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Abstract 
 
Project Code: TRG5680010  
 
Project Title: Studies of Holographic RG Flows and Related Topics 
 
Investigator: Dr. Parinya Karndumri 
 
E-mail Address: parinya.ka@hotmail.com 
 
Project Period: 2 years 
 The project concerns with the studies of holographic RG flows and related topics 
within the framework of gauged supergravities in various space-time dimensions. The 
theories considered here are three-dimensional gauged supergravities with N=2,5,6,8,10 
supersymmetries and the matter-coupled half-maximal gauged supergravities in six and 
seven dimensions. The corresponding scalar potential for each theory is explicitly 
computed, and the analysis of possible anti-de Sitter (AdS) vacua together with 
holographic RG flow solutions is carried out. The results from the research project are 
the discovery of new gauged supergravity theories in three and seven dimensions. In 
particular, a new embedding of N=2 SO(4) gauged supergravity in seven dimensions in 
eleven-dimensional supergravity is obtained. A large class of N=2 three-dimensional 
gauged supergravities from wrapped D3-branes in type IIB string theory is discovered. 
Among these results, novel supersymmetric AdS7 backgrounds and supersymmetric RG 
flows are identified within the half-maximal gauged supergravity with topological mass 
term for the three-form field in the gravity multiplet. A class of supersymmetric RG flows, 
describing supersymmetric deformations of N=(1,0) superconformal field theories 
(SCFTs) in six dimensions and N=2 SCFTs in five dimensions, to non-conformal gauge 
theories and lower dimensional SCFTs is given. The result also provides new AdS4 and 
AdS5 solutions dual to certain SCFTs in three and four dimensions within the context of 
gauged supergravities. All of the outcomes of this project will be useful in the research 
involving embedding lower dimensional gauged supergravities in higher dimensions and 
holographic studies of strongly coupled gauge theories in various dimensions.     
  
Keywords: Gauged supergravity, AdS/CFT correspondence, Gauge/gravity 
correspondence, Holographic RG flow 
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บทคัดยอ 
 
รหัสโครงการ: TRG5680010 
 
ชื่อโครงการ: การศึกษาเก่ียวกับการโฟลวแบบโฮโลกราฟกและหัวขอที่เก่ียวของ 
 
ชื่อนักวิจัย: ดร. ปริญญา การดําริห จุฬาลงกรณมหาวิทยาลยั 
 
E-mail Address: parinya.ka@hotmail.com 
 
ระยะเวลาโครงการ: 2 ป 
 โครงการวิจัยน้ีเปนการศึกษาการโฟลวแบบโฮโลกราฟกและหัวขอที่เก่ียวของภายใน
ขอบเขตของทฤษฎีเกจซูเปอรกราวิตีใ้นกาลอวกาศหลากหลายมิต ิ ทฤษฎีทีพิ่จาณาในโครงการ
น้ีประกอบดวยทฤษฎีเกจซเูปอรกราวติี้ในสามมิติที่มีจํานวนซูเปอรซิมเมทรี N=2,5,6,8,10 และ
ทฤษฎีเกจซูเปอรกราวิตีใ้นหกและเจ็ดมิติที่มีซูเปอรซิมเมทรีเปนครึง่หน่ึงของคาสูงสุดและมีการ
คูควบกับสนามสสาร คาพลังงานศักยของสนามสเกลารภายในทฤษฎทีั้งหมดนี้ไดรับการคํานวณ
อยางชัดแจงควบคูไปกับการวิเคราะหหาคําตอบสุญญากาศแบบแอนต-ิเดอ ซิตเตอร (AdS) และ
คําตอบแบบ RG โฟลวที่เปนไปได ผลการวิจัยที่ไดจากโครงการวจัิยน้ีประกอบดวยการคนพบ
ทฤษฎีเกจซูเปอรกราวิตีใ้นสามและเจ็ดมิติจํานวนมาก โดยเฉพาะการคนพบทฤษฎีเกจซเูปอร 
กราวิตี้ N=2 ที่มีเกจกรุป SO(4) จากทฤษฎีซูเปอรกราวิตีใ้นสิบเอ็ดมิติ การคนพบทฤษฎีเกจ
ซูเปอรกราวติีใ้นสามมิติจํานวนมากจากการพันรอบของ D3-เบรนในทฤษฎีสตริงแบบ IIB 
นอกจากนี้ยังมีการคนพบคาํตอบพ้ืนหลังแบบ AdS7 และคําตอบแบบ RG โฟลวในทฤษฎีเกจ
ซูเปอรกราวติีเ้จ็ดมิติที่มีซูเปอรซิมเมทรีคร่ึงหน่ึงของคาสูงสุดและมีพจนมวลสําหรับสนาม 3-
ฟอรมในมัลติเพล็ทความโนมถวง ทั้งยังคนพบคําตอบแบบ RG โฟลวจํานวนมากที่อธิบายการ
บิดเบือนทฤษฎีสนามแบบคอนฟอรมอล (SCFT) ที่มีซูเปอรซิมเมทรี N=(1,0) ในหกมิติและ 
N=2 ในหามิติไปยังทฤษฎีสนามแบบเกจที่ไมมีสมมาตรคอนฟอรมอลและทฤษฎีสนามแบบคอน
ฟอรมอลท่ีมีมิติต่ํากวา ผลลพัธที่ไดถือเปนการคนพบคาํตอบแบบ AdS4 และ AdS5 ชนิดใหมที่
สัมพันธกับทฤษฎีสนามแบบคอนฟอรมอลในสามและสีมิ่ติภายในบรบิทของทฤษฎีเกจซูเปอร 
กราวิตี ้ ผลการวิจัยทั้งหมดที่เกิดขึ้นมีประโยชนในการศึกษาวิจัยเก่ียวกับการคนหาทฤษฎีเกจ
ซูเปอรกราวติีจ้ากกาลอวกาศที่มีมิติสูงกวาและการศึกษาทฤษฎีเกจในหลากหลายมิติที่มีการคู
ควบรนุแรงในเชิงโฮโลกราฟก 
 
คําหลัก: Gauged supergravity, AdS/CFT correspondence, Gauge/gravity 
correspondence, Holographic RG flow 
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บทนํา 
ผลลัพธสําคัญประการหนึ่งในทฤษฎีซูเปอรสตริงคือความสอดคลองแบบ AdS/CFT ซ่ึง

เปนดูออลิตี้ระหวางทฤษฎีสตริงบนอวกาศแอนต-ิเดอ ซิตเตอร (AdS) กับทฤษฎีสนามแบบคอน
ฟอรมอล (CFT) บนขอบเขตของอวกาศ AdS ความสมัพันธเชิงโฮโลกราฟกดังกลาวมีดานหนึง่
ของความสัมพันธเปนทฤษฎีในกาลอวกาศ D มิติและมีอีกดานหนึ่งเปนทฤษฎีใน D-1 มิติ โดย
ไดรับการเสนอขึ้นครั้งแรกใน [1] และไดรับการปรับปรงุจนมีรูปแบบที่รัดกุมยิ่งขึ้นใน [2]  

หลงัจากคนพบหลักความสอดคลองนี้ไมนาน ไดมีงานวิจัยอีกเปนจํานวนมากที่ขยาย
ขอบเขตของหลัการดังกลาวใหครอบคลมุกวางขวางยิง่ขึ้น แนวทางในการขยายขอบเขตแบบ
หน่ึงคือความสอดคลองแบบเกจ/ความโนมถวงหรือทีบ่างครั้งเรียกวาความสอดคลองแบบ non-
AdS/ non-CFT ในกรณีน้ี คําตอบพ้ืนหลังของความโนมถวงไมจําเปนตองเปนอวกาศ AdS ที่มี
ไอโซเมทรีสอดคลองกับสมมาตรคอนฟอรมอลท่ีขอบเขต ทฤษฎีสนามแบบเกจที่เปนคูกับพ้ืน
หลังชนิดน้ีจึงไมมีสมมาตรคอนฟอรมอล เปนผลใหทฤษฎีสนามที่ไดมีลักษณะใกลเคียงกบั
ทฤษฎีเกจ ของแบบจําลองมาตรฐานทีใ่ชในทฤษฎีของฟสิกสอนุภาคมากยิ่งขึ้น ประโยชนที่
สําคัญประการหนึ่งของ ความสอดคลองทั้งสองแบบนี้คือสามารถใชศึกษาทฤษฎีสนามที่มีการคู
ควบรนุแรงได เน่ืองจากความสอดคลองนี้เปนดูออลิตี้แบบเขม/ออน ในความหมายที่วาทฤษฎี
ดานหนึ่งมีการคูควบสูงสวนอีกดานหนึ่งมีการคูควบอยางออนๆ จึงใชความสอดคลองนี้ศึกษา
ทฤษฎีเกจที่มีการคูควบรุนแรงไดโดยการศึกษาทฤษฎีความโนมถวงที่มีการคูควบอยางออน ซ่ึง
บอยคร้ังจะเปนทฤษฎีแบบคลาสสิกที่มีซูเปอรซิมเมทรภีายใตการประมาณที่สมเหตุสมผล 

การศึกษาเก่ียวกับความสอดคลองแบบเกจ/ความโนมถวงที่สําคัญมากประการหนี่งคือ
การศึกษา RG โฟลวแบบโฮโลกราฟก ในกรณีน้ี ทฤษฎีสนามที่เปนคูกับความโนมถวงจะไมเปน
ทฤษฎีแบบคอนฟอรมอล แตมีบางลิมิตเปนทฤษฎีแบบคอนฟอรมอล จุดที่ทฤษฎีสนาม
กลายเปนทฤษฎีแบบคอนฟอรมอลเรียกวาจุดคงที่แบบคอนฟอรมอล (conformal fixed point) 
หรืออาจเรียกสั้นๆ วาจุดคงที่ (fixed point)  

ดวยกระบวนการน้ี สามารถศึกษาแงมุมตางๆ ของทฤษฎีสนามไดโดยพิจารณาทฤษฎี
ดังกลาวที่จุดคอนฟอรมอลหนึ่งในระดับ UV หรือที่ระดับพลังงานสงู ณ จุดน้ี คําตอบในทฤษฎี
ความโนมถวงจะเปนอวกาศ AdS จากน้ันพิจารณาการรบกวนทฤษฎีสนามแบบคอนฟอรมอลน้ี
โดยเปอเรเตอรหรือคาคาดหวังในสุญญากาศ (vacuum expectation value) ที่ทําใหทฤษฎี
สนามในระดบั UV เกิด RG โฟลวไปยังทฤษฎีสนามแบบคอนฟอรมอลอีกทฤษฎีหน่ึงในระดับ 
IR ซ่ึงอาจเปนจุดคงที่อีกจุดหน่ึงของทฤษฎีสนามตั้งตนที่กําลังพิจารณาอยูก็ได นอกจากนี้ 
ทฤษฎีในระดับ IR อาจเปนทฤษฎีที่ไมมีสมมาตรคอนฟอรมอลไดเชนเดียวกัน ในกรณีน้ี คําตอบ
ในทฤษฎีความโนมถวงที่ไดจะเปนคําตอบโดเมนวอลล (domain wall) [3-5] การโฟลวใน
ลักษณะนี้เรียกวาการโฟลวแบบไมคอนฟอรมอล (non-conformal flow) 

ตัวอยางแรกเริ่มที่แสดงถึงหลักความสอดคลองแบบ AdS/CFT คือความสอดคลองกัน
ระหวางทฤษฎีสตริงแบบ IIB บนอวกาศ AdS5xS

5 กับทฤษฎีสนามคอนฟอรมอล N=4 ซูเปอร 
หยาง-มิลล (SYM) ในสี่มิติ ผลการศึกษาในลําดับตอมาแสดงใหเห็นการจับคูแบบหนี่งตอหน่ึง
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ระหวางสนามภายในทฤษฎยีังผล 10 มิตขิองทฤษฎีสตริงแบบ IIB คือซูเปอรกราวติี้แบบ IIB ทีมี่
มิติมวนตัวอยูในรูปของทรงกลมหามิติ (S5) และโอเปอเรเตอรในทฤษฎี N=4 SYM ผล
การศึกษาแสดงใหเห็นอยางชัดเจนวาทั้งสองทฤษฎีสอดรับกันเปนอยางดี นับตั้งแตน้ันเปนตน
มา ไดมีการศึกษาเก่ียวกับการรบกวนทฤษฎี N=4 SYM ที่รักษาซเูปอรซิมเมทรใีนรูปของ RG 
โฟลวเกิดขึ้นเปนจํานวนมาก ตวัอยางเชนใน [6-8] นอกจากนี้ ยังมีการศึกษาเกี่ยวกับการบดิ 
เบือนที่ทําลายซูเปอรซิมเมทรีอีกดวย [9] ผลลัพธทีไ่ดสงผลใหเกิดความรูความเขาใจเก่ียวกับ
สมบัตขิองทฤษฎี N=4 SYM ในแงมุมตางๆ ไดอยางที่ไมเคยมีมากอน โดยผลลัพธเกือบทั้งหมด
เกิดขึ้นจากการศึกษาทฤษฎีเกจซูเปอรกราวิตีใ้นหามิตทิี่มีเกจกรุป SO(6) ซ่ึงคาดวาเปนทฤษฎี
ยังผลของทฤษฎีซูเปอรกราวิตี้แบบ IIB ในสิบมิตทิีท่ําการลดมิตลิงบน S5 ซ่ึงแสดงใหเห็นวา 
ทฤษฎีเกจซูเปอรกราวิตีเ้ปนเคร่ืองมือสําคัญสําหรับการศึกษาหลักโฮโลกราฟก AdS/CFT  

ทฤษฎีซูเปอรกราวิตี้ (supergravity) คือทฤษฎีที่อธิบายความโนมถวงในรปูแบบที่มี
สมมาตรซูเปอรซิมเมทรี (supersymmetry) ซ่ึงเปนสมมาตรระหวางอนุภาคโบซอน (ที่มีสปน
เปนจํานวนเตม็) และอนุภาคเฟอรมิออน (ที่มีสปนเปนครึ่งหน่ึงของจํานวนเต็ม) ทฤษฎีซูเปอร 
กราวิตี้มีสุญญากาศที่รักษาซูเปอรซิมเมทรีเปนกาลอวกาศมินคอฟสกี หากตองการสุญญากาศ
แบบ AdS จําเปนตองใชทฤษฎีซูเปอรกราวิตีใ้นรูปแบบที่ถูกเกจ (gauged) ในความหมายที่วา 
สมมาตรที่เหมือนกันทั่วทั้งหมด (global) จะกลายเปนสมมาตรแบบเฉพาะที่ (local) เปนผลให
เกิดการบิดเบอืนของทฤษฎซูีเปอรกราวติีท้ี่เรียกวา ทฤษฎีเกจซเูปอรกราวิตี้ (gauged super- 
gravity) การบิดเบือนดังกลาวรักษาซูเปอรซิมเมทรี จึงไดทฤษฎีสุดทายที่มีซูเปอรซิมเม ทรี 
นอกจากนี้ ยังมีการบิดเบือนอีกแบบหนึ่งคอื แมสสีฟซูเปอรกราวติี้ (massive supergravity) ซ่ึง
เกิดจากการเพ่ิมพจนมวลใหกับสนามของดิฟเฟอเรนเชียลฟอรม ในหลายๆ กรณี ทั้งทฤษฎีเกจ
ซูเปอรกราวติีแ้ละทฤษฎีแมสสีฟซูเปอรกราวิตีต้างก็ใหสุญญากาศแบบ AdS ที่มีซูเปอรซิมเมทรี
ไดเชนกัน  

ในที่น้ี จะมุงเนนไปยังการศึกษาทฤษฎีสนามแบบคอนฟอรมอลในสอง หาและหกมิติ 
โดยหลักการทั่วไปของความสอดคลองแบบเกจ/ความโนมถวง การศึกษาดังกลาวตองใชทฤษฎี
เกจซูเปอรกราวิตีใ้นสาม หกและเจ็ดมิติ ตามลําดับ เคร่ืองมือสําคัญที่ใชในการศึกษาทฤษฎี
สนามสองมิติคือทฤษฎีเกจซูเปอรกราวติีส้ามมิติ งานวิจัยทีศ่ึกษาตามแนวทางนี้คือ [10-15] 
เน่ืองจากโครงสรางของทฤษฎีสนามแบบคอนฟอรมอลสองมิติเปนที่รูกันดี การศึกษาความสอด 
คลอง AdS3/CFT2 จึงมีความสําคัญในแงที่อาจชวยใหเกิดความเขาใจอยางลึกซ้ึงเก่ียวกบัทฤษฎี
ความโนมถวงควอนตัมได อีกทั้งทฤษฎีความโนมถวงในสามมิติก็เปนทฤษฎีที่ไมซับซอนดังเชน
ในมิติที่สูงกวา นักฟสิกสสวนใหญจึงคาดวาการศึกษาความสอดคลอง AdS3/CFT2 จะเปน
จุดเร่ิมตนในการทําความเขาใจหลักการพ้ืนฐานของความสอดคลองแบบ AdS/CFT ได นอก 
จากน้ี ความสอดคลอง AdS3/CFT2 ยังมีความสําคญัในการศึกษาเอนโทรปของหลุมดําอีกดวย 
[16] 

การศึกษาเก่ียวกับการโฟลวแบบโฮโลกราฟกในมิติอ่ืนๆ เชน ในทฤษฎีสนามหกมิติ
เกิดขึ้นใน [17] งานวิจัยน้ีศึกษาทฤษฎีเกจซูเปอรกราวิตี้ N=2 ในเจ็ดมิติที่ไมมีการคูควบกับ



6 
 

สนามสสาร [18] การศึกษาการโฟลวในทฤษฎีสนามหามิติโดยใชทฤษฎีเกจซูเปอรกราวิตี้หกมิติ 
N=(1,1) ที่ไมมีการคูควบกับสนามสสาร [19] ทั้งการโฟลวระหวางทฤษฎีสนามคอนฟอรมอลหา
มิติและการโฟลวไปยังทฤษฎีสนามคอนฟอรมอลในมิตทิี่ต่ํากวารวมทั้งการโฟลวไปยังทฤษฎี
สนามแบบไมคอนฟอรมอลเกิดขึ้นใน [20,21] RG โฟลวระหวางทฤษฎีสนามคอนฟอรมอลแบบ
มีซูเปอรซิมเมทรีและไมมีซูเปอรซิมเมทรีไดรับการศึกษาใน [22] โดยใชทฤษฎีเกจซูเปอรกราวติี ้
N=(1,1) ที่มีการคูควบกับสนามเวกเตอร 3 มัลติเพล็ท [23]  

การโฟลวทีน่าสนใจอีกแบบหนึ่งคือการโฟลวขามมิต ิ (across dimension) กลาวคือ 
ทฤษฎีสนามคอนฟอรมอลถูกรบกวนใหเกิดการโฟลวลงไปยังทฤษฎีคอนฟอรมอลในมิติทีต่่ํา
กวา คําตอบในทฤษฎีซูเปอรกราวิตี้สําหรับกรณีน้ีจะเปนโดเมนวอลลที่มีลิมิตหนึง่เปน AdSD 
และอีกลิมิตหนึ่งเปน AdSd ที่ d<D การตีความในทฤษฎีสนามคือ ทฤษฎีคอนฟอรมอลในมิตทิี่
สูงกวาเกิดการมวนมิติแบบบิด (twisted compactification) เปนผลใหทฤษฎียังผลที่พลังงานต่ํา
ไมรับรูถึงมิตทิี่มวนตัวอยู จึงไดทฤษฎีในระดับ IR เปนทฤษฎีสนามที่มีมิติลดลง การศกึษา
ดังกลาวมีประโยชนสําหรับศึกษาทฤษฎีสนามในมิติสงูๆ ที่มักจะมีความซับซอนสูงกวาทฤษฎีใน
มิติที่ต่ํากวาเชนทฤษฎีสนามคอนฟอรมอล N=(2,0) ในหกมิติเปนตน    

ในโครงการวจัิยน้ี จะพิจารณาการโฟลวของทฤษฎีสนามแบบคอนฟอรมอลในกาล
อวกาศสอง หาและหกมิตทิุกแบบที่ไดกลาวถึงไปขางตน โดยมีทฤษฎีเกจซูเปอรกราวิตีท้ี่เก่ียว 
ของดังตอไปน้ี ทฤษฎีเกจซูเปอรกราวติี้ในสามมติิทีพิ่จารณาในงานวิจัยน้ีคือทฤษฎีที่มีซูเปอรซิ
มเมทรี N=5,6,8,10 โดยทฤษฎีทั้งหมดนี้สรางขึ้นใน [24] สวนทฤษฎีเกจซูเปอรกราวิตีใ้นหกและ
เจ็ดมิติที่มีซูเปอรซิมเมทรีคร่ึงหน่ึงของคาสูงสุดและมีการคูควบกับสนามสสารจะใชทฤษฎีที่สราง
ขึ้นใน [23] และ [25] ตามลาํดับ 

 
ระเบียบวิธีวิจยั 

ในการศึกษาเกี่ยวกับการโฟลวแบบโฮโลกราฟกรวมทั้งหัวขออ่ืนๆ ที่เก่ียวของ จําเปน 
ตองกําหนดทฤษฎีเกจซเูปอรกราวิตี้ที่จะใชเปนจุดตั้งตนเสียกอน การโฟลวแบบโฮโลกราฟกทีมี่
ซูเปอรซิมเมทรีในทฤษฎีสนาม d มิติอธบิายไดดวยคาํตอบภายในทฤษฎีเกจซูเปอรกราวติี้ d+1 
มิติที่เปนโดเมนวอลลชนิด BPS หลังจากระบุทฤษฎีเกจซูเปอรกราวิตีท้ี่จะใชแลว ขั้นตอนตอไป
คือการคํานวณหาคาพลังงานศักยของสนามสเกลารรวมทั้งจุดวิกฤตที่เปนไปได จุดวิกฤตท่ีสนใจ
จะเปนแบบไมชัด (non trivial) กลาวคือ มีคาสนามสเกลารไมเปนศนูย จุดวิกฤตแบบแอนต-ิเดอ 
ซิตเตอร (AdS) จะสอดคลองกับจุดคงที่ของทฤษฎีสนาม ซ่ึงเปนจุดที่ทฤษฎีสนามมีสมมาตร
แบบคอนฟอรมอล จากน้ันคนหาคําตอบแบบ BPS ที่เชื่อมโยงระหวางจุดวิกฤตท่ีได คําตอบ
ดังกลาวจะไดรับการตคีวามเปน RG โฟลวจากจุดคงที่ในระดับ UV ไปยังจุดคงที่ในระดับ IR 
หรือกลาวไดอีกอยางหนึ่งวา เปนการโฟลวจากทฤษฎีสนามแบบคอนฟอรมอลหนึ่งในระดับ UV 
ไปยังอีกทฤษฎีหน่ึงในระดับ IR  

ในกระบวนการคํานวณ จะใชโปรแกรมคอมพิวเตอรสําเร็จรูป Mathematica เน่ืองจาก
การคํานวณเกี่ยวของกับพีชคณิตของเมทริกซขนาดใหญจํานวนมาก อีกทั้งสมการ BPS ที่
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เก่ียวของก็มีเปนจํานวนมากและเปนสมการเชิงอนุพันธทีต่องสอดคลองกันทั้งหมด ในบางกรณี 
อาจมีสมการ BPS ที่ตองแกถึงหน่ึงรอยสมการ จึงแทบเปนไปไมไดเลยที่จะแกสมการดังกลาว
โดยไมอาศัยโปรแกรมคอมพิวเตอร  

จากที่กลาวมาทั้งหมด อาจสรุปขั้นตอนการดําเนินงานวิจัยไดดังน้ี 
1. กําหนดทฤษฎีเกจซูเปอรกราวิตีท้ี่เหมาะสม  
2. ศึกษาโครงสรางของทฤษฎีเกจซูเปอรกราวิตี้ดังกลาวพรอมทั้งคํานวณหาพลังงานศักย

ของสนามสเกลาร 
3. คนหาจุดวกิฤตของพลังงานศักยที่ได 
4. ศึกษาคุณลักษณะของจุดวกิฤตที่ไดเชน สมมาตรทีไ่มสูญหายและจํานวนซูเปอรซิมเม 

ทรีเปนตน 
5. สรางสมการ BPS จากการแปรผันของซูเปอรซิมเมทรีในสนามเฟอรมิออน 
6. แกสมการ BPS ที่ไดเพ่ือหาคําตอบแบบ RG โฟลวซ่ึงอาจอยูในรูปแบบเชิงวเิคราะห

หรือเชิงตัวเลข 
7. ศึกษาสมบัตขิองคําตอบ RG โฟลวที่ไดเชน พฤติกรรมของคําตอบที่ไดในลิมิตที่เขาใกล

จุดวิกฤติทั้งในระดับ UV และ IR เพ่ือวเิคราะหหามิตขิองโอเปอเรเตอรที่เปนตวัผลักดัน
ใหเกิดการโฟลวหรือคํานวณหาฟงกชันสหสัมพันธ (correlation function) ของโอเปอเร 
เตอรที่สนใจ เปนตน 
 

ผลการวิจยั 
งานวิจัยเก่ียวกับทฤษฎีเกจซูเปอรกราวติีใ้นกาลอวกาศสามมิติมีผลงานวิจัยตีพิมพทั้ง 

สิ้น 4 ฉบับ [26-29] โดยมีรายละเอียดของผลลัพธที่ไดดังตอไปน้ี  
ผลการวิจัยพบทฤษฎีเกจซเูปอรกราวติี้ N=2 ในสามมิติเปนจํานวนมากจากการพันรอบ

ของ D3-เบรนจากทฤษฎีซูเปอรกราวติีแ้บบ IIB ในสิบมิติ ผลลัพธที่ไดมีประโชนยตอการศึกษา
โฮโลกราฟกของกระบวนการ c-extremization ที่ใชในการกําหนดคาที่แนชัดของประจุศูนยกลาง 
(central charge) ในทฤษฎีสนามคอนฟอรมอล N=(2,0) ในสองมิติ [26] 

สําหรับเกจซูเปอรกราวิตีท้ีมี่ซูเปอรซิมเมทรี N=5,6,10 [27,28] มีการคนพบทฤษฎีเกจ
ซูเปอรกราวติีแ้บบใหมๆ ที่มีเกจกรุปหลากหลายรูปแบบรวมทั้งทฤษฎีที่อาจหาตนกําเนิดในมิติ
ที่สูงกวาได โดยทฤษฎีดังกลาวมีเกจกรุปในรูปแบบ non-semisimple ผลการวิจัยที่ไดชวยเตมิ
เต็มชองวางในแวดวงวิจัยและเพ่ิมตัวอยางทฤษฎีเกจซูเปอรกราวติี้สามมิติทีไ่ดจากการลดมิติ
ของทฤษฎีในมิติที่สูงกวาใหมากย่ิงขึ้น เน่ืองจากการลดมิติดังกลาวยังเปนปริศนาและมีตวัอยาง
ที่เปนไปไดนอยมากในปจจุบัน สําหรับทฤษฎีเกจซูเปอรกราวิตี้ N=8 ซ่ึงมีสุญญากาศสอดคลอง
กับทฤษฎีสนามแบบคอนฟอรมอลในสองมิติที่มีซูเปอรซิมเมทร ี N=(4,4) ขนาดใหญ [29] 
ผลการวิจัยคนพบจุดวิกฤตเสถียรทีไ่มมีซูเปอรซิมเมทรีจํานวนหนึ่ง ผลลัพธทีไ่ดแสดงถึงคอน
ฟอรมอลเฟสแบบตางๆ ของทฤษฎีคอนฟอรมอล N=(4,4) ซ่ึงมีความสําคัญทั้งในแงของการเปน
ทฤษฎีสนามยังผลสําหรับระบบ D1-D5-เบรนแบบคูและในฟสิกสของหลุมดํา 
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สําหรับการศกึษาทฤษฎีเกจซูเปอรกราวติี้หกมิติแบบ F(4) มีผลงานวิจัยตีพิมพหน่ึง
ฉบับ [30] ในงานวิจัยน้ี ไดทําการศึกษาการบิดเบอืนที่รักษาซูเปอรซิมเมทรีแลวเกิดการโฟลว
จากทฤษฎีสนามคอนฟอรมอล N=2 ไปยังทฤษฎีสนามแบบไมคอนฟอรมอล N=2 SYM ในหา
มิติ ผลการวิจัยที่ไดนับเปนผลลัพธแรกที่แสดงถงึการรบกวนแบบรักษาซูเปอรซิมเมทรีจาก
ทฤษฎีเกจซูเปอรกราวิตี้แบบ F(4) ทีมี่การคูควบกับสนามสสารตั้งแตมีการศกึษาการบิดเบอืน
แบบไมรักษาซูเปอรซิมเมทรีใน [22]  

งานวิจัยเก่ียวกับทฤษฎีเกจซูเปอรกราวติี ้ N=2 ในเจ็ดมิติที่มีการคูควบกับสนามสสารมี
ผลงานวิจัยตพิีมพทั้งสิ้น 4 ฉบับ [31-34] ผลการวิจัยเริ่มตนจากการคนพบคําตอบแบบ AdS7 ที่
มีซูเปอรซิมเมทรีแบบใหมในรอบหลายปที่ผานมาจากทฤษฎีเกจซูเปอรกราวิตี้ N=2 ที่มีพจน
มวลทางโทโพโลจีและมีเกจกรุป SO(4) ผลการศีกษาแสดงใหเห็นจุดคงที่แบบใหมในทฤษฎี
สนามแบบคอนฟอรมอล N=(1,0) รวมทัง้การบิดเบือนทฤษฎี N=(1,0) ในระดับ UV ที่ไดรับการ
คนพบกอนหนาน้ีไปยังจุดคงที่ที่คนพบใหมจาก RG โฟลว ที่รักษาซูเปอรซิมเมทรีทั้งหมดไว 
[31]  

การคนพบดังกลาวเปนผลใหเกิดงานวิจัยคนหาวิธีการลดมิติของทฤษฎีสตริงหรือทฤษฎี 
เอ็มเพ่ือสรางคําตอบ AdS7 ชนิดใหมทีไ่ด การวิจัยในลําดับตอมาสงผลใหคนพบวธิีการลดมิติ
แบบใหมของทฤษฎีซูเปอรกราวิตีส้ิบเอ็ดมิติลงมายังเจ็ดมิติที่ใหทฤษฎีเกจซูเปอรกราวิตี้ N=2 
และมีเกจกรุป SO(4) ซ่ึงเปนการลดมิตรูิปแบบใหมทีไ่ดจากการตัดทอน (truncate) บางสวน
ของการลดมิติบนทรงกลมส่ีมิติ (S4) ซ่ึงใหทฤษฎีเกจซูเปอรกราวติี้ N=4 ที่มีเกจกรุป SO(5) 
[32] 

การศึกษาเก่ียวกับ RG โฟลวไดรับการขยายผลออกไปยังเกจกรุปแบบ non-compact 
ใน [33] โดยผลการวิจัยแสดงใหเห็นสุญญากาศแบบ AdS7 ชนิดอีกจํานวนหนึ่งรวมทั้งจุด คงที่ที่
มีรูปแบบเปน AdS5 และสามารถตีความไดเปนทฤษฎีสนามคอนฟอรมอลส่ีมิติ งานวิจัยน้ีจึงมี
ประโยชนตอการศึกษาทฤษฎีสนามในสีมิ่ติดวย ทั้งยงัเปนการจัดจําแนกสุญญากาศของเกจกรุป 
แบบ non-compact ที่เปนไปไดทั้งหมดของทฤษฎีเกจซูเปอรกราวติี้ N=2 อีกดวย  

ในชวงปลายของโครงการวิจัย งานวิจัยไดมุงเนนไปยังการศึกษาแบบรวบยอดโดยนํา
ผลงานวิจัยที่ไดมากอนหนาน้ีสังเคราะหเปนงานวิจัยใหม [34] โดยงานวิจัยดังกลาวเริ่มตนจาก
การศึกษาการมวนมิติแบบบิดของทฤษฎีสนามคอนฟอรมอล N=(1,0) ภายในขอบเขตของ
ทฤษฎีเกจซูเปอรกราวิตีท้ีมี่เกจกรุป SO(4) จุดประสงคของงานวจัิยน้ีคือคนหาคําตอบ AdS5 
และ AdS4 ซ่ึงอธิบายทฤษฎีสนามคอนฟอรมอลในสี่และสามมิติ ตามลําดับ นอกจากนี้ยัง
ทําการศึกษาการโฟลวจากทฤษฎีสนามคอนฟอรมอล N=(1,0) ในหกมิติที่คนพบใน [31] ลง
มายังสี่มิติและสามมิติพรอมทั้งยกระดับคําตอบทีไ่ดขึน้ไปยังสิบเอ็ดมิติโดยใชผลลัพธของ [32] 
อีกดวย  
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บทสรปุและบทวิจารณ์ 
งานวิจัยทั้งหมดที่เกิดขึ้นในโครงการวิจัยน้ีครอบคลุมการศึกษาทฤษฎีสนามคอนฟอร 

มอลเชิงโฮโลกราฟกในกาลอวกามิตติางๆ ในหลากหลายแงมุม ทั้งการคนพบจุดวิกฤตใหม การ
โฟลวระหวางทฤษฎีสนามแบบคอนฟอรมอลในมิติเดียวกันทั้งที่รักษาและทําลายซูเปอรซิมเมทรี 
การโฟลวไปยงัทฤษฎีสนามที่ไมมีสมมาตรคอนฟอรมอลและการโฟลวขามมิตไิปยงัทฤษฎีสนาม
คอนฟอรมอลในมิติทีต่่ํากวา ผลการวิจัยที่ไดเติมเต็มชองวางในแวดวงวิจัยทีเ่ก่ียวของในแงของ
การสรางคําตอบในทฤษฎีความโนมถวงเพื่อใชศึกษาทฤษฎีสนามทีมี่การคูควบรุนแรงตอไปใน
อนาคต ทั้งยงัเปนการบุกเบิกงานวิจัยเก่ียวกับโฮโลกราฟกของทฤษฎีสนามคอนฟอรมอลในหก
และหามิติซ่ึงกําลังไดรับความสนใจอยางมากในแวดวงวิจัยปจจุบันและยังมีอีกหลายๆ ประเด็น
ที่ยังไมชัดเจน  

อยางไรก็ตามงานวิจัยที่ไดจากโครงการนี้เปนเพียงจุดเร่ิมตนเทาน้ัน ยังมีเรื่องที่ตองคน 
ควาวิจัยอีกมากเชน ผลลพัธจากการลดมิติที่ไดใน [32] ยังไมสามารถใชยกระดับคําตอบ AdS7 
ที่คนพบใหมใน [31] ได เน่ืองจากคําตอบดังกลาวตองการใหคาคงที่การคูควบของกรุป SU(2) 
ทั้งสองกรุปใน SO(4) มีคาไมเทากัน แตผลลัพธของ [32] เปนการลดมิติเฉพาะในกรณีที่คาคงที่
ทั้งสองเทากันเทาน้ัน นอกจากนี้ ในปจจุบันยังไมมีวธิีการลดมิตทิี่เปนตนกําเนิดของทฤษฎีเกจ
ซูเปอรกราวติีแ้บบ F(4) ในกรณีที่มีการคูควบกับสนามสสาร ผลลัพธทีไ่ดใน [22] จึงยังไม
สามารถตคีวามในบริบทของทฤษฎีสตริงหรือทฤษฎีเอ็มได ประการสุดทาย ทฤษฎีสนามคอน
ฟอรมอลท่ีเปนคูกับคําตอบของทฤษฎีเกจซูเปอรกราวติี้ที่คนพบในโครงการวิจัยน้ีเกือบทั้งหมด
ยังไมเปนที่รูจักกันในแวดวงวิจัย จึงมีงานที่ตองศึกษาวิจัยอีกมากเพ่ือระบุทฤษฎีสนามคอนฟอร 
มอลท่ีแนชัดตอไป ทั้งหมดน้ีจึงเปนแนวทางการวิจัยในอนาคตที่เปนไปได   
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1 Introduction

Gauged supergravity is a very useful tool in many areas of string theory such as flux

compactifications and the AdS/CFT correspondence (see [1] for a review). Due to these

applications, gauged supergravities in various dimensions as well as their Kaluza-Klein

(KK) dimensional reductions have been extensively explored. It is well known that lower-

dimensional gauged supergravities can be obtained from dimensional reductions of higher-

dimensional theories. Up to now, many examples have appeared and amongst them, [2,

3] and [5–8] are recognizable primary examples. In this paper, we are interested in

gauged supergravities in three dimensions in order to incorporate both the principle of

c-extremization and null-warped AdS3 solutions.

– 1 –
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The complete classification of Chern-Simons gauged supergravities in three dimensions

has been given in [9]. Most theories constructed in this formulation have no known higher-

dimensional origin. The three-dimensional gauged supergravities obtainable from dimen-

sional reductions form a small part, with non-semisimple gauge groups, in this classifica-

tion [10]. Unlike in higher-dimensional analogues, only a few examples of three-dimensional

gauged supergravities, which play an important role in AdS3/CFT2 correspondence, have

been obtained by dimensional reductions [11–13]. In this paper, we will extend this list

with more examples of gauged supergravities in three dimensions arising from wrapped

D3-branes in type IIB supergravity.

Recently, c-extremization for N = (0, 2) two-dimensional SCFT’s has been proposed

and various examples of gravity duals in five- and seven-dimensional gauged supergravities

exhibited [14, 15]. Recall that c-extremization is a procedure that allows one to single

out the correct U(1)R symmetry of the CFT from the mixing with other U(1) symme-

tries. Soon after, c-extremization was formulated purely in the context of the AdS3/CFT2

correspondence by explicitly showing that, in the presence of a gauged SO(2)R ∼ U(1)R
R symmetry, the so-called T tensor of the three-dimensional gauged supergravity can be

extremized leading to the exact central charge and R symmetry [16]. This realization is

similar to how a-maximization of four-dimensional SCFT’s [17] can be encoded in five-

dimensional gauged supergravity [18] in the context of the AdS5/CFT4 correspondence.1

Interestingly, in three dimensions, not only is the central charge reproduced, but the mo-

ment maps comprising the T tensor give information about the exact R symmetry. In this

work we will provide more details of the results quoted in [16] and also exhibit another

(related) example by considering twists of generic SCFT’s with Sasaki-Einstein duals.

In three dimensions, where a vector is dual to a scalar, the matter coupled super-

gravity theory can be formulated purely in terms of scalar fields resulting in a non-linear

sigma model coupled to supergravity. N = 2 supersymmetry in three dimensions requires

the scalar target manifold to be Kähler. Gaugings of the theory are implemented by the

embedding tensor specifying the way in which the gauge group is embedded in the global

symmetry group. In general, the moment map of the embedding tensor, given by scalar

matrices V , determines the T tensor which plays an important role in computing the scalar

potential and supersymmetry transformations. As a general result, N = 2 supersymmetry

allows any proper subgroup of the symmetry to be gauged. Furthermore, there is a possi-

bility of other deformations through a holomorphic superpotentialW . The scalar potential

generally gets contributions from both the T tensor and the superpotential. However, any

gauging of the R symmetry requires vanishing W .

The particular higher-dimensional theories we choose to reduce can all be motivated

from the perspective of ten dimensions. From either an analysis of the Killing spinor

equations [20], or by following wrapped D-brane intuition [21], it is known that supersym-

metric AdS3 solutions supported by the five-form RR flux of type IIB supergravity, or in

other words, those corresponding to wrapped D3-branes, have seven-dimensional internal

manifolds Y7 and bear some resemblance to Sasaki-Einstein metrics. More precisely, Y7

1A concrete realization is presented in [19].

– 2 –
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can be expressed locally in terms of a natural U(1) fibration (the R symmetry) over a

six-dimensional Kähler base that is subject to a single differential condition

�R =
1

2
R2 −RijR

ij , (1.1)

where R and Rij are, respectively, the Ricci scalar and Ricci tensor of the metric of the

Kähler manifold. Through the supersymmetry conditions [20, 21], the Ricci scalar R is

related to an overall warp factor for the ten-dimensional space-time.

Of course the above equation can be simplified considerably by assuming that the

Kähler manifold is also Einstein, but in general, solutions with non-trivial warp factors can

be difficult to find. A search for IIB solutions tailored to this context can be found in [22],

where a solution originally found in [23] was recovered. The challenges here are reminis-

cent of generalisations of direct-product AdS4 and AdS5 solutions to warped products. To

support this observation, we recall that, for an Ansatz covering the most general supersym-

metric warped AdS5 solutions of type IIB supergravity [24], the only warped geometry2

noted by the authors beyond the special case of Sasaki-Einstein was the Pilch-Warner solu-

tion [26]. On a more recent note, warped AdS4 solutions of eleven-dimensional supergravity

generalising Sasaki-Einstein have been found [27, 28]. In the face of these difficulties, it is a

pleasant surprise to witness the ease at which supersymmetric solutions with warp factors

can be constructed in five-dimensional supergravity through twisted compactifications on a

constant curvature Riemann surface Σg of genus g and how the principle of c-extremization

accounts for the central charge and exact R symmetry of the dual N = (0, 2) SCFT [14, 15].

c-extremization aside, we can further motivate the study of three-dimensional gauged

supergravities through the continued interest in “null warped” AdS3 space-times. Over the

last few years, we have witnessed a hive of activity surrounding warped AdS3 space-times

and their field theory duals [29], primarily in Topologically Massive Gravity (TMG) [30, 31].

Indeed, the mere existence of these solutions and the fact that they are deformations of

AdS3 with SL(2,R) × U(1) isometry, raises very natural questions about the putative

dual CFT. Since relatively little is known about these theories, the common approach

is to extract information holographically from warped AdS3 solutions. To date, in three

dimensions, warped AdS3 solutions have cropped up in a host of diverse settings, including

of course, solutions [29, 32, 33] to TMG, solutions [34] to New Massive Gravity [35], Higher-

Spin Gravity [36], topologically gauged CFTs [37] and three-dimensional gravity with a

Chern-Simons (CS) Maxwell term [38], where the latter is embeddable in string theory.

As we shall see, within the last class of three-dimensional theories, one also finds gauged

supergravities.

Indeed, “null warped” AdS3 are central to efforts to generalise AdS/CFT to a non-

relativistic setting, where holography may be applicable to condensed matter theory via

a class of Schrödinger space-times. Taking the catalyst from [39, 40], through fledgling

embeddings in string theory [41–44], various attempts have been made to provide a working

description of non-relativistic holography. On one hand, one may wish to start with a

2A class of solutions can be generated via TsT transformations [25] starting from AdS5 ×S5, but as the

transformation only acts on the internal S5, the final solution is not warped.
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recognisable theory with Schrödinger symmetry, such as a non-relativistic limit [45, 46]

of ABJM [47], but holographic studies [48–50] fail to capture the required high degree of

supersymmetry. On the other hand, if one starts from gravity solutions with Schrödinger

symmetry, one may be more pragmatic and obtain an effective description of the dual non-

relativistic CFT, valid at large N and strong coupling [51].3 Similar points of view were

also advocated in [55–57]. Whether the dual theory is a genuine CFT as proposed in [29],

or some warped CFT, is an open question drawing considerable attention.4

The structure of the rest of this paper is as follows. In section 2, we present an overview

of our knowledge of supersymmetric AdS3 geometries arising from wrapped D3-branes. In

section 2.2, we focus on geometries with a U(1) R symmetry dual to N = (0, 2) SCFT’s and

present known examples preserving at least four supersymmetries, all of which will corre-

spond to the vacua of the gauged supergravities we discuss later. In section 3, we provide

more details of the KK reduction reported in [16]. In section 4.1, we present the three-

dimensional gauged supergravity corresponding to a twisted compactification of an N = 1

SCFT with a generic Sasaki-Einstein dual. In section 4.2, we generalise the KK reduc-

tions discussed in [38] and identify the corresponding gauged supergravities. In section 5

we present some simple constructions of null-warped AdS3, or alternatively Schrödinger

geometries with dynamical exponent z = 2, before discussing some open avenues for future

study in section 6.

