energy from the outer side of
the upstream cylinder is likewise released, convected and rolls up to interact
with back surface of downstream cylinder. The interaction leads to strong
fluctuations of the Nusselt number in that region, see figure 5, first row.

An instantaneous distribution of the Nusselt number on the surface of the
upstream cylinder is plotted in figure 4, first row . The Nusselt number highly
fluctuates in the area that is closed to the separation point which locates at
the 25 to -50 degrees (measured from the middle of back of the cylinder). The
fluctuations of the Nusselt number at the area depend on spanwise vortex
forming process on the outer surface of the upstream cylinder.

Biased gap regime: Similar to the flow characteristic, the thermal
layer does not reattach onto the downstream cylinder but instead deflect
toward the upstream cylinder and is convected downstream into the wake

7



region of the downstream cylinder. Thus, only small effects on heat transfer
characteristics of the front surface of the downstream cylinder are founded.

The distribution of the Nusselt number on the surface of the upstream
cylinder is presented in figure 4, second row . The figure shows that, the
fluctuations of the Nusselt number are found in the region of 0 to -50 degrees
(measured from the middle of the back of the cylinder). The scenario of
the fluctuations of the Nusselt number at the area is similar to that of the
reattachment regime but in this regime the highly fluctuated area is shifted
downward.

The distribution of the local Nusselt number on the downstream cylinder
surface is presented in figure 5, second row. The figure shows that the clusters
of high temperature formed by the vortices shed from inner surface of the
upstream cylinder does not make any major influences over the heat transfer
characteristics of the front surface of downstream cylinder. However, the
clusters bring some minor effects on heat transfer characteristics of the back
surface of the downstream cylinder.

3.2.2. Wake interference regime

In this regime, the thermal structures in the upstream wake are in full
three dimension, see figure 3, third and fourth rows. The heat transfer char-
acteristics of the upstream cylinder are observed as follows. We have found
that the mechanism of heat transfer behind the upstream cylinder is domi-
nated by the vortex shedding process. The cold fluid is induced during the
process of forming spanwise vortex results in increment in Nusselt number.
The consequence can also be observed by a thinner thermal layer, see figure
5 third and fourth rows, as well as the rise of local Nusselt numbers in that
area, see figure 4, third and fourth rows. The thermal energy is later shed
together with spanwise vortex forming clusters of high temperature. In the
case T/D = 1.0, the clusters of high temperature formed by vortices shed
from outer surface of the upstream cylinder are convected downstream with-
out interacting with the downstream cylinder. However, the clusters of high
temperature formed by the vortices shed from inner surface of the upstream
cylinder are convected and move to the lower back side of the downstream
cylinder. From figure 3, fourth row, we can conclude that the clusters of
high temperature formed by the vortices shed from inner surface of the up-
stream cylinder are the primary heat sources of the downstream cylinder.
The streamwise vortex shed from the upstream cylinder impinges directly
onto the front surface of the downstream cylinder causing sudden change in
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the local Nusselt number of the front surface of the downstream cylinder.
The vortex then splits into two parts and thermal energy captured by the
vortex is transferred to the shear layer of the down stream cylinder. However,
this mechanism yields only partial heat contribution.

In the case of T/D = 0.50, the clusters of high temperature formed by
the vortices shed from inner surface of the upstream cylinder together with
those formed by the spanwise vortex impinge onto the front surface of the
downstream cylinder and then split into two parts, see Figure 3, third row.
The outer part shed to a wider vortex street while the inner part shed to a
narrower vortex street. The impingement leads to a significant increment of
Nusselt number on the front surface of the downstream cylinder. However,
if we compare the magnitudes of the Nusselt number of the case T/D = 1.0
to that of the case T/D = 0.5 , even though their profiles are quite similar
but the peak of the Nusselt number of the case of T/D = 0.5 is about twice
as much compared to that of the case T/D = 1.0. This concludes that the
majority of the heat is convected by the spanwise vortices.

Figure 2: Instantaneous vorticity surfaces. Top to bottom: T/D=0.5, T/D=1.0 and Left
to Right: L/D=2.5, L/D=5.0, dark gray and light gray are stream-wise vorticity and
span-wise vorticity, respectively

3.3. Proper orthogonal decomposition

We focus on the energy distribution of the POD modes for each stag-
gered arrangements. In all cases, the first POD mode (the mean mode) of
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Figure 3: Instantaneous temperature surfaces.

both velocity and temperature fields dominates all other modes by capturing
more than 60% of the total energy captured by all of the modes, see figure
6. The pairing of higher POD modes (the second and higher modes) of the
temperature field is clearly observed in the case of L/D=5.0 with T/D=1.0.
This pairing behavior has been observed in the case of heat transfer from
single cylinder at the same Reynolds number. This indicates that the down-
stream cylinder does not play any major role in changing characteristics of
the temperature field in the case of L/D=5.0 with T/D=1.0.

The analysis of major spatial distribution features of both interference
types is described as follows.

3.3.1. Proximity interference regime

Reattachment regime: The reattachment to the downstream cylinder
of the flow and temperature field is fully captured by the first POD mode.
The higher POD modes of the temperature field indicates that the main ac-
tivity region in this case includes the wake region behind the downstream
cylinder. The 2S vortex shedding pattern is clearly observed and well cap-
tured in the velocity POD modes.

