

สำนักงานกองทุนสนับสนุนการวิจัย THE THAILAND RESEARCH FUND

รายงานวิจัยฉบับสมบรูณ์

โครงการ ขบวนการเหนี่ยวนำเกิด ดี เอ็นเอ เมทิลเลชั่น และ ความรุนแรงของโรค ของยืน ไอดีสี่ ที่มีผลต่อโรคสะเก็ดเงิน

โดย ดร.เกรียงศักดิ์ ฤชุศาศวัต

เดือน มิถุนายน ๒๕๕๗

รายงานวิจัยฉบับสมบูรณ์

โครงการ ขบวนการเหนี่ยวนำเกิด ดี เอ็นเอ เมทิลเลชั่น และ ความรุนแรงของโรค ของยืน ไอดี สี่ ที่มีผลต่อโรคสะเก็ดเงิน

ผู้วิจัย สังกัด

ดร. เกรียงศักดิ์ ฤชศาศวัต สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ผมขอขอบคุณ ศ. นพ. อภิวัฒน์ มุทิรางกูร ที่ช่วยกรุณา ให้คำปรึกษา คำแนะนำที่มีค่า ช่วยแก้ไขปัญหา และ สร้างแรงกระตุ้นในการทำวิจัยครั้งนี้

ในการทำงานวิจัย ผมได้รับการสนับสนุน อย่างดียิ่ง ในการเก็บตัวอย่าง ข้อมูลผู้ป่วย และ คำแนะนำที่มีคุณค่า จาก รศ. ดร. พญ. จงกลนี วงศ์ปิยะบวร และ คุณหมอ พยาบาล เจ้าหน้าที่ รวมทั้ง ผู้ป่วยที่เข้ารับการรักษา ที่หน่วยผิวหนัง คณะแพทยศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย และ รพ. จุฬาลงกรณ์ สภากาชาดไทย ผมขอแสดงความนับถือ

และ งานวิจัยครั้งนี้ สามารถประสพผลสำเร็จได้ดี โดย นางสาว ลัดดาวัลย์ เทียมสิงห์ นักศึกษาปริญญาโท และ น้องๆที่ ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย มีความตั้งใจในการช่วยงานวิจัยครั้งนี้

นอกจากนี้ การวิจัยยังได้รับการสนับสนุนเป็นอย่างดียิ่ง ในการใช้เครื่องมือ วิทยาศาสตร์ ที่สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์ กระทรวง สาธารณสุข และ เครื่องมือกลางของ คณะแพทยศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย

และสุดท้าย งานวิจัยนี้จะไม่สามารถทำได้เลย ถ้าไม่ได้รับการสนับสนุนจาก สำนักงาน กองทุนสนับสนุนงานวิจัย

รูปแบบ Abstract (ภาษาอังกฤษ)

Project Code: TRG 5480010

Project Title: The mechanism of DNA methylation and severity of ID4 in Psoriasis

Investigator: Dr. Kriangsak Ruchusatsawat

Thai-National Institute of Health, Department of Medical Sciences, Ministry of Public Health 88/7 Soi Bumrajnaradura Tivanon Rd. Muang Distric. Nontaburi 11000. Tel 02-5899850-8 ext 99313. Fax 02-5915449

E-mail Address: kriangsak.r@dmsc.mail.go.th, ruchusatsawat@yahoo.com

Project Period : 2 Years (May 1, 2011- April 30, 2013)

Epigenetic phenomena have also been implicated in the pathogenesis of psoriasis. There are several reports specific genes promoter methylation/demethylation in psoriasis such as ID4 and SHP-1. Psoriatic keratinocytes possess an enhanced ability to resist apoptosis, which might be one of key pathogenetic mechanisms in psoriasis. B-cell receptor associated protein 31 (BCAP31) have been reported to function in apoptosis. Here, we investigated DNA methylation/demethylation in psoriasis using BCAP31 promoter model. The laser capture microdissected were analyzed using bisulfite PCR method, cloning sequencing and immunohistochemistry. Interestingly, the methylation levels of BCAP31 in microdissected epithelium of skin and from psoriasis patients (n=10) were significantly lower than from healthy subjects (n=7) (p < 0.001, % psoriasis vs. normal skin methylation = 70.0 VS. 14.2). Moreover, level of BCAP31 protein in normal skin (n=5) and psoriatic skin (n=8) were significantly (p<0.009). Therefore, the present study demonstrated BCAP31 DNA demethylation and high expression in psoriatic skin. In addition, BCAP31 gene may be a candidate as marker for therapy or monitoring for psoriasis in near future.

Keywords: BCAP31, DNA Methylation, Psoriasis, Apoptosis

เอกสารแนบหมายเลข 2

ฐปแบบ บทคัดย่อ (ภาษาไทย)

รหัสโครงการ: TRG5480010

ชื่อโครงการ: ขบวนการเหนี่ยวนำเกิด ดี เอ็นเอ เมทิลเลชั่น และ ความรุนแรงของโรค ของยืน

ไอดีสี่ ที่มีผลต่อโรคสะเก็ดเงิน

ชื่อนักวิจัย: ดร. เกรียงศักดิ์ ฤชุศาศวัต

สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์ กระทรวง สาธารณสุข 88/7 ซ. รพ. บำราชนราดูร ถ. ติวานนท์ จังหวัด นนทบุรี รหัสไปรษณีย์ 11000

โทรศัพท์ 02-5899850-8 ต่อ 99313 โทรศัพท์มือถือ 085-9170044 โทรสาร 02-5915449

E-mail Address: kriangsak.r@dmsc.mail.go.th, ruchusatsawat@yahoo.com ระยะเวลาโครงการ: 2 ปี (วันที่ 15 กันยายน 2554 ถึงวันที่ 31 พฤษภาคม 2556) บทคัดย่อ

โรคสะเก็ดเงินเป็นโรคที่มีความผิดปกติของการเจริญเติบโตและการเปลี่ยนแปลงของ เซลล์ผิวหนังซึ่งรวมถึงการเกิด **อะเปอปโตซีส** ยืนบีเคป 31 (B-cell receptor associated protein 31, BCAP31, BAP31) ที่พบว่ามีระดับของ เมทิลเลชั่น ลดลงในโรคสะเก็ดเงิน จาก การทำดีเอนเอ เมทิลเลชั่น ไมโครอะเร (DNA Methylation microarray) การศึกษาวิจัยครั้งนี้ เราได้ ศึกษาใน ชิ้นเนื้อ แบบแยกชนิดเซลล์ผิวหนังโดยใช้เครื่องเลเซอร์ (Laser capture microdissection) จากตัวอย่างคนปกติ และ ผู้ป่วยโรคสะเก็ดเงิน (Psoriasis) จำนวน 10 คน และ 7 คน และตรวจหาโดยวิธี Methylation Specific primer (MSP), DNA cloning และ Sequencing และ ตรวจวัดระดับการแสดงออกของ โปรตีน บีเคป 31 โดยวิธี อิมมูโนฮีโตเคม มิสตรี (Immunohistochemistry) กับตัวอย่างชิ้นเนื้อคนปกติ จำนวน 5 คน และ ผู้ป่วยโรค สะเก็ดเงิน (Psoriasis) จำนวน 8 คน ซึ่งพบว่า DNA methylation ของ ยีน บีเคป 31 ในชิ้น เนื้อ ตัวอย่างจากคนปกติ ผู้ป่วยโรคสะเก็ดเงิน ร้อยละ 70.0 และ 14.2 ตามลำดับ ยิ่งไปกว่านั้น ียังพบว่า ปริมาณของการเกิด DNA methylation คิดเป็น ร้อยละ 60.61 และ 13.60 ตามลำดับ ซึ่งมีความแตกต่างอย่างมีนัยสำคัญ ระหว่าง คนปกติ กับ ผู้ป่วยโรคสะเก็ดเงิน (p < 0.001) นอกจากนี้ การแสดงออกของโปรตีน บีเคป 31 ในผู้ป่วยโรคสะเก็ดเงิน ยังสูงกว่าใน คนปกติ อย่างมีนัยสำคัญ (p<0.009) แต่อย่างไรก็ตาม กลไกการเกิด ดีเมทิลเลชั่น (Demethylaion) ของ ยีนนี้ และ หน้าที่ของ ยีนนี้ ในโรคสะเก็ดเงิน จึงเป็นเรื่องที่น่าจะมีการศึกษาต่อไป

คำหลัก : โรคสะเก็ดเงิน ดีเอนเอเมทิลเลชั่น ยืนบีเคป31 อะเปอปโตซีส

บทน้ำ

ความสำคัญของโรคสะเก็ดเงิน (psoriasis)

โรคสะเก็ดเงินเป็นโรคผิวหนังที่พบได้บ่อยประมาณร้อยละ 2-3 ของประชากรโลก[1] อุบัติการณ์การเกิดโรคในเพศชายและหญิงไม่แตกต่างกัน ความชุกของการเกิดโรคแตกต่างกัน ไปตามภูมิประเทศ เชื้อชาติ และสิ่งแวดล้อม ตัวอย่างเช่น อัตราความชุกในประเทศ Samoa ต่ำสุดถึง 0% แต่ในประเทศ Arctic-Kasach'ye สูงถึง 11.8%[2] ทางด้านเอเชียซึ่งมีประชากร เชื้อชาติต่างๆ จำนวนมาก พบว่าความชุกของโรคสะเก็ดเงินใน India 0.5-1.5%, Malaysia 4-5.5%, Japan 1.18% และ Kuwait 3.1%[3] เป็นตัน สำหรับประเทศไทย การรายงานประจำปี ของ สถาบันโรคผิวหนัง กระทรวงสาธารณสุข เฉลี่ยประมาณ 3000 รายต่อปี ซึ่งคาดว่าน่าจะมี จำนวนผู้ป่วยทั่วประเทศมากกว่านี้ อย่างแน่นอน

จากการศึกษาที่ผ่านมาจนถึงปัจจุบันสรุปได้ว่า โรคสะเก็ดเงินเป็นโรคเกี่ยวกับภูมิคุ้มกัน ต่อต้านตนเองซึ่งเกี่ยวข้องกับ T-lymphocyte (T-lymphocyte mediated skin autoimmune disease [5] โดยผู้ป่วยมีพันธุกรรมที่มีแนวโน้มในการตอบสนองของภูมิคุ้มกันเป็นแบบ type 1 immune effecter functions เมื่อมีการกระตุ้นระบบภูมิคุ้มกัน T cell ที่ตอบสนองจะเป็น T helper1 และ T cytotoxic หลั่ง cytokine ที่มีรูปแบบเด่นคือ T-helper type-1 cytokine ได้แก่ interferon gamma (IFN-gamma), interleukin(IL)12 และ IL-2 เป็นต้น [4, 6] นอกจากนี้ยังมี การหลั่ง proinflammatory cytokines และ chemokines ต่างๆ ทั้งหมดส่งผลให้มีการ เจริญเติบโตและพัฒนาที่ผิดปกติของเซลล์ผิวหนัง มีการเพิ่มจำนวนของเซลล์หลอดเลือด และ เกิดการอักเสบขึ้น

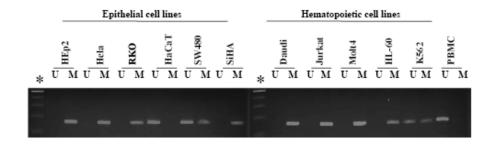
อย่างไรก็ตามในปัจจุบันยังไม่ทราบสาเหตุที่แท้จริงของโรคและกลไกการเกิดโรคที่ ชัดเจน แต่เชื่อว่าปัจจัยทางพันธุกรรมเป็นส่วนประกอบที่สำคัญอย่างหนึ่งที่ทำให้ผู้ป่วยแต่ละราย มีการแสดงออกของโรคและความรุนแรงของโรคที่ต่างกัน มีรายงานการวิจัยที่สนับสนุนว่าปัจจัย ทางด้านพันธุกรรม มีส่วนสำคัญในการทำให้เกิดโรคคือการศึกษาในฝาแฝดไข่ใบเดียวกัน (monozygotic twins) ได้ค่า concordance rate ประมาณ 70% ในขณะที่เมื่อเปรียบเทียบกับฝา แฝดไข่คนละใบ (dizygotic twins) มีค่า 20% และจากการศึกษาในครอบครัว (Family studies) มีอุบัติการณ์แสดงให้เห็นว่าปัจจัยทางด้านพันธุกรรมมีผลต่อการเกิดโรคสะเก็ดเงิน การดำเนิน ของโรคจะสูงขึ้นมากถึงร้อยละ 50 หรือครึ่งหนึ่งของญาติพี่น้องสายเลือดเดียวกันเมื่อทั้งพ่อ และ แม่เป็นโรคสะเก็ดเงิน แต่อัตราความชุกจะลดลงถึงร้อยละ 16 เมื่อพ่อหรือแม่คนใดคนหนึ่งเป็น โรค และลดลงถึงร้อยละ 8 เมื่อทั้งพ่อและแม่ไม่ได้เป็นโรค ซึ่งการศึกษาเหล่านี้สนับสนุนว่า พันธุกรรมมีบทบาทที่สำคัญต่อโรคสะเก็ดเงิน 71% ของผู้ป่วยในวัยเด็กที่เป็นโรคสะเก็ดเงิน มักมีประวัติทางครอบครัวมาก่อน[4] มีการศึกษาหา Susceptibility regions บนตำแหน่งต่างๆ ของโครโมโซมที่เกี่ยวข้องกับการเกิดโรคสะเก็ดเงิน ยืนที่มีตำแหน่งอยู่บนโครโมโซมที่ 1q21,

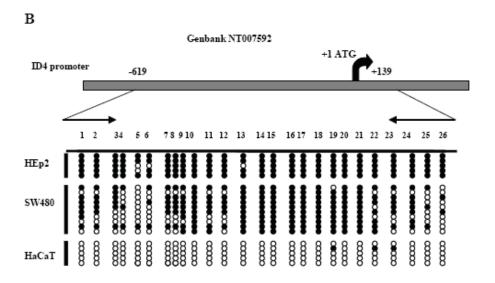
3q21, 4q, 7p, 8, 11, 16q, 17q, 20p และ 6p มีความสัมพันธ์กับการเกิดโรค และการดำเนิน ของโรค [7]

ความสำคัญของ DNA demethylation/methylation กับโรคสะเก็ดเงิน (psoriasis)

แนวทางการศึกษาในปัจจุบันนอกจากวิเคราะห์การเปลี่ยนแปลงลำดับเบสในยีนแล้ว ยัง มีการศึกษาผลของการควบคุมแบบนอกเหนือพันธุกรรม (epigenetics) ซึ่งมีการเปลี่ยนแปลง กลไกการทำงานของยืนโดยไม่เกี่ยวข้องกับการเปลี่ยนแปลงลำดับเบสของสาย DNA โดยเฉพาะ การเกิดภาวะ DNA methylation ภายในยืน ซึ่งเป็นกลไกควบคุมการแสดงออกของยืนในเซลล์ จำเพาะ ต่างๆด้วย โดยการศึกษาจำนวนมากแสดงให้เห็นถึงความสัมพันธ์ของการเกิดมะเร็ง กับการเปลี่ยนแปลงระดับ DNA demethlation/methylation ทั้งในส่วนยืนควบคุมการแสดงออกของมะเร็ง (oncogene) และยืนต้านมะเร็ง (tumor suppressor gene) [8-10]

