

รายงานวิจัยฉบับสมบรูณ

โครงการการพัฒนาดชันีสําหรับแนวทางการรักษาความเปนสวนตัวแบบ

การเรียงสับเปลี่ยน

โดย

จักรพงศ นาทวิชัย
Xue Li

อัศนีย กอตระกูล

พฤษภาคม 2555

สัญญาเลขที่ TRG5380024

รายงานวิจัยฉบับสมบรูณ

โครงการการพัฒนาดชันีสําหรับแนวทางการรักษาความเปนสวนตัวแบบ

การเรียงสับเปลี่ยน

จักรพงศ นาทวิชัย มหาวิทยาลัยเชียงใหม
Xue Li The University of Queensland Australia
อัศนีย กอตระกูล มหาวิทยาลัยเกษตรศาสตร

สนับสนุนโดยสํานักงานกองทนุสนบัสนุนการวิจัย

(ความเห็นในรายงานน้ีเปนของผูวิจัย สกว.ไมจําเปนตองเห็นดวยเสมอไป)

Acknowledgement

This work was supported in parts by Thailand Research Fund and Thai Network
Information Center Foundation (THNIC). The investigator really appreciates both
organizations for giving the chance to carry on the project.

The investigator would like to thank Associate Professor Xue Li at The University of
Queensland, Australia, and Associate Professor Asanee Kawtrakul at Kasetsart
University for their advices throughout the project. In addition, the investigator is
grateful to my colleagues at Department of Computer Engineering, Faculty of
Engineering, Chiang Mai University for their supports.

Abstract

Project Code: TRG5380024

Project Title: Development of Indexing for Permutation-based Privacy
 Preservation Approach

Investigator: Juggapong Natwichai, Chiang Mai University

E-mail Address: juggapong@eng.cmu.ac.th

Project Period: May 31, 2010 – May 30, 2012

The emerging of the internet-based services poses a privacy threat to the individuals.
Data transformation to meet a privacy standard becomes a requirement for typical
data processing for the services. (k, e)-anonymization is one of the most promising
data perturbation-based transformation approaches, since it can provide high-accuracy
aggregate query results. Our work focuses on 1) study the effect of the permutation-
based privacy-preservation processes on the indexes in term of the efficiency, 2)
propose an efficient index structure for aggregation querying the permuted data. In
order to achieve such goals, we begin with analyzing the dynamism on the indexes
caused by the data updating. Specifically, we focus on the appending of data to the
permuted dataset. We start with making the observation on the data appending
theoretically. Subsequently, an algorithm based on the observation is proposed. In
which the quadratic-complexity processing on some part of the dataset can be
replaced by the linear-complexity processing. Eventually, two indexes, which can
tolerate the data updating, are proposed to improve the efficiency of the data
processing. The experiments have been conducted to validate our work. From the
results, the proposed work composed of an algorithm and the indexes is highly
efficient comparing with the non-incremental algorithm and an approximation
algorithm, while the same results with re-applying the optimal non-incremental
algorithm can be guaranteed.

Keywords : Privacy Preservation; Indexing; Incremental Processing

บทคดัย่อ

รหสัโครงการ: TRG5380024

ชืÉอโครงการ:การพฒันาดชันีสาํหรบัแนวทางการรกัษาความเป็นส่วนตวัแบบการเรยีงสบัเปลีÉยน

ชืÉอนักวิจยั: จกัรพงศ ์ นาทวชิยั (มหาวทิยาลยัเชยีงใหม)่

E-mail Address: juggapong@eng.cmu.ac.th

ระยะเวลาโครงการ: 31 พฤษภาคม 2553 – 30 พฤษภาคม 2555

การไดร้บัความนิยมของบรกิารทางเทคโนโลยสีารสนเทศผ่านเครอืข่ายอนิเตอรเ์น็ตส่งผลใหก้าร
ละเมดิความเป็นส่วนตวัของขอ้มลูสามารถทําไดง้่ายขึÊน ดงันั Êน การแปลงขอ้มลูเพืÉอรกัษาความ
เป็นส่วนตวัได้กลายเป็นสิÉงจําเป็นก่อนการประมวลผลข้อมูลในการใช้บรกิาร ทั ÊงนีÊ (k, e)-
Anonymization เป็นการแปลงขอ้มลูเพืÉอรกัษาความเป็นส่วนตวัในแนวทางของการสับเปลีÉยนทีÉ
สําคญัประเภทหนึÉง เนืÉองจากการแปลงข้อมูลด้วยวิธีดงักล่าวสามารถให้ข้อมูลผลลพัธ์ทีÉยงั
นําไปใช้งานต่อได้อย่างแม่นยํา ในงานวจิยันีÊ มวีตัถุประสงค์ 2 ประการ ได้แก่ 1) ศกึษา
ผลกระทบของการรักษาความเป็นส่วนตัวด้วยแนวทางการสับเปลีÉยนต่อดัชนีในแง่ของ
ประสทิธภิาพ 2) การเสนอโครงสรา้งดชันีสาํหรบัการสอบถามแบบเชงิกลุ่มบนขอ้มลูทีÉแปลงแลว้
เพืÉอทีÉจะบรรลุวตัถุประสงค์เหล่านีÊ ผู้วจิยัได้วเิคราะห์การเปลีÉยนแปลงของดชันีซึÉงเกดิจากการ
ปรบัขอ้มูล โดยมุ่งเน้นทีÉกระบวนการเพิÉมขอ้มูลเขา้สู่ขอ้มูลทีÉแปลงแล้วเป็นหลกั การแก้ปญัหา
เริÉมดว้ยการสรา้งขอ้สงัเกตเกีÉยวกบัการเพิÉมขอ้มลูอย่างเป็นระบบ จากนั Êนไดนํ้าเสนออลักอรทิมึ
แบบเพิÉมขึÊนจากขอ้สงัเกตนั Êน ทั ÊงนีÊอลักอรทิมึสามารถหลกีเลีÉยงการประมวลผลทีÉมคีวามซบัซอ้น
เชงิคํานวณในลกัษณะ Quadratic ในบางส่วนของขอ้มูลด้วยการประมวลผลทีÉมคีวามซบัซ้อน
เชงิคํานวณในลกัษณะ Linear ท้ายทีÉสุดดชันีสองประเภทซึÉงสามารถรองรบัการเปลีÉยนแปลง
ขอ้มลูไดถู้กนําเสนอเพืÉอเพิÉมประสทิธภิาพการประมวลผล จากการทดลอง งานทีÉนําเสนอทั Êงใน
ส่วนของอลักอรทิมึและดชันีนั Êน มปีระสทิธภิาพสงูกว่าอลักอรทิมึแบบดั Êงเดมิ และอลักอรทิมึแบบ
ประมาณ โดยทีÉสามารถใหผ้ลลพัธแ์บบดทีีÉสุดได ้

คาํหลกั : การรกัษาความเป็นส่วนตวัขอ้มลู; ดชันี; การประมวลผลแบบเพิÉมขึÊน

Contents

 1 Introduction 1

 2 Related Work 5
 2.1 Traditional Privacy Preservation 5
 2.2 Current Privacy-Preserving 6
 2.3 Sensitive Pattern Hiding 13
 2.4 Other Related Work 17

 3 Data Increment on (k, e)-Anonymization 21
 3.1 Problem Definition 21
 3.2 Effect of Data Increment 24
 3.3 Incremental Processing 32

 4 Incremental Algorithm 35

 5 Indexing 39
 5.1 Distinct Value Index 39
 5.2 Positioning Index 40

 6 Experiment Results 43
 6.1 Configuration 43
 6.2 Results and Discussion 44

 7 Conclusion 51

 Bibliography 53

Chapter 1

Introduction

In the information-burst era as these days, the organizations who provide ser-
vices, or service provider, have more opportunity to collect the data from the in-
dividuals through their services. It is obvious that the collected data can be used
to improve the quality of service which will benefit both the service providers
and the individuals. An obvious evidence of the data utilization by services are
the sale promotion through location-based services by Starbucks[26, 55, 63].

However, the benefit of the data holding is not obtained for free, the service
providers are forced to preserve the privacy of the data both in term of the
legislation or the social enforcement. Not only the privacy breach can damage
the right of the individuals, but also the reputation of the service providers.
For example, Vodafone have been warned to face a penalty since there is a leak
of their customer information [46]. Or, in the medical domain, there was the
privacy violation complained by the customers of Walgreens [23].

Consequently, the privacy preservation becomes one of the most active re-
search areas. One of the first few privacy preservation approaches which have
been proposed, is k-anonymization [60]. Its fundamental is to hide an individ-
ual within a k-size group of identical information. Subsequently, the l-diversity,
which further protects the privacy by enforcing the minimum l-distinct sensitive
data in the group, has been proposed in [41]. Such two mentioned approaches
are based on the data transformation by generalization, i.e. changing a privacy
sensitive value into its more-generalized value e.g. from a postal code 50202 to
5020*. Furthermore, there are a few more e↵ective approaches based on such
work to preserve the privacy, for example, t-closeness [38] which extends the l-
diversity approach by preserving the distribution of the sensitive values in each

1

2 CHAPTER 1. INTRODUCTION

Table 1.1: An example dataset
Postal Code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

Table 1.2: The partitioned dataset
Postal Code Age Sex Salary

50200 35 Male 15,000
50210 36 Male 16,000
50230 40 Male 14,000
50300 41 Female 25,000
50310 43 Female 30,000
50330 47 Male 35,000
50300 53 Male 35,000
50310 54 Female 40,000
50330 58 Male 45,000

group.
One of the most important approaches for preserving the privacy is (k, e)-

anonymization [53, 54]. With this approach, the sensitive data are partitioned
into groups in which each group the probability to identify the individuals is not
exceeded the pre-specified thresholds, k and e. The k values use to control the
number of distinct sensitive data in a group, while the e values use to control the
range of the sensitive data. Subsequently, the sensitive data in each partition
are swapped, or permuted, to protect the privacy. Not only that the privacy can
be preserved e↵ectively, but also a high data utility can be obtained by applying
such approach. The utility in the (k, e)-anonymization is defined in term of the
accuracy of the aggregate query results. In [54], the authors reported that the
error from the aggregate query result is very low (1% error approximately), i.e.
the result is very close to the non-privacy preserved result.

An example dataset to illustrate the (k, e)-anonymization is shown in Table
1.1. In the table, a dataset is composed by three non-sensitive attributes, i.e.
postal code, age, and sex, of the individuals. The sensitive attribute is the

3

monthly-salary in Thai Baht (THB). If the k and the e values are set at 3 and
2,000 respectively, an optimal solution with regard to the minimum-sum-error
objective (to be described in Chapter 2), is shown in Table 3.4.

From Table 3.4, the partition of the dataset is outlined, i.e. there are three
partitions. It can be seen that there is at least 3 distinct salary values in each
partition, as well as the range of the salary is at least 2,000 THB. The sensitive
data have been permuted already. If an aggregate query “find the summation
of the salary of the 40-48 years-old” is issued, the result from the permuted
dataset is 104,000-106,000 THB (A data tuple from the first partition, all of the
tuples from the second partition, and none from the last partition are involved
in the query answering). Meanwhile the same query executed on the original
dataset results in 106,000 THB which is very close to the result obtained from
the privacy preserved dataset.

The complexity of the algorithm generated the optimal solutions is O(n2)
where n is the number of data tuples in the given dataset [54]. Such algorithm
composes of two phases, i.e. partitioning the given dataset according to (k, e)-
anonymization, as well as permuting the sensitive values within each partition.
The partitioning phase, which costs O(n2), is our focus in this paper. Though,
such cost is not very high, the data to be processed might not be static. There
are some situations that the data to be transformed can be appended all the
time [57, 61]. For example, the Ministry of public health in Thailand requires
each hospital to submit the monthly medical records to the global repository.
Re-applying the O(n2)-algorithm might not be an e�cient way to approach the
problem in such environment.

In this work, the main objectives are as follows.

1. Study the e↵ect of the permutation-based privacy-preservation processes
on the indexes in term of the e�ciency.

2. Propose an e�cient index structure for aggregation querying the permuted
data.

In brief, we have achieved both of our objectives. That is, the changes by the
privacy-preservation processes cause the indexes change as well. This can cause
the e�ciency issue due to the index updating. Index dropping or re-creating
might not be appropriate since the cost can be high. The e�ciency issue comes
from the dynamism of the data which can be changed by the users. Thus,

4 CHAPTER 1. INTRODUCTION

we focus on the insertion of the data tuples to the permuted dataset. More
specifically, we address the incremental privacy preservation problem based on
the (k, e)-anonymization. We start with making the observation on the data
appending theoretically. Subsequently, an algorithm based on the observation
is proposed. In which the quadratic-complexity processing on some part of the
dataset can be replaced by the linear-complexity processing. Eventually, two
indexes are proposed to improve the e�ciency of the algorithm. The experiments
have been conducted to validate our work. From the results, the proposed
work composed of an algorithm and the indexes is highly e�cient comparing
with the non-incremental algorithm and an approximation algorithm, while the
same results with re-applying the optimal non-incremental algorithm can be
guaranteed.

The organization of this report is as follows. The related work is presented
in the next chapter. The basic notation for defining the problem as well as the
observations on the data increment are presented in Chapter 3. Subsequently,
the algorithm based on the observation is proposed in Chapter 4. The indexes
for further e�ciency improvement are proposed in Chapter 5. In Chapter 6, the
experiment results to evaluate our work are reported. Finally, Chapter 7 gives
the conclusion and outline of our future work.

Chapter 2

Related Work

In this chapter, we begin by briefly reviewing the works related to traditional
privacy preservation. Subsequently, many prominent current works for privacy
preservation are reviewed.

2.1 Traditional Privacy Preservation

First of all, the well-known database techniques such as security view manage-
ment [21] can be used to investigate individual privacy problems. It could be
easily done by creating di↵erent views for di↵erent privilege-level users.

It can also be addressed by access-control methods that have been proposed,
substantially, among the database security research community [9, 34]. Tradi-
tionally, the methods in commercial Database Management Systems (DBMSs)
are built on two authorization concepts: positive and negative authorizations.
The concept of positive authorizations, which are based on the System R au-
thorization model [25, 32], enforces all required accesses to be specified on any
object within the DBMS. When a DBMS user requests access to an object which
is already authorized, the user can access the object, otherwise the request will
be denied. On the contrary, negative authorizations require the denial access
on any object to be specified. Therefore, if a user requests access for an object
which is not specified as denied to the user, the access can be performed, oth-
erwise it will be denied. There are many works that propose the combination
of these two concepts, and approach the problem when there conflicts exists
between the authorization mechanisms [10, 11].

5

6 CHAPTER 2. RELATED WORK

Statistical security-control [22] is another approach for addressing individual
privacy preservation problems. Before data is released for any purpose, noise
values are added into the original data set to make the data set di↵erent from
the original data. While some specific statistical values, for instance, the mean
or variance, relied on the noise, added data must be maintained as close to the
values in the original data as possible.

2.2 Current Privacy-Preservation

Privacy-preserving is an emerging research area [17, 29, 64]. Such research
problems consider the privacy of the data to be processed by data processing
algorithms. In this section, we review works in the research domain.

Generally, the privacy to be preserved can be categorized into two types, the
privacy of the individual and the privacy of the patterns. A common scenario
for the problem in the domain context is: a data owner wants to share a data
set with a collaborator for a data processing; however, there exist sensitive indi-
vidual data (or patterns) that can be discovered in the data set. Nevertheless,
the data set needs to be shared. Therefore, an algorithm to modify the data set
to preserve the privacy may be applied. Meanwhile, the algorithm must also
preserve the statistical characteristics of the data set which is to be used by the
designate data processing. The characteristics can be referred to as the “usabil-
ity”, of the data set. The usability, in generally, is the information/knowledge
left in the modified data set, which can still be discovered.

The approaches to modify, or “transform”, the data set to achieve the goals
in privacy preservation can be categorized into three main groups as follows.

1. Data perturbation. The modification is achieved by changing the selected
value in the data set. For example, in the context of the transactional
database, it can be done by changing the value in the transaction from
0 to 1, or 1 to 0. There are a number of works in the context of the
association rules mining that address the problem by data perturbation
[4, 39, 58]

2. Data reduction. It can also be done by removing some records or trans-
actions completely from the data set. This can be considered as the data
set sampling [16].

2.2. CURRENT PRIVACY-PRESERVATION 7

3. Data blocking. It is a modification that replaces some selected values with
a pre-specific “unknown” value [56].

2.2.1 Individual Privacy

In this section, the privacy and usability metrics related to the individual privacy
preservation problem in the context of PPDM are reviewed, following by some
important works.