Biased gap regime: In this regime, we clearly see the deflection of
the flow in the first POD mode toward the upstream cylinder. The main
activity region of the temperature field includes only in some region below
and behind the downstream cylinder (only some part of the wake region of the
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Figure 4: Instantaneous local heat transfer characteristics of the upstream cylinder. Distri-
bution of local Nusselt number and the corresponding temperature iso-surface plot around
the upstream cylinder. Top to bottom: T/D=0.5, T/D=1.0 and Left to Right: L/D=2.5,
L/D=5.0

Figure 5: Instantaneous local heat transfer characteristics of the upstream cylinder. Dis-
tribution of local Nusselt number and the corresponding temperature iso-surface plot
around the downstream cylinder. Top to bottom: T/D=0.5, T/D=1.0 and Left to Right:
L/D=2.5, L/D=5.0

downstream cylinder). More complicated flow structures are observed in the
POD modes of the temperature field as well. POD modes of velocity show
more distinctive wake regions of each cylinder which are clearly observed
from the distribution of the velocity modes, especially the crossflow velocity
component, from the upstream and downstream cylinders.
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Figure 6: Energy distribution of POD modes for all staggered arrangements. Top: POD
modes of velocity fields. Bottom: POD modes of temperature fields

3.3.2. Wake interference regime

In this regime, the main activity region of the temperature field covered
entire wake regions from both cylinders which confirms the flow and heat
characteristics in previous section. The patterns of the POD modes become
more distinctive for each cylinder and are clearly observable in the case of
L/D=5.0 with T/D=1.0 and Re = 500. This fact together with the distri-
bution of the energy distribution of the eigenvalues in figure 6 indicates that
the existence of the downstream cylinder provides only slightly effects to the
pattern of the temperature field compared to the case of single cylinder. We
also find that the lower T/D ratio, the more complicated structures in the
wake region are formed.
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Figure 7: Proper orthogonal decomposition modes. Left to right: (L/D=2.5, T/D=0.5),
(L/D=5.0, T/D=1.0). Top to bottom: streamwise velocity first mode and second mode,
temperature first mode and second mode.

4. Conclusions

Incompressible flow around a pair of circular cylinders in staggered ar-
rangements with heated upstream cylinder is investigated in this paper. The
longitudinal pitch ratio (L/D) and transverse pitch ratio (T/D) are varied
from 2.5 to 5 and 0.5 to 1, respectively. The flow parameters used in this
study are Re = 500 with Pr = 0.71. The configurations of the cylinders
yield two types of flow interferences which are proximity interference and
wake interference. We have found that there are only small effects on heat
transfer characteristics on the surface of the downstream cylinder in the bi-
ased gap regime while the wake interference regime leads to large interference
effects on local heat transfer characteristic of the downstream cylinder. The
majority of the heat is convected by the spanwise vortices. From the proper
orthogonal decomposition analysis, we found that the spatial distribution of
the modes in each flow regime directly relates to the flow characteristics in
that particular regime. Besides, the analysis indicates that for a larger L/D
and T/D ratio, the existence of the downstream cylinder slightly affects the
pattern of the temperature field compared to the case of single cylinder.
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1 Introduction

Stochastic differential equation (SDE) models find applications in various areas espe-
cially in economics and finance. One of the most famous models is geometric Brown-
ian motion which is the asset-price model used in Black-Scholes-Merton option pric-
ing formula. The mean-reverting square root process [2] is an SDE which has found
considerable use in mathematical finance as an alternative to geometric Brownian
motion. It is used as a model for volatility, interest rate, and other financial quanti-
ties, and forms the stochastic volatility component of Heston’s asset price model [3].
Moreover, it can be used for pricing bonds and barrier options [5].

However, introducing a jump process into such process makes the model become
more realistic. The mean-reverting square root process with jumps on which we focus
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in this work has the form

dS(t) = α(µ −S(t−))dt+σ
√

S(t−)dW(t)+δS(t−)dÑ(t) (1.1)

wheret ∈ [0,T], S(t−) denotes lim
r→t−

S(r), W is a Wiener process and̃N is a compen-

sated Poisson process. Here,S(t) represents the spot price at timet. The parameter
µ is the long run equilibrium price or mean reversion level,α is the mean reversion
rate,σ is the degree of volatility around it caused by noise from the Wiener process,
andδ is the degree of jumps.

We can determine solution’s expectation, variance and covariance functions or
even higher-order moments once strong solution in explicit form of an SDE with
jumps has been found . Unfortunately, the strong solution in an explicit form to this
SDE with jumps has yet been found. Rather, we would like to find its numerical ap-
proximation. Note that even though all coefficient functions satisfy the linear growth
condition, we still can not directly apply the standard convergence theory for numer-
ical approximation to this model due to the non-Lipschitz diffusion coefficient. It has
the form of square root function.

To this end, we consider two numerical methods: drift-implicit Euler method and
compensated split-step backward Euler method. We numerically investigate their per-
formances as well as accuracy in solving this particular model in weak sense. Rigor-
ous computable error bounds and theoretical errors in weak sense for both methods
are also presented.

In next section, we provide details of the numerical schemes. In section 3, we
provide rigorous error bounds in weak sense for drift-implicit Euler and compen-
sated split-step backward Euler methods and other relevant theorems. In section 4,
we present results from computational experiments. Lastly, we conclude our work in
section 5.

2 Numerical Schemes

First of all, we provide the assumptions for the mean-reverting square root process
with jumps . Throughout this paper, let(Ω ,F ,P) be a complete probability space
with a filtration{Ft}t≥0 satisfying the usual conditions. LetW be a Wiener process
andN a Poisson process with intensityλ such thatÑ(t) = N(t)− λ t is the corre-
sponding compensated process. Assuming thatW andN are independent, and both
processes are defined on the aforementioned probability space. This paper considers
(1.1) in whichα,λ andσ are positive withα + λδ > 0, µ is nonnegative,S(0) is
independent ofW andN, andS(0) =S0 > 0 almost surely. The conditionα +λδ > 0
can force (1.1) to have a unique strong solution which will never become negative
with probability one, see [8].

