

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาพันธุกรรมในส่วนโปรโมเตอร์ของยีน
โคลเลสเตรอรอล เอสเทอร์ ทรานสเฟอร์ โปรตีน ในคนไทยที่มีไขมันใน
เลือดชนิดเอชดีแอลสูงมาก

โดย ดร.วนิช เปล่งพานิชย์ และคณะ

เดือน ปี ที่เสร็จโครงการ: 31 พฤษภาคม 2555

รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาพัฒนาระบบในส่วนโปรโมเตอร์ของยีน
โคลเลสเตรอรอล เอสเทอร์ ทรานส์เฟอร์ โปรตีน ในคนไทยที่มีไขมันใน
เลือดชนิดเออชดีแอลสูงมาก

คณะผู้วิจัย

สังกัด

ชื่อหัวหน้าโครงการ วิจัยผู้รับทุน: ดร.วนิช เปล่งพาณิชย์ จุฬาลงกรณ์มหาวิทยาลัย

ชื่อนักวิจัยที่ปรึกษา: รศ.ดร.นพ. วีรพันธุ์ โขวิทูรกิจ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย
และจุฬาลงกรณ์มหาวิทยาลัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย
สาขาวิชา และจุฬาลงกรณ์มหาวิทยาลัยไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อภาษาอังกฤษ

CETP efficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes

Atherosclerosis, 2011 vol216: 370-373

Objectives: To identify the genetic variant in the CETP gene of the proband with high HDL-C and low CETP activity and to investigate whether HDL from the CETP-deficient subject was dysfunctional in the reverse cholesterol transport (RCT) pathway. **Methods:** We sequenced the CETP gene and assessed its promoter activity. Cholesterol efflux and hepatic cholesteryl ester delivery studies were also performed using the proband's HDL. **Results:** A proband was a compound heterozygote for a known D459G variant and a novel 18-bp deletion mutation in the CETP promoter. This promoter mutation markedly reduced the transcriptional activity in HepG2 cells. HDL2 from this subject increased SR-BI-mediated cholesterol efflux, whereas cholesteryl ester delivery into hepatocytes was maintained. **Conclusion:** A novel deletion mutation in the CETP promoter is associated with high HDL-C and decreased promoter activity. HDL from this CETP-deficient subject was not dysfunctional in mediating two main steps of RCT assessed in vitro.

บทคัดย่อภาษาไทย

CETP efficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes

Atherosclerosis, 2011 vol216: 370-373

อนุภาคไขมันเอชดีแอล (high density lipoprotein: HDL) เป็นอนุภาคไขมันในเลือดชนิดหนึ่งซึ่งมีหน้าที่สำคัญในการขนถ่ายโคเลสเตรอรอล ส่วนเกินออกจากเนื้อเยื่อหรือผนังหลอดเลือด การทำงานของอนุภาคไขมันชนิดนี้ต้องอาศัยเอนไซม์หลายตัวในการควบคุมให้มีการขนส่งคอเลสเตรอรอลเป็นไปโดยปกติ Cholesteryl Ester Transfer Protein (CETP) เป็นเอนไซม์ตัวหนึ่งที่สำคัญ ทำหน้าที่ในการแลกเปลี่ยนไขมันไตรกลีเซอไรด์ (Triglyceride) และคอเลสเตรอรอลระหว่างอนุภาคเอชดีแอลกับวีแอลดีแอล (VLDL: very low density lipoprotein) การพر่องเอนไซม์ซีอีทีพี (CETP deficiency) มีผลทำให้การขนถ่ายคอเลสเตรอรอล (Cholesterol) ของเอชดีแอลผิดปกติและส่งผลทำให้ระดับเอชดีแอลสูงขึ้น จากการศึกษาซึ่งทำในคนชนชาติญี่ปุ่นพบว่าระดับไขมันในเลือดชนิดเอชดีแอลสูงซึ่งเกิดจากการพร่องเอนไซม์ซีอีทีพีมีความเกี่ยวข้องในแง่ที่อาจจะเพิ่มการเกิดภาวะหลอดเลือดแดงแข็งและโรคเส้นเลือดหัวใจตีบ

การศึกษานี้ได้ตรวจสอบความผิดปกติทางพันธุกรรมในส่วนโปรโมเตอร์ของยีนซีอีทีพี ในคนไทยเพื่อจะได้ทราบว่าความผิดปกติทางพันธุกรรมในโปรโมเตอร์ของยีนซีอีทีพีมีบทบาทมากน้อยเพียงใดต่อระดับ HDL ซึ่งคณะผู้วัยจัยได้พบความผิดปกติแบบ novel 18 bp deletion mutation ในคนไข้ 1 คน และไม่พบความผิดปกติตั้งกล่าวในสมาชิกในครอบครัว หลังจากได้ทำการยืนยันในระดับเซลล์ พบว่าความผิดปกติตั้งกล่าวทำให้ระดับโปรตีน CETP ลดลงจริง และเป็นสาเหตุให้ระดับ HDL สูงขึ้น

