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Abstract
Project Code : TRG5180007

Project Title : Simulation and control of convective heat transfer using low-

dimensional model

Investigator : Sirod Sirisup, National Electronics and Computer Technology Center

E-mail Address : sirod.sirisup@nectec.or.th

Project Period : May 2008- May 2010 ( 2 years)

Convective heat transfer is a scientific field of major interest to engineering and
scientific researchers, as well as designers, developers, and manufacturers. Ability to
predict the convective heat transfer behavior correctly will thus bring many new efficient
innovations that will directly affect our daily life especially in energy consumption issues.

Simulation-based study has now been widely used in many fields of research
including convective heat transfer. However, there are two main limitations of numerical
simulation. First, even simulation can provide detailed data for interested variables such
data may not readily imbue the investigator with an increased level of understanding the
physics essential to a given phenomenon which usually relate to the gigantic size of
computed data sets. Second, without the dedication of massive resources, numerical
simulation of large or non-linear systems remains far too computationally expensive.

A lower-order or low-dimensional models for a given phenomenon is thus
constructed to overcome such problems and serve as the basis for additional analysis.
Recently, low-dimensional models has been constructed and widely applied to both
simulation and control of fluid flow problems.

In this research, we have successfully constructed a low-dimensional model based
on the proper orthogonal decomposition (POD) technique to provide accurate descriptions
of the dynamics of both free and forced convective heat transfers with only a handful
degree of freedoms. However, a bifurcation analysis on the POD-based model with respect
to its parameter(s) indicates that this model is rather suitable for simulation not control

purpose.

Keywords: Reduced order model, Proper orthogonal decomposition, heat transfer
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Numerical Investigation and Proper Orthogonal
Decomposition of Forced Convective Heat Transfer from
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Abstract

Incompressible flow around a pair of circular cylinders in staggered arrange-
ments with heated upstream cylinder is investigated in this study. Three
dimensional direct numerical simulation (DNS) is performed based on the
spectral /hp element method with the Reynolds numbers, Re, of 500 and the
Prandtl number, Pr, of 0.71. The longitudinal separation (L) to diameter
(D) ratio (L/D) and transverse separation (T') to diameter (D) ratio (7'/D)
are varied from 2.5 to 5 and from 0.5 to 1, respectively. The first investiga-
tion focuses on the effects of cylinders placement on both flow structures and
local heat transfer characteristics of both cylinders. Later, the identification
of major spatially distributed features is done by extracting the proper or-
thogonal decomposition (POD) modes from ensemble of simulation solutions.
The correlation between flow, heat transfer characteristics and POD modes
is studied.
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1. Introduction

Wake vortex dynamics have long been major subject of interest to engi-
neers and scientists for many years. Understanding wake dynamics behind a
bluff body has been great challenge for decades. Despite of its simple geome-
try, circular cylinder wake flows exhibit rich flow features and yet have many
direct engineering and science applications. The alternate shedding pattern
of vortices in the wake region leads to large fluctuating pressure forces in
a direction transverse to the flow and may cause vortex-induced vibrations
which in some cases can trigger structural failures [1].

Two staggered cylinders flows have been subject of interest to engineer-
ing and scientific community relevance to fluid mechanics because the flows
can represent many important physical phenomena, such as flow interference,
complicated vortex shedding and transition. In the last decade, several stud-
ies of staggered cylinders flows have been investigated to provide a through
standing of flow structures and interaction of the cylinders’ wakes, [2, 3, 4, 5].
The flow interferences of the staggered cylinders flows are defined into two
basic categories, [6] as:

e Wake interference: One of the cylinders is partially or completely sub-
merged in the wake of the other, and

e Proximity interference: The two cylinders are located close to each
other, but neither is submerged in the wake of the other.

Both types of flows clearly yield complicated flow structures as well as
highly complex wake vortex dynamics. Besides, they also express compli-
cated behavior of mass and energy transfer. The heat transfer characteristics
of the cylinders usually depend on a given interference regime resulted from
cylinders placements. However, the wake vortex dynamics in interference
regime can play important role in changing heat transfer characteristics of
both upstream and downstream cylinders. For example, the thermal energy
is trapped in viscous layer and released from the cylinder surface by eddies
and the fluctuation of heat transfer characteristics, measured by the Nusselt
number, is related to the longitudinal pitch ratio (L /D) between the cylinders
7, 8].

Recently, experimental studies of heat transfer from two staggered cylin-
der have been performed, [9] where a new classification of interference regimes
as mode S-I1,S-1I, T-1 and T-II and their corresponding heat and momentum



transportation mechanisms have been proposed and identified for the flow
with Re = 7000.

In present study, we aim to investigate the effects of the cylinder place-
ment on both flow structures and heat transfer characteristics of two cylinders
placed in staggered arrangements at Re = 500 via direct numerical simula-
tion (DNS) approach. Here, we have carried out numerical studies on both
types of interferences. Specifically for proximity interference, we focus on the
biased gap flow and reattachment regimes which exhibit suppression of three
dimensionality. In the studies, the transverse pitch ratio (T /D) and longitu-
dinal pitch ratio (L/D) are systematically varied where the Reynolds number
of the present study is chosen to be Re = 500 where three dimensional effects
are well developed, [10].

We also apply the POD technique to identify dominant spatially dis-
tributed features or POD modes of both flow and temperature fields. The
proper orthogonal decomposition (POD) method is a statistical tool used
to identify low-dimensional descriptions for multidimensional systems, [11].
The method has been successfully applied in wide range of scientific applica-
tions, for example, fluid flows, biomechanics and geophysical fluid dynamics
[12, 13, 14, 15, 16]. The results of analyzing POD modes will allow us to
elucidate the heat transfer mechanism in the problem. The paper is orga-
nized as follows. In next section, we describe the details of the simulation
and analysis methods used in the current investigation. Then, we present
the results with some discussions. Finally, we close the paper with summary
of the investigation.

2. Simulation and Analysis methods

2.1. Computational details

Non-dimensional unsteady, incompressible, momentum and energy equa-
tions without external forcing or buoyancy effects used in this study are:

Veu = 0
ou 1,
E—Fu-Vu = —Vp—i—EVu
orT 1
— VT = 2T
3t+u v RePrV

Where, Re is the Reynolds number, Pr is the Prandtl number. Here Re is
DU
defined through: —— and D is the cylinder diameter.
v



A computational domain with dimension of 40D x 9D x 1D (streamwise-
crossflow-spanwise) was employed in this investigation. A pair of cylinders
both with diameter of D = 1 are placed in various staggered arrangements
with longitudinal separation (L) to the cylinder diameter (D) ratio (L/D)
and transverse separation (T) to the cylinder diameter (D) ratio (T/D) of
2.5-5.0 and 0.5-1.0, respectively. In each case, the computational domain is
decomposed into approximately 13000 tetrahedral elements.

Uniform steady inflow is imposed on inflow boundary, zero Neumann con-
dition is imposed on outflow boundary while no-slip condition is imposed to
cylinder walls and symmetry condition is prescribed for crossflow and span-
wise directions. Temperature is set to be unity only for the upstream cylinder
and zero for the downstream cylinder as well as the inflow boundary while
zero Neumann condition on temperature is imposed on the outflow boundary
and symmetry condition is prescribed for crossflow and spanwise directions.
The flow parameters used in this study are Re = 500 with Pr = 0.71. Con-
verged solutions were obtained by solving the governing equations using the
spectral /hp element library [17]. The Characteristic Galerkin method is cho-
sen to be a thermal stabilizer in the solver. The verification of the solver has
been performed and the time-averaged mean Nusselt numbers are compared
with the several experimental data. As shown in figure 1, the numerical
results are in good agreement with the experimental data [18] .
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Figure 1: Comparisons of numerical and experimental data [18]

From the resolution dependency study, we conclude that the Jacobi poly-
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nomial basis of order seven is sufficient for this investigation. Characteristics
of local heat transfer are obtained by measuring the local Nusselt number on
both cylinders’ walls.