Now, we present the two numerical schemes. We first divide the interested time
interval [0,T] into L equal parts with a fixed time step size∆ = T

L so that we have
an equidistant time discretization{t0, t1, . . . , tL} with tn = n∆ . Then, we define the
discrete-time drift-implicit Euler approximation to (1.1) introduced in [1] by setting
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s0 = ES0 and form

sn+1 = sn+{ζ α(µ −sn+1)+(1−ζ )α(µ −sn)}∆ +σ
√
|sn|∆Wn+δsn∆ Ñn (2.1)

= sn+
α(µ −sn)

1+ζ α∆
∆ +

σ
√
|sn|

1+ζ α∆
∆Wn+

δsn

1+ζ α∆
∆ Ñn

where the parameterζ is the degree of implicitness,∆Wn = W (tn+1)−W(tn) is a
Wiener process increment, which is normally distributed with mean zero and variance
∆ , and∆ Ñn = Ñ(tn+1)− Ñ(tn) is a compensated Poisson process increment, which
has the distributionPoi(λ∆)−λ∆ . Note that any numerical method that is directly
applied to (1.1) may break down due to negative values being supplied to the square
root function. However, we have known that the solutionS(t) will never become
negative almost surely. Thus, the SDE with jumps (1.1) is equivalent to

dS(t) = α(µ −S(t−))dt+σ
√
|S(t−)|dW(t)+δS(t−)dÑ(t)

which is in a better form computationally. For this reason, we use|sn| instead ofsn

under the square root function. Notice that when the degree of implicitness is zero,
this method turns out to be the well-known Euler-Maruyama scheme

sn+1 = sn+α(µ −sn)∆ +σ
√
|sn|∆Wn+δsn∆ Ñn. (2.2)

With the exact same equidistant time discretization{t0, t1, . . . , tL} defined earlier,
the compensated split-step backward Euler scheme for (1.1) introduced in [4] is de-
fined by lettings0 = ES0 and forming

s∗n+1 = sn+α(µ −s∗n+1)∆

=
sn+αµ∆
1+α∆

,

sn+1 = s∗n+1+σ
√
|s∗n+1|∆Wn+δs∗n+1∆ Ñn (2.3)

= sn+α(µ −s∗n+1)∆ +σ
√
|s∗n+1|∆Wn+δs∗n+1∆ Ñn.

In each marching forward step fromsn to sn+1, this method has two splitted sub-
steps dealing explicitly to the deterministic and stochastic parts. Specifically, the first
substep that is to finds∗n+1 concerns only with the deterministic component, and the
second substep which is to findsn+1 deals with the random parts from the Wiener
process and the compensated Poisson process.

3 Error Bounds

This section provides rigorous error bounds in weak sense for drift-implicit Euler and
compensated split-step backward Euler methods. The key ingredients of our proof are
the Fubini’s theorem and the Gronwall’s inequality. Let us state these two theorems
in the versions needed in our proof.
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Theorem 3.1 [7] If A and B areσ -finite measure spaces, and either

∫

A

∫

B
| f (x,y)| dy dx< ∞ or

∫

B

∫

A
| f (x,y)| dx dy< ∞,

then
∫

A

∫

B
f (x,y) dy dx=

∫

B

∫

A
f (x,y) dx dy.

Theorem 3.2 [6] Let u, f ,g and h be nonnegative continuous functions defined on

J = [a,b], and u(t)≤ f (t)+g(t)
∫ t

a
h(s)u(s)ds for all t∈ J. Then, for any t∈ J,

u(t)≤ f (t)+g(t)
∫ t

a
h(s)f (s)e

∫ t
s h(r)g(r)drds.

The following theorem provides the expectation of the exact solution of (1.1) for
any timet.

Theorem 3.3 [8] For the SDE with jumps (1.1),

ES(t)−µ = e−αt(ES0−µ)

so thatlim
t→∞

ES(t) = µ .

Also, note here that since the exact solutionS(t) will never become negative al-
most surely,|S(t)|= S(t) almost surely. Thus,E|S(t)|= ES(t) = µ +e−αt(ES0−µ)
which is bounded on[0,T].

3.1 Drift-Implicit Euler Method

We will first deal with the drift-implicit Euler method. Throughout this subsection,sn

denotes the drift-implicit Euler numerical solution obtained from (2.1). Let us define
the continuous-time drift-implicit Euler approximation

s(t) = s0+
∫ t

0

α(µ − s̄(r))
1+ζ α∆

dr+
∫ t

0

σ
√

|s̄(r)|

1+ζ α∆
dW(r)+

∫ t

0

δ s̄(r)
1+ζ α∆

dÑ(r) (3.1)

wheret ∈ [0,T] and s̄(t) is the step function ¯s(t) := sn for t ∈ [tn, tn+1). From (2.1)
and (3.1), we see that at each grid pointtn, s(tn) = sn. This yields that an error bound
for s(t) will imply an error bound for our numerical solutionsn. We will aim at the
error bound fors(t) on the whole interval[0,T].

Notice that after we fix the interval[0,T] and the time step size∆ , E|sn| is
bounded. Hence,E|s̄(t)| is also bounded on[0,T]. We also note here that bothW
andÑ are martingales, andsn is independent of∆Wn and∆ Ñn for eachn.

Theorem 3.4 Esn−µ =

(
1−

α∆
1+ζ α∆

)n

(ES0−µ).
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On numerical methods for mean-reverting square root processes with jumps 5

Proof Taking expectation in (2.1) yields thatEsn+1 = Esn+
α(µ−Esn)∆

1+ζ α∆ . Therefore,

Esn+1 − µ = (Esn − µ)− α(Esn−µ)∆
1+ζ α∆ = (Esn − µ)

(
1− α∆

1+ζ α∆

)
. This leads to the

desired result.

This theorem guarantees that lim
n→∞

Esn = µ when 1− α∆
1+ζ α∆ >−1 or equivalently

(1−2ζ )α∆ < 2. Hence, the discrete approximation ofS(t) still keeps mean reversion
whenζ ∈ [1

2,1] for any size of time step size∆ and whenζ ∈ [0, 1
2) for sufficiently

small size of time step size∆ , say∆ <
2

(1−2ζ )α . From Theorem 3.3, we also imme-
diately obtain the following corollary.

Corollary 3.5 |ES(tn)−Esn|=

∣∣∣∣ e−αn∆ −

(
1−

α∆
1+ζ α∆

)n∣∣∣∣ |ES0−µ |.

This corollary gives us the exact weak error at each time steptn, especially at the
strike timeT = tL :

|ES(T)−EsL|=

∣∣∣∣∣ e−αT −

(
1−

α∆
1+ζ α∆

) T
∆
∣∣∣∣∣ |ES0−µ |.

