

รายงานวิจัยฉบับสมบูรณ์

โครการ การยับยั้งการแสดงออกของยืนก่อมะเร็ง E6/E7 ในเซลล์มะเร็ง
ปากมดลูกที่เกิดจากการติดเชื้อไวรัส HPV ด้วย RNA
Interference และระบบนำส่งขนาดนาโน

โดย ดร.ณัฏฐิกา แสงกฤช และคณะ

มิถุนายน พ.ศ.2556

กิตติกรรมประกาศ

โครงการวิจัยนี้เสร็จสมบูรณ์ได้ด้วยดีจากการสนับสนุนของสำนักงานกองทุน สนับสนุนการวิจัย ประเภททุนส่งเสริมนักวิจัยรุ่นใหม่ รหัสโครงการ TRG 5480020 ในหัวข้อ "Nanodelivery System for Effective Reduction of E6/E7 Oncogenes in HPV-Induced Cervical Cancer Cells Using RNA Interference Approach" ซึ่งได้สนับสนุนร่วมกับศูนย์นาใน เทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยี

งานวิจัยนี้ได้รับความร่วมมืออย่างดียิ่งจากทีมวิจัยศูนย์นาโนเทคโนโลยีแห่งชาติ ดร. ณัฏฐพร พิมพะ นางสาวนพวรรณ วรมงคลชัย และนางสาวเสาวลักษณ์ เฉลียวเลิศอำพล ซึ่ง ได้ดำเนินการวิจัยร่วมกับ นายภากร สนิทรัมย์ ผศ.ดร. เทวิน เทนคำเนาว์ ภาควิชาเคมีคลินิก คณะสหเวชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นอกจากนี้ยังได้รับคำปรึกษาอย่างต่อเนื่องและ เป็นประโยชน์อย่างยิ่งจาก รศ.ดร. สาธิต พุทธิพิพัฒน์ขจร ภาควิชาเภสัชอุตสาหกรรม คณะเภสัช ศาสตร์ มหาวิทยาลัยมหิดล

ขอขอบคุณ ห้องปฏิบัติการวิเคราะห์ระดับนาใน ศูนย์นาในเทคโนโลยีแห่งชาติ และศูนย์สังเคราะห์ภาพระดับนาใน คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับการเครื่องมือ วิเคราะห์ที่ใช้ในโครงการนี้

ณัฏฐิกา แสงกฤช

14 มิถุนายน 2556

Project Code: TRG5480020

Project Title: Nanodelivery System for Effective Reduction of E6/E7 Oncogenes in

HPV-Induced Cervical Cancer Cells Using RNA Interference Approach

Investigator: Nattika Saengkrit, National Nanotechnology Center (NANOTEC),

National Science and Technology Development Agency (NSTDA), Pathumthani,

Thailand

E-mail Address: nattika@nanotec.or.th

Project Period: 15 June 2011-14 June 2013

We examined the potential of cationic nanoparticle - polyethyleneimineintroduced chitosan shell/poly (methyl methacrylate) core nanoparticles (CS-PEI) for siRNA delivery. Initially, DNA delivery was performed to validate the capability of CS-PEI for gene delivery in the human cervical cancer cell line, SiHa. siRNA delivery were subsequently carried out to evaluate the silencing effect on targeted E6 and E7 oncogenes. Physicochemical properties including size, zeta potential and morphology of CSPEI/ DNA and CS-PEI/siRNA complexes, were analyzed. The surface charges and sizes of the complexes were observed at different N/P ratios. The hydrodynamic sizes of the CS-PEI/DNA and CS-PEI/siRNA were approximately 300-400 and 400-500 nm, respectively. Complexes were positively charged depending on the amount of added CS-PEI. AFM images revealed the mono-dispersed and spherical shapes of the complexes. Gel retardation assay confirmed that CS-PEI nanoparticles completely formed complexes with DNA and siRNA at a N/P ratio of 1.6. For DNA transfection, CS-PEI provided the highest transfection result. Localization of siRNA delivered through CS-PEI was confirmed by differential interference contrast (DIC) confocal imaging. The silencing effect of siRNA specific to HPV 16 E6/E7 oncogene was examined at 18 and 24 h post-transfection. The results demonstrated the capacity of CS-PEI to suppress the expression of HVP oncogenes.

Keywords: Chitosan, Polyethyleneimine, Core/shell nanoparticle, DNA delivery, siRNA delivery

รหัสโครงการ: TRG5480020

ชื่อโครงการ: การยับยั้งการแสดงออกของยืนก่อมะเร็ง E6/E7 ในเซลล์มะเร็งปากมดลูกที่เกิด จากการติดเชื้อไวรัส HPV ด้วย RNA interference และระบบนำส่งขนาดนาโน

ชื่อนักวิจัย: นางณัฏฐิกา แสงกฤช ศูนย์นาโนเทคโนโลยีแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์ และเทคโนโลยีแห่งชาติ อุทยานวิทยาศาสตร์ประเทศไทย ปทุมธานี

E-mail Address: nattika@nanotec.or.th

ระยะเวลาโครงการ: 15 มิถุนายน 2554-14 มิถุนายน 2556 งานวิจัยนี้เป็นการทดสอบประสิทธิภาพของอนุภาคนาโนประจุบวก Polyethyleneimine-Introduced Chitosan Shell/Poly (methyl Methacrylate) CoreNanoparticles (ตัวพา CS-PEI) สำหรับระบบนำส่ง siRNA โดยเบื้องต้นจะทดลองนำส่ง DNA เข้าสู่เซลล์มะเร็งปากมดลูกก่อน จากนั้นจึงนำส่ง siRNA เพื่อประเมินผลยับยั้งการแสดงออกของอองโคยีนของเชื้อ Human papillomavirus (HPV) ในเซลล์์มะเร็งปากมดลูกชนิด SiHa สำหรับการตรวจสอบคุณสมบัติทาง เคมีกายภาพของตัวพา CS-PEI จะศึกษา ขนาด, ประจุ และลักษณะทางสัณฐานวิทยาเมื่อทำจับ กับ DNA และ siRNA (CS-PEI/DNA, CS-PEI/siRNA) ที่อัตราส่วนโมลของหมู่เอมีน (N) บน ตัวพา ต่อหมู่ฟอสเฟต (P) บนกรดนิวคลีอิก (N/P) ต่าง ๆ ผลที่ได้พบว่า CS-PEI/DNA และ CS-PEI/siRNA มีขนาดประมาณ 300-400 และ 400-500 นาโนเมตร โดยความเป็นประจุบวก ของ complex จะเพิ่มตามปริมาณของตัวพา CS-PEI และผลจากกล้อง Atomic force microscopy (AFM) พบลักษณะของ complex เป็นทรงกลมขนาดเล็ก มีการกระจายตัวที่ดี เมื่อ ทดสอบความสามารถในการจับกับ DNA และ siRNA โดยการทำ Gel retardation พบว่าตัวพา CS-PEI จับได้อย่างสมบูรณ์ที่อัตราส่วน N/P เท่ากับ 1.6 นอกจากนี้ตัวพาดังกล่าวให้ผลการ นำส่ง DNA เข้าสู่เซลล์สูงสุด และเมื่อใช้ตัวพา CS-PEI นำส่ง siRNA ให้ผลยับยั้งการแสดงออก ของอองโคยีน E6 และ E7 ที่เวลา 18 และ 24 ชั่วโมง จากนั้นตรวจสอบเพื่อยืนยันการเข้าสู่ เซลล์มะเร็งปากมดลูกด้วยภาพจากกล้อง differential interference contrast (DIC) confocal จากผลการทดลองที่ได้พบว่าตัวพา CS-PEI สามารถนำส่ง siRNA เพื่อกดการแสดงออกของ อองโคยีนดังกล่าวได้

คำหลัก : ไคโตซาน, พอลิเอทิลีนอิมมีน, ระบบนำส่งดีเอ็นเอ, ระบบนำส่งเอสไออาร์เอ็นเอ

บทที่ 1 บทนำ

Human papillomavirus (HPV) เป็นไวรัสที่มีดีเอ็นเอสายคู่ (Double-stranded DNA virus) บางชนิดสามารถก่อโรคได้ โดยทำให้เกิดการติดเชื้อบริเวณเนื้อเยื่อจนก่อให้เกิดหูด (Warts) หรือชักนำให้เกิดมะเร็งได้ [1] การติดเชื้อ HPV กลุ่มสายพันธ์ที่มีความเสี่ยงสูง (Highrisk HPV) จะก่อให้เกิดมะเร็งปากมดลูก ได้แก่สายพันธ์ที่ 16 และ 18 เป็นตัน [2] นอกจากนี้ ไวรัสดังกล่าวยังทำให้เกิดการติดเชื้อบริเวณปากมดลูก โดยจะติดต่อเข้าสู่ร่างกายเป็นส่วนใหญ่ ทางเพศสัมพันธ์ ปัจจุบันการรักษามะเร็งปากมดลูกนั้นอาศัยวิธีการผ่าตัด, การบำบัดด้วยรังสี และการใช้สารเคมีบำบัด อย่างไรก็ตามยังไม่มีวิธีใดที่ให้ผลการรักษาอย่างสมบูรณ์แบบและใน บางครั้งต้องใช้หลายวิธีประกอบกัน ซึ่งวิธีการให้เคมีบำบัดหรือการฉายรังสีรักษานั้นส่งผลเสี่ยง ทำให้เซลล์เป็นพิษได้ขึ้นอยู่กับปัจจัยแวดล้อมต่าง ๆ ได้แก่ ปริมาณและระยะเวลาในการรับรังสี หรือความไวของเนื้อเยื่อปกติต่อการทำเคมีบำบัด ดังนั้นการควบคุมปัจจัยต่าง ๆ ให้เหมาะสม จะมีผลดีต่อการรักษามะเร็งดังกล่าวได้ [3]

จากการค้นพบกระบวนการทำงานของ RNA inference (RNAi) ปัจจุบันจึงได้มีความ พยายามที่จะใช้ RNAi ในการรักษามะเร็งปากมดลูก โดยเฉพาะ siRNA (small interfering RNA) ซึ่งที่ผ่านมาได้มีการศึกษาเกี่ยวกับการใช้ siRNA ยับยั้งการแสดงออกของยีนไวรัสที่ เข้ารหัสสังเคราะห์ HPV E6 และ/หรือ E7 oncoproteins [4, 5] เพราะหากโปรตีนดังกล่าวมีการ แสดงออกอย่างต่อเนื่องจะมีผลให้เกิดการเปลี่ยนแปลงของเซลล์ปกติบริเวณปากมดลูก

(Cervical epithelial cell) กลายเป็นมะเร็งปากมดลูก (HPV positive cervical cancer cell) [6] ในกระบวนการก่อมะเร็ง E7 oncoprotein จะมีบทบาทเป็นตัวกระตุ้นให้เซลล์เกิดการแบ่ง ตัวอย่างรวดเร็วโดยควบคุมไม่ได้ [7] รวมถึง E6 oncoprotein ที่ทำหน้าที่เป็นตัวยับยั้ง กระบวนการ Apoptosis ทำให้เซลล์ปกติที่ได้รับความเสียหายหรือมีการเปลี่ยนรูปร่างไม่ถูก ทำลายและสามารถเจริญเติบโตต่อไปได้จนก่อให้เกิดเซลล์มะเร็งขึ้นในที่สุด [8] ประสิทธิภาพใน การทำงานของกระบวนการ siRNA นั้นขึ้นกับระบบที่ใช้ในการนำส่ง ซึ่งเป็นปัญหาคล้ายกับการ นำส่งเพื่อทำยืนบำบัด (Gene therapy) กล่าวคือเมื่อ siRNA ถูกนำส่งเข้าสู่ร่างกายโดยตรงแล้ว นั้น มีโอกาสสูงที่จะเกิดการย่อยสลายโดยง่ายส่งผลให้มีจำนวน siRNA กระตุ้นให้เกิด กระบวนการ RNAi น้อยลงรวมถึงความเสถียรที่ต่ำภายในกระแสเลือดอีกด้วย [9, 10] ปัจจุบันมี การศึกษาระบบนำส่ง siRNA โดยใช้ตัวพา (vector) ซึ่งแบ่งออกเป็น 2 ระบบหลักได้แก่ ระบบที่

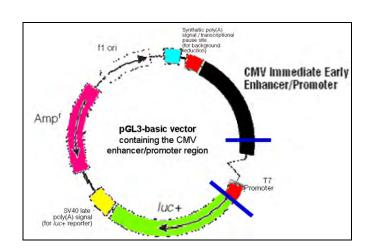
อาศัยไวรัสเป็นตัวพา (Viral vector) และระบบที่ไม่อาศัยไวรัสเป็นตัวพา (Non-viral vector) การใช้ระบบที่อาศัยไวรัสเป็นตัวพานั้นให้ประสิทธิภาพการนำส่งที่สูงแต่อาจมีผลในทางลบจาก การตอบสนองทางระบบภูมิคุ้มกันในร่างกาย เพราะไวรัสสามารถแทรกยีนของตัวเองเข้ากับ จีโนมของเซลล์เจ้าบ้านได้ ก่อให้เกิดความเสี่ยงต่อการซักนำให้เกิดเป็นมะเร็งจากการนำส่งด้วย วิธีดังกล่าว [11] ด้วยเหตุผลข้างต้นทำให้ระบบการนำส่งแบบไม่อาศัยไวรัสเป็นตัวพาจึงเป็น ทางเลือกที่ได้รับความสนใจมากขึ้นเมื่อคำนึงถึงความปลอดภัย โดยได้พัฒนาระบบให้มี ประสิทธิภาพในการนำส่งที่ดีขึ้น รวมถึงการเพิ่มรูปแบบการนำส่งให้มีความหลากหลายมาก ยิ่งขึ้น เช่น การเพิ่มความจำเพาะต่อเซลล์หรือบริเวณเป้าหมาย และการพัฒนาตัวพาให้มีความ หลากหลาย (Multifunctional nanocarrier) เป็นตัน โดยส่วนใหญ่ระบบนำส่งดังกล่าวจะนิยมใช้ สารจำพวกไขมันประจุบวก (Cationic lipid) และพอลิเมอร์ประจุบวก (Cationic polymer) ซึ่งมี ความปลอดภัยสูง, เตรียมได้ง่าย, ราคาไม่แพงและสามารถผลิตได้ในปริมาณมาก [12, 13]

ในช่วงทศวรรษที่ผ่านมาไคโตซาน (Chitosan) นับเป็นพอลิเมอร์ที่ได้มาจากธรรมชาติ และได้รับความสนใจในการนำมาใช้ในทางการแพทย์รวมถึงการนำส่งยา เนื่องจากคุณสมบัติที่ ย่อยสลายได้ตามธรรมชาติและไม่เป็นพิษต่อเซลล์ [14, 15] รวมถึงคุณสมบัติของไคซานที่มี ประจุบวกทำให้สามารถจับกับประจุลบของหมู่ฟอสเฟตซึ่งเป็นส่วนประกอบหนึ่งของกรด นิวคลีอิก (Nucleic acid) นอกจากนี้เมื่อนำพอลิเอทิลีนอิมีน (Polyethylenimine or PEI) ซึ่งเป็น พอลิเมอร์ ประจุบวกมาใช้ร่วมกับไคโตซานในการนำส่งยืนหรือดีเอ็นเอที่สนใจในการศึกษา พบว่าสามารถเพิ่มประสิทธิภาพในการนำส่งเข้าไปในเซลล์สูงขึ้นและลดความเป็นพิษของพอลิ เมอร์ต่อเซลล์ที่ถูกนำส่งเข้าไปได้ [16] ดังนั้นการใช้ไคโตซานร่วมกับพอลิเอทิลีนอิมีน (PEI) จึง มีศักยภาพที่จะใช้เป็นตัวพาในระบบนำส่ง

ในงานวิจัยนี้ผู้วิจัยมีเป้าหมายที่จะทดสอบระบบนำส่ง siRNA แบบไม่อาศัยไวรัส เป็นตัวพา เพื่อพัฒนาระบบนำส่ง siRNA ในการยับยั้งการแสดงออกของยืน E6/E7 ในระดับ mRNA ของ HPV transformed cell โดยใช้อนุพันธ์ผสมของไคโตซานร่วมกับพอลิเอทิลีนอิมีน เป็นตัวพา (Chitosan-PEI nanoparticle) ซึ่งมีคุณสมบัติที่เพิ่มความเป็นประจุบวกมากขึ้นและ ลดความเป็นต่อเซลล์ลง [17] จากการศึกษาที่ผ่านมายังไม่มีการนำอนุพันธ์ผสมดังกล่าวมาใช้ นำส่ง siRNA เพื่อยับยั้งการแสดงออกของในระดับ mRNA ของ HPV oncogenes มาก่อนซึ่ง คาดว่าจะเป็นประโยชน์อย่างมากสำหรับการเลือกระบบนำส่งที่เหมาะสมในการยับยั้งยีนก่อโรค นำไปสู่การเพิ่มทางเลือกใหม่ในการรักษามะเร็งปากมดลูกต่อไป

บทที่ 2 วิธีการทดลอง

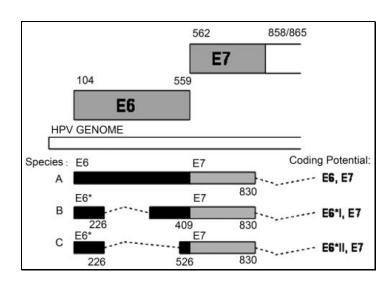
2.1 เซลล์เพาะเลี้ยง สารเคมีและวัสดุอุปกรณ์

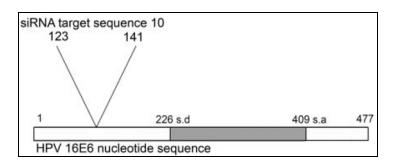

2.1.1 เซลล์มะเร็งปากมดลูกเพาะเลี้ยง

เซลล์มะเร็งปากมดลูกชนิด SiHa เป็นเซลล์เพาะเลี้ยงแบบเกาะ ได้มาจากชิ้นส่วน เนื้อเยื่อ Squamous cell บริเวณปากมดลูก (Squamous cell carcinoma) ภายในเซลล์มีเชื้อ HPV สายพันธุ์ที่ 16 อาศัยอยู่ 1-2 Copies และจัดเป็นเซลล์ในผู้ป่วยมะเร็งปากมดลูกระยะที่ 2 เซลล์มะเร็งปากมดลูกชนิด HeLa เป็นเซลล์เพาะเลี้ยงแบบเกาะได้มาจากส่วนเยื่อบุผิว บริเวณปากมดลูก (Adenocarcinoma) ภายในเซลล์มีเชื้อ HPV สายพันธุ์ที่ 18 อาศัยอยู่ [18]

เซลล์มะเร็งปากมดลูกชนิด C33A เป็นเซลล์เพาะเลี้ยงแบบเกาะได้มาจากส่วนเยื่อบุผิว บริเวณปากมดลูกภายในไม่มีเชื้อ HPV อาศัยอยู่ [19]

2.1.2 พลาสมิด, siRNA และตัวพาสำหรับนำส่งยืน


พลาสมิด DNA ชนิด pGL3-basic vector containing CMV enhancer promoter (pGL3-CMV) ได้มาจาก Tencomnao และคณะในปี 2008 ดังภาพที่ 1 [20] โดย พลาสมิด ดังกล่าวมีการบรรจุยีนเครื่องหมาย Luciferase ซึ่งอยู่ภายใต้การควบคุมของ CMV enhancer/promoter ที่เหมาะสมสำหรับการแสดงออกของเอนไซม์ Luciferase ในเซลล์สัตว์ เลี้ยงลูกด้วยนม


ภาพที่ 1 ลักษณะโครงสร้างของพลาสมิด DNA ชนิด pGL3-CMV [21]

siRNA ที่ใช้นำส่งเข้าสู่เซลล์มะเร็งปากมดลูก SiHa สังเคราะห์ดังลำดับเบสของ Putral และคณะในปี 2005 ซึ่งมีลำดับดังนี้ Sence: 5'-GCAACAGUUACUGCGACGUUU-3' และ Antisence 3'-UUCGUUGUCAAUGACGCUGCA-5' [22] โดย siRNA ดังกล่าวมีคุณสมบัติที่ จำเพาะกับยืน E6 ของเชื้อ HPV สายพันธุ์ที่ 16 ที่ตำแหน่งนิวคลีโอไทด์ที่ 123-141 ซึ่งเมื่อซัก นำให้เกิดกระบวนการ RNAi จะสามารถกดการแสดงออกของ E6/E7 mRNA ดังภาพที่ 2

ก)

ข)



ภาพที่ 2 ลักษณะรูปแบบของ mRNA ที่สร้างจากยืน E6 และ E7 ของเชื้อ HPV โดย ส่วนที่มีการคัดลอกรหัสจะแทนด้วยรูปสี่เหลี่ยมทึบและส่วนของ Intron จะแทนด้วยจุดประ (ภาพ ก), ตำแหน่ง sequence 10 (นิวคลีโอไทด์ที่ 123-141) ของยืน HPV 16E6 ซึ่งเป็นบริเวณ ที่ จำเพาะกับ siRNA (ภาพ ข) [22]

ตัวพาประเภทพอลิเมอร์ประจุบวกที่ใช้นำส่งพลาสมิด pGL3-CMV และ siRNA เข้าสู่ เซลล์มะเร็งปากมดลูก คือ Polyethyleneimine-Introduced Chitosan Shell/Poly(methyl Methacrylate) CoreNanoparticles (CS-PEI) ได้มาความอนุเคราะห์จาก ดร.ณัฏฐพร พิมพะ [17] ตัวพานี้เป็นตัวพาที่สังเคราะห์ให้ผิวเป็นพอลิเมอร์ผสมระหว่าง PEI และ Chitosan ที่มี Methyl Methacrylate เป็นแกนกลางดังภาพที่ 3 โดยมีอัตราส่วนโดยน้ำหนัก (w/w) ของ CS/PEI เป็น 0.5/0.5

ภาพที่ 3 ตัวพาประเภทพอลิเมอร์ประจุบวกชนิด CS-PEI nanoparticle (ตัวพา CS-PEI) [17]

ตัวพาประเภทไขมันประจุบวกชนิด Lipofectamine™ 2000 (Invitrogen, New York, USA) ใช้ในการนำส่งพลาสมิด DNA pGL3-CMV และ siRNA เพื่อเป็นกลุ่มตัวแปรควบคุม เปรียบเทียบกับกลุ่มการทดลองที่นำส่งโดยใช้ตัวพา CS-PEI

ภาพที่ 4 ตัวพาประเภทไขมันประจุบวกชนิด Lipofectamine™ 2000 [23]

2.2 การเตรียมตัวพา CS-PEI, พลาสมิด pGL3-CMV และ siRNA

ปรับความเข้มขันของตัวพา CS-PEI และพลาสมิด pGL3-CMV ให้เป็น 1 µg/µI โดยใช้ น้ำกลั่นเป็นตัวปรับความเข้มขันในหลอดทดลองขนาด 1.5 ml ขณะที่ siRNA ใช้ตัวทำละลาย เป็นน้ำกลั่นที่ปราศจากเอนไซม์ Ribonuclease ด้วยสาร Diethylpyrocarbonate (DEPC)

2.3 การตรวจสอบความสามารถในการจับ DNA และ siRNA และคุณลักษณะทางเคมี กายภาพของตัวพา CS-PEI

2.3.1 การตรวจสอบความสามารถของตัวพา CS-PEI ในการจับกับ DNA และ siRNA โดยวิธี Gel retardation assay