In the PPDM context, there are many privacy metrics which represent the
privacy of the individuals. For example, the confidence interval is used in [3],
where a modified data value can be estimated with a confidence value c that
the value lies in the interval [x1, x2], then, the width of the interval (x2 � x1)
represents the privacy at a c confidence level or the di↵erential entropy of a
random variable in [2].

Among many of the privacy metrics, an important metric is the k value
in k -anonymity model [60]. The k -anonymity model are used in many works,
for instance, [1, 28, 35, 37, 43, 59, 66]. Generally, for a given data set, it is
k -anonymized data set i↵ every record in it can not be distinguished from k -1
other records by using pre-specified sensitive attributes; for example, the data
set in Figure 2.1 is 2-anonymized data set (adopted from [60]) on Ethnicity,
Birth, Gender and Postal Code attributes. When a data set is given, it will
be considered whether it is k -anonymized data set. If not, it will be modified
until it becomes k -anonymized. Usually, data perturbation and data blocking
are used to modify given data sets.

Aside from privacy preservation, algorithms that modify data sets must also
preserve the usability. When considering the usability, the problem becomes
more complicated, because, in one way, the sensitive data must not be dis-
closed, while it must be revealed enough to preserve the usability with regard
to a data mining purpose. In [43], the authors proved that achieving an optimal
anonymization is an NP-hard problem. An example for data usability represen-
tation is presented in [33], in which the usability is considered as the quality
of the classification results. A modified data set will lose its usability when a
record is totally deleted or its class label is not the majority class among same
attribute value records when the record is modified.

In [41], the authors propose another privacy metric, `-diversity, which im-
proves the k -anonymity model by preventing homogeneity and background knowl-
edge attacks. The homogeneity attack can occur when the k -anonymized data

8 CHAPTER 2. RELATED WORK

Table 2.1: An example of 2-anonymized data set.
No. Ethnicity Birth Gender Postal Code Health Problem
1 Black 1965 male 0214* short breath
2 Black 1965 male 0214* chest pain
3 Black 1965 female 0213* hypertension
4 Black 1965 female 0213* hypertension
5 Black 1964 female 0213* obesity
6 Black 1964 female 0213* chest pain
7 White 1964 male 0213* chest pain
8 White 1964 male 0213* obesity
9 White 1964 male 0213* short breath
10 White 1967 male 0213* chest pain
11 White 1967 male 0213* chest pain

Table 2.2: An example of 2-diversity data set.
No. Ethnicity Birth Gender Postal Code Health Problem
1 Black 1965 male 0214* short breath
2 Black 1965 male 0214* chest pain
3 Black 1964-5 female 0213* hypertension
4 Black 1964-5 female 0213* hypertension
5 Black 1964-5 female 0213* obesity
6 Black 1964-5 female 0213* chest pain
7 White 1964 male 0213* chest pain
8 White 1964 male 0213* obesity
9 White 1964-7 male 0213* short breath
10 White 1964-7 male 0213* chest pain
11 White 1964-7 male 0213* chest pain

set has too less diversity though it satisfies the k -anonymity standard. The
background knowledge attack is when some background knowledge can be used
to guess and narrow down the possibility of the sensitive attribute. For example,
the dataset in Table 2.1 does not satisfy the 2-diversity subjected to the second
partition. Such partition contains only one sensitive value. On the other hand,
the dataset in Table 2.2 is 2-diversity.

Another extension to the k -anonymity model is the (↵,k)-anonymity model
presented in [68]. This model can also handle the homogeneity attack using
the ↵ parameter. The model takes a “severe” sensitive value (pre-specified) as
an additional input. Addition to the k-condition, if the fraction between the
frequency of the sensitive value and the size of the equivalent class is not higher
than ↵, the dataset is said (↵,k)-anonymity. For example, if the dataset in Table

2.2. CURRENT PRIVACY-PRESERVATION 9

Table 2.3: An example data set.
No. Job Birth Postal Code Health Problem
1 Lawyer 1965 02141 HIV
2 Artist 1965 02137 HIV
3 Teacher 1964 02132 hypertension
4 Teacher 1964 02131 hypertension
5 Artist 1965 02136 obesity
6 Lawyer 1964 02142 chest pain

Table 2.4: An example data set.
No. Job Birth Postal Code Health Problem
1 Lawyer 1965 0214* HIV
2 * 1965 0213* HIV
3 Teacher 1964 0213* hypertension
4 Teacher 1964 0213* hypertension
5 * 1965 0213* obesity
6 Lawyer 1964 0214* chest pain

2.3 is given. Suppose that the ↵ parameter is set at 1, and the k parameter
is set at 2. In addition, the HIV sensitive value is set as the “severe” sensitive
value. The dataset can be transformed to satisfy (↵, k) as in Table 2.4. It can
be seen that the first and the sixth data tuples form an equivalent class, as well
as the second and the fifth data tuples, and the third and the forth data tuples.
Thus, the k condition is satisfied. Also, the first equivalent class has 0.5 as its ↵
value (1 tuple with HIV sensitive value in the 2-sized class), as well as the third
class. While the second equivalent class has zero ↵ value. Thus, the dataset
also satisfies the ↵ condition.

In such paper, the authors presented a proof that achieving the optimal
(↵,k)-anonymity solution is also as NP-hard as for the standard k -anonymity.
The authors also argued that the background knowledge attack should be treated
separately and not be included in the model as the `-diversity model.

2.2.2 (k, e)-anonymization

(k, e)-anonymization was first proposed in [54]. As opposed to the generalization-
based approach, which the data values are transformed into a more general form
of them, the approach begins with data partitioning process subjected to the k

distinct values, and the e range. Then, the data within each partition are per-
muted to protect the privacy. The partitioning phase can help increasing the

10 CHAPTER 2. RELATED WORK

Table 2.5: An example dataset
Postal Code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

Table 2.6: The partitioned dataset
Postal Code Age Sex Salary

50200 35 Male 15,000
50210 36 Male 16,000
50230 40 Male 14,000
50300 41 Female 25,000
50310 43 Female 30,000
50330 47 Male 35,000
50300 53 Male 35,000
50310 54 Female 40,000
50330 58 Male 45,000

utility obtained from the data, since the data transformation is proceeded in the
scope of the partition. Comparing with the t-closeness, the (k, e)-anonymization
rather aims at optimizing the range of the sensitive data. Also, the aggregate
query can be answered e↵ectively with less optimization constraints.

In order to illustrate the e↵ectiveness of the (k, e)-anonymization, consider
the dataset in Table 2.5. In the table, a dataset is composed by three non-
sensitive attributes, i.e. postal code, age, and sex, of the individuals. The
sensitive attribute is the monthly-salary in Thai Baht (THB).

If the k and the e values are set at 3 and 2,000 respectively, a possible
solution is shown in Table 2.6.

From Table 2.6, the partition of the dataset is outlined, i.e. there are three
partitions. It can be seen that there is at least 3 distinct salary values in each
partition, as well as the range of the salary is at least 2,000 THB. The sensitive
data have been permuted already. If an aggregate query “find the summation
of the salary of the 40-48 years-old” is issued, the result from the permuted
dataset is 104,000-106,000 THB (A data tuple from the first partition, all of the

2.2. CURRENT PRIVACY-PRESERVATION 11

Table 2.7: An example dataset
Postal Code Age Sex Salary

50200 35 Male 11,000
50210 36 Male 12,000
50230 40 Male 13,000
50300 41 Female 15,000
50310 43 Female 15,000
50330 47 Male 16,000
50300 53 Male 16,000
50310 54 Female 18,000

Table 2.8: An example dataset
Postal code Age Sex Salary Partition ID

50200 35 Male 11,000 1
50210 36 Male 12,000 1
50230 40 Male 13,000 2
50300 41 Female 15,000 2
50310 43 Female 15,000 1
50330 47 Male 16,000 1, 2
50300 53 Male 16,000 1, 2
50310 54 Female 18,000 2

tuples from the second partition, and none from the last partition are involved
in the query answering). Meanwhile the same query executed on the original
dataset results in 106,000 THB which is very close to the result obtained from
the privacy preserved dataset.

In order to utilize the result datasets e↵ectively, the optimum constraints,
error, have to be defined. In [54], two error constraints can be defined in two
approaches i.e. summation-error and maximum-error. Both of them are to
be minimized when the datasets are transformed. The error is di↵erence be-
tween the minimum sensitive values and the maximum sensitive values in a
partition. Then, the summation-error is the addition of the errors in all the
partitions. Meanwhile the maximum error is straightforward, i.e. the maximum
error among all the partitions.

In Table 2.6, the optimal solution dataset subjected to minimize the summation-
error is shown. For the maximum-error, suppose that a dataset in Table 2.7 is
given, and the k value is set at 4, e value is set at 5000. An optimal solution
subjected to minimize the maximum-error is shown in Table 2.8. It can be seen
that there is overlapping in the solution.

12 CHAPTER 2. RELATED WORK

Table 2.9: The partitioned dataset
PID Hits Sum LB Sum UB Min LB Min UB Max LB Max UB
1 1 14,000 16,000 14,000 16,000 14,000 16,000
1 2 29,000 31,000 14,000 15,000 15,000 16,000
1 3 45,000 45,000 14,000 14,000 16,000 16,000
2 1 25,000 35,000 25,000 35,000 25,000 35,000
2 2 55,000 65,000 25,000 30,000 30,000 35,000
2 3 90,000 90,000 25,000 25,000 35,000 35,000
3 1 35,000 45,000 35,000 45,000 35,000 45,000
3 2 75,000 85,000 35,000 40,000 40,000 45,000
3 3 120,000 120,000 35,000 35,000 45,000 45,000

The complexity of the algorithm generated the optimal solutions for the
summation-error problem is O(n2) where n is the number of data tuples in the
given dataset [54]. Such algorithm composes of two phases, i.e. partitioning the
given dataset according to (k, e)-anonymization, as well as permuting the sen-
sitive values within each partition. The partitioning phase, which costs O(n2),
is our focus in this paper.

In order to improve the e�ciency of the aggregation query answering, the
authors in [54], proposed an auxiliary structure that stores the summation
lower/upper bounds, minimum lower/upper bounds, or the maximum lower/upper
bounds for each partition. Such structure can help answering after the number
of data tuples for the query is determined. For example, if the resulted dataset
in Table 2.6 is used to answer the aggregation queries, the auxiliary structure
in Table 2.9 can be built. Suppose that the query is to determine the minimum
salary of females, it can be seen that two data tuples from the second partition
and one data tuple from the third partition are involved in the answer. From
the number of hit data tuples in the structure, it can see that the lower bound
of the second partition with regard to the minimum is 25,000, while the upper
bound is 30,000. For the third partition, the lower bound is 35,000, and the
upper bound is 45,000. Thus, the answer is between 25,000 to 35,000 THB.

In [53], a 2-approximation algorithm for (k, e)-anonymization subjected to
minimize sum-of- error problem is proposed. If the dataset is already sorted on
the sensitive attribute, the algorithm requires only O(n) complexity (where n

is the number of data tuples). For the unsorted datasets, the complexity of the
algorithm is bounded by the sorting cost, i.e. O(n log n) . For the problem
of minimizing maximum-error, in the same work, the authors proposed a 2-
approximation algorithm with O(n log n) cost, as well as a dynamic algorithm

2.3. SENSITIVE PATTERN HIDING 13

that computes the optimal solution.

2.2.3 Incremental Privacy Preservation

For the incremental privacy preservation, a few studies have been reported
[13, 30, 52, 70]. Although the incremental algorithms without re-processing
the whole datasets have been proposed, these algorithms deal with the situa-
tions where multiple versions of the datasets are released. The di↵erent versions
may have di↵erent levels of anonymization e.g. di↵erent generalized or shu✏ing
values from di↵erent privacy parameters. Unlike our work, we deal with only
a single version of the dataset with a single level of privacy parameters (pre-
specified by the responsible agencies e.g. the Ministry of public health in Thai-
land as mentioned above). It may be released publicly multiple times, however,
joining them do not give the attacker any additional knowledge.

Additionally, an approach to preserve the privacy in data streams has been
proposed in [73]. The approach focuses on transaction streams where the data
of an individual may have been stored multiple times in a dataset. To deal with
the continuous nature of the data streams, the lists of equivalence classes are
kept and maintained for the incremental stream processing.

2.3 Sensitive Pattern Hiding

In the PPDM research domain, not only is the privacy problem of individuality
concerned, but also the privacy threat from sensitive patterns. We present the
first motivating example from [19] as follows: suppose that a large supermarket,
BigMart, negotiates on a business matter with a paper-production company,
called Dedtrees. Dedtrees o↵ers a reduced price on their product if BigMart
allows them to access the selling database. By using an association-rule mining
algorithm, suppose that Dedtrees finds that customers who buy skim milk also
buy Green paper. Then, Dedtrees starts the campaign “get 50 cents o↵ skim
milk with every purchase of a Dedtrees’s product”. This a↵ects the sales of
Green paper enormously. Finally, Dedtrees becomes a bigger company in the
paper market, and BigMart has lost the competitive edge.

In [27], the authors presented a motivating example when a rule (PostCode

= 5409) ^ (Age = 18 to 25) ^ (Gender = Male) ! HepBStatus =

Yes is discovered from a released data set; suppose that the postal code 5409
referred to an indigenous community or the national parliament. This rule can

14 CHAPTER 2. RELATED WORK

be considered as an o↵ense to the population in the area and should be hidden
before the data set can be shared or released. By empirical studying, the same
authors also presented an approach to justify which rule can be considered as
the sensitive rule.

Another example requiring sensitive patterns to be hidden is presented in
[6]. The motivating example was presented in the paper as follows: Consider
an association rule a1 ^ a2 ^ a3 ! a4 with 80 supporting records and 98.7%
confidence. From this information, we can derive the support of the antecedence
as: sup(a1, a2, a3) = sup(a1,a2,a3,a4)

conf(a1,a2,a3!a4)
= 80

0.987 = 81.05, where sup(x) is the
number of supporting records of the itemset x and conf(x ! y) is sup(x [y)
divided by sup(x). We can infer that there is one individual record that has
the support of a1 ^ a2 ^ a3¬a4 which can be considered as a privacy violation
or a threat on anonymity. In this paper, the authors presented a method to
detect sensitive frequent itemsets which violate the anonymity. Another work
by the same authors proposed a method to prevent the disclosure of the sensitive
frequent itemsets [5].

From the above examples, the need to hide the sensitive patterns can be
seen. To hide such sensitive patterns in data sharing scenarios, data must be
modified until the interestingness of the sensitive patterns fall below the specific
threshold. This process of making the patterns disappear is referred as “pattern
hiding”.

When an optimal solution is required, the sensitive pattern hiding problem is
proven as an NP-hard problem [4]. The proof is shown by reducing the problem
to a HITTING SET problem, that is, given a set C of subsets of a finite set S,
find the smallest subset S0 of S such that every subset in C contains at least
one element in S0. In the problem reduction, (1) the condition that the sensitive
large itemsets must be hidden is inferred to in the condition that every subset
in C contains at least one element in S0, (2) the minimal side e↵ect is inferred
to in the smallest subset S0.

Because of the proof, there are many heuristic algorithms proposed to ad-
dress the problem in the context of the association rules hiding. In [65], the
authors presented many heuristic ways to modify the data set to address the
problem in the association rule mining context. The proposed modification is
achieved by data perturbation. The selected values in the data set will be per-
turbed to decrease the support and/or the confident values of the sensitive rules.
The rules will be hidden successfully if their support and/or confident values
are less than the specific thresholds. The authors proposed to hide sensitive

2.3. SENSITIVE PATTERN HIDING 15

association rules through the two following options, (1) decrease the confidence
of the rule, and (2) decrease the support of the rule. In the first option, the
authors presented the analysis of the association rules’s confidence formulation,
that is, |X[Y |⇥100

|X| for a rule |X ! Y |. Then, the authors suggested two ways
to decrease the confidence; first, perturb the item Y from 1 to 0 in the transac-
tions which partially support the rule X ! Y to decrease the numerator part
of formulation (|X [Y |). This will fix the value in denumerator part of the for-
mulation (|X|). The other way it can be done is by increasing the value of the
denumerator of the formulation which will make the confidence value decrease.
It can be done by perturbing the item X from 0 to 1 in the partially supported
transactions of the rule. The second option is achieved by perturbing the item
X or either Y from 1 to 0 to decrease the support of the rule X ! Y . The
authors also presented the experiment results of these proposed ways.