2.2. Proper orthogonal decomposition (POD) method

The proper orthogonal decomposition (POD) procedure extracts an em-
pirical orthogonal features from any ensemble of data. This linear procedure
produces useful reduced basis set which is optimal in L? sense. In the POD
framework for continuous problems, [11], one can represent flow field u(x,t)
(or temperature field T'(x,t)) as follows:

o0

u(t,x) = Zak(t)¢k(x)7 (1)

k=0

where {¢,(x)} is the set of POD basis or dominant spatially distributed
features which are determined by the eigenvalue problem

/C(t,t')ak(t’)dt’ = heaip(t), teA, (2)

where {ax(t)} is the set of temporal modes, A is a specified time interval and
C(t,t") is the correlation function defined by

C(t,t) = /Qu(t,x)-u(t',x)dx. (3)

The POD basis is thus defined by:

op(x) = /Aak(t)u(t,x)dt, VE. (4)

The non-negative definiteness of the correlation function (3) allows us to
order the eigenvalues and the corresponding POD modes by Ap > 5\k+1. The
POD modes contain useful information on spatial structures which can also
be physically interpreted.

Here, the POD method is applied to extract dominant features or POD
modes, ¢, (x), from ensembles of simulation solutions.



3. Results and discussion

3.1. Vortex dynamics and flow interferences

3.1.1. Proximity interference regime

Reattachment regime: Reattachment flow has been observed in the
case of L/D = 2.5 with T/D = 0.5 | see Figure 2, first row. In this case,
the gap between two cylinders is small enough to induce shear layer sepa-
rating from the upstream cylinder reattaches or interacts with shear layer
of downstream cylinder. This scenario is quite similar to the interference
classification as mode S-Ia [9]. This was also identified as reattachment flow
regime [5]. The development of three dimensional structures is well observed
in the flow. We have observed the vortex structures which are quite (not
exactly) similar to those of the case of single cylinder in the downstream
wake. However, the vortex structures in near wake of the upstream cylinder
is suppressed and there is also a significant interaction between the spanwise
and streamwise vortices. Inner shear layer of the upstream cylinder merges
with some part of the outer shear layer of the upstream cylinder which con-
sequently convected downstream which later enveloping the spanwise vortex
of the downstream cylinder.

Biased gap regime: This flow regime is observed in flow configuration
of L/D = 2.5 with T/D = 1.0, see Figure 2, second row . The shear layer
separating form the inner surface of the upstream cylinder does not reattach
onto the surface of the downstream cylinder. Instead it deflects toward the
upstream cylinder and interacts with outer shear layer of the upstream cylin-
der. The flow in this regime is identified as mode S-II [9] and as the biased
gap regime [5]. The downstream evolution is in such a way that the two
spanwise vortices of the upstream cylinder amalgamate with spanwise vortex
with the vortices shed from the downstream cylinder forming asymmetrical
wake structures. We have observed that streamwise vortex shed from the
outer side of the upstream cylinder envelopes spanwise vortices shed from
the inner side of both cylinders. In this case, the location of the envelopment
is faraway from the downstream cylinder compared to that in the previous
regime.

3.1.2. Wake interference regime

This flow regime is observed in the case of L/D = 5.0 with both of
T/D = 0.5 and T'/D = 1.0. In this regime, the downstream cylinder is sub-
merged in the wake of the upstream cylinder, see figure 2, third and fourth



rows . The flow characteristic is identified as mode S-Ib [9]. We have observed
that the streamwise vortex in the wake of upstream cylinder is fully devel-
oped and for the case of T//D = 1.0, impinges on the downstream cylinder
then brakes into two equal parts, outer and inner parts, upon impingement.
The outer part interacts with the shear layer of the downstream cylinder,
while the inner part sweeps along the inner side of the downstream cylinder.
The spanwise vortex shed from the inner side of the upstream cylinder, only
in the case of T/D = 0.5, impinges directly onto the front surface of the
downstream cylinder, deforms and convected along the surface of the down-
stream cylinder. However, The spanwise vortex shed from the outer side of
the upstream cylinder is convected downstream without interacting with the
downstream cylinder. The structures of vortex street in the outer region of
downstream wake, for the case of T/D = 1.0, compose of the envelopment of
the spanwise vortex of the downstream cylinder by the streamwise vortex of
the upstream cylinder and for the case of T/D = 0.5, compose of the envel-
opment of the spanwise vortex of the downstream cylinder by the spanwise
vortex of the upstream cylinder.

3.2. Local heat transfer characteristics
3.2.1. Proximity interference regime

Reattachment regime: Figure 3, first row, shows an instantaneous
plot of the thermal energy. The thermal energy from the inner side of the
upstream cylinder is released, reattaches onto the front surface of the down-
stream cylinder and also circulates in the gap between the cylinders. This
mechanism directly influences characteristics of heat transfer near the front
surface of downstream cylinder. The thermal energy from the outer side of
the upstream cylinder is likewise released, convected and rolls up to interact
with back surface of downstream cylinder. The interaction leads to strong
fluctuations of the Nusselt number in that region, see figure 5, first row.

An instantaneous distribution of the Nusselt number on the surface of the
upstream cylinder is plotted in figure 4, first row . The Nusselt number highly
fluctuates in the area that is closed to the separation point which locates at
the 25 to -50 degrees (measured from the middle of back of the cylinder). The
fluctuations of the Nusselt number at the area depend on spanwise vortex
forming process on the outer surface of the upstream cylinder.

Biased gap regime: Similar to the flow characteristic, the thermal
layer does not reattach onto the downstream cylinder but instead deflect
toward the upstream cylinder and is convected downstream into the wake
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region of the downstream cylinder. Thus, only small effects on heat transfer
characteristics of the front surface of the downstream cylinder are founded.

The distribution of the Nusselt number on the surface of the upstream
cylinder is presented in figure 4, second row . The figure shows that, the
fluctuations of the Nusselt number are found in the region of 0 to -50 degrees
(measured from the middle of the back of the cylinder). The scenario of
the fluctuations of the Nusselt number at the area is similar to that of the
reattachment regime but in this regime the highly fluctuated area is shifted
downward.

The distribution of the local Nusselt number on the downstream cylinder
surface is presented in figure 5, second row. The figure shows that the clusters
of high temperature formed by the vortices shed from inner surface of the
upstream cylinder does not make any major influences over the heat transfer
characteristics of the front surface of downstream cylinder. However, the
clusters bring some minor effects on heat transfer characteristics of the back
surface of the downstream cylinder.