One can write corollary 3.5 in terms of orders of∆ at the strike timeT = tL as:

|ES(T)−EsL|=

∣∣∣∣∣(
1−2ζ

2
)α∆

∞

∑
k=1

(−1)k+1(αT)k

(k−1)!
+O(∆ 2)

∣∣∣∣∣ |ES0−µ | (3.1)

Thus from 3.1, it is clear that the numerical approximation with the drift-implicit
Euler method with the degree of implicitnessζ = 1

2 is second order accurate and first
order accurate with other value of the degree of implicitnessζ in approximation of
the weak error at the strike timeT = tL , respectively.

Lemma 3.6

∣∣∣∣E
(

s(t)−
s̄(t)

1+ζ α∆

)∣∣∣∣≤ Dα ,∆ ,S0,µ ,ζ ,L for any t∈ [0,T] where

Dα ,∆ ,S0,µ ,ζ ,L :=





α∆
1+ζ α∆

{
|ES0−µ |

(
|ζ − 1

2|+
1
2

)
+ζ µ

}
, if (1−2ζ )α∆ < 2

α∆
1+ζ α∆

{∣∣∣1− α∆
1+ζ α∆

∣∣∣
L
|ES0−µ |

(
|ζ − 1

2|+
1
2

)
+ζ µ

}
,

if (1−2ζ )α∆ ≥ 2

and L is the number of time steps.

Proof Let t ∈ [0,T] andn =
⌊

t
∆
⌋
, the integer part oft∆ , so thatt ∈ [tn, tn+1). Since

s(tn) = sn at grid pointtn, we have

s(t)−
s̄(t)

1+ζ α∆
=sn+

α(µ −sn)

1+ζ α∆
(t − tn)+

σ
√

|sn|

1+ζ α∆
(W(t)−W(tn))

+
δsn

1+ζ α∆

(
Ñ(t)− Ñ(tn)

)
−

sn

1+ζ α∆
.
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By taking expectation, we acquire

E

(
s(t)−

s̄(t)
1+ζ α∆

)
= Esn+

α(µ −Esn)

1+ζ α∆
(t − tn)−

Esn

1+ζ α∆

=
α(µ −Esn)

1+ζ α∆
(t − tn)+

ζ α∆
1+ζ α∆

Esn

=
α(µ −Esn)

1+ζ α∆
(t − tn)+

ζ α∆
1+ζ α∆

(Esn−µ)+
ζ αµ∆

1+ζ α∆

= (Esn−µ)
α(ζ ∆ − (t − tn))

1+ζ α∆
+

ζ αµ∆
1+ζ α∆

.

Taking absolution through this equation yields that
∣∣∣∣E
(

s(t)−
s̄(t)

1+ζ α∆

)∣∣∣∣≤ |Esn−µ |
α|ζ ∆ − (t − tn)|

1+ζ α∆
+

ζ αµ∆
1+ζ α∆

.

We observe that|ζ ∆ − (t − tn)| ≤
(
|ζ − 1

2|+
1
2

)
∆ . Applying Theorem 3.4, we obtain

∣∣∣∣E
(

s(t)−
s̄(t)

1+ζ α∆

)∣∣∣∣≤
∣∣∣∣1−

α∆
1+ζ α∆

∣∣∣∣
n

|ES0−µ |
(
|ζ − 1

2|+
1
2

)
α∆

1+ζ α∆
+

ζ αµ∆
1+ζ α∆

.

This leads to our claim.

Remark that in computer simulation,∆ is usually so small, thus(1−2ζ )α∆ < 2
holds; therefore, in this case, we choose

Dα ,∆ ,S0,µ ,ζ =
α∆

1+ζ α∆

{
|ES0−µ |

(
|ζ −

1
2
|+

1
2

)
+ζ µ

}

whose formula does not depend on the number of time stepsL.

Theorem 3.7 For any t∈ [0,T],

|E(S(t)−s(t))| ≤

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
(eαT −1),

where Dα ,∆ ,S0,µ ,ζ ,L is defined as in Lemma 3.6.

Proof Let t ∈ [0,T]. From (1.1) and (3.1), we have

S(t)−s(t) = αµt −
αµt

1+ζ α∆
−α

∫ t

0

(
S(r−)−

s̄(r)
1+ζ α∆

)
dr

+σ
∫ t

0

(
√

S(r−)−

√
|s̄(r)|

1+ζ α∆

)
dW(r)

+δ
∫ t

0

(
S(r−)−

s̄(r)
1+ζ α∆

)
dÑ(r).
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On numerical methods for mean-reverting square root processes with jumps 7

Note that replacingr− by r will not have any effect on the Lebesgue integrals. Taking
expectation yields

E(S(t)−s(t)) =
ζ α∆

1+ζ α∆
αµt −αE

∫ t

0

(
S(r)−

s̄(r)
1+ζ α∆

)
dr.

Next, for the right hand side of the above equation, we will apply Theorem 3.1 in
order to interchange the order between the expectation and the integral. Note that the
expectation is the integral with respect to the probability measureP over the whole

spaceΩ , and bothΩ and[0,t] areσ -finite measure spaces. SinceE
∣∣∣S(r)− s̄(r)

1+ζ α∆

∣∣∣≤
E|S(r)|+ E|s̄(r)|

1+ζ α∆ which is bounded on[0,T], we have that

∫ t

0
E

∣∣∣∣S(r)−
s̄(r)

1+ζ α∆

∣∣∣∣dr < ∞.

Then, we can interchange the order between the expectation and the integral as de-
sired. After that taking the absolution and applying Lemma 3.6, we have

|E(S(t)−s(t))|=

∣∣∣∣
ζ α∆

1+ζ α∆
αµt −α

∫ t

0
E

(
S(r)−

s̄(r)
1+ζ α∆

)
dr

∣∣∣∣

≤
ζ α∆

1+ζ α∆
αµt +α

∫ t

0

∣∣∣∣E
(

S(r)−
s̄(r)

1+ζ α∆

)∣∣∣∣dr

≤
ζ α∆

1+ζ α∆
αµt +α

∫ t

0
|E (S(r)−s(r))|dr

+α
∫ t

0

∣∣∣∣E
(

s(r)−
s̄(r)

1+ζ α∆

)∣∣∣∣dr

≤
ζ α∆

1+ζ α∆
αµt +α

∫ t

0
|E (S(r)−s(r))|dr+α

∫ t

0
Dα ,∆ ,S0,µ ,ζ ,L dr

=

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
αt +α

∫ t

0
|E (S(r)−s(r))|dr.