เพื่อศึกษาความสามารถในการจับกับ DNA และ siRNA ของตัวพา CS-PEI ที่ อัตราส่วนโมลอะตอมของไนโดรเจนบนดัวพากับฟอสเฟตบนกรดนิวคลีอิก (N/P ratio) ต่าง ๆ เพื่อหาอัตราส่วนของ complex ที่สามารถจับกันได้อย่างสมบูรณ์ โดยเตรียม complex ระหว่าง ตัวพา CS-PEI กับพลาสมิด pGL3-CMV ในหลอดทดลองขนาด 1.5 ml ที่อัตราส่วน N/P เท่ากับ 0.1, 0.2, 0.4, 0.6, 0.8, 1.6 และ 4 โดยตั้งทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 30 นาที เมื่อ ครบเวลาที่กำหนดให้นำ complex ดังกล่าวผสมกับ 1X loading dye แล้วหยอดลงเจลอะกาโรส ที่มีความเข้มข้น 1% เพื่อทำ Gel electrophoresis โดยใช้ความต่างศักย์ที่ 90 โวลต์เป็นเวลา 30 นาที จากนั้นนำเจลที่ได้ไปย้อมกับ Ethidium bromide และส่องดูภายใต้แสง Ultraviolet (UV) ด้วยเครื่อง Gel documentation systems (Syngene, Cambridge, United Kingdom) โดยปกติ แล้ว DNA และ siRNA จะเคลื่อนที่จากขั้วลบไปหาขั้วบวกในการทำ Gel electrophoresis แต่ เมื่อเกิดการจับกันกับตัวพา CS-PEI ซึ่งมีประจุบวกจะทำให้เกิดการตัานการเคลื่อนที่ของกรด นิวคลีอิกดังกล่าว ส่งผลให้มีระยะทางการเคลื่อนที่ตัวพา CS-PEI ที่สามารถจับได้อย่างสมบูรณ์จะทำให้ ไม่พบแถบการเคลื่อนที่ของกรดนิวคลีอิกบนแผ่นเจล

สำหรับ complex ระหว่างตัวพา CS-PEI กับ siRNA ทำการทดลองเช่นเดียวกับวิธี ข้างตันซึ่งใช้อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.2, 1.6, 4 และ 8 โดยทำ gel retardation assay ที่ความต่างศักย์ 70 โวลต์เป็นเวลา 30 นาที

2.3.2 การตรวจสอบลักษณะทางสัณฐานวิทยาของ CS-PEI/DNA และ CS-PEI/siRNA complex โดย Atomic force microscope (AFM)

ลักษณะทางสัณฐานวิทยาของอนุภาคนาโน CS-PEI/DNA และ CS-PEI/siRNA ที่เกิดขึ้น สามารถตรวจสอบได้ด้วย กล้องจุลทรรศน์แบบแรงอะตอม (Atomic force microscope: AFM) ซึ่งเป็นเครื่องมือที่ใช้ในการตรวจสอบลักษณะพื้นผิววัสดุในระดับนาโน อาศัยหลักการของอันตร กิริยาของแรงระหว่างอะตอม (Atomic force) ระหว่างหัวเข็มวัดในระดับนาโนกับพื้นผิวของสาร และจะทำการประมวลผลออกในลักษณะของภาพพื้นผิว ซึ่งจะทำให้เราเห็นลักษณะรูปร่างของ complex ที่เตรียมได้ การทดลองนี้ได้ใช้ CS-PEI/DNA และ CS-PEI/siRNA ที่อัตราส่วน N/P เท่ากับ 1.6 และ 4 ในหลอดทดลองขนาด 1.5 ml บ่มให้เกิดการคดแน่นของ complex เป็นเวลา 30 นาทีแล้วปรับปริมาตรด้วยน้ำกลั่นให้ครบ 20 µl จากนั้นหยดลงบนแผ่นไมกาแล้วทิ้งไว้ให้ แห้งประมาณ 5 นาที เพื่อให้อนุภาคจับเกาะและระเหยน้ำ ภาพ AFM ในงานวิจัยนี้ใช้วิเคราะห์ ด้วย AFM Seiko SPA4000 (Chiba, Japan) เพื่อตรวจสอบ complex ในบริเวณ 5 µm x 5 µm ด้วยความเร็วของเข็ม 1.0 Hz

2.3.3 การตรวจสอบขนาดและค่าประจุพื้นผิวของ complex ด้วยการวัด Zetasizer

เพื่อศึกษาหาขนาดและค่าประจุของ CS-PEI/DNA และ CS-PEI/siRNA complex ที่ อัตราส่วน N/P ต่าง ๆ ด้วยใช้เครื่องวัด Zetasizer ZS ซึ่งเป็นเครื่องมือที่ใช้สำหรับวัดหาขนาด อนุภาคของสารในช่วง 0.6 nm ถึง 6 um โดยใช้หลักการ Dynamic Light Scattering (DLS) และสามารถหาค่า Zeta Potential หรือค่าประจุรวมบนพื้นผิวของอนุภาคนาโนได้ เตรียม CS-PEI/DNA complex ที่อัตราส่วน N/P เท่ากับ 0.4, 0.8, 1.6, 4 และ 8 และเตรียม CS-PEI/siRNA complex ที่อัตราส่วน N/P เท่ากับ 0.4, 0.8, 1.6 และ 4 โดยเตรียมในหลอด ทดลองขนาด 1.5 ml ตั้งทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 30 นาที จากนั้นปรับปริมาตรด้วยน้ำกลั่น ให้เป็น 1 ml แล้วนำไปวัดขนาดของอนุภาคและประจุบนผิวด้วยเครื่อง Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) ที่อุณหภูมิ 25 °C ผลที่ได้รายงานเป็นค่าเฉลี่ยของ ขนาดตัวอย่างที่ทำการวัด 3 ครั้ง พร้อมค่า standard deviation (SD)

2.3.4 การตรวจสอบร้อยละของการจับ siRNA ของตัวพา CS-PEI

ความสามารถในการจับ siRNA ของตัวพา CS-PEI สามารถหาได้จากหาร้อยละของการ จับ siRNA ของตัวพา CS-PEI (% Binding capacity) ที่อัตราส่วน N/P ต่าง ๆ โดยใช้ชุด Quant-iT™ RiboGreen® RNA Reagent (Invitrogen, New York, USA) ซึ่งมีสาร Fluorophores ที่มีคุณสมบัติในการจับกับ siRNA แล้วเกิดการเปล่งแสงฟลูออเรสเซนต์ขึ้น ซึ่ง ค่า Fluorescence intensity ที่วัดได้จะแปรผันตามปริมาณของ unbound-siRNA ที่ลอยอยู่ใน สารแขวนลอยทำให้สามารถใช้คำนวณต่อไปได้ว่า siRNA ถูกจับไว้อยู่บนตัวพา CS-PEI ได้คิด เป็นร้อยละเท่าใดเมื่อเทียบกับ siRNA เริ่มตัน

วิธีการวิจัยทำโดยตรียม complex ระหว่างตัวพา CS-PEI กับ siRNA ที่อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.6, 4 และ 8 ในหลอดทดลองขนาด 1.5 ml ที่อุณหภูมิห้องเป็นเวลา 30 นาที จากนั้นนำไปปั่นที่ความเร็ว 12,000 g เป็นเวลา 15 นาทีแล้วปรับปริมาตรให้เป็น 100 µl ด้วย 1X TE buffer ใน 96-well microplate เติมน้ำยาที่ใช้ตรวจสอบหาปริมาณ siRNA จาก Quant-iT Ribogreen® RNA Assay Kit ลงไปหลุมละ 100 µl บ่มเป็นเวลา 5 นาทีแล้วนำไป อ่านค่า Fluorescence intensity ด้วยเครื่อง EnSpire® Multimode Plate Reader (PerkinElmer, Inc. Massachusetts, USA) ที่ความยาวคลื่น 485/530 ทำการทดลอง 3 ครั้ง สำหรับการหาค่าเฉลี่ย และค่า SD นำค่าที่ได้มาคำนวณเป็นค่าร้อยละของการจับ siRNA ดังนี้

2.4 การทดสอบประสิทธิภาพการนำส่งยืนและความเป็นพิษต่อเซลล์ของตัวพา CS-PEI

2.4.1 การประเมินประสิทธิภาพการนำส่งยืนโดยตรวจการแสดงออกของ Luciferase

เพื่อประเมินประสิทธิภาพเบื้องต้นของตัวพา CS-PEI ในการนำส่งพลาสมิด DNA ชนิด pGL3-CMV ที่บรรจุยีนเครื่องหมาย Luciferase เข้าสู่เซลล์มะเร็งปากมดลูกชนิดต่าง ๆ โดยวัด ปริมาณเอนไซม์ Luciferase ที่สร้างจากพลาสมิดนำส่งด้วยวิธี Luciferase assay โดยแสง Luminescence ที่วัดได้เกิดจากปฏิกิริยา Oxidation ทางเคมีของสารตั้งต้น Luciferin เกิดเป็น Oxyluciferin โดยการทำงานของเอนไซม์ Firefly Luciferase ที่สร้างจากพลาสมิด pGL3-CMV ซึ่งค่าที่ได้จะแปรผันตามปริมาณของเอนไซม์ดังกล่าว ดังภาพที่ 5

ภาพที่ 5 ปฏิกิริยา Bioluminescence จากการทำงานของเอนไซม์ Firefly Luciferase [24]

วิธีการทดลองเริ่มจากการเลี้ยงเซลล์มะเร็งปากมดลูกชนิด SiHa, HeLa และ C33A ใน อาหารชนิด Minimum Essential Medium (MEM) Alpha media ซึ่งมี Fetal bovine serum (FBS) อยู่ 10% เมื่อเซลล์เจริญเติบโตได้ประมาณ 80-90% Confluence ให้ถ่ายเซลล์ลงใน 96-well microplate โดยใช้ปริมาณเซลล์หลุมละ 30,000 หลังจากนั้นนำไปบ่มที่อุณหภูมิ 37 °C ในสภาวะที่มีคาร์บอนไดออกไซด์ 5% บ่มเป็นเวลา 24 ชั่วโมง เพื่อรอทำการถ่ายโอนยีนต่อไป เตรียม CS-PEI/DNA โดยใช้อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4 และ 8 โดยมีตัวพาไขมันประจุ บวกชนิด Lipofectamine™ 2000 (Invitrogen, New York, USA) เป็นชุดควบคุมในการประเมิน ประสิทธิภาพการนำส่งโดยใช้ปริมาณ 0.4 µl ต่อพลาสมิด DNA 1 µg เปลี่ยนอาหารของเซลล์ที่ เตรียมไว้เป็น Serum free media ก่อน แล้วใส่ CS-PEI/DNA complex, Lipofectamine™ 2000 และ naked DNA บ่มกับเซลล์เป็นเวลา 4 ชั่วโมง หลังจากนั้นจึงเปลี่ยนอาหารกลับมาเป็น 10% FBS MEM Alpha media เลี้ยงต่อเป็นเวลา 24 ชั่วโมง จึงวัดปริมาณเอนไซม์ Luciferase โดยดูดอาหารเลี้ยงเซลล์แต่ละหลุมออกแล้วเดิมน้ำยา Cell culture lysis reagent ลงไปหลุมละ 30 µl เพื่อย่อยเซลล์ จากนั้นทำการวัดปฏิกิริยา Bioluminescence โดยใช้ชุด Luciferase assay system ซึ่งจะใช้เซลล์หลังจากการย่อยปริมาณ 10 µl ต่อน้ำยาวัดเอนไซม์ Luciferase

ปริมาณ 90 µl ของแต่ละหลุมของ 96-well luminescence plates จากนั้นนำไปวัดค่าด้วยเครื่อง VICTOR™ X3 Multilabel Plate Reader เพื่อดูปริมาณของเอนไซม์ Luciferase โดยค่าที่วัดได้ จะรายงายเป็นหน่วยของ Relative Luminescence Units (RLU) และถูก normalize ด้วยการหา ปริมาณ Total protein ของเซลล์ในแต่ละหลุมด้วยวิธี Bradford protein assay ตามวิธีมาตรฐาน [25] เติมเซลล์หลังจากการย่อยลงใน 96-well microplate หลุมละ 5 µl แล้วเติม Bradford reagent หลุมละ 250 µl จากนั้นตั้งทิ้งไว้ที่อุณหภูมิห้องในที่มืดเป็นเวลา 5 นาทีแล้ววัดค่าการ ดูดกลืนแสงที่ความยาวคลื่น 595 nm ด้วยเครื่อง Synergy Mx Monochromator-Based Multi-Mode Microplate Reader (Biotek instruments, inc., Vermont, USA) จากนั้นคำนวณหา ปริมาณโปรตีนจากการเทียบกับกราฟ Standard curve เพื่อทำ Normalization กับผล Luciferase ให้อยู่ในหน่วยของ RLU/mg protein

2.4.2 การตรวจสอบความเป็นพิษของระบบน้ำส่งที่มีต่อเซลล์มะเร็งปากมดลูก โดยวิธี MTT assay

วิธี MTT assay เป็นวิธีมาตรฐานที่ใช้ตรวจสอบความเป็นพิษของเซลล์ต่อตัวอย่างที่ใช้ ทดสอบ เป็นการวัดการทำงานของเอนไซม์ Mitochondrial reductase ในเซลล์ที่มีชีวิต ซึ่งจะทำ กับน้ำยา (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium ปฏิกิริยา Reduction bromide) (MTT) กลายเป็นตะกอน Formazan สีม่วงที่ไม่ละลายน้ำ โดยสามารถละลายได้ใน Dimethyl sulfoxide (DMSO) ซึ่งจะให้ค่าการดูดกลืนแสงในช่วง 570 nm ในการทดลองนี้ ต้องการทดสอบความเป็นพิษของตัวพาต่อเซลล์โดยใช้เซลล์มะเร็งปากมดลูกเพาะเลี้ยง HeLa และ C33A เป็นเซลล์ทดสอบ เลี้ยงเซลล์ทั้งสามชนิดใน 10% FBS MEM Alpha media เมื่อเซลล์โตได้ประมาณ 80-90% Confluence ถ่ายเซลล์ลง 96-well microplate หลุมละ 30,000 เซลล์ จากนั้นนำไปบ่มที่อุณหภูมิ 37 °C ในสภาวะที่มีคาร์บอนไดออกไซด์ 5% เป็นเวลา 24 ชั่วโมง เตรียม complex ระหว่างตัวพา CS-PEI กับพลาสมิด pGL3-CMV และ Lipofectamine เช่นเดียวกับการทดลองประเมินประสิทธิภาพการนำส่งโดยการวัดสัญญาณ Luciferase นำส่งเข้าสู่เซลล์ จากนั้นตรวจสอบความเป็นพิษต่อเซลล์โดยวิธี MTT assay โดยใส่น้ำยา MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) ในแต่ละหลุมของเซลล์ใช้ ความเข้มขันที่ 0.1 mg/ml แล้วนำเซลล์ไปบ่มที่ 37 °C สภาวะที่มีคาร์บอนไดออกไซด์ 5% เป็น เวลา 4 ชั่วโมงจากนั้นดูดอาหารเลี้ยงเซลล์ออกให้หมดแล้วละลายตะกอนสีม่วงที่เกิดขึ้นด้วย

DMSO 150 µl นำ plate ไปปั่นที่ความเร็ว 2,500 รอบต่อนาทีเป็นเวลา 10 นาที แล้วดูดส่วนใส จำนวน 100 µl มาวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 550 nm ด้วยเครื่อง Synergy Mx Monochromator-Based Multi-Mode Microplate Reader นำค่าที่วัดได้มาคำนวณหาร้อยละ การรอดชีวิตของเซลล์ (% cell viability) ดังนี้

2.5 การตรวจสอบผลการนำส่ง siRNA เข้าสู่เซลล์มะเร็งปากมดลูก

2.5.1 การตรวจสอบผลการยับยั้งการแสดงออก ของยืน HPV E6/E7 ในเซลล์มะเร็ง ปากมดลูกด้วยวิธี RT-PCR

ประสิทธิภาพการนำส่ง siRNA ด้วยตัวพา CS-PEI เข้าสู่เซลล์มะเร็งปากมดลูก โดยอาศัย การชักนำให้เกิดกระบวนการ RNAi เพื่อยับยั้งการแสดงออกของยืน HPV E6/E7 ในระดับ mRNA สามารถตรวจสอบด้วยวิธี RT-PCR เนื่องจาก RNAi เป็นกระบวนการควบคุมการ แสดงออกของยืนในระดับ mRNA ซึ่งจะต้องอาศัยโมเลกุล RNA สายคู่ขนาดเล็ก เช่น siRNA ที่ จำเพาะต่อยืนของเชื้อ HPV ในการชักนำให้เกิดกระบวนการดังกล่าว โดยอาศัยตัวพา CS-PEI นำส่งเข้าสู่เซลล์ หลังจากนั้นจึงวัดระดับการแสดงออกของ HPV E6/E7 mRNA โดยวิธี RT-ซึ่งผลการยับยั้งการแสดงออกที่ได้จะแปรผันตรงกับประสิทธิภาพในการนำส่งของตัวพา ดังกล่าว งานทดลองนี้เลือกใช้เซลล์ SiHa ในการทดสอบ โดยเลี้ยง SiHa ในอาหารเลี้ยงเซลล์ที่ มี 10% FBS MEM Alpha media เมื่อเซลล์เจริญได้ประมาณ 80-90% Confluence ถ่ายเซลล์ ลง 12-well cell culture plate หลุมละ 30,000 เซลล์ จากนั้นนำไปบ่มที่ 37 °C สภาวะที่มี คาร์บอนไดออกไซด์ 5% เป็นเวลา 24 ชั่วโมงเพื่อใช้รอนำส่งเข้าสู่เซลล์ จากนั้นเตรียม complex ระหว่างตัวพา CS-PEI กับ siRNA ที่อัตราส่วน N/P 1.6 โดยมีตัวพา Lipofectamine เป็นกลุ่ม ์ ตัวแปรควบคุม ก่อนทำการทดสอบให้เปลี่ยนอาหารเลี้ยงเซลล์เป็น Serum free media ก่อน แล้วนำส่ง complex ดังกล่าวเข้าสู่เซลล์เป็นเวลา 4 ชั่วโมง จากนั้นจึงเปลี่ยนกลับเป็น 10% FBS MEM Alpha media และเลี้ยงเซลล์ต่อที่ช่วงเวลา 12, 18, 24, 48 และ 72 ชั่วโมง สกัด RNA จากเซลล์หลังจากการนำส่งที่ช่วงเวลาดังกล่าว โดยดูดอาหารเลี้ยงเซลล์ออกจนหมดแล้วเติม

น้ำยา TRI Reagent® ลงไปหลุมละ 1 ml บ่มเป็นเวลา 5 นาที จากนั้นดูดส่วนใสทั้งหมดใส่ หลอดทดลองขนาด 1.5 ml แล้วเติม Chloroform ลงไปหลอดละ 200 µl ผสมให้เข้ากันด้วย เครื่อง Vortex mixer (FINEPCR, Gyenggi-do, Korea) แล้วนำไปปั่นที่ความเร็ว 12,000 g เป็น เวลา 15 นาที ที่อุณหภูมิ 4 °C ด้วยเครื่อง Micro high speed refrigerated centrifuge ดูดส่วน ใสด้านบนไปใส่หลอดทดลองขนาด 1.5 ml หลอดใหม่แล้วเติม 100% Isopropanol ลงไปใน หลอดจำนวน 500 µl แล้วตั้งทิ้งไว้ที่อุณหภูมิ -20 °C เป็นเวลา 30 นาที ปั่นตกตะกอนที่ ความเร็วข้างตันอีกครั้ง เทส่วนใสทิ้งไปและเติม 70% Ethanol in DEPC ลงไป 1 ml แล้วปั่น ล้างที่ความเร็ว 7,500 g เป็นเวลา 5 นาทีที่อุณหภูมิ 4 °C เทส่วนใสทิ้งอีกครั้งแล้วตากตะกอน RNA ที่สกัดได้ให้แห้งแล้วละลายตะกอน RNA ด้วยน้ำกลั่น DEPC-treated Water เพื่อนำไปทำ RT-PCR โดยใช้ชุด Transcriptor One-Step RT-PCR Kit (Roche) ต่อไป

ก่อนการทำ RT-PCR จะต้องมีขั้นตอนการกำจัด DNA ที่ปนเปื้อนมาในขั้นตอนของการ สกัด RNA โดยใช้ชุด RQ1 RNase-Free DNase (Promega, Wisconsin, USA) ซึ่งใช้ความ เข้มขันเริ่มต้นของ RNA ที่สกัดได้เท่ากับ 55 ng โดยเตรียมสัดส่วนของสารเคมีต่าง ๆ ในหลอด ทดลองขนาด 1.5 ml ประกอบไปด้วยสารต่าง ๆ ดังนี้

ตารางที่ 1 แสดงชนิดและปริมาณของสารเคมีที่ใช้ในขั้นตอนการกำจัด DNA จากสิ่งตัวอย่าง

สารเคมีที่ใช้	ปริมาณที่ใช้ (µI)
RQ1 DNase 10X Reaction Buffer	1
RQ1 RNase-Free DNase	1
RNA ความเข้มข้น 55 ng/µl	1
DEPC-treated water	7

เมื่อเตรียมสารดังกล่าวครบแล้วให้นำหลอดทดลองดังกล่าวไปบ่มที่อุณหภูมิ 37 °C เป็น เวลา 30 นาที จากนั้นเติม Stop Solution ลงไป 1 µI แล้วนำไปบ่มต่อที่ อุณหภูมิ 65 °C อีก 10 นาทีแล้วนำ RNA ที่ผ่านการกำจัด DNA ที่ปนเปื้อนไปทำ RT-PCR ต่อไปโดยใช้สัดส่วน สารเคมีในขั้นตอนการทำปฏิกิริยา RT-PCR ดังนี้

ตารางที่ 2 แสดงชนิดและปริมาณของสารเคมีที่ใช้ในขั้นตอนการทำ RT-PCR

สารเคมีที่ใช้	ปริมาณที่ใช้ (µI)
5X Reaction buffer (vial 2)	3
Forward primer (ตารางที่ 3)	final concentration 0.4 μm
Reward primer (ตารางที่ 3)	final concentration 0.4 μm
Transcriptoe Enzyme Mix (vial 1)	0.2
Water PCR Grade (vial 3)	Final volume 15 μl
Template RNA (5 ng/μl)	1

หลังจากเตรียมสารที่ใช้ทำ RT-PCR เสร็จสิ้นขั้นตอนต่อไปก็จะนำหลอดทดลอง PCR ไป ใส่ในเครื่อง Thermal Cycler รุ่น DNA Engine โดยตั้งโปรแกรมขั้น Reverse Transcription ที่ อุณหภูมิ 50 °C 30 นาทีต่อด้วยขั้น Initial Denaturation ที่ 94 °C 7 นาที ตามด้วยขั้น Standard PCR profile แบ่งออกเป็น Denaturation ที่ 94 °C 10 วินาที, Annealing ที่ 58 °C 30 วินาที และ Elongation ที่ 68 °C 30 วินาทีโดยตั้งค่าไว้ 30 รอบในการทำ จากนั้นเข้าสู่ขั้น Final Elongation ที่ 68 °C 7 นาที เมื่อสิ้นสุดปฏิกิริยานำ PCR product ที่ได้ไปตรวจสอบโดย การทำ Agarose Gel Electrophoresis โดยใช้ความเข้มข้นของเจล 3% และใช้ความต่าง ศักย์ไฟฟ้าที่ 90 โวลต์ 30 นาที จากนั้นย้อมเจลด้วย Ethidium bromide แล้วนำไปส่องภายใต้ แสง Ultraviolet ด้วยเครื่อง Gel documentation (Gel doc) systems (Syngene, Cambridge, United Kingdom)

ตารางที่ 3 แสดง Primer ที่ใช้ในการทำ RT-PCR [26]

Primer		Coguenco	ความยาวของ
Primer		Sequence	PCR product
E6	forward primer	5' TGAGGTATATGACTTTGCTTTTC 3'	297 bp
	reverse primer	5' CAAGACATACATCGACCGGTCC 3'	207 50
E7	forward primer	5' AAATGACAGCTCAGAGGAGGAG 3'	209 bp
	reverse primer	5' GTTTCTGAGAACAGATGGGGCAC 3'	209 bp
GAPDH	forward primer	5' GACCACAGTCCATGCCATCACT 3'	452 bp
GALDII	reverse primer	5' TCCACCACCCTGTTGCTGTAG 3'	

2.5.2 การตรวจสอบผลการน้ำส่ง siRNA เข้าสู่เซลล์ด้วยวิธี Confocal laser scanning microscopy

