บทคัดย่อ

รหัสโครงการ: TRG5480017

ชื่อโครงการ: การศึกษาโปรตีโอมที่เกี่ยวข้องกับการดื้อต่อสารไพรีทรอยด์ในยุงลาย ชื่อนักวิจัย: นางรวีวรรณ ศรีสวัสดิ์ ภาควิชากีฏวิทยาการแพทย์ คณะเวชศาสตร์เขตร้อน

มหาวิทยาลัยมหิดล

E-mail Address: raweewan.sri@mahidol.ac.th

ระยะเวลาโครงการ: 15 มิถุนายน พ.ศ. 2554 - 14 มิถุนายน พ.ศ. 2556

การดื้อต่อสารกำจัดแมลงเป็นปัญหาหลักปัญหาหนึ่งในการควบคุมยุงพาหะนำโรคซึ่งเกิด จากการใช้สารกำจัดแมลงมากเกินไป โดยเฉพาะการดื้อต่อสารกลุ่มไพรีทรอยด์ของยุงลายซึ่งเป็น พาหะนำโรคไข้เลือดออก การรู้ถึงกลไกของยุงที่ดื้อต่อสารเคมีกำจัดแมลง จะเป็นประโยชน์ต่อการ จัดการและควบคุมยุงพาหะให้มีประสิทธิภาพสูงขึ้น โครงการวิจัยนี้จึงมุ่งใช้เทคนิค ทดสอบค่าความไวต่อสารกำจัดแมลงและใช้เทคนิคชีววิทยาโมเลกุลตรวจหายีนที่ดื้อต่อสารกลุ่ม ไพรีทรอยด์ในยุงที่ได้จากการเพาะเลี้ยงลูกน้ำยุงลายเก็บจากพื้นที่ในเขตกรุงเทพมหานคร ราชบุรี ปราจีนบุรี นนทบุรี บุรีรัมย์ และสงขลา ถ้าพบการกลายของยืนโปรตีนขนส่งโซเดียมบริเวณโดเมน ที่สองในตำแหน่งที่ S989P และ V1016G ด้วยเทคนิค RT-PCR แสดงว่ายุงลายกลุ่มนั้นดื้อต่อสาร ไพรีทรอยด์แล้ว หลังจากนั้นจึงใช้เทคนิคโปรตีโอมิกส์มาศึกษาโปรตีโอมที่เกี่ยวข้องกับกลไกการดื้อ ต่อสารกลุ่มไพรีทรอยด์ของยุงลายเริ่มด้วยการสกัดโปรตีนจากยุงลายทั้งสามกลุ่มที่ดื้อมาก ดื้อปาน กลางและไวต่อสารกลุ่มไพรีทรอยด์ แยกโปรตีนตามขนาดด้วย 12.5 % SDS-PAGE ย้อมด้วยสีซิล เวอร์ ตัดแถบโปรตีนของแต่ละตัวอย่างตามขนาดแบ่งออกเป็น 20 ช่วง ย่อยให้เป็นเปปไทด์ด้วย หลังจากนั้นหาปริมาณเปปไทด์ที่ เอนไซม์ทริปซิน วิเคราะห์เปปไทด์ด้วย nanoLC-MS/MS แสดงออกแตกต่างกันในแต่ละตัวอย่างด้วยโปรแกรม DecyderMS แล้วระบุชนิดโปรตีนด้วย โปรแกรม Mascot จากผลการศึกษา พบว่ามีโปรตีนจำนวน 243 ชนิดที่มีระดับการแสดงออก แตกต่างกันในยุงลายทั้งสามกลุ่มที่ดื้อมาก ดื้อปานกลางและไวต่อสารกลุ่มไพรีทรอยด์ โปรตีนจำนวน 21 ชนิดที่พบหรือไม่พบเฉพาะในยุงกลุ่มที่ไวต่อสารกลุ่มไพรีทรอยด์ เมื่อวิเคราะห์ ความสัมพันธ์ระหว่างโปรตีน-โปรตีน และโปรตีน-สารอินทรีย์ด้วยโปรแกรม STITCH โปรตีนหลายชนิดที่ตรวจพบ เคยมีรายงานความสัมพันธ์กับการดื้อต่อสารกำจัดแมลง ซึ่งควรเลือก โปรตีนเหล่านี้มาทำการศึกษาต่อไป

คำหลัก : ยุงลาย, การดื้อต่อสารไพรีทรอยด์, โปรตีโอม

Abstract

Project Code: TRG5480017

Project Title: Proteomic profile associated with pyrethroid resistance in Aedes aegypti

Investigator: Mrs. Raweewan Sriswat, Medical Entomology Department, Faculty of

Tropical Medicine, Mahidol University.

E-mail Address : raweewan.sri@mahidol.ac.th

Project Period: 15 June 2011-14 June 2013

Insecticide resistance is a major obstacle for the vector control management which comes from the widespread use of insecticides. Especially, pyrethroids are commonly used to control Aedes aegypti, a vector of Dengue fever and Dengue Haemorrhagic fever. The better understanding of insecticide resistance mechanisms is necessary for choosing the suitable insecticide which is a device for high efficient control strategy. In this study, larvae were collected from the field in Bangkok, Ratchaburi, Prachinburi, Nonthaburi, Buriram and Songkhla and colonized in laboratory. Bioassay and molecular biology technique were used to evaluate insecticide susceptibility of Ae. aegypti. Two point mutations (S989P and V1016G) in domain II of sodium channel were used to characterize the susceptibility to pyrethroid by using RT-PCR. Then the proteome profiles associated with insecticide susceptibility were analyzed using Label-free quantitative proteomics approach. Proteins from each group of Ae. aegypti (susceptible, incipient, resistance) were separated by 12.5 % SDS-PAGE and visualized by silver staining. The gel lanes were excised and divided into 20 equal sized sections. In gel digestion was performed and the resulting peptides were analyzed by nanoLC-MS/MS. The differentially expressed proteins were analyzed by DeCyderMS and Mascot softwares. GeLC-MS/MS analysis of susceptible, incipient and resistant Ae. aegypti to pyrethroid identified 243 individual proteins, of which 21 proteins, were present or absent only in mosquitoes which less susceptible to pyrethroid. Functional associations among proteins identified in pyrethroid resistant Ae. aegypti females were analyzed using STITCH. Some proteins (Cytochrome C, carboxylesterase, myosin, etc) have been reported to be associated to pyrethroid resistance. The rest proteins are needed to clarify for their function associated with insecticide resistant mechanism.

Keywords: Aedes aegypti, pyrethroid resistance, proteomic