นอกจากนี้คณะผู้วัยจัยยังได้ทำการศึกษาการทำงานของ HDL ในผู้ที่มี novel 18 bp deletion mutation ว่ามีการเปลี่ยนแปลงหน้าที่ที่สำคัญในกระบวนการ reverse cholesterol transport pathway หรือไม่ ผลจากการทดลองพบว่าการทำงานของ HDL มีกระบวนการ compensate ซึ่งมีผลให้มีการดึงโคเลสเตรอรอลที่มากเกินไปออกจากเซลล์ในอัตราที่สูงกว่าคณบกติ ผ่านกระบวนการ SR-BI mediated cholesterol efflux รวมทั้งมีการนำโคเลสเตรอรอลส่วนเกินนั้นไปกำจัดทิ้งที่ตับสูงขึ้นกว่าคณบกติอีกด้วย

สรุป คนไข้ที่พบ CETP promoter mutation และมีระดับ HDL สูง ซึ่งก่อนหน้านี้เข้าใจว่า HDL นั้นอาจไม่สามารถทำหน้าที่ได้ตามปกติ และอาจก่อให้เกิดโรคเส้นเลือดอุดตันตามมา แต่จากการศึกษานี้พบว่า HDL ในคนที่พบ mutation สามารถทำหน้าที่ในการดึงโคเลสเตรอรอลส่วนเกินออกจากเซลล์และนำโคเลสเตรอรอลไปที่ตับเพื่อกำจัดทิ้งได้อย่างปกติ

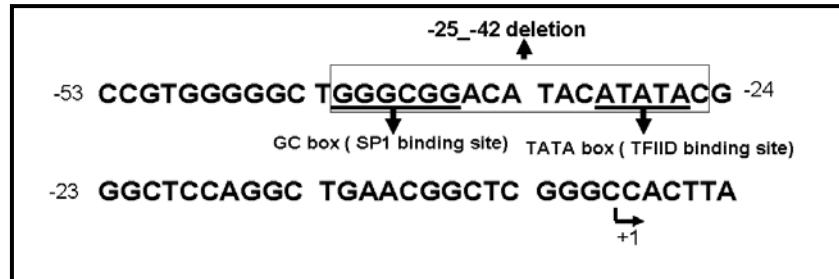
Keyword: Hyperalphalipoproteinemia, Cholesteryl ester transfer protein, Genetics, Reverse cholesterol transport, Cholesterol efflux, Scavenger receptor class B Type I, ABCG1

Executive summary

ความผิดปกติที่พบในส่วน promoter หรือ exon ของยีนหนึ่งๆ อาจส่งผลให้มีการสร้างโปรตีนชนิดนั้นผิดปกติจริง แต่เนื่องจากร่างกายประกอบด้วยการทำงานหลักหลาย pathways จึงเป็นไปได้ที่จะมีกระบวนการทำงานในส่วนอื่นๆ เพื่อทดแทนส่วนที่ขาดหาย

