

รหัสโครงการ: TRG5280015

ชื่อโครงการ: แบบจำลองทางพลวัตเชิงโมเลกุลที่รวมระเบียบวิธี แบบ อินิชิโอ กลาสต์ ความตั้มและกลาสต์โมเลกุลของไอออนโลหะขนาดใหญ่และประจุสูงในน้ำ

ชื่อผู้วิจัย: ผู้ช่วยศาสตราจารย์ ดร.ชินพงษ์ กฤตยากรนุพงศ์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

E-mail Address: chinapong.kri@kmutt.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

ในงานวิจัยนี้ ทำการศึกษาสมบัติทางโครงสร้างและกลาสต์ของ V^{3+} HS^- HCl และ HSO_4^- ในน้ำ คำนวณโดยแบบจำลองพลวัตเชิงโมเลกุลที่รวมกลาสต์ความตั้มและกลาสต์โมเลกุล และแบบจำลองพลวัตเชิงโมเลกุลกลาสต์ความตั้มในสสารประจุ สมบัติทางโครงสร้างแสดงในเทอมการกระจายในแนวรัศมีและเลขโคออร์ดิเนชันของชั้นชอลเวชัน ซึ่งค่าที่ได้จากการคำนวณสอดคล้องกับผลการทดลองเป็นอย่างดี นอกจากนี้ การจัดเรียงตัวของโมเลกุลน้ำรอบตัวถูกละลายสามารถอธิบายโดยค่าการกระจายของมุมต่าง ๆ สำหรับสมบัติทางกลาสต์วิเคราะห์ โดยค่าระยะเวลาเฉลี่ยของตัวทำละลายในชั้นชอลเวชันและค่าสเปคตรัมการสั่นเพื่อเปรียบเทียบกับผลการทดลอง สุดท้าย เวลาเฉลี่ยการเกิดพันธะไฮโดรเจนถูกใช้สำหรับอธิบายความเสถียรของพันธะไฮโดรเจนในแต่ละระบบ

คำหลัก: V^{3+} HS^- HCl HSO_4^- แบบจำลองพลวัตเชิงโมเลกุล

Project Code: TRG5280015

Project Title: *Ab initio* quantum mechanical/molecular mechanics molecular dynamics simulations of some large and highly charged metal ions in aqueous solution

Investigator: Assistant Professor Dr. Chinapong Kritayakornupong

E-mail Address: chinapong.kri@kmutt.ac.th

Project period: 2 years

Abstract:

The hybrid *ab initio* quantum mechanical/molecular mechanical (QM/MM) and *ab initio* quantum mechanical charge field (QMCF) molecular dynamics simulations were performed to study structure and dynamics of the V^{3+} , HS^- , HCl , and HSO_4^- . Hydration structures were determined in terms of radial distribution functions and coordination numbers, which are in good agreement with the experiments. In addition, tilt- and θ -angle distributions were also elucidated for describing the geometrical arrangement of water molecules around the solute species. For the dynamical information, the mobility of ligands in the solvation shell for each system was estimated by means of the mean residence times. The vibrational spectra were analyzed to compare with the experimental IR results. Finally, the hydrogen bond life times were determined to characterize a very different stability of H-bonds in each system.

Keywords: V^{3+} , HS^- , HCl , HSO_4^- , Molecular dynamics simulation