ปัจจุบันมีการศึกษา DNA methylation กับการเกิดโรค autoimmune ยังมีไม่มากนัก แต่ อย่างไรก็ตามมีการศึกษาเมื่อเร็ว ๆนี้ที่แสดงให้เห็นถึงความสำคัญของการเปลี่ยนแปลงระดับ DNA methylation กับการเกิดโรคสะเก็ดเงิน (psoriasis) โดยจากรายงานการศึกษาเบื้องต้น ของกลุ่มผู้วิจัยเราเองในเรื่องภาวะ methylation ของยืน SHP-1 ซึ่งทำหน้าที่เป็น negative regulatory signal gene ของ epithelial cells และจัดอยู่ในกลุ่มของ tumor suppressor gene ใน hematopoietic cells SHP-1 มีบทบาทสำคัญเกี่ยวข้องกับการควบคุมกระบวนการเจริญและ เพิ่มจำนวนซึ่งขึ้นอยู่กับชนิดของเซลล์นั้นๆ จากการศึกษาครั้งนี้พบผลที่น่าสนใจอย่างมากคือ บริเวณ promoter ของยืนนี้เกิดกระบวนการ demethylation หรือ hypomethylation ในเซลล์ ผิวหนังของคนไข้โรคสะเก็ดเงิน (psoriasis) ซึ่งมีความแตกต่างอย่างมีนัยสำคัญทางสถิติเมื่อ เปรียบเทียบกับกลุ่มควบคุม จากผลการศึกษาในครั้งนี้แสดงให้เห็นว่ากระบวนการ hypomethylation จึงน่าจะมีบทบาทสำคัญต่อพยาธิกำเนิดของโรคผิวหนัง (skin pathogenesis) โดยเฉพาะเกี่ยวข้องกับระดับการเพิ่ม SHP-1 transcription ในผืนของโรคสะเก็ดเงิน [11]

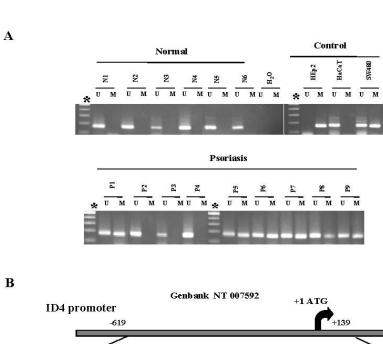

สำหรับ ยีน ID4 (Inhibitor of DNA binding/Inhibitor of differentiation 4) ที่ คณะผู้วิจัยได้ทำการศึกษา ในปี พ.ศ. 2551 พบว่าเป็นยืนที่พบว่ามีความน่าสนใจคือ ID4 เป็น สมาชิกของ basic helix-loop-helix (bHLH) family โดย ไม่มีส่วนของเบสิกรีเจียน (lacks a basic region) ทำให้ไม่สามารถที่จะจับกับ เส้นของ DNA ได้โดยตรง ดังนั้นจึงทำหน้าที่โดย เป็นตัวกลางที่จับกับกลุ่มโปรตีนที่ทำหน้าที่เป็นตัวกระตุ้น (Transcription factor) หรือตัวยับยั้ง (Repressor) การแสดงออกของยืนต่างๆ อีกทั้งยังมีการแสดงออกของยืนนี้ยังจำกัดอยู่ในบาง อวัยวะเช่น ที่ต่อมไทรอยร์ สมอง และ บางส่วนของระบบประสาท [12-13] เป็นตัน สำหรับ หน้าที่ของ โปรตีนนี้ มีรายงานที่เกี่ยวข้องกับ การเจริญเติบโตและการเปลี่ยนแปลงของ เซลล์ [14-15] การกระตุ้นให้เกิดการตายแบบ อะเปอปโตซีส [16] เป็นตัน นอกจากนี้ มีการศึกษาที่ พบว่าสามารถทำหน้าที่เป็น ยืนที่ยับยั้งการเกิดมะเร็ง (tumor suppressor gene ,TSG) ใน มะเร็งต่างๆ เช่น malignant lymphoma [17] , gastric adenocarcinoma [18] , breast cancer

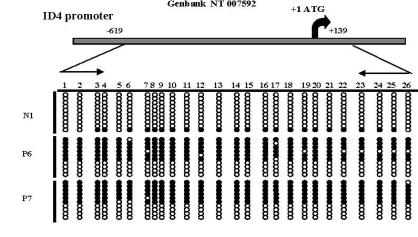

[19] , and colorectal carcinoma [20] , แต่ในทางกลับกันก็ยังพบว่า เป็นยืนที่กระตุ้นให้เกิด มะเร็ง (Oncogene) เช่นใน prostate cancer [21] , and bladder cancer [22] เป็นต้น

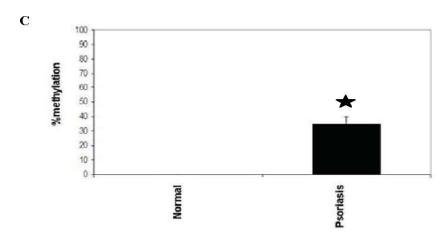
สำหรับการควบคุมการแสดงออกของยีนนี้ในกลุ่มโรคมะเร็งต่างๆ พบว่า มีขบวนการ DNA methylation มีส่วนเกี่ยวข้อง ในการควบคุมของยีนนี้ด้วย [23-25] ,และยังไม่ได้มี การศึกษาขบวนการควบคุมนี้ ในโรคสะเก็ดเงิน ดังนั้นคณะวิจัยของเราจึงเริ่มการศึกษาใน 11 Cell lines ซึ่งพบว่า พบว่า ใน 1) กลุ่ม Hematopoietic cell lines (5 ชนิด) เช่น Jurket, Daudi, Molt4 , HL-60เป็น methylated promoterขณะที่ และK562 เป็น mixed (met/unmet) promoter PBMC เป็น unmethylated promoter 2) กลุ่ม Epithelial cell lines (6 ชนิด) เช่น Hela, HEp2, RKO, SiHA, , เป็น methylated DNA SW480 เป็น mixed (met/unmet) promoter และ HaCaT เป็น unmethylated promoter (รูปภาพ 1A) จากนั้นยืนยันโดยการทำ Clonning Sequencing ซึ่งก็ให้ผลที่สอดคล้องกัน (รูปภาพ 1B)

รูปภาพ 1A และ 1B

A

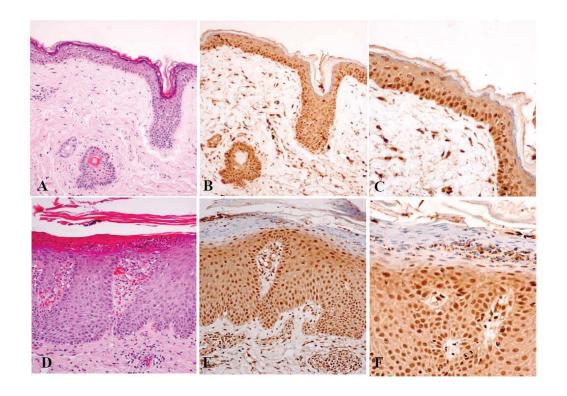




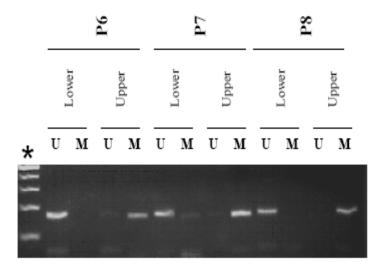

นอกจากนี้ คณะผู้วิจัยได้ทดสอบการควบคุมการแสดงออกของขบวนการ DNA methylation โดยการวัด การแสดงออกของ mRNA โดยวิธี Real time RT-PCR ซึ่งพบว่า มีการควบคุมการแสดงออกโดยผ่านขบวนการนี้ จริง (ตารางที่ 1) ตารางที่ 1Inverse correlation of ID4 promoter status and mRNA level of 11 Cell lines

Epithelial cell lines							
HEp2	Methylated promoter	0					
Hela	Methylated promoter	0					
RKO	Methylated promoter	0					
HaCaT	Unmethylated promoter	19.4					
SW480	Met/Unmet promoter	0.14					
SiHA	Methylated promoter	0					
Hematopoietic cell lines							
Daudi	Methylated promoter	0					
Jurkat	Methylated promoter	0					
Molt4	Methylated promoter	0					
HL-60	Methylated promoter	0					
K562	Met/Unmet promoter	0					
PBMC	Unmethylated promoter	0.43					

สำหรับการเกิด DNA methylation ในส่วน โปรโมเตอร์ ของยืน ID4 ในผู้ป่วยโรค สะเก็ดเงินคณะผู้วิจัยได้ทำการศึกษาโดย การเปรียบเทียบระหว่างผู้ป่วยโรคสะเก็ดเงิน (จำนวน 9 คน)กับคนปกติ (จำนวน 6 คน) ซึ่งก็พบว่า มีการเกิด DNA methylation ขึ้นจริงและ มีความ แตกต่างอย่างมีนัยสำคัญ p= 0.004 (รูปภาพ 2 A, B, C)



เพื่อยืนยัน การเกิด DNA methylation ในส่วน โปรโมเตอร์ ของยืน ID4 ควบคุมการ แสดงออกของโปรตีน (รูปภาพที่ 3) จึงนำตัวอย่าง (lesional psoriatic skin(3B, 3E) ไปย้อม Immunohistochemistry ซึ่งผลทดสอบพบว่ามีการย้อมติดสีที่ให้ผลแตกต่างกันดัง โดย


เปรียบเทียบกับ Normal skin (3A, 3D) และ ขยายส่วนที่ติดสีให้ชัดเจนขึ้น ทั้ง Normal skin (3C),lesional psoriatic skin(3F)

รูปภาพที่ 3 A, 3B, 3C, 3D, 3E, 3F

รวมทั้ง นำส่วนที่ติดสีที่แตกต่างกัน (Upper/lower lesional psoriatic skin) ไปทดสอบ การเกิด DNA methylation ซึ่งก็พบว่า ในส่วนที่ติดสี (lower part) ให้ผล เป็น unmethylated promoter และ ส่วนที่ไม่ติดสี (Upper part) เป็น methylated promoter อย่างชัดเจน (รูปภาพที่ 4)

ฐปภาพที่ 4

สรุปผลในเบื้องต้นนี้ว่าพบการเกิด DNA methylation ในส่วน โปรโมเตอร์ ของยืน ID4 ในผู้ป่วยโรคสะเก็ดเงิน และน่าจะมีส่วนเกี่ยวข้องกับการเกิด Parakeratosis (upper part) ซึ่งเป็นความผิดปกติที่พบมากในโรคนี้ นับว่าเป็นการค้นพบเป็นครั้งแรกที่มีการรายงาน (submitted paper, รายละเอียดตามเอกสารที่แนบ) แต่อย่างไรก็ตาม ทั้งกลไกการเกิด DNA methylation ของ ยืนนี้โรคสะเก็ดเงิน ซึ่งมีลักษณะการเกิด DNA methylation ที่จำเพาะ และ แตกต่างจากการเกิดมะเร็ง

ดังนั้นในการศึกษาครั้งนี้ผู้วิจัย จะทำการศึกษา 1) กลไกการเหนี่ยวนำการเกิด ภาวะ DNA methylation ของ ID4 promoter และ 2) ความสัมพันธ์ของ ID4 promoter methylation กับ ความรุนแรงของโรค ของโรคสะเก็ดเงินและอาจเป็นประโยชน์ในการ พัฒนาวิธีป้องกันและรักษาโรคแบบใหม่ต่อไป

วัตถุประสงค์

- 1.เพื่อศึกษากลไกการเหนี่ยวนำการเกิดภาวะ DNA methylation ใน ID4 โดย ใช้ HaCaT cell line เป็นต้นแบบ
- 2. เพื่อศึกษาการเปลี่ยนแปลงระดับ ของ DNA methylation ของ ID4 promoter ต่อความรุนแรงของโรคสะเก็ดเงิน

วิธีทดลอง

งานวิจัยครั้งนี้จะแบ่งการศึกษาเป็น 2 ส่วนคือ

- 1. เพื่อศึกษากลไกการเหนี่ยวนำการเกิดภาวะ DNA methylation ใน ID4 gene โดย ใช้ HaCaT cell line เป็นตันแบบ โดย
- 1.1 โปรตีน (eg. CDC42) หรือ สารเคมี (eg. Anadamide (arachidonoylethanolamide, AEA) ใช้กระตุ้น HaCaT cell line [26-27]
 - 1.2 การวัด ระดับของ mRNA DNA methyltransferase (DMNT) โดยวิธี Real-time RT-PCR
 - 1.3 ดูการเปลี่ยนแปลงของ DNA methylation ของ ID4 promoter โดยวิธี Methylation Specific PCR (MSP) และ วัดปริมาณความเข้มข้นของ PCR product ทั้ง Methylated และ Unmethylated band โดยใช้เครื่อง Densitometer [28]
 - 2. ความสัมพันธ์ของ ของ DNA methylation ของ ID4 promoter กับ ภาวะความรุนแรง ในโรคสะเก็ดเงิน

2.1 กลุ่มประชากรที่ศึกษา

การเลือกกลุ่มประชากรที่ศึกษา แบ่งกลุ่มประชากรที่จะศึกษา ดังนี้ ผู้ป่วยไทยที่มีอายุมากกว่าหรือเท่ากับ 18 ปีที่เป็นโรคสะเก็ดเงินชนิด mild ,moderate และ severe

> chronic plaque type ที่มารับการตรวจรักษาที่คลินิกโรคผิวหนังโรงพยาบาล จุฬาลงกรณ์สภากาชาดไทย จำนวน 30 คน (กลุ่มละ 10 คน) โดยมีกฎเกณฑ์ใน การคัดเลือกเข้ามาศึกษาและตัดออกจากการศึกษาดังนี้

กฎเกณฑ์ใหการคัดเลือกเข้ามาศึกษา (Inclusion criteria)

- 1. ผู้หญิงหรือผู้ชายที่มีอายุมากกว่าหรือเท่ากับ 18 ปี
- 2. ผู้ป่วยได้รับการวินิจฉัยว่าเป็นโรคสะเก็ดเงินชนิด mild, moderate, severe chronic plaque typeโดย แพทย์ผู้เชี่ยวชาญทาง Dermatology พร้อมทั้ง ได้รับการตรวจชิ้นเนื้อทางห้องปฏิบัติการเพื่อยืนยันผลการวินิจฉัย

กฎเกณฑ์ในการตัดออกจากการศึกษา (Exclusion criteria)

1. ผู้ป่วยที่ไม่สมัครใจยินยอมเข้าร่วมงานวิจัย

- 2. ผู้ป่วยโรคสะเก็ดเงินที่ได้รับยาทาเฉพาะที่อยู่ภายใน 2 สัปดาห์ หรือ ยา รับประทานรักษาโรคสะเก็ดเงินภายใน 4 สัปดาห์ก่อนเข้าร่วมการวิจัย
- 3. ผู้ป่วยที่มีภูมิคุ้มกันบกพร่องและผู้ป่วยที่ได้รับยากลุ่ม Corticosteroid รวมถึงยากดภูมิคุ้มกันอื่น ๆ ขณะทำการศึกษา
- 4. ผู้ป่วยที่มีภาวะ Autoimmune disease
- 5. ผู้ป่วยที่มีประวัติเป็นโรคมะเร็ง

โดยผู้ป่วยยินยอมเข้าร่วมการศึกษาโดยลงนามในใบยินยอม และบันทึกข้อมูลที่ สำคัญทางคลินิกของผู้ป่วย

- 1. ข้อมูลพื้นฐานทั่วไป (demographic data)
- 2. ประเมินความรุนแรงของโรค โดยอาศัยจากอาการ, ใช้ Psoriasis Area and Severity Index (PASI) score ซึ่งเป็น clinical score มาตราฐานในการประเมิน ความรุนแรงของผู้ป่วยโรคสะเก็ดเงิน