Oliveira and Zäıane proposed several heuristic algorithms to hide sensitive
frequent itemsets [47, 49] in the context of the association rule mining. To boost
the sensitive patterns hiding process, the authors proposed to apply the inverted
index files [7]. Generally, after the data owner specifies sensitive patterns, the
sensitive transactions with regard to the sensitive patterns must be identified for
further modification. Using the inverted index file can help to identify the trans-
actions e�ciently. When the transactions have been identified, the algorithms
will select the victim items and perturb them by changing the values from 1 to
0. The selection of the victim items is di↵erent among the three proposed algo-
rithms of the Minimal Frequency Item, the Maximal Frequency Item, and the
Item Grouping algorithms. The authors also introduced the notion of the degree
of conflict of a transaction which supports the sensitive frequent itemsets. For
a transaction, its degree of conflict refers to the number of sensitive patterns
it supports. It is suggested by the authors that, to hide a sensitive pattern,
modifying the transaction with a high degree of conflict can reduce the side
e↵ect. Also, the disclosure threshold for the sensitive patterns is introduced;
its value ranges from 0 to 1 and must be specified by the data owner. When it is
set to 0, it means that the algorithm must hide the sensitive patterns until they
can not be discovered, where, in the context of frequent itemsets, the support
of sensitive patterns must be below the support threshold.

The algorithms proposed by the authors composed of four steps. First, the
algorithms identify the transactions which support the sensitive patterns. Sec-
ond, the victim items in the identified transactions are selected for perturbation
by di↵erent criteria. In the Minimal Frequency Item algorithm, items which

16 CHAPTER 2. RELATED WORK

have minimal support values are selected to be removed. While the Maximal
Frequency Item algorithm removes the item that has maximal support value.
In the last algorithm, the Item Grouping algorithm, tries to select the item that
is common among sensitive frequent itemsets, then, removing the item can help
hide many sensitive frequent itemsets at once. Third, the number of transac-
tions to be perturbed is determined by the disclosure threshold . The last
step is the actual perturbation. For each sensitive pattern, it begins with the
sorting of the supporting transactions of the pattern by the degree of conflict.
Then, it perturbs a numbers of transactions from the third step by changing the
item value from 1 to 0 in the victim items. By the same authors, the issue of
balancing between the sensitive patterns privacy and the non-sensitive patterns
disclosure is also addressed [48].

A border-based algorithm to hide the sensitive frequent itemsets is proposed
by Sun and Yu in [58]. In the frequent itemset context, they introduced a
new usability measurement, the relative frequency of remaining non-sensitive
frequent itemsets, which, instead of counting the number of non-sensitive rules
left in the modified data set as the side e↵ect, the new measurement represents
more details about the usability. This measurement is proposed to measure
the aggregated quality of the modified data sets. Based on the concept of the
border of itemsets [42], the algorithm was proposed to hide the lower border of
the sensitive itemsets, instead of hiding every sensitive itemset. In [44], another
approach, the Min-Max, which is based on border-based concept is proposed.
Given many sensitive itemsets, the authors suggest hiding the sensitive itemsets
with minimum support first, because they are the closest to the borders. Then,
among the sensitive minimal support itemsets, the highest (or maximum) sup-
port itemsets will be selected. From such highest support itemsets, the victims
item to be modified can be selected.

In [69], the authors present a di↵erent view on the association rule hiding.
Instead of hiding the sensitive association rules and minimizing the side e↵ect
(ghost rules and false-drop rules), the authors suggested that the side e↵ect can
damage the applicability of the modified data set when it uses, for example,
the ghost rules in the medical domain; this can lead to the wrong medical
treatment suggestion. An approach is proposed to modify the data set such
that there is no side e↵ect and to minimize the number of disclosed sensitive
rules. The experiment’s results showed that the sensitive rules can be hidden
successfully, mostly by their approach. Instead of the values changing, there
is also another heuristic method to replace the selected values with unknown

2.4. OTHER RELATED WORK 17

values [56]. This approach hides sensitive patterns by introducing margins of
support and confident values to some extent of uncertainty.

An inference problem with regard to the classification mining is presented
in [67]. Instead of sensitive rule hiding, the authors address a problem of the
blocking inference channel in the form < IC ! ⇡, h >, where IC is a set
of attributes, ⇡ is a class label, and h is a confidence threshold, for example
< {Poscode, Age, Gender} ! HepBStatus = Y es, 75% >. The authors also
presented an algorithm to block the inference channel by modifying the data
in top-down basis, that is, a sensitive attribute value will first be transformed
into the most general value, then transformed into a more specific value when
the algorithm proceeds further. The sensitive pattern hiding problem can be
considered as a more specific problem addressed by this work.

2.4 Other Related Work

Other works focusing on privacy representation are as follows.

In [3], the authors address the problem of the decision tree-based classifiers
building from perturbed data sets by adding noise. The authors propose to
use the reconstruction approach, that is, perturbing the given data set and
reconstructing the aggregate information of the data set to help in mining the
data. The data set must be perturbed such that the di↵erence between the
perturbed and the original data values can guarantee the privacy of the data.
The usability in this work is represented as the accuracy of the decision-tree
which is discovered from the modified data set. When the perturbed data set is
used for classification model building, the reconstruction procedure is continued
to estimate the data distribution of the original data set. Subsequently, the new
decision tree-based classification model is built with the comparable accuracy
of the original data set.

In [2], the Expectation Maximization (EM) technique is applied to the prob-
lem for improving the distribution reconstruction. In [24], the approach to
address the same problem with binary and category data sets are proposed re-
spectively. In [72], the way for perturbation the data set is guided by the data
mining algorithm aspect. The authors suggested that the proposed algebraic
approach can provide data mining result more accurate, and also disclose less
sensitive information. Note here that in these works, the data mining algorithms
to be used with the released data need to accept the di↵erent input data, that

18 CHAPTER 2. RELATED WORK

is, instead of using only released data sets to derive knowledge, the algorithms
must be modified to use perturbed data sets plus data distributions from the
estimation process.

In [51], the approach to preserve the individual privacy for data clustering
is presented. The approach transforms the given data set into dissimilar ma-
trix before the data sharing takes place then, the clustering is performed by a
dissimilar matrix. The authors also proposed a dimensional reduction method,
random projection to improve e�ciency of the approach. Another work by the
same authors in [50] presents a di↵erent approach. The rotation transforma-
tion [18], which is an isometric geometry transformation, is applied to address
the problem. The transformation is performed in the data set as each selected
attribute-value pair is transformed by the transformation matrix, such that the
“variance” from the transformed values and the original values are higher than
the minimal security thresholds.

In [16], Clifton addressed the individual privacy problem in classification
computing. Given a data set, the author proposed the approach to sample the
data such that the privacy of individual can be preserved. The approach can
determine the size of the released data set.

Secure Multi-party Computing

When collaborative parties want to compute a global computation from the
integrated data by preventing each party from learning the other’s data, the
problem can be formulated into secure multi-party computing (SMC) [8, 15,
31]. This is a individual privacy problem in the PPDM. This problem can
be considered as the generalized problem of secure two-party computation [71]
which was addressed in the cryptography research area at its early stage. There
are many di↵erent computations which can be performed by solutions of this
problem; for example, the problem of the global decision tree is covered in [40].
Since each party has a di↵erent part of the global data, the way each party
holds their data can be categorized into two groups: horizontal and vertical
partitioning. In [62], the global association rules are computed from the parties,
where each party has di↵erent items to be considered. This work is referred
to as the vertically-partitioned association rule mining. On the other hand,
horizontally-partitioned association rules mining is presented in [36], in which
each party has a di↵erent part of the data set, but the same items.

2.4. OTHER RELATED WORK 19

Inference Problem

Data downgrading problem [14] or inference problem [20] is another important
problem for individual privacy. The scenario is as follows. A data owner wants
to release “some part of a data set” to the public, that is, there are some records
which have their values blocked for the privacy preservation reason. However,
the released part of the data may be used to infer the sensitive part of the
data. In [14], the formal analysis of such situations and the thermodynamic
approach to balance privacy against usability are purposed. A relationship
between sensitive information and the size of the released data sets is studied
in [16].

20 CHAPTER 2. RELATED WORK

Chapter 3

Data Increment on

(k, e)-Anonymization

3.1 Problem Definition

In this chapter, we define the notations and terms, and subsequently the focused
problem.

Definition 1 (Dataset) Let a dataset DID = {d1, d2, . . . , dn

} be a collection
of tuples defined on a schema A, which consists of an identifier ID, a set of
quasi-identifiers QI = {qi1, qi2, . . . , qik}, and the numerical sensitive attribute
S. For each d

i

2 DID, the value of identifier attribute ID, a quasi-identifier
attribute qi

j

, as well as the sensitive attribute S is denoted as d
i

.ID, d
i

.qi
j

, and
d

i

.S respectively. For each attribute A
j

2 A, its domain is denoted as dom(A
j

).

Suppose that the given schema is as Figure 3.1 is given. An example dataset

Figure 3.1: An example schema
Citizen ID Postal code Age Sex Salary

21

22 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

of such schema can be as in Table 3.1. The Citizen ID is obviously the identifier
of the dataset. The set of quasi-identifiers is, QI = {Postal code, Age, Sex}.
And, suppose that the sensitive value is Salary attribute.

Table 3.1: An example dataset
Citizen ID Postal code Age Sex Salary
357xx567 50200 35 Male 14,000
357xx111 50210 36 Male 15,000
357xx113 50230 40 Male 16,000
357xx565 50300 41 Female 25,000
357xx446 50310 43 Female 35,000
357xx448 50330 47 Male 30,000
257xx567 50300 53 Male 40,000
257xx568 50310 54 Female 35,000
257xx167 50330 58 Male 45,000

We consider to transform the datasets without identifiers which is defined
as follows.

Definition 2 (De-identified Dataset) The de-identified version of a dataset
DID is a projection of it over the set of quasi-identifiers and the sensitive
attribute, denoted as D.

The de-identified dataset for the dataset in Table 3.1 is shown in Table 3.2.
Such de-identified datasets can have an overlapped public dataset on some quasi-
identifier attributes. The public dataset also contains the identifiers which lead
to the privacy breach. Our goal here is to transform the de-identified datasets
to break such link between the quasi-identifier attributes and the sensitive value
such that one who owns the public datasets cannot match them to the trans-

Table 3.2: An example dataset
Postal Code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

3.1. PROBLEM DEFINITION 23

Table 3.3: The partitioned dataset
Postal Code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

formed dataset, while the aggregate queries can still be e↵ectively answered.

Definition 3 (Aggregate Queries) A aggregate query q is an SQL-query which
applies the aggregate functions including COUNT, MAX, MIN, SUM, and AV-
ERAGE on the sensitive attribute of the de-identified datasets.

Definition 4 ((k, e)-partition) A de-identified dataset D is satisfied a (k, e)-
partition i↵ for each partition P

i

✓ D, the projection over the sensitive attribute
S provides at least k distinct values and the range of these di↵erent values in
P

i

is at least e.

Definition 5 ((k, e)-anonymity permutation) Let p be a random permuta-
tion over the tuple identifier {1, 2, . . . , n}. The permutation of a de-identified
D denoted as p(D,QI, S) = {di

0 |8qi
j

2 QI, d0
i

.qi
j

= d
i

.qi
j

and d
i

0 .S = d
p(i).S}

Given a random permutation p and a de-identified (k, e)-anonymity dataset D,
the (k, e)-anonymity permutation of D is p(D,QI, S).

As mentioned before, there could be many (k, e)-anonymity permutation
datasets, or (k, e)-anonymity for short, for a given data, the transformation
algorithm should select the optimal-utility dataset, i.e. the dataset which has
the least error. Such error can be defined in two approaches [54], i.e. summation-
error and maximum-error. We focus on the former error definition defined as
follows.

Definition 6 (Error) Let a set of partitions {P1, P2, . . . , Pm

} be a partitioning
of a dataset D resulted from the (k, e)-permutation transformation. Let the
error(P

i

) be the error occurs in a partition P
i

, error(P
i

) = max(S
i

)�min(S
i

),

24 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Table 3.4: The partitioned dataset
Postal Code Age Sex Salary

50200 35 Male 15,000
50210 36 Male 16,000
50230 40 Male 14,000
50300 41 Female 25,000
50310 43 Female 30,000
50330 47 Male 35,000
50300 53 Male 35,000
50310 54 Female 40,000
50330 58 Male 45,000

where max and min is the function to determine the maximum and minimum
sensitive value from P

i

respectively.

The summation-error of the dataset D from the (k, e)-permutation is
P

m

i=1 error(P
i

).

Precisely, the problem is to determine the p(D,QI, S) which has minimal
summation-error given the dataset D, the k, and e parameters.

3.2 E↵ect of Data Increment

First, the O(n2) for preserving the privacy with regard to the (k, e)-anonymization
is presented in Figure 3.2. The algorithm will compute the optimal summation
error in each i-loop. The error value is kept in the error variable. That is, the
error[D.size] will contain the summation error of the optimal solution. The
approach of the algorithm is a greedy which it can be seen in the d loop. The
algorithm will compare the “valid” current error considering the k and e values,
to the best-known error for such d

i

data tuple. If the current error is less than
the exiting value, it is stored as the new error in error[i] value. Also, the index
of the data tuple d

j

which cause the less error is stored in partition[i] value.
This comparison will contribute to the sub loop O(n) for each i loop. And, thus
the complexity of the algorithm becomes O(n2).

3.2. EFFECT OF DATA INCREMENT 25

Table 3.5: An example sensitive dataset to demonstrate the O(n2)
Id Salary
1 54
2 55
3 56
4 65
5 70
6 75
7 75
8 80
9 85

Table 3.6: The error and partition of the example sensitive dataset to demon-
strate the O(n2)

Id error partition
1 Infinity 0
2 Infinity 0
3 2 1
4 11 1
5 16 1
6 12 4
7 12 4
8 17 4
9 22 7

Suppose that the sensitive values of a dataset is as shown in Table 3.5 with
the k and e values are set at 3 and 2 respectively. When the algorithm in Figure
3.2 have been applied to the dataset its error and partition values are as shown
in Table 3.6. The partition information can be obtained by scan the partition

variable backward, thus the partition of data tuples represented the Id as {1, 2,
3}, {4, 5, 6}, and {7, 8, 9}.

26 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Input:
D: a dataset

k: a minimum number of distinct values threshold

e: a minimum range of values threshold

Output:
(D

0
: the output dataset, which satisfies the (k, e)-anonymization

partition: the partition information

error: the error information

Method:
error[0] =infinity

partition[0] =0

for i = 1 to D.size

error[i] = infinity

partition[i] = partition[i� 1]

for j = 1 to i

if distinct({dj , . . . , di}) � and (di � dj) � e then
current error = (di � dj)

else
current error = infinity

end if
temp = f [j � 1] + current error

if temp  error[i] then
error[i] = temp

partition[i] = j

end if
end for

end for

Figure 3.2: Original O(n2)-Algorithm

Table 3.7: The impact when a data tuple with 67 as its sensitive value is inserted
Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
4 65 11 11 1 1
-1 67 - 13 - 1
5 70 16 7 1 4
6 75 12 12 4 4
7 75 12 12 4 4
8 80 17 17 4 4
9 85 22 17 7 7

3.2. EFFECT OF DATA INCREMENT 27

Table 3.8: The impact when a data tuple with 55 as its sensitive value is inserted
Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
-1 55 - Infinity - 0
3 56 2 2 1 1
4 65 11 11 1 1
5 70 16 16 1 1
6 75 12 12 4 5
7 75 12 12 4 5
8 80 17 17 4 5
9 85 22 22 7 8

When an incremental data tuple 4d is appended to the dataset, the näıve
approach is to execute the algorithm again. However, we will address the incre-
mental data transformation problem in a more e�cient way.

Suppose that the data tuple with 67 as its sensitive value is inserted into the
dataset in Table 3.5. Let’s assume that the Id is minus one for the insertion, to
be able to see its impact. First, we present the error and partition values in
Table 3.7. Note that we present the data and the previous values to compare
with the impact as well. Such increment will change the partition structure into
{1, 2, 3}, {4, -1, 5}, and {6, 7, 8, 9} and the summation-error is decreased to
17.

It can be seen that the increment can change summation error as well as
the partition structure, however it might be not always the case. We present
another example where the increment will not change the error. Re-consider the
dataset shown in Table 3.5, suppose that the data tuple with 55 as its sensitive
value is inserted. The error and the partition values of such increment is shown
in Table 3.8. In which, the summation-error is the same as the previous value.
Also, the structure of the new partition is “the same” though inside the first
partition will have more element.