3.2.2. Wake interference regime

In this regime, the thermal structures in the upstream wake are in full
three dimension, see figure 3, third and fourth rows. The heat transfer char-
acteristics of the upstream cylinder are observed as follows. We have found
that the mechanism of heat transfer behind the upstream cylinder is domi-
nated by the vortex shedding process. The cold fluid is induced during the
process of forming spanwise vortex results in increment in Nusselt number.
The consequence can also be observed by a thinner thermal layer, see figure
5 third and fourth rows, as well as the rise of local Nusselt numbers in that
area, see figure 4, third and fourth rows. The thermal energy is later shed
together with spanwise vortex forming clusters of high temperature. In the
case T'/D = 1.0, the clusters of high temperature formed by vortices shed
from outer surface of the upstream cylinder are convected downstream with-
out interacting with the downstream cylinder. However, the clusters of high
temperature formed by the vortices shed from inner surface of the upstream
cylinder are convected and move to the lower back side of the downstream
cylinder. From figure 3, fourth row, we can conclude that the clusters of
high temperature formed by the vortices shed from inner surface of the up-
stream cylinder are the primary heat sources of the downstream cylinder.
The streamwise vortex shed from the upstream cylinder impinges directly
onto the front surface of the downstream cylinder causing sudden change in



the local Nusselt number of the front surface of the downstream cylinder.
The vortex then splits into two parts and thermal energy captured by the
vortex is transferred to the shear layer of the down stream cylinder. However,
this mechanism yields only partial heat contribution.

In the case of /D = 0.50, the clusters of high temperature formed by
the vortices shed from inner surface of the upstream cylinder together with
those formed by the spanwise vortex impinge onto the front surface of the
downstream cylinder and then split into two parts, see Figure 3, third row.
The outer part shed to a wider vortex street while the inner part shed to a
narrower vortex street. The impingement leads to a significant increment of
Nusselt number on the front surface of the downstream cylinder. However,
if we compare the magnitudes of the Nusselt number of the case T'/D = 1.0
to that of the case T/D = 0.5 , even though their profiles are quite similar
but the peak of the Nusselt number of the case of T'/D = 0.5 is about twice
as much compared to that of the case T'/D = 1.0. This concludes that the
majority of the heat is convected by the spanwise vortices.

Figure 2: Instantaneous vorticity surfaces. Top to bottom: T/D=0.5, T/D=1.0 and Left
to Right: L/D=2.5, L/D=5.0, dark gray and light gray are stream-wise vorticity and
span-wise vorticity, respectively

3.3. Proper orthogonal decomposition

We focus on the energy distribution of the POD modes for each stag-
gered arrangements. In all cases, the first POD mode (the mean mode) of



Figure 3: Instantaneous temperature surfaces.

both velocity and temperature fields dominates all other modes by capturing
more than 60% of the total energy captured by all of the modes, see figure
6. The pairing of higher POD modes (the second and higher modes) of the
temperature field is clearly observed in the case of L/D=5.0 with 7'/ D=1.0.
This pairing behavior has been observed in the case of heat transfer from
single cylinder at the same Reynolds number. This indicates that the down-
stream cylinder does not play any major role in changing characteristics of
the temperature field in the case of L/D=5.0 with 7'/ D=1.0.

The analysis of major spatial distribution features of both interference
types is described as follows.

3.3.1. Proximity interference regime

Reattachment regime: The reattachment to the downstream cylinder
of the flow and temperature field is fully captured by the first POD mode.
The higher POD modes of the temperature field indicates that the main ac-
tivity region in this case includes the wake region behind the downstream
cylinder. The 2S vortex shedding pattern is clearly observed and well cap-
tured in the velocity POD modes.

Biased gap regime: In this regime, we clearly see the deflection of
the flow in the first POD mode toward the upstream cylinder. The main
activity region of the temperature field includes only in some region below
and behind the downstream cylinder (only some part of the wake region of the
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Figure 4: Instantaneous local heat transfer characteristics of the upstream cylinder. Distri-
bution of local Nusselt number and the corresponding temperature iso-surface plot around
the upstream cylinder. Top to bottom: T/D=0.5, T/D=1.0 and Left to Right: L/D=2.5,
L/D=5.0

Figure 5: Instantaneous local heat transfer characteristics of the upstream cylinder. Dis-
tribution of local Nusselt number and the corresponding temperature iso-surface plot
around the downstream cylinder. Top to bottom: T/D=0.5, T/D=1.0 and Left to Right:
L/D=2.5, L/D=5.0

downstream cylinder). More complicated flow structures are observed in the
POD modes of the temperature field as well. POD modes of velocity show
more distinctive wake regions of each cylinder which are clearly observed
from the distribution of the velocity modes, especially the crossflow velocity
component, from the upstream and downstream cylinders.
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Normalized eigentalues

Figure 6: Energy distribution of POD modes for all staggered arrangements. Top: POD
modes of velocity fields. Bottom: POD modes of temperature fields

3.3.2. Wake interference regime

In this regime, the main activity region of the temperature field covered
entire wake regions from both cylinders which confirms the flow and heat
characteristics in previous section. The patterns of the POD modes become
more distinctive for each cylinder and are clearly observable in the case of
L/D=5.0 with T/D=1.0 and Re = 500. This fact together with the distri-
bution of the energy distribution of the eigenvalues in figure 6 indicates that
the existence of the downstream cylinder provides only slightly effects to the
pattern of the temperature field compared to the case of single cylinder. We
also find that the lower T'/D ratio, the more complicated structures in the
wake region are formed.
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Figure 7: Proper orthogonal decomposition modes. Left to right: (L/D=2.5, T/D=0.5),
(L/D=5.0, T/D=1.0). Top to bottom: streamwise velocity first mode and second mode,
temperature first mode and second mode.

4. Conclusions

Incompressible flow around a pair of circular cylinders in staggered ar-
rangements with heated upstream cylinder is investigated in this paper. The
longitudinal pitch ratio (L/D) and transverse pitch ratio (T/D) are varied
from 2.5 to 5 and 0.5 to 1, respectively. The flow parameters used in this
study are Re = 500 with Pr = 0.71. The configurations of the cylinders
yield two types of flow interferences which are proximity interference and
wake interference. We have found that there are only small effects on heat
transfer characteristics on the surface of the downstream cylinder in the bi-
ased gap regime while the wake interference regime leads to large interference
effects on local heat transfer characteristic of the downstream cylinder. The
majority of the heat is convected by the spanwise vortices. From the proper
orthogonal decomposition analysis, we found that the spatial distribution of
the modes in each flow regime directly relates to the flow characteristics in
that particular regime. Besides, the analysis indicates that for a larger L/D
and T'/D ratio, the existence of the downstream cylinder slightly affects the
pattern of the temperature field compared to the case of single cylinder.

13



Acknowledgements

Sirod Sirisup gratefully acknowledges the supportiing grant from the
Thailand Research Fund under the contract TRG5180007. The authors ac-
knowledge National Electronics and Computer Technology Center, National
Science and Technology Development Agency and the Thai National Grid
Center for providing computing resources that have contributed to the re-
search results.

References

[1] R. Blevins, Flow Induced Vibration, Van Nostrand Reinhold Company,
New York, New York, 1990.

[2] S. Mittal, International Journal for Numerical Method in Fluids 25
(1997) 1315-1344.

[3] D. Sumer, Journal of Fluids and Structure 20 (2005) 255-276.

[4] B. Carmo, S. Sherwin, P. Bearman, R. Willden, J.Fluid Mech 597 (2008)
1-29.

[5] M. Akbari, S. Price, Journal of Fluids and Structure 20 (2005) 533-884.
[6] M. Zdrakovich, Journal of Fluids and Structures 1 (1987) 239-261.

[7] 1. Tanno, K. Morinishi, K. Mutsuno, H. Nishida, ASME Journal of Heat
Transfer 49 (206) 1141-1148.

[8] E. Buyruk, Int.Comm.Heat Mass Transfer 29 (2002) 355-366.
9] J. Hu, Y. Zhou, J. Fluid Mech 607 (2008) 81-107.
[10] C. Williamson, Ann. Rev. Fluid Mech. 28 (1996) 477-539.