2 AdS3 from wrapped D3-branes

2.1 Review of wrapped D3-branes

In this section we review supersymmetric AdS3 geometries arising from D3-branes wrapping

calibrated two-cycles in manifolds with SU(2), SU(3) and SU(4) holonomy. To this end, we

follow the general ten-dimensional classification presented in [21] and later indicate where

particular explicit solutions fit into the bigger picture. The approach of [21] builds on

earlier work concerning wrapped M5-branes [59, 60] and M2-branes [61].

We recall that the general “wrapped-brane” strategy [59] involves first assuming that

AdS3 geometries start off as warped products of the form

ds210 = L−1ds2
(

R
1,1
)

+ ds2 (M8) , (2.1)

where both the warp factor L and the metric on M8 are independent of the Minkowski

factor. Here the Minkowski space-time should be regarded as the unwrapped part of the D3-

brane, and as expected, the D3-branes source a self-dual RR five-form flux F5 = Θ+ ∗10Θ
invariant under the symmetries of the Minkowski factor.

For the particular geometries of interest to us, the metric and the flux for the geometry

may be expressed as [21]

ds210 = L−1ds2
(

R
1,1
)

+ ds2 (M2d) + Lds2
(

R
8−2d

)

,

Θ = vol
(

R
1,1
)

∧ d
(

L−1J2d
)

, (2.2)

3Separately it has been argued [52, 53] that generic non-relativistic quantum field theories have a holo-

graphic description in terms of Hořava gravity [54].
4See [58] for a recent discussion.
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wrapped brane manifold supersymmetry R symmetry

Kähler 2-cycle CY2 N = (4, 4) SO(4)×U(1)

Kähler 2-cycle CY3 N = (2, 2) U(1)×U(1)

Kähler 2-cycle CY4 N = (0, 2) U(1)

Table 1. Wrapped D3-brane geometries and their supersymmetry.

where d = 2, 3, 4. In each case we require the existence of globally defined SU(d) struc-

tures, specified by everywhere non-zero forms J2d,Ω2d on M2d. The accompanying torsion

conditions follow from the SU(4)⋉R
8 case of [62], with the conditions for smaller structure

groups being determined through decompositions of the form

J2d+2 = J2d ± e2d+1 ∧ e2d+2,

Ω2d+2 = Ω2d ∧
(

e2d+1 ± ie2d+2
)

. (2.3)

As explained in detail in [21], the supersymmetry conditions for AdS3 space-times may

then be derived by introducing an AdS3 radial coordinate r, writing the (unit radius) AdS3
metric in the form

ds2 (AdS3) = e−2rds2
(

R
1,1
)

+ dr2, (2.4)

redefining the warp factor, L = e2rλ, and performing a frame rotation of the form

λ−
1

2dr = sin θ û+ cos θ v̂, (2.5)

where θ parametrises the frame-rotation, which is further assumed to be independent of the

AdS3 radial coordinate, and û, v̂ are respectively unit one-forms on M2d and the overall

transverse space.5 Omitting various technicalities associated to this frame-rotation one ar-

rives at a simple but effective derivation of the supersymmetry conditions for various AdS3
space-times of type IIB supergravity. A summary of the outcome may be encapsulated in

table 1 which we reproduce from [21].

As can be seen from the above table, in each case the cycle being wrapped is the same,

but as the dimensionality of the Calabi-Yau n-fold (CYn) increases, the preserved super-

symmetry decreases. For D3-branes wrapping Kähler two-cycles in CY2 manifolds, one can

generically have SO(4) × U(1) R symmetry provided the radial direction (2.5) involves a

rotation. Upon analytic continuation, one recovers the half-BPS LLM solutions [63] with

isometry R×SO(4)×SO(4)×U(1), however there appear to be no known AdS3 space-times

in this class. On the contrary, when θ = 0, i.e. when the radial direction is purely trans-

verse, one recovers the well known AdS3×S3×CY2 solution6 with R symmetry SO(4). In

either case the supersymmetry is N = (4, 4).

5For SU(4) structure manifolds there is no transverse space so there θ = π/2.
6Specialising to CY2 = T 4 and performing T-dualities we arrive at the usual form of the D1-D5 near-

horizon sourced by three-form RR flux. We also remark that the geometry sourced by five-form flux and

three-form flux are also related via fermionic T-duality [64] as explained in [65].

– 5 –
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For D3-branes wrapping Kähler two-cycles in CY3, supersymmetry is reduced to N =

(2, 2), while the associated R symmetry group is U(1) × U(1). Examples of these space-

times can be found in the literature [66, 67]. Finally, for D3-branes wrapping Kähler two-

cycles in CY4 the dual SCFTs preserve N = (0, 2) supersymmetry and the U(1) Killing

direction is dual to the R symmetry. A rich set of examples of these geometries exist in

the literature [14, 15, 22, 23, 67, 68]. In the notation of [21], the metric and flux may be

expressed as

ds210 = λ−1ds2 (AdS3) + λds2 (M6) + λ−1 (dψ +B)2 , (2.6)

Θ = vol (AdS3) ∧
[

d
(

λ−2(dψ +B)
)

− 2λ−1J
]

, (2.7)

where ∂ψ is the Killing vector dual to the R symmetry. The SU(3) structure manifold M6

is subject to the the conditions [21]:

dJ = 0, (2.8)

J2 ∧ dB =
2

3
λ2J3, (2.9)

dΩ = 2i (dψ +B) ∧ Ω . (2.10)

The first condition implies that M6 is a Kähler manifold, while the last condition simply

identifies the Ricci form R = 2dB.

2.2 D3-branes with N = (0, 2) SCFTs duals

Now that we have covered AdS3 space-times arising from D3-branes wrapping Kähler two-

cycles in Calabi-Yau manifolds in a general manner, here we focus on the particular case

where the manifold is CY4. Since this case preserves the least amount of supersymmetry,

it includes geometries dual to two-dimensional SCFTs with N = (2, 2) and N = (4, 4)

supersymmetry as special cases.

While the characterisation of wrapped D3-branes [21] presented in the previous section

offers a welcome sense of overview, henceforth we switch to the notation of [22], which is

itself based on the work of [20]. The generic AdS3 solutions corresponding to wrapped

D3-branes are then of the form [22],

ds2 = L2

[

e2Ads2 (AdS3) +
1

4
e2A (dz + P )2 + e−2Ads2 (M6)

]

,

F5 = L4 vol(AdS3) ∧
[

1

2
J − 1

8
d
(

e4A (dz + P )
)

]

+
1

16
L4

[

J ∧R ∧ (dz + P ) +
1

2
∗6 dR

]

, (2.11)

where L is an overall scale factor, ∗6 refers to Hodge duality with respect to the metric of the

Kähler space, dP = R, with R being the Ricci form on M6.
7 The warp factor is related to

7The Ricci form is defined by Rij = 1

2
RijklJ

kl, where Rijkl is the Riemann tensor. Recall also that the

Ricci scalar R and the Ricci tensor Rij may be expressed in terms of the Ricci form as R = J ij
Rij and

Rij = −J k
i Rkj .

– 6 –
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the Ricci scalar through 8e−4A = R, a relation that can be inferred from (2.9). The closure

of F5 leads to the differential condition on the curvature (1.1). Finally, to make direct

comparison with the previous incarnation of this solution (2.6), one can simply redefine

λ = e−2A, z = 2ψ, P = 2B, Ω = eizΩ̃ , (2.12)

where we have added a tilde to differentiate between complex forms. The five-form

fluxes (2.7) and (2.11) are related up to a factor of −4 and follow from the choice of nor-

malisation adopted in [20]. This point should be borne in mind when making comparisons.

Examples. To get better acquainted with the form of the general soution, we can con-

sider some supersymmetric solutions that will correspond later to the vacua of our gauged

supergravities. We begin with the well-known AdS3 × S3 × T 4 solution corresponding to

the near-horizon geometry of two intersecting D3-branes. Via T-duality it is related to the

D1-D5 near-horizon where the geometry is supported by a RR three-form.

To rewrite the solution in terms of the general description (2.11), we take

A = 0,

dz + P = (dφ3 − cosφ1dφ2) ,

ds2 (M6) = ds2
(

T 4
)

+
1

4

(

dφ21 + sin2 φ1dφ
2
2

)

, (2.13)

where φi parametrise the coordinates on the S3 normalised to unit radius, the same radius

as the AdS3 factor. Despite this solution fitting into the general ten-dimensional framework,

it preserves sixteen supercharges and is dual to a SCFT with N = (4, 4) supersymmetry.

Before illustrating the most general solution of [14, 15] in its ten-dimensional guise, we

can satisfy the required supersymmetry condition

a1 + a2 + a3 = −κ, (2.14)

where κ is the curvature of the Riemann surface Σg, more simply through setting all the ai
equal, ai =

1
3 , and taking the Riemann surface to be a unit radius Hyperbolic space, κ = −1.

This solution originally featured in [67]. With these simplifications the solution reads

ds2 =
4

9
ds2 (AdS3) +

1

3
ds2

(

H2
)

+
3
∑

i=1

dµ2i + µ2i

(

dϕi + Â
)2
, (2.15)

F5 = (1 + ∗)
[

−32

81
vol (AdS3) ∧ vol

(

H2
)

− 4

27
vol (AdS3) ∧

3
∑

i=1

d
(

µ2i
)

∧
(

dϕi + Â
)

]

,

where the µi are constrained so that
∑3

i=1 µ
2
i = 1. Note now that all Ai are equal,

Ai = Â, and dÂ = −1
3 vol(H

2). It is easy to determine the one-form K = 1
2e

2A(dz + P )

corresponding to the R symmetry direction

K =
2

3

[

3
∑

i=1

µ2i

(

dϕi + Â
)

]

, (2.16)
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and check that it has the correct norm K2 = e2A = 4
9 [20]. Taking into account the

factor of −4 in the definitions of the flux, and also setting L = 1, we then learn from

comparing (2.11) with (2.15) that

− 32

81
vol(H2)− 4

27

3
∑

i=1

d(µ2i ) ∧ (dϕi + Â) = −2J + d(e2AK). (2.17)

One can then determine J

J =
4

27
vol
(

H2
)

+
2

9

3
∑

i=1

d
(

µ2i
)

∧
(

dϕi + Â
)

, (2.18)

which comes with the correct factor of vol(H2),

ds2 (M6) =
4

27
ds2(H2) +

4

9

[

dµ21 + dµ22 + dµ23 + µ21µ
2
2 (dϕ1 − dϕ2)

2

+ µ21µ
2
3 (dϕ1 − dϕ3)

2 + µ22µ
2
3 (dϕ2 − dϕ3)

2

]

, (2.19)

so that vol(M6) =
1
3!J

3. Observe also that J is independent of K since µidµi = 0 follows

from the fact that the µi are constrained. In addition, the final difference in angular

coordinates ϕ2 − ϕ3 can be written as a linear combination of the other two, so we only

have four directions separate from those along the H2. As a further consistency check, we

have confirmed that the Ricci scalar for M6 is R = 8e−4A, in line with our expectations.

We can now repeat for general ai subject to the single constraint (2.14). This also

comprises the only example we discuss where the warp factor A is not a constant. In the

notation of [14, 15], the ten-dimensional solution is

ds2 = ∆
1

2

[

e2fds2 (AdS3) + e2gds2 (Σg)
]

+∆− 1

2

3
∑

i=1

X−1
i

(

dµ2i + µ2i
(

dϕi +Ai
)2
)

, (2.20)

F5 = (1+∗) vol (AdS3)∧
3
∑

i=1

e3f+2g

[

2Xi
(

X2
i µ

2
i−∆

)

vol (Σg)−
ai

2 e4gX2
i

d
(

µ2i
)

∧(dϕ+Ai)
]

,

where

∆ =
3
∑

i=1

Xiµ
2
i , X1X2X3 = 1, (2.21)

and as before the µi are constrained. The constrained scalars Xi can be expressed in terms

of two scalars ϕi in the following way

X1 = e
− 1

2

(

2
√

6
ϕ1+

√
2ϕ2

)

, X2 = e
− 1

2

(

2
√

6
ϕ1−

√
2ϕ2

)

, X3 = e
2
√

6
ϕ1 . (2.22)
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To give the full form of the solution one also needs to specify the values of the various

warp factors ef , eg and scalars Xi [14]:
8

ef =
2

X1 +X2 +X3
, e2g =

a1X2 + a2X1

2
,

X1X
−1
3 =

a1
a3

(a2 + a3 − a1)

(a1 + a2 − a3)
, X2X

−1
3 =

a2
a3

(a1 + a3 − a2)

(a1 + a2 − a3)
. (2.23)

From the higher-dimensional perspective afforded to us here, the canonical R symmetry

corresponds with the Killing vector [15]

∂ψ = 2
3
∑

i=1

Xi

X1 +X2 +X3
∂ϕi

. (2.24)

Again, one is in a position to determine the dual one-form

K = ef∆− 1

2

3
∑

i=1

µ2i (dϕi +Ai) , (2.25)

and confirm that it squares correctly K2 = e2A = ∆
1

2 e2f . Proceeding in the same fashion

as above, one can then determine J

J =
3
∑

i=1

1

4

[

− Θ

ai (2ai + κ)
e3fd

(

µ2i
)

∧ (dϕi +Ai) + 2ai (2ai + κ)
Θ

Π
µ2i e

3f vol (Σg)

]

, (2.26)

where we have adopted the notation of [15], namely

Θ = a21 + a22 + a23 − 2 (a1a2 + a1a3 + a2a3) ,

Π = (−a1 + a2 + a3) (a1 − a2 + a3) (a1 + a2 − a3) . (2.27)

The accompanying expression for the manifold M6 is

ds2 (M6) = ∆e2g+2fds2 (Σg) + e2f
[

X−1
1 dµ21 +X−1

2 dµ22 +X−1
3 dµ23

+
X3

∆
µ21µ

2
2 (X2Dϕ1 −X1Dϕ2)

2 +
X2

∆
µ21µ

2
3 (X3Dϕ1 −X1Dϕ3)

2

+
X1

∆
µ22µ

2
3 (X3Dϕ2 −X2Dϕ3)

2

]

, (2.28)

where we have further defined Dϕi = dϕi + Ai. One can check it is consistent with

the expression for J and furthermore that one recovers the previous expressions upon

simplification, i.e. setting ai =
1
3 , κ = −1.

These solutions will all be utilised later when we come to discuss three-dimensional

gauged supergravities with vacua corresponding to the above supersymmetric solutions. In

the next section, we begin by discussing an example of a generic reduction, in other words

one where the warp factor is not a constant, by providing further details of the reduction

and resulting three-dimensional N = 2 supergravity initially reported in [16].

8The solutions with g = 1 were studied in [69], while for g = 0, g > 1, modulo issues related to the

range of the parameters, the solutions can be mapped to (4.6) of [70] through interchanging the scalars

φ1 ↔ −φ2 and redefining the parameters accordingly ai = −ǫmi/(m1 +m2 +m3), where ǫ = 1 for Σg = S2

and ǫ = −1 for Σg = H2.

– 9 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

3 An example of a generic reduction

In this section we illustrate an example of a generic reduction, where we use the word

“generic” to draw a line between dimensional reductions with non-trivial warp factors

from the ten-dimensional perspective, and those that are direct products. Recall that,

in addition to the famous KK reductions based on spheres [2, 3, 5–8], which give rise

to maximal gauged supergravities in lower dimensions, generic KK reductions based on

gaugings of R symmetry groups, notably gaugings of U(1) R symmetry [71, 72] and SU(2)

R symmetry [73, 74] exist despite the internal space not being a sphere. This observation

leads to the natural conjecture [72] that gaugings of R symmetry groups are intimately

connected to the existence of consistent KK dimensional reductions. Here should be no

exception, so we expect that one can gauge the existing U(1) R symmetry present in (2.11)

and reduce to three dimensions.

However, in contrast to similar reductions to four and five dimensions, for instance [71,

72], here in addition to retaining the gauge field from the R symmetry gauging, we also

require an additional scalar so that the three-dimensional gauged supergravity fits into the

structure of N = 2 gauged supergravity as laid out in [9]. More concretely, we require

an even number of scalars to constitute a Kähler scalar manifold. While the reduction we

discuss presently assumes additional structure for the M6, i.e. the existence of a Riemann

surface, it would be interesting to identify truly generic reductions without having to specify

the internal six-dimensional Kähler manifold.

Here we will present further details of the dimensional reduction from five-dimensional

U(1)3 gauged supergravity to three-dimensional N = 2 gauged supergravity reported

in [16]. While not being the most general reduction, from the ten-dimensional vantage

point it provides a neat example of a reduction where the warp factor, and the associated

Ricci scalar of the internal M6, is not a constant. We also do not need to address the full

embedding of the three-dimensional theory in ten dimensions, since we can work with the

U(1)3 gauged supergravity in five dimensions.

The bosonic sector of the action for five-dimensional U(1)3 gauged supergravity can

be found in [75]. It arises as a consistent reduction from type IIB on S5, so it is directly

connected to ten dimensions9 via the equations of motion, and corresponds to the special

case where only the SO(2)3 Cartan subgroup of SO(6) is gauged. The action reads

L5 = R ∗ 1− 1

2

2
∑

i=1

dϕi ∧ ∗dϕi −
1

2

3
∑

i=1

X−2
i F i ∧ ∗F i

+ 4g2
3
∑

i=1

X−1
i vol5+F

1 ∧ F 2 ∧A3, (3.1)

9The bosonic sector also appears as a reduction from D = 11 supergravity [76] where it is based on

the existence of near-horizon black holes [77]. Interestingly, one can start from D = 11 and reduce to

D = 4 U(1)4 gauged supergravity, which, for consistency, requires F i
∧ F j = 0. Taking a near-horizon

limit prescribed in [77] one finds the bosonic sector of D = 5 U(1)3 gauged supergravity, without such

a condition.
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where g is the gauge coupling and the constrained scalars Xi we have defined earlier (2.22).

From varying the potential with respect to the scalars it is easy to see that there is only a

single supersymmetric AdS5 vacuum at Xi = 1.

As commented in [75], or by inspection from the equations of motion in appendix C,

one can consistently truncate the theory by setting first ϕ2 = 0 implying that X1 = X2 =

X
−1/2
3 . This truncation is consistent provided F 1 = F 2. Furthermore, one can take an

additional step and set ϕ1 = 0 leading to minimal gauged supergravity in five dimensions.

Dimensional reduction. As it turns out, this dimensional reduction can be performed

consistently at the level of the action. Simply put, this means that we can adopt the

space-time metric Ansatz

ds25 = e−4Cds23 + e2Cds2(Σg) (3.2)

where Σg is a constant curvature Riemann surface of genus g and we have used C to denote

the scalar warp factor in five dimensions. In addition, we have orchestrated the warp factors

so that we arrive directly in Einstein frame in three dimensions.

The metric on the Riemann surface may be expressed as

ds2 (Σg) = e2h
(

dx2 + dy2
)

, (3.3)

where the function h depends on the curvature κ of the Riemann surface. It is respectively,

h = − log
(

(1 + x2 + y2)/2
)

(κ = 1), h = log(2π)/2 (κ = 0) and h = − log(y) (κ = −1),

depending on whether the genus is g = 0, g = 1, or g > 1. In addition, one takes the

following Ansatz for the field strengths,

F i = Gi − ai vol (Σg) , (3.4)

where closure of F i ensures that ai are constants and Gi is closed, Gi = dBi.

In doing the reduction at the level of the action the following expression for the five-

dimensional Ricci scalar is useful

R ∗ 1 = R ∗3 1− 6dC ∧ ∗3dC + 2κe−6C ∗3 1. (3.5)

The resulting three-dimensional action in Einstein frame is

L(3) = R ∗3 1− 6dC ∧ ∗3dC − 1

2

2
∑

i=1

dϕi ∧ ∗3dϕi −
1

2
e4C

3
∑

i=1

X−2
i Gi ∧ ∗3Gi

+

(

3
∑

i

[

4g2e−4CX−1
i − 1

2
e−8Ca2iX

−2
i

]

+ 2κe−6C

)

∗ 1+ L(3)
top , (3.6)

where the topological term takes the form

L(3)
top = a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2. (3.7)

We remark that the reduction and the resulting potential appeared previously in [78].

In appendix C, we have confirmed that it is indeed consistent.
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Dualising the action. Now that we have the action, we would like to rewrite it in the

form of a three-dimensional non-linear sigma model coupled to supergravity so that we can

make contact with three-dimensional gauged supergravities in the literature [9]. We take

our first steps in that direction by dualising the gauge fields, or more appropriately, their

field strengths, and replacing them with scalars:

G1 = X2
1e

−4C ∗DY1, DY1 = dY1 + a3B
2 + a2B

3,

G2 = X2
2e

−4C ∗DY2, DY2 = dY2 + a1B
3 + a3B

1,

G3 = X2
3e

−4C ∗DY3, DY3 = dY3 + a1B
2 + a2B

1. (3.8)

Through these redefinitions, we can recast the action (3.6) in the following form

L(3) = R ∗ 1− 6dC ∧ ∗dC − 1

2

2
∑

i=1

dϕi ∧ ∗dϕi −
1

2
e−4C

3
∑

i=1

X2
i DYi ∧ ∗DYi

+ L(3)
pot + a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2, (3.9)

where we have omitted the explicit form of the potential as it will play no immediate role.

We have also dropped all subscripts for Hodge duals on the understanding that we are

now confining our interest to three dimensions. Note that the Chern-Simons terms are

untouched and when we vary with respect to Bi we recover the duality conditions (3.8),

so it should be clear that the equations of motion are the same and we have just rewritten

the action.

At this point, before blindly stumbling on, we will attempt to motivate the expected

gauged supergravity. Firstly, we know from the Killing spinor analysis in [15] that the AdS3
solutions generically preserve four supersymmetries, meaning we are dealing with N = 2

supersymmetry in three dimensions. Indeed, for N = 2, we have precisely an SO(2) R

symmetry group under which the gravitini transform and in this case the target space is a

Kähler manifold with the scalars pairing into complex conjugates. Naturally, a prerequisite

for a Kähler manifold is that we have an even number of scalars, and we observe that after

dualising, this is indeed the case. So, we will now push ahead and identify some features

of the N = 2 gauged supergravity.

To identify the scalar manifold it is good to diagonalise the scalars by redefining them

in the following way

W1 = 2C +
1√
6
ϕ1 +

1√
2
ϕ2,

W2 = 2C +
1√
6
ϕ1 −

1√
2
ϕ2,

W3 = 2C − 2√
6
ϕ1 . (3.10)

In terms of the original Xi these new scalars are simply eWi = e2CX−1
i .

With these redefinitions, the Kähler manifold now assumes the simple form

L(3)
scalar = −1

2

3
∑

i=1

[

dWi ∧ ∗dWi + e−2WiDYi ∧ ∗DYi
]

(3.11)
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and we are in a position to identify it as [SU(1, 1)/U(1)]3. The Kähler structure of the scalar

target space can be made fully explicit through the introduction of the Kähler potential

of the form

K = −
3
∑

i=1

log (ℜzi) , (3.12)

where we have introduced complex coordinates zi = eWi + iYi. This means that the metric

for the manifold is gīi = ∂i∂īK = 1
4e

−2Wi , where ∂i = ∂zi , ∂ī = ∂z̄i .

Having identified the scalar manifold and the Kähler potential, we turn our attention to

the scalar potential. In the language of three-dimensional N = 2 gauged supergravity [9],

the scalar potential is comprised of two components, a T tensor and a superpotential W :

L(3)
pot = 8T 2 − 8gīi∂iT∂īT + 8eK|W |2 − 2gīieKDiWDīW̄ , (3.13)

where the Kähler covariant derivative is DiW ≡ ∂iW + ∂iKW and W is holomorphic, so

∂iW̄ = ∂īW = 0. While W plays a natural role when eleven-dimensional supergravity is

reduced on S2×CY3 to three dimensions [11], whenever the R symmetry is gauged, consis-

tency demands that W = 0. Thus, to make contact with the literature, we face the simpler

task of identifying the correct T tensor and making sure that the potential is recovered.

After rewriting the scalars, the potential takes the more symmetric form

L(3)
pot = 4g2

[

e−W1−W3 + e−W2−W3 + e−W1−W2

]

+ 2κe−W1−W2−W3

− 1

2

[

a21 e
−2(W2+W3) + a22 e

−2(W1+W3) + a23 e
−2(W1+W2)

]

. (3.14)

Note that in performing the reduction we have not been picky about supersymmetry and

a priori, neglecting the gauge coupling g, which can be set to one, the constants κ and ai
are unrelated. However, setting g = 1 for simplicity, one can find the appropriate T tensor

T = −1

4

[

a1e
−W2−W3 + a2e

−W1−W3 + a3e
−W1−W2

]

+
1

2

[

e−W1 + e−W2 + e−W3

]

, (3.15)

and check that it reproduces the potential on the nose provided (2.14) is satisfied. This is

precisely the condition identified in [14, 15] for supersymmetry to be preserved. Though

it happens that the existence of what is commonly referred to as a “superpotential”, in

this case T , could conceivably be related to some fake supersymmetry structure for the

theory, the fact that we recover the supersymmetry condition is reassuring. In fact, in

appendix C.1 we reduce some of the Killing spinor equations and show that they also lead

to the same T tensor. Thus, once the potential (and also T ) is extremised, the Killing

spinor equations are satisfied.

Central charge and exact R symmetry. At this stage it should be obvious that

we have a potential with a supersymmetric critical point provided condition (2.14) holds.

Furthermore, once we extremise T , we in turn extremise the potential and arrive at the

supersymmetric AdS3 vacuum. As discussed in [16], the extremization of the T tensor offers

a natural supergravity counterpart for c-extremization [14, 15]. Recall that c-extremization

has been proposed for SCFTs with N = (0, 2) supersymmetry as a means to identify the
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exact central charge and R symmetry where ambiguities exist due to the U(1) R symmetry

mixing with other global U(1) symmetries that may be present.

Like the trial c-function proposed in [14, 15], T is also quadratic and comes from

squaring the moment maps V i
T = 2V iΘijVj , (3.16)

contracted with the embedding tensor Θij [9], where the index i ranges over the various U(1)

symmetries, which for the immediate example, i = 1, 2, 3. In addition, since the embedding

tensor also appears in the Chern-Simons terms in the action, it also related to the ’t

Hooft anomaly coefficients which appear in the trial c-function for c-extremization [14, 15].

Indeed, for the class of wrapped D3-brane geometries discussed in [14, 15] this can all be

made precise through the relations [16]

cR = 3ηΣdGT
−1, R = 2V iT−1Qi , (3.17)

where cR is the exact central charge, R is the exact R symmetry, ηΣ is related to the volume

of the Riemann surface, ηΣ = 2π vol(Σg), dG is the dimension of the gauge group and Qi
denotes the charges corresponding to the U(1) currents.

All that remains to do is simply to identify the minimum of the potential by extremising

T . The critical point of T corresponds to the following values for the scalars:

W1 = ln

[

a2a3
a2 + a3 − a1

]

, W2 = ln

[

a1a3
a1 + a3 − a2

]

W3 = ln

[

a1a2
a1 + a2 − a3

]

. (3.18)

Once written in terms of C, ϕ1 and ϕ2 or in terms of C and Xi, this precisely gives the

AdS3 critical point of [14]. Then, slotting the critical value of T into the (3.17), we arrive

at the exact central charge and R symmetry,

cR = −12ηΣN
2a1a2a3

Θ
, (3.19)

R =
2ai (2ai + κ)

Θ
, (3.20)

where we have made use of (2.27) to display the result. In deriving (3.19) we have used

the fact that the dimension of the gauge group at large N is dG = N2, while for (3.20) it

is good to use the fact that the moment map is Vi = 1
4e

−Wi . The central charge and R

symmetry agree with those quoted in [14, 15] and reproduce the coefficients of the Killing

vector corresponding to the R symmetry (2.24).

4 Less generic reductions

Experience suggests that it is much easier to construct KK reduction Ansätze for direct

product solutions than those that are warped products. This should come as no surprise

since warped products are often more involved and consequently it may not be easy to iden-

tify a symmetry principle to guide the construction of a fitting Ansatz. For dimensional
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reductions from ten or eleven dimensions to five-dimensional gauged supergravities admit-

tingAdS5 vacua, the restrictions are quite clear. Starting with coset reductions [5–8, 79, 80],

through generic Sasaki-Einstein reductions [81–84] to the more general cases, the richness

of the reduced theory gradually decreases until one is left with minimal gauged supergrav-

ity [71, 72]. For warped AdS5 solutions, only reductions to minimal gauged supergravity

are known, with a notable exception being KK reductions [85] based on Y p,q spaces [86, 87],

which when uplifted to eleven dimensions, the vacua correspond to warped solutions.

In this section we will discuss KK reductions to three dimensions confined to the

special case where the Kähler manifold is a product of Kähler-Einstein spaces. As a direct

consequence, (1.1) simplifies to

R2 = 2RijR
ij . (4.1)

A nice treatment of this special case can be found in [22] which we follow. We take the

internal Kähler manifold to be a product of a set of two-dimensional Kähler-Einstein metrics

ds2 (M6) =
3
∑

i=1

ds2
(

KE
(i)
2

)

. (4.2)

Since M6 now has constant curvature, it is easy to satisfy (4.1). The Ricci form for M6

takes the form

R =
3
∑

i=1

liJi , (4.3)

where Ji are the Kähler forms of the constituent metrics and the constants li are zero,

positive or negative depending on whether the metric is locally that on T 2, S2 or H2. We

also have the one-form connection P =
∑

i Pi with dP =
∑

i liJi. Slotting (4.3) into (4.1)

we find a single constraint on the li

l1l2 + l1l3 + l2l3 = 0 , (4.4)

and discover that the overall warp factor is determined,

e−4A =
1

8
R =

1

4

∑

i

li . (4.5)

Finally, the expression for the five-form flux (2.11) simplifies and assumes the following form

F5 = (1 + ∗)L4 vol (AdS3) ∧
1

2
∑

i li

[

J1 (l2 + l3) + J2 (l1 + l3) + J3 (l1 + l2)
]

. (4.6)

We now can make some comments. Demanding that the ten-dimensional space-time

has the correct signature, we require R > 0 from (4.5). In the light of (4.4), this means

that the potential solutions are constrained to be either S2×T 4 or S2×S2×H2. The first

option here corresponds to the famous intersecting D3-branes solution, while the second

case was considered in [67]. We note that when the KE
(i)
2 space is H2, it is a well-known

fact that one can quotient the space without breaking supersymmetry leading to a compact

Riemann surface with genus g > 1. The Ricci tensor for these solutions can be found in

appendix D.
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4.1 Twists of SCFTs with Sasaki-Einstein duals

In this section we will discuss KK reductions on the first class of products of Kähler-

Einstein spaces by confining our attention to spaces with curvature, li 6= 0. For simplicity,

we will take l1 = l2, and the requirement that the scalar curvature of the internal M6 be

positive (4.5) subject to (4.4) means that there is only one case, namely M6 = H2×KE4,

where KE4 is a positively curved Kähler-Einstein manifold.10 For concreteness, we take

(l1, l2, l3) = (2, 2,−1) so that the H2 is canonically normalised.

Our next task is to construct a ten-dimensional Ansatz. While we could begin from

scratch, we can incorporate some results from the literature as, in the end, a natural

question concerns how they may be related. So we opt to kill two birds with one stone by

simply reducing the IIB reduction on a generic Sasaki-Einstein five-manifold SE5 [81–84]

further to three dimensions on a constant curvature Riemann surface (H2). We will follow

the notation of [82] and subsequent comments are in the context of that work.

To achieve our goal, we make two simplifications. Firstly, we truncate out the complex

two-form L2, since as our internal space is now six-dimensional, a complex (2, 0)-form,

Ω2, is less natural. We can easily replace it with a field coupling to the complex (3, 0)-

form Ω3 via the five-form flux, but this will simply give us an additional complex scalar.

More importantly, one can ask what is the fate of the complex scalars ξ and χ under

dimensional reduction. Recall that they feature prominently in embeddings of holographic

superconductors [88] (see also [89, 90]). However, since ξ, χ couple to the graviphoton A1,

it is not possible to twist A1 in the usual way to produce a supersymmetric AdS3 vacuum

without truncating out ξ and χ. As such, we will have nothing to say about models

for holographic superconductivity here. Moreover, as the same fields support the non-

supersymmetric Romans’ vacuum in five dimensions, we do not expect to find an analogue

in three dimensions that follows from the reduction procedure.

The five-dimensional action in Einstein frame can be found in (3.10) of [82]. With the

above simplifications taken onboard, for completeness, we reproduce the kinetic term

L(5)
kin = R vol5 −

28

3
dU ∧ ∗dU − 8

3
dU ∧ ∗dV − 4

3
dV ∧ ∗dV − 1

2e
2φda ∧ ∗da (4.7)

− 1
2dφ ∧ ∗dφ− 2e−8UK1 ∧ ∗K1 − e−4U−φH1 ∧ ∗H1 − e−4U+φG1 ∧ ∗G1

− 1
2e

8

3
(U+V )F2 ∧ ∗F2 − e−

4

3
(U+V )K2 ∧ ∗K2 − 1

2e
4

3
(2U−V )−φH2 ∧ ∗H2

− 1
2e

4

3
(2U−V )+φG2 ∧ ∗G2 − 1

2e
4

3
(4U+V )−φH3 ∧ ∗H3 − 1

2e
4

3
(4U+V )+φG3 ∧ ∗G3 ,

the scalar potential

L(5)
pot =

[

24e−
2

3
(7U+V ) − 4e

4

3
(−5U+V ) − 8e−

8

3
(4U+V )

]

vol5 , (4.8)

10Suitable choices for KE4 include S2
× S2, CP 2 and del Pezzo dPk, k = 3, . . . , 8.
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and the topological terms are given by the expression

L(5)
top = −A1 ∧K2 ∧K2 − (dk − 2E1 − 2A1) ∧ [dB2 ∧ (dc− 2C1) + (db− 2B1) ∧ dC2]

+A1 ∧ (dk − 2E1) ∧ [(db− 2B1) ∧ dC1 − dB1 ∧ (dc− 2C1)]

+ 2A1 ∧ dE1 ∧ (db− 2B1) ∧ (dc− 2C1) +A1 ∧ (db− 2B1) ∧ (dc− 2C1) ∧ F2

− 4C2 ∧ dB2 . (4.9)

In turn, the above fields can be written in terms of various potentials and scalars in five

dimensions

G1 = dc− 2C1 − adb+ 2aB1,

H1 = db− 2B1,

K1 = dk − 2E1 − 2A1,

F2 = dA1,

G2 = dC1 − adB1,

H2 = dB1,

K2 = dE1 +
1

2
(db− 2B1) ∧ (dc− 2C1) , (4.10)

thus ensuring the that ten-dimensional Bianchi identities (appendix A) for the fluxes hold.

In total we have 7 scalars U, V, k, b, c including the axion a and dilaton φ, 4 one-form

potentials A1, B1, C1, E1 and 2 two-form potentials B2, C2.

Dimensional reduction. Having introduced the five-dimensional theory, we are in a

position to push ahead with the same reduction as section 3 to three dimensions on a

constant curvature Riemann surface Σg. We consider the usual metric Ansatz11

ds25 = e−4Cds23 + e2Cds2 (Σg) , (4.11)

where warp factors have been chosen so that we end up in Einstein frame, and for the

moment, we will assume that we have a constant curvature Riemann surface and not

specify its curvature κ. Supersymmetry will later dictate that κ < 0. As for the rest of

the fields, the five-dimensional scalars reduce to three-dimensional scalars. The fact that

the field strengths H1, G1 appear in the Einstein equation mean that we cannot twist with

respect to B1 and C1 since such a twisting is inconsistent with the assumption that the

Riemann surface is constantly curved. This leaves A1 and E1, or their field strengths,

which we twist in the following way

K2 = −ǫ vol (Σg) + K̃2 ,

F2 = ǫ vol (Σg) + F̃2 , (4.12)

where tildes denote three-dimensional field strengths. ǫ is dictated to be a constant through

F2 = dA1 and no twisting along K1 imposes the requirement that we twist K2 in the

11Here C without subscript will denote the scalar warp factor and C1 is a one-form.

– 17 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

opposite way. This latter point is also in line with our expectation that one can fur-

ther truncate the theory to minimal gauged supergravity through K1 = 0,K2 = −F2 in

five dimensions [82].

Since we are not twisting B1, C1, the field strengths G1, H1, G2, H2 reduce directly to

three dimensions. On the contrary, we can consider a decomposition for the three-form

field strengths G3, H3 on the condition that we respect the symmetries of Σg. So we can

decompose

C2 = e vol (Σg) + C̃2, B2 = f vol (Σg) + B̃2 , (4.13)

leading to two new scalars e, f in the process. The corresponding field strengths can then

be written as

G3 =M1 ∧ vol (Σg) + g vol3, M1 = de− adf +
1

2
ǫ (dc− 2C1 − adb+ 2aB1) ,

H3 = N1 ∧ vol (Σg) + h vol3, N1 = df +
1

2
ǫ (db− 2B1) . (4.14)

One can check that this choice is consistent with the closure of the Bianchi identities.

The scalars g, h are, up to an integration constants λ1, λ2, set by the equations

of motion

g = −4e−
4

3
(4U+V )−φ−8C (λ1 + f)

h = 4e−
4

3
(4U+V )+φ−8C (λ2 + e− a (λ1 + f)) . (4.15)

We will normalise these so that λi = 1.

We now reduce directly at the level of the action and take care to check in appendix E

that one gets the same result from reducing the equations of motion, thus guaranteeing the

consistency of the reduction. Dropping tildes, as only the three-dimensional fields remain,

the resulting kinetic terms are

L(3)
kin = R vol3−6dC∧∗dC− 28

3
dU∧∗dU− 8

3
dU∧∗dV − 4

3
dV ∧∗dV − 1

2
e2φda ∧ ∗da (4.16)

− 1

2
dφ ∧ ∗dφ− 2e−8UK1 ∧ ∗K1 − e−4U+φG1 ∧ ∗G1 − e−4U−φH1 ∧ ∗H1

− 1

2
e

4

3
(4U+V )+φ−4CM1 ∧ ∗M1−

1

2
e

4

3
(4U+V )−φ−4CN1 ∧ ∗N1−e−

4

3
(U+V )+4CK2 ∧ ∗K2

− 1

2
e

8

3
(U+V )+4CF2 ∧ ∗F2−

1

2
e

4

3
(2U−V )+φ+4CG2 ∧ ∗G2 −

1

2
e

4

3
(2U−V )−φ+4CH2 ∧ ∗H2 ,

while those of the scalar potential take the form

L(3)
pot = e−4C

[

2κe−2C + 24e−
2

3
(7U+V ) − 4e

4

3
(−5U+V ) − 8e−

8

3
(4U+V )

− 1

2
ǫ2e−4C

(

e
8

3
(U+V ) + 2e−

4

3
(U+V )

)

− 8e−
4

3
(4U+V )−φ−4C (1 + f)2

− 8e−
4

3
(4U+V )+φ−4C (1 + e− a (1 + f))2

]

vol3 . (4.17)
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The topological term is then given by the expression

L(3)
top = 2ǫA1 ∧K2 − 4 (1 + e)A1 ∧ dB1 + 4 (1 + f)A1 ∧ dC1

− ǫE1 ∧K2+2E1 ∧
[

df ∧ (dc−2C1)−de ∧ (db−2B1)+
3

4
ǫ (db−2B1) ∧ (dc−2C1)

]

+ 2k

[(

df +
1

2
ǫ(db− 2B1)

)

∧ dC1 −
(

de+
1

2
ǫ (dc− 2C1)

)

∧ dB1

]

. (4.18)

Now is an opportune time to identify the supersymmetric AdS3 vacuum. This can be

done by comparing directly with (6.9) of [22] (see also [23]). For concreteness we can take

KE4 = S2 × S2 to exhibit the explicit solution, but one can consider other choices. The

form of the space-time metric before rescaling is

ds2 = L2

[

2√
3
ds2 (AdS3) +

√
3

2

(

dx2 + dy2

y2

)

+

√
3

2

2
∑

i=1

1

2

(

dθ2i + sin2 θidφ
2
i

)

1

2
√
3

(

dz − dx

y
−
∑

i

cos θidφi

)2


 , (4.19)

where AdS3 is normalised to unit radius and all normalisations for the H2, parametrised by

(x, y), and two S2’s, parametrised by (θi, φi) are now explicit. We have also reintroduced an

overall scale factor L. We omit the five-form flux as it will not provide any new information

and it is enough to compare the ten-dimensional metrics.

To make meaningful comparison with the KK reduction Ansatz of [82], we need to

compare with the following space-time Ansatz

ds2 = e−
2

3
(4U+V )

[

e−4Cds23 + e2Cds2 (Σg)
]

+ e2Uds2 (KE4) + e2V (η +A1)
2 , (4.20)

where dη = 2J and the Kähler-Einstein metric gij with positive curvature is normalised

so that Rij = 6gij . To make the connection, we first rescale the KE4 factor in (4.19) by a

factor of three, take L2 = 2/
(

3
√
3
)

and make the following identifications

(η +A1) =
1

3

(

dz − cos θ1dφ1 − cos θ2dφ2 −
dx

y

)

. (4.21)

The supersymmetric AdS3 vacuum can then be identified

U = V = 0, C = −1

2
log 3, e = f = −1 , (4.22)

where κ = −1, since the H2 was normalised to unit radius, and ǫ = −1
3 follows from (4.21).

One can indeed check that this choice leads to a critical point of the potential and that the

AdS3 radius of the three-dimensional space-time is ℓ = 2
9 .

Further truncation & supergravity. In this subsection we consider the above action

with the three-form fluxes truncated out by setting b = c = B1 = C1 = B2 = C2 = 0,

e = f = −1. Even from the ten-dimensional perspective, it is known that it is always
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consistent to perform this truncation to just the metric, fields in the five-form flux and the

axion and dilaton.12

We now recast the simpler action in the more familiar language of three-dimensional

gauged supergravity. In part this will involve dualising the one-form potentials. To do so

we redefine the following fields

K2 = e
4

3
(U+V )−4C ∗DY2 , DY2 = dY2 + B̃2

F2 = e−
8

3
(U+V )−4C ∗DY3 , DY3 = dY3 + B̃3 , (4.23)

while, at the same time, adding the following additional CS terms

δL(3)
top = 2B̃2 ∧K2 + B̃3 ∧ F2 . (4.24)

The covariant derivatives are chosen so that the equations of motion are still satisfied once

B̃i are integrated out. We can then redefine K1

K1 =
1

2
DY1, DY1 = (dY1 − 4E1 − 4A1) , (4.25)

and finally introduce the following scalars

W1 = −4U, W2 =
2

3
(U + V )− 2C, W3 = −4

3
(U + V )− 2C . (4.26)

The scalar manifold is now [SU(1, 1)/U(1)]4, which should be familiar from previous anal-

ysis, and the kinetic term for the action becomes

Lkin = −1

2
dW1 ∧ ∗dW1 −

1

2
e2W1DY1 ∧ ∗DY1 − dW2 ∧ ∗dW2 − e2W2DY2 ∧ ∗DY2

− 1

2
dW3 ∧ ∗dW3 −

1

2
e2W3DY3 ∧ ∗DY3 −

1

2
dφ ∧ ∗dφ− 1

2
e2φda ∧ ∗da . (4.27)

We can thus introduce the complex coordinates

zi = e−Wi + iYi , i = 1, 2, 3, z4 = e−φ + ia , (4.28)

allowing us explicitly to write the Kähler potential K as

K = − log (ℜz1)− 2 log (ℜz2)− log (ℜz3)− log (ℜz4) . (4.29)

While we could have made this point earlier, it is now clear that the axion a and the

dilaton φ decouple completely and can be truncated out. They also do not feature in the

scalar potential.