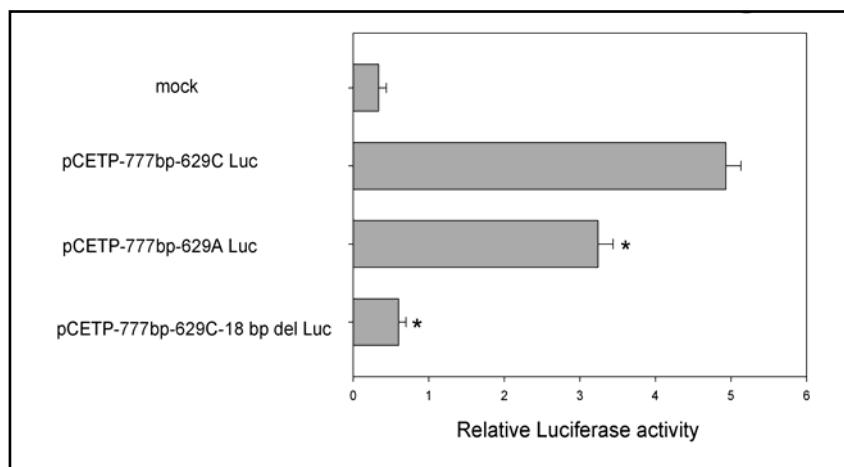
เหตุการณ์วิจัย

งานวิจัยนี้ได้ดำเนินการตามแผนที่วางไว้ ดังตาราง

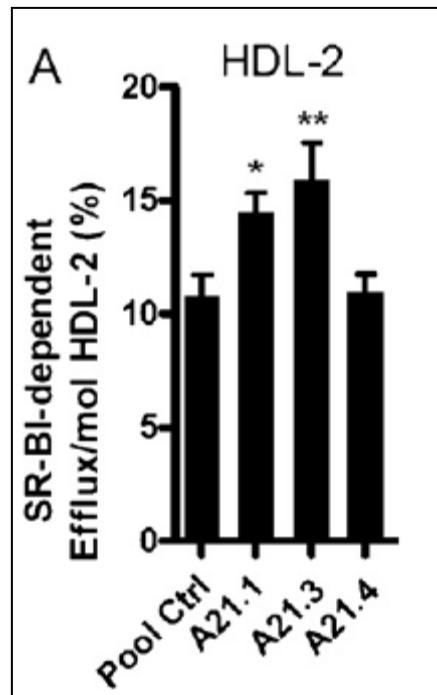

Activity	Month	1-4	5-8	9-12	13-16	17-20	21-24
12.1 Direct sequencing		↔					
12.2 In vitro site-directed mutagenesis			↔				
12.3 Transfection				↔			
12.4 Luciferase activity measurement					↔		
12.5 Data analysis						↔	
12.6 paper writing							↔

ซึ่งผลการทดลองและบทสรุป ได้นำเสนอในผลงานที่ได้รับการ publication ในหัวข้อ CETP efficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes ในวารสาร Atherosclerosis, 2011 vol216: 370-373

Output ที่ได้จากการโปรแกรม


เราพบ novel deletion mutation แบบ heterozygous ในคนไข้ 1 คน จากการศึกษาในผู้ที่มีภาวะ HDL สูงทั้งสิ้น 38 คน โดยมีการ deletion 18 bp ซึ่งรวมถึง GC และ TATA box ดังแผนภาพที่ 1 และจากการตรวจสอบทางพันธุกรรมในครอบครัวของคนไข้ ไม่พบ mutation ดังกล่าวในบุตรหลาน

แผนภาพที่ 1


เพื่อทดสอบว่า novel mutation ที่พบส่งผลให้เกิดกระบวนการ transcription ลดลงหรือไม่ ผู้วิจัยจึงได้ทำ mutagenesis plasmid, transformation, transfection และ Luciferase activity measurement ผลการทดลองพบว่า mutagenesis plasmid ทำให้ Luciferase activity ลดลงอย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุม ซึ่งแสดงว่า novel mutation ในส่วน promoter ของยีน CETP นี้ส่งผลให้กระบวนการ transcription ลดลง ซึ่งเป็นสาเหตุให้ระดับ HDL ในเลือด สูงขึ้น ดังแผนภาพที่ 2

แผนภาพที่ 2

หลังจากทราบว่า การ transcription ของ CETP และ CETP activity ลดลงในคนไข้ จึงได้ทำการทดสอบการทำงานของ HDL ของคนไข้ ในภาวะที่ขาด CETP เปรียบเทียบกับกลุ่มควบคุม ผลการทดลองพบว่าความสามารถของ HDL ในการดึง Cholesterol สำรวจออกจากเซลล์ไม่ได้ลดลง ดังแผนภาพที่ 3 โดยมีกระบวนการ cholesterol efflux ผ่าน SR-BI pathway มากกว่าคนปกติอย่างมีนัยสำคัญ

แผนภาพที่ 3

งานวิจัยนี้เป็นการศึกษาต่อยอด ซึ่งทำให้พบ novel variations ทั้งในส่วน exons และ promoter ของยีนในประชากรไทย ซึ่งมีความแตกต่างจากกลุ่มประชากรอื่นๆ จึงเป็นข้อมูลและสถิติที่สำคัญในการวินิจฉัยประมวล รวมทั้งป้องกัน ภาวะไขมันในเลือดสูงผิดปกติได้ระดับหนึ่ง