Thus, we analyze the impact of the increment theoretically as follows. First,
we categorize the changes into two main groups. The first group is when the
increment data is inserted at the “in-range” of the existing partition. The
second group is when the increment data is inserted at the border of the two
existing partitions. We discuss the details of each group in the next sections.
Subsequently, the approach to compute the impact of the increment is presented.

28 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Table 3.9: The impact when a data tuple with 76 as its sensitive value is inserted
Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
4 65 11 11 1 1
5 70 16 16 1 1
6 75 12 12 4 4
7 75 12 12 4 4
-1 76 - 13 - 4
8 80 17 17 4 7
9 85 22 21 7 8

3.2.1 In-range Increment

For the “in-range” increment, when an data tuple4d is inserted into a partition
Pi, which is a partition in an optimal solution. An impact could be the partition
Pi0, the partition Pi after insertion identified by the first/last data tuple in it,
can be broken into a complete partition satisfying the (k, e)-condition before the
ending/beginning tuples of the old Pi. The left out data tuples will be merged
and considered with the consecutive partition Pj, which is preceded by Pi or
next to Pi. In this case, the optimal summation-error can be reduced, since the
partition can be completed before the position it was.

For example, let us re-consider the dataset in Table 3.7. The data tuple with
67 as its sensitive tuple is inserted. The partition such tuple is inserted to is the
second partition, it had previously {4, 5, 6} data tuples with the summation-
error at 10. After the insertion, the partition is broken before the 6-data tuple is
considered. The modified partition becomes {4, -1, 5} with the summation-error
at 5. Consecutively, the 6-data tuple is merged with last partition, however it
does not increase the summation-error since it is duplicate with a data tuple
within the partition. Overall, the insertion causes the summation-error reduce
from 22 to 17.

3.2. EFFECT OF DATA INCREMENT 29

Table 3.10: The impact when a data tuple with 56 as its sensitive value is
inserted

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
-1 56 - 2 - 1
3 57 3 3 1 1
4 65 11 11 1 1
5 70 16 15 1 4
6 75 13 13 4 5
7 75 13 13 4 5
8 80 18 18 4 5
9 85 23 23 7 8

Another example is shown in Table 3.9. The scenario is a data tuple with 76
as its sensitive value is inserted to the existing dataset. The partition structure
has become {1, 2, 3}, {4, 5, 6, 7}, and {-1, 8, 9}. The summation-error reduce
from 22 to 21, and the last partition is completed before the 7-data tuple is
considered.

In some cases, the “in-range” increment can also leave the summation-error
intact. For example, let us consider a dataset in Table 3.10. Note that the
existing dataset is di↵erent from the previous examples. It can be seen that
the insertion does not cause the ending data tuples (3-data tuple, in this case)
to be merged with the consecutive partition. Because the merging can increase
the summation-error with regard to the optimal solution. Instead, it keeps the
beginning and the ending of the existing dataset without increasing the error.

From the general point of view, we can further consider the details of such
impact as follows. The O(n2) optimal algorithm in Figure 3.2 computes the
error of each data tuple d

i

by considering its partition-break-point in greedy
approach. For example, from the dataset in Table 3.10 (ignoring the increment)
when the last data tuple (10-data tuple) is considered, its current error is
firstly set at infinity. Then, the partition of {1, 2, . . . , 9} is considered for its
error, and its current error is decreased to 31. Not all possible partitioning can
satisfy the (k, e)-condition, but some of them, e.g. when a break point providing
the partition {1, 2,�1} and {4, 5, . . . , 9} as i is set at 10, and j is set at 4, the
current error is reduced to 28, while the summation-error is reduced to 30 (the
previous optimal error is, f [j � 1], is 2). Last, when the j variable is set at 7,
the current error is reduced to 10, providing the summation-error at 23.

30 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Table 3.11: The impact when a data tuple with 57 as its sensitive value is
inserted

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 57 - 3 - 1
4 65 11 11 1 1
5 70 16 15 1 4
6 75 12 13 4 5
7 75 12 13 4 5
8 80 17 18 4 5
9 85 22 23 7 8

When a new valid break-point satisfying the (k, e)-condition is found, not
only the error is updated, but the partition. Such variable will be updated to
be the valid break-point in the greedy manner. All break-point values might
not be used to construct the partition structure. These are the values up to the
current data tuples since the greedy processing, the last value will provide the
actual structure. Thus, the partition structure can be obtained by scanning the
partition backward.

3.2.2 Border Increment

For the “border” increment, when an data tuple 4d is inserted between a pre-
ceding partition Pi and another consecutive Pj, both partitions obtained from
an optimal solution. One of the possible impact is that partition Pi merges
such 4d into it. As a result the structure of partition Pj and the rest are not
e↵ected. In this case, the optimal summation-error is to be increased since the
preceding partition is extended.

For example, consider the dataset in Table 3.11. It can be seen that a data
tuple with 57 as its sensitive value is inserted between the first and the second
partitions, i.e. {1, 2, 3} and {4, 5, 6} respectively. The optimal result after
the insertion is that the data tuple is merged to the first partition. The other
partitions have no impact from such insertion. As a result, we obtain the optimal
partition as {1, 2, 3, -1}, {4, 5, 6}, and {7, 8, 9}. Also the summation-error is
increased from 22 to 23.

3.2. EFFECT OF DATA INCREMENT 31

Table 3.12: The impact when a data tuple with 64 as its sensitive value is
inserted

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 10 - 1
4 65 11 11 1 1
5 70 16 8 1 4
6 75 12 13 4 4
7 77 14 15 4 4
8 77 14 15 4 4
9 101 38 34 4 7
10 102 37 35 7 7
11 103 16 17 9 10

When an increment data tuple is inserted at the border, it can also be merged
with the consecutive partition Pj, and the rest of the next partitions subjected
to Pj are remained the same. This causes the increasing of the summation-error
by considering the margin of the insertion data tuple and Pj as shown in Table
3.12. Note that the dataset in this example is di↵erent from the previous.

For the cases where the 4d is merged with partition Pj, it can cause such
partition breaks into a complete partition satisfying the (k, e)-condition before
the ending tuples of the old Pj. Thee left out data tuples will be merged and
considered with the consecutive partition of Pj. This will happen only when
the cost of the break is less than merging and keeping the structure of Pj the
same as before. In order to illustrate this case, consider another example in
Table 4.2. From the example, it can be seen that Pj, in this case {4, 5, 6, 7 8},
is broken by merging 4d to its front-end. Then the partitions become {-1, 4,
5} and {6, 7, 8} with less summation-error.

From the above observation, we can see that the impact of an increment is as
follows. First, when the position of the insertion data tuple is determined. The
error and the partition values priori to the position are always remained intact
due to the greedy approach. Then, the error and the partition values of such
insertion values can be determined. For example, the error and partitioning

values of the dataset in Table 3.9 before the insertion position is remained the
same. While the values at the insertion as well as the rest can be changed.

When considering the details of the partitioning, we can see that the insertion
at the partition border can only merge with the preceding and the consecutive

32 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Table 3.13: The impact when a data tuple with 64 as its sensitive value is
inserted, and a new partition is found

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 8 - 1
4 65 11 11 1 1
5 70 16 10 1 4
6 75 12 15 4 4
7 76 13 16 4 4
8 80 17 15 4 7
9 101 37 36 7 7
10 102 35 37 8 7
11 103 19 17 9 7
12 120 36 34 9 10
13 121 37 35 9 10
14 122 21 19 12 13

partition. If the data tuple is to be merged with the preceding partition, it is
from the fact the error from extending the partition is less than the error causes
by merging it with the consecutive partition. Though, merging4d data tuple to
the consecutive partition can also causes such partition to meet the break-point
before the previous since the (k, e)-condition is met. The structure-change of
the insertion partition is depended on the error value of the data tuples which
is processed in greedy manner.

3.3 Incremental Processing

A näıve approach is that computing the error and the partition values right
from the insertion position to the end. However, consider the cases where the
insertion position is in the very beginning position of the existing dataset, such
approach might not be appropriated. As such the complexity of the incremental
algorithm in this case will be O(n02) where n0 is the number of the rest data
tuples to be processed.

In this work, we propose a lemma which will be used to improve the incre-
mental processing as follows.

Lemma 1 For each incremented dataset D0, after the completed-alignment par-
tition, the partition in which the data tuples in it is the same as before the in-

3.3. INCREMENTAL PROCESSING 33

Pca

Pca�

Pca-1

error

error' = error + error(Pca�)

a) Extending partition

Pca x

Pca2�

Pca-1

error

error' = error + error(Pca�)

Pca1�

b) Breaking partition

Figure 3.3: Summation-error Computing for Incremental Processing

sertion, the remaining structure of the partition is the same as priori to the
insertion.

Proof Let d
i

be a data tuple after the completed-alignment partition p
ca

, the
partition in which the data tuples in it is the same as before the insertion. In
order to obtain the optimal solution, the error[i] of d

i

can be only computed
in two cases since partition p

ca

has not been e↵ected by the insertion. First, it
is merged to p

ca

or one of p
ca

consecutive partitions, or it is combined with the
other d

i�1, di�2, . . . di�m

and forms a new partition. The both cases, error[i]
is the summation between the error[partition[ca] � 1], and the di↵erence be-
tween the sensitive value of d

i

and the sensitive value of the first data tuple in
partition

ca

, or error[i] = error[partition[ca]� 1] + (d[i]� d[partition[ca]� 1]).
In Figure 3.3a), the illustration of the first cases is shown. It can be seen

that the range of the partition p
ca

which adds the new data tuple d
i

is extended.
Thus, its error is formed by the summation-error before p

ca

and the incremented
p

ca

. The latter cases where a new partition is formed is illustrated in Figure
3.3b). Such error computation can be performed in the same approach.

Also, as the structure of the partition is not change after the complete-

34 CHAPTER 3. DATA INCREMENT ON (K, E)-ANONYMIZATION

Table 3.14: The impact when a data tuple with 64 as its sensitive value is
inserted, and a new partition is found

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 8 - 1
4 65 11 11 1 1
5 70 16 10 1 4
6 75 12 15 4 4
7 76 13 16 4 4
8 80 17 15 4 7
9 101 37 36 7 7
10 102 35 37 8 7
11 103 19 17 9 7
12 120 36 34 9 10
13 121 37 35 9 10
14 122 21 19 12 13

alignment partition, we can further update the error and partition variables
as follows. First, the partition variable after such point is increasing by one.
Since the positions of the remaining is shifted by one insertion. Then, the error

partition can be computed as mentioned.
For example, suppose that the dataset in Table 3.14 is given, and the k

value is set at 3, and the e value is set at 2. Suppose further that a data tuple
with 64 as its sensitive value is appended. It can be seen that the complete-
alignment partition is the partition with {9, 10, 11} data tuples. The remaining
partition information of the remaining tuples is computed by adding one. Then,
the error[12] is the addition of the error[partition[ca] � 1], i.e. 17, to (120 �
d[partition[ca]� 1]), i.e. 120 - 103. Thus, such error is 34.

From such observation, we can develop an incremental algorithm which
computes the error and the partition as the static algorithm until the com-
plete alignment is found. Subsequently, the partition is computed with O(n0)
where n0 is the number of the remaining data tuples to process. As well as the
partition, the error can be computed with the same cost. Such algorithm is to
be presented in the next chapter.

Chapter 4

Incremental Algorithm

After we propose a lemma to improve the e�ciency of the data incremental in
the previous chapter. That is, if the partition in which the data tuples in it
is the same as before the insertion is founded, the remaining structure of the
partition is the same as priori to the insertion. In this chapter, we propose an
incremental algorithm to preserve the privacy based on the (k, e)-anonymization
based on such lemma as shown in Figure 4.1.

From the algorithm, it can be seen that the e�ciency depends on how far
the break-point position can be found. Let n be the number of data tuples,
let ins pos be the position of the insertion, and let n0 be the number of the
remaining data tuples after the break-point (In Line 20 of Figure 4.1). The
computational complexity of the proposed algorithm is composed by the cost
of the insertion determination, finding the optimal solution before the break-
point, as well as error and partition determination after the breakpoint. Thus,
the complexity is O(ins pos)+O((n0 � ins pos)2)+O(n� n0). Obviously, if the
break-point is found at the end of the dataset, the incremental algorithm will
have the same complexity as the non-incremental algorithm, otherwise it can
be more e�cient.

To clarify our algorithm, let us consider an example. Suppose that the
dataset in Table 4.1 is given. When a data tuple with 64 as its sensitive value
is inserted, the algorithm first determines that the position of the 4d, i.e. the
fourth position as shown in Table 4.2. The partition0 and the error0 values
of the preceding position are the same as their original values, i.e. 0, 0, 1,
and Infinity, Infinity, 2 respectively. Subsequently, the i-loop is proceeded to
determine the optimal solution for each d

i

as the non-incremental algorithm.

35

36 CHAPTER 4. INCREMENTAL ALGORITHM

Input:
D

0
: a permuted dataset

k: a minimum number of distinct values threshold

e: a minimum range of values threshold

4d: an additional tuple

partition: a partition information from the permuted dataset

error: an error information from the permuted dataset

Output:
(D +4D)

0
: the output dataset, which satisfies the (k, e)-anonymization

partition

0
: the updated partition information

error

0
: the updated error information

Method:
1 insert 4d into D

0
based on its sensitive value

2 determine the position of 4d, ins pos

3 copy partition and error into partition

0
and error

0
from the first to the position of the ins pos

4 for i = ins pos to (D +4D)

0
.size

5 error

0
[i] = infinity

6 partition

0
[i] = partition

0
[i� 1]

7 for j = 1 to i

8 if distinct({dj , . . . , di}) � k and (di � dj) � e then
9 current error = (di � dj)

10 else
11 current error = infinity

12 end if
13 temp = error

0
[j � 1] + current error

14 if temp  error

0
[i] then

15 error

0
[i] = temp

16 partition

0
[i] = j

17 end if
18 end for
19 if the previous partition comparing with the i position is a complete-alignment then
20 break from the i-loop

21 end if
22 end for
23 determine the remaining partition

0
and error

0

Figure 4.1: Incremental Algorithm

37

Table 4.1: Original Dataset
Id Data error partition
1 54 Infinity 0
2 55 Infinity 0
3 56 2 1
4 65 11 1
5 70 16 1
6 75 12 4
7 76 13 4
8 80 17 4
9 101 37 7
10 102 35 8
11 103 19 9
12 120 36 9
13 121 37 9
14 122 21 12

Table 4.2: The impact when a data tuple with 64 as its sensitive value is inserted,
and a new partition is found

Id Data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 8 - 1
4 65 11 11 1 1
5 70 16 10 1 4
6 75 12 15 4 4
7 76 13 16 4 4
8 80 17 15 4 7
9 101 37 36 7 7
10 102 35 37 8 7
11 103 19 17 9 7
12 120 36 34 9 10
13 121 37 35 9 10
14 122 21 19 12 13

38 CHAPTER 4. INCREMENTAL ALGORITHM

The i-loop will continue until it finishes the processing for the d12 data tuple.
At the point, the completed-alignment of the partition {d9, d10, d11} is found.
Then, the i-loop is broken, and the remaining of the partition and the error

values can be computed using Lemma 1 with O(n� n0) cost.

Chapter 5

Indexing

In order to further improve the e�ciency of the proposed incremental algorithm,
two indexes are proposed as follows.

5.1 Distinct Value Index

First, we propose an index on the distinct sensitive values. Because one of the
most high-computation operations in the algorithm is to decide whether the
given range of data tuples has enough distinct value to be a valid partition
subjected to the k-condition. Additionally, the index can improve the e�ciency
of the complete-alignment identification. Since, the incremental algorithm relies
on the break-point determination such that, it can stop the O((n0 � ins pos)2)
processing, and begin the O(n � n0) processing. If the cost of the alignment
identification is lower, a high e�ciency can be obtained.

After the algorithm is proposed, in order to further improve the e�ciency of
the incremental algorithm, there are a few possible indexes can be created.