เพื่อศึกษาผลการนำส่ง siRNA โดยตัวพา CS-PEI เข้าสู่เซลล์มะเร็งปากมดลูก เพาะเลี้ยง โดยอาศัยการย้อมสีเซลล์และติดฉลาก siRNA ด้วยสีฟลูออเรสเซนต์ชนิด Rhodamine โดยใช้ชุด Label IT® siRNA Tracker Intracellular Localization Kit ตรวจสอบผล ด้วย Confocal laser scanning microscopy โดยชุดน้ำยา The Label IT® siRNA Tracker Kits ที่ใช้ติดฉลากมีคุณสมบัติในการจับกับส่วนของ siRNA โดยไม่ไปเปลี่ยนแปลงโครงสร้าง และคุณสมบัติในการชักนำให้เกิดกระบวนการ RNAi หลังจากนำส่ง siRNA ที่ติดฉลากเข้าสู่ เซลล์แล้วตรวจสอบโดยการทำงานของ Confocal laser scanning microscopy จะอาศัยแสง Laser เป็นแหล่งกำเนิดแสงส่องผ่านไปยังวัตถุ เมื่อวัตถุได้รับพลังงานจากแสง Laser ก็จะ ปลดปล่อยพลังงานออกมาในรูปแบบของการเรื่องแสง ซึ่งจะใช้ในการวิเคราะห์เซลล์หรือเนื้อเยื่อ ต่าง ๆ ทำให้เราทราบลักษณะของเซลล์มะเร็งปากมดลูกที่ได้นำส่ง siRNA เข้าไปภายในเซลล์

ในขั้นตอนแรกจะเริ่มจากการติดฉลาก siRNA ที่จะใช้ในการนำส่งด้วยสีฟลูออเรสเซนต์ ชนิด Rhodamine โดยใช้ชุด Label IT® siRNA Tracker Intracellular Localization Kit (Mirus Bio Corporation) ซึ่งมีสัดส่วนของสารเคมีต่าง ๆ ดังต่อไปนี้

ตารางที่ 4 แสดงชนิดและปริมาณสารเคมีที่ใช้ในการติดฉลาก siRNA ด้วยสี Rhodamine

สารเคมีที่ใช้	ปริมาณที่ใช้ (µI)
H ₂ O (Molecular biology grade)	70
10X labeling Buffer A	10
siRNA duplex ความเข้มข้น 1 µg/µl	10
Label IT siRNA Tracker Reagent	10

หลังจากที่เตรียมสารดังกล่าวในหลอดทดลองขนาด 1.5 ml เสร็จแล้ว ให้นำไปบ่มที่ อุณหภูมิ 37 °C เป็นเวลา 60 นาที (เมื่อผ่านไป 30 นาทีแรกให้นำหลอดทดลองออกมา Spin down) เมื่อครบเวลาให้เติม 5M NaCl จำนวน 10 µl ร่วมกับ 100% Ethanol ที่แช่เย็น ลงไป 250 µl จากนั้นผสมให้เข้ากันแล้วนำไปไว้ที่อุณหภูมิ -20 °C เป็นเวลา 30 นาที ขั้นตอนต่อมาให้ นำไปปั่นที่ความเร็ว 13,500 g เป็นเวลา 15 นาที 4 °C แล้วดูดส่วน Ethanol ออกจากนั้นล้าง

ตะกอนอีกรอบด้วย 70% Ethanol ปริมาณ 500 µl ปั่นที่ความเร็วเดิมแล้วดูดเอาส่วนใสออก จะ ได้ตะกอนของ siRNA ที่ติดฉลากด้วยสี Rhodamine ขั้นสุดท้ายให้ละลายตะกอนด้วย siRNA Dilution buffer 40 µl เพื่อใช้ในการนำส่งเข้าสู่เซลล์ต่อไป

เลี้ยงเซลล์ SiHa ใน 10% FBS MEM Alpha media เมื่อเซลล์เจริญได้ประมาณ 80-90% Confluence ถ่ายเซลล์ลง 6-well cell culture plate ที่มี Cover slip ขนาด 35 mm² อยู่ที่ กันหลุมโดยใช้ปริมาณเซลล์หลุมละ 500,000 นำไปบ่มที่ 37 °C สภาวะที่มีคาร์บอนไดออกไซด์ 5% เป็นเวลา 24 ชั่วโมง

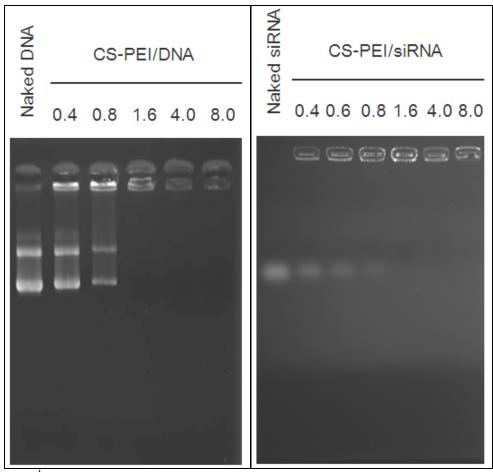
เตรียม complex ระหว่างตัวพา CS-PEI กับ siRNA ที่ติดฉลากด้วยสีฟลูออเรสเซนต์ ชนิด Rhodamine ที่อัตราส่วน N/P เท่ากับ 1.6 เมื่อเตรียม complex เสร็จสิ้นจึงเปลี่ยนอาหาร เลี้ยงเซลล์เป็น Serum free media ก่อนแล้วนำส่ง complex ดังกล่าวเข้าสู่เซลล์เป็นเวลา 4 ชั่วโมงจากนั้นเปลี่ยนกลับมาเป็น 10% FBS MEM Alpha media แล้วเลี้ยงต่อไปอีก 18 ชั่วโมง

เมื่อครบเวลาให้ดูดอาหารเลี้ยงเซลล์ออกจากหลุมให้หมดแล้วล้างด้วย Phosphate buffered saline (PBS) สองรอบจากนั้น Fixed cell ด้วยใส่ 100% Ethanol จำนวน 2 ml ลงไป ในหลุมที่มีเซลล์แล้วจับเวลา 10 นาทีที่อุณหภูมิห้องจากนั้นดูดออกแล้วเติมอาหารเลี้ยงเซลล์ 2 ml ที่ผสมกับสีชนิด Hoechst 33258 จำนวน 40 µl (ความเข้มข้น 0.1 mg/ml) แล้วนำไปบ่มในตู้ เลี้ยงเซลล์ที่อุณหภูมิ 37 °C เป็นเวลา 30 นาทีจากนั้นจึงดูดอาหารเลี้ยงเซลล์ออกล้าง PBS แล้ว นำแผ่น Cover slip ด้านใต้ของหลุมซึ่งมีเซลล์ที่ย้อมอยู่มาเตรียมเป็นแผ่นสไลด์เพื่อตรวจสอบ ต่อไปด้วยกล้อง Confocal laser scanning microscopy รุ่น Olympus FluoView 1000 (Olympus Corporation, Tokyo, Japan)

2.6 การวิเคราะห์การทดลอง

ผลการทดลอง Luciferase assay, ร้อยละของการกักเก็บ siRNA ภายในตัวพา CS-PEI, Cell viability และการยับยั้งการแสดงออกในระดับ mRNA จะแสดงเป็นค่า Mean ± Standard deviation (SD) โดยทำซ้ำ 3 ครั้ง และในการวิเคราะห์ความแตกต่างของค่าเฉลี่ยใน แต่ละกลุ่มการทดลองจะใช้สถิติ One-way analysis of variance (One-way ANOVA) ตามด้วย ทดสอบความแตกต่างของค่าเฉลี่ยแบบจับคู่พหุคูณของ Tukey's HSD (honestly significant difference) test ที่ระดับนัยสำคัญ 0.05 ด้วยโปรแกรมคำนวณทางสถิติ SPSS รุ่น 17.0

บทที่ 3

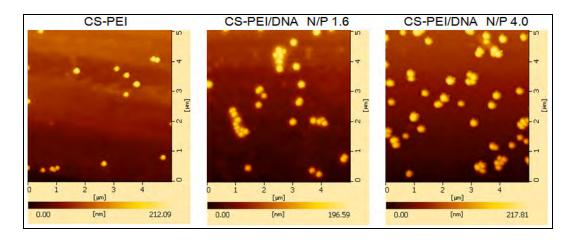

ผลการทดลอง

3.1 ผลการตรวจสอบคุณลักษณะและคุณสมบัติของตัวพา CS-PEI

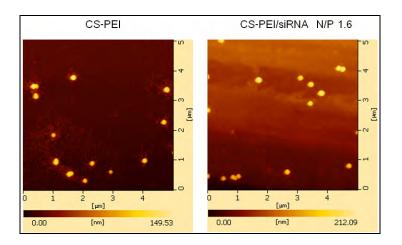
3.1.1 ผลการตรวจสอบความสามารถในการจับกันของตัวพา CS-PEI กับ DNA และ siRNA โดยวิธี Gel retardation assay

ความสามารถในการจับ DNA และ siRNA ของตัวพา CS-PEI ทดสอบได้โดยการทำ Gel retardation assay วิธีนี้ยังใช้หาอัตราส่วนที่เหมาะสมของ complex ที่เกิดการจับของ CS-PEI และ DNA ได้อีกด้วย การจับตัวพาของ DNA เตรียมโดยผสม CS-PEI/DNA complex ที่ อัตราส่วน amine/phosphate molar ratio (N/P) ของอนุภาคและพลาสมิด CS-PEI/pGL3-CMV เป็น 0.4, 0.8, 1.6, 4.0 และ 8.0 และการจับกับ siRNA เตรียมโดยผสม CS-PEI/siRNA complex ที่อัตราส่วน N/P เป็น 0.4, 0.6, 0.8, 1.6, 4.0 และ 8.0 เมื่อเกิดการจับกันระหว่างตัว พา CS-PEI ซึ่งมีประจุบวกกับ DNA หรือ siRNA ซึ่งมีประจุลบที่อัตราส่วนแตกต่างกัน จะเกิด complex ที่มีขนาดและประจุที่แตกต่างกัน มีผลต่อลักษณะการเคลื่อนที่ของ complex ตรวจสอบได้ด้วยการทำ Gel electrophoresis หากมีการจับกันอย่างสมบูรณ์ระหว่าง CS-PEI และ DNA หรือ siRNA ทำให้ไม่สามารถเคลื่อนที่ได้อย่างอิสระ ถูกหน่วงจนไม่สามารถ ตรวจสอบพบ DNA หรือ siRNA ในเจลได้เมื่อย้อมด้วย ethidium bromide

ผลการทำ Gel retardation assay พบว่าที่อัตราส่วน N/P เท่ากับ 1.6 ตัวพา CS-PEI สามารถจับกับทั้ง DNA และ siRNA ได้อย่างสมบูรณ์เปรียบเทียบกับลักษณะแถบของ DNA และ siRNA เปล่าที่ไม่ได้จับกับตัวพา (Naked DNA และ Naked siRNA) ในขณะที่อัตราส่วน N/P เท่ากับ 0.4 ถึง 0.8 ยังคงเห็นแถบการเคลื่อนอันเนื่องมาจากการจับกันที่ไม่สมบูรณ์ของตัว พาดังภาพที่ 6



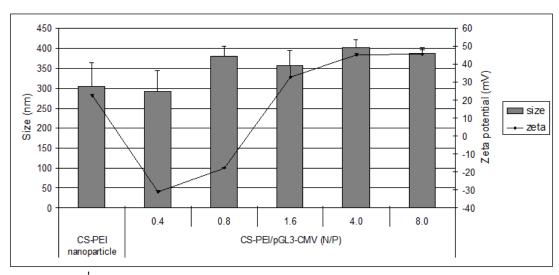
ภาพที่ 6 ผลการทำ Gel retardation assay โดยใช้ตัวพา CS-PEI จับกับ DNA (pGL3-CMV) และ siRNA (Si16E6-Sequence 10) ที่อัตราส่วน N/P ต่าง ๆ


3.1.2 ผลการตรวจสอบลักษณะทางสัณฐานวิทยาของ CS-PEI/DNA และ CS-PEI/siRNA complex โดย Atomic force microscope (AFM)

การตรวจสอบรูปร่างของตัวพา และ complex ที่เกิดจากการจับกันของ CS-PEI และ DNA ทำได้โดยใช้ AFM ซึ่งเตรียมตัวอย่างสำหรับส่องกล้องด้วยการหยดตัวอย่างลงบนแผ่น mica เมื่อตัวอย่างแห้งแล้ว นำมาสแกนภาพด้วยเข็มที่ความเร็ว 1.0 Hz ในบริเวณ 5 µm × 5 µm ด้วย Dynamic force microscope (DFM) mode (Seiko SPA4000, Japan) ผลการ วิเคราะห์ดังภาพที่ 7 พบว่า complex N/P 1.6 และ 4.0 มีขนาดมากขึ้นเนื่องจากการจับของ DNA ซึ่งให้ผลที่สอดคล้องกับผล gel retardation ที่ complex เกิดการจับกันอย่างสมบูรณ์ที่ N/P ดังกล่าว นอกจากนี้ยังพบว่า complex มีลักษณะเป็นทรงกลมขนาดเล็กมีการกระจาย ตัวอย่างอิสระและมีขนาดสม่ำเสมอ และมีขนาดใหญ่ว่าตัวพาปกติเนื่องจากการสะสมของ DNA

ในการทดลองนี้ได้ตรวจตาม CS-PEI/siRNA complex เช่นกัน แต่เนื่องจาก siRNA มี ขนาดเล็กและสั้นทำให้เป็นข้อจำกัดสำหรับการตรวจตามผลการจับด้วย AFM ผลที่ได้จึงไม่ พบว่าแตกต่างระหว่างตัวพาและ CS-PEI/siRNA complex (ภาพที่ 8)

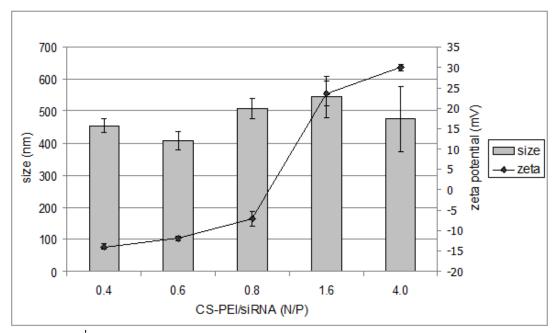
ภาพที่ 7 ลักษณะทางสัณฐานวิทยาของตัวพา CS-PEI และ complex ระหว่าง CS-PEI กับ DNA (pGL3-CMV) ที่อัตราส่วน N/P เท่ากับ 1.6 และ 4


ภาพที่ 8 ลักษณะทางสัณฐานวิทยาของตัวพา CS-PEI และ complex ระหว่าง CS-PEI กับ siRNA (Si16E6-Sequence 10) ที่อัตราส่วน N/P เท่ากับ 1.6

3.1.3 ผลการตรวจสอบขนาดและค่าประจุพื้นผิวของ CS-PEI/DNA และ CS-PEI/siRNA complex ด้วยการวัด Zetasizer

คุณสมบัติทางเคมีกายภาพของ CS-PEI/DNA complex อันประกอบด้วยขนาดของ อนุภาคแขวนลอย (Z-average hydrodynamic diameter) และค่าประจุพื้นผิวของอนุภาค ได้ถูก วิเคราะห์ด้วย dynamic light scattering (DLS) (Malvern Instruments Ltd., Worcestershire, UK) ผลที่ได้รายงานเป็นค่าเฉลี่ยของตัวอย่างที่ทำการวัด 3 ครั้ง พร้อมค่า standard deviation (SD)

ขนาดและค่าประจุพื้นผิวของ CS-PEI/DNA complex เมื่อวัดด้วย DLS แสดงผลใน ภาพ 9 พบว่าไม่มีความแตกต่างในกลุ่มของ CS-PEI/DNA ที่มีอัตราส่วน N/P เป็น 0.4, 0.8, 1.6, 4.0 และ 8.0 ขนาดของ complex ที่เกิดขึ้นอยู่ในช่วง 300 ถึง 400 nm ซึ่งเป็นขนาดที่ ยอมรับได้สำหรับการถ่ายโอนยืน [27, 28] จากเดิมที่ค่าประจุของอนุภาค CS-PEI เท่ากัน 22.23 mV แต่เมื่อเกิดเป็น complex แล้วค่าประจุของ complex เปลี่ยนไปที่ N/P ratio ต่าง ๆ ผลของค่าประจุที่วัดได้สอดคล้องกับผลของ gel retardation กล่าวคือ ที่ N/P 0.4 และ 0.8 ประจุ รวมของ complex solution มีค่าเป็นลบและประจุมีค่าเป็นบวกเพิ่มเรื่อย ๆ โดยเมื่อ N/P 1.6, 4.0 และ 8.0 มีค่าประจุเป็น 32.80, 45.36 และ 45.80 mV ตามลำดับ


ผลการวัดขนาดพบว่า CS-PEI/siRNA complex ที่อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.6 และ 4.0 ก็มีแนวโน้มเช่นเดียวกับ CS-PEI/siRNA complex ขนาดที่ได้อยู่ในช่วง 400-500 nm และค่าประจุเพิ่มขึ้นตามการเพิ่มของ N/P ratio ดังภาพ 10 ค่าประจุที่เป็นบวกนี้จะเป็น ประโยชน์สำหรับการนำส่งเนื่องจาก complex ประจุบวกมีความชอบและจับได้ดีกับผนังเซลล์ซึ่ง มีประจุเป็นลบได้ดี

ภาพที่ 9 ค่าขนาดและประจุของตัวพา CS-PEI และ complex ระหว่าง CS-PEI กับ DNA (pGL3-CMV) ที่อัตราส่วน N/P เท่ากับ 0.4, 0.8, 1.6, 4, และ 8

ตารางที่ 5 ค่าขนาดและประจุของตัวพา CS-PEI และ complex ระหว่าง CS-PEI กับ DNA (pGL3-CMV) ที่อัตราส่วน N/P เท่ากับ 0.4, 0.8, 1.6, 4, และ 8

Sample	N/P	Size (nm)	Zeta (mV)
CS-PEI		305 ± 59	22 ± 1.0
CS-PEI/DNA	0.4	293 ± 52	-31 ± 1.0
CS-PEI/DNA	0.8	380 ± 24	-17 ± 0.5
CS-PEI/DNA	1.6	356 ± 37	32 ± 6.0
CS-PEI/DNA	4.0	402 ± 18	45 ± 0.6
CS-PEI/DNA	8.0	388 ± 7	45 ± 3.0

ภาพที่ 10 ค่าขนาดและประจุของ complex ระหว่างตัวพา CS-PEI กับ siRNA (Si16E6-Sequence 10) ที่อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.6 และ 4

ตารางที่ 6 ค่าขนาดและประจุของ complex ระหว่างตัวพา CS-PEI กับ siRNA (Si16E6-Sequence 10) ที่อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.6 และ 4

Sample	N/P	Size (nm)	Zeta (mV)
CS-PEI/siRNA	0.4	455 ± 22	-14 ± 0.7
CS-PEI/siRNA	0.6	409 ± 29	-12 ± 0.5
CS-PEI/siRNA	0.8	509 ± 31	-7 ± 1.7
CS-PEI/siRNA	1.6	545 ± 65	24 ± 3.1
CS-PEI/siRNA	4.0	475 ± 101	30 ± 0.8

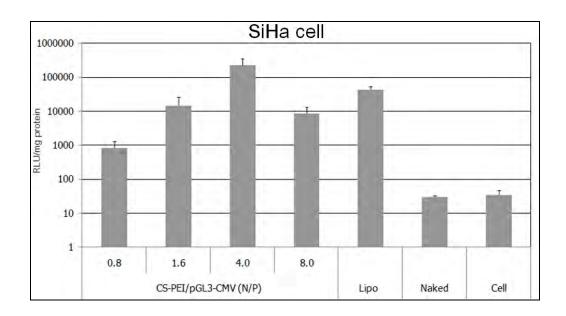
3.1.4 การวิเคราะห์ความสามารถในการจับ siRNA เชิงปริมาณ

ความสามารถในการจับ siRNA ของตัวพา CS-PEI เมื่อเตรียม complex ที่อัตราส่วน N/P เท่ากับ 0.4, 0.6, 0.8, 1.6, 4.0 และ 8.0 สามารถวิเคราะห์ออกมาในเชิงปริมาณได้ด้วยชุด Quant-iT™ RiboGreen® RNA reagent (Invitrogen, New York, USA) ผลการทดลองสรุปดัง ตารางที่ 7 ซึ่งเป็นผลที่สอดคล้องกับผล gel retardation กล่าวคือ gel retardation พบว่า complex เริ่มเกิดอย่างสมบูรณ์ที่ N/P 1.6 ซึ่งตรงกับค่า binding capacity ที่ 99.5 ± 0.50 % แสดงว่าแทบจะไม่มีปริมาณ unbound siRNA เหลืออยู่ และแม้ว่าจะใส่อนุภาคเพิ่มขึ้นที่ N/P มากขึ้นเป็น 4.0 และ 8.0 ค่า binding capacity ก็ยังมีค่าใกล้เคียงเดิมคือ 99.3 ± 0.30 % และ 97.9 ± 0.50 ตามลำดับ การทดลองนี้แสดงให้เห็นถึงประสิทธิภาพในการจับ siRNA และยืนยัน ว่าผลการจับอย่างสมบูรณ์เกิดขึ้นได้เมื่อ N/P เท่ากับ 1.6 หรือมากกว่า ดังนั้นสำหรับการนำส่ง siRNA เพื่อยับยั้งการแสดงออกของยีนจึงเลือก N/P 1.6 สำหรับการศึกษาต่อไป

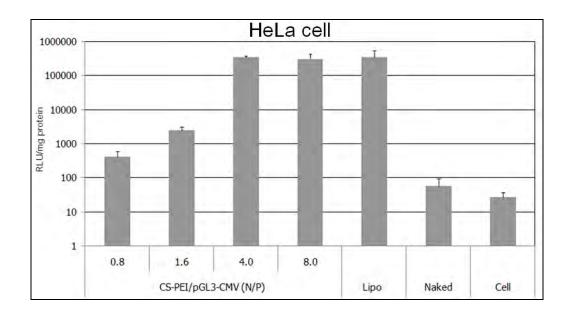
ตารางที่ 7 ความสามารถในการจับ siRNA ของ CS-PEI ในเชิงปริมาณ

CS-PEI/siRNA (N/P)	Binding capacity (%)
0.4	35.9 ± 12.8
0.6	59.7 ± 14.7
0.8	72.5 ± 13.3
1.6	99.5 ± 0.50
4.0	99.3 ± 0.30
8.0	97.9 ± 0.50

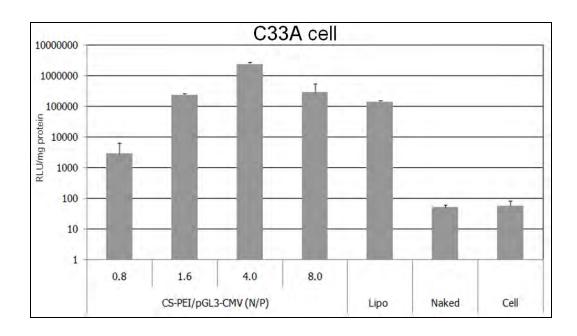
3.2 ผลการทดสอบการนำส่งยืนและความเป็นพิษด้วยตัวพา CS-PEI


3.2.1 ผลการประเมินประสิทธิภาพการนำส่งโดยการวัดสัญญาณ Luciferase

ก่อนที่จะมีการทดสอบการนำส่ง siRNA เข้าสู่เซลล์มะเร็งปากมดลูกนั้น งานวิจัยนี้ได้ ทดลองนำส่งยืนเพื่อเป็นประเมินความสามารถของตัวพา CS-PEI ในเบื้องตัน โดยใช้ตัวพา CS-PEI นำส่งพลาสมิด DNA เข้าสู่เซลล์มะเร็งปากมดลูก HeLa, SiHa และ C33A เป็น การศึกษานำร่องเพื่อยืนยันว่าตัวพาที่ใช้สามารถนำส่งเข้าสู่เซลล์มะเร็งปากมดลูกได้จริง อีกทั้ง การนำส่งยืนยังตรวจติดตามประสิทธิภาพได้ง่ายเมื่อเทียบกับการนำส่ง siRNA สำหรับ complex ของ CS-PEI/DNA ถูกเตรียมโดยใช้พลาสมิด DNA ชนิด pGL3-CMV ที่อัตราส่วน N/P เป็น 0.8, 1.6, 4.0 และ 8.0 มี Lipofectamine ซึ่งเป็นตัวพาทางการค้า และพลาสมิดเปล่า (Naked pGL3-CMV) ใช้เป็นกลุ่มควบคุม ประสิทธิภาพการนำส่งวัดได้จากปริมาณของเอนไซม์ Luciferase ที่เป็นผลจากการแสดงออกของพลาสมิดที่ถูกนำส่งเข้าสู่เซลล์ ซึ่งจะวัดออกมาเป็น ค่า Relative Luminescence Units (RLU) เทียบกับปริมาณโปรตีนแต่ละหลุมเพื่อปรับให้อยู่ใน รูปของ RLU/mg protein