[11] G. Bekooz, P. Holmes, J. Lumley, Ann. Rev. Fluid Mech. 25 (1993)
539-575.

[12] S. Ravindran, International Journal for Numerical Methods in Fluids 34
(2000) 425-448.

[13] J. Rambo, Y. Joshi, International Journal of Heat and Mass Transfer
50 (2007) 539-551.

14



[14] N. Arifin, M. Noorani, A. Kilicman, Nonlinear Dynamics 48 (2007) 331—
337.

[15] D. Rempfer, Annual Review of Fluid Mechanics 35 (2003) 229-265.

[16] S. Sirisup, G. Karniadakis, D. Xiu, I. Kevrekidis, Journal of Computa-
tional Physics 207 (2005) 568-587.

[17] G. Karniadakis, S. Sherwin, Spectral /hp Element Methods for Compu-
tational Fluid Dynamics, Oxford University Press, 2005.

[18] S. Churchill, M. Bernstein, ASME Journal of Heat Transfer 99 (1977)
300-306.

15



Editorial Manager(tm) for BIT Numerical Mathematics
Manuscript Draft

Manuscript Number:
Title: On numerical methods for mean-reverting square root processes with jumps
Article Type: Research Paper
Corresponding Author: Dr. Sirod Sirisup, Ph.D.
Corresponding Author's Institution: National Electronics and Computer Technology Center
First Author: Sirod Sirisup, Ph.D.
Order of Authors: Sirod Sirisup, Ph.D.; Raywat Tanadkithirun; Kittipat Wong, Ph.D.
Abstract: We study two numerical methods: drift-implicit Euler method and compensated split-step
backward Euler method by numerically investigating on their performance as well as accuracy in
solving the mean-reverting square root process with jumps in weak sense. Rigorous error bounds and

theoretical errors in weak sense for both methods are provided.

Suggested Reviewers:



Manuscript
Click here to download Manuscript: BITtemplate_ray.pdf Click here to view linked References

BIT manuscript No.
(will be inserted by the editor)

1
2
3
g On numerical methods for mean-reverting square root
6 processes with jumps
he
8 Sirod Sirisup - Raywat Tanadkithirun -
9 Kittipat Wong
10
11
12
13
14
15 Received: date / Accepted: date
16
17
18 Abstract We study two numerical methods: drift-implicit Euler method and com-
19 pensated split-step backward Euler method by numerically investigating on their per-
20 formance as well as accuracy in solving the mean-reverting square root process with
21 jumps in weak sense. Rigorous error bounds and theoretical errors in weak sense for
;g both methods are provided.
24 Keywords Stochastic differential equations with jumpslumerical methods
25 Mean-reverting square root processes with jumps
26
27 Mathematics Subject Classification (2000)60H35- 60H10- 60G99
28
29
gg 1 Introduction
gg Stochastic differential equation (SDE) models find applications in various areas espe-
34 cially in economics and finance. One of the most famous models is geometric Brown-
35 ian motion which is the asset-price model used in Black-Scholes-Merton option pric-
36 ing formula. The mean-reverting square root process [2] is an SDE which has found
37 considerable use in mathematical finance as an alternative to geometric Brownian
38 motion. It is used as a model for volatility, interest rate, and other financial quanti-
39 ties, and forms the stochastic volatility component of Heston’s asset price model [3].
40 Moreover, it can be used for pricing bonds and barrier options [5].
41 However, introducing a jump process into such process makes the model become
jé more realistic. The mean-reverting square root process with jumps on which we focus
44 S. Sirisup
45 National Electronics and Computer Technology Center, Pathumthani, 12120, Thailand
46 E-mail: sirod.sirisup@nectec.or.th
47 R. Tanadkithirun K. Wong
48 Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
49 E-mail: {xraywat, kittipat.w}@gmail.com
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


http://www.editorialmanager.com/bitn/download.aspx?id=6906&guid=742532c7-ce4f-45b9-ab1c-da359c02a339&scheme=1
http://www.editorialmanager.com/bitn/viewRCResults.aspx?pdf=1&docID=386&rev=0&fileID=6906&msid={8669E070-ECB0-4416-BA6D-5F1C5F0B23C4}

O©CoO~NOUTAWNPE

2 S. Sirisup, R. Tanadkithirun, K. Wong

in this work has the form

dSt) = a(u—S(t7))dt+o/S(t—)dW(t) + 6t~ )dN(t) (1.1)

wheret € [0,T], S(t~) denotes limS(r), W is a Wiener process ardis a compen-
r—t—

sated Poisson process. He®4,) represents the spot price at timeThe parameter

u is the long run equilibrium price or mean reversion leveis the mean reversion
rate,o is the degree of volatility around it caused by noise from the Wiener process,
andd is the degree of jumps.

We can determine solution’s expectation, variance and covariance functions or
even higher-order moments once strong solution in explicit form of an SDE with
jumps has been found . Unfortunately, the strong solution in an explicit form to this
SDE with jumps has yet been found. Rather, we would like to find its numerical ap-
proximation. Note that even though all coefficient functions satisfy the linear growth
condition, we still can not directly apply the standard convergence theory for numer-
ical approximation to this model due to the non-Lipschitz diffusion coefficient. It has
the form of square root function.

To this end, we consider two numerical methods: drift-implicit Euler method and
compensated split-step backward Euler method. We numerically investigate their per-
formances as well as accuracy in solving this particular model in weak sense. Rigor-
ous computable error bounds and theoretical errors in weak sense for both methods
are also presented.

In next section, we provide details of the numerical schemes. In section 3, we
provide rigorous error bounds in weak sense for drift-implicit Euler and compen-
sated split-step backward Euler methods and other relevant theorems. In section 4,
we present results from computational experiments. Lastly, we conclude our work in
section 5.

2 Numerical Schemes

First of all, we provide the assumptions for the mean-reverting square root process
with jumps . Throughout this paper, 160,.7,P) be a complete probability space
with a filtration { % }1>0 satisfying the usual conditions. L'&f be a Wiener process
andN a Poisson process with intensitysuch thatN(t) = N(t) — At is the corre-
sponding compensated process. Assuming\WWandN are independent, and both
processes are defined on the aforementioned probability space. This paper considers
(1.1) in whicha,A and o are positive witha +Ad > 0, u is nonnegativeS(0) is
independent dfV andN, andS(0) = S > 0 almost surely. The conditiam+A & > 0
can force (1.1) to have a unique strong solution which will never become negative
with probability one, see [8].