Thus, we create an index which its key is the range of the positions. The
value of the index is the sequence of the sensitive value of the data tuples
in the partition belonged to the key, as well as their number of distinct val-
ues. Such index will be in a form of flat-file index, in which each entry is
in the form < (p

i

, p
j

), ((s1, s2, . . . , sn

), no distinct) >, where p
i

and p
j

is the
range, (s1, s2, . . . , sn

), is the sequence of the sensitive values in the range, and
no distinct is the number of distinct values in such range. For example, given
the dataset in Table 5.1, an index entry for the d1 data tuple to the d3 data

39

40 CHAPTER 5. INDEXING

Table 5.1: An example dataset
Id Data
1 54
2 55
3 56
4 65
5 70
6 75
7 76
8 80
9 101

Table 5.2: Index structure for the example dataset
Index Entry

< (1, 1), ((54), 1) >
< (1, 2), ((54, 55),) >

< (1, 3), ((54, 55, 56), 3) >
< (1, 4), ((54, 55, 56, 65), 4) >

< (1, 5), ((54, 55, 56, 65, 70), 5) >
. . .

< (5, 6), ((70, 75), 2) >
< (5, 7), ((70, 75, 76), 3) >

< (5, 8), ((70, 75, 76, 80), 4) >

< (8, 9), ((80, 101), 2) >
< (9, 9), ((101), 1) >

tuple is < (1, 3), ((54, 55, 56), 3) >. It can be seen that the sequence covers data
tuples with 54, 55, and 56 as their sensitive values. And, the number of distinct
values among them is 3. The index structure of this dataset is shown in Table
5.2.

5.2 Positioning Index

Second, given the fact that there could be a very large number of duplicates
in real-life dataset. For example, consider the age attribute of the individuals,
though the number of data tuples can be varied, age values can be limited to
some certain ranges. Thus, we propose to apply a tree-based index, i.e. B+-
tree, which its key is the sensitive value of a data tuple, the value of its is the
position of the first value of the key. Formally, the index entry is in the form of

5.2. POSITIONING INDEX 41

< d
i

.sensitive, p
i

>. With this index, we can identify whether the current i-data
tuple is the distinct value comparing with the previous value when processing
the i-loop in the algorithm.

42 CHAPTER 5. INDEXING

Chapter 6

Experiment Results

After our incremental algorithm and indexing are proposed, in this chapter, we
present the experiment results to evaluate our work.

6.1 Configuration

The experiments were conducted on the Adult dataset from UCI Machine Learn-
ing Repository [12] which has been used to evaluate the (k, e)-anonymization
[53, 54]. The dataset contains 14 attributes over 48,000 data tuples. The
“capital-loss” attribute is selected as the sensitive values. Eight of the attributes
are selected as the quasi-identifier as in [54], as well as the data cleansing pro-
cesses. Thus, the remaining number of the dataset is 1427 tuples. The range of
the capitol-loss values is 155 to 3900, with 89 distinct values.

The e�ciency is evaluated in term of the execution time when the three
parameters change, i.e. the k value, the e value, and the size of the incremental
dataset |4D|. In each experiment, the dataset will be divided into two equal
parts, the first part is used as the static part of the data, while the latter will
be used as the incremental data. The incremental part of the dataset will be
appended to the static part in a one-by-one basis. Once, all the increment data
are appended to the dataset, the execution time is reported. Additionally, the
position of the break-point from the proposed incremental algorithm is reported
to present the relationship between the position and the e�ciency of the algo-
rithm. Such positions are reported into the percentage of the skipped tuples
relatively to the size of the dataset. The more the percentage means the more

43

44 CHAPTER 6. EXPERIMENT RESULTS

Figure 6.1: E↵ect of the k value

e�ciency the algorithm can obtain. Note that the execution time of the in-
cremental algorithm both with/without the proposed indexes will be reported
to show their e↵ects. Thus, the execution time reported for the incremental
algorithm with the indexes consists of the execution time as well as the index
update time. In each experiment, the proposed algorithm will be compared
with the O(n2)-algorithm in [54] and the 2-approximation algorithm with O(n)
complexity in [53]. Such 2-approximation algorithm is a greedy algorithm which
scan the given dataset once for computing a cover of of the anonymous intervals
based on the (k, e) condition. Note that the resulting numbers reported are
five-time average.

6.2 Results and Discussion

6.2.1 E↵ects of k value

In the first experiment, we evaluate the e�ciency of the incremental algorithm
when the k value is varied. Such value is varied from 3 to 10 to evaluate its
e↵ect. The e value is fixed at 100. At each setting, a set of the increment data
of size 10% of the existing dataset is inserted.

In Figure 6.1, the result of the experiment is presented. Obviously, when the

6.2. RESULTS AND DISCUSSION 45

Figure 6.2: E↵ect of the e value

k value is increased, the execution time of the incremental algorithms are also
increased. The rationale behind this is that when the k is higher, the break-point
of the complete-alignment is more di�cult to be found with regard to the k-
condition. In the worst case, the algorithms need to compute the error and the
partition values until the end of the dataset with O((n0� ins pos)2) cost. Thus,
the e�ciency is degraded. Comparing with the non-incremental algorithm, the
fixed computational cost of O(ins pos) of the incremental algorithms before the
ins pos-position is higher. We can see the e↵ect of such cost when the k values is
very high, the execution time of the incremental algorithm is even a bit higher.
However, in [53], the authors suggested that the k value should be set at lower
than 6 in general.

6.2.2 E↵ects of e value

In this experiment, we evaluate the e�ciency of the incremental algorithm when
the range of the tolerate error e is changed. The e will be increased from 20
to 220 to evaluate its e↵ect. The k is fixed at 5, and |4D| at 10%. From the

46 CHAPTER 6. EXPERIMENT RESULTS

∆∆∆∆

Figure 6.3: E↵ect of the 4D

result in Figure 6.2, it can be seen that the proposed incremental algorithm is
more e�cient than the non-incremental algorithm. These results are obvious
particularly when the e value is set at 100 or lower in which the execution time of
the non-incremental algorithm is more than 3-times of the proposed algorithm.
Such gaps are caused by the discovery of the complete-alignment partition, and
thus prevent the quadratic part of the algorithm to be executed till the end of
the input. The rationale behind the e�ciency degrade, after the e value is higher
than 100, is each partition becomes larger. And, thus the complete-alignment is
more di�cult to be found as it can be seen the percentage of the skipped tuples
from the break-point positions. Obviously, such percentage decreases when both
the k and e parameters are increased because the mentioned reason.

6.2.3 E↵ects of |4D|

In the last experiment, we evaluate the e�ciency of the incremental algorithm
when the size of the incremental dataset (|4D|) is varied. The variation is set
at the percentage of the whole data to be appended, i.e. 6, 8, 10, 12 and 14 %.

6.2. RESULTS AND DISCUSSION 47

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

k
Incremental Incremental with indexes Approximation

Figure 6.4: E↵ect of the k value considering indexes

We set the k and e values at 5 and 100 respectively. Figure 6.3 shows the result
of this experiment. It can be seen that when the size of the appended data is
increased, the gap between the execution time of both algorithms is increased.
Obviously, the e↵ect of the incremental processing is accumulated when the size
of 4D is increased. And, in all settings, both of the incremental algorithms
outperform the approximation algorithm.

6.2.4 Indexing Performance

In this section, we report the performance of the indexes. The execution time
of the proposed algorithm with/without indexes is reported to evaluate the
performance. In addition, the execution time of the approximation algorithm
is reported here to compare its e�ciency with our proposed algorithm with
indexes. Note that the execution time reported for the incremental algorithm
with the indexes consists of the execution time as well as the index update time.
The index performance when the k, e, and |4D| is varied is presented in Figure
6.4, 6.5, and 6.6 respectively.

From the figures, it can be seen that the incremental algorithms with the
proposed indexes are more e�cient than the without-indexes version of it sig-

48 CHAPTER 6. EXPERIMENT RESULTS

0

100

200

300

400

500

600

700

800

900

1000

20 60 100 140 180 220

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

e
Incremental Incremental with Indexes Approximation

Figure 6.5: E↵ect of the e value considering indexes

0

100

200

300

400

500

600

700

800

0.06 0.08 0.10 0.12 0.14

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

' d
Incremental Incremental with indexes Approximation

Figure 6.6: E↵ect of the 4D

6.2. RESULTS AND DISCUSSION 49

nificantly. The algorithm with the indexes is even more e�cient than the 2-
approximation algorithm which has O(n) complexity, meanwhile the optimal
solutions can be obtained. Also, it can be seen that the incremental algorithm
with indexes can outperform the 2-approximation algorithm when the e value is
not extremely high. Given the fact that the optimal solutions can be obtained
instead of the approximate results, our proposed algorithm is very e�cient.

50 CHAPTER 6. EXPERIMENT RESULTS

Chapter 7

Conclusion

In this work, we have proposed a solution to the focused problem. That is,
an observation on the privacy preservation based on the (k, e)-anonymization
when the data increment is considered. We have subsequently, proposed an
incremental algorithm for the problem. Such algorithm can process the data in-
crementally while exactly the same solutions as the non-incremental algorithm
can be guaranteed. The proposed algorithm can be more e�cient than the
non-incremental algorithm when the complete-alignment partition is discovered
before the end of the data input is to be processed. Eventually, two indexes
are proposed to resolve the e�ciency issue. From the experiments, it has been
found that the incremental algorithm with/without indexes is much more e�-
cient than the non-incremental algorithm when the k or e value is not extremely
high. When the size of the increment data is increased, the e�ciency gap be-
tween the proposed algorithm and the non-incremental algorithm is larger. Also,
the incremental algorithm with the proposed indexes can outperform the O(n)
approximation in most of the experiment settings. These can be summarized
that the proposed algorithm can be very e�cient in the real-world situations.

In our future work, we will investigate on a few interesting issues as follows.
One of them is bulk-data insertion, i.e. to insert a relative-small/medium set
of data into the existing dataset at once. For example, one may need to insert
an additional dataset in Table 7.1 into the existing dataset in Table 7.2. The
nave approach is to combine the datasets from the two datasets together, sub-
sequently, re-process the privacy preservation. Or, a more e�cient way would
be applying the algorithm in [45] to individually insert the additional dataset.

The more e�cient solution for such issue can help in the real-world situations

51

52 CHAPTER 7. CONCLUSION

Table 7.1: An example additional dataset to be inserted
Postal Code Age Sex Salary

50210 45 Male 16,000
50210 36 Female 20,000
50200 41 Male 15,000

Table 7.2: An example dataset
Postal Code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

where the data are collected in a fixed-time interval. For example, the Ministry
of public health requires each hospital to submit the medical records collected
in past months. Processing such bulk of records at once, rather than processing
each record individually, will be more e�cient and realistic. In order to apply
the bulk insertion, there are a few sub-issues need to be addressed. That is,
the e�ciency of the insertion both in term of the computational and space cost
should be considered. The bulk insertion of n tuples should be more e�cient
than insert each of the n tuples individually. The space requirement in order to
perform the bulk insertion should not be the burden to the task. Additionally,
the concurrency control of the indexes or the auxiliary data structures of the
algorithm should be considered. Since the bulk insertion of large data might
need to acquire the lock in order to perform the update operation. The nave
approach is to preserve the lock until the bulk insertion is finished. However,
the approach can degrade the e�ciency of the indexes. Thus, the concurrency
control in this case, should be carefully designed.

Bibliography

[1] C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserv-
ing data mining. In Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database Technology, pages 183–
199. Springer-Verlag, 2004.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy
preserving data mining algorithms. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 247–255. ACM Press, 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings
of the 2000 ACM SIGMOD international conference on Management of
data, pages 439–450. ACM Press, 2000.

[4] M. Atallah, A. Elmagarmid, M. Ibrahim, E. Bertino, and V. Verykios.
Disclosure limitation of sensitive rules. In KDEX ’99: Proceedings of the
1999 Workshop on Knowledge and Data Engineering Exchange, pages 45–
52, Washington, DC, USA, 1999. IEEE Computer Society.

[5] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. Blocking anonymity
threats raised by frequent itemset mining. In ICDM ’05: Proceedings of
the Fifth IEEE International Conference on Data Mining, pages 561–564,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. k-anonymous pat-
terns. In Proceedings of the 9th PKDD European Conference on Principles
and Practice of Knowledge Discovery in Databases, pages 10–21. Springer-
Verlag, 2005.

[7] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.

53

54 BIBLIOGRAPHY

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In STOC
’88: Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 1–10, New York, NY, USA, 1988. ACM Press.

[9] S. Benferhat, R. E. Baida, and F. Cuppens. A stratification-based approach
for handling conflicts in access control. In SACMAT ’03: Proceedings of the
eighth ACM symposium on Access control models and technologies, pages
189–195. ACM Press, 2003.

[10] E. Bertino, P. Samarati, and S. Jajodia. Authorizations in relational
database management systems. In CCS ’93: Proceedings of the 1st ACM
conference on Computer and communications security, pages 130–139, New
York, NY, USA, 1993. ACM Press.

[11] E. Bertino, P. Samarati, and S. Jajodia. An extended authorization model
for relational databases. IEEE Transactions on Knowledge and Data En-
gineering, 9(1):85–101, 1997.

[12] C. Blake and C. Merz. UCI repository of machine learning databases, 1998.

[13] J.-W. Byun, T. Li, E. Bertino, N. Li, and Y. Sohn. Privacy-preserving
incremental data dissemination. Journal of Computer Security, 17(1):43–
68, 2009.

[14] L. Chang and I. S. Moskowitz. Parsimonious downgrading and decision
trees applied to the inference problem. In Workshop on New Security
Paradigms, pages 82–89, 1998.

[15] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally se-
cure protocols. In STOC ’88: Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 11–19, New York, NY, USA,
1988. ACM Press.

[16] C. Clifton. Using sample size to limit exposure to data mining. Journal of
Computer Security, 8(4):281–307, 2000.

[17] C. Clifton and V. Estivill-Castro, editors. CRPIT ’14: Proceedings of
the IEEE international conference on Privacy, security and data mining.
Australian Computer Society, Inc., Darlinghurst, Australia, 2002.

BIBLIOGRAPHY 55

[18] H. T. Croft, H. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, New York, NY, USA, 1991.

[19] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino. Hiding
association rules by using confidence and support. In Proceedings of the 4th
International Workshop on Information Hiding, pages 369–383. Springer-
Verlag, 2001.

[20] H. S. Delugach and T. H. Hinke. Wizard: A database inference analysis and
detection system. IEEE Transactions on Knowledge and Data Engineering,
8(1):56–66, 1996.

[21] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern, P. G.
Neumann, and R. R. Schell. Views for multilevel database security. IEEE
Transactions on Software Engineering, 13(2):129–140, 1987.

[22] J. Domingo-Ferrer and V. Torra, editors. Privacy in Statistical Databases,
volume 3050 of LNCS. Springer, Berlin Heidelberg, 2004.

[23] J. Doyle. Pharmacy customers complain of privacy violations, delays. 2011.

[24] A. Evfimievski, R. Srikant, R. Agarwal, and J. Gehrke. Privacy preserving
mining of association rules. Information Systems, 29(4):343–364, 2004.

[25] R. Fagin. On an authorization mechanism. ACM Transactions on Database
Systems, 3(3):310–319, 1978.

[26] S. Farooq. Starbucks’ foursquare check ins has its perks. 2011.

[27] P. Fule and J. F. Roddick. Detecting privacy and ethical sensitivity in
data mining results. In ACSC ’04: Proceedings of the 27th Australasian
conference on Computer science, pages 159–166, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[28] B. C. Fung, K. Wang, and P. S. Yu. Anonymizing classification data for
privacy preservation. IEEE Transactions on Knowledge and Data Engi-
neering, 19(5):711–725, 2007.

[29] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving
data publishing: A survey of recent developments. ACM Comput. Surv.,
42(4):14:1–14:53, June 2010.

56 BIBLIOGRAPHY

[30] B. C. M. Fung, K. Wang, A. W.-C. Fu, and J. Pei. Anonymity for contin-
uous data publishing. In Proceedings of the 11th international conference
on Extending database technology: Advances in database technology, EDBT
’08, pages 264–275, 2008.

[31] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In STOC ’87: Proceedings of the nineteenth annual ACM conference on
Theory of computing, pages 218–229, New York, NY, USA, 1987. ACM
Press.

[32] P. P. Gri�ths and B. W. Wade. An authorization mechanism for a rela-
tional database system. ACM Transactions on Database Systems, 1(3):242–
255, 1976.

[33] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 279–288. ACM, 2002.

[34] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified
framework for enforcing multiple access control policies. In SIGMOD ’97:
Proceedings of the 1997 ACM SIGMOD International Conference on Man-
agement of Data, pages 474–485. ACM Press, 1997.

[35] R. J. B. Jr. and R. Agrawal. Data privacy through optimal k-
anonymization. In Proceedings of the 21st IEEE ICDE International Con-
ference on Data Engineering, pages 217–228. IEEE Computer Society, 2005.

[36] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. IEEE Transactions on
Data and Knowledge Engineering, 16(9):1026–1037, 2004.