ผลการนำส่งพลาสมิด DNA เข้าสู่เซลล์ SiHa พบว่าที่อัตราส่วน N/P ระหว่างตัวพา CS-PEI กับพลาสมิด pGL3-CMV เท่ากับ 4 ให้ประสิทธิภาพการนำส่งเข้าสู่เซลล์สูงที่สุด รองลงมาคือการนำส่งด้วยตัวพา Lipofectamine และตัวพา CS-PEI ที่ N/P 1.6 ตามลำดับ ดัง ภาพที่ 11

ผลการนำส่งพลาสมิด DNA เข้าสู่เซลล์ HeLa พบว่าที่อัตราส่วน N/P ระหว่างตัวพา CS-PEI กับพลาสมิด pGL3-CMV เท่ากับ 4 ให้ประสิทธิภาพการนำส่งเข้าสู่เซลล์สูงที่สุด รองลงมาคือการนำส่งด้วยตัวพา Lipofectamine และตัวพา CS-PEI ที่ N/P 8 ตามลำดับ ดัง ภาพที่ 12

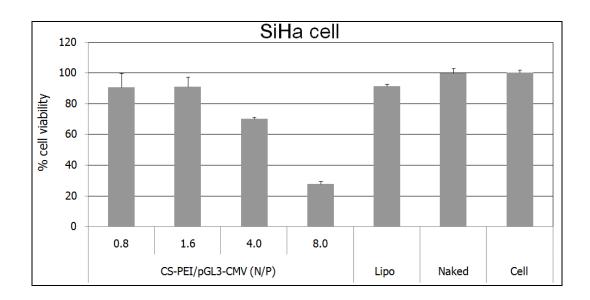

ผลการนำส่งพลาสมิด DNA เข้าสู่เซลล์ C33A พบว่าที่อัตราส่วน N/P ระหว่างตัวพา CS-PEI กับพลาสมิด pGL3-CMV เท่ากับ 4 ให้ประสิทธิภาพการนำส่งเข้าสู่เซลล์สูงที่สุด รองลงมาคือการนำส่งโดยใช้ตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 8 และ 1.6 ตามลำดับ ดัง ภาพที่ 13

ภาพที่ 11 แสดงปริมาณสัญญาณ Luciferase ของเซลล์ชนิด SiHa เมื่อนำส่งพลาสมิด pGL3-CMV โดยตัวพา CS-PEI ที่ N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่มควบคุมที่ นำส่งด้วย Lipofectamine, Naked pGL3-CMV และเซลล์เปล่า ตามลำดับ

ภาพที่ 12 แสดงปริมาณสัญญาณ Luciferase ของเซลล์ชนิด HeLa เมื่อนำส่งพลาสมิด pGL3-CMV โดยตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่ม ควบคุมที่นำส่งด้วย Lipofectamine, Naked pGL3-CMV และเซลล์เปล่า ตามลำดับ

ภาพที่ 13 แสดงปริมาณสัญญาณ Luciferase ของเซลล์ชนิด C33A เมื่อนำส่งพลาสมิด pGL3-CMV โดยตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่ม ควบคุมที่นำส่งด้วย Lipofectamine, Naked pGL3-CMV และเซลล์เปล่า ตามลำดับ

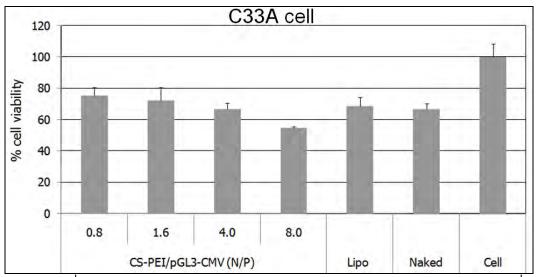
ผลการทดลองในภาพที่ 11, 12 และ 13 แสดงให้เห็นว่า CS-PEI สามารถนำส่งยืน luciferase เข้าสู่เซลล์ได้และให้ผลดีเทียบเคียงได้กับ Lipofectamine ประสิทธิภาพการนำส่ง ของ CS-PEI นั้นขึ้นอยู่กับค่า N/P ของ complex พบว่า N/P ในช่วง 1.6 และ 8.0 ให้ผลการ ถ่ายโอนที่ดี โดยจะดีที่สุดที่ N/P 4.0 ในเซลล์ทั้งสามชนิด หาก N/P ต่ำกว่า 1.6 ผลการถ่ายโอน ยีนจะมีประสิทธิภาพต่ำ อาจเนื่องมาจากปริมาณของอนุภาคไม่เพียงพอที่จะจับ DNA ปริมาณ 1 μg ได้หมด ทำให้การนำส่งและการปกป้อง DNA เกิดได้ไม่เต็มประสิทธิภาพ แต่หากถ่ายโอน ยีนด้วย complex ที่ N/P ratio มากเกินไป ปริมาณอนุภาคซึ่งมีอยู่มากเกินพออาจจะชักนำให้ เกิดความเป็นพิษต่อเซลล์เนื่องจากประจุบวกที่มากเกินมีแนวโน้มทำให้เซลล์รั่วได้ ซึ่งจะได้ ทดสอบความเป็นพิษของระบบนำส่งวิเคราะห์ได้โดยการทำ MTT assay ดังที่จะกล่าวต่อไป


3.2.2 ผลการตรวจสอบความเป็นพิษของระบบนำส่งที่มีต่อเซลล์มะเร็งปาก มดลูกโดยวิธี MTT assay

ความเป็นพิษของตัวพา CS-PEI ต่อเซลล์มะเร็งปากมดลูกชนิด SiHa, HeLa และ C33A ที่ได้รับการถ่ายโอนยีนแล้ว ตรวจสอบโดยวิธี MTT assay เพื่อหาร้อยละของอัตราการ รอดชีวิตของเซลล์ (% Cell viability) ผลที่ได้เป็นดังภาพที่ 15, 16 และ 17

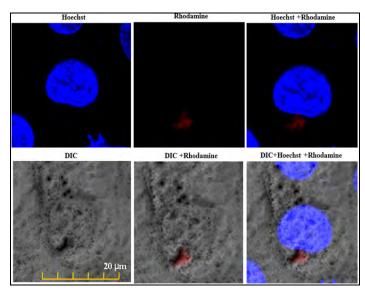

ผลการตรวจสอบความเป็นพิษต่อเซลล์ SiHa พบว่าเมื่อใช้ตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4 และ 8 ให้อัตราการรอดชีวิตของเซลล์เป็น 91%, 91%, 70% และ 28% ในขณะที่ตัวพา Lipofectamine รวมถึง Naked pGL3-CMV กับกลุ่มเซลล์เปล่าให้ค่าอยู่ที่ 91%, 100% และ 100% ตามลำดับ ดังภาพที่ 14

ผลการตรวจสอบความเป็นพิษต่อเซลล์ HeLa พบว่าเมื่อใช้ตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4 และ 8 ให้อัตราการรอดชีวิตของเซลล์เป็น 94%, 80%, 83% และ 53% ในขณะที่ตัวพา Lipofectamine รวมถึง Naked pGL3-CMV กับกลุ่มเซลล์เปล่าให้ค่าอยู่ที่ 81%, 112% และ 100% ตามลำดับ ดังภาพที่ 15

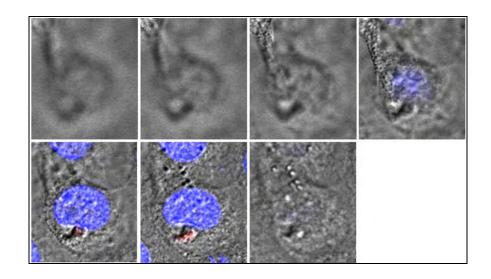

ผลการตรวจสอบความเป็นพิษต่อเซลล์ C33A พบว่าเมื่อใช้ตัวพา CS-PEI ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4 และ 8 ให้อัตราการรอดชีวิตของเซลล์เป็น 76%, 72%, 67% และ 55% ในขณะที่ตัวพา Lipofectamine รวมถึง Naked pGL3-CMV กับกลุ่มเซลล์เปล่าให้ค่าอยู่ที่ 69%, 67% และ 100% ตามลำดับ ดังภาพที่ 16

ภาพที่ 14 แสดงร้อยละของอัตราการรอดชีวิตของเซลล์ SiHa (% Cell viability) เมื่อใช้ ตัวพา CS-PEI นำส่งพลาสมิด pGL3-CMV ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่มควบคุมที่นำส่งด้วย Lipofectamine, Naked pGL3-CMV และกลุ่มเซลล์ตามลำดับ

ภาพที่ 15 แสดงร้อยละของอัตราการรอดชีวิตของเซลล์ HeLa (% Cell viability) เมื่อใช้ ตัวพา CS-PEI นำส่งพลาสมิด pGL3-CMV ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่มควบคุมที่นำส่งด้วย Lipofectamine, Naked pGL3-CMV และกลุ่มเซลล์ตามลำดับ


ภาพที่ 16 แสดงร้อยละของอัตราการรอดชีวิตของเซลล์ C33A (% Cell viability) เมื่อใช้ ตัวพา CS-PEI นำส่งพลาสมิด DNA pGL3-CMV ที่อัตราส่วน N/P เท่ากับ 0.8, 1.6, 4.0 และ 8.0 รวมถึงกลุ่มควบคุมที่นำส่งด้วย Lipofectamine, Naked pGL3-CMV และกลุ่มเซลล์ ตามลำดับ

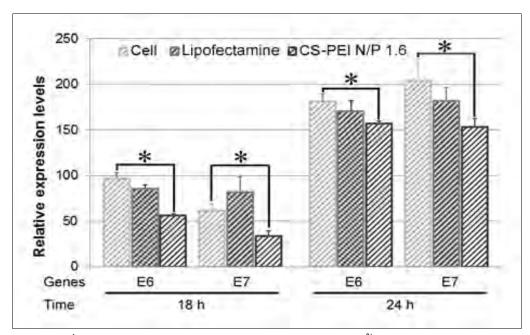
ผลการทดสอบความเป็นพิษของตัวพาที่มีต่อเซลล์มะเร็งปากมดลูก SiHa, HeLa และ C33A โดยวิธี MTT assay พบว่าเมื่อนำส่งด้วยตัวพา CS-PEI, Lipofectamine และพลาสมิด DNA เปล่า เซลล์แต่ละชนิดมีอัตราการรอดชีวิตที่แตกต่างกันขึ้นอยู่กับชนิดของตัวพา โดยใน SiHa และ HeLa พบว่า CS-PEI/DNA ที่ N/P เท่ากับ 4 และ 8 จะส่งผลทำให้เกิดพิษต่อเซลล์ (มีอัตราการรอดต่ำกว่า 70 %) สอดคล้องกับผลการนำส่ง luciferease ที่สะท้อนว่าหากถ่ายโอน ยืนด้วย complex ที่ N/P ratio มากเกินไป ปริมาณอนุภาคจะชักนำให้เกิดความเป็นพิษต่อเซลล์ และในที่สุดจะทำให้เซลล์รั่วและตายได้ ดังนั้นการใช้ตัวพาประจุบวกในการถ่ายโอนยีนนั้นต้อง ใช้ปริมาณของอนุภาคที่พอเหมาะด้วย เป็นที่น่าสังเกตว่า C33A มีอัตราการรอดที่ต่ำกว่า SiHa และ HeLa ดังนั้นสำหรับการนำส่ง siRNA ผู้วิจัยจึงได้เลือกใช้ SiHa เป็นเซลล์ทดสอบเพียง อย่างเดียว เนื่องจากเป็นเซลล์ที่เพาะเลี้ยงง่าย สะดวกต่อการสกัด RNA มาวิเคราะห์ต่อไป


3.3 ผลการตรวจสอบผลการน้ำส่ง siRNA เข้าสู่เซลล์มะเร็งปากมดลูก

3.3.1 การยืนยันการเข้าสู่เซลล์ (Cellular internalization) ของ CS-PEI/siRNA complex

จากผลการนำส่งยืนและความเป็นพิษด้วยตัวพา CS-PEI ใน SiHa พบว่าที่อัตราส่วน N/P เท่ากับ 1.6 ให้ประสิทธิภาพการนำส่งในระดับที่ดีมีค่าใกล้เคียงกับการนำส่งด้วยตัวพา Lipofectamine รวมถึงความปลอดภัยต่อเซลล์ จึงจะเลือกอัตราส่วนดังกล่าวมาใช้นำส่ง siRNA ที่จำเพาะต่อยืน E6/E7 ของเชื้อ HPV ในเซลล์มะเร็งปากมดลูก SiHa โดยในขั้นนี้จะตรวจสอบ ความสามารถของตัวพา CS-PEI ในการนำส่ง siRNA ที่ติดฉลากด้วยสี Rhodamine (RhosiRNA) แล้ว โดยเตรียม CS-PEI/Rho-siRNA complex ที่ N/P 1.6 นำส่งเข้า SiHa เพื่อ ตรวจสอบการเข้าสู่เซลล์ของ complex หลังจากการทำ transfection 18 ชั่วโมง ด้วย differential interference contrast (DIC) confocal imaging โดยได้ย้อมนิวเคลียสของเซลล์ด้วย สี Hoechst จากภาพที่ 17 พบสัญญาณของ Rho-siRNA ใน cellular compartment แสดงว่า การนำส่ง siRNA ด้วย CS-PEI ประสบผลสำเร็จ ซึ่งสามารถยืนยันได้จากภาพการทำ Z-stack confocal image โดยยิงแสงเลเซอร์ผ่านเซลล์เป็นชั้น ๆ ทำให้เห็น siRNA อยู่ภายในเซลล์ใด้ (ภาพที่ 18)

ภาพที่ 17 DIC confocal imaging แสดงผลการตรวจสอบการนำส่ง siRNA ที่ติดฉลาก ด้วยสี Rhodamine (Rho-siRNA) ด้วยตัวพา CS-PEI ที่อัตราส่วนของ CS-PEI/Rho-siRNA N/P เท่ากับ 1.6 หลังการนำส่งเป็นเวลา 18 ชั่วโมง นิวเคลียสของเซลล์ SiHa ย้อมสี Hoechst


ภาพที่ 18 ผลการทำ Z-stack ของเซลล์ SiHa หลังการนำส่ง 18 ชั่วโมง ด้วย CS-PEI/Rho-siRNA ที่ N/P 1.6 ภาพได้จากการยิงแสงเลเซอร์ตัดเซลล์ออกเป็น 7 ชั้น

3.3.2 ผลการตรวจสอบการยับยั้งการแสดงออกในระดับ mRNA ของยืน HPV E6/E7 ในเซลล์มะเร็งปากมดลูก โดยวิธี RT-PCR

ผลการนำส่งยืนและความเป็นพิษด้วยตัวพา CS-PEI ใน SiHa พบว่าที่อัตราส่วน N/P เท่ากับ 1.6 ให้ประสิทธิภาพการนำส่งในระดับที่ดี มีค่าใกล้เคียงกับการนำส่งด้วยตัวพา Lipofectamine รวมถึงความปลอดภัยต่อเซลล์ และภาพจาก DIC confocal imaging ช่วยยืนยัน การเข้าสู่เซลล์ได้จริงของ siRNA ดังนั้นในการทดลองขั้นนี้จึงเลือกเตรียม CS-PEI/siRNA ที่ อัตราส่วนดังกล่าวเพื่อใช้นำส่ง siRNA ที่จำเพาะต่อยืน E6/E7 ของเชื้อ HPV ในเซลล์มะเร็งปาก มดลูก SiHa ของยืนดังกล่าว โดยใช้ Lipofectamine เป็นตัวพาควบคุมในการนำส่ง และ วิเคราะห์ผลการนำส่งด้วย RT-PCR เพื่อดูผลการยับยั้งการแสดงออกในระดับ mRNA หลังการ นำส่ง 18 และ 24 ชั่วโมง โดยใช้ Primer ที่จำเพาะต่อยืน E6 และ E7 นอกจากนี้ยังมียืน GAPDH เป็นตัวปรับค่าซึ่งจะรายงานออกมาเป็นค่า Relative expression levels เซลล์ที่รับการ ถ่ายโอน siRNA แบ่งออกเป็น 3 กลุ่มเซลล์ที่นำส่ง siRNA โดยใช้ Lipofectamine และ กลุ่มเซลล์ที่นำส่ง siRNA ด้วยตัวพา CS-PEI ผลที่ได้แสดง ภาพที่ 19

ผลการทดลองพบว่าการยับยั้งการแสดงออกของ E6 และ E7 mRNA เกิดขึ้นที่เวลา 18 และ 24 ชั่วโมงหลังการนำส่ง siRNA เข้าสู่เซลล์อย่างมีนัยสำคัญทางสถิติ (p< 0.05) เมื่อเทียบ กับ กลุ่มเซลล์ควบคุม แต่ประสิทธิภาพการยับยั้งจะลดลงไปเมื่อเพิ่มเวลาการบ่มเซลล์ต่อไปอีก

เมื่อเทียบกับการบ่มเซลล์หลังการนำส่งที่เวลา 18 และ 24 ชั่วโมง เป็นที่ทราบกันว่า ความสามารถในการยับยั้งการแสดงออกของยืนด้วย siRNA มักจะไม่เสถียร ดังนั้นผลการยับยั้ง จะมีการแปรเปลี่ยนได้ตามเวลาที่ตรวจสอบ นอกจากนี้ระยะการเจริญและสภาพของเซลล์ยังเป็น ปัจจัยสำคัญในการศึกษาผลการยับยั้งด้วย อย่างไรก็ตาม การศึกษาครั้งนี้แสดงให้เห็นถึง ประสิทธิภาพของการนำส่ง siRNA ด้วย CS-PEI เพื่อกดการแสดงออกของยีนที่เกี่ยวกับกับการ ก่อมะเร็งปากมดลูก

ภาพที่ 19 Semi-quantitative RT-PCR แสดงผลการยับยั้งการแสดงออกของยืน E6/E7 ในระดับ mRNA ของเซลล์ SiHa หลังจากการนำส่ง siRNA ที่เวลา 18 และ 24 ชั่วโมง เปรียบเทียบระหว่างเซลล์ที่ถ่ายโอนด้วย naked siRNA (1 µg), Lipofectamine 2000™/siRNA lipoplex และ CS-PEI/siRNA complex, * = ความแตกต่างระหว่างกลุ่มตัวอย่างที่ค่าระดับ นัยสำคัญ 0.05 (p< 0.05)

บทที่ 4

บทวิจารณ์

งานวิจัยครั้งนี้เป็นการทดสอบระบบนำส่งยืนและ siRNA แบบไม่อาศัยไวรัสเข้าสู่ เซลล์มะเร็งปากมดลูกเพาะเลี้ยง โดยใช้ตัวพาที่ชื่อ PEI-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles หรือตัวพา CS-PEI ในการทดลองนี้ได้ทำการทดสอบ เบื้องต้นโดยการใช้ตัวพา CS-PEI เป็นตัวพาสำหรับนำส่ง DNA เข้าสู่เซลล์มะเร็งปากมดลูก SiHa เพื่อหาสภาวะและอัตราส่วนที่เหมาะสมใช้สำหรับนำส่ง siRNA

การทดลองส่วนแรกเป็นการทดสอบคุณสมบัติของตัวพา CS-PEI กับ DNA และ siRNA ด้วยการทำ Gel retardation assay โดยเตรียม complex ของ CS-PEI/pGL3-CMV และ CS-PEI/siRNA ที่อัตราส่วน N/P ต่าง ๆ จากนั้นแยกความแตกต่างโดยอาศัยลักษณะการเคลื่อนที่ ของ complex บนเจลด้วยกระแสไฟฟ้า (Gel electrophoresis) สำหรับรูปแบบการจับกันของตัว พากับ DNA และ siRNA นั้นอาศัยแรงระหว่างประจุของสารที่มีขั้วต่างกัน (Electrostatic interaction) ซึ่งเกิดจากประจุบวกของหมู่เอมีนบนตัวพา CS-PEI กับประจุลบของหมู่ฟอสเฟต บนสารพันธุกรรมกรดนิวคลีอิกที่ใช้นำส่ง โดยปริมาณของตัวพาที่ใช้มีผลต่อการเคลื่อนที่ของ complex จากบริเวณความต่างศักย์ที่เป็นขั้วลบไปหาบวก ผลที่ได้พบว่าตัวพา CS-PEI สามารถจับกับทั้งพลาสมิด DNA และ siRNA ได้อย่างสมบูรณ์ที่อัตราส่วน N/P เท่ากับ 1.6 สังเกตจากการที่ไม่พบแถบการเคลื่อนที่ของ complex บนเจล จากการศึกษาพบว่าค่า N/P ของ ทั้ง CS-PEI/DNA และ CS-PEI/siRNA มีค่าเท่ากันแสดงให้เห็นว่าความสามารถในการจับ DNA และ siRNA ของตัวพา CS-PEI ขึ้นอยู่กับปริมาณของหมู่เอมีนและฟอสเฟต ไม่ได้เกี่ยวข้องกับ ขนาดของ DNA และ siRNA

การตรวจสอบลักษณะทางสัณฐานวิทยาของตัวพาและ complex ด้วย AFM พบว่าตัว พา CS-PEI มีลักษณะเป็นทรงกลมขนาดเล็ก กระจายดี แต่เมื่อทำ complex กับพลาสมิด pGL3-CMV ที่อัตราส่วน N/P เท่ากับ 1.6 และ 4 พบว่าอนุภาคที่ได้มีลักษณะเป็นทรงกลมที่มี ขนาดใหญ่ขึ้น อันเป็นผลมาจากการจับกันระหว่างตัวพากับพลาสมิด DNA ดังกล่าว นอกจากนี้ ยังพบว่าที่อัตราส่วน N/P ที่สูงขึ้นจะส่งผลทำให้อนุภาคทรงกลมเกิดการเกาะกลุ่มกัน ซึ่งน่าจะ เป็นผลมาจากตัวพา CS-PEI ที่มีประจุบวกมากเกินพอไปแย่งจับกันกับพลาสมิด DNA ที่มีประจุ ลบ อย่างไรก็ตาม เทคนิค AFM ไม่สามารถวิเคราะห์ความแตกต่างของ CS-PEI และ CS-PEI/siRNA complex ได้ คาดว่าเป็นเพราะ siRNA นั้นมีขนาดเล็กจนไม่สามารถตรวจด้วย AFM

ได้ เมื่อวิเคราะห์ขนาดและประจุพื้นผิวสุทธิของ complex พบว่า ขนาดของ CS-PEI/DNA อยู่ ในช่วง 300-400 nm และ CS-PEI/siRNA อยู่ในช่วง 400-500 nm ตัวพา CS-PEI สามารถจับ ได้ทั้ง DNA และ siRNA ที่ปริมาณ 1 µg ได้อย่างสมบูรณ์ที่อัตราส่วน N/P เท่ากับ 1.6 และมี ประจุพื้นผิวรวมเป็นบวก ขนาดและประจุที่ได้นี้เหมาะสมสำหรับใช้นำส่งเข้าเซลล์ [29, 30] ใน ส่วนของ CS-PEI/siRNA complex นั้น แม้จะไม่สามารถตรวจพบการจับ siRNA บนอนุภาคได้ แต่ผลจากการวัดปริมาณการจับ siRNA ด้วยเทคนิคการตรวจสอบจากชุด Quant-iT™ RiboGreen® RNA Reagent ซึ่งมีหลักการคือสาร Fluorophores มีคุณสมบัติในการจับกับ siRNA แล้วเกิดการเปล่งแสงฟลูออเรสเซนต์ขึ้น โดยค่า Fluorescence intensity ที่วัดได้จะแปร ผันตามปริมาณของ unbound-siRNA ที่ลอยอยู่ในสารแขวนลอย ซึ่งยืนยันได้ว่า CS-PEI สามารถจับ siRNA ได้จริง และที่อัตราส่วน N/P เท่ากับ 1.6 ให้ผลการจับได้ประมาณ 100 % ผลการทดลองในส่วนของการทดสอบคุณสมบัติทางกายภาพของตัวพา CS-PEI ที่ได้มีความ สอดคล้องกับผลการทดลองของ Pimpha และคณะในปี 2010 [17]