ภาคผนวก

บทคัดย่อที่นำเสนอในการประชุมวิชาการร่วมคณะแพทยศาสตร์ 3 สถาบัน

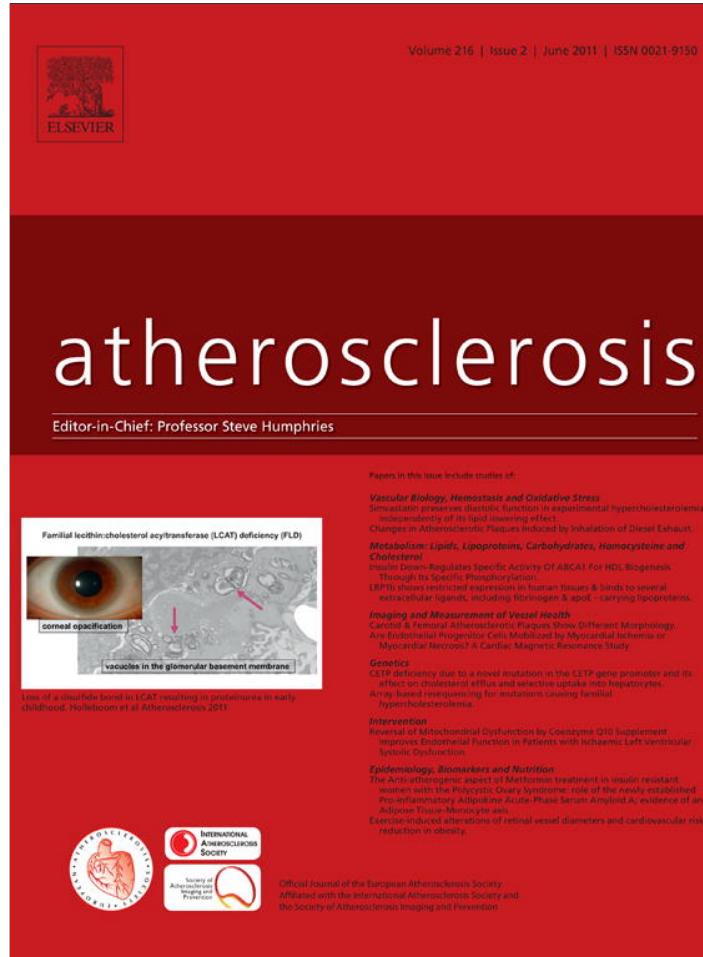
“Joint Conference in Medical Sciences 2011” (JCMS 2011) ระหว่าง วันที่ 15-18 มิถุนายน 2554

อิมแพ็ค เมืองทองธานี จังหวัดนนทบุรี

Title: Cholesteryl Ester Transfer Protein (CETP) deficiency due to a Novel Mutation in the *CETP* Gene Promoter

Authors: Wanee Plengpanich¹, Wilfried Le Goff², Suchanya Poolsuk¹, Zélie Julia², Maryse Guerin², Weerapan Khovidhunkit¹

Institutions ¹Department of Medicine, Faculty of Medicine, Chulalongkorn University and ²INSERM UMRS939, Université Pierre et Marie Curie-Paris6, Hopital de la Piti, Paris, France


Objective: Mutations in the *CETP* gene causing low activity of CETP are associated with high levels of HDL-cholesterol or hyperalphalipoproteinemia. Whether HDL from subjects with CETP deficiency is dysfunctional in terms of its ability to mediate several steps in the reverse cholesterol transport (RCT) pathway is unclear. We identified the genetic variant in the *CETP* gene of the proband with high HDL-C and low CETP activity.

Materials and Methods: We sequenced the *CETP* gene of the proband and assessed its promoter activity *in vitro*.

Results: A proband was a compound heterozygote for a known D459G variant and a novel 18-bp deletion mutation in the *CETP* promoter. Functional analysis using transient transfection and a reporter assay showed that this deletion mutation of the promoter markedly reduced the transcriptional activity in HepG2 cells (88% reduction compared with wild type).

Conclusion: A novel deletion mutation in the *CETP* promoter is associated with high HDL-C *in vivo* and decreased promoter activity *in vitro*.

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

<http://www.elsevier.com/copyright>

Short communication

CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes

Wanee Plengpanich ^a, Wilfried Le Goff ^b, Suchanya Poolsuk ^a, Zélie Julia ^b, Maryse Guerin ^b, Weerapan Khovidhunkit ^{a,*}

^a Endocrinology and Metabolism Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand

^b INSERM UMR939, Hôpital de la Pitié, and Université Pierre et Marie Curie-Paris6, Hôpital de la Pitié, Paris, France

ARTICLE INFO

Article history:

Received 7 October 2010

Received in revised form 25 January 2011

Accepted 30 January 2011

Available online 26 February 2011

Keywords:

Hyperalphalipoproteinemia

Cholesteryl ester transfer protein

Genetics

Reverse cholesterol transport

Cholesterol efflux

Scavenger receptor class B Type I

ABCG1

ABSTRACT

Objectives: To identify the genetic variant in the CETP gene of the proband with high HDL-C and low CETP activity and to investigate whether HDL from the CETP-deficient subject was dysfunctional in the reverse cholesterol transport (RCT) pathway.