Now, we present the two numerical schemes. We first divide the interested time
interval [0,T] into L equal parts with a fixed time step size= { so that we have
an equidistant time discretizatiofto,t1,...,t.} with t, = nA. Then, we define the
discrete-time drift-implicit Euler approximation to (1.1) introduced in [1] by setting
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s =ES and form

Sii1 =S +{{a(U—sn11) + (1= Q)a (U —%)} A+ 0/|sn|AWh + 35:4AN, (2.1)

a(u— o le)
st (u sn)A+ IsulAWnJr S

AN
1+ ZaA 1+ ZaA 1+laA™ "

where the parametef is the degree of implicithes&Wy, = W (th+1) —W(ty) is a
Wiener process increment, which is normally distributed with mean zero and variance
A, andAN, = N(th+1) — N(ty) is a compensated Poisson process increment, which
has the distributiorPoi(AA) — AA. Note that any numerical method that is directly
applied to (1.1) may break down due to negative values being supplied to the square
root function. However, we have known that the solutit) will never become
negative almost surely. Thus, the SDE with jumps (1.1) is equivalent to

dSt) = a(u—St7))dt+ o+/|St-)[dW(t) + dS(t~)dN(t)

which is in a better form computationally. For this reason, we|ggénstead ofs,
under the square root function. Notice that when the degree of implicitness is zero,
this method turns out to be the well-known Euler-Maruyama scheme

S141 = Sh+ A (K — )4 + 0/[s0| AW + 354N, (2.2)

With the exact same equidistant time discretizafityts, .. .,t, } defined earlier,
the compensated split-step backward Euler scheme for (1.1) introduced in [4] is de-
fined by lettingsy = ES and forming

Shi1 =S+ a(H—8,,1)A

_ sitaua
- 14aA’
Sit1 = St 04/ [Sh41|AWh + 65,114 \ (2.3)

=S+ a(H—S1)A+04/[S,,1|AWh + 3551 AN,

In each marching forward step from to s,.1, this method has two splitted sub-
steps dealing explicitly to the deterministic and stochastic parts. Specifically, the first
substep that is to fing;,, ; concerns only with the deterministic component, and the
second substep which is to firgd, 1 deals with the random parts from the Wiener
process and the compensated Poisson process.

3 Error Bounds

This section provides rigorous error bounds in weak sense for drift-implicit Euler and
compensated split-step backward Euler methods. The key ingredients of our proof are
the Fubini’s theorem and the Gronwall’s inequality. Let us state these two theorems
in the versions needed in our proof.
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Theorem 3.1 [7] If A and B areo-finite measure spaces, and either

[ [1teeyldydx<eor [ [ foxy)ldxdy<e,
AJB BJA
then//f(x,y) dy dx://f(x,y)dx dy.

AJB BJ/A

Theorem 3.2 [6] Let u,f,g and rg be nonnegative continuous functions defined on
J=[a,b],and uf) < f(t) +9g(t) / h(s)u(s)ds for allt € J. Then, for any € J,
Ja

u(t) < f(t)+glt /h (s)eshnandrgs,

The following theorem provides the expectation of the exact solution of (1.1) for
any timet.

Theorem 3.3 [8] For the SDE with jumps (1.1),
ESt)-p=e “(ES—p)
S0 thattlmgo ESt)=pu

Also, note here that since the exact solut&t) will never become negative al-
most surely|S(t)| = S(t) almost surely. Thu& |S(t)| =ESt) = u+e “YES— )
which is bounded ofD, T].

3.1 Drift-Implicit Euler Method

We will first deal with the drift-implicit Euler method. Throughout this subsectsn,
denotes the drift-implicit Euler numerical solution obtained from (2.1). Let us define
the continuous-time drift-implicit Euler approximation

a(p—slr)) VIEG] t55()
S°+/ 1+aA dr+ Omdw(f)+ 0mdN(r) (3.1)

wheret € [0,T] ands(t) is the step functios(f) := s, for t € [tn,t1). From (2.1)
and (3.1), we see that at each grid pains(tn) = sn. This yields that an error bound
for s(t) will imply an error bound for our numerical soluticg. We will aim at the
error bound fos(t) on the whole interva0, T].

Notice that after we fix the intervdD,T] and the time step siz8, E|sy| is
bounded. HenceE|s(t)| is also bounded ofD,T]. We also note here that both
andN are martingales, ans} is independent oW, andAN, for eachn.

Theorem 3.4Es,— = (1-— %2 ) (Es— )
AESTH= T T 70n H-
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Proof Taking expectation in (2.1) yields th&ts,;1 = Es, + 0’({14:(7?5”

Esii— M= (Es—H)— % = (Esi— M) ( HZM) This leads to the
desired result.

Therefore,

This theorem guarantees that IEJ:;,] U when 1— HZM > —1 or equivalently
(1-2¢)aA < 2. Hence, the dlscrete approximatiorsg) still keeps mean reversion
when( e [%, 1] for any size of time step siz& and when{ € [O,%) for sufficiently
small size of time step siz&, sayA < ﬁ From Theorem 3.3, we also imme-
diately obtain the following corollary.

efanA_ 1_L "
1+ CaA

This corollary gives us the exact weak error at each timetgtegspecially at the
strike timeT =1, :

Corollary 3.5 |[ESty) —Esy| = [ES— Y.

T
CEel_|aoaT_[(q__ a8 \? B
EST)—Es|—| e (1 MGA) ‘IESJ ul.

One can write corollary 3.5 in terms of orders/bft the strike timél' =t as:

1 k+l(aT)

|ES<T>—EsL|—|1 Az +O@Y)|[ES—H  (31)

Thus from 3.1, it is clear that the numerical approximation with the drift-implicit
Euler method with the degree of implicitnegs= % is second order accurate and first
order accurate with other value of the degree of implicitregs approximation of
the weak error at the strike timie=t, , respectively.

Lemma 3.6 ‘E (s(t) - J%) ‘ <Dgasgpue. foranyte [0,T] where

Tiras ES— uI(IZ 3+3)+qu}, if (1-27)ad <2
“ES -l (17— |+%)+Zu},
if (1—20)ad > 2

Daaguil = 1+zcm{|1 l+ZorA

and L is the number of time steps.

Proof Lett € [0,T] andn = | % |, the integer part off, so thatt € [tn,tq;1). Since
s(tn) = s, at grid pointt,, we have
sty a(u-s)
SO~ T 702 5" 11zan ¢

0%y ~ Sn
R 1+Zlal (N(t) B N(t”)) 14ZaAd’

[0)
s OV

1+2ah (W(t) —W(tn))
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By taking expectation, we acquire

E (s(t) st ) = Esﬁria(uiE%) (t—tn) Eh

" 1+ZaA 1+ZaA 1+laA
L
-en-n gl e,
Taking absolution through this equation yields that
(o~ ) el ot

We observe thaf A — (t —tn)| < (| — 3|+ 3) A. Applying Theorem 3.4, we obtain

A
‘E (S(t)_ 15§LA> ’ = ‘1_ 1+aZaA

This leads to our claim.

(IC-31+3)ad  Zaua

n
BS - H—17174a 1+cad’

Remark that in computer simulatiod,is usually so small, thugl — 2{)aA < 2
holds; therefore, in this case, we choose

A 1 1
Da.asui = J{m{E%—ul (Z—2|+2> +Zu}

whose formula does not depend on the number of time éteps

Theorem 3.7 For any te [0,T],

S50 = (Dassyuee + 1ok ) (@7 1),

where Oy a g, u,¢,L IS defined as in Lemma 3.6.

Proof Lett € [0,T]. From (1.1) and (3.1), we have

-0 - 205 [ () 5o
vof <M— H'f;)g) awir)

+5/0t <S(r) - 1f(erA> dNi(r).
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Note that replacing™ by r will not have any effect on the Lebesgue integrals. Taking
expectation yields

E(S(t) —s(t)) = 1$ﬁA orut—orE/ot (S(r)— 1+S72m> dr

Next, for the right hand side of the above equation, we will apply Theorem 3.1 in
order to interchange the order between the expectation and the integral. Note that the
expectation is the integral with respect to the probability meaBureer the whole

spaceQ, and bothQ and|0,t] arec-finite measure spaces. SwE%S( o ngr A
E|S(r)| + fﬁ{m which is bounded of, T], we have that

' s(r)
/0 E‘S(r) 1+ZO{A‘dr<oo.