จากการทดสอบการนำส่งยืนและทดสอบความเป็นพิษด้วยตัวพา CS-PEI โดยทดลอง นำส่งพลาสมิด pGL3-CMV เข้าสู่เซลล์ SiHa, HeLa และ C33A มี Lipofectamine เป็นตัวแปร ควบคุมร่วมกับการนำส่งพลาสมิด DNA เปล่า องค์ประกอบหลักของตัวพาดังกล่าวประกอบด้วย Chitosan (CS) ซึ่งเป็นพอลิเมอร์จากธรรมชาติทำให้มีคุณสมบัติในการเข้ากันกับเซลล์ได้ดีและ ย่อยสลายง่าย แต่อย่างไรก็ตามความสามารถในการนำส่งยืนเข้าสู่เซลล์ของ CS ยังไม่ดีนัก ซึ่ง เกิดจากความไม่เสถียรของ complex ที่เตรียมได้ ทำให้เกิดการเกาะกลุ่มอยู่บริเวณภายนอก ของเยื่อหุ้มเซลล์ ส่งผลให้ประสิทธิภาพการเข้าสู่เซลล์ต่ำ [27] แต่ด้วยคุณสมบัติของ PEI บนตัว พาซึ่งเป็นพอลิเมอร์ประจุบวกสูงทำให้สามารถจับกับยืนได้ดีรวมถึงประสิทธิภาพการนำส่งที่สูง โดยอาศัยคุณสมบัติที่เรียกว่า "Proton sponge effect" ซึ่งเป็นกลไกที่ PEI ใช้หลบหลีกออกจาก ส่วนของ Endosome ในขั้นตอนการนำส่งเข้าสู่เซลล์ [28] ซึ่งผลที่ได้พบว่าที่อัตราส่วน N/P เท่ากับ 4 ให้ผลการนำส่งดีที่สุด ซึ่งน่าจะเกิดจาก complex มีประจุบวกสุทธิเป็นบวกสูง ทำให้ เข้าสู่เซลล์ได้ดีและสามารถปกป้องพลาสมิดจากการทำลายโดยเอนไซม์ต่าง รวมถึงการหลบหลีกออกจากส่วนของ Endosome เพื่อปลดปล่อยพลาสมิดเข้าสู่นิวเคลียสจน เกิดการแสดงออกในที่สุด โดยสังเกตจากผล Luciferase assay ในการวัดสัญญาณของเอนไซม์ Luciferase ที่สร้างจากพลาสมิดดังกล่าวเมื่อนำส่งเข้าสู่เซลล์ ในขณะที่ Lipofectamine และตัว พา CS-PEI ที่อัตราส่วน N/P 1.6 ให้ประสิทธิภาพการนำส่งที่รองลงมา แต่เมื่อพิจารณาผลการ

ทดสอบความเป็นพิษของตัวพาที่มีต่อเซลล์ควบคู่กันไปกลับพบว่าที่อัตราส่วน N/P เท่ากับ 4 ให้อัตราการรอดชีวิตของเซลล์อยู่ที่ประมาณ 70% ซึ่งเป็นพิษต่อเซลล์สูงกว่าเมื่อเทียบกับการ นำส่งด้วย Lipofectamine และตัวพา CS-PEI ที่ N/P 1.6 ที่ให้อัตราการรอดชีวิตอยู่ที่ประมาณ 90-100 % สาเหตุที่ทำให้เซลล์เป็นพิษเป็นผลมากจากการที่ complex มีประจุสุทธิเป็นบวกสูง เมื่อเข้าสู่เซลล์จะเกิดการตกค้างและเกาะติดในส่วนของเยื่อหุ้มเซลล์ทำให้การทำงานดังกล่าว ผิดปกติไปจนก่อให้เกิดการรั่วของเยื่อหุ้มเซลล์ส่งผลให้เซลล์ตายในที่สุด [31] จากผลการ ทดลองข้างตันผู้ทำวิจัยจึงเลือกอัตราส่วน N/P 1.6 ไปใช้ในการนำส่ง siRNA เข้าสู่เซลล์มะเร็ง ปากมดลูกต่อไปโดยคำนึงถึงประสิทธิภาพการนำส่งและความเป็นพิษต่อเซลล์ที่ต่ำ

ในส่วนของการนำส่ง siRNA นั้น ผู้วิจัยได้เริ่มจากการนำส่ง siRNA ที่ติดฉลากด้วย Rhodamine เพื่อยืนยันการเข้าสู่เซลล์ของ siRNA ด้วยตัวพา CS-PEI ตรวจสอบโดยการ วิเคราะห์ภาพจาก DIC-confocal imaging แล้วจึงนำส่ง siRNA เข้าสู่ SiHa เพื่อยับยั้งการ แสดงออก ของยืน E6/E7 ในระดับ mRNA ผลการทำ RT-PCR หลังจากนำส่งด้วยตัวพา CS-PEI และ Lipofectamine ที่เวลา 18 และ 24 ชั่วโมง พบว่าผลการยับยั้งการแสดงออกของยืน E6/E7 ที่นำส่งด้วยตัวพา Lipofectamine ซึ่งใช้เป็นกลุ่มการทดลองควบคุมให้ผลการยับยั้งใน ปริมาณที่ไม่มากนัก เนื่องมาจากยังไม่มีการทดลองหาปริมาณที่เหมาะของตัวพาดังกล่าวเพื่อใช้ ในการนำส่ง siRNA เข้าสู่เซลล์ที่ช่วงเวลาที่ทดสอบ ในขณะที่ผลของตัวพา CS-PEI ที่นำส่ง siRNA พบความแตกต่างของการแสดงออกในยืน E6/E7 อย่างมีนับสำคัญทางสถิติ (p< 0.05) เมื่อเทียบกับกลุ่มเซลล์ควบคุม นอกจากนี้ยังพบผลกดการแสดงออกของยีนดังกล่าวที่เวลา 18 และ 24 ชั่วโมงอีกด้วย ซึ่งผลที่ได้สอดคล้องกับการทดลองของ Putral และคณะในปี 2008 ที่ใช้ ที่มีลำดับเบสเช่นเดียวกันกับงานวิจัยครั้งนี้ในการยับยั้งการแสดงออกของอองโคยีน E6/E7 ของเชื้อ HPV สายพันธุ์ที่ 16 ในเซลล์มะเร็งปากมดลูก SiHa โดย siRNA ที่นำส่งเข้าไป สามารถชักนำให้เกิดกระบวนการ RNAi และส่งผลกดการแสดงออกในระดับโปรตีนของยืน ดังกล่าวจริง [22] แต่อย่างไรก็ตามการประสิทธิภาพการทำงานของ siRNA ขึ้นอยู่กับระยะเวลา ที่เหมาะสม [32] ซึ่งจะต้องอาศัยการทดสอบในหลายช่วงเวลาต่อไป

จากผลการทดลองทั้งหมดทำให้ได้ข้อสรุปว่าตัวพา CS-PEI ซึ่งเป็นอนุภาคพอลิเมอร์ป ระจุบวกซึ่งมีคุณสมบัติเด่นในเรื่องของประสิทธิภาพการนำส่งเข้าสู่เซลล์จาก PEI และเข้ากันกับ เซลล์ได้ดีรวมถึงการย่อยสลายได้เองตามธรรมชาติของ CS นั้นสามารถจับกับสารพันธุกรรม กรดนิวคลีอิกได้ทั้งพลาสมิด DNA และ siRNA โดย complex ที่เกิดขึ้นมีลักษณะเป็นทรงกลม มี

ขนาดระดับ sub-micron นอกจากนี้ยังมีประสิทธิภาพในการนำส่งพลาสมิด DNA เข้าสู่ เซลล์มะเร็งปากมดลูกได้ดี รวมถึงให้ผลกดการแสดงออกของยืน E6/E7 ในระดับ mRNA เมื่อ นำส่ง siRNA เข้าสู่เซลล์มะเร็งปากมดลูก แต่อย่างไรก็ตามในการนำส่งต้องคำนึงปริมาณของตัว พาที่ใช้ให้มีความเหมาะสมเพื่อไม่ให้เกิดพิษต่อเซลล์ จากเหตุผลที่ได้กล่าวมาข้างต้นตัวพา CS-PEI จึงเป็นตัวนำส่งแบบไม่อาศัยไวรัสเป็นตัวพาที่น่าสนใจและสามารถนำไปพัฒนาต่อยอด การศึกษาในสัตว์ทดลองต่อไปในอนาคต

เอกสารอ้างอิง

- [1] Bosch, F. X., and others. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. <u>Journal of the National Cancer Institute</u> 87 (June 1995): 796-802.
- [2] Govan, V. A. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). <u>Therapeutics</u> <u>and Clinical Risk Management</u> 4 (February 2008): 65-70.
- [3] Jones, B. Toxicity after cervical cancer treatment using radiotherapy and chemotherapy. <u>Clinical Oncology (Royal College of Radiologists (Great Britain)</u> 21 (February 2009): 56-63.
- [4] Butz, K., Ristriani, T., Hengstermann, A., Denk, C., Scheffner, M., and Hoppe-Seyler, F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. <u>Oncogene</u> 22 (September 2003): 5938-45.
- [5] Alvarez-Salas, L. M., Cullinan, A. E., Siwkowski, A., Hampel, A., and DiPaolo, J. A. Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. <u>Proceedings of the National Academy of Sciences of the United States of America</u> 95 (February 1998): 1189-94.
- [6] von Knebel Doeberitz, M., Oltersdorf, T., Schwarz, E., and Gissmann, L. Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. <u>Cancer Research</u> 48 (July 1988): 3780-86.
- [7] Yugawa, T., and Kiyono, T. Molecular mechanisms of cervical carcinogenesis by

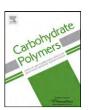
- high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Reviews in Medical Virology 19 (January 2009): 97-113.
- [8] Thomison, J., 3rd, Thomas, L. K., and Shroyer, K. R. Human papillomavirus: molecular and cytologic/histologic aspects related to cervical intraepithelial neoplasia and carcinoma. <u>Human Pathology</u> 39 (February 2008): 154-66.
- [9] Stein, C. A. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends in Biotechnology 14 (May 1996): 147-49.
- [10] Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., and Aigner, A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy 12 (December 2004): 461-66.
- [11] Glover, D. J., Lipps, H. J., and Jans, D. A. Towards safe, non-viral therapeutic gene expression in humans. <u>Nature Reviews Genetics</u> 6 (April 2005): 299-310.
- [12] Anderson, W. F. Human gene therapy. Nature 392 (April 1998): 25-30.
- [13] Li, S., and Huang, L. Nonviral gene therapy: promises and challenges. <u>Gene</u>
 Therapy 7 (January 2000): 31-34.
- [14] Illum, L. Chitosan and its use as a pharmaceutical excipient. <u>Pharmaceutical</u>

 Research 15 (September 1998): 1326-31.
- [15] Singla, A. K., and Chawla, M. Chitosan: some pharmaceutical and biological aspects--an update. <u>Journal of Pharmacy and Pharmacology</u> 53 (August 2001): 1047-67.
- [16] Zhao, Q. Q., Chen, J. L., Han, M., Liang, W. Q., Tabata, Y., and Gao, J. Q. Combination of poly(ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity. <u>Journal of Bioscience and</u> Bioengineering 105 (January 2008): 65-68.
- [17] Pimpha, N., Sunintaboon, P., Inphonlek, S., and Tabata, Y. Gene delivery efficacy of
 - polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells. <u>Journal of Biomaterials Science, Polymer Edition</u> 21 (January 2010): 205-23.
- [18] ATCC. CCL-2 [Online]. 2012. Available from :

http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/4 52/Default.aspx?ATCCNum=CCL-2.2&Template=cellBiology [2012, July 30]

- [19] ATCC. CRM-HTB-31 [Online]. 2012. Available from : http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/4 52/Default.aspx?ATCCNum=CRM-HTB-31&Template=cellBiology [2012, July 30]
- [20] Tencomnao, T., Rakkhitawatthana, V., and Sukhontasing, K. Evaluation of a novel luciferase reporter construct: a positive control plasmid for reporter gene assay. <u>African Journal of Biotechnology</u> 7 (July 2008): 2124–27.
- [21] Life Technologies. Lipofectamine™ 2000 Transfection Reagent [Online]. 2012.

 Available from: http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Protein-Expression-and-Analysis/Transfection-Selection/lipofectamine-2000.html [2012, July 22]
- [22] Putral, L. N., and others. RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Molecular Pharmacology 68 (November 2005): 1311-19.
- [23] Life Technologies. Lipofectamine™ 2000 Transfection Reagent [Online]. 2012.
 Available from : https://products.invitrogen.com/ivgn/product/11668027
 [2012, July 30]
- [24] Promega. Luciferase Assay System Technical Bulletin [Online]. 2012. Available from : http://www.promega.com/resources/protocols/technical-bulletins/0/luciferase-assay-system-protocol/ [2012, August 6]
- [25] Zor, T., and Selinger, Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. <u>Analytical Biochemistry</u> 236 (May1996): 302-08.
- [26] Divya, C. S., and Pillai, M. R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. <u>Molecular</u> Carcinogenesis 45 (May 2006): 320-32.
- [27] Koping-Hoggard, and others. Improved chitosan-mediated gene delivery based on


- easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Therapy 11(October 2004): 1441-52.
- [28] Godbey, W. T., Wu, K. K., and Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. <u>Journal of Controlled Release</u> 60 (August 1999): 149-60.
- [29] Rakkhithawatthana, V., Sanitrum, P., Sajomsang, W., Na Ubon, P., Tencomnao, T., and Saengkrit, N. Investigation of gene transferring efficacy through nano-polyplex consisting of methylated N-(4-pyridinylmethyl) chitosan chloride and poly(ethylenimine) in human cell lines. <u>Carbohydrate Polymers</u> 80 (March 2010): 276-84.
- [30] Tencomnao, T., and others. Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system. <u>Carbohydrate Polymers</u> 84 (February 2011): 216-22.
- [31] Fischer, D., Bieber, T., Li, Y., Elsasser, H. P., and Kissel, T. A novel non-viral vector
 - for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharmaceutical Research 16 (August 1999): 1273-79
- [32] Liao, Z. X., Ho, Y. C., Chen, H. L., Peng, S. F., Hsiao, C. W., and Sung, H. W. Enhancement of efficiencies of the cellular uptake and gene silencing of chitosan/siRNA complexes via the inclusion of a negatively charged poly(gamma-glutamic acid). <u>Biomaterials</u> 31 (November 2010): 8780-88.

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells

Nattika Saengkrit^{a,*}, Phakorn Sanitrum^b, Noppawan Woramongkolchai^a, Somsak Saesoo^a, Nuttaporn Pimpha^a, Saowaluk Chaleawlert-umpon^a, Tewin Tencomnao^c, Satit Puttipipatkhachorn^d

- a National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- b Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand Scoutar for Excellence in Omics Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University
- ^c Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- ^d Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand

ARTICLE INFO

Article history: Received 10 May 2012 Received in revised form 26 June 2012 Accepted 28 June 2012 Available online 6 July 2012

Keywords:
Chitosan
Polyethyleneimine
Core/shell nanoparticle
DNA delivery
siRNA delivery
Human cervical cancer cell line

ABSTRACT

In this study, we examined the potential of cationic nanoparticle – polyethyleneimine-introduced chitosan shell/poly (methyl methacrylate) core nanoparticles (CS-PEI) for siRNA delivery. Initially, DNA delivery was performed to validate the capability of CS-PEI for gene delivery in the human cervical cancer cell line, SiHa. siRNA delivery were subsequently carried out to evaluate the silencing effect on targeted E6 and E7 oncogenes. Physicochemical properties including size, zeta potential and morphology of CS-PEI/DNA and CS-PEI/siRNA complexes, were analyzed. The surface charges and sizes of the complexes were observed at different N/P ratios. The hydrodynamic sizes of the CS-PEI/DNA and CS-PEI/siRNA were approximately 300–400 and 400–500 nm, respectively. Complexes were positively charged depending on the amount of added CS-PEI. AFM images revealed the mono-dispersed and spherical shapes of the complexes. Gel retardation assay confirmed that CS-PEI nanoparticles completely formed complexes with DNA and siRNA at a N/P ratio of 1.6. For DNA transfection, CS-PEI provided the highest transfection result. Localization of siRNA delivered through CS-PEI was confirmed by differential interference contrast (DIC) confocal imaging. The silencing effect of siRNA specific to HPV 16 E6/E7 oncogene was examined at 18 and 24 h post-transfection. The results demonstrated the capacity of CS-PEI to suppress the expression of HVP oncogenes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Effective gene delivery is needed for effective DNA and RNA-based therapeutics, since both DNA and RNA are easily degraded by the digestive enzymes in the body. This results in a decrease in the quantity of DNA or small interference RNA (RNAi) entering the cells after intracellular delivery. To make DNA and RNA delivery more efficient, both viral and non-viral carriers have been developed (Mastrobattista, van der Aa, Hennink, & Crommelin, 2006; Walther & Stein, 2000). Among the non-viral gene delivery approaches, polymeric-based nanoparticles have been intensively studied because of their safety and biocompatibility (Anderson, 1998; Schaffert & Wagner, 2008).

Adsorption of nucleic acid onto cationic nanoparticles is one of the approaches used for DNA or RNA delivery (Wong, Pelet, & Putnam, 2007). This technique facilitates the immediate release

of DNA or RNA at target site. Furthermore, the preparations of polymer and DNA/RNA complexes by adsorption can avoid the chemical effects used in other approaches such as encapsulation. Polyethyleneimine (PEI) is a cationic polymer widely used for nucleic acid delivery. PEI possesses very high positive charges from amines in molecules which can form complexes with phosphate groups of nucleic acids through electrostatic interaction (Bivas-Benita, Romeijn, Junginger, & Borchard, 2004). The complexes can later be delivered into the cell through endocytosis (Urban-Klein, Werth, Abuharbeid, Czubayko, & Aigner, 2005). While PEI is considered to be the most effective cationic polymer due to its buffering capacity via the proton sponge effect, it is a highly cytotoxic polymer which presents a major obstacle to applying PEI in human gene therapy (Boussif et al., 1995; Kunath et al., 2003). Another polymer that is often used for gene therapy is chitosan which is well-known as a biocompatible polymer (Kumar, Muzzarelli, Muzzarelli, Sashiwa, & Domb, 2004). Chitosan is a cationic polysaccharide, produced by deacetylation of chitin from crustacean shells. Previously, the gene delivery effectiveness of PEI-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles (CS-PEI

^{*} Corresponding author. Tel.: +66 2564 7100x6558; fax: +66 2564 6981. E-mail address: nattika@nanotec.or.th (N. Saengkrit).

nanoparticles) was demonstrated in rat mesenchymal stem cells (Pimpha, Sunintaboon, Inphonlek, & Tabata, 2010). The study concluded that the CS-PEI nanoparticle was a promising carrier for gene delivery. In the current study, we focused on the application of CS-PEI nanoparticles for both DNA and siRNA delivery in cervical cancer cells.

Cervical cancer is a malignant tumor which occurs when abnormal cells in the cervical area divide rapidly and grow out of control. The main cause of cervical cancer is infection by the sexually transmitted human papillomavirus (HPV) (Walboomers et al., 1999). HPV is a double-stranded DNA virus, which is divided into low risk and high risk categories based on the ability to transform normal cells into cancer (Bosch et al., 1995; Govan, 2008). Viral DNA replication, regulatory functions, and activation of the lytic life cycle are controlled by six early expressed genes (E1, E2, E4, E5, E6 and E7). Meanwhile, the viral capsid protein is regulated by two late expressed genes (L1, L2). Malignancy occurs through integration of the HPV DNA with the host genome, resulting in over-expression of the viral genes E6 and E7 (Grassmann, Rapp, Maschek, Petry, & Iftner, 1996; Jeon & Lambert, 1995). The HPV oncoproteins E6 and E7 interfere with the cell cycle by inhibiting the two tumor suppressor proteins, p53 and pRb, which control cell division (Dyson, Howley, Munger, & Harlow, 1989; Werness, Levine, & Howley, 1990).

In general, the treatments for cervical cancer are surgery, radiation and/or chemotherapy. However, there is no satisfactory approach which completely eliminates cancer. RNA interference (RNAi) is a promising, novel mechanism for gene silencing which is being considered for use in cancer therapy. Introduction of exogenous short interfering RNA (siRNA) causes of RNA silencing at the posttranscriptional level, providing the novel approach to manipulate gene of interest in sequence-specific manner (Hannon, 2002). The over-expression of the HPV E6/E7 oncogenes results in cellular transformation into HPV-positive cervical cancer cells (von Knebel Doeberitz, Rittmüller, Hausen, & dürst, 1992). The loss of E6/E7 gene over-expression results in suppression of cervical cancer development. Therefore, the use of RNAi to inhibit the expression of E6/E7 genes has been studied intensively (Alvarez-Salas, Benitez-Hess, & DiPaolo, 2003; Butz et al., 2003). Furthermore, several studies revealed that treatment of cancer with siRNA was able to enhance the effect of anti-tumor drugs such as cisplatin (Tan et al., 2012), doxorubicin, and gemcitabine (Koivusalo, Krausz, Helenius, & Hietanen, 2005).

The aim of this study was to develop the nanoparticle for delivery of siRNA into cervical cancer cells. The feasibility study of the role of CS-PEI nanoparticles in siRNA delivery was validated initially by DNA delivery. The cervical cell line SiHa was selected as a cell model for transfection because SiHa is the cervical cancer cell infected with high-risk strains of human papillomavirus type 16 which is one of the prevalent genotypes of HPV (Howley, Munger, Romanczuk, Scheffner, & Huibregtse, 1991; Khan et al., 2005). After evaluation, we then subsequently performed siRNA delivery to investigate the potential of CS-PEI as a siRNA carrier.

2. Materials and methods

2.1. Chemicals

Chitosan (Mw 45 kDa) was purchased from Seafresh Chitosan Lab, Thailand. Branched PEI (Mw 750 kDa) was purchased from Aldrich, Missouri, USA. The PEI-introduced CS shell/PMMA core nanoparticles (w/w, 0.5/0.5) was synthesized as previously described (Inphonlek, Pimpha, & Sunintaboon, 2010). Lipofectamine 2000TM was purchased from Invitrogen, New York, USA. Plasmid pGL3-basic containing CMV promoter/enhancer was used

to monitor transfection efficiency (Tencomnao, Rakkhitawatthana, & Sukhontasing, 2008). The plasmids were propagated in *Escherichia coli* which were grown in LB broth (10 g/l tryptone, 5 g/l yeast extract and 10 g/l NaCl) supplemented with ampicillin under shaking conditions, 250 rounds per minute at 37 °C. The plasmid was extracted using the PureLinkTM Hipure Plasmid DNA Purification Kit (Invitrogen, New York, USA). The extracted plasmid was observed by electrophoresis on a 1.0% agarose gel. Plasmid purity and concentration were determined by measuring light absorbance at 260 and 280 nm using a SpectraMax M2 microplate reader (MDS Inc., Canada). The siRNA duplex was synthesized by Stealth technology (Invitrogen, New York, USA). The sense strand and antisense strand sequences for siRNA 16E6 sequence 10 were: 5'-GCAACAGUUACUGCGACGUUU-3' and: 3'-UUCGUUGUCAAUGACGCUGCA-5', respectively (Putral et al., 2005).