In terms of the other scalars the potential takes the form

Lpot =

[

2κe2W2+W3 + 24eW1+W2+W3 − 4e2(W1+W2) − 8e2(W1+W3) (4.30)

−1

2
ǫ2
(

e4W2 + 2e2(W2+W3)
)

]

vol3 .

12In performing this truncation we remove the six scalars coming from the RR and NS three-form fluxes.

In general, it is possible to see that one always has an SU(1, 1)/U(1) factor, but it is not clear if the remaining

twelve scalars constitute a Kähler manifold. It is also possible that the vacuum spontaneously breaks N = 4

supersymmetry to N = 2, for example [82] in five dimensions. We leave this point to future work.
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We can then work out the corresponding T tensor in terms of ǫ and κ,

T = − ǫ
4
e2W2 − ǫ

2
eW2+W3 − eW1+W2 + eW1+W3 − κ

2ǫ
eW3 . (4.31)

We note that κ and ǫ are not independent and we require κ = 3ǫ so that the T tensor

reproduces the potential. Once they are identified in this way, and taking into account the

fact that κ < 0, ǫ < 0, one finds a vacuum at

W1 = 0, W2 =W3 = − log (−ǫ) ⇒ U = V = 0, C =
1

2
log (−ǫ) . (4.32)

Setting ǫ = −1
3 , we arrive at the result quoted previously.

Central charge and R symmetry. In fact we have already discussed the central charge

for this case as it corresponds to a particular example in section 3, namely ai =
1
3 , κ = −1,

thus ensuring that (2.14) is satisfied. However, to avoid the onerous task of rescaling

metrics and comparing solutions, we can simply recalculate the central charge using the

standard holographic prescription [91, 92]

cR =
3ℓ

2G(3)
, (4.33)

where ℓ is the AdS3 radius and G(3) the three-dimensional Newton’s constant. Using the

conventions of [14, 15] where G(3) = 1/(4ηΣN
2), one can check that the result agrees

with (3.19) when ai =
1
3 .

It is also of interest here to ask about the R symmetry? The ten-dimensional origin

of our reduction makes it clear that there is only a single U(1) R symmetry, so there is no

ambiguity. However, without this insight, we can ask what the three-dimensional theory

can tell us about the R symmetry. Once we truncate out K1, we have essentially two U(1)

symmetries and the moment maps V i associated to these can be worked out by comparing

the T tensor (3.16) with the CS term in the action. We find that the components of the

embedding tensor are Θ23 = 2ǫ,Θ22 = −2ǫ and, for agreement, the moment maps are

V2 =
1

4
eW2 , V3 = −1

4
eW3 , (4.34)

where i = 2, 3 label the U(1)’s associated to the gauge fields E1 and A1 respectively. We

can then extract the R symmetry

R = −2

3
U(1)2 +

2

3
U(1)3 , (4.35)

where we have again used indices to distinguish the U(1)’s. We can now compare to our

earlier result (3.20) by inserting ai = 1
3 and one arrives at the same numbers, up to a

relative sign. This relative sign can be traced to the relative sign in (4.12) and by simply

changing the sign of A1 in ten dimensions, one can find perfect agreement.
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4.2 Intersecting D3-branes

In this section we discuss dimensional reductions to three dimensions for intersecting D3-

branes. Some of the work presented here will not be new and will recover the recent work

of [38]. Although we could approach this task directly from a ten-dimensional Ansatz, it

is handier to make use of an intermediate reduction to six dimensions on a Calabi-Yau

two-fold [93], details of which can be found in appendix F.

As such, we adopt the same strategy as [38], but an important distinction is that

we will not impose truncations directly in six dimensions and then reduce. Instead, we

will reduce directly so that we can unify the reductions presented in [38]. In addition,

we will make statements about the underlying gauged supergravity, an aspect that was

overlooked in [38]. Note that it is expected that the three-dimensional gauged supergravity

be a theory with N = 4 supersymmetry, so that the scalar manifold is a product of

quaternionic manifolds [9], but this falls outside of our scope here and we hope to address

this question in future work. Finally, we remark that these reductions are related to those

of [11] via T-duality and uplift, a point that is fleshed out in appendix B.

So the task now is to perform the reduction on S3, written as a Hopf-fibration, from the

six-dimensional theory presented in [93] to extract a three-dimensional gauged supergravity.

Strictly speaking we are then doing a reduction on the D1-D5 near-horizon or its S-dual F1-

NS5, so further T-dualities along CY2 = T 2×T 2 will be required to recover the intersecting

D3-brane vacuum discussed previously. We will come to this point in due course.

Dimensional reduction. Starting from the six-dimensional theory in appendix F, we

adopt the natural space-time Ansatz

ds26 = e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1) , (4.36)

where U, V are warp factors and A1 is a one-form with legs on the three-dimensional space-

time. Our Ansatz fits into the overarching description for supersymmetric AdS3 solutions

from wrapped D3-branes presented earlier with choice (l1, l2, l3) = (0, 0, 4). In contrast

to [38], this means that P = − cos θdφ so that dP = vol(S2) = 4J3. In addition, A = 0

follows from (4.5).

For the three-form fluxes, we consider the following Ansatz

F3 = G0
1

2
(dz + P +A1) ∧ J3 +G1 ∧ J3 +G2 ∧

1

2
(dz + P +A1) + ge−6U−3V vol3 (4.37)

H3 = sinα (dz + P +A1) ∧ J3 +H1 ∧ J3 +H2 ∧
1

2
(dz + P +A1) + he−6U−3V vol3 ,

where the Bianchi identities (see appendix A) determine the following:

G0 = 2 (cosα− sinαχ1) ,

G1 = dc− χ1db− 2 (C1 − χ1B1)− (cosα− sinαχ1)A1,

G2 = dC1 − χ1dB1,

H1 = db− 2B1 − sinαA1,

H2 = dB1 . (4.38)
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Here χ1 is the scalar axion of type IIB supergravity and we have introduced the constant

α, scalars b, c and one-form potentials B1, C1. The remaining scalars, φi, χi = 1, 2, of the

six-dimensional theory simply descend to become three-dimensional scalars.

We now plug our Ansatz into the equations of motion of the six-dimensional the-

ory (F.3)–(F.9), the details of which can be found in appendix F. In the process one

determines the form for g, h:

g = 2e−φ1+φ2−V−2U (cosα+ sinαχ2) , (4.39)

h = 2eφ1+φ2−V−2U [sinα− cosαχ2 + (cosα+ sinαχ2)χ1] , (4.40)

where we have normalised the integration constants for later convenience.

One finds that the equations of motion all come from varying the following three-

dimensional action:

L(3) = L(3)
kin + L(3)

pot + L(3)
top , (4.41)

where the kinetic term is

L(3)
kin = R vol3−

1

2
dφ1 ∧ ∗dφ1 −

1

2
e2φ1dχ1 ∧ ∗dχ1 −

1

2
dφ2 ∧ ∗dφ2

− 1

2
e2φ2dχ2 ∧ ∗dχ2 − 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e−φ1−φ2−4UH1 ∧ ∗H1 −

1

2
eφ1−φ2−4UG1 ∧ ∗G1 −

1

2
e−φ1−φ2+4UH2 ∧ ∗H2

− 1

2
eφ1−φ2+4UG2 ∧ ∗G2 −

1

8
e4U+4V F2 ∧ ∗F2 , (4.42)

and the scalar potential takes the form

L(3)
pot =

[

8e−6U−2V − 2e−8U − 2eφ1+φ2−8U−4V [sinα− cosαχ2 + (cosα+ sinαχ2)χ1]
2

− 2e−φ1+φ2−8U−4V (cosα+ sinαχ2)
2 − 2e−φ1−φ2−8U−4V sin2 α

− 2eφ1−φ2−8U−4V (cosα− sinαχ1)
2

]

vol3 . (4.43)

Finally, the topological term takes the simple form

L(3)
top = χ2 (H1 ∧G2 −G1 ∧H2)− (cosαC1 + sinαB1) ∧ F2 . (4.44)

When U = V = φi = χi = c = b = A1 = B1 = C1 = 0, the above scalar potential

has a critical point corresponding to either the D1-D5 near-horizon, its S-dual, or a one

parameter interpolating vacuum. We have chosen the integration constants so that an

SL(2,R) transformation, parametrised by the constant α,
(

C2

B2

)

→
(

cosα − sinα

sinα cosα

)(

C2

B2

)

(4.45)

takes one from the vacuum supported by a RR three-form flux (α = 0) to the vacuum

supported by a NS three-form flux (α = π
2 ). In each case the AdS3 radius is unity. It is

known more generally that the effect of an SL(2,R) transformation is simply to rotate the

Killing spinors [94],13 so supersymmetry is unaffected.

13In this immediate context, see [65].
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Ten-dimensional picture. As we have reached our three-dimensional theory through

the result of two steps, a reduction on a Calabi-Yau two-fold [93] and a further reduc-

tion generalising the recent work of [38], here we wish to pause to consider the higher-

dimensional picture. We would also like to recast the KK reduction Ansatz in terms of

the generic form of wrapped D3-branes. Specialising to CY2 = T 2 × T 2, we can perform

two T-dualities along the second T 2 leading to the following NS sector with the metric in

string frame:

ds210 = e
1

2
(φ1+φ2)

[

e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1)

2

]

(4.46)

+ e
1

2
(φ1−φ2)ds2

(

T 2
1

)

+ e−
1

2
(φ1−φ2)ds2

(

T 2
2

)

,

H3 = [2 sinαJ3 +H2] ∧
1

2
(dz + P +A1) +H1 ∧ J3 + he−6U−3V vol3, (4.47)

φ̃ =
1

2
(φ1 + φ2) , (4.48)

where φ̃ is the new ten-dimensional dilaton. Note that the three-form fluxH3 is not affected

by the T-duality. The accompanying RR fluxes then take the form

F5 =
[

G0J2 ∧ J3 + geφ1−φ2+2U+V J1 ∧ J3
]

∧ 1

2
(dz + P +A1) + eφ1−φ2+4U ∗G2 ∧ J1 ∧ J3

+G1 ∧ J2 ∧ J3 +
[

G2 ∧ J2 − eφ1−φ2−4U ∗G1 ∧ J1
]

∧ 1

2
(dz + P +A1)

+G0e
φ1−φ2−8U−4V vol3 ∧J1 + ge−6U−3V vol3 ∧J2 ,

F3 = dχ1 ∧ J2 − dχ2 ∧ J1 , (4.49)

where J1=vol(T 2
1 ), J2=vol(T 2

2 ) and, as before, J3=
1
4 vol(S

2) and there is no axion, F1=0.

Further truncations. Even if we dualise the gauge fields in the action (4.42), since we

have an odd number of scalars and N = 2 supergravity in three dimensions has a Kähler

scalar manifold, one will need to truncate out some fields to find a gauged supergravity

description. In this subsection we consider some further truncations and make contact with

the work of [38] in the process.

Setting α = χi = c = A1 = C1 = 0, φ1 = φ2 = φ, U = −V , and finally employing the

following identification

B1 = Â (4.50)

one can check that our action can be brought to the form of (4.7) of [38]:

L(3) = R vol3+
(

4e−4U − 2e−8U
)

vol3−dφ ∧ ∗dφ− 4dU ∧ ∗dU

− 1

2
e−2φ−4UH1 ∧ ∗H1 −

1

2
e−2φ+4UH2 ∧ ∗H2 . (4.51)

Note we have set ℓ = 1 for simplicity, but this can be reinstated if one rescales the radius of

the Hopf-fibre S3 correctly. We have also retained the scalar field b, which one is required

to set to zero to make direct connection with [38].
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The reduction of [38], where the six-dimensional space-time is supported solely by RR

flux, involves setting φ1=−φ2=φ, χi=b=α=B1=0. Making the further identifications

C1 = −Â , A1 = 2A , (4.52)

one arrives at

L(3) = R vol3−dφ ∧ ∗dφ− 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e2φ−4U

(

dc+2
(

Â−A
))

∧∗
(

dc+2
(

Â−A
))

− 1

2
e2φ+4U F̂∧∗F̂− 1

2
e4U+4V F∧∗F

+
[

8e−6U−2V − 2e−8U − 2e−2φ−8U−4V − 2e2φ−8U−4V
]

vol3+2Â ∧ F . (4.53)

Once one sets c = 0 one can again confirm this is the same action as (4.17) of [38]. A

further truncation of action (φ = 0 = A,U = −V ) permits warped black string solutions,

the holographic interpretation of which was considered in [95].14

An obvious truncation not discussed in [38] is the truncation to just the NS sector. In

some sense this may be regarded as the S-dual of the truncation we have just discussed.

We can do this by setting α = π
2 , χi = c = C1 = 0 and φ1 = φ2 = φ̃. The resulting action is

L(3) = R vol3−dφ̃ ∧ ∗dφ̃− 6dU ∧ ∗dU − 4dU ∧ ∗dV − 2dV ∧ ∗dV

− 1

2
e−2φ̃−4UH1 ∧ ∗H1 −

1

2
e−2φ̃+4UH2 ∧ ∗H2 −

1

8
e4U+4V F2 ∧ ∗F2

+
[

8e−6U−2V − 2e−8U − 2e−2φ−8U−4V − 2e2φ−8U−4V
]

vol3−B1 ∧ F2 . (4.54)

Up to a rewriting, b = c, A1 = 2A,B1 = −Â, φ̃ = −φ, this action is identical to (4.53).

Rewriting the supergravity. Here we identify the underlying gauged supergravities.

As a warm-up we consider the action (4.51), but make a conversion from the three-

dimensional Yang-Mills (YM) Lagrangian to a Chern-Simons Lagrangian following gen-

eral prescriptions given in [9] (see also [10, 96]). This procedure replaces every YM gauge

field with two gauge fields and a new scalar field. This allows us to trade the following

Yang-Mills term in the action

L(3)
YM = −1

2
e−2φ+4UH2 ∧ ∗H2 (4.55)

with the terms

L(3)
CS = −1

2
e2φ−4UDφ̃ ∧ ∗Dφ̃+H2 ∧ B̃1 , (4.56)

where Dφ̃ = dφ̃− B̃1 and we now have two gauge fields B1, B̃1 and an additional scalar φ̃.

Varying with respect to B̃1 we get

H2 + e2φ−4U ∗Dφ̃ = 0 , (4.57)

which, on choosing the gauge φ̃ = 0, we can integrate out B̃1 to recover the original

Lagrangian. The equation of motion following from varying B1 now reads

dB̃1 + 2e−2φ−4U ∗H1 = 0 , (4.58)

14It is easier to start with the action in [95] and use the EOM for Â to find the form for the action above.
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which can be shown to be equivalent to that of the original Lagrangian once one im-

poses (4.57). The equation of motion for φ̃ is trivially satisfied through (4.57).

With these changes, the scalar kinetic term of the full Lagrangian (4.51) is given by

L(3)
kin = −dφ ∧ ∗dφ− 4dU ∧ ∗dU − 1

2
e−2φ−4UH1 ∧ ∗H1 −

1

2
e2φ−4UDφ̃ ∧ ∗Dφ̃ (4.59)

where as before H1 = db− 2B1. We redefine all of the scalars through

Y1 = φ̃, Y2 = b, W1 = φ− 2U, W2 = −φ− 2U, (4.60)

so that the scalar kinetic term becomes

L(3)
kin = −1

2

2
∑

i=1

[

dWi ∧ ∗dWi + e2WiDYi ∧ ∗DYi
]

. (4.61)

The corresponding scalar manifold is clearly [SU(1, 1)/U(1)]2 and the Kähler potential is

K = −∑i log(ℜzi), where zi = e−Wi + iYi. In terms of Wi, the scalar potential becomes

L(3)
pot =

[

4eW1+W2 − 2e2(W1+W2)
]

vol3 . (4.62)

The corresponding T tensor is found to be

T =
1

2

(

eW1 + eW2 − eW1+W2

)

(4.63)

with only one critical point at W1 =W2 = 0. Here it is not immediately obvious that this

is the only option. Recall that for N = 2 gauged supergravity, when the R symmetry is

gauged, no holomorphic superpotential can appear [9]. Now when the R symmetry is not

gauged, as is the case here, one can consider replacing the T tensor with the free energy

F = −T ± eK/2W . However, since eK = eW1+W2 , we can see that a problem arises with W

being holomorphic, so this does not appear to be an option.

We now move onto the second action that results from truncating out all the NS three-

form flux fields. Referring to (4.46), (4.49), this means that we set α = b = B1 = χi = 0.

With this simplification, one further observes that it is consistent to set φ1 = −φ2 = φ.

This is simply (4.53) with the scalar c reinstated and A1 and C1 rewritten accordingly,

A1 = 2A, C1 = −Â.
We can now diagonalise the scalars by redefining them

W1 = −φ− 2U, W2 = φ− 2U, W3 = −2U − 2V , (4.64)

leading to canonically normalised kinetic terms:

L(3)
kin = −1

2

3
∑

i=1

[

dWi ∧ ∗dWi + e2WiDYi ∧ ∗DYi
]

. (4.65)

In the process we have redefined Y2 = c so that DY2 = dY2 + 2(Â − A) and in addition

dualised the one-form potentials, A, Â so that

F̂ = e−2φ−4U ∗DY1, DY1 = dY1 +B1,

F = e−4U−4V ∗DY3, DY3 = dY3 +B3. (4.66)
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As should be customary at this stage, we have to add a corresponding CS term so the new

topological term is

L(3)
top = 2Â ∧ F +B1 ∧ F̂ +B3 ∧ F . (4.67)

Introducing complex coordinates in the usual fashion, zi = e−Wi + iYi, i = 1, 2, 3, the

Kähler potential for the scalar manifold is K = −∑i log(ℜzi).
In terms of our new scalars Wi, the potential takes a simple form and is symmetric in

all the scalars Wi:

L(3)
pot = 2

[

4eW1+W2+W3 − e2(W1+W3) − e2(W1+W2) − e2(W2+W3)
]

vol3 . (4.68)

A suitable choice for the corresponding T tensor is

T = −eW2 +
1

2

(

eW1+W2 − eW1+W3 + eW2+W3

)

, (4.69)

though symmetry dictates that there are other choices and we can sendW1 →W2 →W3 →
W1 to uncover the other options. Regardless of how we choose T , the critical point is located

atWi = 0. Since the R symmetry is gauged, we do not expect a holomorphic superpotential.

5 Null-warped AdS3 solutions

Recently, it has been noted that null-warped AdS3 solutions, or equivalently geometries

exhibiting Schrödinger symmetry with z = 2, can be found in three-dimensional theories

that arise as consistent reductions based on the D1-D5 (or its S-dual) near-horizon geome-

tries of type IIB supergravity [38]. In section 4.2, we identified the relevant theories in

the gauged supergravity literature and here we will discuss some of the solutions. Prior

to [38], it was noted that non-relativistic geometries with dynamical exponent z = 4 could

be found in an N = 2 gauged supergravity that is the consistent KK reduction of eleven-

dimensional supergravity on S2 × CY3 [11].15 We will now address a natural question by

scanning the other gauged supergravities we have identified for non-relativistic solutions

with dynamical exponent z.

Before doing so, we recall some facts about Schrödinger solutions in three dimensions.

Starting from an AdS3 vacuum, solutions with dynamical exponent z arise as solutions to

Chern-Simons theories where the relevant equation is

d ∗3 F +
κ

ℓ
F = 0 , (5.1)

with F = dA and ℓ denotes the AdS3 radius. Taking the derivative of (5.1), we see that κ

must be a constant. Adopting the usual form of the space-time Ansatz

ds2 = ℓ2
(

−λ2rzdu2 + 2rdudv +
dr2

4r2

)

, (5.2)

the Einstein equation, through the components of the Ricci tensor:16

R+− = − 2

ℓ2
, R++ =

λ2

ℓ2
2z (z − 1) rz−1, R−− = 0 , (5.3)

15These were mistakenly labelled null-warped AdS3, but this label should be reserved solely for the z = 2

case in the literature.
16We have used the dreibein e+ = ℓ r

1

2 du, e− = ℓ r
1

2

(

dv − 1

2
λ2rz−1du

)

, er = ℓ dr
2r
.
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determines the constant κ in terms of the dynamical exponent, κ = z. Observe here that

λ is an arbitrary constant that can either be set to unity through rescaling the metric, or

when set to zero, one recovers the unwarped AdS3 vacuum.

Now the task of searching for new solutions becomes a very accessible goal; one simply

has to identify ℓ and compare the equations of motion of the theory with (5.1) to extract

κ and thus z. For the gauged supergravity discussed in section 3, namely the theory given

by the action (3.6), the AdS3 radius is

ℓ =
1

2T
= −2a1a2a3

Θ
, (5.4)

which in general depends on the parameters ai. For simplicity, we confine our search to

the case where Gi = G, i.e. they are all equal. After changing frame to Einstein frame,

consistency of the three equations (C.5) then places constraints on ai:

{a1 = a2 = a3} ,
{

a1 = a2 =
2

7
a3

}

,

{

a1 = a3 =
2

7
a2

}

,

{

a2 = a3 =
2

7
a1

}

. (5.5)

Combining these with the condition for a supersymmetric vacuum (2.14), one reaches the

conclusion that good AdS3 solutions exist only for Σg = H2.17 The two independent

choices we find are

(a1, a2, a3) =

(

1

3
,
1

3
,
1

3

)

, (a1, a2, a3) =

(

7

11
,
2

11
,
2

11

)

, (5.6)

where one is free to consider various cyclic permutations of the latter. The first choice leads

to the non-integral value z = 4
3 with ℓ = 2

9 . The second choice does produce an integer,

namely z = 18 with ℓ = 8
11 . Thus, within the limited scope of our search, we do not find

any null-warped AdS3 (z = 2) solutions here.

Moving on, we can turn to the gauged supergravity corresponding to twisted com-

pactifications of N = 1 SCFTs, namely (4.16). A particular case of this we have already

covered above. Referring the reader to equations (E.1) and (E.6), if one truncates consis-

tently to just K1,K2 and F2, and regardless of how one further truncates to an equation

bearing resemblance to (5.1), one finds the dynamical exponent z = 4
3 . This should not

come as a surprise as once one truncates to these fields, the theory should correspond to

five-dimensional U(1)3 theory where one identifies two of the gauge fields and truncates

out a scalar.

However, for the action (4.16), we do have other options. As we are considering a null

space-time, it is consistent to truncate to just the scalar c and one-form C1 with the various

other scalars taking their vacuum values. Obviously, this is not a consistent truncation in

general, but since we assume G2 ∧ ∗G2 = G1 ∧ ∗G1 = M1 ∧ ∗M1 = 0 in this case, we do

not have to worry about the consistency of equations such as (E.5), (E.7) and (E.8). Note

that M1 is not independent and is related to G1, M1 = ǫ
2G1. This in turn means that, in

addition to the Einstein equation, we only have two flux equations

d ∗G1 = 0, d ∗G2 −
9

ℓ
∗G1 = 0 , (5.7)

17One can compare the values of ai against figure 1 of [15].
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where we have used ℓ = 2
9 and e2C = 1

3 . If we further truncate to set ∗G1 = −2
9G2, then we

can find null-warped AdS3 solutions with z = 2. This allows us to determine c which can

be set consistently to zero. In the notation of section 4.1, the solution may be expressed as

ds2 = ℓ2
(

−rzdu2 + 2rdudv +
dr2

4r2

)

,

C1 =
2

3
ℓ r du , (5.8)

where we have rescaled C1 so that λ = 1.

We can also consider deformations for AdS3 supported by the scalar b and one-form

B1. This involves consistently truncating the action (4.16) to N1, H1 and H2 and since this

may be regarded as the S-dual of the truncation presented immediately above, we recover

the same solution.

For some sense of completeness, we also touch upon the existence of solutions for the

theory arising from a dimensional reduction on S2 × T 4 from ten dimensions presented

in section 4.2. Schrödinger solutions based on the D1-D5 near-horizon, or its S-dual F1-

NS5, have already been the focus of considerable attention in the literature. Not only

have solutions been constructed directly in ten dimensions [55], but examples in the three-

dimensional setting have also been identified in [38]. Though not mentioned in [38], an

S-duality transformation is all that is required to generate an example supported purely

by the NS sector provided one starts with the RR supported two-parameter family of [38].

Rather than take this path, we will work directly with our reduced theory and employ an

appropriate Ansatz. We will also make use of a further truncation.

Starting from the action in section 4.2, we take α = π
2 and truncate out various fields

U = V = φi = χi = a = c = C1 = 0. This corresponds to setting the scalars to their AdS3
vacuum (ℓ = 1) values and the choice of α is appropriate for a vacuum supported solely

by NS flux. Further truncating out A1 leads to the condition ∗H1 = H2, leading to the

equations of motion:

d ∗H2 = −2H2 ,

Rµν = −2gµν +H2µρH
ρ

2ν , (5.9)

where we have used the fact that B1 is null. Note that the CS equation is now in the

accustomed form (5.1), so we can be confident we have a null-warped solution. It is then

a straightforward exercise to provide the explicit form of the solution that satisfies these

equations of motion:

ds2 = −rzdu2 + 2rdudv +
dr2

4r2
,

B1 = r du . (5.10)

It would be interesting to see if any solutions can be generated through applying

TsT [25] transformations, such as those considered in [97].
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6 Outlook

Our primary motivation for this work stems from [16] where five-dimensional U(1)3 gauged

supergravity was dimensionally reduced on a Riemann surface and the lower-dimensional

theory re-expressed in terms of the language of three-dimensional gauged supergravity [9].

As explained in section 3, the T tensor presents a natural supergravity counterpart to the

quadratic trial function for the central charge presented in [14, 15] and it is a striking feature

that the T tensor, through the embedding tensor, knows about the exact R symmetry.

Without recourse to the higher-dimensional solution, this provides a natural way to identify

the exact central charge and R symmetry directly in three dimensions.

Since any solution to this particular three-dimensional gauged supergravity uplifts to

the U(1)3 theory in five dimensions, which is itself a reduction of type IIB supergravity [75],

we have also taken the opportunity to step back and address consistent KK reductions to

three dimensions for wrapped D3-brane geometries. As reviewed in section 2, the origin of

supersymmetric AdS3 geometries in type IIB can be traced to D3-branes wrapping Kähler

two-cycles in Calabi-Yau manifolds, with CFTs of interest to c-extremization, namely those

with N = (0, 2) supersymmetry, resulting when a two-cycle in a Calabi-Yau four-fold is

wrapped. All AdS3 solutions of this form fall into the general classification of supersym-

metric geometries presented in [20] and at the heart of each supersymmetric geometry is a

six-dimensional Kähler manifold M6, satisfying the differential condition (1.1).

Not only does this condition appear in the flux equations of motion, but the Einstein

equation is satisfied through imposing this condition. This makes the task of finding a fully

generic KK reduction, in contrast to the case studied in section 3, where one assumes the

presence of a Riemann surface, an inviting problem. It is expected that one can gauge the

U(1) R symmetry and reduce to three dimensions in line with the conjecture of [72] that

gaugings of R symmetry groups always lead to consistent reductions to lower-dimensional

gauged supergravities. What is not clear at this moment is whether a truly “generic”

reduction - one working at the level of the supersymmetry conditions - on M6 exists, thus

mimicking general reductions to five dimensions discovered in [71, 72], or whether one needs

to specify more structure for the M6. An added subtlety here is that since the reduced

theory is expected to fit into N = 2 gauged supergravity, it is not enough simply to retain a

gauge field coming from an R symmetry gauging and an extra degree of freedom is required.

Naturally enough, what we have discussed here just pertains to D3-branes and AdS3
vacua also arise in eleven-dimensional supergravity arising from wrapped M5-branes. It is

then fitting to consider KK reductions from eleven dimensions to three-dimensional gauged

supergravity. While supersymmetric AdS3 solutions can be found by considering twists of

seven-dimensional supergravity [15, 98, 99], more general solutions are expected to fit into

the general classification of supersymmetric solutions presented in [59, 60]. A particular

case discussed in [15], namely seven-dimensional supergravity reduced on H2×H2, we have

already considered18 and we will report on M5-brane analogues in future work [100].

In addition to the c-extremization angle, another thread to our story concerns the

search for null-warped AdS3 or Schrödinger (z = 2) solutions. While it is likely that we

18It corresponds to N = 2 supergravity with Kähler manifold [SU(1, 1)/U(1)]4.
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have recovered some known solutions, and found solutions with more general z, we believe

that the solutions based on H2 × KE4 internal geometries are new. What remains is to

check whether they preserve supersymmetry, and indeed the identification of the Killing

spinor equations for the reduced theories in sections 4.1 and 4.2 needs to be considered

if one is to discuss supersymmetric solutions. The reduction in section 3 aside, we have

simply focused on the bosonic sector and the equations of motion. It may also be interesting

to study families of Schrödinger solutions interpolating between the D1-D5 vacuum and

F1-NS5 vacuum directly in three dimensions. This would presumably overlap with the

higher-dimensional examples presented in [55]. It is expected that some supersymmetry

is preserved.

Combining the principle of c-extremization [14, 15], which can be understood in terms

of three-dimensional supergravity [16], and the fact that null-warped AdS3 solutions clearly

exist, it is worth considering if c-extremization can be extended to warped AdS3. The most

immediate setting to address this question is the theory of section 3, however, as we have

seen, the simplest solutions appear to preclude solutions with z = 2. A more thorough

search for null-warped solutions is warranted. If they do not exist, one can imagine starting

from a more involved theory in five dimensions that includes the U(1)3 gauged supergravity.

Evidently, the more involved reductions based on H2 ×KE4 and S2 × T 4 allow solutions,

so it can be expected that this question can be addressed in future work.

It would equally be interesting to look for a holographic analogue of c-extremization in

two dimensions.19 Starting from eleven dimensions, one can reduce to four dimensions [75]

retaining the Cartan subgroup U(1)4 of the R symmetry group. Relevant solutions are

already known [70, 78], and the two-dimensional theory one gets from twisted compactifi-

cations on Riemann surfaces are likely to be in the literature, for example [101], and may

be related to BFSS matrix quantum mechanics [102]. At a quick glance, it looks like we

have some of the jigsaw pieces in place.

One of the potentially interesting avenues for future study is to explore the connection

between supersymmetric black holes in five dimensions and null-warped AdS3 space-times.

For non-relativistic geometries with z = 4, it was noted in [11] that these geometries

naturally appear when one considers a general class of five-dimensional supersymmetric

black holes and strings and then reduces on an S2. The corresponding picture for the

known null-warped solutions can also be worked out. It would be interesting to extend

recent studies of the classical motion of strings in warped AdS3 backgrounds [103] to

higher-dimensional black holes.

Finally, we are aware of string theory embeddings of holographic superconductors in

four and five dimensions [88–90], where an important element in the construction is the

presence of charged scalars that couple to the complex form of the internal Kähler-Einstein

manifold. To date, there is no example of an embedding of the bottom-up model considered

in [104], though strong similarities between the supersymmetric geometries here and Sasaki-

Einstein manifolds suggest that this may be a good place to look. So far we have been

unable to find a consistent reduction based on M6 = S2×T 4 or M6 = H2×KE4, but one

could hope to address the problem perturbatively. Such an approach was adopted in [105].

19We are grateful to N. Halmagyi for suggesting this possibility.
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A Type IIB supergravity conventions

Our conventions for type IIB supergravity follow those of [82], which for completeness, we

reproduce here. Restricting ourselves to the bosonic sector of type IIB supergravity, the

field content consists of RR n-forms F(n), n = 1, 3, 5, the NS form H(3), the dilaton Φ and

the metric. The forms satisfy the Bianchi identities

dF(5) + F(3) ∧H(3) = 0 , (A.1)

dF(3) + F(1) ∧H(3) = 0 , (A.2)

dF(1) = 0 , (A.3)

dH(3) = 0 , (A.4)

which can be satisfied through the introduction of potentials C(n−1), B(2). In terms of these

potentials, the forms are F(5) = dC(4) − C(2) ∧H(3), F(3) = dC(2) − C(0)H(3), F(1) = dC(0),

H(3) = dB(2). In addition to the self-duality condition on the five-form, ∗F(5) = F(5), the

equations of motion take the form:

d
(

eΦ ∗ F(3)

)

− F(5) ∧H(3) = 0 , (A.5)

d
(

e2Φ ∗ F(1)

)

+ eΦH(3) ∧ ∗F(3) = 0 , (A.6)

d
(

e−Φ ∗H(3)

)

− eΦF(1) ∧ ∗F(3) − F(3) ∧ F(5) = 0 , (A.7)

d ∗ dΦ− e2ΦF(1) ∧ ∗F(1) +
1

2
e−ΦH(3) ∧ ∗H(3) −

1

2
eΦF(3) ∧ ∗F(3) = 0 , (A.8)

RMN =
1

2
∂MC(0)∂NC(0) +

1

2
∂MΦ∂NΦ+

1

96
FMPQRSF

PQRS
N

1

4
e−Φ

(

H PQ
M HNPQ − 1

12
gMNH

PQRHPQR

)

,

1

4
eΦ
(

F PQ
M FNPQ − 1

12
gMNF

PQRFPQR

)

. (A.9)
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B Connection between [11] and [38]

In this section we will discuss the connection between two dimensional reductions from

higher-dimensional supergravities to three-dimensional theories that have appeared in the

literature. Both theories admit supersymmetric Schrödinger solutions, however, for those

based on the D1-D5 near-horizon [38] the dynamical exponent z = 2 appears, while the

dynamical exponent quoted in [11] is z = 4.

Recall that these theories support AdS3 vacua whose higher-dimensional manifesta-

tions are AdS3 × S3 × CY2 geometries of type IIB supergravity and AdS3 × S2 × CY3
geometries of eleven-dimensional supergravity, respectively. Specialising to the case where

the Calabi-Yau three-fold is a direct product involving a torus T 2, CY3 = CY2×T 2, it is a

well-known fact that the geometries are related via dimensional reduction and T-duality.

This raises a question about the difference in the quoted dynamical exponents. Here we

address that issue and show that a sub-truncation of [38] and [11] is common and that

amongst the z = 2 solutions presented in [38], one can also find a z = 4 solution.

We start by considering the KK reduction Ansatz from eleven-dimensions. The solution

appearing in [11] has a higher-dimensional manifestation of the form

ds211 = e−4Wds23 + e2Wds2
(

S2
)

+ ds2 (CY2) + dx25 + dx26 ,

G4 =
(

α vol(S2) +H2

)

∧ (JCY2 + dx5 ∧ dx6) , (B.1)

where we have consistently truncated out the fields f, V,B1 leaving just a scalar W and

one-form potential B2, where H2 = dB2. Here (x5, x6) label coordinates on the T 2 and

α is a constant. Plugging this Ansatz into the equations of motion of eleven-dimensional

supergravity one finds [11]

d
(

e4W ∗3 H2

)

= −2αH2 , (B.2)

d ∗3 dW =
1

2
eWH2 ∧ ∗3H2 +

(

e−6W − α2e−8W
)

vol3 , (B.3)

and the Einstein equation which we omit.

Dimensional reduction on x6 and T-duality on x5 leads to the following IIB KK re-

duction Ansatz

ds210 = e−4Wds23 + e2Wds2
(

S2
)

+ ds2 (CY2) + (dx5 − α cos θdφ+B2)
2 , (B.4)

F5 = (1 + ∗10)
[

α vol
(

S2
)

∧ JCY2 + JCY2 ∧H2

]

∧ (dx5 − α cos θdφ+B2) ,

where (θ, φ) parametrise the two-sphere S2 and all other fields, including the dilaton

are zero.

At this point it is easier to compare with the ten-dimensional uplift [93] of the six-

dimensional Ansatz considered in [38] to get our bearings. After rescaling the metric to

make the transition to string frame, the ten-dimensional space-time may be written as

ds210 = e
φ1
2
+

φ2
2 ds26 + e

φ1
2
−φ2

2 ds2 (CY2) ,

ds26 = e−4U−2V ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dψ + cos θdφ+ 2A)2 , (B.5)
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where we have set the length-scale ℓ corresponding to the AdS3 radius to unity for sim-

plicity. To compare the metrics we note that we require the following identifications:

φ = φ1 = φ2 = −2V, eW =
1

2
eU , 2x5 = ψ, α = −1

2
, B2 = A. (B.6)

While this places us in the class of consistent reductions in section 4.2 of [38], the added

condition that the dilaton φ is zero tells us that the scalars φ, V appearing in equations

(B.25) and (B.29) of [38] are zero. These equations together then tell us that the two gauge

fields appearing in [38] should be identified A = ±Â. For CY2 = T 4, the RR-sector is then

simply related via T-duality.

The choice A = Â immediately leads to the condition F 2 = 0 through (B.25), however

there is another option. We can choose A = −Â with the further relation

A =
1

4
e4U ∗3 F . (B.7)

With this relation one can then satisfy oneself that (B.27) and the U equation from (B.29)

of [38] can be identified with (B.2) and (B.3) above, meaning that this particular sub-

truncation of both reductions is the same.

Indeed, since the higher-dimensional AdS3 solutions can be related via dimensional

reduction and T-duality, it is expected that the KK reductions are also related at some level.

C Details of reduction of D = 5 U(1)3 gauged supergravity

Here we begin by recording the five-dimensional equations of motion one gets from varying

the action (3.1). The equations of motion for the gauge fields Ai, i = 1, 2, 3, are

d
(

X−2
1 ∗ F 1

)

= F 2 ∧ F 3,

d
(

X−2
2 ∗ F 2

)

= F 1 ∧ F 3,

d
(

X−2
3 ∗ F 3

)

= F 1 ∧ F 2, (C.1)

and those of the scalars are given by

d ∗ dϕ1 =
1√
6

(

X−2
1 F 1 ∧ ∗F 1 +X−2

2 F 2 ∧ ∗F 2 − 2X−2
3 F 3 ∧ ∗F 3

)

− g2
4√
6

(

X−1
1 +X−1

2 − 2X−1
3

)

vol5 , (C.2)

d ∗ dϕ2 =
1√
2

(

X−2
1 F 1 ∧ ∗F 1 −X−2

2 F 2 ∧ ∗F 2
)

− g22
√
2
(

X−1
1 −X−1

2

)

vol5 .

Finally, the Einstein equation reads

Rµν =
1

2

2
∑

i=1

∂µϕi∂νϕi +
1

2

3
∑

i=1

X−2
i

(

F iµρF
i ρ
ν − 1

6
gµνF

i
ρσF

i ρσ

)

− gµν
4

3
g2

3
∑

i=1

X−1
i . (C.3)
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The reduction at the level of the equations of motion is most simply performed be first

reducing on the internal space, in this case a Riemann surface Σg, and then rescaling the

external space-time to go to Einstein frame. Thus, here we consider the initial Ansatz for

the five-dimensional space-time

ds25 = ds23 + e2Cds2 (Σg) , (C.4)

where C is a scalar warp factor depending on the coordinates of the three-dimensional

space-time.

To reduce the gauge field strengths we consider the Ansatz (3.4). The equations of

motion for the gauge fields now reduce as

d
(

X−2
1 e2C ∗3 G1

)

= −
(

a3G
2 + a2G

3
)

,

d
(

X−2
2 e2C ∗3 G2

)

= −
(

a3G
1 + a1G

3
)

,

d
(

X−2
3 e2C ∗3 G3

)

= −
(

a1G
2 + a2G

1
)

. (C.5)

From the scalar equations of motion, we find

d
(

e2C ∗3 dϕ1

)

=
1√
6
e2C
[

X−2
1

(

G1 ∧ ∗3G1 + a21e
−4C vol3

)

+X−2
2

(

G2 ∧ ∗3G2

+ a22e
−4C vol3

)

−2X−2
3

(

G3 ∧ ∗3G3 + a23e
−4C vol3

)

]

− g2
4√
6
e2C

(

X−1
1 +X−1

2 − 2X−1
3

)

vol3,

d
(

e2C ∗3 dϕ2

)

=
1√
2
e2C
[

X−2
1

(

G1 ∧ ∗3G1 + a21e
−4C vol3

)

−X−2
2

(

G2 ∧ ∗3G2

+ a22e
−4C vol3

)]

− 2
√
2g2e2C

(

X−1
1 −X−1

2

)

vol3 . (C.6)

The Einstein equation along the Riemann surface presents us with another scalar

equation of motion, this time for C:

−∇µ∇µC − 2∂µA∂
µC + e−2Cκ =

1

2

3
∑

i=1

X−2
i

(

2

3
a2i e

−4C − 1

6
GiρσG

i ρσ

)

− 4

3
g2

3
∑

i=1

X−1
i ,

(C.7)

where κ is the curvature of the Riemann surface.

Finally, the Einstein equation in three dimensions may be written as

Rµν = 2 (∇ν∇µC + ∂µC∂νC) +
2
∑

i=1

∂µϕi∂νϕi +
1

2

3
∑

i=1

X−2
i

(

GiµρG
i ρ
ν − 1

6
gµνG

i
ρσG

i ρσ

)

− 1

6
gµν

3
∑

i=1

(

a2i e
−4CX−2

i + 8g2X−1
i

)

. (C.8)

– 35 –



J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

The above equations can be shown to result from varying the action

L(3) = e2C

[

R ∗3 1+ 2dC ∧ ∗3dC − 1

2

2
∑

i=1

dϕi ∧ ∗3dϕi −
1

2

3
∑

i=1

X−2
i Gi ∧ ∗3Gi

]

+

(

3
∑

i=1

[

4g2e2CX−1
i − 1

2
e−2Ca2iX

−2
i

]

+ 2κ

)

∗3 1+ L(3)
top , (C.9)

where the topological term is

L(3)
top = a1B

2 ∧G3 + a2B
3 ∧G1 + a3B

1 ∧G2 . (C.10)

Here Bi is the one-form potential for Gi, Gi = dBi.

Now, to go to Einstein frame we just need to do a conformal transformation, gµν =

e−4C ĝµν . This leads to the Einstein frame action (3.6) quoted in the text.

In checking the Einstein equation we have made use of the following Ricci tensor

components

Rµν = R̄µν − 2 (∇ν∇µC + ∂νC∂µC) ,

Rmn =
[

κe−2C −∇µ∇µC − 2∂µC∂
µC
]

δmn , (C.11)

where µ, ν label space-time directions and m,n correspond to directions on the

Riemann surface.

C.1 Killing spinor equations

We would like to confirm that the T tensor (3.16) can be extracted directly from the

Killing spinor equations via reduction. In a related context, a similar calculation appeared

in [19] and in that context assisted the identification of a five-dimensional prepotential.

Our motivation here is the same.

We adopt the conventions for the Killing spinor equations in D = 5 from (F.1) of [15]

(see also [66]), and in some sense, up to some additional fields, the calculation here is

almost identical to appendix F of [15]. We work with the natural vielbein

eµ = e−2C ēµ, ea = eC ēa , (C.12)

where µ = 0, 1, 2 label three-dimensional space-time directions and a = 3, 4 denote direc-

tions along the Riemann surface. Our Ansatz for the flux follows from (3.4).

For the Killing spinor we make the choice

ǫ = eβCξ ⊗ η , (C.13)

where β is a constant we will fix later. We use the following decomposition of the five-

dimensional gamma matrices

γµ = ρµ ⊗ σ3, γ3 = 1⊗ σ1, γ4 = 1⊗ σ2. (C.14)

As in [15], where one has γ34ǫ = iǫ, following decomposition, we have σ3η = η.
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Inserting the Ansatz into the Killing spinor equations we arrive at

2δψ3 =

[

γ µ
3 e

2C∂µC +

3
∑

i=1

(

Xiγ3 +
i

3
e−2CaiX

−1
i γ4 +

i

12
e4Cγ µν

3 X−1
i Giµν

)

]

eβCξ ⊗ η ,

(C.15)

√
6δχ(1) =

[

1

8

2
∑

i=1

X−1
i

(

e4CGiµνγ
µν − 2iaie

−2C
)

− 1

4
X−1

3

(

e4CG3
µνγ

µν − 2ia3e
−2C

)

+
i

2
(−X1 −X2 + 2X3)− i

√
6

4
e2C∂µϕ1γ

µ

]

eβCξ ⊗ η , (C.16)

√
2δχ(2) =

[

1

8
X−1

1

(

e4CG1
µνγ

µν − 2ia1e
−2C

)

− 1

8
X−1

2

(

e4CG2
µνγ

µν − 2ia2e
−2C

)

+
i

2
(−X1 +X2)− i

√
2

4
e2C∂µϕ2γ

µ

]

eβCξ ⊗ η . (C.17)

Note, in contrast to [15] where scalars with raised and lowered indices are employed,

here our Xi are simply those in (2.22). As a consistency check, (C.15), (C.16), (C.17) agree

with (3.20) of [15] when Gi = 0 and φi = φi(r), C = g(r).