2.2. การเก็บตัวอย่างและสกัด DNA

ชิ้นเนื้อจาก paraffin section แยกเซลล์ชั้นหนังกำพร้าออกมาศึกษาโดยทำการแยก เซลล์ด้วยวิธี Laser capture microdissection (LCM) (สำหรับ ชิ้นเนื้อของคนปกติ ผู้วิจัยจะขอจากผู้ป่วยที่มารับการผ่าตัดศัลยกรรมตกแต่ง โดยทำการเก็บชิ้นเนื้อภาย หลังจากที่ผู้ป่วยเซ็นต์ใบยินยอมเข้าร่วมโครงการ และทำการเก็บชิ้นเนื้อและแยกเซลล์ เช่นเดียวกับชิ้นเนื้อจากผู้ป่วย เพื่อใช้เป็นตัวอย่างควบคุม จำนวน 10 คน) และทุก ตัวอย่าง ประเมิน (ด้วยวิธีมาตรฐาน) เพื่อบอกความรุนแรงของโรค

2.3. การศึกษา DNA methylation ใน ID4 promoter

สกัด DNA จากเซลล์ที่แยกได้โดยใช้วิธี phenol-chloroform extraction และ นำมาศึกษาลักษณะการเกิด methylation ในส่วน promoter ของ candidate gene ซึ่ง อยู่ในยืนนั้นๆ โดยใช้วิธี Combined Bisulfite Restriction Analysis (COBRA), Methylation Specific PCR (MSP) ซึ่งทั้ง 2 วิธีนี้หลักการคือ การนำ DNA ที่สกัดได้มา เติมสาร sodium bisulfite ซึ่งจะเปลี่ยน cytosine (C) ให้เป็น uracil (U) แต่จะไม่ เปลี่ยน methylcytosine (C) วิธีการแรกสามารถนำไปเพิ่มจำนวนโดยวิธี PCR ซึ่งจะ ทำให้ amplicons ที่ได้มี Thymidine (T) แทน cytosine (C) ทั้งหมดยกเว้น methycytosine (C) ที่ไม่เปลี่ยน ดังนั้นจึงสามารถใช้ restriction enzyme ที่เหมาะสม ตัดเพื่อแยกความแตกต่างได้ ส่วนวิธีที่สองจะอาศัยคุณสมบัติของ primer ที่มี ความจำเพาะต่อ sequence ที่เกิดหรือไม่เกิดภาวะ methylation ซึ่งจะมีการออกแบบให้

มีขนาดของ amplicon แตกต่างกัน โดยการศึกษาภาวะ methylation จะคิดเป็น เปอร์เซนต์และเปรียบเทียบระหว่างกลุ่มควบคุมกับกลุ่มผู้ป่วยโรคสะเก็ดเงิน (psoriasis) เพื่อหาความสัมพันธ์ระหว่างภาวะ methylation ใน candidate gene กับ การเกิดโรค สะเก็ดเงิน (psoriasis)

2.4 การวัดระดับของแสดงออกของยืน (mRNA) โดยวิธี Real time RT-PCR

การสกัด RNA จากตัวอย่าง โดยใช้ Trizol reagent (Life technologies. Inc) ต่อด้วย การสังเคราะห์ cDNA โดยวิธี (RT) (Promega, USA) จากนั้น ใช้ QuantiTect SYBR Green I (Qiagen, Hilden, Germany) ตาม protocol. และ นำเข้า เครื่อง Light Cycler machine (Roche Molecular Biochemicals, Indianapolis, IN, USA) วิเคราะห์ผลโดยการวัด specific peak และ ดู specific band โดย การใช้ agarose electrophoresis และย้อมด้วย ethidium bromide. สำหรับการวัดระดับของ PCR product ใช้เทียบกับ GAPDH ซึ่งเป็นยืนควบคุม

2.5 การทำ DNA Sequecing เพื่อยืนยันผลของ DNA methylation

การทำ PCR product ให้บริสุทธิ์ โดยชุดน้ำยาสำเร็จรูป (High pure PCR product purification kit, Boehringer Mannheim) และการหาลำดับเบสโดยใช้ชุดน้ำยา ABI PRISM®, Big DyeTM Terminative Cycle Sequencing Ready Reaction kits, Applied Biosystem Inc. California, USA) เข้าเครื่อง ABI Genetic Analyzer 310 (Applied Biosystems) โดยใช้ขั้นตอน คือ การดูด (Injection) 30 วินาที เข้าใน capillary ที่มี กระแสไฟฟ้า 2.5 kV และ ทำ electrophoresis ที่ 12.2 kV, ที่ 50°ซ นาน 90 นาที ใน POP-6 polymer เก็บข้อมูล (Raw electropherogram) โดยโปรแกรม Data Collection software (Applied Biosystems) การวิเคราะห์ข้อมูล ลำดับเบส (Sequence data) โดย โปรแกรม Sequence Analysis Software (Applied Biosystems) ทุกตัวอย่างในการทดลอง ทำการอ่านลำดับเบส ทั้งไปและกลับ

2.6 การทำ Immunohistochemistry เพื่อวัดระดับการแสดงออกของโปรตีน

โดยตัวอย่างจะถูกตรึงด้วย ฟอร์มารีน บน slide และ บ่มที่ at 60°C. ทั้งคืน และ ต่อ ด้วย microwave นาน 15 นาที่ (900 w) เพื่อกีดกัน endogenous peroxidase and biotin. จากนั้นเติม primary antibody rabbit anti-BCAP31 protein (Abcam; ที่ dilution 1:2000) และ ย้อมสีทับ (Ventana Benchmark LT automated immunostainer) สำหรับเกณฑ์ การวัด ระดับ ของการแสดงออกของโปรตีน คือ 0 (no staining), 1 (<10% of cells staining), 2 (10%-50% of cells staining), or 3 (>50% of cells staining). โดยดูด้วย กำลังขยาย 200 เท่า(20x magnification) การทดสอบทางสถิต โดยใช้ Independent o sample T-test (sig 2-tailed) using the SPSS software for windows 15.0 (SPSS Inc., Chicago, IL, USA). ค่า *P* value of < 0.05.(33)

ผลการทดลอง

3 เดือนแรก - (15 กันยายน 2554 ถึงวันที่ 15 ธันวาคม 2554)

- 1. เตรียมความพร้อมในห้องปฏิบัติการ สั่งซื้อสารเคมี และ หาสภาวะที่เหมาะสมใน การเลี้ยงและกระตุ้น เซลล์เพาะเลี้ยง (HaCat Cell) ให้เกิดการ differentiation
- 2. รวบรวมตัวอย่างและข้อมูลจากกลุ่มตัวอย่าง สำหรับ กลุ่มควบคุม และ กลุ่ม ผู้ป่วย ตามระดับของความรุนแรง

กิจกรรมที่ทำได้จริง

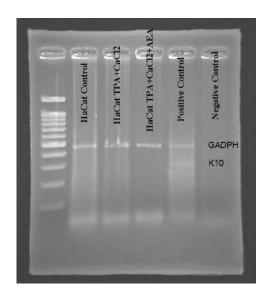
- (3 เดือน) 1. ได้เตรียมสารเคมีชนิดต่างๆ สำหรับ การกระตุ้น HaCat cell เช่น CaCl2 และ สารเคมี Anadamide (arachidonoylethanolamide, AEA) ได้ทำการทดลองแต่ยังยังไม่ได้ สภาวะที่เหมาะสม สำหรับ การเปลี่ยนแปลงของเซลล์ (differentiation).
- 2. ได้ทำเรื่องผ่านคณะกรรมการจริยธรรมสำหรับการเก็บตัวอย่าง (โดย รศ.พญ. ดร. จงกลนี วงศ์ปิยบวร เป็น ผู้วิจัยหลัก และ ผุ้ รับผิดชอบในการดูแลการเก็บตัวอย่างผู้ป่วย) เตรียมความพร้อมในห้องปฏิบัติการ และเก็บเพื่อสกัด genomic DNA

9 เดือน แรก- ผล LAB

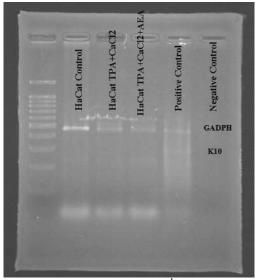

- เตรียมความพร้อมทางห้องปฏิบัติการเรียบร้อยแล้ว สามารถปฏิบัติได้ทุกวิธีที่เสนอไว้ใน แผนงาน ซึ่งประกอบด้วย genomic DNA extraction, RNA extraction, การออกแบบ Primer (Methylation Specific Primer, MSP) , amplify DNA by PCR (ทดสอบ Condition), RT-PCR, Real time PCR

ID-4metF 5'-TAg TCg gAT TTT TCg TTT TTT AgT ATC-3'
ID-4metR 5'-CTA TAT TTA TAA AAC CgT ACg CCC Cg-3'
ID-4unmetF 5'-ggT AgT Tg gAT TTT TTT TTT AgT ATT-3'
ID-4unmetR 5'-AAC TAT ATT TAT AAA ACC ATA CAC CCC A-3'
ID-4Fseq 5'-gAA Tgg AgT gTT TTT ATT ggT TYg Ag-3'
ID-4Rseq 5'-CCA CCC RAA TAT CCT AAT CAC TCC CTT C-3'

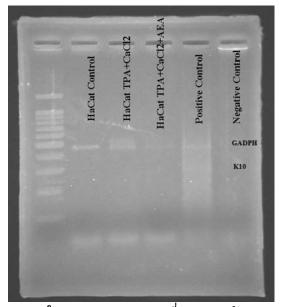
Keratin 10 (K10) F 5'-ACGAGGAGGAAATGAAAGAC-3' Keratin 10 (K10)R 5'-GGACTGTAGTTCTATCTCCAG-3'


- เก็บตัวอย่างจากผู้ป่วยโรคสะเก็ดเงินจำนวน 9 ราย พร้อมทำ genomic DNA extraction เรียบร้อยแล้ว

<u>การทดลองที่ 1</u> การทดสอบ หา สภาวะที่เหมาะสมของ K10 โดยวิธี RT-PCR


พบว่า ใน ตัวอย่างที่เป็น ผิวหนัง (skin) ใช้เป็น Positive control ได้ (annealing temperature 58°c)

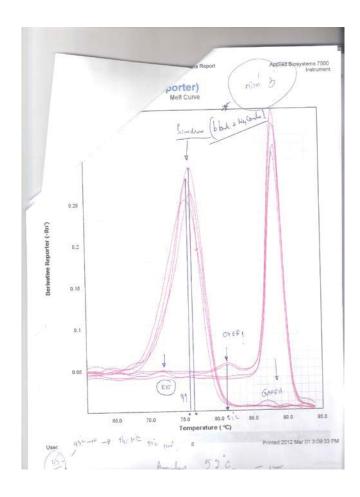
การทดลองที่ 2 ผล K10 และ GAPDH ใน HaCaT cell line (ครั้งที่ 1)


พบว่า ใน HaCaT cell line ที่ ทดสอบด้วย TPA, CaCl₂, AEA ไม่พบการแสดงออกของ K10 โดย skin เป็น Positive control, H₂o เป็น Negative control)

การทดลองที่ 3 ผล K10 และ GAPDH ใน HaCaT cell line (ครั้งที่ 2)

พบว่า ใน HaCaT cell line ที่ ทดสอบดัวย TPA, CaCl₂, AEA ไม่พบการแสดงออกของ K10 โดย skin เป็น Positive control, H₂o เป็น Negative control)

การทดลองที่ 4 ผล K10 และ GAPDH ใน HaCaT cell line (ครั้งที่ 3)



พบว่า ใน HaCaT cell line ที่ ทดสอบดัวย TPA, CaCl₂, AEA ไม่พบการแสดงออกของ K10 โดย skin เป็น Positive control, H₂o เป็น Negative control)

<u>การทดลองที่ 5</u> ผลของ K10 ใน Real time PCR (Syber Green)

Component		Volum	e (1 reaction)
2x buffer		12.5	μι
primer K10 F (20 pmol/ μ l)		0.5	μι
primer K10 R (20 pmol/ μ l)	0.5	μι	
H_2O	<u>10.5</u>	μι	
cDNA		1	
(Final volume	<u>25</u>	μI)	

พบว่า ให**้ Peak ที่ 72**°c

การทดลองที่ 6 ผลของ ID4 methyaltion กับความสัมพันธ์ต่อความรุนแรงของ ผู้ป่วย โรคสะเก็ดเงิน

	Se	vei	re					I	Mild	l					Mo	der	ated		
	462/51	Ī	1333	/50	48	0/50	46	4/51		269	9/51	136	5/51	12	76/50	104	/51	80	8/51
*	<u>U</u>	<u> 1</u>	U	M	<u>U</u>	M	<u>U</u>	M	*	U	M	U	M	<u>U</u>	<u>M</u>	<u>U</u>	<u>M</u>	U	M
Ξ				9						_								ľ	

ตารางแสดง การวิหิจฉัยความรุนแรงของโรค

No	anda	Cov	Ago	Diagnasia
No.	code	Sex	Age	Diagnosis
1	269/51	F	48	mild
2	136/51	М	73	mild
3	808/51	F	56	moderated
4	462/51	М	42	severe
				moderated (to
5	104/51	F	37	severe)
6	464/51	F	21	mild
7	1276/50	F	24	(mild to) moderated
8	1333/50	M	35	severe (exfoliative)
9	480/50	F	22	mild

พบว่า ความสัมพันธ์ของ ของ DNA methylation ของ ID4 promoter กับ ภาวะ ความรุนแรง ในโรคสะเก็ดเงิน โดย จำนวน ของผู้ป่วย โรคสะเก็ดเงิน (n= 9) ที่มีระดับความ รุนแรง mild, moderated และ severe จำนวน 4, 3 และ 2 ตามลำดับ (สกัด DNA, Bisulfilte, และ ตรวจวัดโดย วิธี Methylation Specific Primer, MSP) โดย ในกลุ่มของ mild ให้ผล ID4 methylation : ID4 unmethylation , 2:2 , กลุ่ม moderated 3:0 และ กลุ่ม severe 1:1 พบว่า ให้ผลไม่แตกต่างกันกันมากนัก ทำให้คาดว่า ระดับของ ID4 methylation อาจไม่เกี่ยวข้องกับ ความรุนแรงของโรค

<u>การทดลองที่ 7</u> วิเคราะห์ผล ของ Methylation array ของโรคสะเก็ดเงิน

เนื่องจากผู้วิจัยได้ทำการวิเคราะห์ถึง ความน่าจะเป็น ของยืนที่มีส่วนเกี่ยวข้องกับ
ขบวนการ ดีเอนเอเมทิลเลชั่น ซึ่งเป็นข้อมูลส่วนหนึ่งของ จาก'โครงการบทบาทของ
กลุ่มยืนที่ถูกเมทิลเลชั่น/ดีเมทิลเลชั่นและความสัมพันธ์ระหว่าง การค้นหายืนที่ถูกเมทิล
เลชั่น/ดีเมทิลเลชั่นในเซลล์ผิวหนังกับลักษณะแสดงออก ทางคลินิกพยาธิสภาพของโรค
สะเก็ดเงิน โดยวิธีดีเอนเอเมทิลเลชั่นไมโครอะเร' ในเบื้องตัน พบว่าในจำนวนยืน 272
ยืน ที่ มีความแตกต่างของขบวนการดีเอนเอเมทิลเลชั่น ระหว่าง Normal skin กับ

Involve skin มีความเกี่ยวข้องกับ Pathway ที่สำคัญ เช่น Metabolic pathways ,
Pathways in cancer, Osteoclast differentiation , Cytokine-cytokine receptor interaction Apoptosis และ Jak-STAT signaling pathway เป็นต้น (เอกสารแนบ 1)