Now, we will apply Theorem 3.2 to this inequality. Observe that we have to check
only that|E(S(t)−s(t))| is continuous. Notice thatES(t) = µ +e−αt(ES0− µ) and
the absolution function are continuous. We claim thatEs(t) is also continuous; hence,
we can acquire the desired condition for applying Theorem 3.2. To show our claim,
we first note that for every measurable functionf ,

∫ t
0 f (r)dr is continuous int. From

(3.1), we have that

Es(t) = Es0+αE
∫ t

0

µ − s̄(r)
1+ζ α∆

dr = Es0+
αµt

1+ζ α∆
−

α
1+ζ α∆

E
∫ t

0
s̄(r)dr.

SinceE|s̄(t)| is bounded, again, we can interchange the order between the expectation
and the integral and finally acquire

Es(t) = Es0+
αµt

1+ζ α∆
−

α
1+ζ α∆

∫ t

0
Es̄(r)dr
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which is continuous int. Therefore, we can now apply Theorem 3.2 to the above
inequality that yields

|E(S(t)−s(t))| ≤

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
αt

+α
∫ t

0

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
αre

∫ t
r αdvdr

=

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)(
αt +α2

∫ t

0
reαt−αrdr

)

=

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)(
αt +α2

[
eαt

α2 −
t
α
−

1
α2

])

=

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
(eαt −1)

≤

(
Dα ,∆ ,S0,µ ,ζ ,L +

ζ αµ∆
1+ζ α∆

)
(eαT −1)

which completes the proof.

From Lemma 3.6 and Theorem 3.7, we see that if(1−2ζ )α∆ < 2,

|E(S(t)−s(t))| ≤
α∆

1+ζ α∆

{
|ES0−µ |

(
|ζ −

1
2
|+

1
2

)
+2ζ µ

}
(eαT −1)

≤ α∆
{
|ES0−µ |

(
|ζ −

1
2
|+

1
2

)
+2ζ µ

}
(eαT −1).

Hence, the order of weak convergence for the drift-implicit Euler numerical solution
for the SDE with jumps (1.1) when time step size∆ is sufficiently small is 1.0.

Recall thatsn ands(t) agree on every grid point and Corollary 3.5 gives a weak
error at each grid pointtn. Because the number of time steps is finite,

max
n

∣∣∣∣ e−αn∆ −

(
1−

α∆
1+ζ α∆

)n∣∣∣∣ |ES0−µ |

is an error bound for our numerical solutionsn for every grid point. This differs from
the error bound in Theorem 3.7 which provides the error for the continuous-time
drift-implicit Euler approximations(t) for the whole interval[0,T]. Another good
aspect of the error bound formula in Theorem 3.7 is that it has a simple form which is
easy to be calculated and let us know the order of weak convergence for this method.

3.2 Compensated Split-Step Backward Euler Method

Now, we focus on the compensated split-step backward Euler method. The frame-
work in this subsection is similar to that in the previous one thus some remarks and
details of the proof will be omitted. Throughout this subsection,sn denotes the com-
pensated split-step backward Euler numerical solution of (1.1) which is obtained from
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(2.3). We now define the continuous-time compensated split-step backward Euler ap-
proximation by

s(t) = s0+α
∫ t

0
(µ − s̄(r))dr+σ

∫ t

0

√
|s̄(r)|dW(r)+δ

∫ t

0
s̄(r)dÑ(r), (3.2)

wheret ∈ [0,T] ands̄(t) is the step function ¯s(t) := s∗n+1 =
sn+αµ∆
1+α∆ for t ∈ [tn, tn+1).

From (2.3) and (3.2), we know thats(tn) = sn at every grid pointtn. Note that after
we fix the interval[0,T] and the time step size∆ , E|sn| is bounded. Therefore,E|s̄(t)|
is also bounded on[0,T]. Like the drift-implicit Euler method, we will seek the error
bound fors(t) in order to obtain an error bound for our numerical solutionsn.

Theorem 3.8 Esn−µ =

(
1

1+α∆

)n

(ES0−µ).

Proof Taking expectation in (2.3) yieldsEsn+1 =
Esn+αµ∆

1+α∆ . Then, we haveEsn+1−

µ = Esn+αµ∆−µ−αµ∆
1+α∆ = 1

1+α∆ (Esn−µ). which leads to the desired result.

This theorem guarantees that lim
n→∞

Esn = µ for any size of time step size∆ . Thus,

the discrete approximationsn still keeps mean reversion for any size of time step size
∆ . This makes the compensated split-step backward Euler method seem better than
the Euler-Maruyama method which is the drift-implicit Euler method with the degree
of implicitnessζ = 0 whose expectation of numerical solution might diverge if the
step size is not small enough.

Corollary 3.9 |ES(tn)−Esn|=

∣∣∣∣ e−αn∆ −

(
1

1+α∆

)n∣∣∣∣ |ES0−µ |.

Likewise, we can write corollary 3.5 in terms of orders of∆ at the strike time
T = tL as:

|ES(tn)−Esn|=

∣∣∣∣∣−(
α
2
)∆

∞

∑
k=1

(−1)k+1(αT)k

(k−1)!
+O(∆ 2)

∣∣∣∣∣ |ES0−µ | (3.2)

This indicates that the compensated split-step backward Euler method is first or-
der accurate in approximating the weak error at the strike timeT = tL.

Lemma 3.10 |E(s(t)− s̄(t))| ≤
α∆

1+α∆
|ES0−µ | for any t∈ [0,T].