Taking various linear combinations we can write

4γ3δψ3 +
2

3

√
6iδχ(1) + 2

√
2iδχ(2) = δǫλ

1 ⊗ η ,

4γ3δψ3 +
2

3

√
6iδχ(1) − 2

√
2iδχ(2) = δǫλ

2 ⊗ η ,

4γ3δψ3 −
4

3

√
6iδχ(1) = δǫλ

3 ⊗ η (C.18)

leading to the variations (constant β = −2)

δǫλ
1 =

[

ρµ∂µW1+
i

2
X−1

1 e2CG1
µνρ

µν+e−4C
(

2e2CX1−a2X−1
2 −a3X−1

3

)

]

ξ,

δǫλ
2 =

[

ρµ∂µW2+
i

2
X−1

2 e2CG2
µνρ

µν+e−4C
(

2e2CX2−a1X−1
1 −a3X−1

3

)

]

ξ,

δǫλ
3 =

[

ρµ∂µW3+
i

2
X−3

1 e2CG3
µνρ

µν+e−4C
(

2e2CX3−a1X−1
1 −a2X−1

2

)

]

ξ . (C.19)

Dualising Gi as instructed in the text, the above equations can be condensed into a single

equation

δǫλ
a = 2E a

i

(

ρµDµz
i − 2∂iT

)

, (C.20)

which is the expected form for the Killing spinor equation for the spinor fields [9, 11] and

we see that the T tensor (3.16) features. E a
i , a = 1, 2, 3, is the complex dreibein defined

through gīi = E a
i Eīa, where Eīa = (E a

i )∗.

D Curvature for Kähler-Einstein space-times

Working in Einstein frame, we adopt the following Ansatz for the space-time

ds210 = e2Ads2 (M3) + e2A
1

4
e2W (dz + P +A1)

2 + e−2A
3
∑

a=1

e2Vads2
(

KE
(a)
2

)

, (D.1)
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where A is a constant overall factor, we have dropped the overall scale L appearing in (2.11)

and W , Va, a = 1, 2, 3 denote scalar warp factors. A1 is a one-form living on the three-

dimensional space-time M3.

We adopt the natural orthonormal frame

eµ = eA ēµ, ez = eA+W
1

2
(dz + P +A1) , ei = e−A+Va ēi, (D.2)

where µ = 0, 1, 2 label AdS3 directions and i = 3, . . . , 8 correspond to directions along the

internal Kähler-Einstein spaces.

With constant A, the spin-connection for the metric may be written as

ωµν = ω̄µν −
1

4
e−A+W (F2)

µ
νe
z,

ωij = ω̄ij −
1

4
e3A+W−2Va la(Ja)

i
je
z,

ωµz = −e−A∂µWez − 1

4
e−A+W (F2)

µ
ρe
ρ,

ωiµ = e−A∂µVae
i,

ωiz = −1

4
e3A+W−2Va la(Ja)

i
je
j . (D.3)

Using the above spin-connection one can calculate the Ricci-form

Rµν = e−2A

[

R̄µν−(∇ν∇µW+∂µW∂νW )−
3
∑

a=1

2 (∇ν∇µVa+∂µVa∂νVa)−
1

8
e2WF2µρF

ρ
2 ν

]

,

Rzz =
1

8
e6A+2W

3
∑

a=1

e−4Va l2a − e−2A (∇µ∇µW + ∂µW∂µW )− 2∂µW
3
∑

a=1

e−2A∂µVa

+
1

16
e−2A+2WF2 ρσF

ρσ
2 ,

R11 = R22 = e−2A

[

−∇µ∇µV1−∂µW∂µV1−2∂µV1

3
∑

i=a

∂µVa

]

+l1e
2A−2V1 − 1

8
l21e

4A+2W−4V1 ,

R33 = R44 = e−2A

[

−∇µ∇µV2−∂µW∂µV2−2∂µV2

3
∑

i=a

∂µVa

]

+l2e
2A−2V2 − 1

8
l22e

4A+2W−4V2 ,

R55 = R66 = e−2A

[

−∇µ∇µV3−∂µW∂µV3−2∂µV3

3
∑

a=1

∂µVa

]

+l3e
2A−2V3 − 1

8
l23e

4A+2W−4V3 ,

Rµz = −1

4
e−2W−2(V1+V2+V3)∇ρ

(

e3W+2(V1+V2+V3)F ρ
2 µ

)

, (D.4)

where all other terms are zero.

E Details of reduction on H2 × KE4

In this section we record equations of motion of the dimensionally reduced three-

dimensional theory. This will be useful for testing the consistency of the reduction. We
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begin with the Bianchi identities. The Bianchi identities for the three-form fluxes F(3) and

H(3) are trivially satisfied using the expressions in the text. The Bianchi for F(5) is partially

satisfied, with the remaining equations being:

d
(

e−
4

3
(U+V )+4C ∗K2

)

− 4e−8U ∗K1 + ǫ (K2 − F2)−N1 ∧G1 −H1 ∧M1 = 0,

d
(

e−8U ∗K1

)

+
1

2
N1 ∧G2 −

1

2
H2 ∧M1 = 0 . (E.1)

The equations of motion for F(3) and H(3) give respectively the equations

d
(

e
4

3
(4U+V )+φ−4C ∗M1

)

− 4h vol3+2H2 ∧K1 − 2H1 ∧K2 = 0 ,

d
(

e
4

3
(2U−V )+φ+4C ∗G2

)

− 4e−4U+φ ∗G1 − ǫe
4

3
(4U+V )+φ−4C ∗M1

+ ge
4

3
(4U+V )+φ+8CF2 + 2N1 ∧K1 + 2e−

4

3
(U+V )+4CH1 ∧ ∗K2 = 0 ,

d
(

e−4U+φ ∗G1

)

−N1 ∧K2 + ǫh vol3+e
− 4

3
(U+V )+4CH2 ∧ ∗K2 + 2e−8UH1 ∧ ∗K1 = 0 ,

(E.2)

and

d
(

e
4

3
(4U+V )−φ−4C ∗N1

)

+ 4g vol3−2G2 ∧K1 + 2G1 ∧K2 − e
4

3
(4U+V )+φ−4Cda ∧ ∗M1 = 0,

d
(

e
4

3
(2U−V )−φ+4C ∗H2

)

− 4e−4U−φ ∗H1 − ǫe
4

3
(4U+V )−φ−4C ∗N1 + he

4

3
(4U+V )−φ+8CF2

− 2M1 ∧K1 − 2e−
4

3
(U+V )+4CG1 ∧ ∗K2 − e

4

3
(2U−V )+φ+4Cda ∧ ∗G2 = 0,

d
(

e−4U−φ ∗H1

)

+M1 ∧K2 − ǫg vol3−e−
4

3
(U+V )+4CG2 ∧ ∗K2 − 2e−8UG1 ∧ ∗K1

− e−4U+φda ∧ ∗G1 = 0 . (E.3)

The axion and dilaton equation are respectively

d
(

e2φ ∗ da
)

+e
4

3
(4U+V )+φ−4CN1 ∧ ∗M1−e

4

3
(4U+V )+φ+8Cgh vol3+e

4

3
(2U−V )+φ+4CH2 ∧ ∗G2

2e−4U+φH1 ∧ ∗G1 = 0 , (E.4)

and

d ∗ dφ− e2φda ∧ ∗da+ 1

2
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 − eφM1 ∧ ∗M1

]

− 1

2
e

4

3
(4U+V )+8C

[

e−φh2 − eφg2
]

vol3+
1

2
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 − eφG2 ∧ ∗G2

]

+ e−4U
[

e−φH1 ∧ ∗H1 − eφG1 ∧ ∗G1

]

= 0 . (E.5)

The equations of motion for A1, U and V are

d
(

e
8

3
(U+V )+4C ∗ F2

)

− 2ǫK2 − 8e−8U ∗K1 + e
4

3
(4U+V )+8C

[

e−φhH2 + eφgG2

]

= 0, (E.6)

d ∗ dU + e−8UK1 ∧ ∗K1 −
1

8
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 + eφM1 ∧ ∗M1

]

(E.7)

+
1

8
e

4

3
(4U+V )+8C

[

e−φh2 + eφg2
]

vol3 −
1

8
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 + eφG2 ∧ ∗G2

]

+
1

4
e−4U

[

e−φH1 ∧ ∗H1+e
φG1 ∧ ∗G1

]

+e−4C
(

−6e− 2

3
(7U+V )+2e

4

3
(−5U+V )+4e−

8

3
(4U+V )

)

=0,
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d ∗ dV − 1

8
e

4

3
(4U+V )−4C

[

e−φN1 ∧ ∗N1 + eφM1 ∧ ∗M1

]

+
1

8
e

4

3
(4U+V )+8C

[

e−φh2 + eφg2
]

vol3

− 1

2
e

8

3
(U+V )+4CF2 ∧ ∗F2 +

1

2
e−

4

3
(U+V )+4CK2 ∧ ∗K2 − e−8UK1 ∧ ∗K1

− 1

2
ǫ2e

8

3
(U+V )−8C vol3 +

1

2
ǫ2e−

4

3
(U+V )−8C vol3 +

3

8
e

4

3
(2U−V )+4C

[

e−φH2 ∧ ∗H2 + eφG2 ∧ ∗G2

]

− 1

4
e−4U

[

e−φH1 ∧ ∗H1 + eφG1 ∧ ∗G1

]

+ e−4C
(

−4e
4

3
(−5U+V ) + 4e−

8

3
(4U+V )

)

vol3 = 0 . (E.8)

F Details of reduction on S2 × T 4

IIB reduced on CY2. Here we briefly review the KK reduction Ansatz of type IIB on

a Calabi-Yau two-fold that featured in [93]. The KK Ansatz in Einstein frame is

ds210 = e
1

2
φ2ds26 + e−

1

2
φ2ds2 (CY2) ,

F(5) = vol (CY2) ∧ dχ2 + e2φ2 ∗6 dχ2 , (F.1)

and all other fields of type IIB supergravity simply reduce to six dimensions. This Ansatz

thus leads to extra scalars in addition to the axion χ1 and dilaton φ1 of type IIB super-

gravity, one corresponding to a breathing mode φ2, and another axion χ2 coming from the

self-dual five-form flux. The six-dimensional action is

e−1L = R−
2
∑

i=1

1

2
(∂φi)

2 −
2
∑

i=1

1

2
e2φi (∂χi)

2 − 1

12
e−φ1−φ2H2

3

− 1

12
eφ1−φ2F 2

3 − χ2dB2 ∧ dC2, (F.2)

where H3 = dB2 and F3 = dC2 − χ1dB2. Some sign changes relative to [93] follow from

the difference in conventions. The equations of motion are:

d
(

eφ1−φ2 ∗6 F3

)

− dχ2 ∧ dB2 = 0, (F.3)

d
(

e−φ1−φ2 ∗6 H3

)

− eφ1−φ2dχ1 ∧ ∗6F3 + dχ2 ∧ F3 = 0, (F.4)

d
(

e2φ1 ∗6 dχ1

)

+ eφ1−φ2dB2 ∧ ∗6F3 = 0, (F.5)

d
(

e2φ2 ∗6 dχ2

)

− dB2 ∧ dC2 = 0, (F.6)

d ∗6 dφ1 − e2φ1dχ1 ∧ ∗6dχ1 +
1

2
e−φ1−φ2H3 ∧ ∗6H3 −

1

2
eφ1−φ2F3 ∧ ∗F3 = 0, (F.7)

d ∗6 dφ2 − e2φ2dχ2 ∧ ∗6dχ2 +
1

2
e−φ1−φ2H3 ∧ ∗6H3 +

1

2
eφ1−φ2F3 ∧ ∗F3 = 0, (F.8)

Rµν =
1

2

2
∑

i=1

(

∂µφi∂νφi + e2φi∂µχi∂νχi

)

+
1

4
e−φ1−φ2

(

H3µρ1ρ2H
ρ1ρ2

3ν − 1

6
gµνH3ρ1ρ2ρ3H

ρ1ρ2ρ3
3

)

+
1

4
eφ1−φ2

(

F3µρ1ρ2F
ρ1ρ2

3ν − 1

6
gµνF3ρ1ρ2ρ3F

ρ1ρ2ρ3
3

)

. (F.9)
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Reduction to three dimensions. To reduce the above equations of motion to three

dimensions we substitute in our six-dimensional space-time Ansatz

ds26 = ds23 +
1

4
e2Uds2

(

S2
)

+
1

4
e2V (dz + P +A1) , (F.10)

and expressions for the three-form field strengths (4.37). From (F.3) and (F.4) we get

d
(

eφ1−φ2+2U+V g − 2χ2 sinα
)

= 0, (F.11)

d
(

eφ1−φ2+V−2U ∗G1

)

+ dχ2 ∧H2 = 0, (F.12)

d
(

eφ1−φ2−V+2U ∗G2

)

− 2eφ1−φ2+V−2U ∗G1+
1

2
geφ1−φ2+2U+V F2−dχ2 ∧H1 = 0 , (F.13)

and

d
(

e−φ1−φ2+V+2Uh
)

− eφ1−φ2+V+2Ugdχ1 +G0dχ2 = 0, (F.14)

d
(

e−φ1−φ2+V−2U ∗H1

)

− e−φ1−φ2+V−2Udχ1 ∧ ∗G1 − dχ2 ∧G2 = 0, (F.15)

d
(

e−φ1−φ2−V+2U ∗H2

)

− 2e−φ1−φ2+V−2U ∗H1 +
1

2
he−φ1−φ2+V+2UF2

− eφ1−φ2−V+2Udχ1 ∧ ∗G2 + dχ2 ∧G1 = 0 . (F.16)

We can now solve (F.11) and (F.14) to determine g and h

g = 2e−φ1+φ2−V−2U (cosα+ sinαχ2) , (F.17)

h = 2eφ1+φ2−V−2U [sinα− cosαχ2 + (cosα+ sinαχ2)χ1] . (F.18)

In the process we have chosen the integration constants for convenience.

From (F.5) and (F.6) we get the following two equations:

d
(

e2φ1+2U+V ∗ dχ1

)

+
[

2 sinαG0e
φ1−φ2−2U−V − gheφ1−φ2+2U+V

]

vol3

+ eφ1−φ2+V−2UH1 ∧ ∗G1 + eφ1−φ2−V+2UH2 ∧ ∗G2 = 0 , (F.19)

d
(

e2φ1+2U+V ∗ dχ2

)

+ [hG0 − 2 sinαg] vol3+H1 ∧G2 −G1 ∧H2 = 0 . (F.20)

The final two scalar equations give

d
(

e2U+V ∗ dφ1
)

− e2φ1+2U+V dχ1 ∧ ∗dχ1 +
1

2
e−φ2−2U−V

[

4e−φ1 sin2 α− eφ1G2
0

]

vol3

+
1

2
e−φ2−2U+V

[

e−φ1H1∧∗H1−eφ1G1∧∗G1

]

+
1

2
e−φ2+2U−V

[

e−φ1H2∧∗H2−eφ1G2 ∧ ∗G2

]

− 1

2
e−φ2+2U+V

[

e−φ1h2 − eφ1g2
]

vol3 = 0, (F.21)

d
(

e2U+V ∗ dφ2
)

− e2φ2+2U+V dχ2 ∧ ∗dχ2 +
1

2
e−φ2−2U−V

[

4e−φ1 sin2 α+ eφ1G2
0

]

vol3

+
1

2
e−φ2−2U+V

[

e−φ1H1∧∗H1+e
φ1G1∧∗G1

]

+
1

2
e−φ2+2U−V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

− 1

2
e−φ2+2U+V

[

e−φ1h2 + eφ1g2
]

vol3 = 0 . (F.22)
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We now only have to work out the Einstein equation. Taking into account a change

in how we define scalars, namely W → V, V1 → U , we can use the Ricci tensor appearing

in (D.4). We simply have to take note of the fact that the S2 is normalised so that l1 = 4,

in which case A = 0.

From the Einstein equation, we get the following equations:

2e2V−4U vol3−d ∗ dV − dV ∧ ∗dV − 2dV ∧ ∗dU +
1

8
e2V F2 ∧ ∗F2 (F.23)

=

[

1

4
e−φ2−2V−4U

(

4e−φ1 sin2 α+ eφ1G2
0

)

+
1

4
e−φ2

(

e−φ1h2 + eφ1g2
)

]

vol3

+
1

4
e−φ2−2V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

− 1

4
e−φ2−4U

[

e−φ1H1 ∧ ∗H1+e
φ1G1 ∧ ∗G1

]

(

4e−2U − 2e2V−4U
)

vol3−d ∗ dU − dU ∧ ∗dV − 2dU ∧ ∗dU (F.24)

=

[

1

4
e−φ2−2V−4U

(

4e−φ1 sin2 α+ eφ1G2
0

)

+
1

4
e−φ2

(

e−φ1h2 + eφ1g2
)

]

vol3

− 1

4
e−φ2−2V

[

e−φ1H2∧∗H2+e
φ1G2∧∗G2

]

+
1

4
e−φ2−4U

[

e−φ1H1 ∧ ∗H1+e
φ1G1 ∧ ∗G1

]

1

2
e−2U−2V d

(

e3V+2U ∗ F2

)

= 2 sinαe−φ1−φ2−4U−V ∗H1 +G0e
φ1−φ2−4U−V ∗G1

− e−φ1−φ2−V hH2 − eφ1−φ2−V gG2 . (F.25)
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[66] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[67] M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].

– 45 –

http://dx.doi.org/10.1016/j.nuclphysb.2009.08.021
http://arxiv.org/abs/0905.1954
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1954
http://dx.doi.org/10.1007/JHEP03(2010)034
http://arxiv.org/abs/0911.5281
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5281
http://dx.doi.org/10.1007/JHEP02(2011)056
http://arxiv.org/abs/1008.1991
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1991
http://dx.doi.org/10.1103/PhysRevLett.110.081601
http://arxiv.org/abs/1211.0010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0010
http://dx.doi.org/10.1007/JHEP02(2013)123
http://arxiv.org/abs/1211.0005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0005
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://arxiv.org/abs/0901.3775
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3775
http://dx.doi.org/10.1007/JHEP08(2011)062
http://arxiv.org/abs/1102.2877
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2877
http://dx.doi.org/10.1007/JHEP05(2011)045
http://arxiv.org/abs/1102.1727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1727
http://dx.doi.org/10.1007/JHEP12(2012)009
http://arxiv.org/abs/1108.6091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6091
http://dx.doi.org/10.1103/PhysRevD.86.124018
http://arxiv.org/abs/1210.0539
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0539
http://dx.doi.org/10.1088/1126-6708/2006/11/053
http://arxiv.org/abs/hep-th/0605146
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605146
http://dx.doi.org/10.1103/PhysRevD.76.046007
http://arxiv.org/abs/hep-th/0703275
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703275
http://dx.doi.org/10.1088/1126-6708/2007/03/115
http://arxiv.org/abs/hep-th/0612196
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612196
http://dx.doi.org/10.1016/j.nuclphysb.2008.01.015
http://arxiv.org/abs/0705.2208
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2208
http://dx.doi.org/10.1088/1126-6708/2004/10/025
http://arxiv.org/abs/hep-th/0409174
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409174
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3196
http://dx.doi.org/10.1007/JHEP04(2012)047
http://arxiv.org/abs/1202.3416
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3416
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007018
http://arxiv.org/abs/hep-th/0206141
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206141


J
H
E
P
1
0
(
2
0
1
3
)
0
9
4

[68] J.P. Gauntlett, O.A. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3

solutions of type IIB supergravity, Phys. Rev. Lett. 97 (2006) 171601 [hep-th/0606221]

[INSPIRE].

[69] A. Almuhairi and J. Polchinski, Magnetic AdS ×R2: Supersymmetry and stability,

arXiv:1108.1213 [INSPIRE].
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[78] S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdSD−2 × S2 to AdSD,

Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].

[79] D. Cassani and A.F. Faedo, A supersymmetric consistent truncation for conifold solutions,

Nucl. Phys. B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].

[80] I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric Consistent

Truncations of IIB on T 1,1, JHEP 04 (2011) 021 [arXiv:1008.0983] [INSPIRE].

[81] D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed

Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].

[82] J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4

supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].

[83] J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on

Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].

[84] K. Skenderis, M. Taylor and D. Tsimpis, A Consistent truncation of IIB supergravity on

manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [arXiv:1003.5657]

[INSPIRE].
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1 Introduction

Chern-Simons gauged supergravity in three dimensions has a very rich structure due to

the duality between scalars and vectors in three dimensions. There are many possible

gauge groups since there is no restriction on the number of vector fields that act as gauge

fields [1, 2], or equivalently, no restriction on the dimension of the gauge group provided

that it can be embedded in the global symmetry group and consistent with supersymmetry.

Any number of vector fields can be introduced via Chern-Simons terms which do not give

rise to extra degrees of freedom. The theory is also useful in the study of AdS3/CFT2

correspondence, see for example [3] for a nice review.

To understand AdS3/CFT2 correspondence in the context of string/M theory, the

embedding of three dimensional gauged supergravity in ten or eleven dimensions is required.

The usual procedure to obtain lower dimensional supergravities from higher dimensional

theories is the Kaluza-Klein (KK) dimensional reduction. The general U-duality covariant

formulation of three dimensional gauged supergravities is in the form of Chern-Simons

theory in which the gauge fields enter the Lagrangian through the Chern-Simons terms [4].

On the other hand, dimensional reductions result in Yang-Mills type gauged supergravity

in which gauge kinetic terms are in the form of conventional Yang-Mills terms. The known

class of Chern-Simons gauge groups that gives equivalent Yang-Mills type theory is of non-

semisimple type [5]. Any Yang-Mills type Lagrangian can be rewritten in the Chern-Simons

form by introducing two gauge fields and a compensating scalar for each Yang-Mills gauge

field. This makes non-semisimple gauge groups more interesting in finding effective theories

of string/M theory in three dimensions.
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Some embeddings of three dimensional gauged supergravities into higher dimensions

have appeared so far. These examples include N = 2, 4, 8, 16 gauged supergravities from

reductions on spheres and Calabi-Yau manifold in [6–12] and recently various N = 2 the-

ories from wrapped D3-branes of [13]. In this paper, we will give another example of this

embedding namely N = 10 gauged supergravity with SO(5)⋉T10 gauge group. Due to the

above mentioned equivalent between Chern-Simons and Yang-Mills type gauged supergrav-

ities, this should potentially describe N = 5 gauged supergravity in four dimensions with

gauged group SO(5) reduced on S1. The latter has been constructed in [14]. It has been

shown in [15] that the theory admits two AdS4 critical points, an N = 5 supersymmetric

point with SO(5) gauge symmetry and a non-supersymmetric point with SO(3) residual

gauge symmetry. The theory has also been studied in the context of holographic super-

conductor in [16]. The non-supersymmetric critical point is perturbatively stable with all

mass-squares above the BF-bound.

Unlike the four dimensional analogue which has maximally supersymmetric AdS4
ground state, we will find that the reduced theory in three dimensions admits only a
1
2 -BPS domain wall as a vacuum solution. This is in contrast to compact and non-compact

gaugings of the same theory studied in [17] that admits maximally supersymmetric AdS3
critical points. The loss of supersymmetry after S1 reduction has been pointed out in the

context of non-semisimple gaugings in three dimensions in [10]. A general result on S1

reduction of AdS spaces has been given in [18]. There are many known 1
2 -BPS domain

walls in higher dimensional gauged supergravities, see for example [19–24] as well as in

lower dimensions, see [25] and [26] for three- and two-dimensional solutions. These domain

walls are important in the context of the DW/QFT correspondence [27–29] which is a gen-

eralization to non-conformal field theories of the original AdS/CFT correspondence [30].

They are also useful in the study of domain wall/cosmology [31–33].

The paper is organized as follow. In section 2, we review the general structure of N

extended gauged supergravities in three dimensions including all relevant formulae and

notations. The SO(5)⋉T10 gauged supergravity and the associated domain wall solution

are discussed in section 3. We then discuss possible higher dimensional origin of the

resulting theory from S1 dimensional reduction of N = 5 SO(5) gauged supergravity in

four dimensions. We finally give some conclusions and comments in section 5. All details

and explicit calculations are given in appendix A. In appendix B, we will explore possible

non-semisimple gauge groups of N = 9 gauged supergravity in three dimensions.

2 N = 10 gauged supergravity in three dimensions with non-semisimple

gauge groups

Before going to the detail of the construction, we briefly review the general structure

of three dimensional gauged supergravities and apply it to the construction of N = 10

gauged supergravity with non-semisimple gauge group SO(10) ⋉ T10. We will keep the

number of supersymmetry to be N for conveniences and later set N = 10. In general,

the matter coupled supergravity in three dimensions is in the form of a non-linear sigma

model coupled to supergravity. For N > 4, supersymmetry demands that the scalar target
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manifold must be a symmetric space of the form G/H in which G and H are the global

symmetry group and its maximal compact subgroup, respectively [34]. In particular, for

N > 8, supersymmetry determines the scalar manifold uniquely. In the present case of

N = 10, the scalar manifold is given by the coset space E6(−14)/SO(10)× U(1) which is a

32-dimensional Kahler manifold.

Coupling of the sigma model to N-extended supergravity requires the presence of N−1

almost complex structures fP , P = 2, . . . , N on the scalar manifold. The tensors f IJ =

f [IJ ], I, J = 1, . . . , N , constructed by the relation

f1P = −fP1 = fP , fPQ = f [P fQ] . (2.1)

generate the SO(N) R-symmetry in a spinor representation under which scalar fields trans-

form. On symmetric scalar manifolds of the form G/H, the maximal compact subgroup

H = SO(N)×H ′ contains the R-symmetry SO(N) and another compact subgroup H ′ com-

muting with SO(N). In N = 10 theory, the group H ′ is simply U(1). The G-generators tM,

M = 1, . . . , dimG, can be split into (T IJ , Xα) generating, respectively, SO(N) × H ′ and

non-compact generators Y A corresponding to dimG−dimH scalars. The global symmetry

group G is characterized by the following algebra

[

T IJ , TKL
]

= −4δ[I[KTL]J ],
[

T IJ , Y A
]

= −1

2
f IJ,ABYB,

[

Xα, Xβ
]

= fαβγX
γ ,

[

Xα, Y A
]

= hα A
B Y B,

[

Y A, Y B
]

=
1

4
fAB
IJ T IJ +

1

8
Cαβh

βABXα . (2.2)

The tensors f IJ are related to SO(N) gamma matrices, ΓI
AȦ

in which A and Ȧ label spinor

and conjugate spinor representations, respectively, by

f IJ = −1

2
ΓIJ = −1

4

(

ΓIΓJ − ΓJΓI
)

. (2.3)

Cαβ and fαβγ areH ′ invariant tensor andH ′ structure constants, respectively. TheH ′ group

is generated in the SO(N) spinor representation by matrices hα A
B . The coset manifold

whose coordinates are given by d = dim(G/H) scalar fields φi, i = 1, . . . , d can be described

by a coset representative L. The usual formulae for a coset space are

L−1tML =
1

2
VM

IJT
IJ + VM

αX
α + VM

AY
A, (2.4)

L−1∂iL =
1

2
QIJ

i T IJ +Qα
i X

α + eAi Y
A (2.5)

which will be useful later on. eAi is the vielbein on the scalar manifold while QIJ
i and

Qα
i are SO(N) × H ′ composite connections. Scalar matrices V will be used to define the

moment maps below.

Gaugings of supergravities in various space-time dimensions are efficiently described

in a G-covariant way by the so-called embedding tensor formalism [1]. In essence, the

embedding tensor ΘMN is a symmetric gauge invariant tensor that acts as a projector from
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the global symmetry group G to a particular gauge group. Gauge covariant derivatives

describing the minimal coupling of the gauge fields AM
µ to other fields also involve the

embedding tensor. For example, the covariant derivative on scalar fields is given by

Dµφ
i = ∂µφ

i + gΘMNA
M
µ XN i (2.6)

where XN i are Killing vectors generating isometries on the scalar manifold and g is the

gauge coupling constant.

In order to define a viable gauging, the embedding tensor has to satisfy the so-called

quadratic constraint

ΘPLf
KL

(MΘN )K = 0, (2.7)

which is the requirement that the gauge generators ΘMN tN form a closed algebra, or

equivalently the gauge group is a proper subgroup of G. Furthermore, for supersymmetry

to be preserved in the gauging process, the embedding tensor needs to satisfy the projection

constraint

PR0
ΘMN = 0 . (2.8)

This condition comes from supersymmetry, but it should be noted that the constraint in

this form is obtained by regarding the scalar manifold to be a symmetric space.

It is useful to introduce the T-tensor given by the moment map of the embedding

tensor by scalar matrices VM
A, obtained from (2.4),

TAB = VM
AΘMNVN

B . (2.9)

The T-tensor transforms under the maximal compact subgroup H and consists of various

components such as T IJ,KL, T IJ,A and TA,B. Since fermions transform under H, the

fermion couplings will be written in term of the T-tensor or linear combinations of its

components as we will see below. For any supersymmetric gauging, supersymmetry requires

only that the T-tensor satisfies the projection

P⊞T
IJ,KL = 0 (2.10)

where ⊞ is the Riemann tensor-like representation of SO(N). In the case of symmetric

scalar manifolds which are of interest in this paper, this constraint can be lifted to the con-

straint on the embedding tensor given in (2.8) in which the G-representation R0, branched

under SO(N), contains ⊞ representation of SO(N). Any subgroup of G whose embedding

tensor satisfies the above constraints is called admissible gauge group.

In general, gaugings need some modifications to the original ungauged Lagrangian by

fermionic mass-like terms and a scalar potential, at order g and g2, respectively. Also,

the supersymmetry transformation rules need to be modified at order g. In what follow,

we will need the scalar potential and fermionic supersymmetry transformations. They are

written in terms of the AIJ
1 and AIJ

2i tensors which are in turn constructed from various

components of the T-tensor

AIJ
1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN , (2.11)

AIJ
2j =

2

N
T IJ

j +
4

N(N − 2)
f
M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKL
m . (2.12)
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The scalar potential is simply given by

V = − 4

N
g2
(

AIJ
1 AIJ

1 − 1

2
NgijAIJ

2i A
IJ
2j

)

. (2.13)

The metric gij on the target manifold is related to the vielbein by gij = eAi e
A
j . We also

note here that the quadratic constraint (2.7) can be written in terms of AIJ
1 and AIJ

2i as

2AIK
1 AKJ

1 −NAIKi
2 AJK

2i =
1

N
δIJ
(

2AKL
1 AKL

1 −NAKLi
2 AKL

2i

)

. (2.14)

The fermionic field content of the N extended supergravity in three dimensions consists

of N gravitini ψI
µ and d spin-12 fields χiI . The latter is written in an overcomplete basis

and subject to the projection constraint

χiI =
1

N

(

δIJδij − f IJij
)

χjJ (2.15)

giving rise to d independent χiI fields. The fermions χiI can be redefined such that they

transform in a conjugate spinor representation of SO(N) via [4]

χȦ =
1

N
eAi Γ

I
AȦ
χiI . (2.16)

The corresponding supersymmetry transformations are as follow:

δψI
µ = Dµǫ

I + gAIJ
1 γµǫ

J , (2.17)

δχiI =
1

2
(δIJ1− f IJ)i jD/φjǫJ − gNAJIi

2 ǫJ (2.18)

where only relevant terms are given and

Dµǫ
I = ∂µǫ

I +
1

4
ωab
µ γab + ∂µφQ

IJ
i ǫI + gΘMNA

M
µ VN IJǫJ . (2.19)

Gauge groups of interest to us are non-semisimple groups of the form G0⋉TdimG. The

translational symmetry TdimG consists of dimG commuting generators which transform

as an adjoint representation under G0. This type of gauge groups gives rise to the on-shell

equivalent Yang-Mills gauged supergravity coming from dimensional reductions of some

higher dimensional theory. The G0⋉TdimG gauge group whose generators are respectively

Jm and Tm, m = 1, . . . , dimG is characterized by the following algebra

[Jm, Jn] = fmn
kJ

k, [Jm, Tn] = fmn
kT

k, [Tm, Tn] = 0 (2.20)

where fmn
k are G0 structure constants. We will denote the G0 and TdimG parts of the

gauge group by a and b, respectively. As shown in [5], the corresponding embedding tensor

consists of two parts, one with the coupling between a and b types Θab and the other with

the coupling between b and b types Θbb. The full embedding tensor can be written as

Θ = g1Θab + g2Θbb (2.21)
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with g1 and g2 being the coupling constants. Supersymmetry constraint (2.8) may impose

some relation on g1 and g2 such that eventually there is only one coupling. Both Θab and

Θbb are given by the Cartan-Killing form of G0, η
G0

mn, which is non-degenerate since G0

is semisimple. The above information is sufficient for our discussion in this paper. The

interested readers are invited to consult [4] and [5] for more a detailed discussion about

three dimensional gauged supergravity with non-semisimple gauge groups.

3 SO(5) ⋉ T10 gauged supergravity and 1

2
-BPS domain wall solution

In this section, we explicitly construct N = 10 gauged supergravity with SO(5)⋉T10 gauge

group. We begin with the scalar manifold E6(−14)/SO(10) × U(1) and use E6 generators

given in [35] and [36]. The non-compact form E6(−14) is constructed by using the “Weyl

unitarity trick”. We follow the same construction and notation as in [17] to which we refer

the readers for more details.

The 78 generators of E6 constructed in [36] are labeled by ci, i = 1, . . . , 78. The SO(10)

R-symmetry is generated by ci, i = 1, . . . , 21, 30, . . . 36, 45, . . . , 52, 71, . . . , 78 and c̃53. We

need to relabel these generators to the form of T IJ in our SO(N) covariant formalism.

This has already been done in [17], but we will repeat it in appendix A for convenience.

The group H ′ = U(1) is generated by c̃70 whose definition and that of c̃53 can be found in

appendix A.

The non-compact generators can be identified as

Y A =















icA+21 for A = 1, . . . , 8

icA+28 for A = 9, . . . , 16

icA+37 for A = 17, . . . , 32

. (3.1)

We can then use (2.2) to extract the tensors f IJ whose components are computed by

f IJAB = −1

3
Tr
([

T IJ , Y A
]

Y B
)

. (3.2)

Notice that the generators have normalizations Tr(T IJT IJ) = −6 and Tr(Y AY A) = 6, no

sum on IJ and A.

We now construct generators of the gauge group SO(5)⋉T10. This group is embedded

in USp(4, 4) ⊂ E6(−14). The maximal compact subgroup USp(4) × USp(4) ⊂ USp(4, 4) is

identified as the SO(5) × SO(5) subgroup of the R-symmetry SO(10). Recall that the 32

scalars transform as 16+ + 16− under SO(10) × U(1). Under SO(5) × SO(5), the scalars

transform as

16+ + 16− = (4,4)+ + (4,4)− . (3.3)

We then identify SO(5) part of the gauge group as the diagonal subgroup SO(5)diag ⊂
SO(5)× SO(5) under which scalars transform as

16+ + 16− = (4× 4)+ + (4× 4)−

= (1+ 10+ 5)+ + (1+ 10+ 5)− . (3.4)
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In this decomposition, we see that there are two singlets under SO(5)diag. The adjoint

representation 10+ and 10− will be used to construct the translational generators of T10.

The explicit form of the corresponding gauge generators are as follow. The SO(5)diag
generators are given by

J ij = T ij + T i+5,j+9, i, j = 1, . . . , 5 (3.5)

while the T10 generators are found to be

tij = T ij − T i+5,j+5 + Ỹ ij , , i, j = 1, . . . , 5 (3.6)

where Ỹ ij are given in appendix A.

The embedding tensor is of the form

Θ = g1Θab + g2Θbb (3.7)

where Θab and Θbb are given by the Cartan-Killing form of SO(5). The supersymmetry

constraint requires g2 = 0 meaning that there is no coupling among T10 generators. This

is similar to N = 16 and N = 8 theories with SO(8)⋉T28 gauge group studied in [10, 25].

We are now in a position to study the scalar potential of the resulting gauged su-

pergravity. Following the technique of [37], we begin with scalar fields which are singlets

under the semisimple part of the gauge group, SO(5). They are given by 1± in (3.4) and

correspond to the non-compact generators

Ys1 = Y3 − Y5 − Y12 + Y16 + Y17 − Y18 + Y27 + Y29,

Ys2 = Y4 + Y8 + Y11 + Y13 + Y22 − Y23 + Y28 − Y32 . (3.8)

Accordingly, the coset representative is parametrized by

L = eaYs1ebYs2 . (3.9)

Using the formulae (A.4) and (A.5), we can compute AIJ
1 and AIJ

2i by using a computer

program Mathematica. The scalar potential is computed to be

V = −6e4(a−b)
(

1 + e8b
)

g2 (3.10)

where we have denoted g1 simply by g. The presence of the ea factor implies that the

potential has no critical point. We then expect the vacuum solution to be a domain wall.

To find a domain wall solution, we adopt the usual domain wall ansatz for the metric

ds2 = e2Adx21,1 + dr2 . (3.11)

The supersymmetry transformation of χiI , δχiI = 0 from equation (2.18), gives the follow-

ing equations

b′γrǫ
I +

1

2
g(1− e4b)e2(a−b)ǫI = 0, I = 1, . . . , 5, (3.12)

b′γrǫ
I − 1

2
g(1− e4b)e2(a−b)ǫI = 0, I = 6, . . . , 10, (3.13)

a′γrǫ
I − g

e2(a+b)(1+e4b)

1 + e8b
ǫI = 0, I = 1, . . . , 5, (3.14)

a′γrǫ
I + g

e2(a+b)(1+e4b)

1 + e8b
ǫI = 0, I = 6, . . . , 10 (3.15)
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where we have used ′ to denote the derivative d
dr and φA

′
= 1

6Tr
(

L−1L′Y A
)

. We will now

impose the projection conditions γrǫ
I = −ǫI for I = 1, . . . , 5 and γrǫ

I = ǫI for I = 6, . . . , 10.

ǫI has two real components. The projectors then reduce the supersymmetry by a fraction

of 1
2 . With these two projectors, we end up with two independent equations

b′ =
1

2
g(1− e4b)e2(a−b), (3.16)

a′ = −g e
2(a+b)(1+e4b)

1 + e8b
. (3.17)

The supersymmetry variation of the gravitini ψI
µ, δψ

I
µ = 0 from equation (2.17) after using

the above projectors, gives rise to

e4b = 1, (3.18)

A′ = 2g
(

1 + e4b
)

e2(a−b) (3.19)

where we have used the spin connection ων̂r̂
µ̂ = A′δν̂µ̂ with µ̂, ν̂ = 0, 1.

We see from (3.18) that supersymmetry demands b = 0. Equation (3.16) is now

trivially satisfied, and equation (3.17) becomes

a′ + e2ag = 0 . (3.20)

The solution is easily obtained to be

a = −1

2
ln (2gr + C1) (3.21)

where C1 is an integration constant. Substituting into equation (3.19) gives

A′ = 4ge2a =
4g

C1 + 2gr
(3.22)

whose solution is, with another integration constant C2,

A = C2 + 2 ln (2gr + C1) . (3.23)

As in other solutions of this type, the residual supersymmetry is generated by the

Killing spinors given by ǫi = e
A

2 ǫi0±, i = 1, . . . , 5 with the constant spinors ǫi0± satisfying

γrǫ
i
0± = ±ǫi0±. The full symmetry of this solution is ISO(1, 1)× SO(5) with the unbroken

N = (5, 5) Poincare supersymmetry in notation of the dual two-dimensional field theory.

The two integration constants C1 and C2 can be set to zero by shifting the coordinate

r and rescaling the coordinates xµ. We can also write down the solution in the form of

warped AdS3 by introducing the new coordinate ρ via ρ = − 1
4g2r

in term of which the

metric becomes

ds2 =
1

(4g2ρ)2

(

dx21,1 + dρ2

ρ2

)

. (3.24)

We end this section by considering subgroups of SO(5)⋉T10 namely SO(4)⋉T6 and

(SO(3) ⋉ T3) × (SO(2) ⋉ T1) ∼ U(2) ⋉ T4. It can be checked that both of them are

not admissible.
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3D fields SO(5) representation number of degrees of freedom

g33 1 1

gµ3 1 1

φi 5 5

φi 5 5

Aij
µ 10 10

Aij
3 10 10

ψi
3 5 10

χ678 1 2

χijk 10 20

Table 1. Representations of three dimensional fields resulted from S1 reduction of N = 5 gauged

supergravity in four dimensions.

4 Higher dimensional origin

In this section, we discuss higher dimensional origin of the SO(5) ⋉ T10 N = 10 gauged

supergravity constructed in the previous section. By the general result of [5], this theory

is on-shell equivalent to the SO(5) Yang-Mills gauged supergravity which can be obtained

from S1 reduction of N = 5 gauged supergravity in four dimensions with SO(5) gauge

group. The four dimensional theory has been constructed in [14] and can be obtained as

a truncation of the maximal N = 8 gauged supergravity. In the notation of [14], the field

content of this theory contains one graviton eaM or gMN , five gravitini ψi
M , eleven spin-12

fields χijk and χ678, ten scalars φi and φi living in the coset space SU(5, 1)/U(5) and ten

vector fields Aij
M being SO(5) gauge fields. Here, M,N = 0, 1, 2, 3 and a, b = 0, 1, 2, 3 are

four dimensional space-time and tangent space indices respectively while i, j = 1, . . . , 5 are

SU(5) indices except for Aij
M which transform in the adjoint representation of SO(5).

If we reduce this theory on S1 along the x3 direction, we find the following fields

in three dimensions. The metric gMN gives the non-dynamical three dimensional metric

gµν , the graviphoton gµ3 and a scalar g33. The SO(5) gauge fields result in the three

dimensional gauge fields of the same gauge group Aij
µ and ten scalars Aij

3 transforming in

the adjoint representation of SO(5). Finally, the ten scalars (φi, φi) obviously become the

three dimensional scalars.

A spinor in four dimensions give rise to two spinors in three dimensions. We then

obtain ten gravitini ψi
µ from ψi

M and ten spin-12 fields ψi
3. There are additional 20 + 2

spin-12 fields from the reduction of χijk and χ678, respectively. In three dimensions, the

metric and gravitini do not have any dynamics. We then find 32 fernionic on-shell degrees

of freedom from (ψi
3, χ

678, χijk). We can also dualize Aij
µ and gµ3 to 10 + 1 scalars. All

together, we end up with 32 scalars from (φi, φi, g33, gµ3, A
ij
µ , A

ij
3 ). This is the same as in

N = 10 gauged supergravity.

We give SO(5)gauge representations of the reduced fields in table 1 from which we

have omitted the non-dynamical fields gµν and ψi
µ. We have kept φi and φi separately

to emphasize their four dimensional origin. We now consider the representation of the 32
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scalars in E6(−14)/SO(10) × U(1) coset space under the SO(5) part of the gauge group.

Recall that under SO(10) × U(1), the scalars transform as 16+ + 16−. Under SO(10) ×
U(1) ⊃ SU(5) × U(1) × U(1) ⊃ SO(5) in which the U(1) is the U(1) subgroup of U(5) ⊂
SO(10), we find

16+ + 16− → (1−5 + 5̄3 + 10−1)
+ + (1−5 + 5−3 + 101)

−

→ (1+ 5+ 10) + (1+ 5+ 10) (4.1)

We find perfect agreement with table 1. Reference [38] is very useful in this decomposition.