ยืน B-cell receptor associated protein 31 (BCAP 31) เป็นยืนที่พบว่ามีความสำคัญใน ลำดับต้นๆของการวิเคราะห์โดยวิธีดีเอนเอเมทิลเลชั่นไมโครอะเร ดังนั้น คณะผู้วิจัยจึง ได้วิจัยในยืนนี้

การทดลองที่ 8 DNA methylation ของยืน BCAP31 ในผิวหนังโรคสะเก็ดเงิน

- เพิ่มปริมาณยืน BCAP31 ด้วยวิธี Polymerase Chain Reactions จาก DNA สกัดจาก
 Skin ของคนปกติ และรอยโรคของผู้ป่วยโรคสะเก็ดเงิน ที่ treated ด้วย Bisulfite
- 2. เพิ่มปริมาณ PCR Product ยืน BCAP31 แล้ว Purified เพื่อเพิ่มปริมาณยืนใน แบคทีเรีย
- 3. เตรียม Competent Cells และโคลนยืน BCAP31 ใน Competent Cells โดยอาศัย Plasmid ในการนำยืนเข้าสู่ Competent Cells
- 4. ตรวจสอบว่ามีการเกิด DNA methylation ด้วยการ Sequencing ดีเอ็นเอของพลาสมิดที่ มียืน BCAP31แทรกอยู่

8.1 <u>เพิ่มปริมาณยืน BCAP31 ด้วยวิธี Polymerase Chain Reactions</u> Primer BCAP31

Forward Primer (F1): 5' GTA GGG TTT TTT GGT TAG TAG 3'

Forward Primer (F2): 5' ATT TTT AGA GGG TAG GAT T 3'

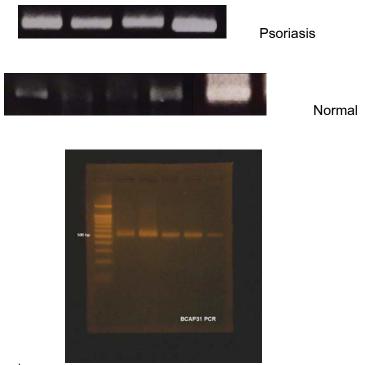
Reverse Primer (R): 5' ACT ACT ATA AAA AAA TTC TAT TAC 3'

<u>Master Mix</u>	<u>Outer PCR(คู่</u> F	Primer F1:R)	Inner	<u>PCR(คู่F</u>	Primer F2:R)
			Final Co	oncentr	ation
DEPC-DW		-			-
10X Buffer		1X		1X	
25mM MgCl2		2		2	มิลลิโมลาร์(mM)
10mM dNTPs		0.2		0.2	มิลลิโมลาร์(mM)
20 μM Primer	·F	0.01		0.01	ไมโครโมลาร์(µM)
20 μM Primer	·R	0.01		0.01	ไมโครโมลาร์(µM)
Fast Start Tag	polymerase	0.1		0.04	ยูนิต(U)
DNA Treated I	Bisulfite	5		5	ไมโครลิตร (µI)

Total Volume 20 50 ไมโครลิตร(μl)

PCR Reaction

95 ° C 4 นาที


95 ° C 1 นาที 50 ° C 2 นาที 72 ° C 3 นาที 8 รอบ

95 ° C 30 วินาที 50 ° C 2 นาที 72 ° C 1 นาที 30 วินาที 30 รอบ

72 ° C 10 นาที

Hold 10 ° C

Gel

รูปที่ 8.1 ผล Gel Electorphoresis จากการทำ Polymerase Chain Reactions(PCR) ของ Psoriasis Iesion skin และ normal skin ขนาด 497 bp (expected size) รันเจล ประมาณ 515 bp

8.2 โคลนยืน BCAP31 โดยอาศัย Plasmid ในการนำยืนเข้าสู่ Competent Cells

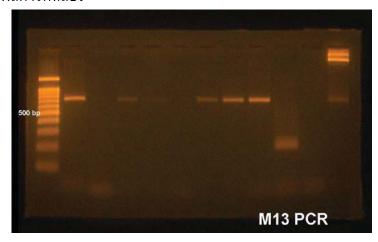
|--|

Reagent		
2X Ligation buffer	2.5	ไมโครลิตร
pGEM ®T easy vector	0.1	ไมโครลิตร
T4 ligase	0.5	ไมโครลิตร
PCR Product	3	ไมโครลิตร
DW	optimized	

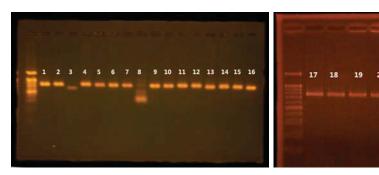
<u>Ligation ด้วย Universal Primer M13</u>

Master Mix	Final Concentration	
DEPC-DW	-	
10X Buffer	1	X
25mM MgCl2	1.5	มิลลิโมลาร์(mM)
10mM dNTPs	0.2	มิลลิโมลาร์(mM)
20 μ M Primer M13F	0.01	ไมโครโมลาร์(μΜ)
20 μ M Primer M13R	0.01	ไมโครโมลาร์(μΜ)
Fast Start Taq polymerase	0.1	ยูนิต(U)
Ligated	1	ไมโครลิตร

PCR Reaction


95 ° C 5 นาที

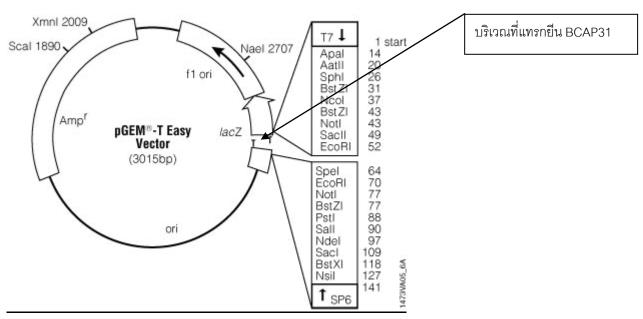
95 °C 45 วินาที, 55 °C 45 วินาที ,72 °C 1 วินาที 35 รอบ


72 ° C 10 นาที

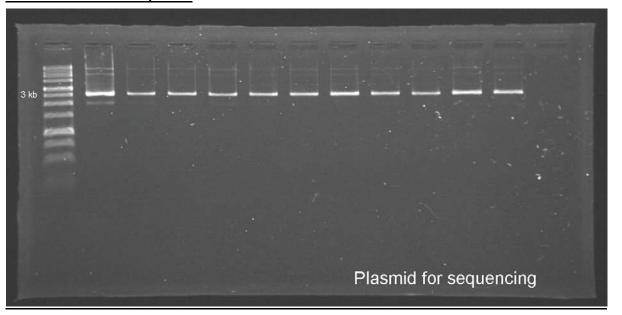
Hold 10 ° C

ผลการทดลอง

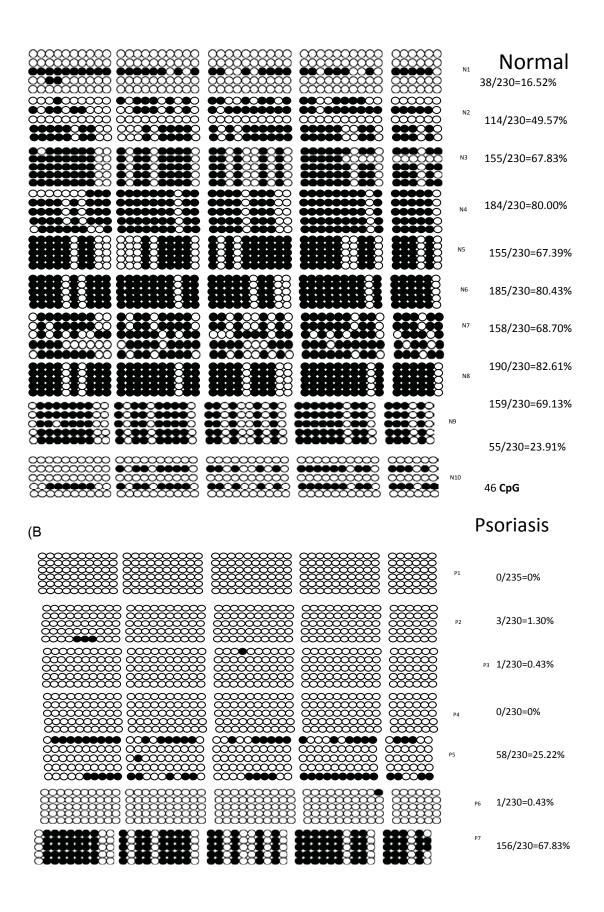
รูปที่ 8.2 แสดงตัวอย่างการเช็ค Ligation ด้วยการทำ PCR (Primer M13)


โดย 245 bp. = ขนาด PCR product ของ pGEM ®T vector (Plasmid)

515 bp. = ขนาด PCR product ของ Sample

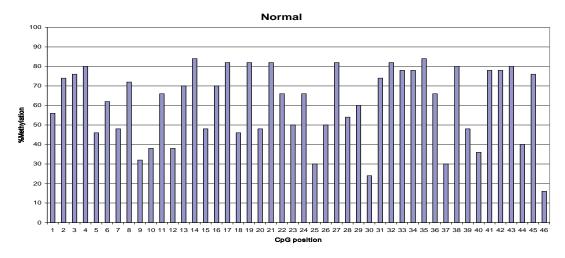

760 bp. = ขนาด PCR product ของ pGEM ®T vector รวมกับ

Sample

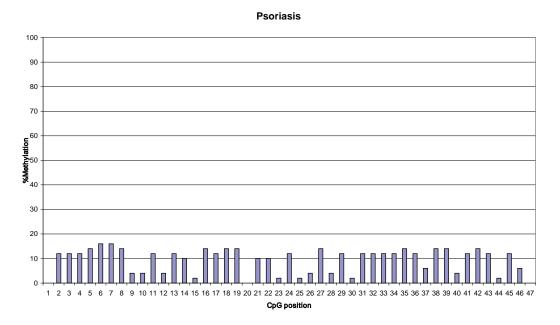

Map gene ของ Vector ที่ใช้

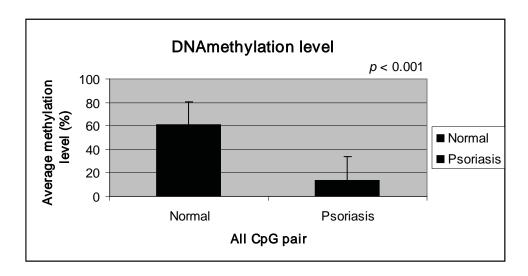
รันพลาสมิดเพื่อส่ง sequence

การทดลองที่ 8.3 ผลการทำ DNA sequencing จากตัวอย่าง Normal (N1-N10) จำนวน 10 ราย และ Psoriasis (P1-P7) จำนวน 7 ราย และการวิเคราะห์ DNA methylation level (A)


46CpG

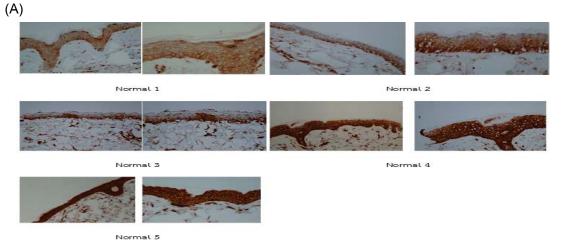
รูปที่ 8.3 แสดงตัวอย่างผล bisulfite treatment, cloning and sequencing แต่ละราย (A) แสดงผล methylation ของคนปกติ 10 ราย รายละ 5 โคลน (B) แสดงผล methylation ของผู้ป่วยโรคสะเก็ดเงิน 7 ราย รายละ 5โคลน วงกลมสีขาวแสดงถึงตำแหน่งที่เป็น Unmethylation วงกลมสีดำแสดงถึงตำแหน่งที่เป็น Methylation

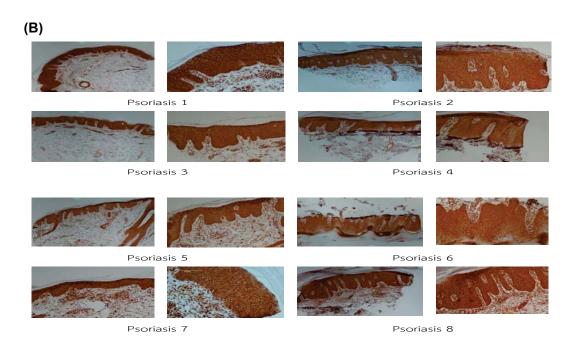

การทดลองที่ 8.3


ผลการทำ DNA sequencing จากตัวอย่าง Normal (N1-N10) จำนวน 10 ราย และ Psoriasis (P1-P7) จำนวน 7 ราย และการวิเคราะห์ DNA methylation level ในแต่ละ ตำแหน่ง (CpG 46 ตำแหน่ง)

(A)

(B)





รูปที่ 8.4 (A) แสดงค่าเฉลี่ยระดับ DNA methylation ของ CpG แต่ละตำแหน่งทั้งหมด 46 ตำแหน่ง คนปกติ (Normal) (B) แสดงค่าเฉลี่ยระดับ DNA methylation ของ CpG ทั้งหมด 46 ตำแหน่ง ผู้ป่วยโรคสะเก็ดเงิน (Psoriasis) (C) พบว่าผู้ป่วยโรค สะเก็ดเงินมีระดับ DNA methylation ของยืน BCAP31 ต่ำกว่าคนปกติอย่างมีนัยสำคัญ (p < 0.001) โดยมีค่า DNA methylation คิดเป็น ร้อยละ 60.61 และ 13.60 ตามลำดับ

การทดลองที่ 9 การวัดระดับการแสดงออกของโปรตีน BCAP31 โดยวิธี Immunohistochemistry

ผลการทดลอง จากตัวอย่าง Normal (N1-N5) จำนวน 5 ราย และ Psoriasis (P1-P8) จำนวน 8 ราย ให้การติดสี ซึ่งแสดงออกถึงการมีระดับโปรตีนในตัวอย่าง โดยพบว่า ในตัวอย่าง normal มีการติดสี ระดับ 1 จำนวน 3 ราย และ ระดับ 3 จำนวน 2 ราย (A) ในขณะที่ ตัวอย่าง psoriasis มีการติดสี ระดับ 3 ทั้งหมด (8 ราย) (B)

รูปที่ 9 (A) ตัวอย่าง normal จำนวน 5 ราย และ ตัวอย่าง psoriasis จำนวน 8 ราย โดยแต่จะ ราย จะดูด้วยกำลังขยาย 100 และ 200 ตามลำดับ และ นับจำนวน เซลล์ที่ติดสี จำนวน 200 เซลล์ เพื่อ วัดระดับของการติดสี ตามเกณฑ์ที่กำหนด โดยมีค่าความแตกต่างอย่างมีนัยสำคัญที่ (p < 0.009)

สรุปและวิจารณ์ผลการทดลอง

การวิจัยล่าช้ากว่าแผนที่วางไว้ โดยได้ทำการทดลองใช้ HaCaT เป็น ต้นแบบซึ่งได้ ทดสอบโดยการ ใช้ CaCl2 และ Anadamide (arachidonoylethanolamide, AEA) ใช้กระตุ้น HaCaT cell line เพื่อให้เกิดการเปลี่ยนแปลงเซลล์ (Cell differentiation) และใช้ K10 เป็นตัว บ่งบองถึงการเปลี่ยนแปลง (สกัด RNA และ ตรวจวัดโดยวิธี RT-PCR และ Real Time PCR) ซึ่งผลที่ได้พบว่า ไม่เกิดการเปลี่ยนแปลงเซลล์ ของ HaCaT cell สำหรับ ความสัมพันธ์ของ ของ DNA methylation ของ ID4 promoter กับ ภาวะความรุนแรง ในโรคสะเก็ดเงิน ได้ ทดสอบในเบื้องต้น โดย จำนวน ของผู้ป่วย โรคสะเก็ดเงิน (n= 9) ที่มีระดับความรุนแรง mild, moderated และ severe จำนวน 4, 3 และ 2 ตามลำดับ (สกัด DNA, Bisulfilte, และ ตรวจวัดโดย วิธี Methylation Specific Primer , MSP) โดย ในกลุ่มของ mild ให้ผล ID4 methylation : ID4 unmethylation , 2:2 , กลุ่ม moderated 3:0 และ กลุ่ม severe 1:1 พบว่า ให้ผลไม่แตกต่างกันกันมากนัก ทำให้คาดว่า ระดับของ ID4 methylation อาจไม่ เกี่ยวข้องกับ ความรุนแรงของโรค