Methods: We sequenced the CETP gene and assessed its promoter activity. Cholesterol efflux and hepatic cholesteryl ester delivery studies were also performed using the proband's HDL.

Results: A proband was a compound heterozygote for a known D459G variant and a novel 18-bp deletion mutation in the CETP promoter. This promoter mutation markedly reduced the transcriptional activity in HepG2 cells. HDL2 from this subject increased SR-BI-mediated cholesterol efflux, whereas cholesteryl ester delivery into hepatocytes was maintained.

Conclusion: A novel deletion mutation in the CETP promoter is associated with high HDL-C and decreased promoter activity. HDL from this CETP-deficient subject was not dysfunctional in mediating two main steps of RCT assessed in vitro.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

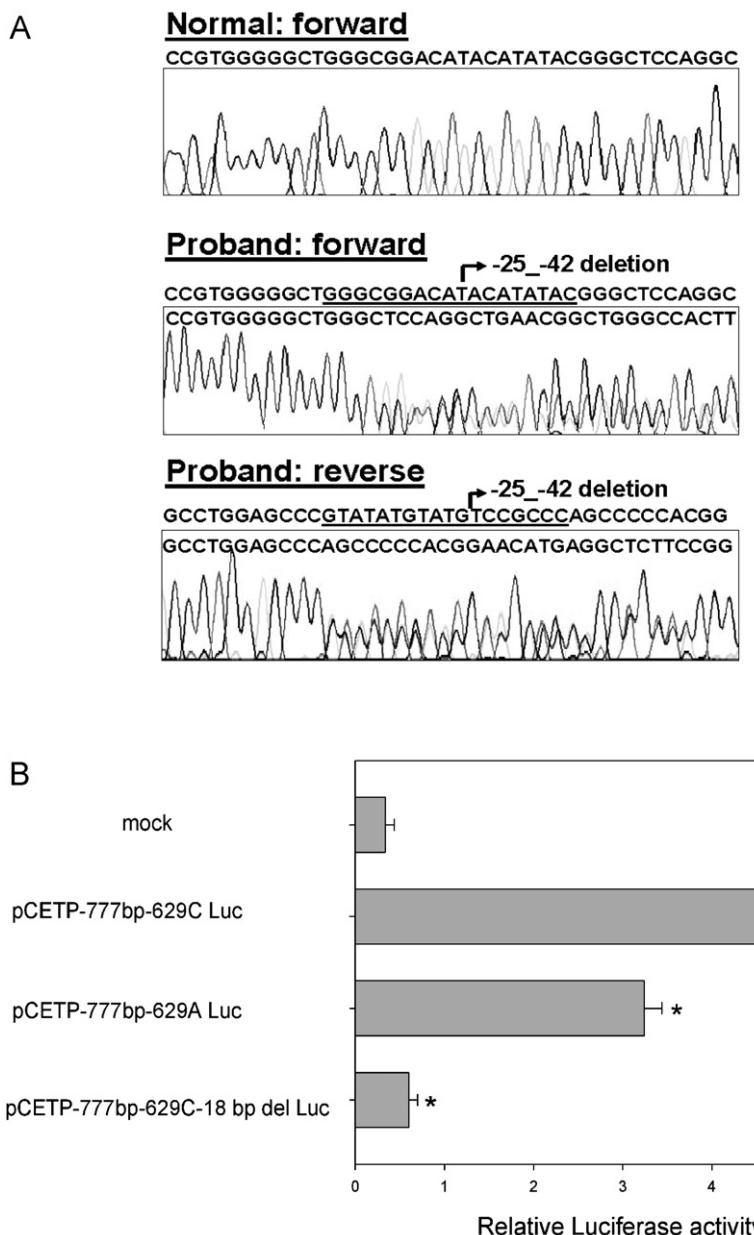
Reverse cholesterol transport (RCT) is one of the major mechanisms by which HDL protects against atherosclerosis and involves a number of receptors, enzymes, and transfer proteins. Cholesteryl ester transfer protein (CETP) is one of the key players in the RCT pathway in humans. Genetic mutations in the gene encoding CETP are commonly found in subjects with very high levels of HDL-C or hyperalphalipoproteinemia (HALP) [1], especially in Japan, but information on the cause of HALP outside Japan is relatively scarce.

Whether CETP deficiency is associated with protection against atherosclerosis is still unclear. Earlier reports have shown that HDL-mediated cholesterol efflux was impaired in subjects with CETP deficiency [2,3]. Recent studies, however, have demonstrated that HDL from subjects with homozygous CETP deficiency enhances cholesterol efflux, but the underlying mechanism is conflicting [4,5]. Whether HDL from CETP deficiency is dysfunctional in later steps of RCT pathway is also unknown.