In the formalism of [4], the fermions χȦ transform as 10
+
+ 10− under SO(10) × U(1).

Similar decomposition gives 2× (1+ 5+ 10) under SO(5) gauge group. This is again the

representations obtained from S1 reduction shown in table 1. The result of [39] suggests

that three dimensional supergravity with E6 coset manifold can be obtained from dimen-

sional reduction on a torus, S1 in the present case, of a supergravity theory with A5 coset

manifold in four dimensions. Reference [39] consider only maximally non-compact E6 and

other types Lie groups. The result here should provide an example of a non-maximally

non-compact E6 (E6(−14)) coset obtained from a non-maximally non-compact A5 SU(5, 1)

coset in four dimensions. Furthermore, the general formulae for toroidal reductions given

in the appendix of [39] should also be applicable in this case.

5 Conclusions and discussions

In this paper, we have constructed N = 10 SO(5) ⋉ T10 gauged supergravity in three

dimensions. We have found that the resulting theory admits a 1
2 -BPS domain wall as

a vacuum solution. The solutions preserves N = (5, 5) Poincare supersymmetry in two

dimensions with ten supercharges. The solution is similar to the domain wall from the

S7 compactification of type II string theory discussed in [40]. This solution is the vacuum

solution of the maximal N = 16 SO(8)⋉T28 gauged supergravity. The solution given here

provides an example of a domain wall in non-maximal gauged supergravity and might be

useful in the DW/QFT correspondence as well as its applications.

We have also discussed possible higher dimensional origin of this theory. This is given

by S1 reduction of N = 5 SO(5) gauged supergravity in four dimensions. We have found

that the spectrum of the reduction matches with the constructed three dimensional gauged

supergravity. If the N = 5 four dimensional theory is reduced on S1/Z2, it could give rise

to N = 5 gauged supergravity in three dimensions. Indeed, the latter in general has scalar

manifold USp(4, k)/USp(4)×USp(k) [34]. We have seen that the SO(5)⋉T10 gauge group is

embedded in USp(4, 4) ⊂ E6(−14). We then expect that N = 5 SO(5) gauged supergravity

in four dimensions reduced on S1/Z2 should give N = 5 SO(5)⋉T10 gauged supergravity

in three dimensions with scalar manifold USp(4, 4)/USp(4)×USp(4) containing 16 scalars.

It turns out that the latter theory admits SO(5) ⋉ T10 gauge group. The details will be

reported in subsequent work [41]. Unlike the N = 10 theory, the N = 5 truncation admits

maximally supersymmetric AdS3 vacuum solution. This truncation should be similar to

the case of N = 8 SO(8) ⋉ T28 gauged supergravity with SO(8, 8)/SO(8) × SO(8) scalar
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manifold studied in [25]. This theory is a truncation of N = 16 SO(8) ⋉ T28 gauged

supergravity with scalar manifold E8(8)/SO(16).

Due to the similar structure as in the above examples, we would like to briefly discuss

the case of N = 12 gauged supergravity. The scalar manifold is the 64-dimensional quater-

nionic manifold E7(−5)/SO(12)×SU(2). The gauge group should be SO(6)⋉T15 embedded

in SU(4, 4) ⊂ E7(−5). The SO(6) is again identified as SO(6)diag ⊂ SO(6)×SO(6) ⊂ SO(12).

The 64 scalars transform under SO(12)×SU(2) as (32,2) and under SO(6)×SO(6)×SU(2)

as ((4, 4̄)+(4, 4̄),2). Then, under the SO(6) part of the gauge group, we find the represen-

tation for scalars ((4× 4̄+ 4× 4̄),2) = (1+ 15+ 1+ 15,2). The non-compact generators

in the 15 should combine with SO(6)×SO(6) generators to form the T15 part of the gauge

group. The fermions transform as (32,2) under SO(12) × SU(2) and ((4,4) + (4̄, 4̄),2)

under SO(6)× SO(6)× SU(2). Under SO(6), they transform as (10+ 6+ 10+ 6,2).

We now consider S1 reduction of N = 6 SO(6) gauged supergravity in four dimneions

which is also a truncation of N = 8 SO(8) gauged supergravity [42]. The bosonic fields

are (gMN , φ
AB, φAB, A

AB
M , AM ) where the 30 scalars (φAB, φAB) live in the coset space

SO∗(12)/U(6) and A,B = 1, . . . , 6, see [42] for more detail. The fermionic fields are

given by (ψA
M , χ

A, χABC). After S1 reduction, the dynamical bosonic fields are given by

(gµ3, g33, φ
AB, φAB, Aµ, A3, A

AB
µ , AAB

3 ) transforming as (1+1+15+15+1+1+15+15)

under SO(6) gauge group. After dualizing the vector fields, we end up with 64 scalars with

correct SO(6) representations as in N = 12 gauged supergravity. The reduced dynamical

fermionic fields are (ψA
3 , χ

ABC , χA) transforming under SO(6) as 2 × (6 + 10 + 10 + 6)

which are indeed the same as those in N = 12 theory. The factor of 2 comes from the fact

that a four dimensional spinor gives two three dimensional spinors.

Finally, similar to the discussion in the N = 5 case, we expect that the S1/Z2 reduction

should give N = 6 SO(6) ⋉ T15 gauged supergravity on three dimensions with scalar

manifold SU(4, 4)/S(U(4)×U(4)) whose compact and non-compact gauge groups have been

explored in [43]. The possibility of non-semisimple gauge groups is under investigation [41].
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A Useful formulae and details

In this appendix, we give some details of N = 10 gauged supergravity with SO(5) ⋉ T10

gauge group constructed in the main text. First of all, the SO(10) R-symmetry generators
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T IJ are explicitly given by

T 12 = c1, T 13 = −c2, T 23 = c3, T 34 = c6,

T 14 = c4, T 24 = −c5,
T 15 = c7, T 25 = −c8, T 35 = c9, T 45 = −c10,

T 56 = −c15, T 16 = c11,

T 26 = −c12, T 46 = −c14, T 36 = c13, T 17 = c16,

T 27 = −c17, T 47 = −c19,
T 37 = c18, T 67 = −c21, T 57 = −c20, T 78 = −c36,

T 18 = c30, T 28 = −c31,
T 48 = −c33, T 38 = c32, T 68 = −c35, T 58 = −c34,

T 29 = −c46, T 19 = c45,

T 49 = −c48, T 39 = c47, T 69 = −c50, T 59 = −c49,
T 89 = −c52, T 79 = −c51,

T 1,10 = −c71, T 2,10 = c72, T 3,10 = −c73, T 4,10 = c74,

T 5,10 = c75,

T 6,10 = c76, T 7,10 = c77, T 8,10 = c78, T 9,10 = −c̃53 (A.1)

where c̃53 and c̃70 are defined by [36]

c̃53 =
1

2
c53 +

√
3

2
c70 and c̃70 = −

√
3

2
c53 +

1

2
c70 . (A.2)

Also, notice a typo in the sign of T 9,10 in [17].

The Ỹ ij part of the translational generators T10 is constructed from the following

non-compact generators

Ỹ 12 =
1

2
(Y3 − Y12 + Y17 + Y29 + Y5 − Y16 + Y18 − Y27) ,

Ỹ 13 =
1

2
(Y2 + Y14 + Y21 − Y26 − Y1 + Y15 − Y19 − Y25) ,

Ỹ 14 =
1

2
(Y31 − Y7 − Y6 − Y30 − Y9 + Y10 + Y20 − Y24) ,

Ỹ 15 =
1

2
(Y15 − Y14 + Y25 − Y26 − Y1 − Y2 + Y19 + Y21) ,

Ỹ 23 =
1

2
(Y1 + Y2 + Y15 − Y14 + Y19 + Y21 − Y25 + Y26) ,

Ỹ 24 =
1

2
(Y10 + Y9 − Y30 − Y31 + Y6 − Y7 − Y20 − Y24) ,

Ỹ 25 =
1

2
(Y2 − Y1 − Y25 − Y26 − Y14 − Y15 + Y19 − Y21) ,

Ỹ 34 =
1

2
(Y8 − Y4 − Y11 − Y28 + Y13 − Y32 + Y22 + Y23) ,

Ỹ 35 =
1

2
(Y18 + Y17 − Y12 + Y27 − Y29 − Y16 − Y5 − Y3) ,

Ỹ 45 =
1

2
(Y8 + Y4 − Y11 − Y28 − Y13 + Y32 − Y23 + Y22) . (A.3)
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This choice is of course not unique.

The scalar matrices for the moment maps are given by

V ij,IJ
a = −1

6
Tr(L−1J ijLT IJ),

V ij,IJ
b = −1

6
Tr(L−1tijLT IJ),

V ij,A
a =

1

6
Tr(L−1J ijLY A),

V ij,A
b =

1

6
Tr(L−1tijLY A) (A.4)

from which the T-tensor follows

T IJ,KL = g
(

V ij,IJ
a V ij,KL

b + V ij,IJ
b V ij,KL

a

)

T IJ,A = g
(

V ij,IJ
a V ij,A

b + V ij,IJ
b V ij,A

a

)

(A.5)

Using these together with (2.11), (2.12) and (2.13), we can find the tensors AIJ
1 and AIJ

2i

as well as the scalar potential.

B Non-semisimple gauging of N = 9 gauged supergravity in three di-

mensions

We will consider N = 9 gauged supergravity in three dimensions. The corresponding

scalar manifold is given by the 16-dimensional F4(−20)/SO(9) coset space. Some vacua of

the compact and non-compact gaugings of this theory have been studied in [44]. In this

appendix, we will explore the possibilities of non-semisimple gauge groups which are crucial

for embedding the theory in higher dimensions. Notice that the construction of E6 given

in [36] is based on the F4 group given in [35]. We can simply remove the last 26 matrices

ci, i = 53, . . . , 78 from E6 to get the group F4 generated by ci, i = 1, . . . , 52 as has been

used in [44]. All 52 matrices are effectively 26 × 26 matrices since all elements in the last

row and last column are zero.

The SO(9) R-symmetry generators are T IJ in (A.1) with I, J = 1, . . . , 9, and non-

compact generators are the first 16 generators of (3.1), Y A, A = 1, . . . , 16. In the case

of F4(4)/USp(6) × SU(2) which is a scalar manifold of N = 4 theory studied in [45],

SO(4)⋉T6 can be gauged consistently with supersymmetry by the embedding of SO(4)⋉T6

in SO(5, 4) ⊂ F4(4). In the present case, the embedding of SO(3) ⋉ T3 in USp(2, 2) ⊂
USp(4, 2)× SU(2) ⊂ F4(−20) should be possible.

To identify generators of this group, we first consider the SO(4)⋉T6 subgroup of the

SO(5) ⋉ T10 in section 3. Obviously, the SO(4) part is generated by J ij , i, j = 1, . . . , 4.

We then consider Ỹ ij with i, j = 1, . . . , 4. It can be verified that by removing Y17 to Y32

– 13 –
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form Ỹ ij , the resulting generators, see appendix A,

Ỹ 12 =
1

2
(Y3 − Y12 + Y5 − Y16) ,

Ỹ 13 =
1

2
(Y2 + Y14 − Y1 + Y15) ,

Ỹ 14 =
1

2
(Y10 − Y7 − Y6 − Y30 − Y9) ,

Ỹ 23 =
1

2
(Y1 + Y2 + Y15 − Y14) ,

Ỹ 24 =
1

2
(Y10 + Y9 + Y6 − Y7) ,

Ỹ 34 =
1

2
(Y8 − Y4 − Y11 + Y13) (B.1)

still transform in the adjoint representation of SO(4). It turns out that when combined

into tij , the resulting generators do not commute. Therefore, it is not possible to find

SO(4) ⋉T6 subgroup of F4(−20). On the other hand, we can form two SU(2)± subgroups

from these generators by introducing the self-dual and anti-self-dual SO(4) generators

J1
+ = J12 + J34, J2

+ = J13 − J24, J3
+ = J14 + J23,

t1+ = t12 + t34, t2+ = t13 − t24, t3+ = t14 + t23 (B.2)

and

J1
− = J12 − J34, J2

− = J13 + J24, J3
− = J14 − J23,

t1− = t12 − t34, t2− = t13 + t24, t3− = t14 − t23 . (B.3)

It can be readily verified that each set of generators forms SO(3)⋉T3 ∼ SU(2)⋉T3 algebra

but generators ta± from the two sets do not commute with eachMo other. Although this

subgroup can be embedded in F4(−20), it is not admissible namely it cannot be gauged in

a way that is consistent with supersymmetry. Embedding in higher dimensions aside, it

seems to be difficult (if possible) to find non-semisimple gaugings of the N = 9 theory.
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1 Introduction

The duality between scalars and vectors together with the non-propagating nature of super-

gravity fields in three dimensions make three dimensional gauged supergravity substantially

differs from its higher dimensional analogue. On one hand, only matter-coupled supergrav-

ity has propagating degrees of freedom in terms of scalars and spin-12 fields. Accordingly,

the matter-coupled theory takes the form of a supersymmetric non-linear sigma model cou-

pled to supergravity. On the other hand, recasting vectors to scalars, making the U-duality

symmetry manifest, seems to create a trouble in any attempt to gauge the theory since the

vector fields accompanying for the gauging are missing.

Special to three dimensions, vector fields can enter the gauged Lagrangian via Chern-

Simons (CS) terms as opposed to the conventional Yang-Mills (YM) kinetic terms. Since

CS terms do not lead to additional degrees of freedom, any number of gauge fields, or equiv-

alently the dimension of the gauge group, can be introduced provided that the gauge group

is a proper subgroup of the global symmetry group and consistent with supersymmetry.

This gives rise to a very rich structure of gauged supergravity in three dimensions [1–5].

Additionally, the Chern-Simons form of gauged supergravity raises another difficulty

namely the embedding of the resulting gauged theory in higher dimensions. This is due to

the fact that all theories obtained from conventional dimensional reductions are of Yang-

Mills form. It has been, however, shown that Yang-Mills gauged supergravity is on-shell

equivalent to Chern-Simons gauged theory with a non-semisimple gauge group [6]. Up to

now, there are many attempts to embed three dimensional gauged supergravity in higher

dimensions and in string/M theory. These results would give rise to new string theory

backgrounds with fluxes as well as new D-brane configurations [7]. However, it has been

pointed out recently in [8] that there might exist supersymmetric string backgrounds which

are not captured by gauged supergravities.

The rich structure and embedding in string/M theory aside, gauged supergravity proves

to be a very useful tool in the AdS/CFT correspondence [9]. AdS3/CFT2 correspondence

can provide more insight not only to the AdS/CFT correspondence, including its general-

izations such as the Domain Wall/Quantum Field Theory (DW/QFT) correspondence, but

also to black hole physics [10, 11]. In holographic RG flows, AdS3 vacua and domain walls

interpolating between them interpreted as RG flows in the dual two dimensional field theo-

ries are of particular interest, see [12] for a thorough review. The deformations of a strongly

coupled field theory can be understood in this framework. Some gauged supergravities do

not admit a maximally supersymmetric AdS3 but a half-supersymmetric domain wall as

a vacuum solution. This class of gauged supergravities will be useful in the context of the

DW/QFT correspondence [13–15].

In this work, we further explore the structure of gauged supergravity in three di-

mensions with N = 5, 6 supersymmetry. We begin with a study of compact and non-

compact gaugings of the N = 5 theory with scalar manifolds USp(4, 2)/USp(4) × USp(2)

and USp(4, 4)/USp(4)×USp(4). We will identify some supersymmetric AdS3 critical points

and study the associated RG flow solutions. This could be useful in AdS3/CFT2 correspon-

dence although the embedding in higher dimensions is presently not known. The result is

– 2 –
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similar to supersymmetric RG flows studied in [16–19] and in higher dimensions such as

recent solutions of new maximal gauged supergravity in four dimensions given in [20].

We then move to non-semisimple gaugings of the N = 5 theory containing 16 scalars

encoded in USp(4, 4)/USp(4)×USp(4) coset manifold with SO(5)⋉T10 gauge group. The

gauge group is embedded in the global symmetry group USp(4, 4). According to [6], the

resulting theory is equivalent to SO(5) YM gauged supergravity. The latter might be

obtained by a reduction of N = 5, SO(5) gauged supergravity in four dimensions on S1/Z2

as pointed out in [21]. The theory may also be embedded in N = 10, SO(5)⋉T10 gauged

supergravity via the embedding of the global symmetry group USp(4, 4) ⊂ E6(−14). The

theory admits a maximally supersymmetric AdS3 vacuum and provides another example

of three dimensional gauged supergravities with known higher dimensional origin.

We finally turn to non-semisimple gauging of N = 6 theory with SU(4, 4)/S(U(4) ×
U(4)) scalar manifold. The global symmetry SU(4, 4) contains an SO(6) ⋉ T15 subgroup

that can be consistently gauged. Similar to N = 5 theory, this theory is equivalent to

SO(6) YM gauged supergravity and could be obtained by an S1/Z2 reduction of N = 6

gauged supergravity in four dimensions. Unlike N = 5 theory, the theory admits only a

half-supersymmetric domain wall as a vacuum solution.

The paper is organized as follow. We give the construction of N = 5 theory in sec-

tion 2. Relevant information and related formulae for general gauged supergravity in three

dimensions are collected in appendix A. Vacua of compact and non-compact gauge groups

are given in section 3 and 4, respectively. Section 5 deals with some examples of RG flows

between critical points previously identified. Non-semisimple gaugings of N = 5 and N = 6

theories are constructed in sections 6 and 7, respectively. The maximally supersymmetric

AdS3 of N = 5 theory and a 1
2 -BPS domain wall of the N = 6 theory are explicitly given

in these sections. We end the paper with some conclusions and discussions. Appendices B

and C contain the explicit form of the relevant generators used in the main text as well as

the scalar potential for SO(4)×USp(2) gauging in N = 5 theory.

2 N = 5 gauged supergravity in three dimensions

In N = 5 three dimensional gauged supergravity, scalar fields are described in term of

USp(4, k)/USp(4) × USp(k) coset manifold with dimensionality 4k. The R-symmetry is

given by USp(4) ∼ SO(5)R. All admissible gauge groups are embedded in the global

symmetry group USp(4, k). In this paper, we will consider only the k = 2 and k = 4 cases.

We first introduce USp(4, k) generators constructed from a compact group USp(4+ k)

via the Weyl unitarity trick. In order to make contact with the N = 6 theory with global

symmetry group SU(4, k) studied in section 7, we will construct the USp(4+ k) generators

by figuring out the USp(4 + k) subgroup of SU(4+ k), directly. The latter is generated by

the well-known generalized Gell-Mann matrices given in, for example, [22]. We will denote

USp(4 + k) generators by Ji given explicitly in appendix B. The SO(5)R R-symmetry

generators, labeled by a pair of anti-symmetric indices T IJ = −T JI , can be identified as

– 3 –
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follow

T 12 =
1√
2
(J3 − J6) , T 13 = − 1√

2
(J1 + J4) , T 23 =

1√
2
(J2 − J5) ,

T 34 =
1√
2
(J3 + J6) , T 14 =

1√
2
(J2 + J5) , T 24 =

1√
2
(J1 − J4) ,

T 15 = −J9, T 25 = −J10, T 35 = J8,

T 45 = J7 . (2.1)

The non-compact generators Y A are identified by

Y 1 = iJ14, Y 2 = iJ15, Y 3 = iJ16, Y 4 = iJ17,

Y 5 = iJ18, Y 6 = iJ19, Y 7 = iJ20, Y 8 = iJ21,

Y 9 = iJ25, Y 10 = iJ26, Y 11 = iJ27, Y 12 = iJ28,

Y 13 = iJ29, Y 14 = iJ30, Y 15 = iJ31, Y 16 = iJ32 . (2.2)

For k = 2 case with 8 scalars, the associated non-compact generators are given by the first

8 generators, Y A with A = 1, . . . , 8.

Admissible gauge groups are completely characterized by the symmetric gauge invari-

ant embedding tensor ΘMN , M,N = 1, . . . , dimG. Viable gaugings are defined by the

embedding tensor satisfying two constraints. The first constraint is quadratic in Θ and

given by

ΘPLf
KL

(MΘN )K = 0 (2.3)

ensuring that a given gauge group G0 is a proper subgroup of G. The other constraint due

to supersymmetry takes the form of a projection condition

P⊞T
IJ,KL = 0 (2.4)

where the T-tensor T IJ,KL is given by the moment map of the embedding tensor

T IJ,KL ≡ VM IJΘMNVN KL . (2.5)

The ⊞ denotes the Riemann tensor-like representation of SO(N)R. For symmetric scalar

manifolds of the form G/H, the V maps can be obtained from the coset representative, see

appendix A, and the constraint can be written in the form

PR0
ΘMN = 0 . (2.6)

The representation R0 of G contains the ⊞ representation of SO(N)R.

We are now in a position to study gaugings of N = 5 supergravity. We will treat

compact and non-compact gauge groups separately.

– 4 –
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3 Compact gauge groups

In this section, we explore N = 5 gauged supergravity with compact gauge groups. The

gauge groups are subgroup of USp(4) × USp(k) and takes the form SO(p) × SO(5 − p) ×
USp(k), p = 5, 4, 3.

The SO(p) × SO(5 − p) part is embedded in SO(5)R as 5 → (p,1) + (1,5− p). The

corresponding embedding tensor is identified in [5] and takes the form

ΘIJ,KL = θδKL
IJ + δ[I[KΞL]J ] (3.1)

where

ΞIJ =











2
(

1− p

5

)

δIJ , I ≤ p

−2p

5
δIJ , I > p

, θ =
2p− 5

5
. (3.2)

The full embedding tensor for SO(p)× SO(5− p)×USp(k) is given by

Θ = g1ΘSO(p)×SO(5−p) + g2ΘUSp(k) (3.3)

with two independent coupling constants. ΘUSp(k) is given by the Killing form of USp(k).

Together with the explicit form of the coset representative, the scalar potential is completely

determined by the embedding tensor.

3.1 The k = 2 case

In this case, the theory contains 8 scalars parametrized by USp(4, 2)/USp(4) × USp(2)

coset space. The full 8-dimensional manifold can be conveniently parametrized by the

Euler angles of SO(5) × USp(2) ∼ USp(4) × USp(2). The details of the parametrization

can be found in [23], and the application to SU(n,m)/S(U(n)×U(m)) coset can be found

in [19].

3.1.1 SO(5) × USp(2) gauging

With USp(4) × USp(2) Euler angles, the full USp(4, 2)/USp(4) × USp(2) coset can be

parametrized by the coset representative

L = ea1X1ea2X2ea3X3ea4J7ea5J8ea6J9ea7J15ebY
7

(3.4)

where Xi’s are defined by

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13). (3.5)

The resulting scalar potential is

V =
1

32

[

64
(

g22 − 12g21 + 4g1g2
)

cosh b− 1076g21 − 180g1g2 − 45g22

−4
(

52g21 + 20g1g2 + 5g22
)

cosh(2b) + (2g1 + g2)
2 cosh(4b)

]

. (3.6)

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
1
5
9

b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)×USp(2)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g2
1
(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)×USp(2)

III cosh−1
[

6g1+g2
2g1+g2

]

−64g2
1
(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)×USp(2)

Table 1. Critical points of SO(5)×USp(2) gauging.

Note that the scalar fields associated to the gauge generators do not appear in the potential

due to gauge invariance. We find some critical points as shown in table 1. V0 is the value

of the potential at each critical point. Unbroken supersymmetry is denoted by (n−, n+)

where n− and n+ correspond to the number of supersymmetry in the dual two dimensional

CFT. In three dimensional language, they correspond to the numbers of negative and

positive eigenvalues of AIJ
1 tensor. As reviewed in appendix A, these eigenvalues, ±α̃,

satisfy V0 = −4α̃2. Since, in our convention, the AdS3 radius is given by L = 1√
−V0

, we

also have a relation L = 1
2|α̃| .

The maximally supersymmetric critical point at L = I preserves the full gauge sym-

metry. The two non-trivial critical points preserve USp(2) × USp(2) symmetry. We also

give the A1 tensors at each critical point:

A
(I)
1 = −4g1I5×5,

A
(II)
1 = diag

(

α, α, α, α,
4g1(g1 − g2)

2g1 + g2

)

.

A
(III)
1 = diag

(

β, β, β, β,
−4g1(3g1 + g2)

2g1 + g2

)

. (3.7)

where

α =
−4g1(g1 + g2)

2g1 + g2
, β =

−4g1(5g1 + g2)

2g1 + g2
. (3.8)

The scalar mass spectrum at the trivial critical point is given in the table below.

m2L2 SO(5)×USp(2)

−3
4 (4,2)

All scalars have the same mass m2L2 = −3
4 with L being the AdS3 radius at this crit-

ical point. The full symmetry of the background corresponds to Osp(5|2,R) × Sp(2,R)

superconformal group. Notice that in finding critical points with constant scalars we can

use the gauge symmetry and the composite USp(4) × USp(k) symmetry to fix the scalar

parametrization as, for example, in the Euler angle parametrization. In determining scalar

masses, we need to compute scalar fluctuations to quadratic order. In this case, only the

the composite USp(4) × USp(k) symmetry can be used since the vector fields are set to

– 6 –
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zero, see the discussion in [24]. The scalar masses must accordingly be computed in the

so-called unitary gauge with the coset representative

L =
8
∏

i=1

eaiY
i

. (3.9)

The mass spectrum at (4, 0) critical point is shown below.

m2L2 USp(2)×USp(2)

g2(2g1+3g2)
(g1+g2)2

(1,1)

0 (2,2) + (1,3)

And, scalar masses at (1, 0) critical point are as follow.

m2L2 USp(2)×USp(2)

(4g1+g2)(10g1+3g2)
(3g1+g2)2

(1,1)

0 (2,2) + (1,3)

Notice that there are seven massless Goldstone bosons corresponding to the symmetry

breaking SO(5)×USp(2) → USp(2)×USp(2).

3.1.2 SO(4) × USp(2) gauging

We still use the same parametrization as in the previous case. The potential in this case

turns out to be much more complicated although it dose not depend on a1, a2 and a3. We

give its explicit form in appendix C. The trivial critical point has N = (4, 1) supersymmetry

and preserves the full SO(4)×USp(2) symmetry. The A1 tensor and scalar masses at this

point are given below.

A
(I)
1 = −4g1diag (1, 1, 1, 1,−1) , (3.10)

m2L2 SO(4)×USp(2) ∼ SU(2)× SU(2)×USp(2)

−3
4 (2,1,2) + (1,2,2)

The corresponding superconformal symmetry is Osp(4|2,R)×Osp(1|2,R).
Other critical points with a4 = a5 = a6 = a7 = 0 are shown in table 2. Critical points

II and III preserve only USp(2)diag ×USp(2) subgroup of SO(4)×USp(2). The USp(2)diag
is a diagonal subgroup of one factor in USp(2)×USp(2) ∼ SO(4) and the USp(2) factor in

the gauge group and is generated by J1 + J11,J2 + J12 and J3 + J13. Critical point II has

(4, 1) supersymmetry with the A1 tensor

A
(II)
1 = −4g1(g1 + g2)

2g1 + g2
diag (1, 1, 1, 1,−1) . (3.11)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)×USp(2)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g2
1
(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)×USp(2)

III cosh−1
[

6g1+g2
2g1+g2

]

−64g2
1
(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)×USp(2)

Table 2. Critical points of SO(4)×USp(2) gauging.

The scalar mass spectrum is given in the table below.

m2L2 USp(2)×USp(2)

0 (1,3)

g2(2g1+3g2)
(g1+g2)2

(1,1)

− g1g2(g1+2g2)
(g1+g2)2(2g1+g2)

(2,2)

Critical point III is non-supersymmetric with scalar masses given by

m2L2 USp(2)×USp(2)

0 (1,3)

(4g1+g2)(10g1+3g2)
(3g1+g2)2

(1,1)

− g1(4g1+g2)(5g1+2g2)
(2g1+g2)(3g1+g2)2

(2,2)

.

We can now check its stability by comparing the above scalar masses with the

Breitenlohner-Freedman bound m2L2 ≥ −1. At this critical point, the value of b is real for

g1 > 0 and g2 > −2g1 or g1 < 0 and g2 < −2g1. For definiteness, we will consider the first

possibility. The mass of the singlet scalar satisfies the BF bound for g1 > 0 and g2 > −3g1
while the mass of (2,2) scalars requires g2 > 0.21432g1 for g1 > 0 to satisfy to BF bound.

Therefore, critical point III is stable for g1 > 0 and g2 > 0.21432g1.

Note that both critical points II and III contain three massless scalars which are

responsible for the symmetry breaking SO(4)×USp(2) → USp(2)×USp(2).

3.1.3 SO(3) × SO(2) × USp(2) gauging

Computing the scalar potential on the full 8-dimensional manifold turns out to be very

complicated even with the Euler angle parametrization (3.4). In order to make things

more tractable, we employ the technique introduced in [25] and consider a submanifold of

USp(4, 2)/USp(4) × USp(2) invariant under U(1)diag symmetry generated by T 12 + T 45.

There are four singlets under this symmetry corresponding to the non-compact generators

X1 =
1√
2
(Y 1 + Y 6), X2 =

1√
2
(Y 2 + Y 8),

X3 =
1√
2
(Y 4 − Y 3), X4 =

1√
2
(Y 7 − Y 5). (3.12)
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a1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)×USp(2)

II 1
2 ln

[

g2−8g1−4
√

g1(4g1−g2)

g2

]

−64g2
1
(g1−g2)2

g2
2

(2, 0) U(1)×U(1)

III 1
2 ln

[

g2+8g1−4
√

g1(4g1+g2)

g2

]

−64g2
1
(g1+g2)2

g2
2

(1, 2) U(1)×U(1)

Table 3. Critical points of SO(3)× SO(2)×USp(2) gauging.

The coset representative can be parametrized by

L = ea1X1ea2X2ea3X3ea4X4 . (3.13)

The resulting potential is given by

V =
1

128
[3 + cosh a1 cosh a2 cosh a3 cosh a4]

[

−2
(

512g21 + 19g22
)

+
(

99g22 − 1024g21
)

cosh a1 cosh a2 cosh a3 cosh a4 + 3g22 cosh(2a1)

×(cosh a1 cosh a2 cosh a3 cosh a4)− 2− 12g22 cosh
2 a1 [cosh(2a2)

+2 cosh2 a2
(

cosh(2a3) + 2 cosh2 a3 cosh(2a4)
)]

+ 2g22 cosh
3 a1

× cosh a2 cosh a3
(

3
(

cosh(2a2) + 2 cosh2 a2 cosh(2a3)
)

cosh a4

+4 cosh2 a2 cosh
2 a3 cosh(3a4)

)]

. (3.14)

We find critical points as shown in table 3. We have given only the value of a1 since, at

all critical points, the four scalars are related by a2 = a1 and a3 = a4 = 0. As usual,

when all scalars vanish, we have a maximally supersymmetric point with N = (3, 2) and

SO(3)× SO(2)×USp(2) symmetry. The corresponding A1 tensor is

A
(I)
1 = −4g1diag (1, 1, 1,−1,−1) . (3.15)

This background leads to the superconformal symmetry Osp(3|2,R) × Osp(2|2,R). The

scalar masses at this point are shown below.

m2L2 SO(2)× SO(3)×USp(2)

−3
4 (1,2,2) + (−1,2,2)

The other two critical points preserve U(1)×U(1) symmetry. The corresponding A1 tensor

at these points is given by

A
(II)
1 = = diag (α, α, β,−β,−β) ,

A
(III)
1 = diag (γ, γ,−δ, δ, δ) (3.16)
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where

α =
4g1(g1 − g2)

g2
, β = −4g1(g2 − 3g1)

g2
,

γ = −4g1(3g1 + g2)

g2
, δ =

4g1(g1 + g2)

g2
. (3.17)

With some normalization of the U(1) charges, the scalar mass spectra can be computed

as shown in the tables below. The original four singlets under U(1)diag correspond to one

massless and three massive modes in the tables. The U(1)diag is given by a combination of

the two U(1)’s in the unbroken symmetry U(1)×U(1). Therefore, the (0,±4) and (±4, 0)

modes, which are singlets under one of the two U(1)’s, will not be invariant under U(1)diag.

• (2, 0) point:

m2L2 U(1)×U(1)

0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g2
1
−32g1g2+6g2

2

(g1−g2)2
(0, 0)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2) + (2, 2)

• (1, 2) point:

m2L2 U(1)×U(1)

0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g2
1
+32g1g2+6g2

2

(g1+g2)2
(0, 0)

2g1(3g1+2g2)
(g1+g2)2

(−2,−2) + (2, 2)

3.2 The k = 4 case

We now consider a bigger scalar manifold USp(4,4)
USp(4)×USp(4) . Compact gauge groups in this

case are SO(5) × USp(4), SO(4) × USp(4) and SO(3) × SO(2) × USp(4). Analyzing the

potential on the full 16-dimensional manifold would be very complicated. We then choose

a particular submanifold invariant under a certain subgroup of the gauge group and study

the potential on this restricted scalar manifold as in the SO(3) × SO(2) × USp(2) gauge

group of the previous case. The procedure is parallel to that of the k = 2 case, so we

will omit some irrelevant details particularly the explicit form of the A1 tensor at each

critical point.

3.2.1 SO(5) × USp(4) gauging

We use the parametrization of a submanifold invariant under USp(2) ⊂ USp(4). There

are eight singlets under this USp(2) symmetry corresponding to non-compact generators

of USp(4, 2) ⊂ USp(4, 4). With the Euler angle parametrization, we can write the coset

representative as

L = ea1X̃1ea2X̃2ea3X̃3ea4K1ea5K2ea6K3ea7K4ebY
8

(3.18)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)×USp(4)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g2
1
(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)3

III cosh−1
[

6g1+g2
2g1+g2

]

−64g2
1
(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)3

Table 4. Critical points of SO(5)×USp(4) gauging.

where

X̃1 =
1√
2
(J4 − J11), X̃2 =

1√
2
(J5 − J12), X̃3 =

1√
2
(J6 − J13),

K1 = J31, K2 = J32, K3 = J33, K4 = J36 . (3.19)

The scalar potential turns out to be same as in (3.6). The critical points are shown in

table 4. The critical points have the same structure as in the k = 2 case but with bigger

residual symmetry. The scalar mass spectra at each critical point are given in the tables

below.

• (5, 0) point:

m2L2 SO(5)×USp(4)

−3
4 (4,4)

• (4, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)

−4g2
1
+8g1g2+3g2

2

4(g1+g2)2
(2,1,2)

• (1, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (1,2,2) + (1,3,1)

40g2
1
+22g1g2+3g2

2

(3g1+g2)2
(1,1,1)

−3(12g21+8g1g2+g2
2)

4(3g1+g2)2
(2,1,2)

Notice that the number of massless Goldstone bosons agrees with the corresponding sym-

metry breaking in each case.
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)×USp(4)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g2
1
(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)3

III cosh−1
[

6g1+g2
2g1+g2

]

−64g2
1
(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)3

Table 5. Critical points of SO(4)×USp(4) gauging.

3.2.2 SO(4) × USp(4) gauging

With the same coset representative, we find the same potential as shown in (C.1). The

critical points with different unbroken symmetry are shown in table 5. The scalar mass

spectra are given below.

• (4, 1) point:

m2L2 SO(4)×USp(2) ∼ SU(2)× SU(2)×USp(4)

−3
4 (2,1,4) + (1,2,4)

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)

− g1g2(g1+2g2)
(g1+g2)2(2g1+g2)

(2,1,2)

− (2g1+g2)(2g1+3g2)
4(g1+g2)2

(2,2,1)

• Non-supersymmetric point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2) + (1,3,1)

40g2
1
+22g1g2+3g2

2

(3g1+g2)2
(1,1,1)

−3(2g1+g2)(6g1+g2)
4(3g1+g2)2

(2,1,2)

− g1(20g21+13g1g2+2g2
2)

(2g1+g2)(3g1+g2)2
(2,2,1)

This critical point is stable for g1 > 0 and g2 > 0.21432g1.

3.2.3 SO(3) × SO(2) × USp(4) gauging

In this case, we use the parametrization of L as in (3.13). The four scalars correspond to

four singlets of USp(2) × U(1)diag. The potential is the same as (3.14) with the critical

points shown in table 6. The scalar mass spectra are given in the following tables.
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a1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)×USp(4)

II 1
2 ln

[

g2−8g1−4
√

g1(4g1−g2)

g2

]

−64g2
1
(g1−g2)2

g2
2

(2, 0) U(1)×U(1)×USp(2)

III 1
2 ln

[

g2+8g1−4
√

g1(4g1+g2)

g2

]

−64g2
1
(g1+g2)2

g2
2

(1, 2) U(1)×U(1)×USp(2)

Table 6. Critical points of SO(3)× SO(2)×USp(4) gauging.

• (3, 2) point:

m2L2 SO(3)×USp(4)

−3
4 (2,4) + (2,4)

• (2, 0) point:

m2L2 U(1)×U(1)×USp(2)

0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)

32g2
1
−32g1g2+6g2

2

(g1−g2)2
(0, 0,1)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2,1) + (2, 2,1)

−4g2
1
−8g1g2+3g2

2

4(g1−g2)2
(−1,−1,2) + (1, 1,2)

• (1, 2) point:

m2L2 U(1)×U(1)×USp(2)

0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)

32g2
1
+32g1g2+6g2

2

(g1+g2)2
(0, 0,1)

−2g1(3g1+2g2)
(g1+g2)2

(−2,−2,1) + (2, 2,1)

−4g2
1
+8g1g2+3g2

2

4(g1+g2)2
(−1,−1,2) + (1, 1,2)

That critical points in the k = 4 case are similar to those in the k = 2 case should be

related to the fact that the theory with USp(4, 2)/USp(4)×USp(2) scalar manifold can be

embedded in the theory with USp(4, 4)/USp(4)×USp(4) scalar manifold. We have studied

the potential on scalars which are singlets under USp(2). These singlets are precisely

parametrized by non-compact directions of USp(4, 2) ⊂ USp(4, 4), the global symmetry
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group of k = 2 case. This might explain the fact that this particular parametrization gives

rise to the same potential as in the k = 2 case. Turning on more scalars would give more

interesting structures.

4 Non-compact gauge groups

In this section, we classify admissible non-compact gauge groups. We will consider the

k = 2 and k = 4 cases separately as in the previous section.

4.1 The k = 2 case

In this case, there is only one non-compact subgroup of USp(4, 2) namely USp(2, 2). The

USp(4, 2) itself can be gauged with the embedding tensor given by its Killing form, but the

corresponding potential will become a cosmological constant. The subgroup of USp(4, 2)

that can be gauged is USp(2)×USp(2, 2) ⊂ USp(4, 2). The embedding tensor reads

Θ = g1ΘUSp(2) + g2ΘUSp(2,2) (4.1)

where g1 and g2 are two independent coupling constants. ΘUSp(2,2) and ΘUSp(2) are given

by the Killing forms of USp(2, 2) and USp(2), respectively.

Generally, scalar fields corresponding to non-compact directions in the gauge group

will drop out from the potential. Therefore, we do not need to include them in the

coset representative. The remaining four scalars correspond to non-compact directions

of another USp(2, 2) in USp(4, 2) and can be parametrized by the coset representative of

USp(2, 2)/USp(2)× USp(2). We can use Euler angles of USp(2)× USp(2) to parametrize

the coset representative as

L = ea1X1ea2X2ea3X3ebY
7

(4.2)

where Xi are given in (3.5). We find the following potential

V =
1

16

[

8(g1 − g2 + (g1 + g2) cosh(b))
2 sinh2 b

− (3g1 + 11g2 + 4(g1 − g2) cosh b+ (g1 + g2) cosh(2b))
2
]

. (4.3)

Some of the critical points are shown in table 7. The A1 tensor at each supersymmetric

critical point is given by

A
(I)
1 = (g1 + g2)diag (−1,−1,−1,−1, 1) ,

A
(II)
1 = diag

(

β, β, β, β,
g2(−2g1 + g2)

g1 + g2

)

,

A
(III)
1 = diag

(

γ, γ, γ, γ,−g2(2g1 + 3g2)

g1 + g2

)

(4.4)

where

β = −g2(2g1 + g2)

g1 + g2
, γ = −g2(2g1 + 5g2)

g1 + g2
. (4.5)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)3

II cosh−1
(

g2−g1
g1+g2

)

−4g2
1
(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)×USp(2)

III cosh−1
(

− g1+3g2
g1+g2

)

−4g2
1
(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)×USp(2)

IV ln(2 +
√
3) −1

4(27g
2
1 + 54g1g2 + 19g22) (0, 0) USp(2)×USp(2)

Table 7. Critical points of USp(2)×USp(2, 2) gauging.

Critical point I preserves N = (4, 1) supersymmetry. The gauge group is broken down

to its maximal compact subgroup USp(2)3. In this symmetry breaking, the four mass-

less Goldstone bosons correspond to scalars associated to non-compact generators of

the gauge group. The full symmetry at this point gives the superconformal symmetry

Osp(4|2,R) × Osp(1|2,R) since the supercharges transform under USp(2) × USp(2) ⊂
SO(5)R as (2,2) + (1,1).

Scalar mass spectra at all critical points are given below.

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2)

− g1(g1+2g2)
(g1+g2)2

(2,1,2)

• (4, 0) point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

4g1(3g1+g2)
(2g1+g2)2

(1,1)

• (1, 0) point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

4(g1+2g2)(3g1+5g2)
(2g1+3g2)2

(1,1)

• Non-supersymmetric point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

12(3g1+g2)(3g1+5g2)
27g2

1
+54g1g2+19g2

2

(1,1)
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At non-trivial critical points, there are additional three massless scalars which are respon-

sible for USp(2) × USp(2) → USp(2)diag symmetry breaking. The non-supersymmetric

critical point is stable for g2 >
3
79(2

√
210− 45)g1.

4.2 The k = 4 case

There are three possible non-compact subgroups of USp(4, 4); USp(2, 2) × USp(2, 2),

USp(2) × USp(4, 2) and USp(2) × USp(2) × USp(2, 2). Only USp(2, 2) × USp(2, 2) can

be gauged with the following embedding tensor

Θ = g1ΘUSp(2,2) + g2ΘUSp(2,2) . (4.6)

There are two independent coupling constants g1 and g2, and ΘUSp(2,2) is given by the

Killing form of USp(2, 2). The relevant 8 scalars can be parametrized by
(

USp(2,2)
USp(2)×USp(2)

)2

coset space with the two USp(2, 2) factors different from those appearing in the gauge

group. With the Euler angle parametrization, the coset representative reads

L = ea1X1ea2X2ea3X3eb1Y
7

ea4X4ea5X5ea6X6eb2Y
16

(4.7)

where

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13),

X4 =
1√
2
(J4 − J22), X5 =

1√
2
(J5 − J23), X6 =

1√
2
(J6 − J24). (4.8)

The scalar potential is given by

V =
1

16
[(g1 + g2)(6 + cosh(2b1))− (4(g1 − g2) cosh b1 + 4(g2 − g1) cosh b2

+(g1 + g2) cosh(2b2))
2 + 8(g1 − g2 + (g1 + g2) cosh(b1))

2 sinh2 b1

+8(g2 − g1 + (g1 + g2) cosh b2)
2 sinh2 b2

]

. (4.9)

We find some critical points for b2 = 0 as shown in table 8. Scalar masses at all critical

points are given below.

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)×USp(2)

0 (1,2,2,1) + (2,1,1,2)

− g2(2g1+g2)
(g1+g2)2

(1,2,1,2)

− g1(g1+2g2)
(g1+g2)2

(2,1,2,1)
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b1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)4

II cosh−1
(

−g1+g2
g1+g2

)

−4g2
1
(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)3

III cosh−1
(

−g1−3g2
g1+g2

)

−4g2
1
(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)3

IV cosh−1 2 −1
4(27g

2
1 + 54g1g2 + 19g22) (0, 0) USp(2)3

Table 8. Critical points of USp(2, 2)×USp(2, 2) gauging.