2.2. Preparation of CS-PEI/DNA and CS-PEI/siRNA 16E6 complexes

CS-PEI/DNA or CS-PEI/siRNA complexes were prepared by adding CS-PEI particles into DNA or siRNA solutions. Briefly, CS-PEI was suspended in doubled-deionized water to prepare a stock solution with final concentration 1 μ g/ μ l. Different amount of CS-PEI were then mixed with 1 μ l of doubled-deionized containing 1 μ g of plasmid. The mixtures of complexes were incubated for 30 min at room temperature. The complexes were prepared at various nitrogen/phosphate molar ratios (N/P) depending on the amine group (N) in the nanoparticle and the phosphate group (P) in the DNA or siRNA. The amount of amine groups on CS-PEI surface was determined by conventional 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay as previously described in Pimpha et al. (2010).

2.3. Characterization of complexes by AFM analysis, size and zeta potential measurement

The AFM images of CS-PEI/DNA and CS-PEI/siRNA 16E6 complexes were obtained using a dynamic force microscope (DFM) mode (Seiko SPA4000, Japan). Samples were prepared by dropping the complex solutions on a mica surface and leaving them for air drying. All images were obtained with a scanning speed of 1.0 Hz over 5 μ m \times 5 μ m areas. The Z-average hydrodynamic diameter, polydispersity index (PDI), and surface charge of methylated Ch derivatives/DNA complexes were determined by dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) at room temperature. The complexes were prepared and made up to 1 ml with DI water. All samples were measured in triplicate.

2.4. Gel retardation assay

The ability of CS-PEI to bind DNA or siRNA was confirmed using gel retardation. The CS-PEI/DNA and CS-PEI/siRNA complexes were mixed and incubated at room temperature for 30 min at different N/P ratios. Then, their DNA binding affinity was analyzed using 1% agarose gel containing 0.1 mg/ml of ethidium bromide (EtBr). The gel electrophoresis was performed at 100 V for 30 min in a TAE buffer solution (40 mM Tris-HCl, 1%, v/v, acetic acid and 1 mM EDTA). The gel were visualized under a UV transilluminator using a GelDoc imaging system (G:box, Syngene, Cambridge, UK).

2.5. In vitro gene transfection and luciferase assay

SiHa (HPV type 16 positive) was grown in MEM alpha supplemented with 10% FBS containing 0.1 mM non-essential amino acids (100 μ g/ml ι -glutamine, 100 μ g/ml streptomycin and 100 U/ml penicillin). Cells were grown at 37 °C in a humidified atmosphere containing 5% CO₂. The medium was changed every other day.

For cell study, SiHa were plated in T-75 ml culture flasks. For *in vitro* transfection, SiHa cells were seeded in a 96-well plate at a density of 1×10^5 cells/well. Prior to transfection, the media were removed and the cells were rinsed twice with PBS then plated and incubated with serum-free media. Cells were incubated with complexes at 37 °C for 4h then replaced with growth media. Twenty-four hours post transfection, the luciferase activity in each well was determined according to the manufacturer's recommendations (Promega, Wisconsin, USA). Luciferase expression was quantified as relative light units (RLU) using a luciferase assay system (Promega, Wisconsin, USA). Luciferase activity was normalized for protein concentration using the Bradford assay. Lipofectamine 2000TM (Invitrogen, New York, USA) was used as a control carrier for gene transfection.

2.6. Evaluation of cytotoxicity

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to evaluate cell viability after treating with the complexes. Cells were seeded at the same density as during transfection and were incubated overnight at 37 $^{\circ}\text{C}$ in humidified air with a 5% CO₂ atmosphere. The assay was performed 24 h after transfection according to the manufacturer's recommendations.

2.7. Determination of siRNA 16E6 loading efficiency

The CS-PEI/siRNA complexes at N/P ratios of 0.4, 0.6, 0.8, 1.6, 4.0 and 8.0 were centrifuged at 13,000 \times g for 15 min. The siRNA loaded on nanoparticles was detected by Quant-iT RiboGreen RNA reagent (Invitrogen, New York, USA) which is an ultra-sensitive fluorescent nucleic acid stain for quantization of RNA in solution. The siRNA loading efficiency was calculated from the percentage

difference between the total amount of siRNA added and the amount of non-loaded siRNA. Three replicate experiments were conducted to obtain data for statistical analysis.

2.8. Internalization of CS-PEI/siRNA complexes

siRNA was labeled with CX-Rhodamine using a *Label* IT® siRNA Tracker Intracellular Localization Kit (Mirus Bio Corporation, Madison, USA). The labeled-siRNA was utilized to form complexes with CS-PEI resulting in CS-PEI/Rho-siRNA complexes. SiHa cells were seeded on a cover slip in a 35 mm² petri dish at a cell density of 5×10^5 cells. The CS-PEI/Rho-siRNA complex with a N/P ratio of 1.6 was incubated with the cells for 4 h at 37 °C. 18 h after transfection, cells were fixed using 70% ethanol for 10 min and were stained with Hoechst 33258 solution. Confocal imaging was observed using an Olympus FluoView 1000.

2.9. siRNA delivery, RNA isolation and gene silencing determination

For siRNA delivery, CS-PEI was diluted to a concentration of 1 $\mu g/\mu l$ and mixed with 1 μg of siRNA to form complexes with N/P ratios of 0.8 and 1.6. The complexes were incubated at room temperature for 30 min. A day before transfection, plated cervical cancer cell lines in a 96-well plate at a density of 3 \times 10 5 cells/well and incubated the cells at 37 $^{\circ}$ C in a CO $_2$ incubator for 24 h. The CS-PEI/siRNA complexes were incubated with cells for 4 h and then replaced with growth media for detecting gene silencing using RT-PCR. Cells transfected with naked siRNA and normal cells were used as controls.

Total RNA from SiHa and SiHa transfected with CS-PEI/siRNA complexes was extracted after transfection for siRNA delivery and incubation for 18 and 24 h. One hundred milliliters of Trizol reagent

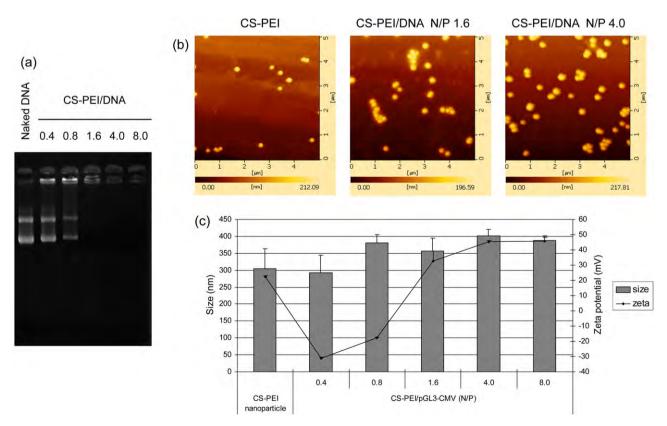
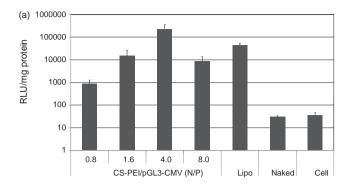
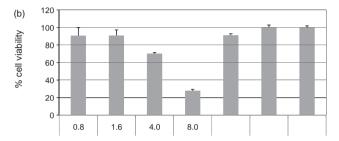


Fig. 1. Gel retardation analysis of CS-PEI/DNA complexes at different N/P ratios. One microgram of DNA was applied to form a complex (a). Atomic force microscope (AFM) images of the topology of CS-PEI/DNA complexes (b). Size and zeta-potential of CS-PEI/DNA at different N/P ratios (c).

(Invitrogen, New York, USA) was added to the cells and incubated at room temperature for 10 min. Then 200 µl of chloroform was added to extract the RNA in the aqueous layer after centrifugation at 4° C 12,000 \times g for 15 min. The RNA was precipitated using 500 μ l of isopropanol, washed with 75% ethanol, dried, and then dissolved in DEPC-treated water. For the RT-PCR, the isolated RNA samples were treated with RNase-Free DNase (Promega, Wisconsin, USA) to removed double-stranded and single-stranded DNA from the RNA sample. The resulting RNA was finally diluted to a concentration of 5 ng/µl for RT-PCR. Gene silencing was monitored by a one-step reverse-transcription-polymerase chain reaction (RT-PCR). A transcriptor one-step RT-PCR kit (Roche, Indiana, USA) was used to synthesize cDNA and to carry out the PCR reaction. The primer sequences for HPV type 16 E6, E7, and GAPDH are shown in Table 2. GAPDH gene expression was also measured to be a factor for normalization of E6 and E7 gene expression. RT-PCR products were separated on a 3% agarose gel at 100 volts for 30 min. The RT-PCR products were analyzed by the GeneTools program in a G:Box (Syngene, Cambridge, UK).


2.10. Statistical analysis


Luciferase assay, siRNA loading efficiency, cell viability, and gene silencing assay were performed in triplicate. One-way ANOVA with Tukey's post hoc test was applied in the statistical analysis with p < 0.05 considered as a statistically significant difference.

3. Results and discussion

3.1. CS-PEI/DNA complex formation and physicochemical characterization

The CS-PEI/DNA complexes were prepared simply by physically mixing CS-PEI nanoparticles and DNA via a micropipette. The mixtures were then incubation for 30 min at room temperature to promote electrostatic interaction. Gel retardation was employed to monitor the binding affinity of DNA on the CS-PEI surface. The complexes were prepared by fixing 1 µg of plasmid DNA to form a complex with CS-PEI at N/P ratios of 0.4, 0.8, 1.6, 4.0 and 8.0. The results revealed that DNA binding affinity increased in parallel with CS-PEI concentration (Fig. 1a). The complexes were completely formed since no DNA migration was found on the gel with a N/P ratio of 1.6. The AFM result for N/P ratios of 1.6 and 4.0 revealed

Fig. 2. Transfection efficiency (a) and cell viability (b) of CS-PEI/DNA complexes in SiHa. The results are compared to positive control Lipofectamine 2000^{TM} (Invitrogen, USA) (Lipo), naked plasmid pGL-3-basic containing CMV promoter/enhancer (Naked) and control free cells (Cell).

the adsorption of DNA onto nanoparticles as shown in Fig. 1b. The adsorption of the DNA strands was visible especially at N/P ratios of 1.6 but the complex was difficult to see at a N/P ratio of 4.0. This may have been because of the high number of particles forming complexes with DNA in the mixture. The particle size and zeta-potential were determined at a pH of 7.4. As shown in Fig. 1c, there were no size differences among CS-PEI/DNA-formed complexes at different N/P ratios. Generally, the average size of the complexes ranged from approximately 300–400 nm which is acceptable for transfection (Rakkhithawatthana et al., 2010; Tencomnao et al., 2011). Zeta potential measurements exhibited a dynamic change in total surface charge in proportion to the CS-PEI concentration. The CS-PEI nanoparticles exhibited a zeta potential of 22.23 mV in accordance with their cationic properties. Similar to the gel retardation results, at N/P ratios of 0.4 and 0.8, the total surface charge

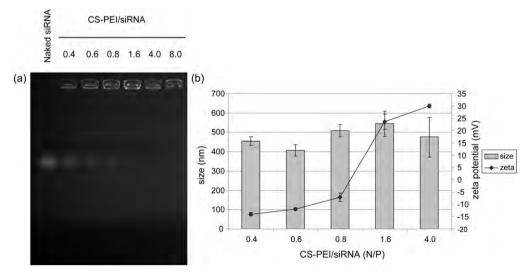
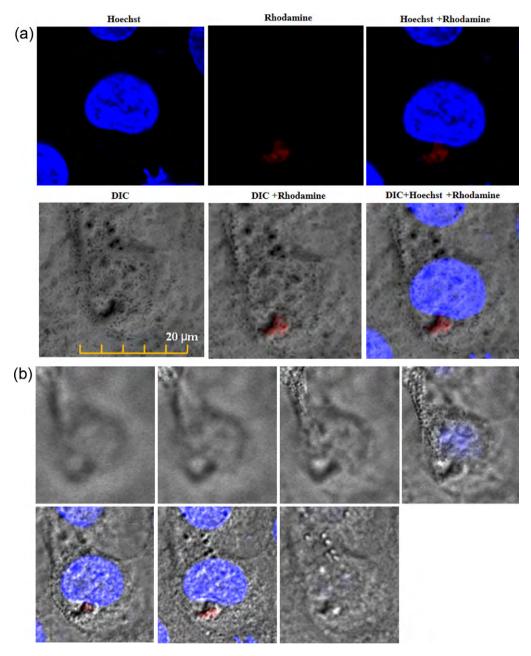



Fig. 3. Gel retardation analysis of CS-PEI/siRNA at different N/P ratios. One microgram of siRNA was applied to form a complex (a). Size and zeta-potential of CS-PEI/siRNA complexes (b).

Fig. 4. Confocal images of CS-PEI/siRNA complexes in a SiHa cell. The blue fluorescence is the nucleus of a SiHa cell and the red fluorescence is the signal of rhodamine-labeled siRNA (a). Confocal Z-stack series of images of a SiHa cell 18 h post-transfection by CS-PEI/Rho-siRNA (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

of all nanoparticles was negative while the complexes were not completely formed. Supplementation with more CS-PEI in the formulation induced an increase in zeta potentials to 32.80, 45.36 and 45.80 mV at N/P 1.6, 4.0 and 8.0, respectively. These zeta values were strongly positively charged and facilitated cellular uptake. This result, taken together with the results from gel retardation and AFM, confirmed that the adsorption of DNA onto the surfaces of CS-PEI nanoparticles occurred through charge neutralization. Therefore, the CS-PEI nanoparticle has promise for use as a carrier for gene delivery. This result is corresponded with the previous study of Pimpha et al. (2010).

3.2. CS-PEI/DNA delivery into human cervical cells

In this study, we aimed to silence the expression of oncogenes in cervical cancer cell lines. Therefore, the human cervical

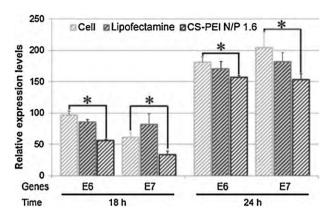
cancer cell, SiHa (HPV type 16 positive) was selected to investigate the transfection efficiency of CS-PEI. To evaluate the ability of CS-PEI, in vitro DNA transfection was performed with 1 µg of plasmid pGL3-CMV promoter/enhancer containing a luciferase gene marker for quantitative gene expression signals (Tencomnao et al., 2008). Control-free cells, cells incubated with naked DNA, and cells transfected with DNA-loaded Lipofectamine 2000^{TM} were used as controls. As shown in Fig. 2a, the results demonstrated the potency of CS-PEI as a gene carrier since the DNA cargo was successfully introduced and expressed. The transfection efficiency depended on the N/P value. Compared with the control-free cells and cells transfected with naked DNA, the optimal transfection efficiency was obtained from CS-PEI/DNA complexes at N/P ratios in the range of 1.6-4.0. At an N/P ratio lower than 1.6 or higher than 4.0, the transfection efficiencies were low indicating that transfection efficiency depended on CS-PEI concentration. Complex formation at

Table 1Binding capacity of siRNA 16E6 sequence 10 (Putral et al., 2005) to the CS-PEI at N/P ratios of 0.4, 0.6, 0.8, 1.6, 4.0 and 8.0.

CS-PEI/siRNA (N/P)	Binding capacity (%)
0.4	35.9 ± 12.8
0.6	59.7 ± 14.7
0.8	72.5 ± 13.3
1.6	99.5 ± 0.50
4.0	99.3 ± 0.30
8.0	97.9 ± 0.50

low N/P ratios is not effective due to remnant unbound DNA while the excess complexes can cause toxicity to the cells. To evaluate the cytotoxicity of CS-PEI, we employed the MTT assay on SiHa transfected with the CS-PEI/DNA complex at different N/P ratios. While the viability of control cells and cells transfected with naked DNA remained constant, cytotoxicity of the CS-PEI/DNA complex which was dependent on the N/P ratio was induced (Fig. 2b). Excess CS-PEI can induce cell membrane leakage due to the aggressive penetration of highly positively charged complexes (Godbey, Wu, & Mikos, 1999). Therefore, the use of cationic nanoparticles needs to be considered carefully because excess amounts of particles will ultimately induce cellular leakage.

3.3. CS-PEI/siRNA complex formation


CS-PEI/siRNA complexes were prepared and characterized for siRNA delivery. Similar to CS-PEI/DNA complexation, the complex formation of CS-PEI/siRNA was confirmed by gel retardation using 1 µg of siRNA. The results indicated that siRNA strands were adsorbed onto CS-PEI as a result of retardation of siRNA migration by gel electrophoresis (Fig. 3a). Complete binding occurred at a N/P ratio of 1.6. The bind affinity corresponded with the CS-PEI concentration. The complexes were approximately 400–500 nm in size (Fig. 3b) and the zeta potential increased with increasing N/P ratio. Unlike the CS-PEI/DNA complex, there was no distinction observed between CS-PEI and CS-PEI/siRNA using AFM analysis due to the limitation of AFM in detecting the siRNA strand (data not shown).

3.4. Binding capacity of siRNA on CS-PEI

The binding capacity of siRNA adsorbed on the surfaces of CS-PEI at N/P ratios of 0.4, 0.6, 0.8, 1.6, 4.0 and 8.0 was measured quantitatively using the Quant-iTTM RiboGreen® RNA reagent (Invitrogen, New York, USA). As shown in Table 1, almost 100% siRNA-binding capacities were detected in CS-PEI/siRNA complexes at N/P ratios of 1.6, 4.0, and 8.0. The results suggest that the adsorption of siRNA is dependent on CS-PEI. This result corresponds well with gel retardation in which no migrated bands of siRNA were observed for the complexes with N/P ratios ranging from 1.6 to 8.0.

3.5. Cellular internalization of the CS-PEI/siRNA complex

Cellular internalization of the siRNA complex was confirmed by differential interference contrast (DIC) confocal imaging (Fig. 4a). At 18 h after transfection, a siRNA signal (red fluorescence) was

Fig. 5. Determination of E6 and E7 mRNA expression of a SiHa-transfected cell at 18 and 24h post-transfection. The siRNA strands were delivered in the form of naked siRNA ($1 \mu g$), Lipofectamine $2000^{TM}/siRNA$ lipoplex and CS-PEI/siRNA complex. The expression profiles were investigated by semi-quantitative RT-PCR. Samples were prepared in triplicate and statistically analyzed by one-way ANOVA (p < 0.05).

detected in the cellular compartment. A Z-stack confocal image confirmed the localization of siRNA inside the SiHa cell (Fig. 4b). These results suggest that siRNA can be delivered into the cell by CS-PEI.

3.6. Gene silencing efficiency

The role of CS-PEI as a DNA carrier in HPV-transformed cells was verified. Based on the same strategy, CS-PEI was expected to be a carrier of siRNA as well. *In vitro* transfection was performed in SiHa cells. We inhibited the activity of two oncogenes encoded by HPV, namely E6 and E7, through the activity of siRNA. These two genes are best known for their ability to inactivate the tumor suppressors, p53 and pRb, respectively (Schwock, Pham, Cao, & Hedley, 2008). After transfection, the cells were continually incubated for 18 and 24 h. The RNA was then isolated for RT-PCR as described in Section 2. The RT-PCR was performed to examine E6 and E7 expression using the primer (Table 2) (Divya & Pillai, 2006). The expression signals of both E6 and E7 were normalized by GAPDH, a house-keeping gene. The differences in the expression levels of E6 and E7 between free cells and transfected cells were detected using gel electrophoresis.

The gene silencing effects were evaluated as presented in Fig. 5. It is noted that amount of Lipofectemine 2000TM used in this study was not optimized the time period for transfection with our siRNA and cell. Lipofectemine 2000TM was used to be the control for our experimental procedure. Therefore, the gene knockdown efficiency obtained from Lipofectamine 2000TM may not represent its best result. For CS-PEI-mediated siRNA, expression of E6 and E7 genes was statistically significant different compared with free cell. The achievement of siRNA mediated CS-PEI delivery to silence of E6 and E7 expressions was verified at 18 and 24-h post transfection. However, siRNA suppression of gene expression usually is time dependent (Liao et al., 2010). Therefore, the silencing effect of siRNA may vary over time. The use of CS-PEI is proposed here as the

Table 2 Primers for RT-PCR (Divya & Pillai, 2006).

Gene Sequence		Size (bp)
HPV type 16 E6	Sense strand: 5'-TGAGGTATATGACTTTGCTTTTC-3'	297
	Antisense strand: 5'-CAAGACATACATCGACCGGTCC-3'	
HPV type 16 E7	Sense strand: 5'-AAATGACAGCTCAGAGGAGGAG-3'	209
	Antisense strand: 5'-GTTTCTGAGAACAGATGGGGCAC-3'	
GAPDH	Sense strand: 5'-GACCACAGTCCATGCCATCACT-3	452
	Antisense strand: 5'-TCCACCACCCTGTTGCTGTAG-3'	

carrier of choice for both DNA and siRNA delivery using cationic polymeric-based nanoparticles.

4. Conclusions

The capacity of CS-PEI to deliver nucleic acids to cervical cancer cell lines was reported here. CS-PEI can form a complex with either DNA or siRNA via electrostatic interaction between the amine groups of cationic polymers and the phosphate groups of nucleic acids. The binding affinities of both DNA and siRNA to the surfaces of CS-PEI nanoparticles were confirmed by gel retardation assay. The results indicated that the complexes were completely formed at a N/P ratio of 1.6. The particle sizes were 300-400 nm on average while the zeta potentials became positively charged when the N/P ratio of the complex was 1.6. The optimal transfection efficiency of CS-PEI/DNA complexes delivered into SiHa was detected at a N/P ratio of 1.6. A confocal laser scanning microscope confirmed the penetration of siRNA-bound CS-PEI complexes. In vitro siRNA delivery revealed gene silencing efficiency at 18 and 24 h post-transfection. As a result, CS-PEI nanoparticles show potential as carriers for both gene and siRNA into cervical cancer cell lines.

Acknowledgments

This work was supported by the Thailand Research Fund (TRF) under grant number TRG5480020, and the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) under grant number P1100951. This study was supported in part by a scholarship from the Thailand Graduate Institute of Science and Technology (TGIST) to P.S. (TGIST 01-53-054).

References

- Anderson, W. F. (1998). Human gene therapy. *Nature*, 392(6679 Suppl.), 25–30.
- Alvarez-Salas, L. M., Benitez-Hess, M. L., & DiPaolo, J. A. (2003). Advances in the development of ribozymes and antisense oligodeoxynucleotides as antiviral agents for human papillomaviruses. *Antiviral Therapy*, 8(4), 265–278.
- Bivas-Benita, M., Romeijn, S., Junginger, H. E., & Borchard, G. (2004). PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 58(1), 1–6.
- Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., et al. (1995). Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group. Journal of the National Cancer Institute, 87(11), 796–802.
- Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., et al. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. *Proceedings of the National Academy of Sciences of the United States of America*, 92(16), 7297–7301.
- Butz, K., Ristriani, T., Hengstermann, A., Denk, C., Scheffner, M., & Hoppe-Seyler, F. (2003). siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. *Oncogene*, 22(38), 5938–5945.
- Divya, C. S., & Pillai, M. R. (2006). Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. *Molecular Carcinogenesis*, 45(5), 320–332.
- Dyson, N., Howley, P. M., Munger, K., & Harlow, E. (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. *Science*, 243(4893), 934–937.
- Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Poly(ethylenimine) and its role in gene delivery. *Journal of Controlled Release*, 60(2–3), 149–160.
- Govan, V. A. (2008). A novel vaccine for cervical cancer: Quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). *Journal of Therapeutics and Clinical Risk Management*, 4(1), 65–70.
- Grassmann, K., Rapp, B., Maschek, H., Petry, K. U., & Iftner, T. (1996). Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. *Journal of Virology*, 70(4), 2339–2349.