Our previous study in Thai subjects with HALP has discovered both known and novel mutations in the CETP gene [6], although not all subjects with lower plasma CETP activity were found to have mutations in the coding region. In this study, we examined the genetic variations in the entire CETP gene including its promoter in a proband who had HALP and low CETP activity and determined the function of the identified genetic variation in vitro. Furthermore, we performed additional experiments to test whether HDL from this subject with CETP deficiency was functional in mediating two main steps of RCT, cholesterol efflux from cells and selective uptake of cholesteryl ester (CE) into hepatocytes.

2. Materials and methods

Methods are described in online supplementary material. Data on clinical characteristics and the composition and concentrations of HDL of the proband and her family are shown in *Supplemental Fig. 1A and B, Table 1*.

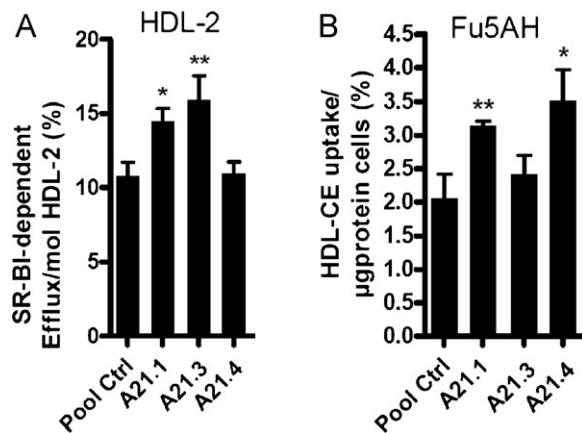

3. Results and discussion

3.1. Genetic analysis of the CETP gene in the proband

The A21.1 proband had high HDL-C levels and low plasma CETP activity (6.8 pmol/μL/h vs. 20.1 ± 1.7 pmol/μL/h from 5 unrelated

* Corresponding author at: Endocrinology and Metabolism Unit, Department of Medicine, Samakkee Payabarn Bldg., 2nd floor, King Chulalongkorn Memorial Hospital, Rama IV Road, Patumwan, Bangkok 10330, Thailand. Tel.: +66 02 256 4101, fax: +66 02 652 5347.

E-mail address: wkhovid@gmail.com (W. Khovidhunkit).


Fig. 1. (A) Genomic DNA sequence of the promoter of the CETP gene in the A21.1 proband showing a novel 18 bp deletion mutation, –25 to –42del GGGCGGACATACATATAC. (B) Transcriptional activity in HepG2 cells transfected with CETP promoter/reporter gene constructs. HepG2 cells were transiently transfected with wild-type or mutant constructs (–629C, –629A, and 18 bp deletion). Luciferase activity was measured in the cell lysates and was normalized to pRL-TK luciferase. Each value represents the mean ± SEM of three separate transfections, each performed in duplicate. * $P < 0.001$ vs. –629C.

healthy control subjects, *Supplemental Fig. 1C*). Sequencing the coding region of the CETP gene of the proband revealed that she was heterozygous for the c.1376A>G variant (rs2303790, p.Asp459Gly or D459G, also previously known as D442G) in exon 15 of the CETP gene. Because subjects with a heterozygous D459G variant have only mildly decreased CETP activity [7], a marked reduction in her CETP activity suggested that other sequence variation might be present. Further examination of the promoter region of the CETP gene revealed a novel heterozygous 18 bp deletion mutation from position –25 to –42 (relative to the transcription start site), –25 to –42del GGGCGGACATACATATAC (*Fig. 1A*, GenBank accession number HM191724). This novel mutation was not found in 115 unrelated normolipidemic subjects. The mutation was also not present in her son or her daughter (*Supplemental Fig. 1A*) but a heterozygous D459G variant of the CETP gene was found in both of her children. Therefore, the proband is a compound heterozy-

gote with two different variants, an 18 bp deletion in the promoter and a D459G variant in the coding region, of the CETP gene on two different alleles.

3.2. Molecular pathology of the novel deletion mutation in the CETP gene promoter

Binding sites for both the Sp1 transcription factor and the TATA box have been reported in the –26 to –43 bp segment of the CETP gene promoter [8] and Sp1 has been shown to act as an activator of CETP gene expression at position –37 [9]. Therefore, the novel deletion mutation in this region found in our proband is predicted to disrupt these sites (*Supplemental Fig. 2*). We next performed transfection experiments to evaluate the transcriptional activity in HepG2 cells. The 777-bp DNA fragment of the promoter region of the CETP gene was cloned into the luciferase reporter vector and