• (4, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

4g1(3g1+g2)
(2g1+g2)2

(1,1,1)

− (g1+g2)(3g1+g2)
(2g1+g2)2

(1,2,2)

• (1, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

4(3g21+11g1g2+10g2
2)

(2g1+3g2)2
(1,1,1)

−3(g21+4g1g2+3g2
2)

(2g1+3g2)2
(1,2,2)

• Non-supersymmetry point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

12(3g1+g2)(3g1+5g2)
27g2

1
+54g1g2+19g2

2

(1,1,1)

− 24g2(3g1+g2)
27g2

1
+54g1g2+19g2

2

(1,2,2)

At the trivial critical point, the SO(5)R R-symmetry is broken to SU(2)×SU(2) ∼ USp(2)×
USp(2). The N = 5 supercharges transform under this subgroup as (2,2) + (1,1). This

gives rise to Osp(4|2,R)×Osp(1|2,R) superconformal symmetry. As in the previous case,

the non-supersymmetric point is stable for g2 >
3
79(2

√
210− 45)g1.

5 RG flow solutions

Given some AdS3 critical points form the previous sections, we now consider domain wall

solutions interpolating between these critical points. The solutions can be interpreted as
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RG flows describing a perturbed UV CFT flowing to another CFT in the IR. Since the

structure of critical points in both k = 2 and k = 4 cases is similar, we will consider only

the flows in k = 2 case to simplify the algebra. The study of holographic RG flows is

very similar to those in other gauged supergravities in three dimensions [16–19]. In this

paper, we will give only examples of RG flows in compact SO(5)×USp(2) and non-compact

USp(2, 2)×USp(2) gauge groups.

We are interested only in supersymmetric flows connecting two supersymmetric critical

points. The solution can be found by solving BPS equations arising from supersymmetry

transformations of fermions δψI
µ and δχiI which, for convenience, we will repeat them here

from [5]

δψI
µ = Dµǫ

I + gAIJ
1 γµǫ

J ,

δχiI =
1

2
(δIJ1− f IJ)i jD/φjǫJ − gNAJIi

2 ǫJ (5.1)

where Dµǫ
I =

(

∂µ + 1
2ω

a
µγa
)

ǫI for vanishing vector fields.

We now employ the standard domain wall ansatz for the metric

ds2 = e2A(r)dx21,1 + dr2 . (5.2)

In order to preserve Poincare symmetry in two dimensions, all fields involving in the flow

can only depend on the radial coordinate r identified with an energy scale in the dual field

theory. BPS equations give rise to first order flow equations describing the dependence of

active scalars on r. It can be verified that setting some of the scalars to zero satisfies their

flow equations. We can then neglect all scalars that vanish at both UV and IR points.

5.1 An RG flow between (5, 0) and (4, 0) CFT’s in SO(5) × USp(2) gauging

The flow involves only one active scalar parametrized by the coset representative

L = eb(r)Y
7

. (5.3)

The BPS equation from δχiI = 0 gives rise to the flow equation

db

dr
= [2g1 − g2 + (2g1 + g2) cosh b] sinh b (5.4)

where we have used the projection condition γrǫ
I = ǫI . It is clearly seen from the above

equation that there are two critical points at b = 0 and b = cosh−1 g2−2g1
2g1+g2

. This equation

can be solved for r as a function of b, and the solution is given by

r =
1

8g1g2

[

4g1 ln cosh
b

2
− (2g1 + g2) ln[2g1 − g2 + (2g1 + g2) cosh b]

+2g2 ln sinh
b

2

]

. (5.5)

The integration constant has been neglected since we can shift the coordinate r to remove it.
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The variation δψI
µ = 0 gives another equation for A(r)

dA

dr
=

1

4
[4g2 cosh b− 22g1 − 3g2 − 8g1 cosh b

−2g1 cosh(2b)− g2 cosh(2b)] (5.6)

or, in term of b,

dA

db
= − [22g1 + 3g2 + (8g1 − 4g2) cosh b+ (2g1 + g2) cosh(2b)] cschb

8g1 − 4g2 + 4(2g1 + g2) cosh b
. (5.7)

This equation is readily solved and gives A as a function of b

A =
1

g2

[

(g1 + g2) ln [2g1 − g2 + (2g1 + g2) cosh b]− (2g1 + g2) ln cosh
b

2

−2g2 ln sinh
b

2

]

. (5.8)

The additive integration constant can be absorbed by scaling x0,1 coordinates. It can be

verified that equation δψI
r = 0 gives the Killing spinors of the unbroken supersymmetry

ǫI = e
A

2 ǫI0 as usual, with constant spinors ǫI0 satisfying γrǫ
I
0 = ǫI0.

Linearizing equation (5.5) near the UV point b ≈ 0, we find

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
. (5.9)

We have set g1 < 0 to identify r → ∞ as the UV point. The above behavior indicates

that from a general result, see for example [12], the flow is driven by a relevant operator

of dimension ∆ = 3
2 .

Near the IR point, we find

b(r) ∼ e
− 8g1g2r

2g1+g2 = e
g2r

(g1+g2)LIR , LIR = − 2g1 + g2
8g1(g1 + g2)

> 0 . (5.10)

The reality condition for bIR requires g2 > −2g1 for g1 < 0. From the above equation, we

find g2
g2+g1

> 0, so in the IR the operator becomes irrelevant with dimension ∆IR = 3g2+2g2
g1+g2

.

This value of ∆IR precisely gives the correct mass square m2L2
IR = g2(2g1+3g2)

(g1+g2)2
given before.

The ratio of the central charges is computed to be

cUV

cIR
=
LUV

LIR
=

√

V0IR
V0UV

=
g1 + g2
2g1 + g2

> 1 (5.11)

satisfying the holographic c-theorem for g1 < 0 and g2 > −2g1.

5.2 An RG flow between (5, 0) and (1, 0) CFT’s in SO(5) × USp(2) gauging

We then study another RG flow interpolating between (5, 0) and (1, 0) critical points. The

coset representative is sill given by (5.3). Similar to the previous case, we obtain the

following flow equations

db

dr
= [6g1 + g2 − (2g1 + g2) cosh b] sinh b,

dA

dr
=

1

4
[3g2 − 10g1 − 4(6g1 + g2) cosh b+ (2g1 + g2) cosh(2b)] . (5.12)
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The first equation gives a solution

r = − 1

8g1(4g1 + g2)

[

4g1 ln cosh
b

2
+ (2g1 + g2) ln [(2g1 + g2) cosh b

−6g1 − g2]− 2(4g1 + g2) ln sinh
b

2

]

. (5.13)

We can rewrite the second equation of (5.12) as

dA

db
=

[10g1 − 3g2 + 4(6g1 + g2) cosh b− (2g1 + g2) cosh(2b)] cschb

4(2g1 + g2) cosh b− 4(6g1 + g2)
(5.14)

whose solution can be found to be

A =
1

4g1 + g2

[

(3g1 + g2) ln ((2g1 + g2) cosh b− 6g1 − g2)

−(2g1 + g2) ln cosh
b

2
− 2(4g1 + g2) ln sinh

b

2

]

. (5.15)

The fluctuation around b = 0 behaves as

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
. (5.16)

As in the previous case, we have chosen g1 < 0 to make the UV point corresponds to

r → ∞. From the above equation, the flow is again driven by a relevant operator of

dimension ∆UV = 3
2 . Near the IR point, b(r) becomes

b(r) ∼ e
− 8g1(4g1+g2)r

2g1+g2 = e
(4g1+g2)r

(3g1+g2)LIR , LIR = − 2g1 + g2
8g1(3g1 + g2)

. (5.17)

We can verify that bIR is real for g1 < 0 and g2 < −2g1, the operator becomes irrelevant

in the IR with dimension ∆IR = 10g1+3g2
3g1+g2

. The ratio of the central charges is given by

cUV

cIR
=

3g1 + g2
2g1 + g2

> 1, for g1 < 0 and g2 < −2g1 . (5.18)

5.3 An RG flow between (4, 1) and (4, 0) CFT’s in USp(2)×USp(2, 2) gauging

We next consider RG flows between critical points of non-compact USp(2) × USp(2, 2)

gauge group. We will not give a non-supersymmetric flow to critical point IV in table 7 in

this paper. It can be studied in the same procedure as [26] and [27]. Like in the compact

case, it is consistent to truncate the full scalar manifold to a single scalar parametrized by

L = eb(r)Y
7

. (5.19)

The variation δχiI = 0 gives

db

dr
= (g1 − g2 + (g1 + g2) cosh b) sinh b (5.20)
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which is solved by the solution

r =
1

4g1g2

[

2g2 ln sinh
b

2
+ 2g1 ln cosh

b

2

− (g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]

]

. (5.21)

The equation from δψI
µ = 0 reads

dA

dr
= −2

[

g2 + g1 cosh
4 b

2
+ g2 sinh

4 b

2

]

. (5.22)

The solution for A as a function of b can be found as in the previous cases. The result is

given by

A =
1

2g1

[

(2g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]− 4g1 ln cosh
b

2

−2(g1 + g2) ln sinh
b

2

]

. (5.23)

Near the UV point, the b solution becomes

b(r) ∼ e2g1r = e
g1r

(g1+g2)LUV , LUV =
1

2(g1 + g2)
. (5.24)

bIR is real for g1 < 0 and g2 > −g1. With this range, − g1
g1+g2

< 1. The flow is then

driven by a relevant operator of dimension ∆ = 3g1+2g2
g1+g2

< 2. At the IR point, we find the

asymptotic behavior

b(r) ∼ e
− 4g1g2r

g1+g2 = e
2g2r

|2g1+g2|LIR , LIR =
g1 + g2

2|g1(2g1 + g2)|
(5.25)

corresponding to an irrelevant operator of dimension ∆ = 2g2
|2g1+g2| + 2.

Finally, the ratio of the central charges is given by

cUV

cIR
=

|g1(2g1 + g2)|
(g1 + g2)2

. (5.26)

5.4 An RG flow between (4, 1) and (1, 0) CFT’s in USp(2)×USp(2, 2) gauging

As a final flow solution, we quickly investigate a solution interpolating between (4, 1) and

(1, 0) critical points. The flow equations are given by

db

dr
= − [g1 + 3g2 + (g1 + g2) cosh b] sinh b, (5.27)

dA

dr
=

1

4
[3g1 − 5g2 + 4(g1 + 3g2) cosh b+ (g1 + g2) cosh(2b)] . (5.28)
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The corresponding solutions take the form

r = − 1

4g2(g1 + 2g2)

[

(g1 + g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

+2g2 ln sinh
b

2
− 2(g1 + 2g2) ln cosh

b

2

]

, (5.29)

A =
1

2(g1 + 2g2)

[

(2g1 + 3g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

−4(g1 + 2g2) ln cosh
b

2
− 2(g1 + g2) ln sinh

b

2

]

. (5.30)

The fluctuations near the UV and IR points are given by

b(r) ∼ e−2(g1+2g2)r = e
(g1+2g2)r

(g1+g2)LUV , LUV = − 1

2(g1 + g2)
, (5.31)

b(r) ∼ e
− 4g2(g1+2g2)r

g1+g2 = e
2g2(g1+2g2)r

|g1(2g1+3g2)|LIR , LIR = − (g1 + g2)

2|g1(2g1 + 3g2)|
. (5.32)

We have chosen a particular range of g1 and g2 namely g1 < 0 and − g1
2 < g2 < −g1 for

which g1 + g2 < 0. The flow is driven by a relevant operator of dimension ∆ = 3g1+4g2
g1+g2

. In

the IR, the operator becomes irrelevant with dimension ∆ = 2g2
|2g1+g2| + 2.

The ratio of the central charges for this flow is

cUV

cIR
=

|g1(2g1 + 3g2)|
(g1 + g2)2

. (5.33)

6 N = 5, SO(5) ⋉ T10 gauged supergravity

In this section, we consider non-semisimple gauge groups in the form of G0 ⋉ TdimG0

in which G0 is a semisimple group. TdimG0 constitutes a translational symmetry with

dimG0 commuting generators transforming in the adjoint representation of G0. We

consider the k = 4 case with USp(4, 4) global symmetry that admits a non-semisimple

subgroup SO(5)⋉T10.

A general embedding of G0 ⋉ TdimG0 group is described by the embedding tensor of

the form [6]

Θ = g1Θab + g2Θbb . (6.1)

We have used the notation of [6] in denoting the semisimple and translational parts by a

and b, respectively. The absence of aa coupling plays a key role in the equivalence of this

theory and the Yang-Mills gauged supergravity with G0 gauge group.

The next task is to identify SO(5)⋉T10 generators. The semisimple SO(5) is identified

with the diagonal subgroup of SO(5) × SO(5) ∼ USp(4) × USp(4) ⊂ USp(4, 4). The

corresponding generators are given by

J ij = T ij + T̃ ij , i, j = 1, 2, . . . , 5 . (6.2)

T ij are the SO(5) R-symmetry generators, and T̃ ij are generators of USp(4). The trans-

lational generators are constructed from a combination of T ij − T̃ ij and non-compact
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generators. The 16 scalars transform as (4,4) under SO(5) × SO(5). They accordingly

transform as 1+ 5+ 10 under SO(5)diag. Scalars in the 10 representation will be part of

the T10 generators which are given by

tij = T ij − T̃ ij + Ỹ ij , i, j = 1, 2, . . . , 5 . (6.3)

The explicit form of T̃ ij and Ỹ ij is given in appendix B.

In the present case, supersymmetry allows for any value of g1 and g2. Therefore, the

embedding tensor contains two independent coupling constants. We begin with the scalar

potential computed on the SO(5)diag singlet scalar. The above decomposition gives one

singlet under this SO(5). We end up with a simple coset representative

L = ea(Y
7+Y 16) . (6.4)

This results in the potential

V = −64g1e
−3a (3eag1 + 2g2) . (6.5)

The existence of a maximally supersymmetric critical point at L = I requires g2 = −g1.
This is the same as in N = 4, 8 gauged supergravities [28, 29]. With this condition and g1
denoted by g, the potential becomes

V = −64g2e−3a (3ea − 2) . (6.6)

Clearly, the only one critical point is given by a = 0 with V0 = −64g2 and N = (5, 0)

supersymmetry. This critical point is a minimum of the potential as can be seen

from figure 1. The vacuum is very similar to the AdS3 vacuum found in N = 16,

SO(4)× SO(4)⋉ (T12, T̂34) gauged supergravity studied in [30]. The singlet has a positive

mass square m2L2 = 3 as expected for a minimum point. In the dual CFT with supercon-

formal symmetry Osp(5|2,R)× Sp(2,R), this scalar corresponds to an irrelevant operator

of dimension ∆ = 3. The full scalar masses are given below.

m2L2 SO(5)

3 1

3 5

0 10

The ten massless scalars accompany for the symmetry breaking SO(5)⋉T10 → SO(5)

at the vacuum.

To find other critical points, we reduce the residual symmetry of the scalar submanifold

to SO(3) ⊂ SO(5) under which the 16 scalars transform as (2+ 2)× (2+ 2) = 4× (1+ 3).

There are four singlets which can be parametrized by the coset representative

L = ea1Y
4

ea2Y
7

ea3Y
9

ea4Y
16

. (6.7)

The resulting potential turns out to be very complicated. We, therefore, will not attempt

to do the analysis of this potential in the present work.
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Figure 1. The scalar potential of N = 5, SO(5)⋉T10 gauged supergravity for SO(5) singlet scalar

with g = 1.

7 N = 6, SO(6) ⋉ T15 gauged supergravity

In this section, we consider non-semisimple gauge groups of N = 6 theory. Compact and

non-compact gauge groups in this theory together with their vacua and holographic RG

flows have been studied in [19].

We are interested in N = 6 gauged supergravity with SU(4,4)
S(U(4)×U(4)) scalar manifold.

Most of our conventions here are parallel to those used in [19]. The global symmetry

SU(4, 4) contains a non-semisimple subgroup SO(6) ⋉ T15. Similar to N = 5 theory, the

SO(6) part is given by the diagonal subgroup of SO(6)×SO(6) ∼ SU(4)×SU(4) ⊂ SU(4, 4).

The 32 scalars transform as (4, 4̄) + (4̄,4) under SU(4) × SU(4). Under SO(6)diag, they

transform as

(4× 4̄) + (4̄× 4) = 1+ 15+ 1+ 15. (7.1)

The adjoint representations 15’s will be used to construct the translational generators T15.

The full SO(6)⋉T15 generators are given in appendix B.

The embedding tensor is still given by (6.1), but in this case, the linear constraint

PR0
Θ = 0 requires g2 = 0 similar to N = 16, 10, 8 theories [3, 21, 31]. The above decom-

position gives two singlet scalars under SO(6) part of the gauge group. They correspond

to non-compact generators

Ys1 =
1

2
(Y 1 + Y 11 + Y 21 + Y 31), (7.2)

Ys2 =
1

2
(Y 2 + Y 12 + Y 22 + Y 32).

Accordingly, the coset representative can be parametrized by

L = e
√
2b1Ys1e

√
2b2Ys2 (7.3)

where we have chosen a particular normalization for later convenience. The potential is,

with g = g1, given by

V = −224g2 (cosh b1 cosh b2 − sinh b2)
2 . (7.4)
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The above potential does not admit any critical points, so the vacuum should be a

half-supersymmetric domain wall. In the rest of this section, we will find this domain

wall solution.

The supersymmetry transformations δψI
µ and δχiI together with the domain wall

ansatz (5.2) give rise to the following BPS equations

b′1 = 8gsechb2 sinh b1, (7.5)

b′2 = −8g (cosh b2 − cosh b1 sinh b2) , (7.6)

A′ = −16g (cosh b1 cosh b2 − sinh b2) (7.7)

where ′ denotes d
dr . Equation (7.5) is readily solved by setting b1 = 0. Equation (7.6)

now becomes

b′2 = −8ge−b2 . (7.8)

The solution is given by

b2 = ln (−8gr + c1) (7.9)

where c1 is an integration constant. With b1 = 0 and b2 given by (7.9), equation (7.7)

becomes

A′ =
−16g

c1 − 8gr
(7.10)

whose solution is easily found to be

A = 2 ln (−8gr + c1) + c2 (7.11)

with another integration constant c2. The two integration constants are not relevant be-

cause we can shift the coordinate r rescale x0,1 to remove them. As in other domain wall

solutions, the metric can be written in the form of a warped AdS3 as

ds2 =
1

(8g)4ρ2

(

dx21,1 + dρ2

ρ2

)

(7.12)

where ρ = − 1
(8g)2r

.

8 Conclusions and discussions

In this paper, we have classified compact and non-compact gauge groups of N = 5 gauged

supergravity in three dimensions with USp(4, 2)/USp(4)×USp(2) and USp(4, 4)/USp(4)×
USp(4) scalar manifolds. We have also identified a number of supersymmetric AdS3 vacua

in each gauging and studied some examples of supersymmetric RG flows interpolating

between these vacua in both compact and non-compact gauge groups. All of the solutions

can be analytically found, and the flows describe deformations by relevant operators. They

would be useful to the study of AdS3/CFT2 correspondence such as the computation of

correlation functions in the dual field theory similar to that studied in [32].

Among our main results, we have constructed N = 5, SO(5)⋉T10 gauged supergravity.

The theory is equivalent to N = 5 Yang-Mills gauged supergravity and could be obtained
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from S1/Z2 reduction of N = 5 gauged supergravity in four dimensions as pointed out

in [21]. The theory admits a maximally supersymmetric AdS3 vacuum which should be

dual to a superconformal field theory with Osp(5|2,R)×Sp(2,R) superconformal symmetry.

We have also given all of the scalar masses at this vacuum. It is interesting to further

study the scalar potential of this theory in order to find other critical points as well as

the associated RG flow solutions. This could give some insight to the deformations in the

dual CFT.

Similar construction has then been extended to N = 6 gauged supergravity with

SU(4, 4)/S(U(4) × U(4)) scalar manifold. The resulting theory is N = 6 gauged super-

gravity with SO(6) ⋉ T15 gauge group. Like N = 5 theory, this is equivalent to SO(6)

Yang-Mills gauged supergravity and should be obtained from S1/Z2 reduction of N = 6

gauged supergravity in four dimensions. This has also been pointed out in [21] in which

the spectrum of the S1 reduction of four dimensional N = 6 gauged supergravity has been

given. The theory admits a half-supersymmetric domain wall vacuum rather than a maxi-

mally supersymmetric AdS3. We have also given the domain wall solution. This solution

provides another example of domain walls in three dimensional gauged supergravity similar

to the solutions of [21, 31] and might be useful in the study of DW/QFT correspondence.

The above non-semisimple gaugings are of importance for embedding the theories in

higher dimensions. With the full embedding at hand, any solutions in a three dimensional

framework, which are usually easier to find than higher dimensional ones, can be uplifted

to string/M theory in which a full geometrical interpretation can be made. Other attempts

to embed Chern-Simons gauged supergravities in three dimensions can be found in [28–

30, 33–35]. In many cases, the precise reduction ansatz from ten or eleven dimensions

remains to be done.
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A Useful formulae

For conveniences, we collect useful formulae used throughout this paper. The detailed

discussion can be found in [5]. All of our discussions involve symmetric scalar manifolds of

the form G/H. The G generators are denoted by tM = (T IJ , Tα, Y A) in which T IJ and

Tα are SO(N)×H ′ generators and Y A are non-compact generators. In the present cases,

we have H ′ = USp(k) for N = 5 and H ′ = U(k) for N = 6 theories, respectively. SO(N)

is the R-symmetry.

The coset manifold, consisting of d scalars φi, i = 1, . . . , d = dim (G/H), can be

described by a coset representative L transforming by left- and right-multiplications of G
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and H. Some useful relations are given by

L−1tML =
1

2
VMIJT IJ + VM

αT
α + VM

AY
A, (A.1)

L−1∂iL =
1

2
QIJ

i T IJ +Qα
i T

α + eAi Y
A . (A.2)

The first relation gives scalar matrices V used in defining a moment map while the second

gives SO(N) ×H ′ composite connections, QIJ and Qα, and the vielbein on the manifold

G/H, eAi . Accordingly, the metric on the scalar manifold is defined by

gij = eAi e
B
j δAB, i, j, A,B = 1, . . . , d . (A.3)

The embedding tensor determines the fermionic mass-like terms and the scalar poten-

tial via the T-tensor defined by

TAB = VM
AΘMNVN

B . (A.4)

In the above equation, A and B label SO(N)×H ′ representations.

The AIJ
1 and AIJ

2i tensors appearing in the fermionic supersymmetry transformations

and the scalar potential are given in terms of linear combinations of various components

of TAB by the following relations

AIJ
1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN ,

AIJ
2j =

2

N
T IJ

j +
4

N(N − 2)
f
M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKL
m. (A.5)

The f IJij tensor can be constructed from SO(N) gamma matrices or from the SO(N) gen-

erators in a spinor representation. In the present case, it is given in a flat basis by

f IJAB = −2Tr(Y B
[

T IJ , Y A
]

). (A.6)

The scalar potential can be computed from

V = − 4

N

(

AIJ
1 AIJ

1 − 1

2
NgijAIJ

2i A
IJ
2j

)

. (A.7)

We end this section by noting the condition for unbroken supersymmetry. The associated

Killing spinors correspond to the eigenvectors of AIJ
1 with eigenvalues ±

√

−V0

4 .

B Relevant generators

In this appendix, we give generators of various groups used throughout the paper.
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B.1 N = 5 theory

Ji’s are USp(8) generators written in terms of generalized Gell-Mann matrices λi generating

the SU(8) group. They are explicitly given by

J1 =
iλ1√
2
, J2 =

iλ2√
2
, J3 =

iλ3√
2
,

J4 =
iλ13√

2
, J5 =

iλ14√
2
, J6 = − iλ8√

6
+
iλ15√

3
,

J7 =
iλ6
2

+
iλ9
2
, J8 = − iλ7

2
+
iλ10
2
, J9 =

iλ4
2

− iλ11
2
,

J10 = − iλ5
2

− iλ12
2
, J11 =

iλ33√
2
, J12 =

iλ34√
2
,

J13 = − iλ24√
5

+

√

3

10
iλ35, J14 =

iλ18
2

+
iλ25
2
, J15 = − iλ19

2
+
iλ26
2
,

J16 =
iλ16
2

− iλ27
2
, J17 =

iλ22
2

+
iλ29
2
, J18 = − iλ23

2
+
iλ30
2
,

J19 =
iλ20
2

− iλ31
2
, J20 = − iλ17

2
− iλ28

2
, J21 = − iλ21

2
− iλ32

2
,

J22 =
iλ61√

2
, J23 =

iλ62√
2
, J24 = −

√

3

14
iλ48 +

√

2

7
iλ63,

J25 =
iλ38
2

+
iλ49
2
, J26 = − iλ39

2
+
iλ50
2
, J27 =

iλ36
2

− iλ51
2
,

J28 =
iλ42
2

+
iλ53
2
, J29 = − iλ43

2
+
iλ54
2
, J30 =

iλ40
2

− iλ55
2
,

J31 =
iλ46
2

+
iλ57
2
, J32 = − iλ47

2
+
iλ58
2
, J33 =

iλ44
2

− iλ59
2
,

J34 = − iλ37
2

− iλ52
2
, J35 = − iλ41

2
− iλ56

2
, J36 = − iλ45

2
− iλ60

2
. (B.1)

The USp(6) generators needed for constructing USp(4, 2) are given by the first

21 generators.

The SO(5)⋉ T 10 generators are constructed as follow. The SO(5)diag is generated by

T ij + T̃ ij in which

T̃ 12 =
1√
2
(J13 − J24) , T̃ 13 = − 1√

2
(J11 + J22) , T̃ 23 =

1√
2
(J12 − J23) ,

T̃ 34 =
1√
2
(J13 + J24) , T̃ 14 =

1√
2
(J12 + J23) , T̃ 24 =

1√
2
(J11 − J22) ,

T̃ 45 = J31, T̃ 15 = −J33, T̃ 25 = −J36,

T̃ 35 = J32 . (B.2)

Generators Ỹ ij in T10 are given by

Ỹ 12 =i(J16 − J30), Ỹ 13 =− i(J14 + J28), Ỹ 23 =i(J15 + J29),

Ỹ 34 =i(J16 + J30), Ỹ 14 =i(J15 + J29), Ỹ 24 =i(J14 − J28),

Ỹ 45 =i(J17 + J25), Ỹ 15 =− i(J19 + J27), Ỹ 25 =i(J21 − J34),

Ỹ 35 =i(J18 + J26). (B.3)
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B.2 N = 6 theory

For conveniences, we repeat non-compact generators of SU(4, 4) in terms of generalized

Gell-Mann matrices, λi, i = 1, . . . , 63, given in [19]

Ȳ A =















































1√
2
cA+15, A = 1, . . . , 8

1√
2
cA+16, A = 9, . . . , 16

1√
2
cA+19, A = 17, . . . , 24

1√
2
cA+24, A = 25, . . . , 32

. (B.4)

The SO(6)R R-symmetry generators are identified to be

T̄ 12 =
1

2
c3 +

1

2
√
3
c8 −

1√
6
c15, T̄ 13 = −1

2
(c2 + c14), T̄ 23 =

1

2
(c1 − c13),

T̄ 34 =
1

2
c3 −

1

2
√
3
c8 +

1√
6
c15, T̄ 14 =

1

2
(c1 + c13), T̄ 35 = −1

2
(c6 + c9),

T̄ 56 =
1√
3
c8 +

1√
6
c15, T̄ 36 = −1

2
(c7 + c10), T̄ 24 =

1

2
(c2 − c14),

T̄ 45 =
1

2
(c7 − c10), T̄ 46 =

1

2
(c9 − c6), T̄ 15 =

1

2
(c4 − c11),

T̄ 16 =
1

2
(c5 − c12), T̄ 25 =

1

2
(c5 + c12), T̄ 26 = −1

2
(c4 + c11) (B.5)

where ci = −iλi.
The SO(6)⋉ T 15 generators are given by

SO(6) : J ij
a = T̄ ij + ˜̄T ij , i, j = 1, . . . , 6

T15 : J ij
b = T̄ ij − ˜̄T ij + ˜̄Y ij (B.6)

where

˜̄T 12 = i

(

1√
10
λ24 −

√

3

20
λ35 −

√

3

28
λ48 +

1√
7
λ63

)

,

˜̄T 34 = i

(

1√
10
λ24 −

√

3

20
λ35 +

√

3

28
λ48 −

1√
7
λ63

)

,

˜̄T 56 = i

(

1√
10
λ24 +

1√
15
λ35 −

2√
21
λ48 −

1√
7
λ63

)

,

˜̄T 13 =
i

2
(λ34 + λ62) ,

˜̄T 23 = − i

2
(λ33 − λ61) ,

˜̄T 14 = − i

2
(λ33 + λ61) ,

˜̄T 24 =
i

2
(λ62 − λ34) ,

˜̄T 45 =
i

2
(λ58 − λ47) ,

˜̄T 15 =
i

2
(λ59 − λ44) ,

˜̄T 25 = − i

2
(λ45 + λ60) ,

˜̄T 35 =
i

2
(λ46 + λ57) ,

˜̄T 16 =
i

2
(λ60 − λ45) ,

˜̄T 26 =
i

2
(λ44 + λ59) ,

˜̄T 36 =
i

2
(λ47 + λ58) ,

˜̄T 46 =
i

2
(λ46 − λ57) (B.7)
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and

˜̄Y 12 = −1

2
(λ27 − λ16 + λ40 − λ55) ,

˜̄Y 34 = −1

2
(λ55 − λ16 + λ27 − λ40) ,

˜̄Y 56 = −1

2
(λ55 − λ16 − λ27 + λ40) ,

˜̄Y 13 = −1

2
(λ54 − λ19 + λ26 − λ43) ,

˜̄Y 23 = −1

2
(λ53 − λ18 − λ25 + λ42) ,

˜̄Y 14 =
1

2
(λ18 + λ25 + λ42 + λ53) ,

˜̄Y 24 = −1

2
(λ19 − λ26 − λ43 + λ54) ,

˜̄Y 45 = −1

2
(λ50 − λ23 + λ30 − λ39) ,

˜̄Y 15 = −1

2
(λ31 − λ20 − λ36 + λ51) ,

˜̄Y 25 = −1

2
(λ21 + λ32 − λ37 − λ52) ,

˜̄Y 35 = −1

2
(λ22 + λ29 + λ38 + λ49) ,

˜̄Y 16 = −1

2
(λ21 − λ32 − λ37 + λ52) ,

˜̄Y 26 = −1

2
(λ20 + λ31 + λ36 + λ51) ,

˜̄Y 36 = −1

2
(λ50 − λ23 − λ30 + λ39) ,

˜̄Y 46 = −1

2
(λ29 − λ22 + λ38 − λ49) . (B.8)

C Scalar potential for SO(4) × USp(2) gauging

The scalar potential for compact gauge group SO(4)×USp(2) is given by

V = 2g22(3 + cosh b) sinh6
b

2
+

1

16
g1g2 [68 + 4 cos(2a4) + 2 cos(2(a4 − a5))

+4 cos(2a5) + 2 cos(2(a4 + a5)) + 2 cos(2(a4 − a6)) + cos(2(a4 − a5 − a6))

+2 cos(2(a5 − a6)) + cos(2(a4 + a5 − a6)) + 4 cos(2a6) + 2 cos(2(a4 + a6))

+ cos(2(a4 − a5 + a6)) + 2 cos(2(a5 + a6)) + cos(2(a4 + a5 + a6))

+32 cos2 a4 cos
2 a5 cos

2 a6 cos(2a7)
]

(3 + cosh b) sinh6
b

2

−4g21

[

cos2 a5 cos
2 a6 cos

2 a7 cosh
2 b

2
(3 + cosh b)2 sin2(2a4)

+64 cos2 a4 cosh
4 b

2
sin2 a4 sin

2 a5 + 64 cos2 a4 cos
2 a5 cosh

4 b

2

× sin2 a4 sin
2 a6 + 64 cos2 a4 cos

2 a5 cos
2 a6 cosh

4 b

2
sin2 a4 sin

2 a7

+
1

16384

[

51 + 259 cos(2a4) + 4(−17 + 63 cos(2a4)) cosh b+ (17 + cos(2a4))

× cosh(2b)+16 cos2 a4 cos(2a5) sinh
4 b

2
+ 32 cos2 a4 cos

2 a5 cos(2a6) sinh
4 b

2

+64 cos2 a4 cos
2 a5 cos

2 a6 cos(2a7) sinh
4 b

2

]2

+
1

2

[

−4 cos4 a4 cos
2 a5 cos

2 a6

× cos2 a7 sin
2 a5 sinh

6 b

2
− 4 cos4 a4 cos

4 a5 cos
2 a6 cos

2 a7 sin
2 a6 sinh

6 b

2

−4 cos4 a4 cos
4 a5 cos

4 a6 cos
2 a7 sin

2 a7 sinh
6 b

2
− 4 sin2(2a4) sin

2 a5 sinh
2 b
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−16 cos2 a4 cos
2 a5 sin

2 a4 sin
2 a6 sinh

2 b− 16 cos2 a4 cos
2 a5 cos

2 a6 sin
2 a4

× sin2 a7 sinh
2 b− 1

16
cos2 a5 cos

2 a6 cos
2 a7 sin

2(2a4)

[

7 sinh
b

2
+ 3 sinh

3b

2

]2

− 1

4096

[

16 cos2 a4
[

cos(2a5) + 2 cos2 a5
(

cos(2a6) + 2 cos2 a6 cos(2a7)
)]

× cosh
b

2
sinh3

b

2
+ 2[63 cos(2a4) + 17 cosh b− 17] sinh b

+cos(2a4) sinh(2b)

]2]]

. (C.1)
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1 Introduction

AdS3/CFT2 correspondence is interesting in various aspects. Unlike in higher dimensional

cases, much more insight to the AdS/CFT correspondence [1] is expected since both grav-

ity and field theory sides are well under control. It is also useful in the study of black

hole entropy, see for example [2] and [3]. Until now, various gravity backgrounds imple-

menting AdS3/CFT2 correspondence have been proposed. Some of them are obtained

from Kaluza-Klein dimensional reductions of higher dimensional supergravities on spheres

or other internal manifolds. The other are constructed directly within the three dimen-

sional framework of Chern-Simons gauged supergravity, but, in some cases particularly for

compact and non-compact gauge groups, higher dimensional origins are still mysterious.

One of the most interesting backgrounds for AdS3/CFT2 correspondence is string

theory on AdS3 ×S3 ×S3 ×S1. The background is half-supersymmetric and dual to large

N = (4, 4) SCFT in two dimensions, see [4] for a classification of N = 4 SCFT in two

dimensions. In string theory, this arises as a near horizon limit of the double D1-D5 brane

system [5–7]. The Kaluza-Klein spectrum for small S1 radius has been computed in [8].

Apart from the non-propagating supergravity multiplet in three dimensions, the spectrum

– 1 –
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contains massive multiplets of various spins. The full symmetry of AdS3 × S3 × S3 is

D1(2, 1;α)×D1(2, 1;α) whose bosonic subgroup is SO(2, 2)×SO(4)×SO(4) corresponding

to the isometry of AdS3 × S3 × S3, respectively. Additionally, the holography of large

N = 4 SCFT has recently been studied in the context of higher spin AdS3 dual [9].

Like in higher dimensions, it would be useful to have an effective theory in three

dimensions that describes the above S3 × S3 dimensional reduction. The AdS3 × S3 × S3

background will become an AdS3 vacuum preserving sixteen supercharges and SO(4) ×
SO(4) gauge symmetry, which is the isometry of S3 × S3. This can be achieved by a

gauged matter-coupled supergravity in three dimensions [10–12]. The gauge group should

contain the SO(4) × SO(4) factor. The natural construction should be the N = 8 gauged

supergravity since the number of supersymmetry is exactly the same as that of the AdS3×
S3×S3 background. A theory describing supergravity coupled to massive spin-12 multiplets

has been studied in [13] in which some critical points and a holographic RG flow have been

discussed. The resulting theory is in the form of N = 8 gauged supergravity with compact

SO(4)× SO(4) gauge group and SO(8, n)/SO(8)× SO(n) scalar manifold.

When coupled to massive spin-1 multiplets, the theory needs to accompany for

massive vector fields. For a theory coupled to two spin-1 multiplets, the corresponding

gauge group is a non-semisimple group (SO(4) × SO(4)) ⋉ T12. It has been argued that

the effective theory is the N = 8 gauged supergravity with SO(8, 8)/SO(8) × SO(8)

scalar manifold [14]. The gauging is a straightforward extension of the SO(4) ⋉ T6

gauging of [15] in which the effective theory of six-dimensional supergravity reduced on

AdS3 × S3 has been given. Some supersymmetric vacua of the (SO(4) × SO(4)) ⋉ T12

gauged theory have already been identified in [16]. All of these vacua are related to the

maximally supersymmetric vacuum by marginal deformations. The theory with only the

SO(4) × SO(4) semisimple part of the gauge group being gauged has been study in [17],

and the solution corresponding to a marginal deformation from N = (4, 4) to N = (3, 3)

SCFT, describing a D5-brane reconnection, has been explicitly given.

In this paper, we will reexamine the full (SO(4)× SO(4))⋉T12 gauging and look for

other deformations apart from the marginal ones. This could be relevant for AdS3/CFT2

correspondence and black hole physics. The holographic study of the conformal symme-

try D1(2, 1;α) is not only useful in the context of AdS3/CFT2 correspondence but also

in AdS2/CFT1 correspondence. This is because the symmetry D1(2, 1;α) also arises in

superconformal quantum mechanics [18–20]. The isometry of AdS2 is SO(2, 1) which is a

subgroup of the AdS3 isometry SO(2, 2) ∼ SO(2, 1) × SO(2, 1). Accordingly, the super-

conformal symmetry in one dimension contains only a single D1(2, 1;α). The holographic

study of AdS2/CFT1 correspondence directly from two dimensional gauged supergravity

has not been performed extensively. This is in part due to the lack of gauged supergravities

in two dimensions. Until now, only the maximal gauged supergravity and its truncation

have appeared [21, 22]. Since AdS2 can be obtained by dimensional reduction of AdS3 on

S1 via a very-near-horizon limit [23, 24], the results obtained here might be useful in the

study of deformations in D1(2, 1;α) superconformal mechanics.

The paper is organized as follow. In section 2, we will give a brief review of N = 8,

(SO(4) × SO(4)) ⋉ T12 gauged supergravity along with some relations to the N = (4, 4)

– 2 –
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SCFT. Section 3 deals with a description of new critical points, and the stability condition

for some of them is verified. In section 4, we study possible supersymmetric flows to non-

conformal field theories and 1
2 -BPS domain walls. We also comment on some numerical RG

flow solutions describing deformations of the N = (4, 4) SCFT to other CFTs in the IR.

We end the paper by giving some conclusions and discussions in section 5. The appendices

summarize necessary ingredients needed in the construction of N = 8 theory and relevant

formulae including the explicit form of some scalar potentials.

2 N = 8, (SO(4)×SO(4))⋉T12 gauged supergravity in three dimensions

We now review the construction of N = 8 gauged supergravity with (SO(4)×SO(4))⋉T12

gauge group. The theory has partially been studied before in [16]. We will explore the

scalar potential of this theory in more details. Rather than follow the parametrization

of SO(8, 8)/SO(8) × SO(8) coset manifold as in [16], we will use the parametrization

similar to that of [25]. In this parametrization, it is more convenient to determine the

residual gauge symmetry while the parametrization used in [16] gives a simple action of

the translation generators T12 on scalar fields.

It has been argued in [14] that this theory is an effective theory of ten dimensional

supergravity on AdS3×S3×S3×S1, or nine dimensional supergravity on AdS3×S3×S3

for small S1 radius, and describes the coupling of two massive spin-1 multiplets, contain-

ing twelve vectors, to the non-propagating supergravity multiplet of the reduction. All

together, the resulting theory is N = 8 gauged supergravity with the scalar manifold

SO(8, 8)/SO(8)× SO(8) and (SO(4)× SO(4))⋉T12 gauge group.

The whole construction is similar to that given in [16] and [25]. We will work in the

SO(8) R-symmetry covariant formulation of [12] with some relevant formulae and details

explicitly given in appendix A. We first introduce the basis for a GL(16,R) matrices

(emn)pq = δmpδnq, m, n, p, q = 1, . . . , 16 . (2.1)

The compact generators of SO(8, 8) are then given by

SO(8)(1) : JIJ
1 = eJI − eIJ , I, J = 1, . . . , 8,

SO(8)(2) : Jrs
2 = es+8,r+8 − er+8,s+8, r, s = 1, . . . , 8 . (2.2)

The non-compact generators corresponding to 64 scalars are identified as

Y Kr = eK,r+8 + er+8,K , K, r = 1, . . . , 8 . (2.3)

In the formulation of [12], scalars transform as a spinor under SO(8)R R-symmetry. It

can be easily seen from the above equation that Y Kr transform as a vector under SO(8)R
identified with SO(8)(1) with generators JIJ

1 . We define the following SO(8)R generators

in a spinor representation by

T IJ =

(

ΓIJ 0

0 0

)

(2.4)
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constructed from the 8× 8 SO(8) gamma matrices ΓI . We have defined

ΓIJ = −1

4

(

ΓI(ΓJ)T − ΓJ(ΓI)T
)

(2.5)

with the 8× 8 gamma matrices ΓI are given in appendix A.

The gauge group (SO(4) × SO(4)) ⋉ T12 is embedded in SO(8, 8) as follow. We first

form a diagonal subgroup of SO(8)× SO(8) with generators

SO(8)diag : JAB = JAB
1 + JAB

2 , A,B = 1, . . . , 8 . (2.6)

The SO(4)× SO(4) part is generated by

SO(4)+ : jab1 = Jab,

SO(4)− : jâb̂2 = J â+4,b̂+4, a, b, â, b̂ = 1, . . . , 4 . (2.7)

The “hat” indices refer to SO(4)−. We now construct the translational generators T28 as

in [25]

tAB = JAB
1 − JAB

2 + Y BA − Y AB (2.8)

and identify T12 ∼ T6 ×T6 generators as

tab1 = tab, tâb̂2 = tâ+4,b̂+4, a, b, â, b̂ = 1, . . . , 4 . (2.9)

The gauge group is embedded in SO(8, 8) with a specific form of the embedding

tensor. As shown in [26], there is no coupling among the SO(4)±. The gauging is very

similar to the SO(4) ⋉ T6 gauged supergravity constructed in [15] with two factors of

SO(4) ⋉ T6. The embedding tensor is simply given by two copies of that given in [15].

We end up with two independent coupling constants

Θ = g1Θ1 + g2Θ2 . (2.10)

where Θ1,2 describe the embedding of each SO(4) ⋉ T6 factor of the full gauge group.

We should note that supersymmetry allows for four independent couplings namely

between the moment maps g′1(V(jab1 ),V(tab1 )), g′2(V(tab1 ),V(tab1 )), g′3(V(jab2 ),V(tab2 )) and

g′4(V(tab2 ),V(tab2 )) in the T-tensor, see [15] and [16]. We have used a shorthand notation

for VM
A. However, the requirement that the theory admits a maximally supersymmetric

vacuum at the origin of the scalar manifold imposes two conditions on the original four

couplings. In more detail, the two conditions require g′2 = −g′1 and g′4 = −g′3. After

rename the relevant couplings, we end up with the embedding tensor

Θabcd = g1ǫ
+
abcd + g2ǫ

−
âb̂ĉd̂

. (2.11)

This embedding tensor together with the formulae in appendix A and an explicit

parametrization of the coset representative of SO(8, 8)/SO(8) × SO(8) can be used to

compute the scalar potential. We will analyze the resulting potential on submanifolds of

SO(8, 8)/SO(8) × SO(8) invariant under some subgroups of SO(4) × SO(4) in the next

section.