Proof Let t ∈ [0,T] andn =
⌊

t
∆
⌋
, the integer part oft∆ , so thatt ∈ [tn, tn+1). From

(2.3) and (3.2), we acquire that

s(t)− s̄(t) = sn+α(µ −s∗n+1)(t − tn)+σ
√
|s∗n+1|(W(t)−W(tn))

+δs∗n+1

(
Ñ(t)− Ñ(tn)

)
−s∗n+1.
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Taking expectation through this equation, we have

E(s(t)− s̄(t)) = Esn−
Esn+αµ∆

1+α∆
+α

(
µ −

sn+αµ∆
1+α∆

)
(t − tn)

=
α∆

1+α∆
(Esn−µ)+

α(t − tn)
1+α∆

(µ −Esn)

=
α(∆ − (t − tn))

1+α∆
(Esn−µ).

Taking absolution on both sides of this equation, noting that|∆ − (t − tn)| ≤ ∆ and
applying Theorem 3.8, we obtain

|E(s(t)− s̄(t))| ≤
α∆

1+α∆

(
1

1+α∆

)n

|ES0−µ |

≤
α∆

1+α∆
|ES0−µ |

which completes the proof.

Theorem 3.11 For any t∈ [0,T],

|E(S(t)−s(t))| ≤
α∆

1+α∆
|ES0−µ |(eαT −1).

Proof Let t ∈ [0,T]. From (1.1) and (3.2), we have

S(t)−s(t) =−α
∫ t

0

(
S(r−)− s̄(r)

)
dr+σ

∫ t

0

(√
S(r−)−

√
|s̄(r)|

)
dW(r)

+δ
∫ t

0

(
S(r−)− s̄(r)

)
dÑ(r).

Taking expectation through this equation yields that

E(S(t)−s(t)) =−αE
∫ t

0
(S(r)− s̄(r))dr.

With the same technique in the proof of Theorem 3.7, we can interchange the order
between the expectation and the integral. Taking the absolution and applying Lemma
3.10, we acquire

|E(S(t)−s(t))|= α
∣∣∣∣
∫ t

0
E (S(r)− s̄(r))dr

∣∣∣∣

≤ α
∫ t

0
|E (S(r)− s̄(r))|dr

≤ α
∫ t

0
|E (S(r)−s(r))|dr+α

∫ t

0
|E (s(r)− s̄(r))|dr

≤ α
∫ t

0
|E (S(r)−s(r))|dr+α

∫ t

0

α∆
1+α∆

|ES0−µ |dr

= αt
α∆

1+α∆
|ES0−µ |+α

∫ t

0
|E (S(r)−s(r))|dr.
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Like the proof of Theorem 3.7, we can apply Theorem 3.2 to this inequality and
finally obtain

|E(S(t)−s(t))| ≤ αt
α∆

1+α∆
|ES0−µ |+α

∫ t

0
αr

α∆
1+α∆

|ES0−µ |e
∫ t
r αdvdr

=
α∆

1+α∆
|ES0−µ |

(
αt +α2

∫ t

0
reαt−αrdr

)

=
α∆

1+α∆
|ES0−µ |

(
αt +α2

[
eαt

α2 −
t
α
−

1
α2

])

=
α∆

1+α∆
|ES0−µ |(eαt −1)

≤
α∆

1+α∆
|ES0−µ |(eαT −1)

which completes the proof.

From this theorem, sinceα∆
1+α∆ ≤ α∆ , we also have that

|E(S(t)−s(t))| ≤ α∆ |ES0−µ |(eαT −1).

Consequently, the order of weak convergence for the compensated split-step back-
ward Euler numerical solution for the SDE with jumps (1.1) is 1.0.

4 Computational details

We perform numerical experiments using both schemes with parametersα = 4,µ =
0.5,σ = 0.3,λ = 6,δ = 0.1,S0 = 1, andT = 0.5 for a range of time step sizes∆
. For the drift-implicit Euler method, we consider 7 different values of degree of
implicitnessζ : 0, 0.25, 0.4, 0.5, 0.6, 0.75, and 1. Specifically, for each method,
we consider 5 different sizes of∆ : 2−9,2−8,2−7,2−6 and 2−5. For each time step
size ∆ , we generate 5,000,000 sample paths. Then, we measure the error in weak
sense, which is|ES(T)−EsL|, and plot these errors with corresponding sizes of time
step size∆ . Here,ES(T) can be calculated from Theorem 3.3, and we findEsL by
averagingsL of all 5,000,000 paths.

5 Numerical results and discussions

First, we show, for both methods, computable weak error bounds from Theorem 3.7
and Theorem 3.11 as well as weak errors at the strike timeT from Corollary 3.5
and Corollary 3.9. The error bounds are computed using the parameters specified in
section 4.

We observe from Table 5.2 that the errors at the strike time for drift-implicit
Euler method withζ = 0, which actually is the Euler-Maruyama method (2.2), drift-
implicit Euler method withζ = 1, and compensated split-step backward Euler method
are closed. In particular, from the formulae of the weak errors from Corollary 3.5 and
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Table 5.1 Weak error bounds for drift-implicit Euler and compensated split-step backward Euler methods
obtained from Theorem 3.7 and 3.11, respectively, whenα = 4,µ = 0.5,σ = 0.3,λ = 6,δ = 0.1,S0 = 1,
andT = 0.5

Method ∆ = 2−9 ∆ = 2−8 ∆ = 2−7 ∆ = 2−6 ∆ = 2−5

DIE (ζ = 0) 0.024957250 0.049914501 0.099829002 0.199658003 0.399316006
DIE (ζ = 0.25) 0.031135751 0.062150351 0.123818917 0.245732927 0.484019401
DIE (ζ = 0.4) 0.034831303 0.069446262 0.138035163 0.272703614 0.532421342
DIE (ζ = 0.5) 0.037290211 0.074291350 0.147439756 0.290411641 0.563740244
DIE (ζ = 0.6) 0.044713456 0.089011617 0.176384984 0.346394608 0.668622150
DIE (ζ = 0.75) 0.055826704 0.111006766 0.219471393 0.429115708 0.821450070
DIE (ζ = 1) 0.074291350 0.147439756 0.290411641 0.563740244 1.064842683
CSSBE 0.024763783 0.049146585 0.096803880 0.187913415 0.354947561