- Hannon, G. J. (2002). RNA interference. Nature, 418(6894), 244-251.
- Howley, P. M., Munger, K., Romanczuk, H., Scheffner, M., & Huibregtse, J. M. (1991). Cellular targets of the oncoproteins encoded by the cancer associated human papillomaviruses. *Princess Takamatsu Symposia*, 22, 239–248.
- Inphonlek, S., Pimpha, N., & Sunintaboon, P. (2010). Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids and Surfaces B: Biointerfaces, 77(2), 219–226.
- Jeon, S., & Lambert, P. F. (1995). Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: Implications for cervical carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1654–1658.
- Khan, M. J., Castle, P. E., Lorincz, A. T., Wacholder, S., Sherman, M., Scott, D. R., et al. (2005). The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of typespecific HPV testing in clinical practice. *Journal of the National Cancer Institute*, 97(14), 1072–1079.
- Koivusalo, R., Krausz, E., Helenius, H., & Hietanen, S. (2005). Chemotherapy compounds in cervical cancer cells primed by reconstitution of p53 function after short interfering RNA-mediated degradation of human papillomavirus 18 E6 mRNA: Opposite effect of siRNA in combination with different drugs. Molecular Pharmacology, 68(2), 372–382.
- Kumar, M. N., Muzzarelli, R. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. *Chemical Reviews*, 104(12), 6017–6084.
- Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., et al. (2003). Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. *Journal of Controlled Release*, 89(1), 113–125.
- Liao, Z. X., Ho, Y. C., Chen, H. L., Peng, S. F., Hsiao, C. W., & Sung, H. W. (2010). Enhancement of efficiencies of the cellular uptake and gene silencing of chitosan/siRNA complexes via the inclusion of a negatively charged poly(gamma-glutamic acid). Biomaterials, 31(33), 8780–8788.
- Mastrobattista, E., van der Aa, M. A., Hennink, W. E., & Crommelin, D. J. (2006). Artificial viruses: A nanotechnological approach to gene delivery. *Nature Reviews Drug Discovery*, 5(2), 115–121.
- Pimpha, N., Sunintaboon, P., Inphonlek, S., & Tabata, Y. (2010). Gene delivery efficacy of polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells. *Journal of Biomaterials Science Polymer Edition*, 21(2), 205–223.
- Putral, L. N., Bywater, M. J., Gu, W., Saunders, N. A., Gabrielli, B. G., Leggatt, G. R., et al. (2005). RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. *Molecular Pharmacology*, 68(5) 1311–1319
- Rakkhithawatthana, V., Sanitrum, P., Sajomsang, W., Na Ubon, P., Tencomnao, T., & Saengkrit, N. (2010). Investigation of gene transferring efficacy through nanopolyplex consisting of methylated N-(4-pyridinylmethyl) chitosan chloride and poly(ethylenimine) in human cell lines. Carbohydrate Polymers, 80, 276–284.
- Schaffert, D., & Wagner, E. (2008). Gene therapy progress and prospects: Synthetic polymer-based systems. Gene Therapy, 15(16), 1131–1138.
- Schwock, J., Pham, N. A., Cao, M. P., & Hedley, D. W. (2008). Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 61(4), 669–681.
- Tan, S., Hougardy, B. M., Meersma, G. J., Schaap, B., de Vries, E. G., van der Zee, A. G., et al. (2012). Human papilloma virus 16 E6 RNA interference enhances cisplatin and death receptor-mediated apoptosis in human cervical carcinoma cells. *Molecular Pharmacology*, 81(5), 701–709.
- Tencomnao, T., Apijaraskul, A., Rakkhithawatthana, V., Chaleawlert-umpon, S., Pimpa, N., Sajomsang, W., et al. (2011). Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system. Carbohydrate Polymers, 84, 216–222.
- Tencomnao, T., Rakkhitawatthana, V., & Sukhontasing, K. (2008). Evaluation of a novel luciferase reporter construct: A positive control plasmid for reporter gene assay. *African Journal of Biotechnology*, 7, 2124–2127.
- Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., & Aigner, A. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy, 12(5), 461–466.
- von Knebel Doeberitz, M., Rittmüller, C., Hausen, H. Z., & dürst, M. (1992). Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV e6–e7 anti-sense RNA. *International Journal of Cancer*, 51(5), 831–834.
- Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. *Journal of Pathology*, 189(1), 12–19.
- Walther, W., & Stein, U. (2000). Viral vectors for gene transfer: A review of their use in the treatment of human diseases. *Drugs*, 60(2), 249–271.
- Werness, B. A., Levine, A. J., & Howley, P. M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. *Science*, 248(4951), 76–79.
- Wong, S. Y., Pelet, J. M., & Putnam, D. (2007). Polymer systems for gene delivery Past, present, and future. Progress in Polymer Science, 32, 799–837.

ORIGINAL RESEARCH

Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core-shell magnetic nanoparticles

Tewin Tencomnao^{1,*}
Kewalin Klangthong^{2,*}
Nuttaporn Pimpha³
Saowaluk
Chaleawlert-umpon³
Somsak Saesoo³
Noppawan
Woramongkolchai³
Nattika Saengkrit³

¹Center for Excellence in Omics-Nano Medical Technology Development Project, ²Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, ³National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand

*Both authors contributed equally to this work

Correspondence: Nattika Saengkrit National Nanotechnology Center, National Science and Technology Development Agency, 130 Thailand Science Park, Phahonyothin Road, Klong I, Klong Luang, Pathumthani 12120, Thailand Tel +66 2564 7100 extension 6558 Fax +66 2564 6981 Email nattika@nanotec.or.th **Background:** The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate) (PMMA) core/polyethyleneimine (PEI) shell (mag-PEI) nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2) gene was also investigated in cultured neuronal LAN-5 cells.

Methods: The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the surfaces of the mag-PEI nanoparticles via electrostatic interaction. Finally, the mag-PEI nanoparticle magnetoplex was delivered into LAN-5 cells. Reverse-transcriptase polymerase chain reaction was performed to evaluate TPH-2 expression in a quantitative manner.

Results: The study demonstrated the role of newly synthesized high-magnetization mag-PEI nanoparticles for gene transfection in vitro. The expression signals of a model gene, luciferase, and a therapeutic gene, TPH-2, were enhanced under magnetic-assisted transfection. An in vitro study in neuronal cells confirmed that using mag-PEI nanoparticles as a DNA carrier for gene delivery provided high transfection efficiency with low cytotoxicity.

Conclusion: The mag-PEI nanoparticle is a promising alternative gene transfection reagent due to its ease of use, effectiveness, and low cellular toxicity. The mag-PEI nanoparticle is not only practical for gene transfection in cultured neuronal cells but may also be suitable for transfection in other cells as well.

Keywords: magnetic nanoparticle, non-viral vector, gene delivery, tryptophan hydroxylase-2, LAN-5, neuronal cells

Introduction

Magnetic nanoparticles have previously been used in biomedical applications, especially in the area of medical imaging, ¹ and drug and gene delivery. ² Magnetic-assisted gene

http://dx.doi.org/10.2147/IJN.\$32311

transfection could improve transfection efficiency by using magnetic force induction to introduce a therapeutic gene into a target cell. Application of an external magnetic field for gene delivery was first reported by Mah et al.3 Magnetic microparticles were coated with adenoassociated virus encoding green fluorescent protein. It was demonstrated that adenoassociated virus conjugated with magnetic microparticles enhanced transduction efficiency both in vitro and in vivo. Since then, several intensive studies of magnetic-based gene delivery have been performed.^{4,5} Magnetic-assisted gene delivery can be applied to transfection reagents and gene therapeutic vehicles, and the first report focusing on the use of magneticassisted targeted gene delivery used polyethyleneimine (PEI)coated nanoparticles for in vitro gene transfection. 6 The study demonstrated the advantages of magnetic-assisted transfection in terms of reducing incubation time and DNA dose. To date, magnetic-assisted transfection has been demonstrated as one of the approaches for nucleic acid transfer, including DNA and RNA interference, in various cell lines. For example, the combination of cationic lipid-coated magnetic nanoparticles with transferrin and PEI was developed for transfection in a human cervical cancer cell line. This system enhanced the transfection efficiency by approximately 300-fold compared with control transfection reagents in the presence of an external magnetic field.⁵ A hybrid nanoparticle system consisting of superparamagnetic nanoparticles and PEI was used as a vehicle to transfer the interleukin-10 gene into vascular endothelial cells.4 This particle showed high transgene expression using a very low vector concentration and in a very short incubation time. This system is promising for treatment of patients with vascular disorders who require fast and target-specific delivery of the genes concerned. Apart from being an effective transfection reagent, incorporation of magnetic nanoparticles into lipid-based or polymeric-based carriers has also been considered as an alternative approach for improvement of non-viral vector-based gene therapy.^{7,8} At present, many research groups are aiming to develop a vehicle which could facilitate gene therapy in several genetic disorders, including the hematological, 9 cardiovascular, 10 and immunogenic systems.11

Non-viral approaches for nucleic acid delivery have also become a novel strategy for treating neurological disease. ¹² Neuron-targeted nucleic acid therapy remains one of the few options available for the treatment of neurodegenerative disease. In previous studies, viral vectors were used as the gene carrier for transfer of nucleic acid into target neuron cells, and adenoassociated virus was the most common viral vector for gene transfection. ^{13–15} However, there has

been a recent focus on non-viral vector-based gene vectors for neuron systems, with some reported examples, including lipid-based and polymeric-based carriers. PEGylated immunoliposome-mediated brain-specific delivery of a gene encoding tyrosine hydroxylase for the treatment of patients with Parkinson's disease has been studied successfully in an animal model. ¹⁶ Modified transfection reagents, ie, PEI-PEG and Tet1 complexes, demonstrated increased luciferase expression levels in neural progenitor cells compared with unmodified PEI-PEG complexes. ¹⁷

In this study, we investigated the use of novel synthesized magnetic nanoparticles for gene delivery in neuronal cells. Magnetic PEI/poly(methyl methacrylate) (PMMA) core-shell (mag-PEI) nanoparticles were prepared using ultrasonicationassisted emulsifier-free emulsion polymerization. Loading of magnetic nanoparticles enhanced gene transfection efficiency by accelerating the cellular uptake of nanoparticles. The physicochemical properties and morphology of the mag-PEI nanoparticles were characterized, and a feasibility study was performed to evaluate the gene transfection efficiency of the mag-PEI nanoparticles using plasmid pGL3-basic containing cytomegalovirus (CMV) promoter/enhancer encoding the luciferase reporter gene (pGL3-CMV). In vitro transfection of pGL3-CMV could be measured quantitatively using the luciferase assay system. Different N/P ratios of magnetoplex were prepared to investigate the transfection efficiency at different transfection times with and without magnetic induction. The cytotoxicity of the mag-PEI nanoparticles was examined using the MTT assay. Transfection under magnetic induction strongly promotes cell internalization, as shown by confocal laser scanning microscopy. Optimal conditions were selected for transfection of pGL3-CMV, a plasmid containing tryptophan hydroxylase-2 (TPH-2), a rate-limiting enzyme for production of the serotonin neurotransmitter. 18 This study proposes an alternative nanocarrier, which is applicable for neuronal gene therapy.

Materials and methods Materials

Ferrous chloride tetrahydrate (FeCl₂·4H₂O), ferric chloride hexahydrate (FeCl₃·6H₂O), methyl methacrylate (MMA), and *t*-butyl hydroperoxide were purchased from Fluka (St Louis, MO). PEI (molecular weight of 25 kDa) was purchased from Sigma-Aldrich (St Louis, MO). All chemicals were of analytical grade and used for synthesis of magnetic core/shell nanoparticles. Lipofectamine 2000TM was purchased from Invitrogen (Carlsbad, CA). A PolyMAG and magnetoFACTOR-96 plate was purchased from Chemicell

Dovepress Gene transfection in neuroblastoma

GmbH (Berlin, Germany). Plasmid pGL3-basic containing CMV promoter/enhancer, which is an expression vector for human cell lines, was used to monitor transfection efficiency.¹⁹ Plasmid DNA was propagated in Escherichia coli, which were grown in Lysogeny broth (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl), and supplemented with ampicillin under shaking conditions of 250 rounds per minute at 37°C. The plasmid was extracted using the PureLinkTM Hipure Plasmid DNA purification kit (Invitrogen). The extracted plasmid was observed by electrophoresis on 1.0% agarose gel. Plasmid purity and concentration were determined by measuring light absorbance at 260 nm and 280 nm using a SpectraMax M2 microplate reader (MDS Inc, Sunnyvale, CA). Primers for reverse-transcriptase polymerase chain reaction (RT-PCR) of GAPDH and TPH-2 genes are listed in Table 1.

Preparation of magnetic core/shell nanoparticles

Mag-PEI nanoparticles with a PMMA core and PEI shell were prepared by emulsion polymerization.²⁰ In brief, iron oxide at a concentration of 25 mg was dispersed thoroughly with 2 g of MMA using an ultrasonicator for 5 minutes. For a total of 50 g of solution, the iron oxide-MMA dispersion was mixed with 47 g of PEI solution containing 0.5 g of PEI using a homogenizer (Sonics Vibra cell, amplitude 40%). The dispersion was homogenized for 15 minutes and then transferred into a water-jacketed flask equipped with a condenser, a magnetic stirrer, and a nitrogen inlet. The dispersion was purged with nitrogen for 30 minutes, followed by addition of t-butyl hydroperoxide aqueous solution (1 g, 0.5 mM) to initiate polymerization. The mixture was then continuously stirred at 80°C for 2 hours in a nitrogen environment. After the reaction, the particle dispersion was purified by repeated centrifugation (13,000 rpm), decantation, and redispersion until the conductivity of the supernatant was close to that of the distilled water used. The amine density on the surface of the nanoparticles was evaluated using a typical acid-base titration method.²¹ The titration was carried out with an Autotitrator (Mettler Toledo, T50, Columbus, OH) and a pH glass sensor (Mettler Toledo, DGi115-SC) using 0.01 M NaOH standardized by potassium hydrogen phthalate as a titrant. The sample preparation was performed using an aqueous solution composed of 0.5 mL of the sample suspension (30–40 mg/mL), 50 mL of deionized water, and 0.40 mL of 0.1 M HCl. Each value reported was an average of at least three measurements. The characteristics of mag-PEI nanoparticles were then observed through a transmission electron microscope at an accelerating voltage of 80 kV.

Preparation of magnetoplex

For the feasibility study of mag-PEI nanoparticles in gene delivery, plasmid DN and pGL3-CMV encoding the luciferase reporter gene at a concentration of 1 mg/mL was mixed with mag-PEI nanoparticles at the same concentration to form the mag-PEI nanoparticle/DNA magnetoplex. The magnetoplex was prepared at various N/P ratios, ie, 0.4/1, 0.8/1, 1.6/1, 4.3/1, 8.7/1, and 17.5/1. The solutions of magnetoplex were subsequently incubated at room temperature for 30 minutes before use. The optimal N/P ratio from pGL3-CMV transfection was used for pGL3-CMV-TPH-2 transfection, in which the magnetoplex was prepared in the same manner.

Gel retardation assay

After forming the magnetoplex, loading dye was added and mixed before loading into 1.0% agarose gel. Electrophoresis was carried out at 100 V for 60 minutes. Agarose gel was stained in 1 µg/mL ethidium bromide. The presence of plasmid DNA was visible under an ultraviolet transilluminator (Syngene, Cambridge, UK). The shifted bands, corresponding to free plasmid, were determined.

Atomic force microscopy analysis

Atomic force microscopic images of magnetoplex were obtained using a dynamic force microscope (Seiko SPA4000,

Table I Polymerase chain reaction primers used for tryptophan hydroxylase-2 cloning and semiquantitative assay of GAPDH and tryptophan hydroxylase-2 gene expressions

Primer	Sequence	Product (Kb)	Reference	
TPH-2-Nhel_pGL-CMV	5'-CCT gCT AgC gCC TTC CTC TCA ATC TC-3' 1.5		The present study	
TPH-2-Xbal_pGL-CMV	5'-CCC gCT CTA gAT AgT TCC Agg CAT CAA ATC C-3'			
GAPDH sense	5'-gAC CAC AgT CCA TgC CAT CAC T-3'	0.4	Divya and Pillai ²²	
GAPDH antisense	5'-TCC ACC ACC CTg TTg CTg TAg-3'			
TPH-2 sense	5'-AAC CAC TAT TgT gAC gCT gAA TCC TCC AgA gAA-3'	0.2	The present study	
TPH-2 antisense	5'-ACC CAT AAC CCA TCg CCA CAT CCA CAA AA-3'			

Abbreviations: CMV, cytomegalovirus; TPH-2, tryptophan hydroxylase-2.

Tokyo, Japan). All samples were prepared by dropping the magnetoplex solution onto a mica surface for air-drying. All images were obtained with a scanning speed of 1.0 Hz over a $2 \mu m \times 2 \mu m$ area.

Size and zeta potential analysis

The mean zeta hydrodynamic diameter, polydispersity index, and surface charge of the magnetoplex were determined by dynamic light scattering using a Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, Worcestershire, UK) at room temperature. The magnetoplex was prepared and combined to achieve 1 mL in deionized water. All samples were measured in triplicate.

Cell culture

In this study, human neuroblastoma (LAN-5) cells were used as the neuronal cell culture model. The cells were cultured in Dulbecco's modified Eagle's medium (Gibco-BRL, Grand Island, NY) supplemented with 10% fetal bovine serum (HyClone, South Logan, UT) and incubated for 24 hours at 37°C with 5% CO₂ before use.

Transfection and cytotoxicity

To evaluate the transfection efficiency of the mag-PEI nanoparticles, LAN-5 cells were seeded into a 96-well plate at a density of 5×10^4 cells per well. Before transfection, the medium was removed, the cells were rinsed with phosphatebuffered saline twice, and then plated and incubated with serum-free Dulbecco's modified Eagle's medium. Cells were incubated with the magnetoplex at 37°C for 15, 30, 60, 120, and 180 minutes with or without magnetoFACTOR-96, in serum-free medium which was then replaced with growth medium. Twenty-four hours after transfection, 19 luciferase activity was determined in accordance with the manufacturer's recommendations (Promega, Madison, WI). Luciferase activity was quantified as relative light units using a luciferase assay system (Promega). Luciferase activity was normalized for protein concentration using the Bradford assay. The commercial transfection reagents, Lipofectamine 2000 and PolyMAG, were used as positive controls for comparison of their transfection efficiency with our synthesized mag-PEI nanoparticles. Naked DNA (DNA transfected without a gene carrier) was used as the negative control for transfections. The Lipofectamine/DNA complex and PolyMAG/DNA magnetoplex were prepared according to the manufacturer's directions.

MTT assays were performed to evaluate cell viability after treatment with magnetoplex. LAN-5 cells were seeded at the same density used for transfection. The cells were

cultured at 37°C under 5% CO₂ overnight. The assay was performed 24 hours after transfection according to the manufacturer's recommendation. Percentage viability was calculated for cells transfected with naked DNA.

Magnetoplex internalization into cells

LAN-5 cells were seeded onto glass coverslips in 6-well plates at densities of 7.5×10^5 cells per well. Before transfection, the medium was removed, the cells were rinsed with phosphatebuffered saline twice, and then plated and incubated with serum-free Dulbecco's modified Eagle's medium. Cells were incubated with rhodamine-B-isothiocyanate (RITC)-labeled mag-PEI nanoparticle/DNA magnetoplexes at 37°C for 60 and 180 minutes with and without a magnetoFACTOR-96 plate in serum-free medium which was then replaced with growth medium. Twenty-four hours after transfection, the transfected cells were stained with acridine orange then washed with phosphate-buffered saline twice and visualized under a confocal laser scanning microscope (LSM 700, Carl Zeiss Inc, Oberkochen, Germany) with a 100× objective lens under 405 nm excitation for acridine orange and 561 nm excitation for RITC. The results were analyzed using LSM 700 ZEN software.

Isolation of TPH-2, cloning, and construction of expression vector

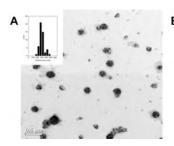
cDNA for the TPH-2 gene was synthesized by RT-PCR using human brain medulla oblongata total RNA (Clontech cDNA panels, BD Biosciences, Franklin Lakes, NJ) as a template. The RT-PCR reaction was performed using ImPromt-IITM reverse transcriptase in accordance with the manufacturer's recommendations (Promega). The resulting cDNAs were used as a template for PCR using TPH-2-NheI_pGL-CMV and TPH-2-XbaI pGL-CMV as forward and reverse primers, respectively (Table 1). The specific PCR products were then cloned into the pGEM-TTM easy vector (Promega) to verify TPH-2 sequences by restriction enzyme digestion using HindIII (Fermentas, Glen Burnie, MD) and XbaI (NEB, Hitchin, UK) as the restriction enzyme and confirmed this result by DNA sequencing. The TPH-2 gene was finally cloned into pGL3-basic containing CMV promoter/enhancer, generating pGL3-CMV-TPH-2.

Monitoring of TPH-2 expression by RT-PCR

To determine TPH-2 expression, LAN-5 cells were seeded into 6-well plates at a density of 7.5×10^{5} cells per well. pGL3-CMV-TPH-2 was mixed with mag-PEI nanoparticles to prepare

Dovepress Gene transfection in neuroblastoma

magnetoplex at an N/P ratio of 0.8, which was previously optimized. PolyMAG and Lipofectamine 2000 were used as positive controls and naked DNA was used as a negative control for transfection. Cells were incubated with the magnetoplex at 37°C for 60 minutes with and without external magnetic induction in serum-free medium which was then replaced with growth medium. Twenty-four hours after transfection, RNA extraction with TRIzol (Invitrogen) was performed according to the manufacturer's recommendations. The quantity and integrity of the RNA obtained were evaluated by spectrophotometry and gel electrophoresis stained with ethidium bromide. The RNA samples obtained were then treated with a deoxyribonuclease I amplification grade kit (Promega) at 37°C for 30 minutes to eliminate any contaminated DNA. Two steps of RT-PCR were carried out using Impromt II reverse transcription to synthesize first-strand cDNA. Taq polymerase (NEB) was then used for PCR under the following conditions: 95°C over 2 minutes for the TPH-2 gene and 94°C over 5 minutes for the GAPDH gene, followed by 35 cycles of denaturation (95°C over 30 seconds for the TPH-2 gene and 94°C over 15 seconds for the GAPDH gene), annealing (60°C over 30 seconds for the TPH-2 gene and 55°C over 15 seconds for the GAPDH gene), extension (68°C over 30 seconds for the TPH-2 gene and 72°C over 15 seconds for the GAPDH gene), and finally a single extension (68°C over 10 minutes for the TPH-2 gene and 72°C for 15 minutes for the GAPDH gene). A control negative RT-PCR was performed in the absence of reverse transcriptase to check for DNA contamination in the RNA preparation. Each TPH-2 expression was normalized against expression of the GADPH gene to eliminate the effect of the cell population. Each relative TPH-2 expression was then compared with naked DNA transfected cells.


Statistical analysis

Experiments were carried out in triplicate. The independent Student's t-test was used for the statistical analysis, with P < 0.05 considered to be statistically significant.

Results and discussion

Fabrication of core shell nanoparticles

Transmission electron microscopy revealed that we could obtain magnetic polymeric core/shell nanospheres, ie, mag-PEI nanoparticles, with high magnetic nanoparticle loading (Figure 1). The size distribution was found to be narrow, as indicated in the histogram. The zeta potential determined by dynamic light scattering indicated that the mag-PEI nanoparticles had positive surface charges around 39.3 ± 1.9 mV.

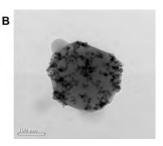


Figure I Transmission electron microscopic image. (A) Mag-PEI and histogram showing size distribution. (B) Mag-PEI nanoparticles with high magnetic loading. Abbreviation: Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell.

Gel retardation assay

DNA binding affinity and magnetoplex formation were confirmed using the gel retardation assay. One microgram of plasmid pGL3-basic containing the CMV promoter/enhancer was applied to a prepared magnetoplex with mag-PEI nanoparticles at different N/P ratios. Trailing of DNA disappeared in the gel at an N/P ratio of 0.8/1 (Figure 2). The results showed that plasmid DNA was adsorbed onto the mag-PEI nanoparticle surface by electrostatic interaction, resulting in the magnetoplex. Our cationic mag-PEI nanoparticles could neutralize the negative charge of plasmid DNA and increase the mag-PEI nanoparticle-induced cationic properties of the magnetoplex, corresponding to the results of the dynamic light scattering analysis (Table 2).

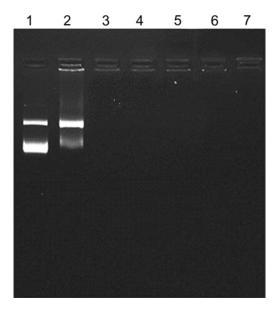


Figure 2 Gel retardation assay.