– 4 –
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Before looking at the critical points, we give a review of the relation between

(SO(4)× SO(4))⋉T12, N = 8 gauged supergravity and N = (4, 4) SCFT. The semisimple

part of the gauge group SO(4)+ × SO(4)− corresponds to the isometry of S3 × S3.

Together with the usual SO(2, 2) isometry of AdS3, they constitute the bosonic subgroup

SO(2, 1)L × SU(2)+L × SU(2)−L × SO(2, 1)R × SU(2)+R × SU(2)−R of the superconformal

group D1(2, 1;α)×D1(2, 1;α) via the isomorphisms SO(2, 2) ∼ SO(2, 1)L × SO(2, 1)R and

SO(4)± ∼ SU(2)±L × SU(2)±R. The α parameter is identified with the ratio of the coupling

constant g2 = αg1. For positive α, the theory describes the dimensional reduction of

nine dimensional supergravity on S3 × S3. For negative α, it may possibly describe the

reduction on S3 ×H3 where H3 is a hyperbolic space in three dimensions.

The translational part T12 of the gauge group describes twelve massive vector

fields [26]. The massive vector fields will show up in the vacuum of the theory via twelve

massless scalars in the adjoint representation of SO(4)×SO(4). These are Goldstone bosons

for the T12 symmetry since the vacuum is invariant only under SO(4)+ × SO(4)− not the

full gauge group. We will see this when we compute the mass spectrum of scalar fields.

3 Some critical points of N = 8, (SO(4) ⋉ SO(4)) ⋉ T12 gauged super-

gravity

We now look for critical points of the N = 8 gauged supergravity constructed in the

previous section. Analyzing the scalar potential on the full 64-dimensional scalar manifold

SO(8, 8)/SO(8) × SO(8) is beyond our reach with the present-time computer. We then

employ an effective method given in [27] to find some interesting critical points on a

submanifold invariant under some subgroup of the gauge group. A group theoretical

argument guarantees that the corresponding critical points are critical points of the scalar

potential on the full scalar manifold. Even on these truncated manifolds, the explicit form

of the potential is still very complicated. Therefore, in most cases, we refrain from giving

the full expression for the potential.

At the trivial critical point with all scalars vanishing, the full gauge group (SO(4) ×
SO(4))⋉T12 is broken down to its maximal compact subgroup SO(4)×SO(4) corresponding

to the isometry of S3 × S3. The 64 scalars transform under SO(8) × SO(8) ⊂ SO(8, 8) as

(8,8). Then, under the SO(4)+ × SO(4)− ⊂ SO(8)diag, they transform as

8× 8 =
[

(4+,1+) + (1−,4−)
]

×
[

(4+,1+) + (1−,4−)
]

= (1+ + 6+ + 9+,1+) + (1−,1− + 6− + 9−) + (4+,4−) + (4−,4+). (3.1)

We can further decompose the above representations into SU(2)+L × SU(2)+R × SU(2)−L ×
SU(2)−R representations labeled by (ℓ+L , ℓ

+
R; ℓ

−
L , ℓ

−
R) as follow:

8× 8 = (1,1;1,1) + (1,3;1,1) + (3,1;1,1) + (3,3;1,1)

+(1,1;1,1) + (1,1;1,3) + (1,1;3,1) + (1,1;3,3)

+(2,2;2,2) + (2,2;2,2). (3.2)
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hL
hR α

1+α
3α+1
2(1+α)

2α+1
1+α

α
1+α (0, 1; 0, 1) (0, 1; 12 ,

1
2) (0, 1; 0, 0)

3α+1
2(1+α) (12 ,

1
2 ; 0, 1) (12 ,

1
2 ;

1
2 ,

1
2) (12 ,

1
2 ; 0, 0)

2α+1
1+α (0, 0; 0, 1) (0, 0; 12 ,

1
2) (0, 0, 0, 0)

Table 1. The massive spin-1 multiplet (0, 1; 0, 1)S.

hL
hR 1

1+α
3+α

2(1+α)
2+α
1+α

1
1+α (1, 0; 1, 0) (1, 0; 12 ,

1
2) (1, 0; 0, 0)

3+α
2(1+α) (12 ,

1
2 ; 1, 0) (12 ,

1
2 ;

1
2 ,

1
2) (12 ,

1
2 ; 0, 0)

2+α
1+α (0, 0; 1, 0) (0, 0; 12 ,

1
2) (0, 0, 0, 0)

Table 2. The massive spin-1 multiplet (1, 0; 1, 0)S.

SO(4)+ × SO(4)− m2L2

(1,1) 4g1(2g1+g2)
(g1+g2)2

(6,1) 0

(9,1) − 4g1g2
(g1+g2)2

(1,1) 4g2(2g2+g1)
(g1+g2)2

(1,6) 0

(1,9) − 4g1g2
(g1+g2)2

(4,4)
3g2

2
−2g1g2−g2

1

(g1+g2)2

(4,4)
3g2

1
−2g1g2−g2

2

(g1+g2)2

Table 3. The mass spectrum of the trivial critical point.

The result precisely agrees with the representation content obtained from the AdS3 ×
S3 ×S3 reduction [8]. For conveniences, we also repeat the massive spin-1 supermultiplets

(0, 1; 0, 1)S and (1, 0; 1, 0)S of the AdS3 × S3 × S3 reduction in table 1 and 2.

We can now compute the scalar potential by using the formulae in appendix A. After

expanding the potential around L = I, we find the scalar mass spectrum at the maximally

supersymmetric vacuum as shown in table 3. The AdS3 radius is given by L = 1√
−V0

,

and the value of the potential at this point is V0 = −64(g1 + g2)
2. Using the relation

m2L2 = ∆(∆ − 2) and ∆ = hL + hR, we can verify that the mass spectrum agrees with

the values of hR and hL in table 1 and 2. As mentioned before, there are twelve massless

Goldstone bosons transforming in the adjoint representation (1,6)+(6,1) of SO(4)×SO(4).

Note also that there is a Minkowski vacuum at g2 = −g1 or α = −1.

– 6 –
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3.1 Critical points on the SO(4)diag invariant manifold

We first consider scalars which are singlets under the diagonal subgroup SO(4)diag ⊂
SO(4) × SO(4). To obtain representations of the scalars under this subgroup, we take

a tensor product in the last line of (3.1). We find that there are four singlets, two from the

obvious ones (1+ × 1+,1− × 1−) and the other two from the product (4+ × 4−,4− × 4+).

They correspond to the following non-compact generators

Ỹ1 = Y 11 + Y 22 + Y 33 + Y 44, Ỹ2 = Y 55 + Y 66 + Y 77 + Y 88,

Ỹ3 = Y 51 + Y 62 + Y 73 + Y 84, Ỹ4 = Y 15 + Y 26 + Y 37 + Y 48 . (3.3)

The coset representative is accordingly parametrized by

L = ea1Ỹ1ea2Ỹ2ea3Ỹ3ea4Ỹ4 . (3.4)

Apart from the trivial critical point at a1 = a2 = a3 = a4 = 0, we find the following

critical points.

• A non-supersymmetric AdS3 is given by a1 =
1
2 ln

√
g1−4g3−

√
g1

2
√
g1

and a2 = a3 = a4 = 0.

The cosmological constant is

V0 = −32
[

g21 + 4g22 − 6g1g2 + (4g2 − g1)
√

g1(g1 − 4g3)
]

. (3.5)

a1 is real for g1 > 0 and g2 < 0, and the critical point is AdS3, V0 < 0, for g1 > 0 and

g2 < −
√
2+1
2 g1. An equivalent critical point is given by a2 6= 0 and a1 = a3 = a4 = 0

but with g1 ↔ g2. For later reference, we will call this critical point P1.

• Another non supersymmetric critical point is at a4 = ln
√
g1+

√
3g2√

g1−
√
3g2

with g2 =

1
9

(√
13− 2

)

g1 and V0 = −8
3

(

43 + 13
√
13
)

g21. In this case, only a specific value

of α gives a critical point. The residual gauge symmetry in this case is SO(4)diag.

We will label this critical point as P2.

The full scalar potential for the four scalars is given in appendix B.

We now analyze the scalar masses at the above critical points to check their stability.

For critical point P1, it is useful to classify the 64 scalars according to their represen-

tations under the residual symmetry SO(4) × SO(4). The result is shown in table 4.

Similar to the trivial critical point, there are 12 massless scalars corresponding to the

broken T12 symmetry. The stability bound, or BF bound m2L2 ≥ −1, is satisfied by

−13+9
√
2

2 g1 < g2 < −1+
√

1+
√
2

2 g1.

For critical point P2, we can compute all scalar masses as shown in table 5. It is

easily seen that all masses satisfy the BF bound. There are 18 massless Goldstone bosons

corresponding to the symmetry breaking (SO(4)× SO(4))⋉T12 → SO(4).

We end this subsection by noting an interesting result discovered in [17] but with a

compact gauge group SO(4) × SO(4). This solution describes a marginal deformation of

N = (4, 4) SCFT to N = (3, 3) SCFT and has an interpretation in term of a reconnection

of D5-branes in the double D1-D5 system. The solution is also encoded in our present
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SO(4)+ × SO(4)− m2L2

(1,1) 12g2

g2+
√

g1(g1−4g2)

−16g2
2
+20g1g2−6g2

1
+2(g1+2g2)

√
g1(g1−4g2)

g2
1
−4g1g2−4g2

2

4g2
2
+14g1g2−3g2

1
+(4g2−g1)

√
g1(g1−4g2)

2(g2
1
−4g1g2−4g2

2
)

−3g2
1
−30g1g2+12g2

2
+3(3g1−4g2)

√
g1(g1−4g2)

2(g2
1
−4g1g2−4g2

2
)

(6,1) 0

(9,1) 8g1g2

g2
1
−6g1g2+(2g2−g1)

√
g1(g1−4g2)

(1,1) 4g2(2g2+g1)
(g1+g2)2

(1,6) 0

(1,9) −4g2
1
−24g1g2−8g2

2
+4(g1−g2)

√
g1(g1−4g2)

g2
1
−4g1g2−4g2

2

(4,4)
4g2

2
+14g1g2−3g2

1
+(4g2−g1)

√
g1(g1−4g2)

2(g2
1
−4g1g2−g2

2
)

(4,4) −12g2
2
−30g1g2+3g2

1
+(9g1−12g2)

√
g1(g1−4g2)

2(g2
1
−4g1g2−g2

2
)

Table 4. The scalar mass spectrum of the SO(4)× SO(4) critical point P1.

SO(4) m2L2

1 13.6358, 6.0931, 3.3703, 3.1180

6 0(×18)

9 8
29(7

√
13− 12)(×9),

4
29(5

√
13− 21)(×9),

4
29(8 + 5

√
13)(×9),

4
87(19

√
13− 74)(×9)

Table 5. The scalar mass spectrum of the SO(4) critical point P2 for g2 =
√

13−2
9 g1.

framework. In this case, we must set g2 = g1, or equivalently setting α = 1 in order to get

massless (marginal) scalars preserving the SO(4) diagonal subgroup of SO(4)× SO(4).

Follow [17], we further truncate the four scalars to two via

a2 = a1, a4 = −a3 . (3.6)

This is a consistent truncation for g2 = g1 since it corresponds to a fixed point of an inner

automorphism that leaves the embedding tensor invariant [17]. We find a critical point at

ea1+a3 = 1 +
√

1− e2a1 , V0 = −256g21 (3.7)

with the corresponding A1 tensor given by

AIJ
1 = diag

(

−8g1,−8g1,−8g1, 8g1, 8g1, 8g1,−8g1
√

4e−2a1 − 3, 8g1
√

4e−2a1 − 3
)

. (3.8)

We can see that as long as a1 6= 0, the N = (4, 4) supersymmetry is broken to N = (3, 3).

We refer the reader to [17] for the full discussion of this vacuum.
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3.2 Critical points on the SO(2)diag × SO(2)diag invariant manifold

We now proceed to consider a smaller residual symmetry SO(2)diag×SO(2)diag ⊂ SO(4)diag.

Under SO(2) × SO(2), the SO(4) fundamental representation 4 decomposes according to

4 → (2,1) + (1,2). Substituting this decomposition for 4+ and 4− in (3.1) and taking

the product to form a diagonal subgroup, we find that there are sixteen singlets given by

the non-compact generators

Ȳ1 = Y 11 + Y 22, Ȳ2 = Y 33 + Y 44, Ȳ3 = Y 55 + Y 66, Ȳ4 = Y 77 + Y 88,

Ȳ5 = Y 15 + Y 26, Ȳ6 = Y 37 + Y 48, Ȳ7 = Y 51 + Y 62, Ȳ8 = Y 73 + Y 84,

Ȳ9 = Y 12 − Y 21, Ȳ10 = Y 34 − Y 43, Ȳ11 = Y 56 − Y 65, Ȳ12 = Y 78 − Y 87,

Ȳ13 = Y 16 − Y 25, Ȳ14 = Y 38 − Y 47, Ȳ15 = Y 52 − Y 61, Ȳ16 = Y 74 − Y 83 . (3.9)

The coset representative can be parametrized by

L =
16
∏

i=1

eaiȲi . (3.10)

Unlike the previous case, the scalar potential is so complicated that it is not possible to

make the full analysis. However, with some ansatz, we find one non-trivial critical point at

a1 = a2 =
1

2
ln 2, a3 = −a4 =

1

2
ln
g2 − 6g1 +

√

36g21 − 12g1g2 − 3g22
2g2

,

V0 = 64(8g21 − g22). (3.11)

a3 and a4 are real for g1 > 0 and g2 ≥ −6g1. In this range, we find V0 < 0 if

g2 < −2
√
2g1. Therefore, it is possible to have an AdS3 critical point. The residual sym-

metry is SO(4)×SO(2)×SO(2). We will denote this critical point by P3 for later reference.

The stability of this critical point can be verified from the scalar mass spectrum given

in table 6 in which αi are eigenvalues of the submatrix

1

8g21 − g22









−80g21 x1 x2

x1 − g2
2

3 −2g2
2

3

x2 −2g2
2

3 − g2
2

3









(3.12)

with the following elements

x1 = 2
√
2g1

(

6g1 + g2 −
√

36g21 − 12g1g2 − 3g22

)

and x2 = 2
√
2g1

(

6g1 + g2 +
√

36g21 − 12g1g2 − 3g22

)

. (3.13)

Their numerical values can be obtained upon specifying the values of g1 and g2.

For all but (1,1,1) and (1,1,2) scalars, the masses are above the BF bound for

−6g1 < g2 < −2
√
2g1. The mass squares of (1,1,1) scalars are above the BF bound for

−6g1 < g2 < −4.47g1. For (1,1,2) scalars, the mass squares are above the BF bound
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SO(4)× SO(2)× SO(2) m2L2

(4,2,1) −60g2
1
−14g1g2+g2

2
+(6g1−3g2)

√
36g2

1
−12g1g2−3g2

2

16g2
1
−2g2

2

(4,1,2) −60g2
1
−24g1g2+g2

2
+(3g2−6g1)

√
36g2

1
−12g1g2−3g2

2

16g2
1
−2g2

2

(4,2,1) −124g2
1
−3g2

2
+(g2+6g1)

√
36g2

1
−12g1g2−3g2

2

16g2
1
−2g2

2

(4,1,2) −124g2
1
−3g2

2
−(g2+6g1)

√
36g2

1
−12g1g2−3g2

2

16g2
1
−2g2

2

(1,2,1)
6g2

2
+24g1g2−72g2

1
+2(g2−6g1)

√
36g2

1
−12g1g2−3g2

2

8g2
1
−g2

2

(1,1,2)
6g2

2
+24g1g2−72g2

1
−2(g2−6g1)

√
36g2

1
−12g1g2−3g2

2

8g2
1
−g2

2

(9,1,1)
48g2

1

g2
2
−8g2

1

(6,1,1) 0

2× (1,2,2) 0

2× (1,1,1) 0

(1,1,1) α1, α2, α3

Table 6. The scalar mass spectrum of the SO(4)× SO(2)× SO(2) critical point P3.

for −6g1 < g2 < X with X being the first root of p(X ) = 1088g41 − 384g31X + 352g21X 2 −
144g1X 3 − 37X 4 = 0. This can be translated to the value of α by setting X = αg1. The

equation p(X ) = 0 gives the value of α = −5.93479. The stability is obtained in the

range −6g1 < g2 < −5.93479g1 which is very narrow. Notice that for g2 = −6g1, we find

a3 = a4 = 0, and the symmetry is enhanced to SO(4)× SO(4). It can be checked that this

critical point indeed becomes critical point P1 with g2 = −6g1.

3.3 Critical points on the SU(2)+
L
× SU(2)−

L
invariant manifold

One interesting deformation of N = (4, 4) SCFT is the chiral supersymmetry breaking

(4, 4) → (4, 0). The realization of this breaking in the D1-D5 system has been studied

in [28]. Another gravity dual of N = (4, 0) SCFT from string theory has been studied

in [29], and the marginal perturbation driving N = (4, 4) SCFT to the N = (4, 0) SCFT

has been identified in [30]. This supersymmetry breaking is not possible in the compact

SO(4) × SO(4) gauging of [13] since there are no scalars which are singlets under a non-

trivial subgroup of SO(4)× SO(4) in order to become the R-symmetry of N = (4, 0).

This is however possible in the present gauging. According to (3.2), we see that there

are eight singlets under SU(2)+L × SU(2)−L given by

(1,1;1,1) + (1,1;1,1) + (1,3;1,1) + (1,1;1,3). (3.14)

They correspond to the following non-compact generators

Ŷ1 = Y 11 + Y 22 + Y 33 + Y 44, Ŷ2 = Y 12 − Y 21 + Y 34 − Y 43,

Ŷ3 = Y 13 − Y 31 − Y 24 + Y 42, Ŷ4 = Y 14 − Y 41 + Y 23 − Y 32,

Ŷ5 = Y 55 + Y 66 + Y 77 + Y 88, Ŷ6 = Y 56 − Y 65 + Y 78 − Y 87,

Ŷ7 = Y 57 − Y 75 − Y 68 + Y 86, Ŷ8 = Y 58 − Y 85 + Y 67 − Y 76 . (3.15)
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We can parametrize the coset representative accordingly

L = eb1Ŷ1ea2Ŷ2ea3Ŷ3ea4Ŷ4eb5Ŷ5ea6Ŷ6ea7Ŷ7ea8Ŷ8 (3.16)

in which b1 and b5 denote the SO(4) × SO(4) singlets. We find one non-supersymmetric

AdS3 critical point characterized by

a2 = cosh−1

√

g1 +
√

g1(g1 − 4g2)

4g1
,

V0 = −32
[

g21 + 4g22 − 6g1g2 + (4g2 − g1)
√

g1(g1 − 4g2)
]

. (3.17)

The cosmological constant is the same as P1, but the residual gauge symmetry is just

SO(4)− × SU(2)+L ×U(1)+R in which U(1)+R ⊂ SU(2)+R.

3.4 Critical points on the SU(2)Ldiag invariant manifold

We further reduce the residual symmetry to SU(2)Ldiag ⊂ SU(2)+L × SU(2)−L . Under

SO(4)diag, we already know that the 64 scalars transform as four copies of 1+6+9. We can

then further truncate to SU(2)Ldiag and find sixteen singlets given by four copies of (1,1)+

(1,3) under SU(2)Ldiag×SU(2)Rdiag. They can be parametrized by the coset representative

L =
16
∏

i=1

eaiYi (3.18)

in which the non-compact generators are defined by

Y1 =
1

2

(

Y 15 + Y 26 + Y 37 + Y 48
)

, Y2 =
1

2

(

Y 16 − Y 25 + Y 38 − Y 47
)

,

Y3 =
1

2

(

Y 17 − Y 35 − Y 28 + Y 46
)

, Y4 =
1

2

(

Y 18 − Y 45 + Y 27 − Y 36
)

,

Y5 =
1

2

(

Y 51 + Y 62 + Y 73 + Y 84
)

, Y6 =
1

2

(

Y 52 − Y 61 + Y 74 − Y 83
)

,

Y7 =
1

2

(

Y 53 − Y 71 − Y 64 + Y 82
)

, Y8 =
1

2

(

Y 54 − Y 81 + Y 63 − Y 72
)

,

Y9 =
1

2

(

Y 11 + Y 22 + Y 33 + Y 44
)

, Y10 =
1

2

(

Y 12 − Y 21 + Y 34 − Y 48
)

,

Y11 =
1

2

(

Y 13 − Y 31 − Y 24 + Y 42
)

, Y12 =
1

2

(

Y 14 − Y 41 + Y 23 − Y 32
)

,

Y13 =
1

2

(

Y 55 + Y 66 + Y 77 + Y 88
)

, Y14 =
1

2

(

Y 56 − Y 65 + Y 78 − Y 87
)

,

Y15 =
1

2

(

Y 57 − Y 75 − Y 68 + Y 86
)

, Y16 =
1

2

(

Y 58 − Y 85 + Y 67 − Y 76
)

. (3.19)

From a very complicated potential, we find one non-supersymmetric AdS3 critical

point given by

a6 = ln

√
g2 −

√
3g1√

g2 +
√
3g1

, g2 = (2 +
√
13)g1,

V0 = −8(469 + 131
√
13)g21 (3.20)

which is invariant under SU(2)×U(1) symmetry.
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Apart from P1, P2 and P3, we have not given the complete mass spectra for other

AdS3 critical points since the computation is much more involved. A partial check shows

that at least the scalar masses for the singlets in each sector satisfy the BF bound. It

could happen that some other scalars might have masses violating the bound. However,

similar to the three stable critical points studied above, it is likely that the other critical

points are stable for some values of α or g1,2.

4 Deformations of the N = (4, 4) SCFT

In this section, we will study supersymmetric flows of the maximally supersymmetric

SO(4)× SO(4) critical point in the UV to non-conformal field theories in the IR and half-

supersymmetric domain walls. At the end of this section, we will discuss some RG flow solu-

tions interpolating between the UV N = (4, 4) SCFT and some of the non-supersymmetric

critical points identified in the previous section.

4.1 Supersymmetric deformations

We begin with supersymmetric solutions which can be obtained by finding solutions of

the associated BPS equations. We have not found any supersymmetric critical point apart

from the trivial one at L = I, so we only expect to find flow solutions to non-conformal field

theories. In these flows, the solutions interpolate between the UV point at which all scalars

vanish and the IR with infinite values of scalar vev’s [31]. Since supersymmetric solutions

are of interest here, we need the supersymmetry transformations of fermions which in the

present case are given by the non-propagating gravitini ψI
µ and the spin-12 fields χiI . Their

supersymmetry transformations are given by, see [12] for more details and conventions,

δψI
µ = Dµǫ

I + gAIJ
1 γµǫ

J , (4.1)

δχiI =
1

2
(δIJ1− f IJ)i j /DφjǫJ − gNAJIi

2 ǫJ . (4.2)

These equations will be used to find supersymmetric solutions in the next subsections.

4.1.1 A supersymmetric flow to SO(4) × SO(4) non-conformal field theory

We first look for a simple solution preserving SO(4)× SO(4) symmetry. Accordingly, only

a1 and a2 in equation (3.4) are turned on in order to preserve the full SO(4)×SO(4). Using

the standard domain wall ansatz for the metric

ds2 = e2Adx21,1 + dr2 (4.3)

with A depending only on the radial coordinate r, we find the BPS equations

a′1 + 8g1e
2a1
(

e2a1 − 1
)

= 0, (4.4)

a′2 + 8g2e
2a2
(

e2a2 − 1
)

= 0, (4.5)

A′ + 8
[

g1e
2a1
(

e2a1 − 2
)

+ g2e
2a2
(

e2a2 − 2
)]

= 0 (4.6)

where we have imposed the projector γrǫ
I = −ǫI , I = 2, 4, 5, 8 and γrǫ

I = ǫI , I = 1, 3, 6, 7.

The ′ denotes the r-derivative. The resulting solution is then half-supersymmetric withN =
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(4, 4) Poincare supersymmetry in the dual two dimensional field theory. Equations (4.4)

and (4.5) can be solved for a1 and a2 as an implicit function of r. The result is

r = c1 −
1

16g1

[

e−2a1 + ln
(

1− e−2a1
)]

, (4.7)

r = c2 −
1

16g2

[

e−2a2 + ln
(

1− e−2a2
)]

(4.8)

with integration constants c1 and c2. Equation (4.6) can immediately be integrated to give

A as a function of a1 and a2. The result is

A = 2(a1 + a2)−
1

2
ln(1− e2a1)− 1

2
ln(1− e2a2) . (4.9)

In the UV, the dual field theory is conformal with a1 = a2 = 0. Near this point, the

scalars behave as a1 ≈ e−16g1r = e
− 2g1

g1+g2

r

LUV and a2 ≈ e−16g2r = e
− 2g2

g1+g2

r

LUV . We see that

a1,2 → 0 as r → ∞. In this limit, we find A′ ≈ 8(g1 + g2) =
1

LUV
or A ≈ r

LUV
which gives

the maximally supersymmetric AdS3.

As a1, a2 → ∞, we find r → constant as it should. Near a1, a2 → ∞, equations (4.7)

and (4.8) give a1 ≈ −1
4 ln (32g1r) and a2 ≈ −1

4 ln (32g2r). From equation (4.9), we find

A ≈ a1+a2 = −1
4 ln

[

(32r)2g1g2
]

. Accordingly, the metric becomes a domain wall in the IR

ds2 =
1

32r
√
g1g2

dx21,1 + dr2 . (4.10)

The full bosonic symmetry is ISO(1, 1)× SO(4)× SO(4) corresponding to non-comformal

field theory with N = (4, 4) supersymmetry.

However, flows of this type generally involve singularities. Various types of possible

singularities have been classified in [32]. According to the result of [32], physical singu-

larities are the ones at which the scalar potential is bounded from above. However, with

the solution given above, the potential becomes infinite in this case. Therefore, the cor-

responding flow solution is not physically acceptable by the criterion of [32]. Since the

framework we have used could be uplifted to ten dimensions via S3 × S3 × S1 reduction,

it is interesting to investigate whether this singularity is resolved in the full string theory.

4.1.2 A half-supersymmetric domain wall

We then look for a more general supersymmetric solution. The scalar sector of interest

here is the SU(2)+L × SU(2)−L invariant one given in (3.16). We first relabel the scalars

(a2, a3, a4, a6, a7, a8) to (b2, b3, b4, b6, b7, b8) in order to work with a uniform notation.

We begin with the BPS equations given by δχiI = 0

b′1 = −16g1e
b1
(

eb1 − sechb2sechb3sechb4

)

, (4.11)

b′2 = −16g1e
b1
(

eb1 cosh b2 − sechb3sechb4

)

sinh b2, (4.12)

b′3 = −16g1 cosh b2 sinh b3e
b1
(

eb1 cosh b2 cosh b3 − sechb4

)

, (4.13)

b′4 = −16g1 cosh b2 cosh b3 sinh b4e
b1
(

eb1 cosh b2 cosh b3 cosh b4 − 1
)

, (4.14)
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b′5 = −16g2e
b5
(

eb5 − sechb6sechb7sechb8

)

, (4.15)

b′6 = −16g2 sinh b6e
b5
(

eb5 cosh b6 − sechb7sechb8

)

, (4.16)

b′7 = −16g2 cosh b6 sinh b7e
b5
(

eb5 cosh b6 cosh b7 − sechb8

)

, (4.17)

b′8 = −16g2 cosh b6 cosh b7 sinh b8e
b5
(

eb5 cosh b6 cosh b7 cosh b8 − 1
)

. (4.18)

where we have used the projection conditions γrǫ
I = −ǫI , I = 2, 4, 5, 8 and γrǫ

I = ǫI ,

I = 1, 3, 6, 7 as in the previous case. The gravitino variation δψI
µ, µ = 0, 1, gives

A′ = −8g1e
b1 cosh b2 cosh b3 cosh b4

(

eb1 cosh b2 cosh b3 cosh b4 − 2
)

−8g2e
b5 cosh b6 cosh b7 cosh b8

(

eb5 cosh b6 cosh b7 cosh b8 − 2
)

. (4.19)

From these equations, we see that apart from the maximally supersymmetric point at

bi = 0, i = 1, . . . , 8, there is a flat direction of the potential given by

e−b1 = cosh b2 cosh b3 cosh b4, e−b5 = cosh b6 cosh b7 cosh b8 (4.20)

which leads to V0 = −64(g1+g2)
2. Equation (4.19) gives A′ = 8(g1+g2) or A = 8(g1+g2)r

which is the AdS3 solution with radius L = 1
8(g1+g2)

. It can also be verified that the full

(4, 4) supersymmetry is preserved. This should correspond to a marginal deformation of

the N = (4, 4) SCFT. There are no other supersymmetric critical points in this sector.

Therefore, the flow breaking supersymmetry from (4, 4) to (4, 0) is not possible.

However, there is a half-supersymmetric domain wall solution similar to the dilatonic

p-brane solutions of N = 1, D = 7 and N = 2, D = 6 gauged supergravities studied in [33].

It is remarkable that the full set of the above equations admits an analytic solution. The

strategy to find the solution is as follow. We first determine b2,3,4 as functions of b1 and

similarly determine b6,7,8 as functions of b5. b1 and b5 are determined as functions of r

and can be solved explicitly. From (4.11) and (4.12), we find

db2
db1

= cosh b2 sinh b2 (4.21)

which can be solved for b2 as a function of b1 giving rise to

b2 = coth−1 e−b2−2c1 . (4.22)

Using (4.11) and (4.13) together with b2 solution from (4.22), we find

db3
db1

=
sinh(2b3)

2 (1− e2b1+4c1)
(4.23)

whose solution is given by

b3 = tanh−1 eb1+2c2
√
1− e2b1+4c1

. (4.24)

Combining (4.11) and (4.14) and substituting for b2 and b3 solutions give

db4
db1

= − cosh b4 sinh b4
(e4c1 + e4c2) eb1 − 1

. (4.25)
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We then find the solution for b4

b4 = tanh−1 eb1+2c3
√

1− e2b1 (e4c1 + e4c2)
. (4.26)

With solutions for b2, b3 and b4, equation (4.11) becomes

b′1 = 16g1e
b1

(

√

1− e2b1 (e4c1 + e4c2 + e4c3)− eb1
)

. (4.27)

This can be solved for b1 as an implicit function of r. The solution is

r = − 1

32g1

[

2e−b1
√

1− β1e2b1 + ln
[

e−2b1
(

(β1 − 1)e2b1 − 1 + 2eb1
√

1− β1e
2b1
)]]

+constant (4.28)

where β1 = e4c1 + e4c2 + e4c3 .

We can solve (4.15) to (4.18) by the same procedure. The resulting solutions are

given by

b6 = tanh−1 eb5+2c4 , b7 = tanh−1 eb5+2c5
√
1− e2b5+4c4

,

b8 = tanh−1 eb5+3c6
√

1− eb5 (e4c4 + e4c5)
,

r = − 1

32g2

[

2e−b5
√

1− β2e2b5 + ln
[

e−2b5
(

(β2 − 1)e2b5 − 1 + 2eb5
√

1− β2e2b5
)]]

+constant (4.29)

where β2 = e4c4 + e4c5 + e4c6 .

After substituting all of the bi solutions for i = 2, 3, 4, 6, 7, 8 in (4.19), we obtain

A′ =
16g1e

b1
√

1− β1e2b1
− 8g1e

2b1

1− β1e2b1
+

16g2e
b5

√

1− β2e2b5
− 8g2e

2b5

1− β2e2b5
(4.30)

whose solution in terms of b1 and b5 is readily found by a direct integration using (4.11)

and (4.15) including the solutions for the other bi’s. The resulting solution is given by

A = b1 + b5 +
1

2
tanh−1 eb1

√

1− β1e2b1
+

1

2
tanh−1 eb5

√

1− β2e2b5
− ln

[

1− β1e
2b1
]

− ln
[

1− (1 + β1)e
2b1
]

− ln
[

1− β2e
2b5
]

− ln
[

1− (1 + β2)e
2b5
]

. (4.31)

As b1, b5 → 0, other scalars do not vanish for finite ci. We then find that the solution

will not have an interpretation in terms of the usual holographic RG flows. The solution

is rather of the 1-brane soliton type, see [33] for a general discussion of (D − 2)-brane

solitons in D dimensions. It can also be verified that the δψI
r = 0 condition precisely gives

the Killing spinors for the unbroken supersymmetry ǫI = e
A

2 ǫI0 with the constant spinor ǫI0
satisfying γrǫ

I
0 = −ǫI0, I = 2, 4, 5, 8 and γrǫ

I
0 = ǫI0, I = 1, 3, 6, 7.
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4.2 Non-supersymmetric deformations

We now briefly discuss non-supersymmetric RG flow solutions interpolating between the

N = (4, 4) SCFT in the UV and some critical points found in the previous section. The

solutions are essentially non-supersymmetric since they connect a supersymmetric to a

non-supersymmetric critical point. Finding the corresponding solutions involve solving

the full second order field equations for both the scalars and the metric in contrast to

solving the first order BPS equations in the supersymmetric case. Although there are

some examples of analytic supersymmetric flow solutions in three dimensions, in general,

analytic solutions with many active scalars, even for the supersymmetric case, can be

very difficult to find. Therefore, we will not expect to find any analytic solutions in the

non-supersymmetric case but rather look for numerical flow solutions.

In all cases, the interpolating solutions generally exist and can be obtained by a similar

procedure used in [34]. In solving the second-order field equations for scalars and the

metric function, two types of asymptotic behavior of scalars arise near the UV fixed point.

One of them corresponds to a deformation by turning on a dual operator while the other

corresponds to a vacuum expectation value (vev). The second-order equations lead to an

ambiguity between these two possibilities. One way to solve this ambiguity is to recast the

second-order field equations into a first-order form by introducing the generating function

W [35, 36]. Like supersymmetric solutions obtained from first-order BPS equations, only

one possibility is singled out from these new first-order equations.

In the present case, numerical analyses show that non-supersymmetric flows to P1 and

P2 are driven by turning on relevant operators. These describe true deformations of the UV

SCFT rather than vev deformations. The flow to P3 involves four active scalars and is more

difficult to find. However, the flow is expected to be driven by a scalar transforming as (1,1)

under SO(4)×SO(4) at the UV point. From the value of g1 and g2 in the stability range, it

can be checked that only the deformation dual to this scalar is relevant. The deformations

corresponding to the remaining active scalars are given by vacuum expectation values of

irrelevant operators since these scalars have positive mass squares.

5 Conclusions and discussions

In this paper, we have studied N = 8 gauged supergravity in three dimensions with a

non-semisimple gauge group (SO(4) × SO(4)) ⋉ T12. The ratio of the coupling constants

of the two SO(4)’s is given by a parameter α. For positive α, the theory describes an

effective theory of ten dimensional supergravity reduced on S3 × S3 × S1. For negative α,

on the other hand, the theory may describe a similar reduction on S3 ×H3 × S1 in which

H3 is a three-dimensional hyperbolic space. With α = −1, the cosmological constant is

zero. This solution should describe a ten dimensional background M3 × S3 × H3 × S1

where M3 is the three-dimensional Minkowski space.

We have studied the scalar potential and found a number of non-supersymmetric

AdS3 critical points. The trivial critical point with maximal supersymmetry is identified

with the dual large N = (4, 4) SCFT in two dimensions. We have explicitly checked

the stability of some non-supersymmetric critical points by computing the full scalar

– 16 –
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mass spectra at these critical points. They are perturbatively stable for some values of α

parameter in the sense that all scalar masses are above the BF bound. It is also interesting

to see whether other critical points are stable or not. We have investigated RG flows,

interpolating between the large N = (4, 4) SCFT in the UV and non-supersymmetric IR

fixed points with SO(4)× SO(4), SO(4)× SO(2)× SO(2) and SO(4) symmetries, and also

commented on the operators driving these flows.

Another result of this paper is half-supersymmetric domain wall solutions to N = 8

gauged supergravity. For the domain wall preserving SO(4)×SO(4) symmetry, the solution

describes an RG flow from N = (4, 4) SCFT in the UV to a non-conformal N = (4, 4) field

theory in the IR. The solution has however a bad singularity according to the criterion

of [32]. For the solution preserving SU(2)×SU(2) symmetry, the holographic interpretation

is not clear. In the point of view of a (D − 2)-brane soliton, the solution should describe

a 1-brane soliton in three dimensions according to the general discussion in [33]. When

uplifted to ten dimensions, the solution might describe some configuration of D1-branes.

Hopefully, the solutions obtained in this paper might be useful in string/M theory context,

black hole physics and the AdS/CFT correspondence. The uplifted solution of the non-

conformal flow preserving SO(4) × SO(4) symmetry is also necessary for the resolution of

its singularity if the full ten-dimensional solution turns out to be non-singular.

Finally, the chiral supersymmetry breaking (4, 4) → (4, 0) found in [28] cannot be im-

plemented in the framework of N = 8 gauged supergravity studied here. It would probably

require a larger theory of N = 16 gauged supergravity with (SO(4)× SO(4))⋉ (T12, T̂34)

gauge group studied in [14]. It would be very interesting to find the flow solution of [28]

explicitly in the three dimensional framework. We hope to come back to these issues in

future research.
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A Useful formulae and details

For completeness, we include a short review of gauged supergravity in three dimensions

in the formulation of [12]. The theory is a gauged version of a supersymmetric non-linear

sigma model coupled to non-propagating supergravity fields. N-extended supersymmetry

requires the presence of N − 1 almost complex structures fP , P = 2, . . . , N on the scalar

manifold. The tensors f IJ = f [IJ ], generating the SO(N) R-symmetry in a spinor rep-

resentation under which scalar fields transform, play an important role. In the case of

symmetric scalar manifolds of the form G/SO(N) × H ′, they can be written in terms of
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SO(N) gamma matrices. In our case, we use the 16× 16 Dirac gamma matrices of SO(8)

γI =

(

0 ΓI

(ΓI)T 0

)

. (A.1)

The 8× 8 gamma matrices are explicitly given by

Γ1 = σ4 ⊗ σ4 ⊗ σ4, Γ2 = σ1 ⊗ σ3 ⊗ σ4,

Γ3 = σ4 ⊗ σ1 ⊗ σ3, Γ4 = σ3 ⊗ σ4 ⊗ σ1,

Γ5 = σ1 ⊗ σ2 ⊗ σ4, Γ6 = σ4 ⊗ σ1 ⊗ σ2,

Γ7 = σ2 ⊗ σ4 ⊗ σ1, Γ8 = σ1 ⊗ σ1 ⊗ σ1 (A.2)

where

σ1 =

(

1 0

0 1

)

, σ2 =

(

0 1

1 0

)

,

σ3 =

(

1 0

0 −1

)

, σ4 =

(

0 1

−1 0

)

. (A.3)

According to our normalization, we find

f IJKr,Ls = −Tr(YLs
[

T IJ , YKr

]

). (A.4)

Generally, the d = dim(G/H) scalar fields φi, i = 1, . . . , d can be described by a coset

representative L. The useful formulae for a coset space are

L−1tML =
1

2
VM

IJT
IJ + VM

αX
α + VM

AY
A, (A.5)

L−1∂iL =
1

2
QIJ

i T IJ +Qα
i X

α + eAi Y
A (A.6)

where eAi , Q
IJ
i and Qα

i are the vielbein on the coset manifold and SO(N)×H ′ composite

connections, respectively. Xα’s denote the H ′ generators.

Any gauging can be described by a symmetric and gauge invariant embedding tensor

satisfying the so-called quadratic constraint

ΘPLf
KL

(MΘN )K = 0, (A.7)

and the projection constraint

PR0
ΘMN = 0 . (A.8)

The first condition ensures that the gauge symmetry forms a proper symmetry algebra

while the second condition guarantees the consistency with supersymmetry.

The T-tensor given by the moment map of the embedding tensor by scalar matrices

VM
A, obtained from (A.5), is defined by

TAB = VM
AΘMNVN

B . (A.9)
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Only the components T IJ,KL and T IJ,A are relevant for computing the scalar potential.

With our SO(8, 8) generators, we obtain the following V maps

Vab,IJ
A1 = −1

2
Tr(L−1Jab

1 T
IJ), Vab,IJ

B1 = −1

2
Tr(L−1tab1 T

IJ),

Vab,Kr
A1 =

1

2
Tr(L−1Jab

1 Y
Kr), Vab,Kr

B1 =
1

2
Tr(L−1tab1 Y

Kr),

V âb̂,IJ
A2 = −1

2
Tr(L−1J âb̂

2 T
IJ), V âb̂,IJ

B2 = −1

2
Tr(L−1tâb̂2 T

IJ),

V âb̂,Kr
A2 =

1

2
Tr(L−1J âb̂

2 Y
Kr), V âb̂,Kr

B2 =
1

2
Tr(L−1tâb̂2 Y

Kr) (A.10)

where we have followed the convention of calling the semisimple part SO(4) × SO(4) and

the nilpotent part T12 ∼ T6 × T6 as A and B types, respectively. We then compute the

T-tensor components

T IJ,KL = g1

(

Vab,IJ
A1 Vcd,KL

B1 + Vab,IJ
B1 Vcd,KL

A1 − Vab,IJ
B1 Vcd,KL

B1

)

ǫabcd

+g2

(

V âb̂,IJ
A2 V ĉd̂,KL

B2 + V âb̂,IJ
B2 V ĉd̂,KL

A2 − V âb̂,IJ
B2 V ĉd̂,KL

B2

)

ǫâb̂ĉd̂, (A.11)

T IJ,Kr = g1

(

Vab,IJ
A1 Vcd,Kr

B1 + Vab,IJ
B1 Vcd,Kr

A1 − Vab,IJ
B1 Vcd,Kr

B1

)

ǫabcd

+g2 V âb̂,IJ
A2 V ĉd̂,Kr

B2 + V âb̂,IJ
B2 V ĉd̂,Kr

A2 − V âb̂,IJ
B2 V ĉd̂,Kr

B2

)

ǫâb̂ĉd̂ . (A.12)

The scalar potential can be computed by using the formula

V = − 4

N

(

AIJ
1 AIJ

1 − 1

2
NgijAIJ

2i A
IJ
2j

)

(A.13)

in which the metric gij is related to the vielbein by gij = eAi e
A
j . The A1 and A2 tensors

appearing in the gauged Lagrangian as fermionic mass-like terms are given by

AIJ
1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN , (A.14)

AIJ
2j =

2

N
T IJ

j +
4

N(N − 2)
f
M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKL
m . (A.15)

Finally, we repeat the condition for supersymmetric critical points. The residual

supersymmetry is generated by the eigenvectors of the AIJ
1 tensor with eigenvalues equal

to ±
√

−V0

4 .