Table 5.2 Weak errors at the strike timeT for drift-implicit Euler and compensated split-step backward
Euler methods acquired from Corollary 3.5 and 3.9, respectively, whenα = 4,µ = 0.5,σ = 0.3,λ = 6,δ =
0.1,S0 = 1, andT = 0.5

Method ∆ = 2−9 ∆ = 2−8 ∆ = 2−7 ∆ = 2−6 ∆ = 2−5

DIE (ζ = 0) 0.000529342 0.001060060 0.002125625 0.004273248 0.008634098
DIE (ζ = 0.25) 0.000265016 0.000531415 0.001068386 0.002159193 0.004409718
DIE (ζ = 0.4) 0.000106420 0.000214219 0.000433970 0.000890176 0.001870210
DIE (ζ = 0.5) 0.000000688 0.000002753 0.000011014 0.000044066 0.000176402
DIE (ζ = 0.6) 0.000105043 0.000208712 0.000411941 0.000802044 0.001517409
DIE (ζ = 0.75) 0.000263639 0.000525908 0.001046357 0.002071067 0.004057002
DIE (ζ = 1) 0.000527965 0.001054554 0.002103602 0.004185203 0.008282685
CSSBE 0.000527965 0.001054554 0.002103602 0.004185203 0.008282685

3.9, we see that drift-implicit Euler method withζ = 1 and compensated split-step
backward Euler method have the same theoretical weak error. Moreover, the errors
for drift-implicit Euler methods withζ = 0.25 andζ = 0.75 are closed together and
less than those for drift-implicit Euler methods withζ = 0 andζ = 1. This behav-
ior applies to the pair of drift-implicit Euler methods withζ = 0.4 andζ = 0.6 as
well. Such behavior implies that a pair of drift-implicit Euler methods withζ = a
andζ = 1−a have weak errors in the same neighborhood, and the drift-implicit The
drift-implicit Euler method attains the lowest weak error whenζ is about 0.5 which
conforms to the higher accuracy order, see equation 3.1.

A graph from the numerical experiments with the parameters specified in section
4 is also presented in Fig. 5.1 In the figure, the x-axis represents the size of time
step size∆ and the y-axis represents the weak error|ES(T)−EsL|. The graph is
plotted in log-log scale fashion thus the slope of each line will represent the order of
convergence in weak sense. The reference line with slope of one is plotted in dash.
From the figure, the results from the numerical experiments agree well with the trend
from formulae of the weak errors from Corollary 3.5 and 3.9.

In Fig. 5.2, graphs that show weak error bounds coming from Theorem 3.7 and
Theorem 3.11 and weak errors at timeT obtained from Corollary 3.5 and Corollary
3.9 together with the weak error plots from corresponding simulations are illustrated.
Here, we can obtain each point of weak error bounds from Table 5.1, weak errors
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Fig. 5.1 Weak error plots from the simulation whenα = 4,µ = 0.5,σ = 0.3,λ = 6,δ = 0.1,S0 = 1, and
T = 0.5

from the simulation from Fig. 5.1, and theoretical weak errors from Table 5.2. The
reference lines with slope of one are also plotted in dash and slope of two is plotted in
dash dot. Notice that the error bounds for drift-implicit Euler and compensated split-
step backward Euler methods do not depend on parametersσ ,λ ,δ . This is because
these parameters relate only to the Wiener process and the compensated Poisson pro-
cess which are martingales.

Comparing between the errors from numerical experiments and the theoretical
weak errors which we obtain from Corollary 3.5 and 3.9 for drift-implicit Euler and
compensated split-step backward Euler methods, we see from Fig. 5.2 that these two
types of error are very closed together. This means that our computer simulation
agrees with the theory.The numerical approximation with drift-implicit Euler with
the degree of implicitnessζ = 1

2 is indeed able to attain the second order accuracy
in predicting weak error as predict by equation 3.1. In the current work, however, the
provided error bounds are in first order accuracy for both methods.

6 Conclusions

In this work, we have provided rigorous numerical error bounds in weak sense for
drift-implicit Euler and compensated split-step backward Euler methods for the mean-
reverting square root process with jumps. The numerical investigations have also been
done with both methods. It is also found numerically that these methods tend to have
order of weak convergence equal to the theoretical prediction.
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Fig. 5.2 Error bounds, weak error plots from the numerical experiments, and theoretical errors for drift-
implicit Euler method withζ = 0 (a),ζ = 0.25 (b),ζ = 0.4 (c), ζ = 0.5 (d), ζ = 0.6 (e),ζ = 0.75 (f),
ζ = 1 (g) and compensated split-step backward Euler method (h) whenα = 4,µ = 0.5,σ = 0.3,λ = 6,δ =
0.1,S0 = 1, andT = 0.5
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ABSTRACT 

In this study, a new penalty method to derive reduced-order Galerkin models for forced 

convective heat transfer with time-dependent boundary conditions. We illustrate this new 

approach by using direct numerical simulation (DNS) data of two- dimensional unsteady 

forced convective heat transfer over a series of heat blocks.  

Keywords: Reduced-order modeling, forced convection, proper orthogonal    

decomposition 

 

 

INTRODUCTION 
  

Convective heat transfer is a scientific field of major interest to engineering and scientific 

researchers, as well as designers, developers, and manufacturers. Its applications run from tiny 

scale problems such as microchannel flows, electronics and semiconductors cooling, bio-heat 

transfer and buildings cooling to planetary scale ones such as upwelling currents in the oceans 

and heat transport in stellar atmospheres. Ability to predict the convective heat transfer behavior 

correctly will thus bring many new efficient innovations that will directly affect our daily life 

especially in energy consumption issues. 

 Due to simulation-based study’s advantages over experimental-based study, it has now 

been widely used in many fields of research including convective heat transfer in order to 

elucidate and predict important characteristics of heat transfer behavior. However, there are two 

main limitations of numerical simulation. First, even though simulation can provide detailed 

data for interested variables (temperature, velocity or pressure etc.), such data may not readily 

imbue the investigator with an increased level of understanding the physics essential to a given 

phenomenon. A careful analysis of the data must be done in order to develop simpler models to 

predict important characteristics of system behavior. This process can be hindered by the 

gigantic size of computed data sets. Second, without the dedication of massive resources, 

numerical simulation of large or non-linear systems remains far too computationally expensive, 

if not possible. 