คณะผู้วิจัยจึงคัดเลือกยีน BCAP31 จาก การทำไมโครอะเร ซึ่งพบว่ามีความสำคัญใน ลำดับตันๆ(จากเอกสารแนบ1)

สำหรับ ยืนBCAP31 พบว่า จำนวน ตัวอย่างที่เกิด DNA methylation ในตัวอย่าง ที่ เป็นชิ้นเนื้อ ของคนปกติ ผู้ป่วยโรคสะเก็ดเงิน (โดยคิดจาก % methylation > 50) คิดเป็น ร้อย ละ 70.0 และ 14.2 ตามลำดับ และ พบว่า ปริมาณของ DNA methylation (DNA methylation level) คิดเป็น ร้อยละ 60.61 และ 13.60 ซึ่งมีความแตกต่างอย่างมีนัยสำคัญ ระหว่าง คนปกติ กับ ผู้ป่วยโรคสะเก็ดเงิน (p < 0.001) ซึ่งสามารถบอกถึง ความสัมพันธ์ของการเกิด DNA methylation กับ โรคผิวหนังนี้

สำหรับ B-cell receptor associated protein 31 (BCAP31) เป็นยืนที่อยู่บนโครโมโซม Xq28 [29] ซึ่งพบว่ามีคุณสมบัติเป็นทรานสเมมเบรนโปรตีน (trans-membrane protein) บนผิว เอนโดพลาสมิคเรติคูลัม (endoplasmic recticulum) ทำหน้าที่ในการขนส่งโปรตีนจาก เอนโดพ ลาสมิคเรติคูลัมไปยังกอลจิบอดี (golgi body) [30] [31] นอกจากมียังมีรายงานว่า เกี่ยวข้องกับ กลไกการเกิด อะเปอปโตซีส (apoptosis) โดยผ่านทาง procaspase และ CED4 ซึ่งพบได้ในเซลล์เม็ดเลือดขาว ทั้งชนิด B Lymphocyte และ T Lymphocyte [32] และเซลล์เยื่อบุผนังของโรคซีสติกไฟโบรซีส แต่สำหรับในโรคสะเก็ดเงินนั้นยังไม่พบว่า มี การรายงานที่เกี่ยวข้องกับยืนนี้มาก่อน อย่างไรก็ตาม BCAP31 อาจมีความเกี่ยวข้องกับ โรค สะเก็ดเงินคือ ในโรคสะเก็ดเงินก็พบว่ามีการผิดปกติของการเกิดกระบวนการ อะเปอปโตซีส ใน เซลล์ผิวหนัง และเซลล์ เม็ดเลือดขาวซึ่งอาจเกิดจากการขาดโปรตีน BCAP31 มีรายงานใน คนไข้โรคสะเก็ดเงินมีการลดลงของการแสดง ออกในระดับเอ็มอาร์เอ็นเอของยืน BCAP31 ซึ่งมี ความสัมพันธ์แบบผกผันกับการเกิด ดีเอ็นเอเมทิลเลชั่นที่ลดลงที่บริเวณโปรโมเตอร์ของยืน การ ลดลงของการแสดงออกในระดับ เอ็มอาร์เอ็นเอของยืน BCAP31 จึงอาจเป็นสาเหตุให้เพิ่ม ความสามารถในการต้านทาน ต่อการเกิดอะเปอปโตซีส ซิสของเซลล์เม็ดเลือดขาวในโรค สะเก็ดเงินได้ (personal communication)

ผลการศึกษาในครั้งนี้นับเป็นการค้นพบองค์ความรู้ใหม่ซึ่งยังไม่เคยมีผู้ใดเคยศึกษาใน โรคสะเก็ดเงินมาก่อน และอาจนำมาอธิบายพยาธิสภาพของการเกิดโรคได้ แต่อย่างไรก็ตาม บทบาทและหน้าที่ของยืน BCAP31 โรคนี้ ยังไม่ทราบแน่ชัด และการเหนี่ยวนำให้เกิด Hypomethylation บนโปรโมเตอร์ของยืน BCAP31 ในโรคสะเก็ดเงินยังไม่ทราบ สาเหตุที่แน่ชัด เช่นกัน ยังคงต้องการการศึกษาเพิ่มเติมต่อไป

สำหรับการศึกษาครั้งนี้ เราพบหลักฐานของการเกิด BCAP31 promoter methylation และ การแสดงออกของโปรตีน ซึ่งอาจเกี่ยวกับการตาย แบบ อะเปอปโตซีส อาจนำไปสู่การ พัฒนาเพื่อให้ถึงกลไกการทำงานใน เชิงลึกต่อไป

เอกสารอ้างอิง

- Nickoloff, B.J. and F.O. Nestle, Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest, 2004. 113(12): p. 1664-75.
- 2. Christophers, E., *Psoriasis--epidemiology and clinical spectrum.* Clin Exp Dermatol, 2001. 26(4): p. 314-20.
- 3. Raychaudhuri, S.P. and E.M. Farber, *The prevalence of psoriasis in the world.* J Eur Acad Dermatol Venereol, 2001. 15(1): p. 16-7.
- 4. Schon, M.P. and W.H. Boehncke, *Psoriasis*. N Engl J Med, 2005. 352(18): p. 1899-912.
- 5. Bowcock, A.M. and J.G. Krueger, Getting under the skin: the immunogenetics of
- 6. Nickoloff, B.J., *The immunologic and genetic basis of psoriasis.* Arch Dermatol, 1999. 135(9): p. 1104-10.
- 7. Barker, J.N., Genetic aspects of psoriasis. Clin Exp Dermatol, 2001. 26(4): p. 321-5.
- 8. Egger, G., et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004. 429(6990): p. 457-63.
- 9. Robertson, K.D., *DNA methylation and human disease.* Nat Rev Genet, 2005. 6(8): p. 597-610.
- Rodenhiser, D. and M. Mann, Epigenetics and human disease: translating basic biology into clinical applications. Cmaj, 2006. 174(3): p. 341-8.
- 11. Ruchusatsawat, K., et al., SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med, 2006. 84(2): p. 175-82.
- 12. Rigolet, M. et al. cDNA cloning, tissue distribution and chromosomal localization of the human ID4 gene. *DNA Res.*, 199. **5**: 309-13.
- 13. Massari, M.E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. *Mol Cell Biol* . 2000, **20**: 429-40.
- 14. Desprez, P.Y., Sumida, T. & Coppe, J.P. Helix-loop-helix proteins in mammary gland development and breast cancer. *J Mammary Gland Biol Neoplasia* . 2003, **8**: 225-39.
- 15. Kondo, T. & Raff, M. The Id4 HLH protein and the timing of oligodendrocyte differentiation. *Embo J* .2000, **19**: 1998-2007.
- Andres-Barquin, P.J., Hernandez, M.C. & Israel, M.A. Id4 expression induces apoptosis in astrocytic cultures and is down-regulated by activation of the cAMPdependent signal transduction pathway. *Exp Cell Res* .1999, 247: 347-55.

- Yu, L. et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. *Nat Genet* . 2005, 37: 265-74.
- 18. Chan, A.S. et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. *Oncogene* . 2003, **22**: 6946-53.
- 19. Umetani, N. et al. Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. *Oncogene* .2005, **24**: 4721-7.
- Umetani, N. et al. Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. *Clin Cancer Res* . 2004, 10: 7475-83.
- 21. Yuen, H.F. et al. Id proteins expression in prostate cancer: high-level expression of Id-4 in primary prostate cancer is associated with development of metastases. *Mod Pathol* .2006, **19**: 931-41.
- Wu, Q., Hoffmann, M.J., Hartmann, F.H. & Schulz, W.A. Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. *Mol Cancer* .2005,4,:16-19.
- 23. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. *Nat Rev Genet* .2002, **3**: 415-28.
- 24. Uhm, K.O. et al. Aberrant promoter CpG islands methylation of tumor suppressor genes in cholangiocarcinoma. *Oncol Res* . 2008, 7: 151-7.
- 25. Hagiwara, K. et al. Frequent DNA methylation but not mutation of the ID4 gene in malignant lymphoma. *J Clin Exp Hematop* .2007, **47** : 15-8 .
- 26. Gomez Del Pulgar, T. et al. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. *Int J Oncol* .2008, **33**: 185-93.
- 27 Paradisi A, Pasquariello N, Barcaroli D, Maccarrone M. Anandamide regulates keratinocyte differentiation by inducing DNA methylation in a CB1 receptordependent manner. J Biol Chem. 2008 Mar 7;283(10):6005-12.
- 28. Du, Y., Bock, B.C., Schachter, K.A., Chao, M. & Gallo, K.A. Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. *J Biol Chem* . 2005, **280**: 42984-93 .
- 29. Mosser J, Sarde CO, Vicaire S, Yates JR, Mandel JL: A new human gene (DXS1357E) with ubiquitous expression, located in Xq28 adjacent to the adrenoleukodystrophy gene. *Genomics* 1994, 22(2):469-471.

- Nguyen M, Breckenridge DG, Ducret A, Shore GC: Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. *Mol Cell Biol* 2000, 20(18):6731-6740.
- 31. Wang B, Nguyen M, Breckenridge DG, Stojanovic M, Clemons PA, Kuppig S, Shore GC: Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. *J Biol Chem* 2003, 278(16):14461-14468.
- 32. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC: p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. *J Cell Biol* 1997, 139(2):327-338.
- 33. Rizzadi EA, Johnsan AT, Vogel RI, et al. Quantitative comparison of immunohistochemica staining measured by digital image analysis versus pathologist visual scoring. Diagnotic Pathology 2012, 7(42):1-10.

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

จากงานวิจัยในเบื้องต้นนี้บ่งชี้ว่าการเกิด DNA methylation ในส่วน โปรโมเตอร์ ของยืน BCAP31 ในผู้ป่วยโรคสะเก็ดเงิน อาจจะมีส่วนเกี่ยวข้องกับการเกิด อะเปอปโตซีส ซึ่งเป็น ความผิดปกติที่พบมากในโรคนี้ แต่อย่างไรก็ตาม ทั้งกลไกการเกิด DNA methylaion ของ ยืนนี้ และ หน้าที่ของ ยืนนี้ ในโรคสะเก็ด จึงเป็นเรื่องที่น่าจะมีการศึกษาต่อไป เช่น 1) กลไกการเกิด ภาวะ DNA methylation ของ BCAP31 promoter 2) หน้าที่ของ BCAP31 รวมทั้ง 3) ความสัมพันธ์ของ BCAP31 promoter methylation กับ ความรุนแรงของโรค ของโรค สะเก็ดเงินและอาจเป็นประโยชน์ในการพัฒนาวิธีป้องกันและรักษาโรคแบบใหม่ต่อไป

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า)
- 1.1 Surasak Yooyongsatit, Kriangsak Ruchusatsawat, Pakpoom Supiyaphun, Nopadon Noppakun, Apiwat Mutirangura and Jongkonnee Wongpiyabovorn, Alterations in the LINE-1 methylation pattern in patients with lichen simplex chronicus. Asian Pac J Allergy Immunol 2012;31:51-7
- 1.2 Poster presentation

งาน ประชุมประจำปี 'นักวิจัยรุ่นใหม่...พบเมธีวิจัยอาวุโส สกว ครั้งที่ 13, วันที่ 16-18 ตุลาคม 2556 ณ โรงแรมเดอะรีเจนท์ ชะอำบีช รีสอร์ท หัวหิน ชะอำ จ. เพชรบุรี. Ruchusatsawat K, Wongpiyabovorn J, Tiemsing L, Mutirangura A, BCAP 31 demethylation in psoriasis.

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้ โดยภาคธุรกิจ/บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลง ระเบียบข้อบังคับหรือวิธีทำงาน)
- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
- 3. อื่นๆ (เช่น หนังสือ การจดสิทธิบัตร)

6. ภาคผนวก ประกอบด้วย reprint หรือ manuscript และบทความสำหรับการ เผยแพร่

6.1 การเผยแพร่โปร์สเตอร์

Ruchusatsawat K, Wongpiyabovorn J, Tiemsing L Mutirangura A, BCAP 31 demethylation in psoriasis.

การประชุมวิชานักวิจัยรุ่นใหม่พบเมธีวิจัยอาวุโส (การประชุมของสกว)ครั้งที่ 13 . 16-18 ตุลาคม 2556. ณ โรงแรมชะอำ รีสอร์ท บีช

6.2 Surasak Yooyongsatit, Kriangsak Ruchusatsawat, Pakpoom Supiyaphun, Nopadon Noppakun, Apiwat Mutirangura and Jongkonnee Wongpiyabovorn, Alterations in the LINE-1 methylation pattern in patients with lichen simplex chronicus. Asian Pac J Allergy Immunol 2012;31:51- 7 (เอกสารที่แนบ)

Following object(s) was/were not found cpd:C283849 11RA ABRA ACOT11 ACVRL1 ADMR AFF3 AIP ALDH1A3 ALX4 ANGPT2 ANKRD25 APXL2 ARHGAP25 ATP8B1 ATXN10 BNC1 BST2 C10orf99 C12orf46 C12orf59 C14orf115 C14orf166B C16orf47 C16orf54 C17orf44 C19orf33 C1orf52 C1orf64 C1orf87 CARD15 CDCP1 CES7 CHFR CHI3L2 CLEC11A CLEC3A CMTM5 COL6A3 CPM CST7 CXorf9 DAK DDR2 DEGS1 DENND2D DMPK DNASE1L3 EDG4 EDG6 ELF5 ETS2 FAM101A FAM113B FBXL22 FBXW10 FCGR3B FFAR2 FLJ20273 FLJ20581 FLJ25410 FLJ31196 FLJ32028 FLJ34503 FLJ36070 FLJ36268 FLJ46380 FOLR1 FOXI1 FPL2 FSTL1 FTY2 FUT1 FXYD1 FXYD7 GAD GARNL3 GBL1 GGTLA1 GPHA2 GPR109A GPR132 GPR55 GPX2 GRB7 H2AFY HAK HBC HFE2 HL21 HLA-DRA HOXB1 HOXD3 HSPA12B HTR3B HTRA4 IFI27 IL1RN KCNAB2 KLK9 KRT24 KRT6B KYNU LGALS7 LOC196549 LOC339789 LOC63928 LOXL3 LR LRRC17 LRRC25 LRRC8C LY6D MA4 MAMDC2 MAP1A MARK2 MCF2L MEST MGC34647 MGC9712 MGMT MRGPRF MSX1 MT MT4 MTSS1 MYH7 NEBL NFAM1 NNMT NPR2 NR1I3 NSMCE1 OAS2 OLFML1 P53AIP1 PADI1 PAM PAOR6 PARC PARVG PDLIM1 PHLDB1 PI15 PIB5PA PIK4CB PLSCR4 PLXNB1 PPARGC1B PPP1CC PRX PTPN22 PTPRCAP RGN RGS14 RHOJ RIMS3 S100A9 SCGB2A2 SCNN1D SEMA3B SERPINB3 SH2D4B SLC11A1 SLC15A2 SLC16A3 SLC22A3 SLC23A2 SLC25A3 SLC43A3 SORBS3 SP140 SPATA21 SPRR2D STAR STMN4 SULF1 SUSD1 T6L TACC1 TBC1D10C TCP11 TEKT3 TGM3 THRB TICAM1 TIMP3 TM4SF19 TMC6 TMEM109 TNF TNFAIP2 TNIP3 TNS1 TRAK1 TREM1 TREML1 TREML2 TRIM15 TRIM2 TRIM29 TRIM54 TRIM65 TRPM1 TSPAN16 TTC13 UNC5CL UNC84A UNO473 VAV1 VTCN1 WISP1 X2 ZBED2 ZNF167 ZNF238 ZNF511 ZNF553