Then, we can interchange the order between the expectation and the integral as de-
sired. After that taking the absolution and applying Lemma 3.6, we have

(s - st)] = | £ 5ggamt—a [ (S0~ 5 Jar

JaA t s(r)
= 1+¢a Aa“t+a/ E<S(r)_1+zom)‘dr
A
glioz’ Aaut+a/ E(S(r) — ()] dr
Jror/Ot E(S(r)—lf(zrim)‘dr
t
< 1iz AauH—a/ |E (S(r) — (r))|dr+a/ DaasopeLdr

(DMSOML+1(+O’Z“ A)at+a/ IE(S(r) —s(r)|dr.

Now, we will apply Theorem 3.2 to this inequality. Observe that we have to check
only that|E(S(t) —s(t))| is continuous. Notice th&St) = u+e “(ES — u) and

the absolution function are continuous. We claim that) is also continuous; hence,

we can acquire the desired condition for applying Theorem 3.2. To show our claim,
we first note that for every measurable functiong f (r)dr is continuous irt. From

(3.1), we have that

t
u—Ss(r) out / _
E =E E =E — E
st) o+a /o 1+ZaAdr s°+1+ZorA 1+ZaA .Os(r)dr
SinceE|s(t)| is bounded, again, we can interchange the order between the expectation
and the integral and finally acquire

aput

Es(t):EsﬁHZaA—lHaA/o Es(rdr
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which is continuous int. Therefore, we can now apply Theorem 3.2 to the above
inequality that yields

(SO ~5t)] < (Passct + gz ) o
+or/0t (DaAsoqu-li_Z“ A)arefrt“d"dr
= <DaA50uZL+1Z+ZL;A> (at+012 /(:re”t“’dr)
(e 5
= (DGAS()HZL+15—FZI.1AA>
Jer

Jaul
S(D“SO““+1+Z0A

(at+a

which completes the proof.

From Lemma 3.6 and Theorem 3.7, we see thét i# 2{)aA < 2,
al 1 1 aT
BSOSt < - pos { ES w1 (10 31+3) + 2} @ -1
1 1
<an{lEs—pl(1£- 51+ 3) +2u @ -0,

Hence, the order of weak convergence for the drift-implicit Euler numerical solution
for the SDE with jumps (1.1) when time step sixés sufficiently small is 1.0.

Recall thats, ands(t) agree on every grid point and Corollary 3.5 gives a weak
error at each grid poirt. Because the number of time steps is finite,

efanA_ 1_L "
1+ZlaA

is an error bound for our numerical solutignfor every grid point. This differs from

the error bound in Theorem 3.7 which provides the error for the continuous-time
drift-implicit Euler approximations(t) for the whole interval0,T]. Another good
aspect of the error bound formula in Theorem 3.7 is that it has a simple form which is
easy to be calculated and let us know the order of weak convergence for this method.

max
n

|[ES—u|

3.2 Compensated Split-Step Backward Euler Method

Now, we focus on the compensated split-step backward Euler method. The frame-
work in this subsection is similar to that in the previous one thus some remarks and
details of the proof will be omitted. Throughout this subsectgmenotes the com-

pensated split-step backward Euler numerical solution of (1.1) which is obtained from
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(2.3). We now define the continuous-time compensated split-step backward Euler ap-
proximation by

stt) = so+ a/ot(u —szr))drw/; NEGIE ) +5/0t sNAN(r),  (3.2)

wheret € [0,T] ands(t) is the step functios ) := s, ; = 398 for t € [tn, tn;1).
From (2.3) and (3.2), we know thatt,) = s, at every grid point,. Note that after
we fix the interval0, T] and the time step siz&, E|s,| is bounded. Therefor&|s(t)|

is also bounded of®, T]. Like the drift-implicit Euler method, we will seek the error

bound fors(t) in order to obtain an error bound for our numerical soluggn

n
Theorem 3.8 Es,— u = (1+1CIA> (E—u).

Proof Taking expectation in (2.3) yieldss, .1 = Esl“igA“A Then, we hav&€ s, 1 —
EsvtapA—u—apuld

U= Trad = lJrorA(Esq L). which leads to the desired result.

This theorem guarantees trp]e_x)t Ibs, = u for any size of time step siz&. Thus,

the discrete approximatios still keeps mean reversion for any size of time step size

A. This makes the compensated split-step backward Euler method seem better than
the Euler-Maruyama method which is the drift-implicit Euler method with the degree

of implicitness{ = 0 whose expectation of humerical solution might diverge if the

step size is not small enough.
g and _ 1 "
1+aA

Likewise, we can write corollary 3.5 in terms of orders/bfat the strike time
T=t_as:

Corollary 3.9 |[ESty) —Es| = [ES—u|.

k+1(a-|-)

[ESty) —Es| =|— Az +0(4%)|[ES -yl (3.2)

This indicates that the compensated split-step backward Euler method is first or-
der accurate in approximating the weak error at the strike Timaet, .

Lemma 3.10 |[E(s{t) —S(t))| < |ES — | foranyte [0,T].

1+A

Proof Lett € [0,T] andn = | % |, the integer part of;, so thatt € [t,th1). From
(2.3) and (3.2), we acquire that

S() — St) = S+ A (1 — S5, 1) (t—t) + 0 /185 4| (W(H) ~ W(t))
+ 8851 (N(O) = N(tn) ) — Shea
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Taking expectation through this equation, we have

E(st) - 5) = Es - T 9K g ( - W) (t 1)

_aA alt—tn)
= Tiaa B0 HF
a(A—(t—tn))

=" 1ras (ESH)

Taking absolution on both sides of this equation, noting that (t —t,)| < A and
applying Theorem 3.8, we obtain

E(st) - 80| < lfﬁm (553) ES-#

<
_HMIES) u|

which completes the proof.

Theorem 3.11 For any te [0,T],

E(S) — )| < oo [ES— HI(ET ~1),

Proof Lett € [0,T]. From (1.1) and (3.2), we have
S(t)—s(t):—a/ot(S(r*)—sZr)dr+0/ (x/S(r —/|8(r)] )
+5 [ (sir7)~80) oN(r).

Taking expectation through this equation yields that

E(S(t) - =—aE/ (S(r) — &) dr

With the same technique in the proof of Theorem 3.7, we can interchange the order
between the expectation and the integral. Taking the absolution and applying Lemma

3.10, we acquire
B st =a| [ E(sn) &)
<a [ (s -8r)ldr
<a [ B0 - sw)ldr+a [ E(sH -8l
t
ga/o |E (S(r) —s(r)) |dr+a/ m|ES{)—u|dr

ES -kl +a [ [E(SK)-s)|dr

= ot

1+aA
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Like the proof of Theorem 3.7, we can apply Theorem 3.2 to this inequality and
finally obtain

L ady,
[E(S(t) —s)] < GH A\ES) u|+a/ 1+ AIES) ule @vdr
al 2 at—ar

—|ESQ - u|<at+a /Ore dr>

1+GA

1+aA‘E‘°° ”'(O’Haz[i_;_alzb
=1f§A\EsJ—u|<e“t—1>

SHM\ESU pi(e"m —1)

which completes the proof.

From this theorem, sincg:% < aA, we also have that

[E(S(t) —s))| < aA[ES— p|(e”T —1).

Consequently, the order of weak convergence for the compensated split-step back-
ward Euler numerical solution for the SDE with jumps (1.1) is 1.0.