[37] J. Li, R. C.-W. Wong, A. W.-C. Fu, and J. Pei. Achieving k -anonymity
by clustering in attribute hierarchical structures. In Proceedings of 8th
International Conference on Data Warehousing and Knowledge Discovery,
Lecture Notes in Computer Science, pages 405–416. Springer, 2006.

[38] N. Li, T. Li, and S. Venkatasubramanian. Closeness: A new privacy mea-
sure for data publishing. IEEE Transactions on Knowledge and Data En-
gineering, 22(7):943–956, 2009.

BIBLIOGRAPHY 57

[39] X.-B. Li and S. Sarkar. A tree-based data perturbation approach for
privacy-preserving data mining. IEEE Transactions on Knowledge and
Data Engineering, 18(9):1278–1283, 2006.

[40] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proceedings
of the 20th Annual International Cryptology Conference on Advances in
Cryptology, pages 36–54. Springer-Verlag, 2000.

[41] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.
`-diversity: Privacy beyond -anonymity. In ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering, page 24, Washington,
DC, USA, 2006. IEEE Computer Society.

[42] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258,
1997.

[43] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity.
In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 223–228. ACM, 2004.

[44] G. V. Moustakides and V. S. Verykios. A max-min approach for hid-
ing frequent itemsets. In Workshops Proceedings of the 6th IEEE ICDM
nternational Conference on Data Mining, pages 502–506. IEEE Computer
Society, 2006.

[45] J. Natwichai, X. Li, and A. Kawtrakul. Incremental Processing and Index-
ing for (k, e)-Anonymization. Unpublished manuscript.

[46] S. News. Vodafone warned over customer privacy leaks. 2011.

[47] S. R. M. Oliveira and O. R. Zäıane. Privacy preserving frequent itemset
mining. In Proceedings of the IEEE international conference on Privacy,
security and data mining, pages 43–54. Australian Computer Society, Inc.,
2002.

[48] S. R. M. Oliveira and O. R. Zäıane. Algorithms for balancing privacy
and knowledge discovery in association rule mining. In 7th International
Database Engineering and Applications Symposium, pages 54–65. IEEE
Computer Society, 2003.

58 BIBLIOGRAPHY

[49] S. R. M. Oliveira and O. R. Zäıane. Protecting sensitive knowledge by
data sanitization. In Proceedings of the 3rd IEEE ICDM International
Conference on Data Mining, pages 613–616. IEEE Computer Society, 2003.

[50] S. R. M. Oliveira and O. R. Zäıane. Achieving privacy preservation when
sharing data for clustering. In Proceedings of the Workshop on Secure Data
Management (SDM’04), pages 67–82. Springer, 2004.

[51] S. R. M. Oliveira and O. R. Zäıane. Privacy-preserving clustering by ob-
ject similarity-based representation and dimensionality reduction transfor-
mation. In Proceedings of the Workshop on Privacy and Security Aspects
of Data Mining (PSDM’04) in conjunction with the Fourth IEEE Interna-
tional Conference on Data Mining (ICDM’04), pages 21–30, 2004.

[52] J. Pei, J. Xu, Z. Wang, W. Wang, and K. Wang. Maintaining k-anonymity
against incremental updates. In Proceedings of the 19th International Con-
ference on Scientific and Statistical Database Management, SSDBM ’07,
pages 5–, 2007.

[53] C. M. Procopiuc and D. Srivastava. E�cient table anonymization for ag-
gregate query answering. In Proceedings of the 2009 IEEE International
Conference on Data Engineering, pages 1291–1294, Washington, DC, USA,
2009. IEEE Computer Society.

[54] Z. Qing, N. Koudas, D. Srivastava, and Y. Ting. Aggregate query answer-
ing on anonymized tables. In Proceedings of the 2007 IEEE International
Conference on Data Engineering, pages 116 – 125, Washington, DC, USA,
2007. IEEE Computer Society.

[55] J. Russell. Facebook surge puts thailand into worlds top 25. 2010.

[56] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent
discovery of association rules. SIGMOD Rec., 30(4):45–54, 2001.

[57] B. Seisungsittisunti and J. Natwichai. Incremental privacy preservation
for associative classification. In Proceeding of the ACM first international
workshop on Privacy and anonymity for very large databases, PAVLAD
’09, pages 37–44, 2009.

[58] X. Sun and P. S. Yu. A border-based approach for hiding sensitive fre-
quent itemsets. In ICDM ’05: Proceedings of the Fifth IEEE International

BIBLIOGRAPHY 59

Conference on Data Mining, pages 426–433, Washington, DC, USA, 2005.
IEEE Computer Society.

[59] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-
tion and suppression. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):571–588, 2002.

[60] L. Sweeney. k-anonymity: a model for protecting privacy. Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):557–570, 2002.

[61] T. M. Truta and A. Campan. K-anonymization incremental maintenance
and optimization techniques. In SAC ’07: Proceedings of the 2007 ACM
Symposium on Applied Computing, pages 380–387, New York, NY, USA,
2007. ACM.

[62] J. Vaidya and C. Clifton. Privacy preserving association rule mining in
vertically partitioned data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
639–644. ACM Press, 2002.

[63] J. Van Grove. Mayors of starbucks now get discounts nationwide with
foursquare. 2010.

[64] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and
Y. Theodoridis. State-of-the-art in privacy preserving data mining. SIG-
MOD Rec., 33(1):50–57, 2004.

[65] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni.
Association rule hiding. IEEE Transactions on Data and Knowledge Engi-
neering, 16(4):434–447, 2004.

[66] K. Wang and B. C. M. Fung. Anonymizing sequential releases. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 414–423, New York, NY, USA,
2006. ACM Press.

[67] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based privacy preser-
vation in classification problems. In ICDM ’05: Proceedings of the Fifth
IEEE International Conference on Data Mining, pages 466–473, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

60 BIBLIOGRAPHY

[68] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (↵, k)-anonymity:
an enhanced k-anonymity model for privacy preserving data publishing. In
KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 754–759, New York, NY,
USA, 2006. ACM Press.

[69] Y.-H. Wu, C.-M. Chiang, and A. L. P. Chen. Hiding sensitive association
rules with limited side e↵ects. IEEE Transactions on Knowledge and Data
Engineering, 19(1):29–42, 2007.

[70] X. Xiao and Y. Tao. M-invariance: towards privacy preserving re-
publication of dynamic datasets. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, SIGMOD ’07, pages 689–
700, 2007.

[71] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the
27th Annual Symposium on Foundations of Computer Science (FOCS’86),
pages 162–167, Toronto, Canada, 1986. IEEE Computer Society.

[72] N. Zhang, S. Wang, and W. Zhao. A new scheme on privacy-preserving data
classification. In KDD ’05: Proceeding of the eleventh ACM SIGKDD inter-
national conference on Knowledge discovery in data mining, pages 374–383,
New York, NY, USA, 2005. ACM Press.

[73] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Continuous pri-
vacy preserving publishing of data streams. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’09, pages 648–659, 2009.

Output จากโครงการวิจยัทีÉได้รบัทนุจาก สกว.

1. ไดส้่งผลงานเพืÉอตพีมิพใ์นวารสารวชิาการนานาชาต ิ International Journal of
Information and Computer Security โดย Juggapong Natwichai, Xue Li, and
Asanee Kawtrakul โดยจะทราบผลภายในเดอืน ก.ค. นีÊ

2. การนําผลงานวจิยัไปใชป้ระโยชน์
- เชงิวชิาการ

- ไดนํ้าผลงานไปใชเ้ป็นส่วนหนึÉงของวชิา Advanced Database System ณ
ภาควชิาวศิวกรรมคอมพวิเตอร ์ คณะวศิวกรรมศาสตร ์
มหาวทิยาลยัเชยีงใหม ่ โดยมุง่เน้นประเดน็การตั Êงขอ้สงัเกตกบัอลักอรทิมึ
และการทดสอบประสทิธภิาพ

- ไดด้ดัแปลงปญัหาทีÉแกใ้นงานวจิยันีÊ ไปเป็นปญัหาวจิยัในวทิยานิพนธข์อง
นกัศกึษาระดบัปรญิญาเอก หลกัสตูรปรชัญศาตรดุษฎบีณัฑติ (วศิวกรรม
คอมพวิเตอร)์ คณะวศิวกรรมศาสตร ์ มหาวทิยาลยัเชยีงใหม ่ โดยแปลงให้
เป็นการรกัษาความเป็นส่วนตวัในลกัษณะขอ้มลูหลายเวอรช์นั

3. อืÉนๆ -

Appendix

Incremental Processing and Indexing for

(k, e)-Anonymization

May 27, 2012

Abstract

The emerging of the internet-based services poses a privacy threat

to the individuals. Data transformation to meet a privacy standard be-

comes a requirement for typical data processing for the services. (k, e)-

anonymization is one of the most promising data transformation ap-

proaches, since it can provide high-accuracy aggregate query results.

Though, the computational cost of the algorithm providing optimal solu-

tions for such approach is not very high, i.e. O(n2). In certain environ-

ments, the data to be processed can be appended at any time. In this

paper, we address an e�ciency issue of the incremental privacy preserva-

tion using (k, e)-anonymization approach. The impact of the increment

is observed theoretically. We propose an incremental algorithm based on

such observation. The algorithm can replace the quadratic-complexity

processing by a linear function on some part of the dataset, while the

optimal results are guaranteed. Additionally, a few indexes are proposed

to further improve the e�ciency of the proposed algorithm. The exper-

iments have been conducted to validate our work. From the results, it

can be seen that the proposed work is highly e�cient comparing with

the non-incremental algorithm and an approximation algorithm.

1

Keywords: Incremental Processing; Privacy; Anonymization;

Indexing.

1 Introduction

Privacy is one of the most important issues for any data processing these days.

Since the organisations have more opportunity to collect the data from the

individuals. Such examples can be social network applications, or the location-

based services which have been utilised widely. The collected data can be used

to improve the quality of services by data analysing tools and algorithms, e.g.

user-clustering can help improving campaign targeting. The results will ben-

efit both the organisations and the individuals. However, the privacy of the

individuals should not been compromised.

Consequently, the privacy preservation becomes one of the most active re-

search areas. One of the first few privacy preservation approaches which have

been proposed, is k-anonymization Samarati & Sweeney (1998), Samarati (2001),

Sweeney (2002b). Its fundamental is to hide an individual within a k-size group

with identical information. Subsequently, the `-diversity, which further protects

the privacy by enforcing the minimum `-distinct sensitive data in the group,

has been proposed in Machanavajjhala et al. (2006). Such two mentioned ap-

proaches are based on the data transformation by generalisation, i.e. changing

a privacy sensitive value into its more-generalised value e.g. from a postal code

50202 to 5020*. Furthermore, there are a few more e↵ective approaches based

on such work to preserve the privacy, for example, t-closeness Li et al. (2009)

which extends the l-diversity approach by preserving the distribution of the

sensitive values in each group.

One of the most important approaches for preserving the privacy is (k, e)-

anonymization Qing et al. (2007), Procopiuc & Srivastava (2009). With this

2

Table 1: An example dataset
Postal code Age Sex Salary

50200 35 Male 14,000
50210 36 Male 15,000
50230 40 Male 16,000
50300 41 Female 25,000
50310 43 Female 35,000
50330 47 Male 30,000
50300 53 Male 40,000
50310 54 Female 35,000
50330 58 Male 45,000

Table 2: The partitioned dataset
Postal code Age Sex Salary

50200 35 Male 15,000
50210 36 Male 16,000
50230 40 Male 14,000
50300 41 Female 25,000
50310 43 Female 30,000
50330 47 Male 35,000
50300 53 Male 35,000
50310 54 Female 40,000
50330 58 Male 45,000

approach, the sensitive data are partitioned, in which the probability to identify

the individuals in each partition is not exceeded the pre-specified thresholds,

k and e. The k values use to control the number of distinct sensitive data

in a group, while the e values use to control the range of the sensitive data.

Subsequently, the sensitive data in each partition is swapped, or permuted, to

protect the privacy. Not only that the privacy can be preserved e↵ectively, but

also a high data utility can be obtained by applying such approach. The utility

in the (k, e)-anonymization is defined in term of the accuracy of the aggregate

query results. In Qing et al. (2007), the authors reported that the error from

the aggregate query result is very low (1% error approximately), i.e. the result

is very close to the non-privacy preserved result.

An example dataset to illustrate the (k, e)-anonymization is shown in Table

3

1. In the table, a dataset is composed by three non-sensitive attributes, i.e.

postal code, age, and sex, of the individuals. The sensitive attribute is the

monthly-salary in Thai Baht (THB). If the k and the e values are set at 3 and

2,000 respectively, an optimal solution with regard to the minimum-sum-error

objective (to be described in Section 3), is shown in Table 2.

From Table 2, the partition of the dataset is outlined, i.e. there are three

partitions. It can be seen that there is at least 3 distinct salary values in each

partition, as well as the range of the salary is at least 2,000 THB. The sensitive

data have been permuted already. If an aggregate query “find the summation

of the salary of the 40-48 years-old” is issued, the result from the permuted

dataset is 104,000-106,000 THB (A data tuple from the first partition, all of the

tuples from the second partition, and none from the last partition are involved

in the query answering). Meanwhile the same query executed on the original

dataset results in 106,000 THB which is very close to the result obtained from

the privacy preserved dataset.

The complexity of the algorithm generated the optimal solutions is O(n2)

where n is the number of data tuples in the given dataset Qing et al. (2007).

Such algorithm composes of two phases, i.e. partitioning the given dataset

according to (k, e)-anonymization, as well as permuting the sensitive values

within each partition. The partitioning phase, which costs O(n2), is our focus

in this paper. Though, such cost is not very high, the data to be processed

might not be static. There are some situations that the data to be trans-

formed can be appended all the time Truta & Campan (2007), Seisungsittisunti

& Natwichai (2009). For example, the Ministry of public health in Thailand

requires each hospital to submit the monthly medical records to the global data

warehouse. Re-applying the O(n2)-algorithm every time the monthly data are

loaded might not be an e�cient way to approach the problem in such environ-

4

ment.

In this paper, we address the incremental privacy preservation problem

based on the (k, e)-anonymization. We start with making the observation on

the data appending theoretically. Subsequently, an algorithm based on the ob-

servation is proposed. In which the quadratic-complexity processing on some

part of the dataset can be replaced by the linear-complexity processing. Fur-

thermore, two indexes are proposed to improve the e�ciency of the algorithm.

The experiments have been conducted to validate our work. From the results,

the proposed work is highly e�cient comparing with the non-incremental algo-

rithm and an approximation algorithm, while the same results with re-applying

the optimal non-incremental algorithm can be guaranteed.

The organisation of this paper is as follows. The related work is presented

in the next section. The basic notation for defining the problem is presented in

Section 3. Subsequently, the observations on the data increment and the incre-

mental algorithm are proposed in Section 4. The indexes for further e�ciency

improvement are proposed in Section 5. In Section 6, the experiment results

to evaluate our work are reported. Finally, Section 7 gives the conclusion and

outline of our future work.

2 Related Work

In general, the data privacy preservation issues can be addressed by the tra-

ditional database techniques such as security view management Denning et al.

(1987) or access-control methods Jajodia et al. (1997) which have been studied

in the past decades. With these approaches, data privacy can be preserved by

creating di↵erent views/rights for di↵erent users with di↵erent privilege levels.

Also, the statistical security-control Domingo-Ferrer & Torra (2004) is another

approach for addressing the issues. With this approach, noises are inserted into

5

the original dataset in order to di↵erentiate the utility of the dataset. While

some specific statistical values, for example, the mean or variance, relied on the

noise-added data must be maintained as close to the original values as possible.

k -anonymity, which is a well-known privacy preservation model, was firstly

proposed Samarati & Sweeney (1998). There has been a lot of work applied

the k-anonymity because its simplicity and meaningful of the transformed data

Machanavajjhala et al. (2006), Sweeney (2002a), Wong et al. (2006), Fung et al.

(2007). However, when the data utility of the transformed datasets is con-

cerned, the transformation problem is not trivial. In Meyerson & Williams

(2004), the problem that requires an optimal anonymization, i.e. satisfying k

while having minimal impact on data utility, has been proven as an NP-hard

problem.