Both limitations of numerical simulation suggest that a lower-order or low-dimensional 

models for a given phenomenon must be constructed to serve as the basis for additional 

analysis. The intent in constructing such low-dimensional models is twofold: to provide 

quantitatively accurate descriptions of the dynamics of systems at a much lower computational 

cost than the original numerical model and to provide a method by which system dynamics can 

be readily interpreted.  

Proper orthogonal decomposition (POD) is a stochastic tool  which is a popular order 

reduction technique used to  relieve the computational expense required for simulation of very 

high-dimensional systems, for more detail see [1]. Recently, low-dimensional models has been 

constructed and widely applied to both simulation and control of fluid flow problems, see  [2-4] 

for example. There are a number of studies in reduced order model to heat transfer problems, 

see [5] for heat conduction problems, [6] for forced convection problems and [7-8] for the 

natural convection problems .  
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 In this paper, we will construct a reduced-order model based on the proper orthogonal 

decomposition (POD) technique to provide accurate descriptions of the dynamics for forced 

convective heat transfers. This focus of the current study is on the forced convection case with 

time dependent boundary conditions. Apart from the fundamental study of reduced-order 

model, this situation is suitable for developing a boundary feedback control in practical 

applications as well. The reduced-order model is developed through a penalty function Galerkin 

method that provides a treatment to time varying boundary conditions, see [9].  

     The implementation of complicated boundary conditions in Galerkin systems has 

historically been a matter of some controversy; see [10] and the correspondences there after. An 

in-depth study of boundary conditions for Galerkin POD systems was performed in [11]. Herein 

we introduce a penalty method, similar in spirit with the ``tau" method in spectral methods but 

more flexible in many aspects as we will see in this study. 

 

POD-penalty systems for forced convection 
In order to employ time-dependent boundary conditions in low-dimensional models, we 

formulate a new method to construct Galerkin systems. In particular, we incorporate the 

boundary conditions directly into the Navier-Stokes equations as constraints, enforced via 

suitable penalty parameters.  

 

Proper orthogonal decomposition 

       The Proper Orthogonal Decomposition (POD) procedure extracts empirical orthogonal 

features from any ensemble of data. This linear procedure produces useful reduced basis set 

which is optimal in L
2
 sense. In the POD framework for continuous problems, [1], one can 

represent field u(x,t) as follows: 

 

 
is the set of POD basis determined by the eigenvalue problem:  

 

where aj(t) is the set of temporal modes, A is  a specified time interval and C(t,t') is the 

correlation function defined by: 

 

The POD basis is thus defined by: 

 

The non-negative definiteness of the correlation function allows us to order the eigenvalues and 

the corresponding POD modes by . We then can truncate the summation with the 

information retained from the eigenvalues. This framework can be applied to the scalar field 

such as the temperature field as well. The difference is that the resulting POD mode will also be 

in scalar quantity as well. 

 

Governing equations 

         The non-dimensional unsteady, incompressible, momentum and energy equations without 

external forcing or buoyancy effects are: 
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Where Re is the Reynolds number and Pr is the Prandtl number, respectively. 

To derive the reduced-order model we assume that the velocity and temperature fields 

can be written as: 

 

 

where  U0 is the time-averaged field. u(x,t) and T(x,t) are expressed in the linear 

combination of POD modes as follows: 

 

 where aj and bj are the unknown coefficients and defines the vector of 

the POD modal basis of velocity and temperature components, respectively. 

Without loss of the generalization, we assume that the boundary Γ with time-dependent 

boundary condition is located in x-direction. The Galerkin projection of the governing 

equations with the penalty terms included onto the j
th
 POD mode of the velocity and 

temperature field are: 

 

 

where  is the penalty parameter and TΓ is the imposed time dependent boundary 

condition at the boundary Γ. The function Ψ(x) is vanished entirely in the computational 

domain except at the boundary Γ where the function takes value of unity.
   

 

 For the above equation, we can impose the divergence-free constraints in order to 

eliminate the first contribution of the pressure term and, in some case, with the aid from the 

boundary condition of the velocity, the second contribution of the pressure term is eliminated as 

well. 

 We then arrive at the dynamical system that describes the reduced order models for the 

forced convective heat transfer with time dependent boundary. 

 

with a=(a1,a2,…,aM) and b=(b1,b2,…,bM) where M is the number of the POD basis 

retained in the model.    and  include the convective and dissipative terms in the 

momentum and energy conservation laws, respectively. Specifically,  is in the form of 
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 Likewise,    composes of the similar entries except the first term will be altered since 

it consists of the velocity component as well. The major interest is rather in . The full 

form of   can be written as follows:  

 

  Since the term TΓ is time-dependent, we now obtain a non-autonomous system. The 

issue of the sensitivity of the penalty parameter of this system must be further investigated in 

order to compare and elucidate issues in the complicated boundary condition [10]. 

 

Computational details 
Figure 1 shows the computational domain of a demonstration study. The length of the 

computational domain is 120B with the height (H) of 4B. The width of each heated block is L = 

3B and two blocks are placed with a distance S=3B apart. Uniform steady boundary conditions 

are imposed at the inflow boundary. On outflow boundary, the zero Neumann condition on 

velocity is imposed while No-slip condition is imposed to the rest boundaries.  Boundary 

conditions for the temperature field are specified as follows: the temperature is kept fixed at 

unity on the heated blocks and the zero Neumann condition on temperature is prescribed on all 

other boundaries. In this simulation, we set B = 1. The time dependent boundary condition for 

temperature is prescribed in the horizontal region between the first and the second blocks. 

Converged solutions were obtained by using the spectral/hp element solver, [12] with additional 

module of forced convection. The spectral/hp element method allows us to solve partial 

differential equations in complex geometries with the exponential convergence can still be 

obtained for C
0
 solutions. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Part of the computation domain. 

 

Full details and discussion of the results will be presented in the conference and in other 

upcoming works 
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