4 Computational details

We perform numerical experiments using both schemes with paranseters u =
0.50=03A=6,0=0.1,%=1,andT = 0.5 for a range of time step sizés

. For the drift-implicit Euler method, we consider 7 different values of degree of
implicitnessZ : 0, 0.25, 0.4, 0.5, 0.6, 0.75, and 1. Specifically, for each method,
we consider 5 different sizes df : 279,278 2-7 276 and 2°°. For each time step
size A, we generate 5,000,000 sample paths. Then, we measure the error in weak
sense, which iSEEST) — Eg_|, and plot these errors with corresponding sizes of time
step sizeA. Here,EST) can be calculated from Theorem 3.3, and we fisl by
averagings. of all 5,000,000 paths.

5 Numerical results and discussions

First, we show, for both methods, computable weak error bounds from Theorem 3.7
and Theorem 3.11 as well as weak errors at the strike Tinfieom Corollary 3.5

and Corollary 3.9. The error bounds are computed using the parameters specified in
section 4.

We observe from Table 5.2 that the errors at the strike time for drift-implicit
Euler method with{ = 0, which actually is the Euler-Maruyama method (2.2), drift-
implicit Euler method with! = 1, and compensated split-step backward Euler method
are closed. In particular, from the formulae of the weak errors from Corollary 3.5 and
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Table 5.1 Weak error bounds for drift-implicit Euler and compensated split-step backward Euler methods

obtained from Theorem 3.7 and 3.11, respectively, winen4,u = 05,0 =03,A =6,6 =0.1,5 =1,

andT =05

Method A=2"9 A=28 A=277 A=26 A=2"5

DIE ({ =0) 0.024957250  0.049914501 0.099829002 0.199658003 0.399316006
DIE({ =025) 0.031135751 0.062150351 0.123818917 0.245732927  0.484019401
DIE({ =04) 0.034831303 0.069446262 0.138035163 0.272703614 0.532421342
DIE({ =05)  0.037290211 0.074291350 0.147439756 0.290411641 0.563740244
DIE({ =06) 0.044713456 0.089011617 0.176384984 0.346394608 0.668622150
DIE({ =0.75) 0.055826704 0.111006766 0.219471393 0.429115708 0.821450070
DIE ({ =1) 0.074291350 0.147439756 0.290411641 0.563740244 1.064842683
CSSBE 0.024763783  0.049146585 0.096803880 0.187913415 0.354947561

Table 5.2 Weak errors at the strike timi for drift-implicit Euler and compensated split-step backward
Euler methods acquired from Corollary 3.5 and 3.9, respectively, whed, 1 =0.5,0 =0.3,A =6,0 =
01,9 =1andT =05

Method A=27° A=28 A=27T7 A=25 A=275

DIE ({ =0) 0.000529342  0.001060060  0.002125625 0.004273248  0.008634098
DIE ({ =025) 0.000265016 0.000531415 0.001068386 0.002159193  0.004409718
DIE({=04)  0.000106420 0.000214219  0.000433970 0.000890176  0.001870210
DIE({=05)  0.000000688 0.000002753 0.000011014  0.000044066  0.000176402
DIE({=06) 0.000105043 0.000208712 0.000411941  0.000802044  0.001517409
DIE ({ =0.75) 0.000263639 0.000525908  0.001046357  0.002071067  0.004057002
DIE ({ =1) 0.000527965  0.001054554  0.002103602  0.004185203  0.008282685
CSSBE 0.000527965  0.001054554  0.002103602  0.004185203  0.008282685

3.9, we see that drift-implicit Euler method with= 1 and compensated split-step

backward Euler method have the same theoretical weak error. Moreover, the errors

for drift-implicit Euler methods with{ = 0.25 and{ = 0.75 are closed together and
less than those for drift-implicit Euler methods wigh= 0 and{ = 1. This behav-
ior applies to the pair of drift-implicit Euler methods with= 0.4 and{ = 0.6 as
well. Such behavior implies that a pair of drift-implicit Euler methods wjth- a
and{ = 1— a have weak errors in the same neighborhood, and the drift-implicit The
drift-implicit Euler method attains the lowest weak error witeis about 0.5 which
conforms to the higher accuracy order, see equation 3.1.

A graph from the numerical experiments with the parameters specified in section
4 is also presented in Fig. 5.1 In the figure, the x-axis represents the size of time

step sizeA and the y-axis represents the weak ef®§T) — Eg |. The graph is

plotted in log-log scale fashion thus the slope of each line will represent the order of
convergence in weak sense. The reference line with slope of one is plotted in dash.
From the figure, the results from the numerical experiments agree well with the trend
from formulae of the weak errors from Corollary 3.5 and 3.9.

In Fig. 5.2, graphs that show weak error bounds coming from Theorem 3.7 and
Theorem 3.11 and weak errors at tifie@btained from Corollary 3.5 and Corollary
3.9 together with the weak error plots from corresponding simulations are illustrated.
Here, we can obtain each point of weak error bounds from Table 5.1, weak errors
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Fig. 5.1 Weak error plots from the simulation when=4,u =0.5,0 =0.3,A =6,0 =0.1,% =1, and
T=05

from the simulation from Fig. 5.1, and theoretical weak errors from Table 5.2. The
reference lines with slope of one are also plotted in dash and slope of two is plotted in
dash dot. Notice that the error bounds for drift-implicit Euler and compensated split-
step backward Euler methods do not depend on paramet@rs). This is because

these parameters relate only to the Wiener process and the compensated Poisson pro-
cess which are martingales.

Comparing between the errors from numerical experiments and the theoretical
weak errors which we obtain from Corollary 3.5 and 3.9 for drift-implicit Euler and
compensated split-step backward Euler methods, we see from Fig. 5.2 that these two
types of error are very closed together. This means that our computer simulation
agrees with the theory.The numerical approximation with drift-implicit Euler with
the degree of implicitnesg = % is indeed able to attain the second order accuracy
in predicting weak error as predict by equation 3.1. In the current work, however, the
provided error bounds are in first order accuracy for both methods.

6 Conclusions

In this work, we have provided rigorous numerical error bounds in weak sense for
drift-implicit Euler and compensated split-step backward Euler methods for the mean-
reverting square root process with jumps. The numerical investigations have also been
done with both methods. It is also found numerically that these methods tend to have
order of weak convergence equal to the theoretical prediction.
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Fig. 5.2 Error bounds, weak error plots from the numerical experiments, and theoretical errors for drift-
implicit Euler method with{ =0 (a),{ =0.25 (b),{ =0.4 (c),{ =05 (d),{ =0.6 (e),{ =0.75 (f),

{ =1 (g) and compensated split-step backward Euler method (h) whed,u =0.5,0 =0.3,A =6,0 =

0.1, =1,andT =05
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ABSTRACT

In this study, a new penalty method to derive reduced-order Galerkin models for forced
convective heat transfer with time-dependent boundary conditions. We illustrate this new
approach by using direct numerical simulation (DNS) data of two- dimensional unsteady
forced convective heat transfer over a series of heat blocks.

Keywords: Reduced-order modeling, forced convection, proper orthogonal
decomposition

INTRODUCTION

Convective heat transfer is a scientific field of major interest to engineering and scientific
researchers, as well as designers, developers, and manufacturers. Its applications run from tiny
scale problems such as microchannel flows, electronics and semiconductors cooling, bio-heat
transfer and buildings cooling to planetary scale ones such as upwelling currents in the oceans
and heat transport in stellar atmospheres. Ability to predict the convective heat transfer behavior
correctly will thus bring many new efficient innovations that will directly affect our daily life
especially in energy consumption issues.