Show all objects

1. ko01100 Metabolic pathways (9)

```
K10214 ACOX2; 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoyl-CoA
24-hydroxylase [EC:1.17.99.3]
K00716 FUT3; galactoside 3(4)-fucosyltransferase 3 [EC:2.4.1.65]
K07635 FUT7; galactoside alpha-1,3-fucosyltransferase 7 [EC:2.4.1.-]
K00542 GAMT; guanidinoacetate N-methyltransferase [EC:2.1.1.2]
K14756 KL; klotho [EC:3.2.1.31]
K00726 MGAT1; alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase [EC:2.4.1.101]
K03934 NDUFS1; NADH dehydrogenase (ubiquinone) Fe-S protein 1
[EC:1.6.5.3 1.6.99.3]
K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
```

2. ko05152 Tuberculosis (7)

```
K07368 BCL10; B-cell CLL/lymphoma 10
K04400 CASP10; caspase 10 [EC:3.4.22.63]
K04398 CASP8; caspase 8 [EC:3.4.22.61]
K06563 CD209; CD209 antigen
```

```
K14957 LSP1; lymphocyte-specific protein 1
  K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
  K10161 TLR9; toll-like receptor 9
3. ko05200 Pathways in cancer (6)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
  K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
  [EC:2.7.10.1]
   K08732 RALGDS; ral guanine nucleotide dissociation stimulator
  K08015 RASSF5; Ras association domain-containing protein 5
   K11223 STAT5A; signal transducer and activator of transcription 5A
   K03871 VHL; von Hippel-Lindau disease tumor supressor
4. ko04380 Osteoclast differentiation (4)
   K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
   [EC:2.7.10.1]
   K07361 LCP2; lymphocyte cytosolic protein 2
   K08010 NCF2; neutrophil cytosolic factor 2
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
5. ko04060 Cytokine-cytokine receptor interaction (4)
   K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
   [EC:2.7.10.1]
   K04738 CSF2RB; cytokine receptor common subunit beta
  K05050 IL8RB; interleukin 8 receptor beta
  K05418 OSM; oncostatin M
6. ko05162 Measles (4)
  K06563 CD209; CD209 antigen
  K11223 STAT5A; signal transducer and activator of transcription 5A
  K10161 TLR9; toll-like receptor 9
  K10148 TP73; tumor protein p73
7. ko04210 Apoptosis (3)
  K04400 CASP10; caspase 10 [EC:3.4.22.63]
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K04738 CSF2RB; cytokine receptor common subunit beta
8. ko05016 Huntington's disease (3)
  K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K10409 DNAI1; dynein intermediate chain 1, axonemal
   K03934 NDUFS1; NADH dehydrogenase (ubiquinone) Fe-S protein 1
   [EC:1.6.5.3 1.6.99.3]
```

```
9. ko04144 Endocytosis (3)
  K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
  [EC:2.7.10.1]
  K05084 ERBB3; receptor tyrosine-protein kinase erbB-3 [EC:2.7.10.1]
  K05050 IL8RB; interleukin 8 receptor beta
10. ko04630 Jak-STAT signaling pathway (3)
   K04738 CSF2RB; cytokine receptor common subunit beta
   K05418 OSM; oncostatin M
   K11223 STAT5A; signal transducer and activator of transcription 5A
11. ko05142 Chagas disease (American trypanosomiasis) (3)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K04637 GNA15; quanine nucleotide-binding protein subunit alpha-15
  K10161 TLR9; toll-like receptor 9
12. ko05169 Epstein-Barr virus infection (3)
   K08891 FGR; proto-oncogene tyrosine-protein kinase FGR [EC:2.7.10.2]
   K09543 HSPB2; heat shock 27kDa protein 2
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
13. ko04145 Phagosome (3)
  K06563 CD209; CD209 antigen
   K10066 COLEC11; collectin sub-family member 11
  K08010 NCF2; neutrophil cytosolic factor 2
14. ko04664 Fc epsilon RI signaling pathway (2)
   K07361 LCP2; lymphocyte cytosolic protein 2
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
15. ko04062 Chemokine signaling pathway (2)
   K08891 FGR; proto-oncogene tyrosine-protein kinase FGR [EC:2.7.10.2]
   K05050 IL8RB; interleukin 8 receptor beta
16. ko04670 Leukocyte transendothelial migration (2)
   K08010 NCF2; neutrophil cytosolic factor 2
   K08015 RASSF5; Ras association domain-containing protein 5
```

17. ko04650 Natural killer cell mediated cytotoxicity (2)

```
K07361 LCP2; lymphocyte cytosolic protein 2
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
18. ko04660 T cell receptor signaling pathway (2)
   K07368 BCL10; B-cell CLL/lymphoma 10
  K07361 LCP2; lymphocyte cytosolic protein 2
19. ko04012 ErbB signaling pathway (2)
   K05084 ERBB3; receptor tyrosine-protein kinase erbB-3 [EC:2.7.10.1]
   K11223 STAT5A; signal transducer and activator of transcription 5A
20. ko04115 p53 signaling pathway (2)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K10148 TP73; tumor protein p73
21. ko00601 Glycosphingolipid biosynthesis - lacto and neolacto series (2)
   K00716 FUT3; galactoside 3(4)-fucosyltransferase 3 [EC:2.4.1.65]
   K07635 FUT7; galactoside alpha-1,3-fucosyltransferase 7 [EC:2.4.1.-]
22. ko04020 Calcium signaling pathway (2)
  K05084 ERBB3; receptor tyrosine-protein kinase erbB-3 [EC:2.7.10.1]
  K04637 GNA15; guanine nucleotide-binding protein subunit alpha-15
23. ko05010 Alzheimer's disease (2)
  K04398 CASP8; caspase 8 [EC:3.4.22.61]
  K03934 NDUFS1; NADH dehydrogenase (ubiquinone) Fe-S protein 1
   [EC:1.6.5.3 1.6.99.3]
24. ko05168 Herpes simplex infection (2)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K10161 TLR9; toll-like receptor 9
25. ko04620 Toll-like receptor signaling pathway (2)
  K04398 CASP8; caspase 8 [EC:3.4.22.61]
   K10161 TLR9; toll-like receptor 9
```

```
26. ko05012 Parkinson's disease (2)
  K03934 NDUFS1; NADH dehydrogenase (ubiquinone) Fe-S protein 1
   [EC:1.6.5.3 1.6.99.3]
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
27. ko04662 B cell receptor signaling pathway (2)
   K07368 BCL10; B-cell CLL/lymphoma 10
  K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
28. ko04146 Peroxisome (2)
   K10214 ACOX2; 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholestanoyl-CoA
   24-hydroxylase [EC:1.17.99.3]
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
29. ko04610 Complement and coagulation cascades (2)
   K03913 SERPINA5; protein C inhibitor
   K04001 SERPING1; C1 inhibitor
30. ko05202 Transcriptional misregulation in cancer (2)
  K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
  [EC:2.7.10.1]
  K09234 WT1; Wilms tumor protein 1
31. ko04064 NF-kappa B signaling pathway (2)
  K07368 BCL10; B-cell CLL/lymphoma 10
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
32. ko04622 RIG-I-like receptor signaling pathway (2)
   K04400 CASP10; caspase 10 [EC:3.4.22.63]
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
33. ko04621 NOD-like receptor signaling pathway (2)
  K04398 CASP8; caspase 8 [EC:3.4.22.61]
  K12804 PSTPIP1; proline-serine-threonine phosphatase interacting
  protein 1
34. ko00040 Pentose and glucuronate interconversions (1)
```

```
K14756 KL; klotho [EC:3.2.1.31]
35. ko05134 Legionellosis (1)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
36. ko00514 Other types of O-glycan biosynthesis (1)
   K07635 FUT7; galactoside alpha-1,3-fucosyltransferase 7 [EC:2.4.1.-]
37. ko05144 Malaria (1)
   K10161 TLR9; toll-like receptor 9
38. ko04722 Neurotrophin signaling pathway (1)
   K10148 TP73; tumor protein p73
39. ko05210 Colorectal cancer (1)
   K08732 RALGDS; ral guanine nucleotide dissociation stimulator
40. ko00330 Arginine and proline metabolism (1)
   K00542 GAMT; guanidinoacetate N-methyltransferase [EC:2.1.1.2]
41. ko00950 Isoquinoline alkaloid biosynthesis (1)
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
42. ko00232 Caffeine metabolism (1)
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
43. ko04530 Tight junction (1)
   K06097 TJP3; tight junction protein 3
44. ko05211 Renal cell carcinoma (1)
   K03871 VHL; von Hippel-Lindau disease tumor supressor
```

```
45. ko05212 Pancreatic cancer (1)
   K08732 RALGDS; ral guanine nucleotide dissociation stimulator
46.ko04961 Endocrine and other factor-regulated calcium reabsorption (1)
   K14756 KL; klotho [EC:3.2.1.31]
47. ko05133 Pertussis (1)
   K04001 SERPING1; C1 inhibitor
48. ko05221 Acute myeloid leukemia (1)
   K11223 STAT5A; signal transducer and activator of transcription 5A
49. ko00983 Drug metabolism - other enzymes (1)
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
50. ko00532 Glycosaminoglycan biosynthesis - chondroitin sulfate (1)
   K01020 CHST3; chondroitin 6-sulfotransferase 3 [EC:2.8.2.17]
51. ko05120 Epithelial cell signaling in Helicobacter pylori infection (1)
   K05050 IL8RB; interleukin 8 receptor beta
52. ko04330 Notch signaling pathway (1)
   K06057 NUMBL; numb
53. ko00830 Retinol metabolism (1)
   K00061 RDH5; retinol dehydrogenase [EC:1.1.1.-]
54. ko00510 N-Glycan biosynthesis (1)
   K00726 MGAT1; alpha-1,3-mannosyl-glycoprotein beta-1,2-N-
   acetylglucosaminyltransferase [EC:2.4.1.101]
55. ko04120 Ubiquitin mediated proteolysis (1)
```

```
K03871 VHL; von Hippel-Lindau disease tumor supressor
56. ko00500 Starch and sucrose metabolism (1)
  K14756 KL; klotho [EC:3.2.1.31]
57. ko04666 Fc gamma R-mediated phagocytosis (1)
   K05855 SYK; spleen tyrosine kinase [EC:2.7.10.2]
58. ko00230 Purine metabolism (1)
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
59. ko04350 TGF-beta signaling pathway (1)
   K04686 PITX2; paired-like homeodomain transcription factor 2
60. ko04614 Renin-angiotensin system (1)
   K09821 AGT; angiotensinogen
61. ko04130 SNARE interactions in vesicular transport (1)
   K08512 VAMP8; vesicle-associated membrane protein 8
62. ko05416 Viral myocarditis (1)
  K04398 CASP8; caspase 8 [EC:3.4.22.61]
63. ko00533 Glycosaminoglycan biosynthesis - keratan sulfate (1)
   K09671 CHST6; carbohydrate 6-sulfotransferase 6 [EC:2.8.2.-]
64. ko03050 Proteasome (1)
   K02740 PSMB8; 20S proteasome subunit beta 8 [EC:3.4.25.1]
65. ko02010 ABC transporters (1)
   K05665 ABCC1; ATP-binding cassette, subfamily C (CFTR/MRP), member 1
```

```
66. ko04370 VEGF signaling pathway (1)
   K08273 SH2D2A; SH2 domain protein 2A
67. ko01120 Microbial metabolism in diverse environments (1)
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
68. ko05146 Amoebiasis (1)
   K04637 GNA15; guanine nucleotide-binding protein subunit alpha-15
69. ko00190 Oxidative phosphorylation (1)
   K03934 NDUFS1; NADH dehydrogenase (ubiquinone) Fe-S protein 1
   [EC:1.6.5.3 1.6.99.3]
70. ko00260 Glycine, serine and threonine metabolism (1)
   K00542 GAMT; guanidinoacetate N-methyltransferase [EC:2.1.1.2]
71. ko05143 African trypanosomiasis (1)
   K10161 TLR9; toll-like receptor 9
72. ko05166 HTLV-I infection (1)
   K11223 STAT5A; signal transducer and activator of transcription 5A
73. ko05030 Cocaine addiction (1)
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
74. ko05145 Toxoplasmosis (1)
   K04398 CASP8; caspase 8 [EC:3.4.22.61]
75. ko04075 Plant hormone signal transduction (1)
   K14502 BIN2; protein brassinosteroid insensitive 2 [EC:2.7.11.1]
76. k_004971 Gastric acid secretion (1)
```

```
15
77. ko00120 Primary bile acid biosynthesis (1)
   K10214 ACOX2; 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoyl-CoA
   24-hydroxylase [EC:1.17.99.3]
78. ko00350 Tyrosine metabolism (1)
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
79. ko01110 Biosynthesis of secondary metabolites (1)
   K00106 XDH; xanthine dehydrogenase/oxidase [EC:1.17.1.4 1.17.3.2]
80. ko05223 Non-small cell lung cancer (1)
   K08015 RASSF5; Ras association domain-containing protein 5
81. ko05220 Chronic myeloid leukemia (1)
   K11223 STAT5A; signal transducer and activator of transcription 5A
82. ko05140 Leishmaniasis (1)
   K08010 NCF2; neutrophil cytosolic factor 2
83. ko05031 Amphetamine addiction (1)
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
84. ko00513 Various types of N-glycan biosynthesis (1)
   K00726 MGAT1; alpha-1,3-mannosyl-glycoprotein beta-1,2-N-
   acetylglucosaminyltransferase [EC:2.4.1.101]
85. ko04728 Dopaminergic synapse (1)
   K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]
86.ko04640 Hematopoietic cell lineage (1)
```

K05008 KCNJ15; potassium inwardly-rectifying channel subfamily J member

```
K05090 CSF1R; macrophage colony-stimulating factor 1 receptor
[EC:2.7.10.1]

87. ko05034 Alcoholism (1)

K00501 TH; tyrosine 3-monooxygenase [EC:1.14.16.2]

88. ko04978 Mineral absorption (1)

K04981 TRPM6; transient receptor potential cation channel subfamily M member 6 [EC:2.7.11.1]

89. ko04514 Cell adhesion molecules (CAMs) (1)

K06456 CD6; CD6 antigen

90. ko04977 Vitamin digestion and absorption (1)

K05665 ABCC1; ATP-binding cassette, subfamily C (CFTR/MRP), member 1

91. ko03320 PPAR signaling pathway (1)

K10214 ACOX2; 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoyl-CoA 24-hydroxylase [EC:1.17.99.3]
```

ในส่วนผิวหนัง				
ยีน กลุ่ม ที่ เป็น 1)	Hyperrmethylation	ตาม Diffscore	และ เรียงตาม	ตัวอักษร (Top 20)
SYMBOL				
AGT				
ANGPT2				
BCAP31				
C16orf47				
DDR2				
DLX5				
DNAJC5B				
FBXW10				
FLJ36268				
GPR81				
HOXB1				
HOXB3				
HTR3B				
IL17RC				
KCTD4				
KSP37				
LGALS1				
NUMBL				

RDH5

RHOJ

BCAP 31 Demethylation in Psoriasis

Ruchusatsawat K^1 , Wongpiyabovorn J^2 , Thiemsing L^3 , and Mutirangura A^4

¹National Institute of Health, Department of Medical Sciences, Nonthaburi 11000, Thailand ²Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
³Inter-Department of Medical Microbiology, Faculty of Graduate School Chulalongkorn University, Bangkok 10330, Thailand
⁴Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand

Abstract

Epigenetic phenomena have also been implicated in the pathogenesis of psoriasis. There are several reports specific genes promoter methylation/demethylation in psoriasis such as ID4 and SHP-1. Psoriatic keratinocytes possess an enhanced ability to resist apoptosis, which might be one of key pathogenetic mechanisms in psoriasis. B-cell receptor associated protein 31 (BCAP31) have been reported to function in apoptosis. Here, we investigated DNA methylation/demethylation in psoriasis using BCAP31 promoter model. The laser capture microdissected were analyzed using bisulfite PCR method and cloning sequencing. Interestingly, the methylation levels of BCAP31 in microdissected epithelium of skin and from psoriasis patients (n=7) were significantly lower than from healthy subjects (n=10) (p < 0.001, % psoriasis vs. normal skin methylation = 70.0 VS. 14.2). Therefore, the present study demonstrated BCAP31 DNA demethylation in psoriasis. In addition, BCAP31 gene may be a candidate as marker for therapy or monitoring for psoriasis in near future.

