บทคัดย่อ

รหัสโครงการ: TRG5680004

ชื่อโครงการ: Starch microsphere as a carrier for α-amylase inhibitor

ชื่อนักวิจัย: สันทณีย์ ปัญจอานนท์

สังกัด สายวิชาเทคโนโลยีชีวเคมี คณะทรัพยากรชีวภาพและ

เทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

E-mail Address: santhanee.pun@kmutt.ac.th

ระยะเวลาโครงการ: 2 ปี

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาวิธีการเตรียม starch microsphere (SM) สมบัติของ SM (ระดับการเกิดครอสลิงค์ ลักษณะทางกายภาพ ขนาดของอนุภาค โครงสร้างผลึก สมบัติทางความ ร้อน และความคงทนต่ออุณหภูมิ pH และการย่อยด้วยเอ็นไซม์ α-amylase) และการนำ SM ไปใช้ เป็นตัวพาสารยับยั้งเอ็นไซม์ α-amylase โดยเตรียม SM ด้วยวิธี water-in-water emulsion– crosslinking ที่อุณหภูมิ 4 และ 30 °C ระยะเวลา 1, 6, 12 และ 24 ชั่วโมง พบว่า SM ที่เตรียมที่ อุณหภูมิ 30 °C มีระดับการเกิดครอสลิงค์สูงกว่าที่ 4 °C โดยที่อุณหภูมิ 4 °C ระยะเวลาน้อยกว่า 12 ชั่วโมง SM มีขนาดใหญ่และมีรูพรุนมากกว่าที่ 30 °C แต่ที่ระยะเวลา 24 ชั่วโมง SM จากทั้งสอง อุณหภูมิมีลักษณะใกล้เคียงกัน SM ที่เตรียมได้จากทุกสภาวะมีโครงสร้างแบบอสัณฐาน สามารถทน ต่อความเป็นกรดได้ดีมากและทนต่อด่างได้ดี ส่วนความสามารถในการทนต่อการย่อยด้วยเอ็นไซม์ α-amylase จะขึ้นกับอุณหภูมิและระยะเวลาการเตรียม เมื่อนำ SM ที่อุณหภูมิ 4 °C ระยะเวลา 24 ชั่วโมง มาทำการดูดซับโปรตีน lpha-amylase inhibitors ที่สกัดได้จากพืช 5 ชนิด ได้แก่ ข้าวสาลี ข้าว บาร์เล่ย์ ข้าวฟ่าง ข้าวเจ้า และถั่วขาว (มีกิจกรรมของ α-amylase อยู่ระหว่าง 0.8-1.42 Unit/mg protein และกิจกรรมของ α-amylase inhibitor อยู่ระหว่าง 0.01-0.38 Unit/mg protein) และวิเคราะห์ หาเปอร์เซ็นต์การดูดซับและการยับยั้งเอนไซม์ พบว่า SM สามารถดูดซับสารละลายโปรตีนได้แต่ไม่ สามารถยับยั้งเอ็นไซม์ α-amylase และเมื่อทำการทดสอบการดูดซับสาร acarbose ซึ่งทำหน้าที่ ยับยั้ง lpha-amylase ได้เช่นเดียวกัน พบว่า SM ที่มีการดูดซับสาร acarbose ไปพร้อมกับการเตรียมมี ประสิทธิภาพในการยับยั้งเอ็นไซม์ lpha-amylase มากกว่าการเตรียม SM และนำ SM มาดูดซับ acarbose ภายหลัง

คำหลัก : แป้งมันสำปะหลัง, สตาร์ชไมโครสเฟียร์, ครอสลิงค์อิมัลชัน, สารยับยั้งเอ็นไซม์ แอลฟาอะ ไมเลส

Abstract

Project Code: TRG5680004

Project Title : Starch microsphere as a carrier for α-amylase inhibitor

Investigator: Santhanee Puncha-arnon

Division of Biochemical Technology

School of Bioresources and Technology

E-mail Address: santhanee.pun@kmutt.ac.th

Project Period: 2 years

The aims of this research are to prepare and characterize the starch microspheres (SMs) and to study the effectiveness of SMs as a carrier for α -amylase inhibitor. The SMs were prepared by a water-in-water emulsion-crosslinking technique at 4 and 30 °C for 1, 6, 12 and 24 h and were analyzed for crosslinking density, morphology, particle size distribution, crystalline structure, thermal properties, x-ray diffraction pattern and stability against temperature, pH, and lpha-amylase hydrolysis. The crosslinking degree at 30 °C was considerably higher than that at 4 °C. SMs prepared at 4 °C for less than 12 h incubation had larger size and more porous structure as compared with those prepared at 30 °C, but the morphology became comparable after 24 h incubation. All SMs displayed amorphous structure. Stability tests revealed that the SMs were very stable under acidic and mild basic pH; however, stability against α -amylase hydrolysis varied depending on incubation temperature and time. The SMs prepared at 4 °C for 24 h were futher used for the adsorption of **α**-amylase inhibitors proteins extracted from wheat, barley, sorghum, rice and white bean (specific α -amylase activity and **α**-amylase inhibitor activity are 0.8-1.42 Unit/mg protein and 0.01-0.38 Unit/mg protein, respectively). The data of percentage of protein adsorption and α -amylase inhibition analyses have shown that SMs could adsorb the proteins but no α -amylase inhibition activity was found. The adsorption of acarbose, a well-known synthetic α -amylase inhibitor, was also carried out. It was found that the adsorption during the SMs formation were more efficient means to inhibit α -amylase than the adsorption after SMs formation.

Keywords: cassava, starch microsphere, crosslink emulsion, α -amylase inhibitor