Notes: One microgram of plasmid DNA was applied to the magnetoplex with mag-PEI nanoparticles at different N/P ratios. Lane 1 is the control DNA without mag-PEI nanoparticles. Lanes 2–7 represent mag-PEI NP/DNA magnetoplexes with N/P ratios of 0.4/1, 0.8/1, 1.6/1, 4.3/1, 8.7/1, and 17.5/1.

Abbreviation: Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell.

Tencomnao et al Dovepress

Table 2 Size and zeta potential of mag-PEI nanoparticle/DNA magnetoplex at N/P ratios of 0.4/1, 0.8/1, 1.6/1, 4.3/1, 8.7/1, and 17.5/1

	N/P	Size (nm)	Zeta potential (mV)	PDI
Mag-PEI NP		123.8 ± 3.1	39.3 ± 1.9	0.26 ± 0.02
Mag-PEI NP/DNA	0.4/1	231.3 ± 24.7	6.3 ± 1.7	$\textbf{0.36} \pm \textbf{0.03}$
	0.8/1	370.0 ± 32.4	25 ± 1.4	0.45 ± 0.05
	1.6/1	298.5 ± 65	34.8 ± 2.3	0.75 ± 0.15
	4.3/1	286.8 ± 23.3	22.4 ± 3.2	0.42 ± 0.06
	8.7/1	251.3 ± 5.1	5.6 ± 0.5	0.34 ± 0.06
	17.5/1	215.4 ± 17.5	3.3 ± 0.7	0.36 ± 0.05

Abbreviations: Mag-PEI NP, magnetic poly(methyl methacrylate) core/polyethyleneimine shell nanoparticles; PDI, polydispersity index.

Magnetoplex formation

The morphology and size of the magnetoplex were analyzed under atomic force microscopy at two different N/P ratios, ie, 0.8 and 4.3. Atomic force microscopy detected that the magnetoplex appearance was spherical, corresponding to the core structures, ie, mag-PEI nanoparticles (Figure 3). It is likely that addition of more mag-PEI nanoparticles with N/P ratios in the range of 0.8/1-4.3/1 could improve the magnetoplex condensation. This result correlated well with size analyzed by dynamic light scattering (Table 2). However, magnetoplex distribution changed in response to changes in the N/P ratio, as shown at ratios of 0.8/1 and 4.3/1 (Figure 3). As a result, use of excess mag-PEI nanoparticles caused aggregation of the magnetoplex (Figure 3C), which may have interrupted cell transfection. Therefore, the magnetoplex formed at an N/P ratio of 0.8/1 was selected for cell transfection in further studies.

Size and zeta potential analysis

The size and zeta potential of the magnetic nanoparticles were determined at pH 7.4. During magnetoplex formation, a dynamic change in size and charge occurred at N/P ratios

in the range of 0.4–17.5 (Table 2). The size of the mag-PEI/DNA was larger than that of mag-PEI, indicating that adsorption of DNA had occurred on the particle surface. With a constant amount of DNA, the total charges at each N/P ratio were dependent on the amount of mag-PEI nanoparticles added to the DNA solution. At N/P ratios in the 0.4–1.6 range, the charges increased according to the amount of mag-PEI nanoparticles added. However, at N/P ratios in the range of 4.3–17.5, the excess amount of mag-PEI nanoparticles destabilized the complex, as indicated by a decrease in zeta potential.

Optimal transfection conditions and transfection efficiency

Gene transfection was investigated in the human LAN-5 neuroblastoma cell line. Cells were transfected with the magnetoplex at an optimal N/P ratio of 0.8. Gene transfection was performed by incubation of the magnetoplex with cells for 15, 30, 60, 120, and 180 minutes in the presence and absence of an external magnetic plate. Transfection via Lipofectamine 2000 and PolyMAG, two commercial transfection reagents, was carried out in the positive controls.

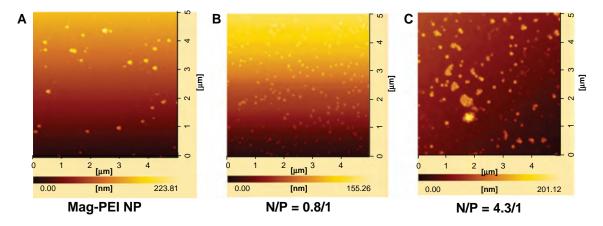


Figure 3 Atomic force microscopy images of mag-PEI nanoparticles (A) mag-PEI nanoparticles forming magnetoplexes with DNA at N/P ratios of 0.81/1 (B) and 4.3/1 (C). Abbreviation: Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell.

Dovepress Gene transfection in neuroblastoma

Luciferase signals expressed in transfected cells were determined quantitatively. At all tested N/P ratios, the results confirm that magnetic-induced transfection was a very effective system for gene transfection (Figure 4A). Luciferase expression levels were enhanced when DNA transfections were stimulated under magnetic force using the magnetoFACTOR-96 plate. Our results show that incorporation of magnetic nanoparticles in polymeric-based vectors is an effective strategy to elevate the transfection signal and shorten the transfection time. The efficiency of gene transfection was increased through physical stimulation by an external magnetic field. Among the N/P ratios in the range of 0.4–17.5, the highest transfection efficiency was obtained at an N/P ratio of 0.8. This result indicates that transfection efficiency was affected by several physicochemical properties of the magnetoplex. With a low amount of mag-PEI nanoparticles (N/P ratio < 0.8), the DNA strands are not completely adsorbed onto the nanoparticles. Therefore, the DNA delivered into the cells is not properly protected and easily digested by intracellular enzymes. The N/P ratio of 0.8 is probably the optimal condition, including for size, zeta potential, and complex stability. Although at an N/P ratio of 1.6–4.3 the magnetoplex also has an appropriate size and zeta potential, it can also cause cell membrane damage due to the greater number of nanoparticles with a positive surface charge added to the system. Furthermore, the atomic force microscopy results indicated that the magnetoplex at an N/P ratio of 4.3 was agglomerated, which was an unsuitable condition for transfection. Therefore, to obtain high transfection efficiency, several factors needed to be compromised.

Unlike for PolyMAG, the results indicate that the increased transfection efficiency for mag-PEI nanoparticles is time-dependent. PolyMAG is a commercially available carrier enhancing the transfection signal within a short induction time, and expression levels are fairly constant at different incubation times. The difference in improvement of transfection over time is probably due to the difference in magnetic properties between PolyMAG and mag-PEI nanoparticles. PolyMAG has very strong magnetic properties, which strongly enforces cell internalization of particles into the cell within a short time. However, after 120 minutes of induction, the transfection efficiency obtained from mag-PEI nanoparticles was about the same level as that obtained from PolyMAG, and was increased after 180 minutes of induction time. Apparently, for LAN-5 cells, a magnetic-assisted transfection system is more effective than a liposome-based

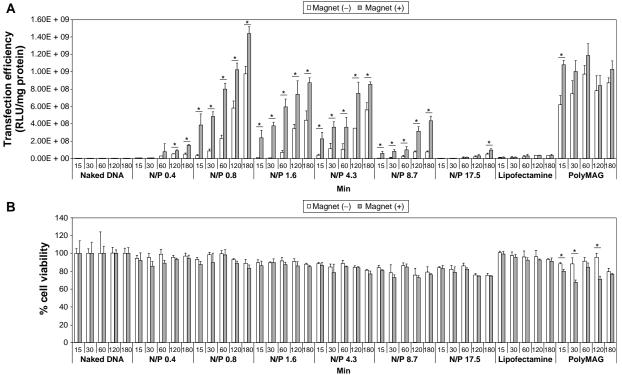


Figure 4 Transfection efficiency (A) and cytotoxicity (B) of mag-PEI nanoparticles at 15, 30, 60, 120, and 180 minutes in LAN-5 cells.

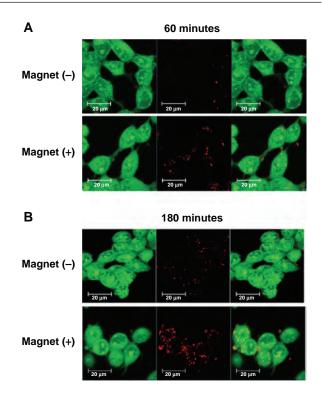
Notes: The transfection efficiency and cytotoxicity was compared with positive control Lipofectamine 2000™, PolyMAG, and negative controls (naked DNA, plasmid pGL-3-basic containing CMV promoter/enhancer). *Significant differences between cells transfected with and without a magnetic plate in each transfection reagent (P < 0.05). The gray and white bars show the results of cells incubated with or without magnetic induction, respectively.

Abbreviation: Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell.

system like Lipofectamine 2000, and there was no statistically significant difference between cells transfected with and without a magnetic plate.

Evaluation of cytotoxicity

Tencomnao et al


In this study, the toxicity of mag-PEI nanoparticles towards LAN-5 cells was investigated using the MTT assay. Cells were treated with the magnetoplex under the same conditions as the transfection procedures. The viability of LAN-5 cells after transfection was in the range of 80%–100% when incubated with magnetoplex at N/P ratios of 0.4/1, 0.8/1, 1.6/1, 4.3/1, 8.7/1, and 17.5/1 for 15, 30, 60, 120, and 180 minutes (Figure 4B). Viability of cells exposed to magnetic induction was lower than that of unexposed cells. However, the differences were not statistically significant. Therefore, this result verifies that the cytotoxicity of mag-PEI nanoparticles is very low, making these particles suitable for use in gene therapy.

Cellular internalization

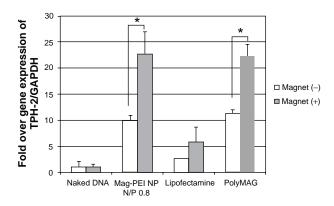
Visualization of uptake of mag-PEI nanoparticles into LAN-5 cells was observed by confocal laser scanning microscopy. The RITC-labeled mag-PEI nanoparticle/DNA magnetoplex at an N/P ratio of 0.8/1 was incubated with the cells for 60 and 180 minutes. The incubations were done separately with and without external magnetic induction. At 24 hours after transfection, confocal laser scanning microscopy images revealed the degree of intensity of the magnetoplex entering into LAN-5 cells (Figure 5). At both 60 and 180 minutes of incubation, the intensities were significantly increased when transfection was performed under magnetic induction. The results indicate that the magnetoplex distributed into the intracellular compartment, the cytoplasm, and the region of the nucleus. Internalization was confirmed by confocal Z-stack image scanning (data not shown). The result corresponded well with the luciferase activity in Figure 4A. This provides more evidence of acceleration of the transfection period through magnetoplex transfection in neuronal cells.

TPH-2 cloning

cDNA synthesized from human brain medulla oblongata total RNA was used as a template for synthesizing the TPH-2 gene fragment. PCR was performed using the specific primers described in Table 1. The PCR product showed a specific band at 1.5 kilobases under an ultraviolet transilluminator (Syngene, Cambridge, UK). The band was cut and ligated into a pGEM®-T vector (Promega). DNA sequencing verified that the isolated PCR product had 99.5% similarity to *Homo sapiens* TPH-2 mRNA. The TPH-2 gene was then

Figure 5 Confocal image of LAN-5 cells 24 hours after transfection. Cells incubated with or without a magnetic plate for ($\bf A$) 60 minutes and ($\bf B$) 180 minutes were used for investigation of the cellular uptake of mag-PEI nanoparticles.

Note: Green, acridine orange-stained live cells; red, RITC-stained mag-PEI nanoparticles.


Abbreviations: RITC, rhodamine-B-isothiocyanate; Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell.

finally transferred into pGL3-CMV basic containing the CMV promoter/enhancer.¹⁹ The resulting plasmid was used for gene transfection into LAN-5 cells.

Role of mag-PEI nanoparticles as a carrier for TPH-2 expression

The aforementioned data indicate that mag-PEI nanoparticles are a promising carrier for magnetic-assisted transfection due to their effectiveness, with low cytotoxicity and a short transfection time. We are continuing to test mag-PEI nanoparticles at an N/P ratio of 0.8/1 as a carrier for delivery of the neuronal TPH-2 therapeutic gene into LAN-5 cells. The magnetic induction time was fixed at 60 minutes. After transfection, the cells were incubated for 24 hours and total RNA was isolated by the TRIzol reagent, as described earlier. Expression of the TPH-2 gene was measured by RT-PCR using isolated total RNA as a template. PCR products from the housekeeping gene, GAPDH, were used to normalize the gene expression values. As a result, mag-PEI nanoparticles showed efficiency in induction of TPH-2 expression comparable with that of PolyMAG (Figure 6). Cells transfected with the mag-PEI nanoparticle/pGL3-CMV-TPH-2 magnetoplex

Dovepress Gene transfection in neuroblastoma

Figure 6 Semiquantitative reverse-transcriptase polymerase chain reaction result shows expression of the TPH-2 gene in LAN-5 24 hours after transfection by mag-PEI nanoparticles compared with positive control Lipofectamine 2000™ and PolyMAG, and negative control (naked DNA).

Notes: *Significant differences between cells transfected with and without magnetic plate in each transfection reagent (P < 0.05). The gray bars and white bars show the results of cells incubated with and without magnetic induction, respectively.

 $\label{lem:hammon} \textbf{Abbreviations:} \ \text{Mag-PEI, magnetic poly(methyl methacrylate) core/polyethyleneimine shell; TPH-2, tryptophan hydroxylase-2.}$

under magnetic induction showed a signal that was 13 times stronger than that obtained without induction. We compared the effectiveness of mag-PEI nanoparticles for therapeutic gene delivery with that of a liposome-based system, ie, Lipofectamine 2000. The results show that the difference between TPH-2 expression in cells transfected with and without magnetic induction was not significantly different. Therefore, this study demonstrates the potential of our synthesized nanoparticle for magnet-assisted gene transfection. Mag-PEI nanoparticles successfully enhanced the transfection efficiency of TPH-2 gene delivery.

Conclusion

In this study, we demonstrated the potential of mag-PEI nanoparticles, possessing high saturation magnetization, for gene transfection in vitro. The mag-PEI nanoparticles at an N/P ratio of 0.8/1 showed the highest transfection efficiency and low cytotoxicity in neuronal LAN-5 cells. The results obtained from the luciferase assay were consistent with those of the cell internalization investigation by confocal laser scanning microscopy. Significant acceleration of transfection efficiency within a short induction time revealed that mag-PEI nanoparticles are a promising alternative carrier for gene delivery. This newly improved magnetic nanoparticle is suitable for magnetic-assisted transfection, which may be further applied in gene therapy for neuropsychiatric and other diseases.

Acknowledgments

This work was supported by research grants from the Thailand Research Fund to NS (TRG5480020), National

Nanotechnology Center of National Science and Technology Development Agency, Korea Foundation for Advanced Studies at Chulalongkorn University, and the Chulalongkorn University Centenary Academic Development Project. This study was also supported in part by a scholarship from the Thailand Graduate Institute of Science and Technology to KK (TGIST 01-53-055). We acknowledge James M Brimson (Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University) for critical reading of the manuscript. We thank the Innovation Center for Research and Development of Medical Diagnostic Technology Project, Faculty of Allied Health Sciences, Chulalongkorn University for allowing us to use the confocal microscope for this study.

Disclosure

The authors report no conflicts of interest in this work.

References

- Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–1265.
- McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. *Int J Nanomedicine*. 2008;3:169–180.
- Mah C, Fraites TJ, Zolotukhin I, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. *Mol Ther*. 2002;6:106–112.
- Namgung R, Singha K, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. *Biomaterials*. 2010;31: 4204–4213.
- Pan X, Guanb J, Yood JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipidcoated magnetic nanoparticles associated with transferrin for gene delivery. *Int J Pharm.* 2008;358:263–270.
- Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. *Gene Ther*. 2002;9:102–109.
- Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials. 2010;2:23–30.
- Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. *Int J Nanomedicine*. 2011;6: 2275–2283.
- Raj D, Davidoff AM, Nathwani AC. Self-complementary adenoassociated viral vectors for gene therapy of hemophilia B: progress and challenges. *Expert Rev Hematol*. 2011;4:539–549.
- Wei Q, Huang XL, Lin JY, Fei YJ, Liu ZX, Zhang XA. Adeno associated viral vector-delivered and hypoxia response elementregulated CD151 expression in ischemic rat heart. Acta Pharmacol Sin. 2011;32:201–208.
- Wang CR, Shiau AL, Chen SY, et al. Intra-articular lentivirus-mediated delivery of galectin-3 shRNA and galectin-1 gene ameliorates collageninduced arthritis. Gene Ther. 2010;17:1225–1233.
- Bergen JM, Park IK, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. *Pharm Res*. 2007;25:983–998.
- Hudry E, Dam DV, Kulik W, et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of alzheimer's disease. *Mol Ther*. 2010;18:44–53.

- Janson C, McPhee S, Haselgrove J, et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. *Hum Gene Ther*. 2002;13:1391–1412.
- Kunze M, Huber A, Krajewski A, et al. Efficient gene transfer to periodontal ligament cells and human gingival fibroblasts by adenoassociated virus vectors. *J Dent.* 2009;37:502–508.
- Zhang Y, Schlachetzki F, Zhang YF, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. *Hum Gene Ther*. 2004;15:339–350.
- Kwon EJ, Lasiene J, Jacobson BE, Park IK, Horner PJ, Pun SH. Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. *Biomaterials*. 2010;31:2417–2424.
- Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. *Science*. 2004;305:217.

- Tencomnao T, Rakkhitawatthana V, Sukhontasing K. Evaluation of a novel luciferase reporter construct: a positive control plasmid for reporter gene assay. *Aficanr Journal of Biotechnology*. 2008;7(13): 2124–2127.
- Pimpha N, Chaleawlert-Umpon S, Sunintaboon P. Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. *Polymer*. 2012;53:2015–2022.
- Balázs N, Sipos P. Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. *Carbohydr Res*. 2007;342:124–130.
- Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. *Mol Carcinog*. 2006;45:320–332.

International Journal of Nanomedicine

Publish your work in this journal

The International Journal of Nanomedicine is an international, peerreviewed journal focusing on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. This journal is indexed on PubMed Central, MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, Journal Citation Reports/Science Edition, EMBase, Scopus and the Elsevier Bibliographic databases. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

 $\textbf{Submit your manuscript here:} \ \text{http://www.dovepress.com/international-journal-of-nanomedicine-journal} \\$

The PEI-introduced CS shell/PMMA core nanoparticle for DNA delivery into human cervical cells

N. Saengkrit^{1*}, P. Sanitrum², N. Woramongkolchai¹, S. Saesoo¹, N. Pimpha¹, S. Chaleawlert-umpon¹,T. Tencomnao³, S Puttipipatkhachorn⁴ ¹National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand ²Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ³Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ⁴Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand

*Corresponding author: Email nattika@nanotec.or.th

Abstract: This study was performed to validate the capability of CS-PEI for gene delivery in human cervical cancer cell line, HeLa, SiHa and C33A. Physicochemical properties including size, zeta potential and morphology of CS-PEI/DNA complexes were analyzed. The CS-PEI/DNA complexes exhibited positive charges nanoparticles. The morphology of complexes was spherical shape under AFM analysis. DNA transfection revealed the optimal transfection efficiency at N/P 1.6 which provided 80-90 % cell viability in all cell lines. This study verified the potential of CS-PEI as DNA carrier in cervical cancer treatment via gene therapy.

Introduction: The adsorption of nucleic acid on cationic nanoparticle is one of the approaches used for gene delivery. This method protects nucleic acid from chemical and physical effects during fabrication of nanoparticles. Polyethyleneimine (PEI) is a cationic polymer which has a very high positive charge from amines in molecules (Bivas-Benita, Romeijn, Junginger, & Borchard, 2004). PEI formed complexes with nucleic acids through electrostatic interaction. The complexes can be delivered into the cell through endocytosis (Urban-Klein, Werth, Abuharbeid, Czubavko, & Aigner, 2005). PEI is considered as the most effective cationic polymer due to its buffering capacity via its proton sponge effect helping DNA to escape from the endosome (Boussif et a., 1995). Another polymer often used for gene therapy is the chitosan. Chitosan is a cationic polysaccharide, produced by deacetylation of chitin which is crustacean shells. CS has been widely used in gene delivery system because it is known to be a biocompatible, biodegradable and low-toxicity (Kumar, Muzzarelli RA, Muzzarelli C, Sashiwa, & Domb 2004). The aim of this study was to demonstrate the use of PEI-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles (CS-PEI nanoparticles) for delivery of DNA in cervical cancer cell cultures. Three different cervical cell lines including HeLa (HPV type 18 positive), SiHa (HPV type 16 positive), and C33A (HPV negative) cells were selected to be the model in this study.

Materials and methods: Chitosan (Mw of 45 KDa) was purchased from Seafresh Chitosan Lab, Thailand. Branch polyethyleneimine (PEI; molecular weight 750 KDa) was purchased from Aldrich. The PEI-introduced CS shell/PMMA core nanoparticle was synthesized as previously described (Inphonlek, Pimpha & Sunintaboon, 2010). USA. Plasmid pGL3-basic containing CMV promoter/enhancer was used to monitor transfection efficiency (Tencomnao, Rakkhitawatthana, & Sukhontasing, 2008). CS-PEI/DNA complexes were prepared by adding CS-PEI particle into DNA solution. The mixtures of complexes were incubated for 30 minutes at room temperature. Physicochemical properties of the complexes were analyzed including AFM, size and zeta potential measurement. Transfection efficiency and cell viability of CS-PEI/DNA was studied in HeLa (HPV type 18 positive), SiHa (HPV type 16 positive) and C33A (HPV negative).

Result: The CS-PEI/DNA complexes were simply prepared through physical mixing CS-PEI nanoparticles and DNA solution by micropipette. This study was performed with a series of the CS-PEI/DNA complexes at N/P ratios of 0.4, 0.8, 1.6, 4.0 and 8.0. The complexes were completely formed since the N/P 1.6 in which no DNA migration found on the gel retardation assay. Under AFM, the adsorptions of the DNA strands were clearly observed. Generally, the average sizes of complexes were approximately 300 to 400 nm which can be used for transfection. The CS-PEI nanoparticles exhibited zeta potential at 22.23 mV in accordance with their cationic-based properties. The zeta potential measurement indicated that the adsorption of DNA on the surfaces of CS-PEI nanoparticle occurred though charge neutralization. The *in vitro* transfection was performed with plasmid pGL3-CMV promoter/enhancer in HeLa, SiHa and C33A. The result demonstrated the potency of CS-PEI as a gene carrier because the DNA cargo was successfully introduced and expressed. While the viability of control cells and cell transfected with naked DNA were retained, the cytotoxicity of CS-PEI nanoparticle at N/P ratios up to 4.0 was considered at low (70 % cell viability).

Conclusion: The CS-PEI formed a complex with DNA via electrostatic interaction by the amine groups of cationic polymers and the phosphate of nucleic acids. The binding affinity of DNA on the surfaces of CS-PEI nanoparticles was confirmed. The study found that the complexes were completely formed at the N/P 1.6. The particle sizes were 300 to 400 nm in average while the zeta potentials turn to positive when N/P of complex was ratio1.6 or higher. Cell transfection study revealed the capability of CS-PEI in gene delivery to cervical cancer cell lines.

Acknowledgements: This work was supported by the Thailand Research Fund (TRF), and the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA).

References

- [1] M. Bivas-Benita, S. Romeijn, H.E. Junginger, and G. Borchard, "PLGA-PElnanoparticles for gene delivery to pulmonary epithelium," Eur J Pharm Biopharm, vol 58, pp 1-6, 2004.
- [2] B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner, "RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo," Gene ther, vol 12, pp 461-466, 2005.
- [3] O. Boussif, F. Lezoualc'h, M. A Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, "A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine." PNAS, vol 92, pp 7297-7301, 1995.
- [4] M. N. Kumar, R. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, "Chitosan chemistry and pharmaceutical perspectives." Chem rev, vol 104, pp 6017-6084, 2004.
- [5] S. Inphonlek, N. Pimpha, and P. Sunintaboon, "Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property." Colloid Surface B, vol 77, pp 219-226, 2010.
- [6] T. Tencomnao, A. Apijaraskul, V. Rakkhithawatthana, S. Chaleawlert-umpon, N. Pimpa, W. Sajomsang, and N. Saengkrit, "Gold/cationic polymer nano-scaffolds mediated transfection for non-viral gene delivery system." Carbohyd Polym, vol 84, pp 216-222, 2011.