Introduction

Psoriasis is a chronic, inflammatory and hyperproliferative skin disease that found approximately 1-3 % in the worldwide population. The characteristics of psoriasis are hyperproliferate, incompletely differentiate keratinocytes and decreased keratinocyte apoptosis. DNA methylation is one of the pathogenetic mechanisms of psoriasis. Hypomethylation of many genes such as SHP-1, ID4, p15 and p21 and promoter hypermethylation of p16 ink4a has been reported in psoriasis. Recently, our project (Wongpiyaborvorn, J et. al) investigated the DNA methylation at CpG site of gene promoter by Infinium HumanMethylation 27. We found that BCAP31 gene was very interesting . $(Fig.1) \ . \ B-cell \ receptor \ associated \ protein \ 31 (BCAP31) \ is \ a \ 28 \ kDa \ polytopic \ integral \ protein$ of the endoplasmic reticulum (ER). BCAP31 is involved in the over-expression of MHC class I, the transport of selected proteins, the cystic fibrosis trasmembrane conductance regulator and the binding of HPV 31–E5 protein. The methylation status of BCAP31 in psoriasis has not been reported. In this study, we hypothesized that the methylation status of BCAP31 promoter in psoriatic skin is significant difference from normal skin.

Materials and Methods

Paraffin-embedded tissues derived from normal skin (n=10) and lesional of psoriasis (n=7) were obtained. The tissues were microdisected by Laser Capture Microdisection (LCM) to separate the area of epidermis. Microdissected keratinocytes, were analyzed BCAP31 promoter methylation using methylation-specific PCR (MSP). To determine the extent BCAP31 promoter methylation in more detail, bisulfite sequencing follow by cloning methods were perform to examine the methylation status of BCAP31 promoter. BCAP31 promoter bisulfite sequencing was performed in microdissected of samples. The mean of percentage methylation of all 46 CpG and each of position were compared between groups by independent t-test and paired t-test, respectively. This statistical analysis used the SPSS software for windows version 20.0. A p-value of < 0.05 was considered to be significant.

Results

We have found that the promoter region of the BCAP31 gene is methylated in epidermal skin psoriasis (14.2%, 1/7), a compared to normal skin (70.0%, 7/10). The methylation levels of BCAP31 in microdissected epithelium of skin and from psoriasis patients were significantly lower than from healthy subjects (p < 0.001, %) (Fig. 2). Next, the overall pattern of methylation has shown in Figure 3(A and B). We compared the percentage methylation of each CpG sites between normal skin (14.9%) and psoriatic skin (60.6%) (total 46 CpG). The methylation status of BCAP31 promoter was significantly different between psoriatic epidermis and normal epidermis, p-value=0.0003 (Fig. 3C).

Discussion and Conclusion

In psoriasis, several studies revealed that DNA methylation and apoptosis were involved in hyperproliferative keratinocytes. Previous studies had shown that BCAP31 plays a role in apoptosis. The full length form (28kDa) of BCAP31 can be cleaved by caspase-8 to the cleaved form (20 kDa). Anti-apoptotic function was reveal in the full length form whereas apoptotic function was reveal in the cleaved form. The promoter contains binding sites for several transcription factors. DNA demethylation of promoter results in increasing the expression of gene. Conclusion, the BCAP31 promoter in psoriatic epidermis was hypomethylated. However, expression levels and function of BCAP31 in psoriatic epidermis need to be further studied.

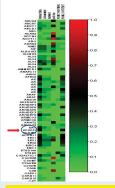
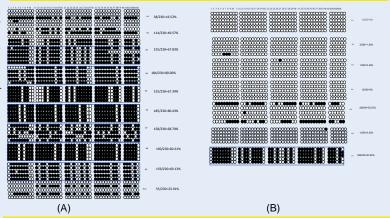
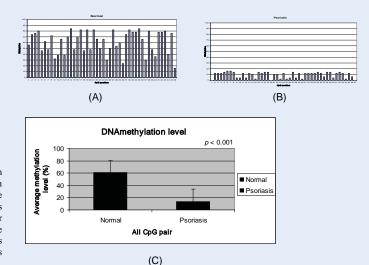




Figure 1. DNA methylation Microarray. Heat map showing Normal skin (NN), Uninvolved psoriatic skin (PN), Involved psoriatic skin (PP), cell line (HaCAT), Normal PBMC and Psoriatic PBMC samples clustered with selected CpG site that differentiated PP from NN. Image was generated with normalized β Values. Red values indicate relatively increased methylation, whereas green indicate relatively decreased methylation.

Figure 2. Methylation status of CpG nucleotides in promoter of BCAP31. Black and white circles are methylated and nonmethylated CpG dinucleotides, respectively. A) normal epidermis B) psoriatic epidermis.

mean of percentage methylation in each position (46 CpG). A) normal epidermis B) psoriatic epidermis. C) The mean of percentage methylation of all 46 CpG between psoriatic epidermis and normal epidermis was significantly different (p-value < 0.0003)

Acknowledgments

This study was supported by the Thailand Research Fund (TRF) TRG5480010, National Institute of Health, Department of Medical Sciences Ministry of Public Health, Thailand.

References:

- 1. Nestle, F.O., D.H. Kaplan, and J. Barker, Psoriasis. New England Journal of Medicine, 200, 36(15), p. 08-509

 2. Zhang, P., Y. Su, and Q. Lu, Epigenetics and psoriasis. Journal of the European Academy of Dermatology and Venereology, 2012, 28(4); p. 209-403.

 3. Ruchusstawat, K., et al., Psoruberatosis in six is associated with loss of inhibitor of differentiation via promoter methylation. Human pathology, 2011, 42(12); p. 1378-1487.

 4. Ruchusstawat, K., et al., 28Fp promoter: methylation in normal epithelial tissues and demethylation in positionic prositionic sites of the discussion promoters. Journal of Molecular Medicine, 2008, 45(2); p. 1378-148.

 5. Chen, M., et al., The methylation pattern of psiNNkay gene promoter in psoriatic epidermis and its clinical significance. British Journal of Dermatology, 2008, 156(9); p. 1079-108.

 6. Regan, J.A. and L.A. Laimins, Baps is a novel target of the human papellimonistries Expression. J Virol. 2008, 2009; p. 106-201.

 7. Waing, B., et al., Uncleaved BAPs in association with As protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of Cytochrome c from mitochondria. J Biol Chem, 2008, 278(16): p. 1486-148.

 8. Stojanovic, M., et al., BAPs in and its caspases cleavage product regulated cell surface expression of tetraspanism and integrits-metaletade cell survival. J Biol Chem, 2008, 2003-149, 2003-201.

 9. Attwood, J.T., R.L. Yung, and B.C. Richardson, DNA methylation and the regulation of gene transcription. Cell Mol Life Sci., 200, 296219, p. 241-57.

LINE-1 methylation pattern Alterations in the in patients with lichen simplex chronicus

Surasak Yooyongsatit, Kriangsak Ruchusatsawat, Pakpoom Supiyaphun, Nopadon Noppakun, Apiwat Mutirangura⁵ and Jongkonnee Wongpiyabovorn⁶

Summary

Background: interspersed Long element-1 (LINE-1) and short interspersed element (Alu) retrotransposons have been identified influence the human genome by modifications in gene expression. Variations in LINE-1 and Alu methylation have been shown to be associated with many diseases, predominantly malignancies and autoimmune diseases. Moreover, the degree and pattern of LINE-1 methylation are related to risk, prognosis and aggressiveness of several cancers. However, a similar study has not been performed in lichen simplex chronicus (LSC).

Objective: To evaluate DNA methylation status of repetitive sequences in LSC.

Methods: We determined the level and pattern of LINE-1 and Alu methylation in keratinocytes from patients with LSC (n=10) compared to

From 1. Medical Microbiology, Interdisciplinary Program, Graduate School Chulalongkorn University, Bangkok 10330, Thailand

- 2. National Institute of Health, Department of Medical Sciences, Nontaburi 11000, Thailand
- 3. Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- 4. Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- 5. Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
- 6. Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Jongkonnee Wongpiyabovorn

E-mail: jongkonnee.w@chula.ac.th

Submitted date: 9/7/2012 Accepted date: 18/8/2012 normal controls (n=13), by the improved combined bisulfite restriction analysis of LINE-1 and Alu (COBRA-LINE-1 and Alu). COBRA-LINE-1 classifies LINE-1 loci according to the methylation patterns of two CpG dinucleotides in the 5'UTR into four categories: hypermethylated ("C"C), hypomethylated ("C"C), and two forms of partially methylated loci ("C"C and "C"C).

Results: The % To of LINE-1 was significantly decreased in keratinocytes from patients with LSC (p=0.012). Moreover, the % $^{\rm m}$ C $^{\rm u}$ C was significantly lower in LSC than controls (p=0.029). Conversely, $%^{u}C^{m}C$ was significantly higher LSC than controls (p=0.004). A receiveroperating characteristic (ROC) curve analysis demonstrated that % "C"C, % "C"C and % ^uC^mC were highly sensitive and specific for LSC with an optimal cut-off value. There were no significant differences in Alu methylation in keratinocytes from LSC patients.

Conclusion: Changes in the LINE-1 pattern were revealed in the epidermis from patients with LSC. A particular LINE-1 methylation pattern is indicative of LSC and might be used as a diagnostic tool. (Asian Pac J Allergy Immunol 2012;31:51-7)

Key words: Methylation, Methylation pattern, LINE-1, Alu, Lichen simplex chronicus

Introduction

Lichen simplex chronicus is an inflammatory skin disorder classified as an endogenous eczema. The disease is characterized by lichenification of the skin as a result of repeated scratching. Clinically, the disease should be differentially diagnosed from other skin diseases and underlying skin diseases such as fungal skin infection and psoriasis should be ruled out. Sometimes, a skin biopsy is required to diagnose the disease. The histological features of consist of epidermal hyperplasia with hyperkeratosis and hyperkeratosis. The exact etiology of the disease is unclear. Environmental,

psychological and immunological factors influence the development and course of the disease. Recently, an epigenetic phenomenon has been implicated in the pathogenesis of eczema. Downregulation of DNA methyltransferase-1 (DNMT-1) was illustrated in peripheral blood mononuclear cells from patients with atopic dermatitis with high serum IgE levels.² A recent study on monocytes from patients with atopic eczema revealed global DNA hypomethylation and hypomethylation of the *FCER1G* promoter with an inverse correlation to mRNA expression.³ Subsequently, LSC was associated with atopic disorders.⁴ We hypothesize that epigenetic changes are involved in the pathogenesis of LSC.

The human genome comprises about 34% nonlong terminal repeat (non-LTR) retrotransposons.⁵ The major components of non-LTR retrotransposons are LINE-1 (long interspersed element-1; 17%) and Alu (11%). Both LINE-1 and Alu are widely inserted in the genome and have numerous probable functional outcomes.^{6,7} DNA methylation has been shown to be an important mechanism in silencing maintaining genomic for stability. Hypomethylation of LINE-1 and Alu have been suggested to be the cause of global hypomethylation and genomic instability in many malignancies and autoimmune diseases. 7-24 Moreover, the intensity of LINE-1 hypomethylation has been directly related to high cancer risk, prognosis and the aggressiveness of many cancers. 8,15,17,25,26 Current data show that specific patterns of LINE-1 methylation are more efficient than the overall LINE-1 methylation level in distinguishing many cancers from normal tissue. For example, %^uC^uC has better power than overall %LINE-1 methylation to differentiate cancers of the colon, liver, lung and nasopharynx from normal controls.²⁷

To date, there has been no information available on DNA methylation in LSC. Thus, we determined the DNA methylation level and pattern of LINE-1 and Alu in keratinocytes from LSC patients and compared to normal controls using improved COBRA methods. The LINE-1 methylation patterns were classified as hypermethylated, hypomethylated and two partially methylated loci ("C"C, "C"C, "C"C and "C"C, respectively). Then, the level and pattern of LINE-1 methylation was assessed with respect to the disease.

Methods

Patients and healthy controls

Ten patients with lichen simplex chronicus diagnosed by an experienced dermatologist and skin biopsy (seven males, three females) at King Chulalongkorn Memorial Hospital and 13 normal subjects (one male, twelve females) were registered in the study. All patients were free from systemic skin therapies for at least four weeks or topical skin therapies for at least two weeks prior to sample collection. Patients with family or personal history of autoimmune disease or cancer were excluded from the study. Normal skin samples were collected from elective plastic surgery procedures. The study was approved by the ethical committee of King Chulalongkorn University. All participants provided informed consent. The demographic data of the LSC subjects and normal controls are shown in Table 1.

Cell isolation

The epidermal skin from paraffin-embedded tissues of 10 patients with LSC and 13 normal controls were isolated using the PALM MicroLaser Microdissection System (P.A.L.M. MicroLaser Technologies AG, Burnried, Germany). The dissected epidermis was removed from the slide by the cutter pulse and collected in a microtube.

DNA preparation and bisulfite modification

DNA was extracted from all samples using the QIAamp DNA mini kitTM (QIAGEN). Then, 500 ng of DNA was bisulfite-treated using the EZ DNA methylation KitTM (Zymo Research, Orange, CA, USA) according to the manufacturer's specifications. The bisulfite-treated DNA samples were stored at -20°C until analysis.

Table 1. Patient and control subject demographics

Sample group	Sex (Male/Female)	Age (years) (Mean ± SD)
Normal controls (n= 13)	1/12	49.62 ± 9.63
Patients with LSC (n= 10)	7/3	49.11 ± 19.47

Combined bisulfite restriction analysis (COBRA) of LINE-1 and Alu

DNA methylation of LINE-1 and Alu was assessed using the combined bisulfite restriction analysis (COBRA) method of interspersed repetitive elements as previously described.^{8, 27} For LINE-1 and ALU COBRA, 2 µL of modified DNA was amplified by Hot-start PCR at 95°C for 15 min. For LINE-1, DNA was amplified for 35 cycles of 95°C for 1 min, 50°C for 1 min and 72°C for 1 min with a final extension at 72°C for 7 min. For Alu, DNA was amplified for 35 cycles of 95°C for 45 sec, 60°C for 45 sec and 72°C for 45 sec with a final extension at 72°C for 7 min. After amplification, 8 µL of the PCR products were digested with the restriction enzymes TaqI and TasI (MBI Fermentas). Each reaction was incubated overnight at 65°C and then **DNA** fragments were separated 8% polyacrylamide gels and stained with the SYBR green nucleic acid stain. The intensity of DNA fragment fluorescence was assessed using a PhosphoImager I apparatus and Image Quant software (Molecular Dynamics). DNA templates from HeLa, Jurkat and Daudi cell lines were used for interassay variation normalization as positive controls in all experiments.