Due to simulation-based study’s advantages over experimental-based study, it has now
been widely used in many fields of research including convective heat transfer in order to
elucidate and predict important characteristics of heat transfer behavior. However, there are two
main limitations of numerical simulation. First, even though simulation can provide detailed
data for interested variables (temperature, velocity or pressure etc.), such data may not readily
imbue the investigator with an increased level of understanding the physics essential to a given
phenomenon. A careful analysis of the data must be done in order to develop simpler models to
predict important characteristics of system behavior. This process can be hindered by the
gigantic size of computed data sets. Second, without the dedication of massive resources,
numerical simulation of large or non-linear systems remains far too computationally expensive,
if not possible.

Both limitations of numerical simulation suggest that a lower-order or low-dimensional
models for a given phenomenon must be constructed to serve as the basis for additional
analysis. The intent in constructing such low-dimensional models is twofold: to provide
quantitatively accurate descriptions of the dynamics of systems at a much lower computational
cost than the original numerical model and to provide a method by which system dynamics can
be readily interpreted.

Proper orthogonal decomposition (POD) is a stochastic tool which is a popular order
reduction technique used to relieve the computational expense required for simulation of very
high-dimensional systems, for more detail see [1]. Recently, low-dimensional models has been
constructed and widely applied to both simulation and control of fluid flow problems, see [2-4]
for example. There are a number of studies in reduced order model to heat transfer problems,
see [5] for heat conduction problems, [6] for forced convection problems and [7-8] for the
natural convection problems .
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In this paper, we will construct a reduced-order model based on the proper orthogonal
decomposition (POD) technique to provide accurate descriptions of the dynamics for forced
convective heat transfers. This focus of the current study is on the forced convection case with
time dependent boundary conditions. Apart from the fundamental study of reduced-order
model, this situation is suitable for developing a boundary feedback control in practical
applications as well. The reduced-order model is developed through a penalty function Galerkin
method that provides a treatment to time varying boundary conditions, see [9].

The implementation of complicated boundary conditions in Galerkin systems has
historically been a matter of some controversy; see [10] and the correspondences there after. An
in-depth study of boundary conditions for Galerkin POD systems was performed in [11]. Herein
we introduce a penalty method, similar in spirit with the ““tau" method in spectral methods but
more flexible in many aspects as we will see in this study.

POD-penalty systems for forced convection

In order to employ time-dependent boundary conditions in low-dimensional models, we
formulate a new method to construct Galerkin systems. In particular, we incorporate the
boundary conditions directly into the Navier-Stokes equations as constraints, enforced via
suitable penalty parameters.

Proper orthogonal decomposition

The Proper Orthogonal Decomposition (POD) procedure extracts empirical orthogonal
features from any ensemble of data. This linear procedure produces useful reduced basis set
which is optimal in L? sense. In the POD framework for continuous problems, [1], one can
represent field u(x,t) as follows:

b t) = 3 a,(t)e; ().

J=0

¢, (x)is the set of POD basis determined by the eigenvalue problem:
[ C(t.t)a;()dt = Na;(t), teA,
JA

where aj(t) is the set of temporal modes, A is a specified time interval and C(t,t") is the
correlation function defined by:

C(t,t) = / u(t,x) - u(t',x)dx.
Ja
The POD basis is thus defined by:
Bx) = [ atueend. vi
JA

The non-negative definiteness of the correlation function allows us to order the eigenvalues and
the corresponding POD modes by Ax. > Ar+1. We then can truncate the summation with the
information retained from the eigenvalues. This framework can be applied to the scalar field
such as the temperature field as well. The difference is that the resulting POD mode will also be
in scalar quantity as well.

Governing equations
The non-dimensional unsteady, incompressible, momentum and energy equations without
external forcing or buoyancy effects are:
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Where Re is the Reynolds number and Pr is the Prandtl number, respectively.
To derive the reduced-order model we assume that the velocity and temperature fields

can be written as:
V(x.t) = Up(x) + u(x,t),

T(x,t) = Ty(x) + T(x,t),

where Uy is the time-averaged field. u(x,t) and T(x,t) are expressed in the linear
combination of POD modes as follows:
u(x,y, t) = % (x, y)a;

)
vz, y,t) = o ( y)a;(t)

T(x.y.t) = ¢ (x,y)b;(t)
where a; and b; are the unknown coefficients and ¢ = (0", 0"), & defines the vector of
the POD modal basis of velocity and temperature components, respectively.

Without loss of the generalization, we assume that the boundary T with time-dependent
boundary condition is located in x-direction. The Galerkin projection of the governing
equations with the penalty terms included onto the j" POD mode of the velocity and
temperature field are:

(¢
(

t

/qs ( +(V-V)V+Vp— };vzv) dx =0,

/qu ( + (V- T)T—RG—PV T+n7Y(x )(T—TF)) dx =0,

where 7; is the penalty parameter and Tr is the imposed time dependent boundary
condition at the boundary T'. The function W(x) is vanished entirely in the computational
domain except at the boundary I" where the function takes value of unity.

¢; - Vpdx = — / V- @pdx + / ¢, - npds.
0 J J 082

For the above equation, we can impose the divergence-free constraints in order to
eliminate the first contribution of the pressure term and, in some case, with the aid from the
boundary condition of the velocity, the second contribution of the pressure term is eliminated as
well.

We then arrive at the dynamical system that describes the reduced order models for the
forced convective heat transfer with time dependent boundary.

= fi(a)
db,

" = 4,(b) — Gy (b)

with a=(a,a,,...,am) and b=(by,by,...,by) where M is the number of the POD basis
retained in the model. f(a) and g(b) include the convective and dissipative terms in the
momentum and energy conservation laws, respectively. Specifically, f(a) is in the form of

13t Annual Symposium on Computational Science and Engineering (ANSCSE 13)



( ¢j (¢ - \_)d)k)dx)aaﬁ
Q
( 1

RE/ o V2o, der/ ¢, ((¢;- V)Uyg c.’x+/ ¢, ((Ug - )(f)i)u’.x)a
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Likewise, g(b) composes of the similar entries except the first term will be altered since
it consists of the velocity component as well. The major interest is rather in G;(b). The full
form of can be written as follows:

Gj(b) = n (biﬁﬁf(ifr) - ¢ (xlp)dx — .[('TF — To(x|r)) - <.-5Tj(~'1‘-|r-)d;zf) ;

Since the term T is time-dependent, we now obtain a non-autonomous system. The
issue of the sensitivity of the penalty parameter of this system must be further investigated in
order to compare and elucidate issues in the complicated boundary condition [10].

Computational details

Figure 1 shows the computational domain of a demonstration study. The length of the
computational domain is 120B with the height (H) of 4B. The width of each heated block is L =
3B and two blocks are placed with a distance S=3B apart. Uniform steady boundary conditions
are imposed at the inflow boundary. On outflow boundary, the zero Neumann condition on
velocity is imposed while No-slip condition is imposed to the rest boundaries. Boundary
conditions for the temperature field are specified as follows: the temperature is kept fixed at
unity on the heated blocks and the zero Neumann condition on temperature is prescribed on all
other boundaries. In this simulation, we set B = 1. The time dependent boundary condition for
temperature is prescribed in the horizontal region between the first and the second blocks.
Converged solutions were obtained by using the spectral/hp element solver, [12] with additional
module of forced convection. The spectral/hp element method allows us to solve partial
differential equations in complex geometries with the exponential convergence can still be
obtained for C° solutions.

Figure 1.  Part of the computation domain.

Full details and discussion of the results will be presented in the conference and in other
upcoming works
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