There have been a few privacy preservation models built based on the k-

anonymity model as follows. In Machanavajjhala et al. (2006), the authors

proposed another privacy preservation model, `-diversity, which improves the

k-anonymity model by preventing homogeneity attack. The attack occurs when

the k-anonymized dataset has too less diversity though it satisfies the k-anonymity

condition. In Li et al. (2009), the authors showed that there exist some situa-

tions which the `-diversity may not secure enough to publish the data. There-

fore, they proposed the t-closeness model in which the data distribution of a

sensitive attribute in any group should be similar to the distribution of such

attribute in the dataset in order to guarantee the privacy of the given data.

Such model has been proven as an e�cient privacy preservation

(k, e)-anonymization was first proposed in Qing et al. (2007). As opposed

to the generalisation-based approach, which the data values are transformed

into a more general form of them, the approach begins with data partitioning

process subjected to the k distinct values, and the e range. Then, the data

6

within each partition are permuted to protect the privacy. The partitioning

phase can help increasing the utility obtained from the data, since the data

transformation is proceeded in the scope of the partition. Comparing with the

t-closeness, the (k, e)-anonymization rather aims at optimising the range of the

sensitive data. Also, the aggregate query can be answered e↵ectively with less

optimisation constraints.

For the incremental privacy preservation, a few studies have been reported

Xiao & Tao (2007), Pei et al. (2007), Fung et al. (2008), Byun et al. (2009).

Although the incremental algorithms without re-processing the whole datasets

have been proposed, these algorithms deal with the situations where multiple

versions of the datasets are released. The di↵erent versions may have di↵erent

levels of anonymization e.g. di↵erent generalised or shu✏ing values from di↵er-

ent privacy parameters. Unlike our work, we deal with only a single version of

the dataset with a single level of privacy parameters (pre-specified by the re-

sponsible agencies e.g. the Ministry of public health in Thailand as mentioned

above). It may be released publicly multiple times, however, joining them do

not give the attacker any additional knowledge.

Additionally, an approach to preserve the privacy in data streams has been

proposed in Zhou et al. (2009). The approach focuses on transaction streams

where the data of an individual may have been stored multiple times in a

dataset. To deal with the continuous nature of the data streams, the lists

of equivalence classes are kept and maintained for the incremental stream pro-

cessing.

3 Basic Definition

In this section, we present the definitions required for our proposed approach.

Definition 3.1 (Dataset) Let a dataset DID = {d1, d2, . . . , dn} be a collec-

7

tion of tuples defined on a schema A, which consists of an identifier ID, a set of

quasi-identifiers QI = {qi1, qi2, . . . , qik}, and the numerical sensitive attribute

S. Each di can be referred as the i-data tuple.

We consider to transform the datasets without identifiers defined as follows.

Definition 3.2 (De-identified Dataset) The de-identified version of a dataset

DID is a projection of it over the set of quasi-identifiers and the sensitive at-

tribute, denoted as D.

Such de-identified datasets can have an overlapped public dataset on some

quasi-identifier attributes. The public dataset also contains the identifiers which

lead to the privacy breach. Our goal here is to transform the de-identified

datasets to break such link between the quasi-identifier attributes and the sen-

sitive value such that one who owns the public datasets cannot match them

to the transformed dataset, while the aggregate queries can still be e↵ectively

answered.

Definition 3.3 (Aggregate Queries) An aggregate query is an SQL-query

which applies the aggregate functions including COUNT, MAX, MIN, SUM,

and AVERAGE on the sensitive attributes of the de-identified datasets.

Definition 3.4 ((k, e)-anonymity) A de-identified dataset D is satisfied a (k, e)-

anonymity i↵ for each partition Pi ✓ D, the projection over the sensitive at-

tribute S in each Pi provides at least k distinct values and the range of these

di↵erent values in Pi is at least e.

Definition 3.5 ((k, e)-permutation) Let p be a random permutation over the

tuple identifier {1, 2, . . . , n}. The permutation of a de-identified D is denoted

as p(D,QI, S) = {di0 |8qij 2 QI, d0
i.qij = di.qij and di0 .S = dp(i).S}. Given

a random permutation p and a de-identified (k, e)-anonymity dataset D, the

8

(k, e)-anonymity permutation of D is p(D,QI, S), or the (k, e)-permutation for

short.

Obviously, there could be many (k, e)-anonymity permutation datasets for

a given data, the transformation algorithm should select the optimal-utility

dataset, i.e. the dataset which has the least error. Such error can be defined in

two approaches Qing et al. (2007), i.e. summation-error and maximum-error.

We focus on the former error definition defined as follows.

Definition 3.6 (Error) Let a set of partitions {P1, P2, . . . , Pm} be a partition-

ing of a dataset D resulted from the (k, e)-permutation transformation. Let the

error(Pi) be the error occurs in a partition Pi, error(Pi) = max(Si)�min(Si),

where max and min is the function to determine the maximum and minimum

sensitive value from Pi respectively. The summation-error of the dataset D

from the (k, e)-permutation is
Pm

i=1 error(Pi).

Thus, the (k, e)-anonymization problem is to determine the p(D,QI, S)

which has minimal summation-error given the dataset D, the k, and e pa-

rameters.

4 Incremental Processing

4.1 E↵ect of data increment

As we focus on the data-incremental environments, in this section we present

the observation on the increment in which its results will be used to develop

an incremental algorithm in the next subsection. First, the O(n2) for pre-

serving the privacy proposed in Qing et al. (2007) with regard to the (k, e)-

anonymization is presented in Figure 1. The algorithm computes the optimal

summation error in each i-loop. The error value is maintained in the error

9

Input:
D: a dataset
k: a minimum number of distinct values threshold
e: a minimum range of values threshold
Output:
(D0: the output dataset, which satisfies the (k, e)-anonymization
partition: the partition information
error: the error information
Method:

error[0] =infinity
partition[0] =0
for i = 1 to D.size

error[i] = infinity
partition[i] = partition[i� 1]
for j = 1 to i

if distinct({dj , . . . , di}) � k and (di � dj) � e then
current error = (di � dj)

else
current error = infinity

end if
temp = error[j � 1] + current error
if temp  error[i] then

error[i] = temp
partition[i] = j

end if
end for

end for

Figure 1: Original O(n2)-Algorithm

variable. That is, the error[D.size] contains the summation error of the opti-

mal solution. The algorithm applies a greedy approach which it can be seen

in the d loop. The algorithm will compare the “valid” current error subjected

to the k and e values, to the best-known error for such di data tuple. If the

current error is less than the existing value, it is stored as the new error in

error[i]. Also, the index of the data tuple dj which led to the lower error is

stored in partition[i]. This comparison will contribute to the sub-loop O(n) for

each i loop. And, thus the complexity of the algorithm becomes O(n2).

Let us illustrate the execution of the algorithm by examples. Suppose that

the sensitive values of a dataset is as shown in Table 3 with the k and e values

10

Table 3: An example sensitive dataset to demonstrate the O(n2)
Id data error partition
1 54 Infinity 0
2 55 Infinity 0
3 56 2 1
4 65 11 1
5 70 16 1
6 75 12 4
7 75 12 4
8 80 17 4
9 85 22 7

Table 4: The impact when a data tuple with 67 as its sensitive value is inserted
Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
4 65 11 11 1 1
-1 67 - 13 - 1
5 70 16 7 1 4
6 75 12 12 4 4
7 75 12 12 4 4
8 80 17 17 4 4
9 85 22 17 7 7

are set at 3 and 2 respectively (Note that the quasi-identifiers are omitted).

When the algorithm is applied to the dataset, its error and partition values

are shown in the third and fourth columns of Table 3. The partition structure

can be obtained by scanning the partition variable backward, thus the partition

results are {d1, d2, d3}, {d4, d5, d6}, and {d7, d8, d9} as outlined in the table.

When an incremental data tuple 4d is inserted to the dataset, the näıve

approach is re-applying the algorithm again. However, we aim at addressing

the incremental data transformation problem in a more e�cient way. Thus, we

analyse the impact of the increment by re-applying the algorithm theoretically

as follows. First, we categorise the increments into two main groups. The first

group is when the increment data are inserted at the “in-range” of any existing

11

partition. The second group is when the increment data are inserted at the

border of any two existing partitions. We discuss the details of each group in

the following subsections. Subsequently, an approach to compute the impact

of the increment is presented in the Section 4.2.

4.1.1 In-range Increment

For the “in-range” increment, when a data tuple 4d is inserted into a par-

tition Pi, which obtained from an optimal solution. The impact caused by

re-applying the algorithm could be the partition Pi0, the partition Pi after

the insertion identified by the first/last data tuple in it, can be broken into a

complete partition satisfying the (k, e)-condition before the ending/beginning

tuples of the old Pi. The left-out data tuples will be merged and considered

with the consecutive partition Pj, which is preceded by Pi or next to Pi. In

this case, the optimal summation-error can be reduced, since the partition can

be completed before the position it was.

For example, let us re-consider the dataset in Table 3. Suppose that the

data tuple with 67 as its sensitive tuple is inserted as shown in Table 4. The

partition, which the data tuple is inserted to, was {d4, d5, d6} with the summation-

error at 10. After the insertion, if the optimal algorithm is re-applied, the

partition is broken before the d6 data tuple is considered. The modified parti-

tion becomes {d4, d�1, d5} with the summation-error at 5. Consecutively, the

6-data tuple is merged with last partition, however it does not increase the

summation-error since the value is duplicate with a data tuple within the par-

tition. Overall, the insertion causes the summation-error reduce from 22 to

17.

Another example is shown in Table 5. The scenario is a data tuple with 76

as its sensitive value is inserted to the existing dataset. The partition structure

has become {d1, d2, d3}, {d4, d5, d6, d7}, and {d�1, d8, d9}. The summation-

12

Table 5: The impact when a data tuple with 76 as its sensitive value is inserted
Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
4 65 11 11 1 1
5 70 16 16 1 1
6 75 12 12 4 4
7 75 12 12 4 4
-1 76 - 13 - 4
8 80 17 17 4 7
9 85 22 21 7 8

Table 6: The impact when a data tuple with 56 as its sensitive value is inserted
Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
-1 56 - 2 - 1
3 57 3 3 1 1
4 65 11 11 1 1
5 70 16 15 1 4
6 75 13 13 4 5
7 75 13 13 4 5
8 80 18 18 4 5
9 85 23 23 7 8

error reduce from 22 to 21, and the last partition is completed before the d7

data tuple is considered.

The summation-error is not always changed, the “in-range” increment can

also leave the summation-error intact. For example, let us consider a dataset

in Table 6. It can be seen that the insertion does not cause the ending data

tuples (the d3 data tuple, in this case) to be merged with the consecutive par-

tition. Because the merging can increase the summation-error with regard to

the optimal solution. Instead, the result from re-applying the optimal algo-

rithm keeps the beginning and the ending of the existing partitions the same

without increasing the error.

13

Table 7: The impact when a data tuple with 57 as its sensitive value is inserted
Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 57 - 3 - 1
4 65 11 11 1 1
5 70 16 15 1 4
6 75 12 13 4 5
7 75 12 13 4 5
8 80 17 18 4 5
9 85 22 23 7 8

4.1.2 Border Increment

For the “border” increment, when a data tuple 4d is inserted between a pre-

ceding partition Pi and another consecutive Pj, both obtained from an optimal

solution. One of the possible impacts from the re-applying is that partition Pi

merges such 4d into it. As a result the structure of partition Pj and the rest

are not e↵ected. In this case, the optimal summation-error is to be increased

since the preceding partition is extended to embrace 4d.

For example, consider the dataset in Table 7. It can be seen that a data

tuple with 57 as its sensitive value is inserted between the first and the sec-

ond partitions, i.e. {d1, d2, d3} and {d4, d5, d6} respectively. The optimal re-

sult by re-applying the algorithm after the insertion is that the data tuple is

merged to the first partition. The other partitions have no impact from such

insertion. As a result, we obtain the optimal partition from the re-applying

as {d1, d2, d3, d�1}, {d4, d5, d6}, and {d7, d8, d9}. Then, the summation-error is

increased from 22 to 23.

When an increment data tuple is inserted at the border, it can also be

merged with the consecutive partition Pj, and the rest of the next partitions

subjected to Pj are remained the same. This causes the increasing of the

summation-error by considering the margin of the insertion data tuple and Pj

14

Table 8: The impact when a data tuple with 64 as its sensitive value is inserted
Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 10 - 1
4 65 11 11 1 1
5 70 16 8 1 4
6 75 12 13 4 4
7 77 14 15 4 4
8 77 14 15 4 4
9 101 38 34 4 7
10 102 37 35 7 7
11 103 16 17 9 10

as shown in Table 8.

Another case is that the 4d is merged with partition Pj after re-applying

the algorithm, it can cause such partition breaks into a complete partition sat-

isfying the (k, e)-condition before the ending tuples of the previous Pj. The

left-out data tuples will be merged and considered with the consecutive parti-

tion of Pj. This will happen only when the cost of the partition breaking is

less than the merging and keeping the structure of Pj the same as before sub-

jected to the optimal result. In order to illustrate this case, consider another

example in Table 9. From the example, it can be seen that Pj, in this case

{d4, d5, d6, d7d8}, is broken by merging 4d to its front-end. Then the parti-

tions become {d�1, d4, d5} and {d6, d7, d8} with lower summation-error.

In summary, we can see that the insertion at the partition border can only

merge with the preceding and the consecutive partition. If the data tuple is

to be merged with the preceding partition, it is from the fact that the error

from extending the partition is less than the error causes by merging it with

the consecutive partition. Though, merging 4d data tuple to the consecutive

partition can also cause such partition to meet the break-point before the pre-

vious. Since the (k, e)-condition is met. The structure-change of the insertion

15

Table 9: The impact when a data tuple with 64 as its sensitive value is inserted,
and a new partition is found

Id data error error0 partition partition0

1 54 Infinity Infinity 0 0
2 55 Infinity Infinity 0 0
3 56 2 2 1 1
-1 64 - 8 - 1
4 65 11 11 1 1
5 70 16 10 1 4
6 75 12 15 4 4
7 76 13 16 4 4
8 80 17 15 4 7
9 101 37 36 7 7
10 102 35 37 8 7
11 103 19 17 9 7
12 120 36 34 9 10
13 121 37 35 9 10
14 122 21 19 12 13

partition is depended on the error value of the data tuples, which is processed

in greedy manner.

4.2 Incremental Processing

From the previous section, we observe that the impact of an increment by re-

applying the algorithm is as follows. First, when the position of the insertion

data tuple is determined. The error and the partition values priori to the

position are always remained the same due to the greedy approach. Then,

the error and the partition values of the insertion-position tuple can be de-

termined. Thus, a näıve approach is to compute the error and the partition

values right from the insertion position to the end of the dataset. However,

consider the cases where the insertion position is in the very beginning posi-

tion of the existing dataset, such approach might not be appropriated. As such

the complexity of the incremental algorithm in this case will be O(nn0) where

n0 is the number of the remaining data tuples to be processed.

16

Pca

Pca�

Pca-1

error

error' = error + error(Pca�)

a) Extending partition

Pca x

Pca2�

Pca-1

error

error' = error + error(Pca�)

Pca1�

b) Breaking partition

Figure 2: Summation-error Computing for Incremental Processing

In this work, we propose a lemma from our observations which will be used

to improve the incremental processing as follows.

Lemma 4.1 For each incremented dataset D0, after the completed-alignment

partition, the partition in which the data tuples in it are the same as before the

insertion, the remaining structure of the partition is the same as priori to the

insertion.

Proof Let di be a data tuple after the completed-alignment partition pca, the

partition in which the data tuples in it are the same as before the insertion. In

order to obtain the optimal solution, the error[i] of di can be only computed

in two cases since partition pca has not been e↵ected by the insertion. First,

it is merged to pca or one of pca consecutive partitions, or it is combined with

the other di�1, di�2, . . . di�m and forms a new partition. In both cases, error[i]

can be determined from the summation between the error[partition[ca] � 1],

and the di↵erence between the sensitive value of di and the sensitive value of

the first data tuple in partitionca. That is, error[i] = error[partition[ca]�1]+

(d[i]� d[partition[ca]� 1]).

In Figure 2a), the illustration of the first case is shown. It can be seen

17

that the range of the partition pca which adds the new data tuple di is ex-

tended. Thus, its error is formed by the summation-error before pca and the

incremented pca. The latter case, where a new partition is formed, is illustrated

in Figure 2b). Such error computing can be performed in the same approach.

Also, as the structure of the partition is not changed after the complete-

alignment partition, we can further update the error and partition variables

as follows. First, the partition variable after such position is increasing by one.

Since the positions of the remaining is shifted by one insertion. Then, the error

partition can be computed as mentioned.

For example, in Table 9, it can be seen that the complete-alignment par-

tition is the partition with {d9, d10, d11} data tuples. The remaining par-

tition information of the remaining tuples is computed by adding one to it.