Methylation analysis

By the COBRA-LINE-1 method, LINE-1 loci were categorized into four groups based on the methylation status of two CpG dinucleotides at the 5' and 3' ends of the sequence. These four groups consisted of: (1) two unmethylated CpGs ("C"C) at LINE-1 loci; (2) two methylated CpGs ("C"C) at LINE-1 loci; (3) 5' methylated and 3' unmethylated CpGs (^mC^uC) at LINE-1 loci; and (4) 5' unmethylated and 3' methylated CpGs ("C"C) at LINE-1 loci. The level of overall LINE-1 methylation and the loci from each group were analyzed by the percentage of the intensity of COBRA-digested LINE-1 products. Fragmented DNA sequences after enzymatic digestion for COBRA LINE-1 were separated into five fragments including 160, 98, 80, 62 and 18 bp. The 160 bp and the 98 bp fragments represented "C"C and "C"C, respectively. The 80 bp fragments represented a mixture of "C"C and "C"C. Eventually, it was determined that the 62 bp fragments represented a mixture of "C"C and "C"C (Figure 1). The number of CpG dinucleotides was calculated by dividing the intensity of each band by the corresponding size of the double-stranded DNA fragment as follows: A = 160 bp fragment intensity/160, B = 98 bp fragment

intensity/94, C = 80 bp fragment intensity/79 and D = 62 bp fragment intensity/62. Then, the LINE-1 methylation levels were determined according to the following formulas: LINE-1 methylation level percentage = $100 \times (C+A)/(C+A+A+B+D)$; %^mC^uC) $= 100 \times (A)/(((C-D+B)/2)+A+D); \%^{u}C^{m}C = 100 \times (D-C)$ B)/((C-D+B)/2)+A+D; % $^{u}C^{u}C = 100 \times B/(((C-D+B)/2)+A+D;$ D+B/2+A+D; %^mC^mC = 100×((C-D+B)/2)/((D+B)/2)+D+A). 27, 28

For Alu analysis, methylated and unmethylated Alu bands were found at 57 bp and 78 bp. The %intensity of Alu methylated bands represented the %methylation of Alu.

Statistical analysis

The methylation status was compared between groups by an independent sample t-test (two-tailed) using the SPSS software package for Windows version 15.0 (SPSS Inc., Chicago, IL, USA).

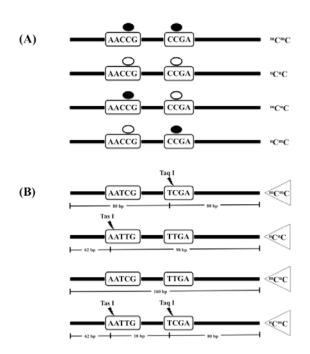


Figure 1. LINE-1 methylation patterns detected by COBRA-LINE-1 PCR. (A) The methylation patterns of two CpG dinucleotides at the 5'UTR of LINE-1 were separated by COBRA-LINE-1 into four products: "C"C, "C"C, "C"C and "C"C. Black dots represent methylated cytosines and white dots represent unmethylated cytosines in the sequence of LINE-1. (B) Following bisulfite treatment and the PCR reaction, the amplicons were digested with the TaqI and TasI restriction enzymes. Two 80 bp nucleotide fragments were produced by TaqIpositive amplicons, while 62 and 98 bp nucleotide fragments were produced by TasI-positive amplicons.

A P value of <0.05 was considered to be significant. A ROC curve analysis was performed to verify the possibility of using COBRA-LINE-1 methylation status to discriminate LSC patients from healthy controls.

Results

DNA methylation pattern of LINE-1 in lichen simplex chronicus

By the COBRA-LINE-1 analysis, there was no significant difference in the overall LINE-1 methylation level in keratinocytes from patients with LSC compared to normal controls. There was no significant difference in the overall LINE-1 methylation level and patterns between male and female patients with LSC (data not shown). However, the number of hypermethylated loci (mCmC) and partially methylated loci (mCmC) of LINE-1 in LSC patients (23.26%) was significantly lower than in normal controls (% methylation LSC vs. normal = 23.26 vs. 27.71 and 18.13 vs. 19.58, respectively; p = 0.012 and p = 0.029, respectively). Alternatively, the partially methylated loci ("C"C) of LINE-1 in LSC (21.13%) was significantly higher than normal controls (% methylation LSC vs. normal = 21.13 vs. 15.31) (p = 0.004) (Table 2).

In the Alu analysis, there was no significant difference in Alu methylation in the epidermis from LSC patients (n = 10) and normal controls (n = 10) (Table 3).

Table 2. Methylation level and patterns of LINE-1 in keratinocytes from patients with LSC

LINE-1 methylation levels and patterns	Keratinocyte (mean ± SD)	Keratinocyte (n= 10) (n= 10)	P-value (Normal keratinocytes compared to patients with LSC)
^m C (%)	45.15 ± 3.67	42.90 ± 1.15	0.055
^m C ^m C (%)	27.71 ± 4.61	23.26 ± 2.38	0.012
^u C ^m C (%)	15.31 ± 3.79	21.13 ± 4.79	0.004
^m C ^u C (%)	19.58 ± 1.38	18.13 ± 1.58	0.029
^u C ^u C (%)	37.40 ± 3.41	37.47 ± 2.51	0.960
Partial (%)	34.89 ± 3.46	39.27 ± 4.31	0.013

Table 3. Methylation level of Alu in keratinocytes from patients with LSC

	Normal controls (mean ± SD)	LSC (mean ± SD)	
Alu methylation levels	Keratinocyte (n= 10)	Keratinocyte (n= 10)	
% Alu methylation	30.99 ± 3.17	30.01 ± 1.76	

LINE-1 methylation pattern as a biomarker for lichen simplex chronicus

The ROC curve analysis was performed to determine the probable use of the LINE-1 methylation pattern to discriminate LSC patients from normal controls. The "C"C pattern was appropriate for LSC detection with a cut-off value of <26.26% (sensitivity = 100.00 and specificity = 69.23). In addition, the cut-off value≤18.02% for the ^mC^uC pattern with sensitivity = 60.00% and specificity = 92.31% and the cut-off value >18.39% for the "C"C pattern with sensitivity = 60.00% and specificity = 92.31% were suitable to discriminate LSC patients from normal controls (Figure 2).

Discussion

Recent publications have elucidated difference in global and specific promoter DNA methylation in a number of skin diseases, including atopic eczema.^{3, 29} Furthermore, alterations in LINE-1 and Alu methylation have been reported in various malignancies, including squamous cell carcinoma. 10, ²¹, ²², ³⁰⁻³³ So far, there has been no information on DNA methylation in LSC. The present study demonstrated alterations in the LINE-1 methylation pattern in keratinocytes from LSC patients. Our data demonstrate that the overall LINE-1 methylation level in LSC showed a trend to be decreased in LSC. Moreover, certain patterns of LINE-1 methylation (mCmC, mCuC, uCmC) were more significantly associated with LSC than overall LINE-1 methylation. ROC analysis confirmed that %mCmC, % CuC and % CmC are highly specific for LSC detection with cut-off values of $\leq 26.26\%$, $\leq 18.02\%$ and >18.39%, respectively. Previous studies in various cancers showed that % "C"C has better power than % overall LINE-1 methylation and can be used as a biomarker for disease detection.^{27, 28}

Another study in bladder cancer reported that %^mC^uC was better than other forms of LINE-1 methylation for cancer detection.³⁴ Thus, %^mC^mC, %^mC^uC and %^uC^mC have potential use in discriminating LSC from normal skin. However, further study is needed to identify the significance and biological relevance of the different forms of LINE-1 methylation.

Several studies in cancer have reported hypomethylation of both LINE-1 and Alu, which represent the genomic instability of these diseases. We did not demonstrate a significant change in Alu methylation in keratinocytes from patients with LSC. This finding represented both the common and variable pathogenesis of LSC and cancer. Unlike cancer, acanthosis and hyperkeratosis of the

epidermis in LSC occur as a result of chronic rubbing of the skin. Moreover, it should be noted that genomic instability does not occur in LSC.

LINE-1 has been identified and shown to affect the human genome by modifying gene expression. Several studies have revealed LINE-1 hypomethylation is associated with instability in cancers. The LINE-1 methylation pattern at different loci has been reported to be distinctive between loci.³⁵ Moreover, intragenic LINE-1 could promote gene repression in cancer, depending on the degree and site of LINE-1 hypomethylation. A postranscriptional mechanism by AGO2 and siRNA has been identified to be the mechanism by which hypomethylation of intragenic LINE-1 suppresses genes in cancer.³² In atopic

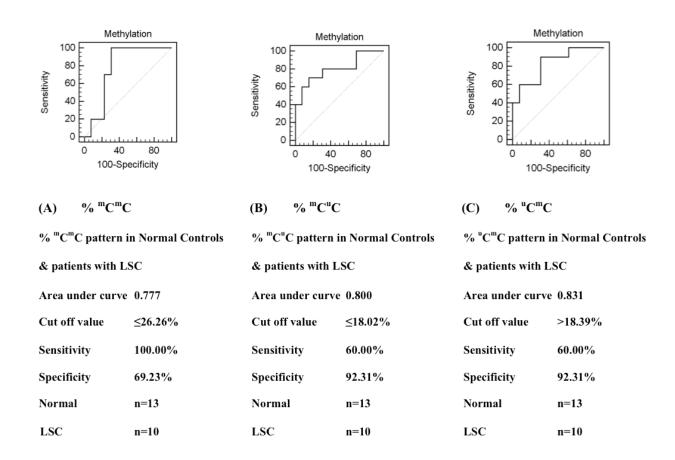


Figure 2. ROC curve analysis of LINE-1 methylation in LSC. (A) The $\%^m C^m C$ of LINE-1 methylation compared between LSC and normal keratinocytes with a criterion value of $\le 26.26\%$ (sensitivity = 100.00% and specificity = 69.23%). (B) The $\%^m C^u C$ of LINE-1 methylation compared between LSC and normal keratinocytes with a criterion value of $\le 18.02\%$ (sensitivity = 60.00% and specificity = 92.31%). (C) The $\%^u C^m C$ of LINE-1 methylation compared between LSC and normal keratinocytes with a criterion value of >18.39% (sensitivity = 60.00% and specificity = 92.31%).

eczema, both global and specific promoter hypomethylation with transcriptional silencing of the gene have also been described in monocytes. Although we do not know the significance of alterations in the LINE-1 methylation pattern in LSC, it is likely that changes in LINE-1 methylation may be involved in the pathogenesis of the disease. Further study is needed to clarify the mechanism, which would involve changing the LINE-1 methylation pattern and investigating the possible consequences in LSC.

In conclusion, alterations in LINE-1 methylation patterns were detected in keratinocytes from patients with LSC. A distinctive pattern of LINE-1 methylation was revealed in LSC, and ^mC^mC, ^mC^uC and ^uC^mC were very highly sensitive and specific for detecting LSC. Therefore, they are appropriate for use as biomarkers for this disease.

Acknowledgement

This work was supported by a research grant from the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (HR1163A), the Development and Promotion of Science and Technology Talents Project (DPST), the Thailand Research Fund TRG 5480010, the National Research Council of Thailand and the 90th Year Anniversary of Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund). AM is supported by a Research Chair Grant (2011) from the National Science and Technology Development Agency (NSTDA), Thailand.

References

- Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol. 2009;129:543-52.
- Nakamura T, Sekigawa I, Ogasawara H, Mitsuishi K, Hira K, Ikeda S, et al. Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res. 2006;298:253-6.
- Liang Y, Wang P, Zhao M, Liang G, Yin H, Zhang G, et al. Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy. 2012;67:424-30.
- Lynch PJ. Lichen simplex chronicus (atopic/neurodermatitis) of the anogenital region. Dermatol Ther. 2004;17:8-19.
- Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691-703.
- Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature. 2004;429:268-74.
- Chisholm KM, Aubert SD, Freese KP, Zakian VA, King MC, Welcsh PL. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1. PLoS One. 2012;7:e30748.

- Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004;23:8841-6.
- Schulz WA. L1 retrotransposons in human cancers. J Biomed Biotechnol. 2006;2006:83672.
- Estecio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One. 2007;2:e399.
- Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD, et al. Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2007;16:108-14.
- 12. Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, et al. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol. 2007;211:269-77
- Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res. 2005;11:8564-9.
- 14. Perrin D, Ballestar E, Fraga MF, Frappart L, Esteller M, Guerin JF, et al. Specific hypermethylation of LINE-1 elements during abnormal overgrowth and differentiation of human placenta. Oncogene. 2007;26:2518-24.
- Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, et al. LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:711-7.
- Moore LE, Pfeiffer RM, Poscablo C, Real FX, Kogevinas M, Silverman D, et al. Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case-control study. Lancet Oncol. 2008;9:359-66.
- Smith IM, Mydlarz WK, Mithani SK, Califano JA. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer. 2007;121:1724-8.
- 18. Subbalekha K, Pimkhaokham A, Pavasant P, Chindavijak S, Phokaew C, Shuangshoti S, et al. Detection of LINE-1s hypomethylation in oral rinses of oral squamous cell carcinoma patients. Oral Oncol. 2009;45:184-91.
- Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2009;60:3613-22.
- Choi IS, Estecio MR, Nagano Y, Kim do H, White JA, Yao JC, et al. Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol. 2007;20:802-10.
- Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA,
 Navarro G, San Jose-Eneriz E, et al. Repetitive DNA

- hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res. 2008;32:487-90.
- 22. Lee HS, Kim BH, Cho NY, Yoo EJ, Choi M, Shin SH, et al. Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res. 2009;15:812-20.
- Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, et al. Genome-wide methylation analysis identifies involvement of TNFalpha mediated cancer pathways in prostate cancer. Cancer Lett. 2011;302:47-53.
- 24. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124:81-7.
- Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, et al. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100:1734-8.
- Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T. Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res. 2010;16:2418-26.
- Kitkumthorn N, Tuangsintanakul T, Rattanatanyong P, Tiwawech D, Mutirangura A. LINE-1 methylation in the peripheral blood mononuclear cells of cancer patients. Clin Chim Acta. 2012;413:869-74.

- Pobsook T, Subbalekha K, Sannikorn P, Mutirangura A. Improved measurement of LINE-1 sequence methylation for cancer detection. Clin Chim Acta. 2011;412:314-21.
- Ruchusatsawat K, Wongpiyabovorn J, Protjaroen P, Chaipipat M, Shuangshoti S, Thorner PS, et al. Parakeratosis in skin is associated with loss of inhibitor of differentiation 4 via promoter methylation. Hum Pathol. 2011;42:1878-87.
- Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 2006;66:8469-76.
- Sunami E, de Maat M, Vu A, Turner RR, Hoon DS. LINE-1 hypomethylation during primary colon cancer progression. PLoS One. 2011;6:e18884.
- Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S, et al. Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One. 2011;6:e17934.
- Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res. 2001;61:4238-43.
- 34. Patchsung M, Boonla C, Amnattrakul P, Dissayabutra T, Mutirangura A, Tosukhowong P. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One. 2012;7:e37009.
- Phokaew C, Kowudtitham S, Subbalekha K, Shuangshoti S, Mutirangura A. LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 2008;36:5704-12.