Fig. 2. (A) Effect of HDL2 particles on cholesterol efflux through the SR-BI-mediated pathway. HDL2 subfractions were isolated from each of the healthy control subjects ($n=5$), A21.1 proband, and her family. Free cholesterol efflux was determined after 4 h of incubation with isolated HDL (10 μ g phospholipid/mL). Values are mean \pm SD. Pool Ctrl indicates the average values from 5 healthy control subjects. * $P<0.05$ vs. Pool Ctrl, ** $P<0.01$ vs. Pool Ctrl. (B) Effect of HDL particles on selective uptake of HDL-CE into hepatocytes. HDL were isolated from each of the healthy control subjects ($n=5$), A21.1 proband, and her family. Selective uptake of 3 H-CE labelled HDL (60 μ g protein/mL) was determined after 5 h of incubation with Fu5AH cells. Values are mean \pm SD. Pool Ctrl indicates the average values from 5 healthy control subjects. * $P<0.05$ vs. Pool Ctrl, ** $P<0.01$ vs. Pool Ctrl.

transfected into HepG2 cells. We found that luciferase activity in the cell lysates after transfection with the -629A plasmid was approximately 66% of that observed with the -629C plasmid, which was consistent with the previous report [10]. For the 18 bp deletion mutant, however, the luciferase activity in the cell lysates was only 12% of that of the wild-type sequences (0.60 ± 0.1 vs. 4.93 ± 0.2 , $P<0.001$, Fig. 1B). Similar results were obtained in COS7 cells (data not shown). These results suggest that the novel 18 bp deletion mutation in the CETP gene promoter is associated with a marked decrease in the transcriptional activity.

So far, only one missense mutation at position -69 (-69G>A) in the CETP promoter has been reported, which was associated with reduced CETP activity, marked HALP, and a reduction in transcriptional activity in HepG2 cells [11].

3.3. Analysis of the ability of HDL to promote cholesterol efflux from cells

Because CETP-mediated transfer of CE from HDL to apo B-containing lipoproteins is the major route of CE transport from peripheral tissues to the liver in humans [12], there is a concern that CETP deficiency might disrupt the RCT and that HDL in subjects with CETP deficiency might be dysfunctional due to changes in its composition and physical properties.

Using isolated HDL2 particles from the A21.1 proband with partial CETP deficiency, we investigated whether HDL from this subject was able to support cholesterol efflux from cells using three different cellular models to specifically represent the scavenger receptor class B type I or SR-BI/CLA-1 (Fu5AH rat hepatoma), the ATP-binding cassette A1 or ABCA1 (RAW264.7 mouse macrophages \pm 8Br-cAMP), and the ABCG1 (CHO-WT vs. CHO-hABCG1) pathways.

As shown in Fig. 2A, HDL2 particles from the A21.1 proband had a higher capacity to promote cholesterol efflux via the SR-BI pathway than those of control subjects (14.4 ± 0.9 vs. 10.8 ± 0.9 /mol HDL, $P<0.05$). Similar results were obtained when cellular cholesterol efflux experiments were standardized to apo A-I concentrations (data not shown). Although the number of the subjects tested was small, we found a good correlation between SR-BI-dependent efflux

and phospholipid content of HDL2 (data not shown), which is consistent with the previous observation by Yancey et al. that the phospholipid composition of HDL is a major determinant in promoting cholesterol efflux from cells via an SR-BI pathway [13]. Enrichment of CE and lower triglyceride content of the HDL2 particles in the proband (Supplemental Table 2) were reflective of the defective role of the proband's CETP in the transfer of CE and triglyceride. Among subjects with an identical CETP genotype (A21.3 and A21.4), however, there were differences in the composition of HDL particles and the capacity of cholesterol efflux. These data suggest that, in some individuals, genetic factors at other loci or other environmental factors may have more pronounced effects on cholesterol efflux capacity, HDL composition, and/or HDL-C level despite the presence of the same variant in the CETP gene.

In contrast, we did not observe a significant difference in the capacity of HDL2 particles in promoting cholesterol efflux via an ABCG1 pathway between the proband and control subjects (Supplemental Fig. 3), even though the phospholipid content is also associated with the efflux capacity via the ABCG1 pathway [14], suggesting a different mechanism is involved.

Our result is consistent with the result from a recent report showing that HDL from CETP-deficient subjects displays enhanced cholesterol efflux via the SR-BI pathway [5], although the role of ABCG1 was not examined in that study. In subjects with complete absence of CETP due to the homozygous mutation in the CETP gene, two studies reported that HDL from these subjects showed enhanced ability to promote cholesterol efflux from cells, although the underlying mechanism remains conflicting. It is possible that the discordant results might be due to the different cellular models [15], since one study reported that the enhanced efflux from mouse macrophages was due to ABCG1 [4], whereas another study showed that the increased efflux from rat hepatoma cells was dependent on SR-BI [3].

