## บทคัดย่อ

ในโกรงการนี้ผู้วิจัยได้พัฒนาระบบการเพาะเลี้ยงเซลล์เม็ดเลือดกุ้ง (Penaeus monodon) ขั้นปฐมภูมิ (Primary shrimp hemocyte cell culture) ที่สามารถนำมาใช้ได้ทุกเวลาที่ต้องการ (Routine) โดยที่ไม่ต้องฆ่ากุ้ง โดยทำใต้โดยใช้อาหารเลี้ยงเซลล์ 3 สูตรได้แก่ 2 x L-15, Grace's Insect medium, St900 ที่มีการเติมด้วยอาหาร เสริม จากนั้นได้ทำการทดสอบว่าเซลล์เพาะเลี้ยงนี้อ่อนแอต่อเชื้อไวรัสที่สำคัญๆต่อกุ้งสามชนิดได้แก่เชื้อไวรัส หัวเหลือง ตัวแดงดวงขาวและเชื้อไวรัสทอร่าชินโดรม พบว่าเซลล์เพาะเลี้ยงที่ได้อ่อนแอต่อเชื้อไวรัสทั้งสามชนิด ในกรณีของไวรัสหัวเหลืองนั้นพบว่าในเซลล์ติดเชื้อมีการแสดงออกของโปรตีนโกรงสร้างทั้งสามชนิด ของเชื้อไวรัสอยู่ แสดงว่าไวรัสสามารถเพิ่มจำนวนได้และสามารถสร้างอนุภาคไวรัสที่สมบูรณ์ได้ จากนั้นได้ ทำการศึกษาคุณสมบัติของเซลล์โดยเฉพาะการมีโปรตีนตัวรับของเชื้อไวรัส (Viral receptors) ที่มีรายงาน 2 ชนิดได้แก่ laminin receptor protein และ PM Rab 7 protein พบว่าทุกชนิดของเซลล์เม็ดเลือดมีการแสดงออกของโปรตีน Pm Rab7 มากกว่า เซลล์ชนิดที่มี granule ขนาดเล็ก (small granular cells) มีการแสดงออกของโปรตีน Pm Rab7 มากกว่า เซลล์ชนิดที่มี granule ขนาดเล็ก (small granular cells) และเซลล์ที่ไม่มี granule (nongranular หรือ hyaline cells) ตามลำดับ สำหรับโปรตีน laminin receptor protein นั้นเซลล์ทุกชนิดมีการ แสดงออกเท่าๆกัน

ในเซลล์ที่ติดเชื้อตัวแดงดวงขาวนั้นพบว่า laminin protein มักจะเจอในบริเวณเดียวกับ Vp19 ซึ่งเป็น โปรตีนหุ้มผิว (envelope protein) ของไวรัสตัวแดงดวงขาว ในขณะที่ความเข้มของสัญญานของโปรตีน VP28 กับ Pm Rab7 นั้นมีความสัมพันธ์กันกล่าวคือทั้งสองโปรตีนมีการแสดงออกมากที่สุดในเซลล์ชนิดที่มี granule ขนาดใหญ่และแสดงออกน้อยที่สุดใน เซลล์ชนิดที่มี granule ขนาดเล็ก แต่ทั้งสองโปรตีนนี้ไม่ได้อยู่ตรงบริเวณ เดียวกันทั้งหมด

การทดสอบความเกี่ยวข้องของ actin polymerization กับ replication ของไวรัส พบว่าในเซลล์ติดเชื้อที่ ได้รับ cytochalasin D ซึ่งเป็นสารที่มีฤทธิยับยั้งการสร้างเส้นใยของ actin (inhibits actin polymerization) นั้นมี การแพร่ของไวรัสที่น้อยกว่าในเซลล์ติดเชื้อทีไม่ได้รับสารดังกล่าว นอกจากนี้ยังพบว่าในเซลล์ที่มีการติดเชื้อจะ มีการสร้างสันใยของ actin มากกว่าเซลล์ที่ไม่ติดเชื้อ

นอกจากนี้แล้วยังได้ศึกษาบทบาทของ N-linked glycosylation ต่อการเพิ่มจำนวนและการสร้างอนุภาค ของไวรัสหัวเหลืองพบว่า ในเซลล์ติดเชื้อที่ได้รับ tunicamycin ที่มีฤทธิยับยั้งการ N-linked glycosylation ใน ระดับ  $0.5~\mu_{\rm g/ml}$  ในอาหารเลี้ยงพบว่าเซลล์ติดเชื้อในอาหารนี้ยังมีการสร้างอนุภาคของไวรัสได้แม้จะน้อยกว่า ในเซลล์ติดเชื้อที่ไม่ได้รับสารนี้ เป็นไปได้ว่าสารนี้อาจมีผลกระทบในเชิงลบแต่เซลล์ที่เพาะเลี้ยงหากเลี้ยงไว้ นาน ผลที่ได้ต่างจากการศึกษาในตัวกุ้งที่พบว่ากุ้งติดเชื้อที่ได้รับสารดังกล่าวจะไม่มีการสร้างอนุภาคไวรัสที่ สมบูรณ์ อย่างไรก็ดีในโครงการนี้โดยสรุปผู้ใจได้วิธีเพาะเลี้ยงเซลล์เม็ดเลือดกุ้งที่ดีและสามารถนำไปใช้ศึกษา ไวรัสกุ้งได้อย่างน้อยสามชนิด ซึ่งขณะนี้การศึกษาก็ยังดำเนินอยู่เพื่อยืนยันผล

## Abstract

The lack of a reliable immortal shrimp cell line is a major constraint for shrimp virus research. Although several attempts have been made to establish shrimp cell lines, none have been successful. Insect cell lines such as Sf9 cells have been used as an alternative for shrimp cells. Although susceptible to many shrimp viruses, detailed studies with yellow head virus (YHV) revealed that the cells were not as permissive as originally hoped since the cells failed to produce mature, enveloped virions. In this study, primary hemocyte cell culture systems were successfully established for both P. monodon and P. vannamei. Double strength-L-15 or single strength grace's insect medium was used as the basal medium. This was supplemented with 15% fetal bovine serum, 2x antibiotics (penicillin and streptomycin) and 0.5% NaCl. Cells cultured in this medium could be maintained for several weeks in an incubator set at 30 °C. These cells were found to be susceptible to white spot syndrome virus (WSSV), Taura syndrome virus and YHV in infection experiments where viral envelope (Vp19 of WSSV) and nucleocapsid proteins (p20 and Vp1 of YHV and TSV, respectively) were detected in the cells when monoclonal antibodies against these proteins were used. It was also found that in WSSV and YHV infection experiments, large granular cells were the first cell type to be infected. To study the role of N-linked glycosylation in the YHV replication cycle, tunicamycin (an inhibitor of N-linked glycosylation) was used. YHV-infected culture cells treated and not treated with tunicamycin (0.5 µg/ml) were tested for the presence of all three YHV structural proteins (gp116, gp64 and p20) using monoclonal antibodies (MAb) specific to each protein. Although positive immuno reactions for all three antibodies were observed in both treated or not treated cells, the immuno reactive signals in tunicamycin-treated cells were much less intense than those in untreated cells. The results indicated that the cultured cells could support full YHV virus replication and that tunicamycin reduced YHV replication under the experimental conditions used. Despite reduced replication in the tunicamycin-treated cells, all three structural proteins were still present and some mature, enveloped viral particles were formed.

Keywords: Shrimp, hemocyte, cell culture, yellow head virus, white spot syndrome virus,