Then, the error[12] is the addition of the error[partition[ca] � 1], i.e. 17, to

(120� d[partition[ca]� 1]), i.e. 120 - 103. Thus, such error is 34. For the rest

of the data tuples, the same computing approach can be applied.

From such observation, we can develop an incremental algorithm which

computes the error and the partition as the static algorithm until the complete-

alignment is found. Subsequently, the partition is computed with O(n0) where

n0 is the number of the remaining data tuples to process. As well as the

partition, the error can be computed with the same cost, while the same result

as the re-applying can be guaranteed.

4.3 Algorithm

In this section, we propose an incremental algorithm to preserve the privacy

based on the (k, e)-anonymization as shown in Figure 3.

From the algorithm, it can be seen that the e�ciency depends on how far

the break-point position can be found. Let n be the number of data tuples,

18

Input:
D0: a permuted dataset
k: a minimum number of distinct values threshold
e: a minimum range of values threshold
4d: an additional tuple
partition: a partition information from the permuted dataset
error: an error information from the permuted dataset
Output:
(D +4D)0: the output dataset, which satisfies the (k, e)-anonymization
partition0: the updated partition information
error0: the updated error information
Method:
1 insert 4d into D0 based on its sensitive value
2 determine the position of 4d, ins pos
3 copy partition and error into partition0 and error0 from the first to the position of the ins pos
4 for i = ins pos to (D +4D)0.size
5 error0[i] = infinity
6 partition0[i] = partition0[i� 1]
7 for j = 1 to i
8 if distinct({dj , . . . , di}) � k and (di � dj) � e then
9 current error = (di � dj)

10 else
11 current error = infinity
12 end if
13 temp = error0[j � 1] + current error
14 if temp  error0[i] then
15 error0[i] = temp
16 partition0[i] = j
17 end if
18 end for
19 if the previous partition comparing with the i position is a complete-alignment then
20 break from the i-loop
21 end if
22 end for
23 determine the remaining partition0 and error0

Figure 3: Incremental Algorithm

19

let ins pos be the position of the insertion, and let n0 be the number of the

remaining data tuples after the break-point (In Line 20 of Figure 3). The

computational complexity of the proposed algorithm is composed by the cost

of the insertion determination, finding the optimal solution before the break-

point, as well as error and partition determination after the breakpoint. Thus,

the complexity is O(ins pos)+O((n0 � ins pos)2)+O(n� n0). Obviously, if the

break-point is found at the end of the dataset, the incremental algorithm will

have the same complexity as the non-incremental algorithm, otherwise it can

be more e�cient.

To clarify our algorithm, let us consider an example. Suppose that the

dataset in Table 9 is given. The algorithm first determines that the position

of the 4d, i.e. the fourth position. The partition0 and the error0 values of

the preceding position are the same as their original values. Subsequently, the

i-loop is proceeded to determine the optimal solution for each di as the non-

incremental algorithm. The i-loop will continue until it finishes the processing

for the d12 data tuple. At the point, the completed-alignment of the partition

{d9, d10, d11} is found. Then, the i-loop is broken, and the remaining of the

partition and the error values can be computed using Lemma 1 with O(n�n0)

cost.

5 Indexing

In order to further improve the e�ciency of the proposed incremental algo-

rithm, two indexes are proposed as follows.

First, we propose an index on the distinct sensitive values. Because one of

the most high-computation operations in the algorithm is to decide whether the

given range of data tuples has enough distinct value to be a valid partition sub-

jected to the k-condition. Additionally, the index can improve the e�ciency of

20

the complete-alignment identification. Since, the incremental algorithm relies

on the break-point determination such that, it can stop the O((n0 � ins pos)2)

processing, and begin the O(n � n0) processing. If the cost of the alignment

identification is lower, a high e�ciency can be obtained.

After the algorithm is proposed, in order to further improve the e�ciency

of the incremental algorithm, there are a few possible indexes can be created.

Thus, we create an index which its key is the range of the positions. The

value of the index is the sequence of the sensitive value of the data tuples

in the partition belonged to the key, as well as their number of distinct val-

ues. Such index will be in a form of flat-file index, in which each entry is

in the form < (pi, pj), ((s1, s2, . . . , sn), no distinct) >, where pi and pj is the

range, (s1, s2, . . . , sn), is the sequence of the sensitive values in the range,

and no distinct is the number of distinct values in such range. For exam-

ple, an index entry for the d1 data tuple to the d3 data tuple from Table 9

is < (1, 3), ((54, 55, 56), 3) >. It can be seen that the sequence covers data tu-

ples with 54, 55, and 56 as their sensitive values. And, the number of distinct

values among them is 3.

Second, given the fact that there could be a very large number of duplicates

in real-life dataset. For example, consider the age attribute of the individuals,

though the number of data tuples can be varied, age values can be limited to

some certain ranges. Thus, we propose to apply a tree-based index, i.e. B+-

tree, which its key is the sensitive value of a data tuple, the value of its is

the position of the first value of the key. Formally, the index entry is in the

form of < di.sensitive, pi >. With this index, we can identify whether the

current i-data tuple is the distinct value comparing with the previous value

when processing the i-loop in the algorithm.

21

6 Experiment Results

After our incremental algorithm and indexing are proposed, in this section, we

present the experiment results to evaluate our work.

6.1 Configuration

The experiments were conducted on the Adult dataset from UCI Machine Learn-

ing Repository Blake & Merz (1998) which has been used to evaluate the (k, e)-

anonymization Qing et al. (2007), Procopiuc & Srivastava (2009). The dataset

contains 14 attributes over 48,000 data tuples. The “capital-loss” attribute

is selected as the sensitive values. Eight of the attributes are selected as the

quasi-identifier as in Qing et al. (2007), as well as the data cleansing processes.

Thus, the remaining number of the dataset is 1427 tuples. The range of the

capitol-loss values is 155 to 3900, with 89 distinct values.

The e�ciency is evaluated in term of the execution time when the three pa-

rameters change, i.e. the k value, the e value, and the size of the incremental

dataset |4D|. In each experiment, the dataset will be divided into two equal

parts, the first part is used as the static part of the data, while the latter will

be used as the incremental data. The incremental part of the dataset will be

appended to the static part in a one-by-one basis. Once, all the increment data

are appended to the dataset, the execution time is reported. Additionally, the

position of the break-point from the proposed incremental algorithm is reported

to present the relationship between the position and the e�ciency of the algo-

rithm. Such positions are reported into the percentage of the skipped tuples

relatively to the size of the dataset. The more the percentage means the more

e�ciency the algorithm can obtain. Note that the execution time of the in-

cremental algorithm both with/without the proposed indexes will be reported

to show their e↵ects. Thus, the execution time reported for the incremental

22

Figure 4: E↵ect of the k value

algorithm with the indexes consists of the execution time as well as the index

update time. In each experiment, the proposed algorithm will be compared

with the O(n2)-algorithm in Qing et al. (2007) and the 2-approximation algo-

rithm with O(n) complexity in Procopiuc & Srivastava (2009). The resulting

numbers reported are five-time average. Note that the execution time reported

for the incremental algorithm with the indexes consists of the execution time

as well as the index update time.

6.2 Results and Discussion

6.2.1 E↵ects of k value

In the first experiment, we evaluate the e�ciency of the incremental algorithm

when the k value is varied. Such value is varied from 3 to 10 to evaluate its

e↵ect. The e value is fixed at 100. At each setting, a set of the increment data

of size 10% of the existing dataset is inserted.

In Figure 4, the result of the experiment is presented. Obviously, when the

23

k value is increased, the execution time of the incremental algorithms are also

increased. The rationale behind this is that when the k is higher, the break-

point of the complete-alignment is more di�cult to be found with regard to

the k-condition. In the worst case, the algorithms need to compute the error

and the partition values until the end of the dataset with O((n0 � ins pos)2)

cost. Thus, the e�ciency is degraded. Comparing with the non-incremental

algorithm, the fixed computational cost of O(ins pos) of the incremental algo-

rithms before the ins pos-position is higher. We can see the e↵ect of such cost

when the k values is very high, the execution time of the incremental algorithm

is even a bit higher. However, in Procopiuc & Srivastava (2009), the authors

suggested that the k value should be set at lower than 6 in general. Also, it can

be seen that the incremental algorithm with the proposed indexes is more ef-

ficient than the without-indexes version of it significantly. The algorithm with

the indexes is even more e�cient than the 2-approximation algorithm which

has O(n) complexity, meanwhile the optimal solutions can be obtained.

6.2.2 E↵ects of e value

In this experiment, we evaluate the e�ciency of the incremental algorithm

when the range of the tolerate error e is changed. The e will be increased from

20 to 220 to evaluate its e↵ect. The k is fixed at 5, and |4D| at 10%. From

the result in Figure 5, it can be seen that the proposed incremental algorithm

is more e�cient than the non-incremental algorithm. These results are obvi-

ous particularly when the e value is set at 100 or lower in which the execution

time of the non-incremental algorithm is more than 3-times of the proposed

algorithm. Such gaps are caused by the discovery of the complete-alignment

partition, and thus prevent the quadratic part of the algorithm to be executed

till the end of the input. The rationale behind the e�ciency degrade, after

the e value is higher than 100, is each partition becomes larger. And, thus

24

Figure 5: E↵ect of the e value

the complete-alignment is more di�cult to be found as it can be seen the per-

centage of the skipped tuples from the break-point positions. Obviously, such

percentage decreases when both the k and e parameters are increased because

the mentioned reason. Also, it can be seen that the incremental algorithm with

indexes can outperform the 2-approximation algorithm when the e value is not

extremely high. Given the fact that the optimal solutions can be obtained in-

stead of the approximate results, our proposed algorithm is very e�cient.

6.2.3 E↵ects of |4D|

In the last experiment, we evaluate the e�ciency of the incremental algorithm

when the size of the incremental dataset (|4D|) is varied. The variation is set

at the percentage of the whole data to be appended, i.e. 6, 8, 10, 12 and 14 %.

We set the k and e values at 5 and 100 respectively. Figure 6 shows the result

25

∆∆∆∆

Figure 6: E↵ect of the 4D

of this experiment. It can be seen that when the size of the appended data is

increased, the gap between the execution time of both algorithms is increased.

Obviously, the e↵ect of the incremental processing is accumulated when the size

of 4D is increased. Particularly, when we consider the incremental algorithm

with the proposed indexes, the e↵ect is even more obvious. And, in all settings,

both of the incremental algorithms outperform the approximation algorithm.

7 Conclusion

In this paper, we have proposed an observation on the privacy preservation

based on the (k, e)-anonymization when the data increment is considered. We

have subsequently, proposed an incremental algorithm for the problem. Such

algorithm can process the data incrementally while exactly the same solutions

as the non-incremental algorithm can be guaranteed. The proposed algorithm

26

can be more e�cient than the non-incremental algorithm when the complete-

alignment partition is discovered before the end of the data input is to be pro-

cessed. Additionally, two indexes are proposed to further improve the e�ciency

of the algorithm. From the experiments, it has been found that the incre-

mental algorithm is much more e�cient than the non-incremental algorithm

when the k or e value is not extremely high. When the size of the increment

data is increased, the e�ciency gap between the proposed algorithm and the

non-incremental algorithm is larger. Also, the incremental algorithm with the

proposed indexes can outperform the O(n) approximation in most of the ex-

periment settings. These can be summarised that the proposed algorithm can

be very e�cient in the real-world situations. In our future work, we will fur-

ther investigate on the multiple bulk-insertion scenarios. In which, not only

the e�ciency should be considered, but also the concurrency control issue.

References

Blake, C. & Merz, C. (1998), ‘UCI repository of machine learning databases’.
URL: http://www.ics.uci.edu/⇠mlearn/

MLRepository.html

Byun, J.-W., Li, T., Bertino, E., Li, N. & Sohn, Y. (2009), ‘Privacy-preserving in-
cremental data dissemination’, Journal of Computer Security 17(1), 43–68.

Denning, D. E., Akl, S. G., Heckman, M., Lunt, T. F., Morgenstern, M., Neumann,
P. G. & Schell, R. R. (1987), ‘Views for multilevel database security’, IEEE

Transactions on Software Engineering 13(2), 129–140.

Domingo-Ferrer, J. & Torra, V., eds (2004), Privacy in Statistical Databases, Vol.
3050 of LNCS, Springer, Berlin Heidelberg.

Fung, B. C. M., Wang, K., Fu, A. W.-C. & Pei, J. (2008), Anonymity for contin-
uous data publishing, in ‘Proceedings of the 11th international conference on
Extending database technology: Advances in database technology’, EDBT ’08,
pp. 264–275.

Fung, B. C., Wang, K. & Yu, P. S. (2007), ‘Anonymizing classification data for
privacy preservation’, IEEE Transactions on Knowledge and Data Engineering

19(5), 711–725.

Jajodia, S., Samarati, P., Subrahmanian, V. S. & Bertino, E. (1997), A unified frame-
work for enforcing multiple access control policies, in ‘SIGMOD ’97: Proceedings
of the 1997 ACM SIGMOD International Conference on Management of Data’,
ACM Press, pp. 474–485.

27

Li, N., Li, T. & Venkatasubramanian, S. (2009), ‘Closeness: A new privacy measure
for data publishing’, IEEE Transactions on Knowledge and Data Engine‘ering

22(7), 943–956.

Machanavajjhala, A., Gehrke, J., Kifer, D. & Venkitasubramaniam, M. (2006), `-
diversity: Privacy beyond -anonymity, in ‘ICDE ’06: Proceedings of the 22nd
International Conference on Data Engineering’, IEEE Computer Society, Wash-
ington, DC, USA, p. 24.

Meyerson, A. & Williams, R. (2004), On the complexity of optimal k-anonymity., in

‘Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems’, ACM, pp. 223–228.

Pei, J., Xu, J., Wang, Z., Wang, W. & Wang, K. (2007), Maintaining k-anonymity
against incremental updates, in ‘Proceedings of the 19th International Confer-
ence on Scientific and Statistical Database Management’, SSDBM ’07, pp. 5–.

Procopiuc, C. M. & Srivastava, D. (2009), E�cient table anonymization for aggregate
query answering, in ‘Proceedings of the 2009 IEEE International Conference on
Data Engineering’, IEEE Computer Society, Washington, DC, USA, pp. 1291–
1294.

Qing, Z., Koudas, N., Srivastava, D. & Ting, Y. (2007), Aggregate query answering
on anonymized tables, in ‘Proceedings of the 2007 IEEE International Confer-
ence on Data Engineering’, IEEE Computer Society, Washington, DC, USA,
pp. 116 – 125.

Samarati, P. (2001), ‘Protecting respondents’ identities in microdata release’, IEEE

Trans. on Knowl. and Data Eng. 13(6), 1010–1027.

Samarati, P. & Sweeney, L. (1998), Generalizing data to provide anonymity when
disclosing information (abstract), in ‘Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems’,
PODS ’98, pp. 188–.

Seisungsittisunti, B. & Natwichai, J. (2009), Incremental privacy preservation for
associative classification, in ‘Proceeding of the ACM first international workshop
on Privacy and anonymity for very large databases’, PAVLAD ’09, pp. 37–44.

Sweeney, L. (2002a), ‘Achieving k-anonymity privacy protection using generaliza-
tion and suppression’, International Journal on Uncertainty, Fuzziness and

Knowledge-based Systems 10(5), 571–588.

Sweeney, L. (2002b), ‘k-anonymity: a model for protecting privacy’, International

Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570.

Truta, T. M. & Campan, A. (2007), K-anonymization incremental maintenance and
optimization techniques, in ‘SAC ’07: Proceedings of the 2007 ACM Symposium
on Applied Computing’, ACM, New York, NY, USA, pp. 380–387.

Wong, R. C.-W., Li, J., Fu, A. W.-C. & Wang, K. (2006), (↵, k)-anonymity: an en-
hanced k-anonymity model for privacy preserving data publishing, in ‘KDD ’06:
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining’, ACM Press, New York, NY, USA, pp. 754–759.

Xiao, X. & Tao, Y. (2007), M-invariance: towards privacy preserving re-publication
of dynamic datasets, in ‘Proceedings of the 2007 ACM SIGMOD international
conference on Management of data’, SIGMOD ’07, pp. 689–700.

28

Zhou, B., Han, Y., Pei, J., Jiang, B., Tao, Y. & Jia, Y. (2009), Continuous privacy
preserving publishing of data streams, in ‘Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technol-
ogy’, EDBT ’09, pp. 648–659.

29