3.4. Selective uptake of HDL-CE into hepatocytes

Selective uptake of HDL-CE into the liver is the final step of RCT. In rodents, SR-BI is a key protein mediating this step. In humans, however, CETP-mediated transfer of CE from HDL to apo B-containing lipoproteins is the major route of CE transport to the liver whereas selective uptake of CE plays a minimal role [12]. In human CETP deficiency, we hypothesized that selective uptake of HDL-CE into hepatocytes by SR-BI might become a major pathway, like in other animal species that lack CETP.

We found that HDL from the A21.1 proband had an increased capacity to deliver CE into hepatocytes, compared with control subjects (Fig. 2). Similar to what was observed with cholesterol efflux studies, there were differences in HDL-CE uptake into hepatocytes among subjects with an identical CETP genotype, suggesting that other factors might play a role independent of CETP activity.

In summary, we identified a novel deletion mutation in the CETP promoter associated with HALP in vivo and decreased transcriptional activity in vitro. Our results on cellular cholesterol efflux and CE hepatic uptake clearly showed that HDL particles from the patient with partial CETP deficiency were not dysfunctional in their capacity to mediate two important steps of RCT as compared to those from controls.

Acknowledgments

We thank Drs. Vorasuk Shotelersuk and Thiti Snabboon for advice, Dr. Nijasri C Suwanwela for a clinical investigation, and Ms Natnicha Houngngam for technical assistance. This work was supported by the Thailand Research Fund (RSA5280008 to W. Khovidhunkit and to W. Plengpanich), the Thailand Govern-

ment Research Budget, the Ratchadapiseksompotch Grant, and the Postdoctoral Scholarship, Chulalongkorn University. We are also indebted to INSERM for generous support of the study.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.atherosclerosis.2011.01.051.

Conflict of interest

None

References

- [1] Maruyama T, Sakai N, Ishigami M, et al. Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. *Atherosclerosis* 2003;166:177–85.
- [2] Ishigami M, Yamashita S, Sakai N, et al. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency cannot protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. *J Biochem* 1994;116:257–62.
- [3] Ohta T, Nakamura R, Takata K, et al. Structural and functional differences of sub-species of apoA-I-containing lipoprotein in patients with plasma cholesteryl ester transfer protein deficiency. *J Lipid Res* 1995;36:696–704.
- [4] Matsuura F, Wang N, Chen W, Jiang XC, Tall AR. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. *J Clin Invest* 2006;116:1435–42.
- [5] Miwa K, Inazu A, Kawashiri M, et al. Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. *Clin Chim Acta* 2009;402:19–24.
- [6] Plengpanich W, Siriwong S, Khovidhunkit W. Two novel mutations and functional analyses of the CETP and LIPC genes underlying severe hyperalphalipoproteinemia. *Metabolism* 2009;58:1178–84.
- [7] Nagano M, Yamashita S, Hirano K, et al. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. *J Atheroscler Thromb* 2004;11:110–21.
- [8] Agellon LB, Quinet EM, Gillette TG, Drayna DT, Brown ML, Tall AR. Organization of the human cholesteryl ester transfer protein gene. *Biochemistry* 1990;29:1372–6.
- [9] Gaudet F, Ginsburg GS. Transcriptional regulation of the cholesteryl ester transfer protein gene by the orphan nuclear hormone receptor apolipoprotein AI regulatory protein-1. *J Biol Chem* 1995;270:29916–22.
- [10] Dachet C, Poirier O, Cambien F, Chapman J, Rousi M. New functional promoter polymorphism, CETP-629, in cholesteryl ester transfer protein (CETP) gene related to CETP mass and high density lipoprotein cholesterol levels: role of Sp1/Sp3 in transcriptional regulation. *Arterioscler Thromb Vasc Biol* 2000;20:507–15.
- [11] Nagano M, Yamashita S, Hirano K, et al. Point mutation (–69 G>A) in the promoter region of cholesteryl ester transfer protein gene in Japanese hyperalphalipoproteinemic subjects. *Arterioscler Thromb Vasc Biol* 2001;21:985–90.
- [12] Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. *J Lipid Res* 2004;45:1594–607.
- [13] Yancey PG, de la Llera-Moya M, Swarnakar S, et al. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. *J Biol Chem* 2000;275:36596–604.
- [14] Sankaranarayanan S, Oram JF, Asztalos BF, et al. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. *J Lipid Res* 2009;50:275–84.
- [15] Adorni MP, Zimetti F, Billheimer JT, et al. The roles of different pathways in the release of cholesterol from macrophages. *J Lipid Res* 2007;48:2453–62.