B Explicit forms of the scalar potential

For SO(4)diag invariant scalars, the potential is given by

V = 4e6a1g21 cosh
2(a3 − a4) cosh

2(a3 + a4) [5 cosh[2(a1 − 2a3)] + 8 cosh(4a3)

+5 cosh[2(a1 + 2a3)]− 4 cosh(2a1) (7 + 2 cosh(2a3) cosh(2a4)) + 2 cosh(4a4)×
(cosh a1 − 3 sinh a1)

2 − 6 (cosh(4a3)− 4 cosh(2a3) cosh(2a4)− 6) sinh(2a1)
]
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+4e6a2g22 cosh
2(a3 − a4) cosh

2(a3 + a4) [5 cosh[2(a2 − 2a3)]− 8 cosh(4a3)

+5 cosh[2(a2 + 2a3)]− 4 cosh(2a2) (7 + 2 cosh(2a3) cosh(2a4)) + 2 cosh(4a4)×
(sinh a2 − 3 cosh a2)

2 − 6 (cosh(4a3)− 4 cosh(2a3) cosh(2a4)− 6) sinh(2a2)
]

−2ea1+a2+6(a3+a4)g1g2 [86 cosh(a1 + a2)− 64 cosh(a1 − a2) cosh(2a3) + cosh(2a3)×
cosh(6a4) (cosh a1 − 3 sinh a1) (3 cosh a2 − sinh a2) + 16 cosh a1 cosh(4a3) sinh a2

+cosh(2a4) [−64 cosh(a1 − a2) + cosh(6a3) (3 cosh a1 − sinh a1)×
(cosh a2 − 3 sinh a2) + 2 cosh(2a3) (37 cosh(a1 + a2)− 19 sinh(a1 + a2))]

−66 sinh(a1 + a2) + 2 cosh(4a4) [8 cosh a2 sinh a1 + cosh(4a3) (sinh(a1 + a2)

−3 cosh(a1 + a2))] + [25 cosh(a1 + a2)− 27 cosh a2 sinh a1 + 2 cosh(4a3)×
(3 cosh a1 − sinh a1) (cosh a2 − 3 sinh a2)− 35 cosh a1 sinh a2] sinh(2a3) sinh(2a4)

+2 (sinh(a1 + a2)− 3 cosh(a1 + a2)) sinh(4a3) sinh(4a4) + sinh(2a3) sinh(6a4)×
(3 cosh a2 − sinh a2) (cosh a1 − 3 sinh a1)] . (B.1)

The potential for SU(2)+L × SU(2)−L invariant scalars is given by, in notation of section 4,

V = 128

[

g21e
2b1 cosh2 b2 cosh

2 b3 cosh
2 b4

(

eb1 cosh b2 cosh b3 cosh b4 − 1
)2

+g22e
2b5 cosh2 b6 cosh

2 b7 cosh
2 b8

(

eb5 cosh b6 cosh b7 cosh b8 − 1
)2
]

. (B.2)
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We study gravity duals of the minimal N ¼ 2 super Yang-Mills gauge theories in five dimensions using
the matter coupled Fð4Þ gauged supergravity in six dimensions. The Fð4Þ gauged supergravity coupled to
n vector multiplets contains 4nþ 1 scalar fields, parametrized by Rþ × SOð4; nÞ=SOð4Þ × SOðnÞ coset
manifold. Maximally supersymmetric vacua of the gauged supergravity with SUð2Þ ×G gauge group, with
G being an n-dimensional subgroup of SOðnÞ, correspond to five-dimensional superconformal field
theories (SCFTs) with SUð2ÞR R symmetry and G global symmetry. Deformations of the UV SCFTs
for G ¼ SUð2Þ and G ¼ Uð2Þ ∼ SUð2Þ ×Uð1Þ symmetries that lead to nonconformal N ¼ 2 super
Yang-Mills with various unbroken global symmetries are studied holographically.

DOI: 10.1103/PhysRevD.90.086009 PACS numbers: 11.25.Tq, 04.65.+e

I. INTRODUCTION

Much insight to strongly coupled gauge theories can be
gained from studying their gravity duals via the AdS/CFT
correspondence [1] and its generalization to nonconformal
field theories [2–4]. One consequence of the AdS/CFT
correspondence which has been extensively studied is
holographic RG flows. These flows describe deformations
of an UV conformal field theory (CFT) to another con-
formal fixed point or to a nonconformal field theory in the
IR. On the gravity side, an RG flow in the dual field theory
is described by an asymptotically anti–de Sitter (AdS)
solution which becomes AdS space in a certain limit
corresponding to the UV CFT. The gravity solutions
interpolate between this AdS space and another AdS space
in the case of flows to some IR fixed points. For flows to
nonconformal field theories, gravity solutions in the IR will
take the form of a domain wall [5]. Furthermore, in flows
between CFTs, bulk scalar fields take finite constant values
at both conformal fixed points while in flows to non-
conformal theories, they are usually logarithmically
divergent.
The above argument leads to gravity duals of various

supersymmetric gauge theories in four dimensions, and
many important characteristics of the gauge theories such
as gaugino condensates and confinements can be success-
fully described by gravity solutions of five-dimensional
gauged supergravity; see, for example, [6–8]. On the other
hand, holographic duals of higher dimensional gauge
theories have not much been explored in the literature.
In this paper, we will carry out a similar study for N ¼ 2
supersymmetric Yang-Mills (SYM) gauge theories in five
dimensions using six-dimensional Fð4Þ gauged supergrav-
ity. This should provide the five-dimensional analogue of
the four-dimensional results in [6–8].

Five-dimensional field theories are interesting in their
own right. It has been discovered in [9–11] that five-
dimensional gauge theories admit nontrivial fixed points
with enhanced global symmetry. The five-dimensional
(5D) field theory describes the dynamics of the D4/D8-
brane system whose near horizon limit gives rise to AdS6
geometry [12]. At the fixed points, the SOð2NfÞ ×Uð1Þ
global symmetry of the gauge theory with Nf < 8 flavors
is enhanced to ENfþ1. E6;7;8 are the usual exceptional
groups and other groups are defined by E1 ¼ SUð2Þ,
E2 ¼ SUð2Þ × Uð1Þ, E3 ¼ SUð3Þ × SUð2Þ, E4 ¼ SUð5Þ,
and E5 ¼ SOð10Þ [9]. This symmetry enhancement in the
case of SUð2Þ gauge theories has also been shown to
appear in the superconformal indices [13].
By using AdS6=CFT5 correspondence, it has been

proposed in [14] that five-dimensional superconformal
field theories with global symmetry G should correspond
to AdS6 vacua of the matter coupled Fð4Þ gauged super-
gravity in the six-dimensional bulk with the SUð2ÞR × G
gauge group. The SUð2ÞR R symmetry is gauged by three
of the four vector fields in the supergravity multiplet, while
the G part of the gauge group is gauged by the vectors in
the vector multiplets. The dual field theory has been
identified with a singleton field theory on the boundary.
A number of papers on gauge/gravity correspondence
involving 5D gauge theories and the generalization to
quiver gauge theories from the ten-dimensional point of
view have appeared in [15–17]. RG flows between 5D
quiver gauge theories with Nf ¼ 0 have been studied
recently in [18] in the ten-dimensional context. Holo-
graphic RG flows within the framework of Fð4Þ gauged
supergravity have also been studied in [19] and [20]. In
this paper, we will give another example of flow solutions
to 5D nonconformal gauge theories in the framework
of six-dimensional gauged supergravity. As in lower
dimensions, this should be more convenient to work
with than the ten-dimensional computation and could*parinya.ka@hotmail.com
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provide a useful tool in the holographic study of N ¼ 2
5D SYM.
Furthermore, the study of gravity duals of 5D gauge

theories is not only important in AdS6=CFT5 correspon-
dence but is also useful in the context of AdS7=CFT6

correspondence [21,22]. This originates from the proposal
that the less understood N ¼ ð2; 0Þ gauge theory in six
dimensions could be defined in term of 5D SYM.
Furthermore, it has been shown that 5D superconformal
field theory (SCFT) could be an IR fixed point of N ¼ 2�
gauge theory in four dimensions [23]. Therefore, having
gravity duals of 5D SYM could be very useful in under-
standing the dynamics of M5-branes and gauge theories in
other dimensions as well.
The paper is organized as follows. In Sec. II, we review

relevant information about matter coupled Fð4Þ gauged
supergravity in six dimensions and formulas used
throughout the paper. Holographic RG flows to non-
conformal field theories from the UV fixed point identi-
fied with the maximally supersymmetric AdS6 critical
points will be given in Secs. III and IV. All of the solutions
can be analytically obtained and would be more useful
than the numerical solutions given in some other cases.
We end the paper by giving some conclusions and com-
ments in Sec. V.

II. MATTER COUPLED Fð4Þ GAUGED
SUPERGRAVITY AND THE DUAL

N ¼ 2 SUPER YANG-MILLS THEORY

We begin with a brief review of the matter coupled Fð4Þ
gauged supergravity in six dimensions. The theory is an
extension of the pure Fð4Þ gauged supergravity, con-
structed a long time ago in [24], by coupling n vector
multiplets to the N ¼ ð1; 1Þ supergravity multiplet. The
resulting theory is elegantly constructed by using the
superspace approach in [25–27]. In the present work, we
will need only supersymmetry transformations of fermions
and the bosonic Lagrangian involving the metric and
scalars. Most of the notations and conventions are the
same as those given in [25] and [26] but with the metric
signature ð−þþþþþÞ.
In half-maximal N ¼ ð1; 1Þ supersymmetry, the field

content of the supergravity multiplet is given by

ðeaμ;ψA
μ ; Aα

μ; Bμν; χA; σÞ;

where eaμ, χA, and ψA
μ denote the graviton, the spin-1=2

field, and the gravitini, respectively. Both χA and ψA
μ are

eight-component pseudo-Majorana spinors with indices A,
B ¼ 1, 2 referring to the fundamental representation of the
SUð2ÞR ∼USpð2ÞR R symmetry. The remaining fields are
given by the dilaton σ, four vectors Aα

μ, α ¼ 0, 1, 2, 3, and a
two-form field Bμν.

A vector multiplet has component fields

ðAμ; λA;ϕαÞ:

Each multiplet will be labeled by an index I ¼ 1;…; n. The
4n scalars ϕαI are described by a symmetric quaternionic
manifold SOð4; nÞ=SOð4Þ × SOðnÞ. The dilaton σ can also
be regarded as living in the coset spaceRþ ∼Oð1; 1Þ. As in
[25], it is convenient to decompose the α index into α ¼
ð0; rÞ in which r ¼ 1, 2, 3. The SUð2ÞR R symmetry is
identified with the diagonal subgroup of SUð2Þ × SUð2Þ∼
SOð4Þ ⊂ SOð4Þ × SOðnÞ. A general compact gauge group
is then given by SUð2Þ ×G with dimG ¼ n.
The 4n scalars living in the SOð4; nÞ=SOð4Þ × SOðnÞ

coset can be parametrized by the coset representative
LΛ

Σ; Λ;Σ ¼ 0;…; 3þ n. Using the index splitting
α ¼ ð0; rÞ, we can split LΛ

Σ into ðLΛ
α; LΛ

IÞ and further
to ðLΛ

0; LΛ
r; LΛ

IÞ. The vielbein of the SOð4; nÞ=SOð4Þ ×
SOðnÞ coset PI

α can be obtained from the left-invariant
1-form of SOð4; nÞ

ΩΛ
Σ ¼ ðL−1ÞΛΠ∇LΠ

Σ; ∇LΛ
Σ ¼ dLΛ

Σ − fΛΓ ΠAΓLΠ
Σ;

ð1Þ

via

PI
α ¼ ðPI

0; PI
rÞ ¼ ðΩI

0;ΩI
rÞ: ð2Þ

The structure constants of the full gauge group SUð2ÞR × G
are denoted by fΛΠΣ, which can be split into ϵrst and CIJK
for SUð2ÞR and G, respectively. The direct product struc-
ture of the gauge group SUð2ÞR ×G leads to two coupling
constants, g1 and g2, which, in the above equation, are
encoded in fΛΠΣ.
In this paper, we are interested in n ¼ 3; 4 cases with

gauge groups SUð2ÞR × SUð2Þ and SUð2ÞR × SUð2Þ×
Uð1Þ. To describe SOð4; nÞ=SOð4Þ × SOðnÞ, we introduce
basis elements of ð4þ nÞ × ð4þ nÞ matrices by

ðexyÞzw ¼ δxzδyw; w; x; y; z ¼ 1;…; nþ 4: ð3Þ

The SOð4Þ, SUð2ÞR, and noncompact generators of
SOð4; nÞ are accordingly given by

SOð4Þ∶ Jαβ ¼ eβþ1;αþ1 − eαþ1;βþ1; α; β ¼ 0; 1; 2; 3;

SUð2ÞR∶ Jrs ¼ esþ1;rþ1 − erþ1;sþ1; r; s ¼ 1; 2; 3;

YαI ¼ eαþ1;Iþ4 þ eIþ4;αþ1; I ¼ 1;…; n: ð4Þ

Gaugings lead to fermionic mass–like terms and the
scalar potential in the Lagrangian, as well as some
modifications to the supersymmetry transformations at first
order in the coupling constants. We will give only infor-
mation relevant to the study of supersymmetric RG flows
and refer the reader to [25] and [26] for more details and
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complete formulas. The bosonic Lagrangian for the metric
and scalar fields is given by [26]

L ¼ 1

4
eR − e∂μσ∂μσ −

1

4
ePIαμPIαμ − eV; ð5Þ

where e ¼ ffiffiffiffiffiffi−gp
. The scalar kinetic term is written in term

of PIα
μ ¼ PIα

i ∂μϕ
i, i ¼ 1;…; 4n. For completeness, we also

give the explicit form of the scalar potential

V ¼ −e2σ
�
1

36
A2 þ 1

4
BiBi −

1

4
ðCI

tCIt þ 4DI
tDItÞ

�

−m2e−6σN00 þme−2σ
�
2

3
AL00 − 2BiL0i

�
; ð6Þ

where N00 is the 00 component of the scalar matrix defined
by

NΛΣ ¼ L0
ΛðL−1Þ0Σ þ Li

ΛðL−1ÞiΣ − LI
ΛðL−1ÞIΣ: ð7Þ

Various quantities appearing in the scalar potential and in
the supersymmetry transformations given below are
defined as follows:

A ¼ ϵrstKrst; Bi ¼ ϵijkKjk0; ð8Þ

Ct
I ¼ ϵtrsKrIs; DIt ¼ K0It; ð9Þ

where

Krst ¼ g1ϵlmnLl
rðL−1ÞsmLn

t þ g2CIJKLI
rðL−1ÞsJLK

t ;

Krs0 ¼ g1ϵlmnLl
rðL−1ÞsmLn

0 þ g2CIJKLI
rðL−1ÞsJLK

0 ;

KrIt ¼ g1ϵlmnLl
rðL−1ÞImLn

t þ g2CIJKLI
rðL−1ÞIJLK

t ;

K0It ¼ g1ϵlmnLl
0ðL−1ÞImLn

t þ g2CIJKLI
0ðL−1ÞIJLK

t :

ð10Þ

Finally, the supersymmetry transformations of χA, λIA, and
ψA
μ involving only scalars and the metric are given by

δψμA ¼ DμϵA −
1

24
ðAeσ þ 6me−3σðL−1Þ00ÞϵABγμϵB

−
1

8
ðBteσ − 2me−3σðL−1Þt0Þγ7σtABγμϵB; ð11Þ

δχA ¼ 1

2
γμ∂μσϵABϵ

B þ 1

24
½Aeσ − 18me−3σðL−1Þ00�ϵABϵB

−
1

8
½Bteσ þ 6me−3σðL−1Þt0�γ7σtABϵB; ð12Þ

δλIA ¼ PI
riγ

μ∂μϕ
iσrABϵ

B þPI
0iγ

7γμ∂μϕ
iϵABϵ

B

− ð2iγ7DI
t þCI

tÞeσσtABϵB − 2me−3σðL−1ÞI0γ7ϵABϵB;
ð13Þ

where σtCB are Pauli matrices and ϵAB ¼ −ϵBA. The space-
time gamma matrices γa, with a being tangent space
indices, satisfy

fγa; γbg ¼ 2ηab; ηab ¼ diagð−1; 1; 1; 1; 1; 1Þ; ð14Þ

and γ7 ¼ γ0γ1γ2γ3γ4γ5.
We now give a short description of the UV SCFTwhich

is identified with the AdS6 vacuum preserving 16 super-
charges. At this vacuum, all scalars vanish, and the full
gauge group SUð2ÞR ×G is preserved. The bulk fields in
the supergravity multiplet are dual to the operators in the
energy-momentum tensor supermultiplet in the five-
dimensional field theory, while the bulk vector multiplets
correspond to the global current supermultiplets. The full
spectrum of all supergravity fields can be found in [25] and
[26]. SUð2ÞR singlet scalars in the adjoint representation of
G are dual to operators of dimension four corresponding to
the highest components of the global current supermultip-
lets. These scalars give supersymmetry preserving defor-
mations, as discussed in [14]. On the other hand, the dilaton
and SUð2ÞR triplet scalars are dual to operators of dimen-
sion three and correspond to supersymmetry breaking
deformations.

III. RG FLOWS FROM SUð2ÞR × SUð2Þ SCFT
We begin with the simplest possibility with n ¼ 3

and the SUð2ÞR × SUð2Þ gauge group. The gravity
theory consists of 13 scalars parametrized by Oð1; 1Þ ×
SOð4; 3Þ=SOð4Þ × SOð3Þ coset space. We are interested
in SUð2ÞR singlet scalars which are given by σ and an
additional three scalars from SOð4; 3Þ=SOð4Þ × SOð3Þ.
The latter correspond to the noncompact generators Y11,
Y12, and Y13. The coset representative is accordingly
written as

L ¼ ea1Y11ea2Y12ea3Y13 : ð15Þ
The space-time metric is the standard domain wall ansatz

ds2 ¼ e2AðrÞdx21;4 þ dr2; ð16Þ

in which five-dimensional Poincaré symmetry is manifest.
From now on, the six-dimensional space-time indices will
be split as ðμ; rÞ with μ ¼ 0;…; 4.
Using (11), (12), and (13), we find the following

Bogomol’nyi-Prasad-Sommerfeld (BPS) equations:

a10 ¼ −2e−3σm
sinh a1

cosh a2 cosh a3
; ð17Þ

a20 ¼ −2e−3σm
cosha1 sinh a2

cosh b3
; ð18Þ

a30 ¼ −2e−3σm cosh a1 cosh a2 sinh a3; ð19Þ
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σ0 ¼ −
1

2
½eσg1 − 3e−3σm cosh a1 cosh a2 cosh a3�; ð20Þ

A0 ¼ 1

2
½eσg1 þ e−3σm cosh a1 cosh a2 cosha3�; ð21Þ

where 0 denotes d
dr and we have used the projection

γrϵA ¼ ϵA. The presence of γ7 in δλIA does not impose
any condition on ϵA since it appears as an overall factor in
all of the BPS equations obtained from δλIA ¼ 0. That the
bulk gravity solution preserves eight supercharges is to be
expected because the minimal SYM in five dimensions has
eight supercharges. The equation for the warp factor AðrÞ is
obtained from δψA

μ , μ ¼ 0, 1, 2, 3, 4. The δψA
r ¼ 0 equation

would give the dependence of the Killing spinors on the r
coordinate as in other cases. We now look at solutions of
interest.

A. Flow to SUð2ÞR × Uð1Þ SYM
We first study the solution that breaks the SUð2Þ global

symmetry to Uð1Þ. This corresponds to turning on only a3
and σ. The latter is of course a singlet of the full gauge
group SUð2ÞR × SUð2Þ. With a1 ¼ a2 ¼ 0, Eqs. (17) and
(18) are trivially satisfied, and Eqs. (19), (20), and (21)
become

a30 ¼ −2e−3σm sinh a3; ð22Þ

σ0 ¼ 1

2
ð−g1eσ þ 3e−3σm cosh a3Þ; ð23Þ

A0 ¼ 1

2
ðg1eσ þ e−3σm cosh a3Þ: ð24Þ

We can solve Eq. (22) by introducing a new radial
coordinate ~r such that d~rdr ¼ e−3σ. We then find the solution
for a3,

a3 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
: ð25Þ

This form is very similar to the solution studied in [6] for
the four-dimensional (4D) SYM. C1 is an integration
constant. There are two possibilities for the two signs.
Combining Eqs. (22) and (23) gives an equation for dσ

da3
,

dσ
da3

¼ 1

4m
ðe4σg1cscha3 − 3m coth a3Þ; ð26Þ

whose solution is given by

σ ¼ −
1

4
ln

�
g1ð3 cosh a3 − coshð3a3Þ þ 18C2sinh3a3Þ

6m

�
;

ð27Þ
with C2 being another integration constant.

After changing to the ~r coordinate and using the a3
solution, we find that the combination of (24) and (23)
becomes, with 0 now being d

d~r,

A0 þ σ0 ¼ 2mðe4m~r þ e2C1Þ
e2C1 − e4m~r : ð28Þ

The solution to this equation can be readily found to be

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ;

ð29Þ
where we have neglected the additive integration constant
to A by absorbing it into the rescaling of the xμ coordinates.
To identify the maximally supersymmetric vacuum at σ ¼
a3 ¼ 0 with the N ¼ 2 SCFT, we have to set g1 ¼ 3m. In
the above solutions, we have not done this in order to keep
the solutions in a generic form. Note also that if we try to
truncate σ out by setting σ ¼ 0, Eq. (23) will imply a3 ¼ 0.
Therefore, to obtain a nontrivial solution, we must keep σ
nonvanishing.
An RG flow to a nonconformal field theory with only the

dilaton σ in pure Fð4Þ gauged supergravity has been
studied in [19]. The resulting solution is interpreted as
the analogue of the Coulomb branch flow. We now have a
more general flow solution in the case of matter coupled
Fð4Þ gauged supergravity. As r → ∞, σ, a3 → 0, we see
that ~r ∼ r → ∞. In this limit, we obtain the maximally
supersymmetric AdS6 background with A ∼ 2mr ¼ r

L,
where the AdS6 radius in the UV is given by L ¼ 1

2m.
According to the AdS/CFT correspondence, this is iden-
tified with the UV SCFT with SUð2ÞR × SUð2Þ SCFT in
five dimensions. From the above solutions, the behavior of
σ and a3 near the UV point with g1 ¼ 3m is readily seen
to be

a3 ∼ e−2mr ¼ e−
r
L; σ ∼ a33 ∼ e−6mr ¼ e−

3r
L : ð30Þ

We see that a3 corresponds to a deformation by a relevant
operator of dimension Δ ¼ 4 while σ describes a defor-
mation by a vacuum expectation value of operator of
dimension Δ ¼ 3.
There is an issue of singularities in the IR which are

typical in flows to nonconformal field theories. Physical
and unphysical singularities can be classified by using
the criterion given in [28]. From the solution, we see that
a3 is singular when ~r → C1

2m. We now consider the case
with a3 > 0 and a3 < 0 separately. For a3 > 0, we find
a3 ¼ − ln ð2m~r − C1Þ þ ln 2, as 2m~r ∼ C1 and

σ ¼ 3

4
ln ð2m~r − C1Þ

−
1

4
ln ½9C2 − 2þ 3ð2m~r − C1Þ2ð9C2 − 2Þ

þ3ð9C2 þ 2Þð2m~r − C1Þ4 þ � � ��: ð31Þ
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The warp factor A near ~r → C1

2m is given by

A ¼ ln ð2m~r − C1Þ − σ: ð32Þ
For C2 ¼ 2

9
, we find that

σ ∼ −
1

4
lnð2m~r − C1Þ; A ∼

5

4
lnð2m~r − C1Þ: ð33Þ

We can find the relation between ~r and r in this limit by
using d~r

dr ¼ e−3σ. The relation is given by

2mr − C ¼ 4ð2m~r − C1Þ4; ð34Þ
where C is a new integration constant. The metric becomes

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2; ð35Þ

where we have absorbed the multiplicative constant to the
scaling of xμ coordinates. According to the domain-wall/
quantum field theory correspondence, this background is
dual to a nonconformal SYM theory in five dimensions.
To determine whether the singularity in the solution is

acceptableornot,wecheck the scalarpotential on the solution.
With a1 ¼ a2 ¼ 0 and g1 ¼ 3m, the potential is given by

V ¼ e−6σm2½coshð2a3Þ − 12e4σ cosha3 − 9e8σ�: ð36Þ
It can beverified thatV → −∞ asa3, σ → ∞. The singularity
is then physical according to the criterion of [28]. For a3 < 0,
it canbeeasilychecked that thesingularity is acceptable for the
choice C2 ¼ − 2

9
which leads to

a3 ∼ lnð2m~r − C1Þ; σ −
1

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð37Þ

On the other hand, if C2 ≠ � 2
9
for a3 ∼� lnð2m~r − C1Þ,

respectively, the solution is asymptotic to

a3 ∼� lnð2m~r − C1Þ; σ ∼
3

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ 2
13dx21;4 þ dr2; ð38Þ

where we have used the relation ð2m~r − C1Þ134 ¼
13
4
ð2mr − CÞ, near ~r ∼ C1

2m, with a constant C. The singu-
larity in this case is, however, not acceptable since V → ∞.
It is useful to comment on the IR singularities. Following

the discussion in [5], the criterion of [28] is related to the

fact that the divergence in a vacuum expectation value of an
operator O dual to a canonical scalar ϕ is excluded. In the
IR, the scalar bulk action is given by S ∼

R
e5Að∂ϕÞ2 since

the potential is irrelevant due to the divergence of the scalar.
The expectation value of O is then given by

hOi ∼ δS
δϕ

∼ e5A∂rϕ ∼ ðr − r0Þ5κ−1; ð39Þ

where we have used the asymptotic behavior ϕ ∼ ϕ0 lnðr −
r0Þ and A ∼ κ lnðr − r0Þ. The singularity occurs at r ¼ r0.
We see that hOi diverges when κ < 1

5
. In the present case,

the physical flow has κ ¼ 5 while the unphysical one has
κ ¼ 1

13
. This is consistent with the finiteness of the expect-

ation value of the dual operator.

B. Flow to SUð2ÞR SYM

If the other scalars, a1 and a2, are nonvanishing, the
solution will break the SUð2Þ global symmetry completely.
It is now more difficult to solve all five BPS equations, but
it turns out that these equations admit analytic solutions.
To obtain the solution, we consider A, σ, a1, and a2 as

functions of a3. Combining Eqs. (18) and (19), we find

da2
da3

¼ tanh a2
sinh a3 cosha3

: ð40Þ

This is easily solved by

a2 ¼ ln

�
e2a3þC1 − eC1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2a3Þ2 þ e2C1ðe2a3 − 1Þ

p
1þ e2a3

�

¼ sinh−1ðeC1 tanh a3Þ: ð41Þ

Similarly, by solving Eqs. (17) and (19), we obtain

a1 ¼ sinh−1
eC2 sinh a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2C1 þ ð1þ e2C1Þ coshð2a3Þ
p : ð42Þ

Using the a1 and a2 solutions and the new radial coordinate
~r, we find the solution for a3:

a3 ¼ � 1

2
cosh−1

�
e2C2 þ 2e2C1 − 2þ 4tanh2ð2m~r − C3Þ

2þ 2e2C1 þ e2C2

�
:

ð43Þ
We can similarly solve for σ as a function of a3. The
solution is given by

σ ¼ 1

4
ln ½3mð ~A2 þ ~B2Þ2csch6a3ð36 ~A2C4ð ~A2 þ ~B2Þ2sinh3a3ð ~A2 coshð2a3Þ þ ~B2Þ

−2ð3 ~A2 þ ~B2 − 2 ~A2 coshð2a3ÞÞð ~A2 coshð2a3Þ þ ~B2Þ3=2Þ� − 1

4
ln ½1296 ~A4C2

4g1ð ~A2 þ ~B2Þ4ð ~A2 coshð2a3Þ þ ~B2Þ
−4g1csch6a3ð ~A4 coshð4a3Þ þ ~A4 þ ~A2ð ~B2 − 3 ~A2Þ coshð2a3Þ − 3 ~A2 ~B2 − ~B4Þ2�: ð44Þ
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We have defined two new constants, ~A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2e2C1 þ e2C2

p
and ~B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2e2C1 − e2C2

p
, for con-

venience.
Finally, adding (20) to (21) and changing the variable

from r to a3, we find a simple equation for A:

dA
da3

þ dσ
da3

¼ − coth a3; ð45Þ

whose solution is

A ¼ −σ − lnðsinh a3Þ: ð46Þ
Near the UV point, we find r ∼ ~r → ∞, a1 ∼ a2∼

a3 ∼ e−
r
L, and σ ∼ e−

3r
L . The solution for A then gives

A ∼ 2mr ¼ r
L. The flow is again driven by turning on

operators of dimension four corresponding to a1;2;3 and a
vacuum expectation value (VEV) of a dimension three
operator dual to σ.
It can be checked by expanding (43) that a3 → �∞ as

2m~r → ~C, where we have collectively denoted all constant
terms from the expansion by ~C. The behavior of a3 near this
point is a3 ∼� lnð2m~r − ~CÞ. Although a3 blows up when
2m~r ∼ ~C, a1 and a2 remain finite, with a2 ∼ sinh−1 eC1 and
a1 ∼ sinh−1 eC2ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ2e2C1
p . Similar to the previous case, the

criterion of [28] requires C4 ¼ � 2
ffiffi
2

p
~A

9ð ~A2þ ~B2Þ2 for the singu-

larity to be physical. This is true for both a3 < 0 and
a3 > 0. We find that

a3 ∼� lnð2m~r − ~CÞ; σ ∼ −
1

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ10dx24;1 þ dr2: ð47Þ

It can be readily verified that there always exist the values
of C1 and C2 at which this behavior gives V → −∞.

ForC4 ≠ � 2
ffiffi
2

p
~A

9ð ~A2þ ~B2Þ2, the solution near 2m~r ∼ ~C becomes

a3 ∼� lnð2m~r − ~CÞ; σ ∼ −
3

4
a3 ¼

3

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ 2
13dx21;4 þ dr2: ð48Þ

This solution is not physical, as it can be checked that V →
∞ for all values of C1 and C2.

C. Flow to SUð2Þdiag SYM

In this subsection, we will look at an RG flow with
SUð2Þdiag ∼ ðSUð2ÞR × SUð2ÞÞdiag singlet scalars. Some
nonsupersymmetric AdS6 vacua and holographic RG flows
interpolating between these critical points and the max-
imally supersymmetric AdS6 have been studied in [20]. In
this work, we will give a supersymmetric flow to a
nonconformal field theory.

There is only one singlet scalar under SUð2Þdiag from
SOð4;3Þ

SOð4Þ×SOð3Þ; see the details in [20]. The coset representative

can be written as

L ¼ eaðY21þY32þY43Þ: ð49Þ

The supersymmetry transformations of ψA
μ , χA, and λIA give

the following BPS equations:

a0 ¼ −eσ sinhð2aÞðg1 cosh a − g2 sinh aÞ; ð50Þ

σ0 ¼ 1

2
e−3σ½3mþ e4σðg2sinh3a − g1cosh3aÞ�; ð51Þ

A0 ¼ 1

2
e−3σ½mþ e4σðg1cosh3a − g2sinh3aÞ�: ð52Þ

Note that for nonsinglet scalars of SUð2ÞR, the SUð2Þ
coupling g2 appears.
In order to solve the above equations, we will treat σ and

A as functions of a:

dσ
da

¼ 3me−4σ − g1cosh3aþ g2sinh3a
2 sinhð2aÞðg1 cosh a − g2 sinh aÞ

; ð53Þ

which can be solved by

σ ¼ 1

4
ln

�
6m coshð2aÞ þ C1 sinhð2aÞ
2g1 cosh a − 2g2 sinh a

�
: ð54Þ

We can check that as a → 0 and g1 ¼ 3m, σ → 0 as
expected for the UV point. This is the case for any value
of C1. To solve for a from Eq. (50), it is convenient to
define a new coordinate ~r via eσ ¼ d~r

dr. In this case only is ~r
defined by eσ ¼ d~r

dr. In all other cases, we have e−3σ ¼ d~r
dr.

With this new variable, we can solve for ~r as a function
of a. The resulting solution is given by

2g1g2 ~r ¼ g2 ln coth
a
2
− 2g1tan−1

h
tanh

a
2

i

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 − g22

q
tan−1

�
g1 tanh

a
2
− g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 − g22
p

�
; ð55Þ

where we have neglected the additive integration constant.
Taking the combination (51) −3× (52) with (50), we can

rewrite the equation for A as

dσ
da

− 3
dA
da

¼ g1 sinh aþ g2ð1 − cosh aÞ
g1 cosh a − g2 sinh a

: ð56Þ

The solution is readily obtained to be

A ¼ 1

3
½σ þ ln sinhð2aÞ þ lnðg1 cosha − g2 sinh aÞ�: ð57Þ

PARINYA KARNDUMRI PHYSICAL REVIEW D 90, 086009 (2014)

086009-6



From the above solutions, we can find the behavior of
a, σ, and A near the UV point, a ¼ σ ¼ 0. In this
limit, ~r ∼ r → ∞, we find a ∼ σ ∼ e−6mr ¼ e−

3r
L and

A ∼ 2mr ¼ r
L. This indicates that the flow is driven by

vacuum expectation values of operators of dimension three.
This is to be expected since it has been pointed out in [20]
that the flow driven by turning on the operators dual to σ
and a corresponds to a nonsupersymmetric flow to a
nonsupersymmetric IR fixed point. In the IR, there are a
number of possibilities, depending on the values of g2 and
the integration constant C1, since these lead to different IR
behaviors of a and σ.
We begin with the g2 ¼ g1 case and consider the solution

for large jaj. For a < 0, we find by expanding the solution
in (55) that a diverges as a ∼ 1

3
lnðg1 ~r − ~CÞ. As in the

previous case, we have collectively denoted all of the
constants by ~C. When C1 ¼ 6m, the solutions for σ and A
become

σ ∼
1

4
lnðg1 ~r − ~CÞ; A ∼

7

36
lnðg1 ~r − ~CÞ;

ds2 ¼ ð3mr − CÞ1427dx21;4 þ dr2: ð58Þ

This leads to V → −∞, which is acceptable.
For C1 ≠ 6m, we find different behavior:

σ ∼ −
1

12
lnðg1 ~r − ~CÞ; A ∼

1

12
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ 2
13dx21;4 þ dr2; ð59Þ

which gives V → ∞, as expected since in this case κ < 2
5
.

For a > 0, we find that a ∼ − lnðg1 ~r − ~CÞ. There are two
possibilities for C1 ¼ −6m and C1 ≠ −6m which give,
respectively,

σ ∼
1

4
lnðg1 ~r − ~CÞ; A ∼

13

12
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ269 dx21;4 þ dr2; ð60Þ

and

σ ∼ −
3

4
lnðg1 ~r − ~CÞ; A ∼

3

4
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ67dx21;4 þ dr2: ð61Þ

Both of them give V → −∞. We then conclude that for
g2 ¼ g1, all flows with a > 0 are physical, but flows with
a < 0 are physical only for C1 ¼ 6m.
We now move to the g1 ≠ g2 case and quickly look at the

a > 0 and a < 0 flows separately. With a > 0, the solution
becomes

a ∼ −
1

3
ln ½ðg1 − g2Þ~r − ~C�;

σ ∼ −
1

12
ln ½ðg1 − g2Þ~r − ~C�;

ds2 ¼ ½ðg1 − g2Þ~r − ~C� 213dx21;4 þ dr2; ð62Þ

for C1 ≠ −6m, and

a ∼ −
1

3
ln ½ðg1 − g2Þ~r − ~C�; σ ∼

1

4
ln ½ðg1 − g2Þ~r − ~C�;

ds2 ¼ ½ðg1 − g2Þ~r − ~C�1427dx21;4 þ dr2; ð63Þ

for C1 ¼ −6m. The former is unphysical, but the latter is
physical provided that−ð5þ 4

ffiffiffi
2

p Þm < g2 < ð4 ffiffiffi
2

p
− 5Þm.

Finally, for a < 0, we find the IR behavior

a ∼
1

3
ln ½ðg1 þ g2Þ~r − ~C�; σ ∼ −

1

12
ln ½ðg1 þ g2Þ~r − ~C�;

ds2 ¼ ½ðg1 þ g2Þ~r − ~C� 213dx21;4 þ dr2; ð64Þ

for C1 ≠ 6m, and

a ∼
1

3
ln ½ðg1 þ g2Þ~r − ~C�; σ ∼

1

4
ln ½ðg1 þ g2Þ~r − ~C�;

ds2 ¼ ½ðg1 þ g2Þ~r − ~C�1427dx21;4 þ dr2; ð65Þ

for C1 ¼ 6m. Similar to the previous case, only the second
possibility is physical, provided that ð5 − 4

ffiffiffi
2

p Þm <
g2 < ð5þ 4

ffiffiffi
2

p Þm. In summary, for g2 ≠ g1, flows with
a > 0 and a < 0 are physical for C1 ¼ −6m and C1 ¼ 6m,
respectively, for some appropriate values of g2.

IV. RG FLOWS FROM SUð2ÞR × Uð2Þ SCFT
To give more examples, we consider Fð4Þ gauged

supergravity coupled to four vector multiplets with the
SUð2ÞR × SUð2Þ ×Uð1Þ gauge group. There are 16 scalars
parametrized by the SOð4; 4Þ=SOð4Þ × SOð4Þ coset.
We will focus on SUð2ÞR singlet scalars which are the
highest components of the global symmetry multiplet and
correspond to supersymmetry preserving deformations.
Together with the dilaton σ, there are five SUð2ÞR singlet
scalars. The coset representative can be written as

L ¼ ea1Y11ea2Y12ea3Y13ea4Y14 : ð66Þ
Using the projector γrϵA ¼ ϵA, we can derive the following
BPS equations:

a10 ¼ −
2me−3σ sinh a1

cosha2 cosha3 cosh a4
; ð67Þ

a20 ¼ −
2me−3σ sinh a2 cosh a1

cosha3 cosh a4
; ð68Þ
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a30 ¼ −
2me−3σ cosh a1 cosh a2 sinh a3

cosh a4
; ð69Þ

a40 ¼ −2me−3σ cosh a1 cosh a2 cosha3 sinh a4; ð70Þ

σ0 ¼ 1

2
½3me−3σ cosh a1 cosha2 cosh a3 cosh a4 − g1eσ�;

ð71Þ

A0 ¼ 1

2
½me−3σ cosh a1 cosh a2 cosha3 cosh a4 þ g1eσ�:

ð72Þ

We are interested in the RG flows with the symmetry
breaking patterns Uð2Þ → SUð2Þ, Uð2Þ → Uð1Þ ×Uð1Þ,
and Uð2Þ → Uð1Þ and the completely broken Uð2Þ. The
procedure is essentially the same as in the previous section,
so we will neglect some details and simply give the
solutions.

A. Flow to SUð2ÞR × SUð2Þ SYM
In order to preserve SUð2Þ ⊂ SUð2Þ ×Uð1Þ, only a4 is

allowed to be nonvanishing. The above equations reduce to
three simple equations:

a40 ¼ −2me−3σ sinh a4; ð73Þ

σ0 ¼ 1

2
ð3me−3σ cosha4 − g1eσÞ; ð74Þ

A0 ¼ 1

2
ðme−3σ cosh a4 þ g1eσÞ: ð75Þ

By introducing a new radial coordinate ~r via d~r
dr ¼ e−3σ as in

the previous section, we find the solutions

a4 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
;

σ ¼ −
1

4
ln

�
g1ð3 cosh a4 − coshð3a4Þ þ 18C2sinh3a4Þ

6m

�
;

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ:

ð76Þ

Near the UV point, a4, σ, and A behave as

a4 ∼ e−2mr; σ ∼ e−6mr; A ∼ 2mr: ð77Þ

Similar to the previous solutions, we find that the IR
singularity at ~r ∼ C1

2m is physical for a4 ∼� lnð2m~r − C1Þ
if we choose C2 ¼ � 2

9
. In both cases, the IR metric is

given by

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð78Þ

Other choices of C2 lead to unacceptable singularities.

B. Flow to SUð2ÞR × Uð1Þ × Uð1Þ SYM
In this subsection, we will give the solution for the

flow to SYM with SUð2ÞR ×Uð1Þ2 symmetry. To find
this solution, we set a1 ¼ a2 ¼ a4 ¼ 0. The BPS equa-
tions, which are similar to those in the previous sub-
section, give the following solutions, in terms of the ~r
coordinate:

a3 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
;

σ ¼ −
1

4
ln

�
g1ð3 cosh a3 − coshð3a3Þ þ 18C2sinh3a3Þ

6m

�
;

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ:

ð79Þ

Near the UV point, we find a3 ∼ e−2mr, σ ∼ e−6mr, and
A ∼ 2mr. In the IR, ~r → C1

m , the physical solution with
C2 ¼ � 2

9
is given by

a4 ∼� lnð2m~r − C1Þ; σ ∼ −
1

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð80Þ

C. Flow to SUð2ÞR × Uð1Þ SYM
We then consider the flow that breaks SUð2Þ ×Uð1Þ

global symmetry to Uð1Þ. In this case, we turn on both
a3 and a4. This leads to more complicated equations due
to the coupling between a4 and a3. We will regard a4 as
a new variable and find that the solutions for a3, σ, and A
are given by

a3 ¼ sinh−1½eC1 tanha4�;

σ ¼ −
1

4
ln

�
g1

6
ffiffiffi
2

p
m
½72C2sinh3a4ð1þ e2C1Þ

− 2 cosha4½ð1þ e2C1Þ coshð2a4Þ

− e2C1 − 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2e2C1 tanh2a4

q
�
�
;

A ¼ −σ − ln sinh a4: ð81Þ

The solution of a4 in terms of ~r is given by

~r ¼ 1

2m
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ coshð2a4Þ þ 2e2C1sinh2a4

2

r
: ð82Þ

At the UV point, we find the expected behavior
a3;4 ∼ e−2mr, σ ∼ e−6mr, and A ∼ 2mr. In the IR, we
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consider the behavior of the solutions as a4 → ∞. In this
limit, the a4 solution becomes a4 ∼ − lnð2m~r − ~CÞ for
some constant ~C. We find that the requirement for the

IR singularity to be acceptable is given by C2 ¼ 1
9

ffiffiffiffiffiffiffiffiffiffiffi
1þe2C1

2

q
.

The behavior of a3, σ, and A is given by

a3 ∼ sinh−1eC1 ; σ ∼ −
1

4
lnð2m~r − ~CÞ;

A ∼
5

4
lnð2m~r − ~CÞ: ð83Þ

With the relation 2mr − C ¼ 4ð2m~r − ~CÞ14, the metric in
the IR then takes the form of a domain wall

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð84Þ

D. Flow to SUð2ÞR SYM

We now quickly look at the flow breaking the Uð2Þ
symmetry completely. Finding the solution in this case
amounts to solving all of the six BPS equations. This,
however, turns out not to be difficult. The resulting
solutions for ai, σ, and A are given by

a3 ¼ sinh−1ðeC1 tanha4Þ;

a2 ¼ sinh−1
eC2 sinh a4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2C1 þ ð1þ e2C1Þ coshð2a4Þ
p ;

a1 ¼ sinh−1
eC3 sinh a4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2e2C1 − e2C2 þ ð2þ 2e2C1 þ e2C2Þ coshð2a4Þ
p ;

σ ¼ 1

4
ln
h
96

ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ α2 − α2sech2a4

q i
−
1

4
ln
h
g1ð2304ðα2 þ 4ÞC4sinh3a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4 − α2sech2a4

q

−
ffiffiffi
2

p
secha4ð3α4 þ ðα2 þ 4Þ2 coshð4a4Þ þ 16α2−4ðα4 þ 6α2 þ 8Þ coshð2a4Þ − 48ÞÞ

i
;

A ¼ −σ − ln sinh a4;

a4 ¼
1

2
cosh−1

�
8tanh2ð2m~r − C5Þ þ α2 − 4

α2 þ 4

�
; ð85Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2C1 þ 2e2C2 þ e2C3

p
. At the UV fixed point,

the solutions become

a1;2;3;4 ∼ e−2mr; σ ∼ e−6mr; A ∼ 2mr: ð86Þ

In the IR, we have to set C4 ¼ 1
144

ffiffiffiffiffiffiffiffi
4þα2

2

q
in order

to obtain a physical solution. The solution is then
given by

a4 ∼ − lnð2m~r − ~CÞ; a3 ∼ sinh−1eC1 ;

a2 ∼ sinh−1
eC2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2e2C1

p ;

a1 ∼ sinh−1
eC3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 4e2C1 þ 2e2C2

p ;

σ ∼ −
1

4
lnð2m~r − ~CÞ; A ∼

5

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð87Þ

All of the flows given above are driven by turning on
operators of dimension four and a VEV of a dimension
three operator.

V. CONCLUSIONS

We have studied various holographic RG flows from
matter coupled Fð4Þ gauged supergravity. These flows
describe deformations of the UVN ¼ 2 SCFTs with SUð2Þ
and SUð2Þ × Uð1Þ global symmetries in five dimensions to
nonconformal N ¼ 2 SYM theories in the IR. We have
explored various symmetry breaking patterns and inter-
preted the solutions as RG flows driven by turning on
operators of dimension four in a vacuum with nonzero
VEV of a dimension three operator dual to the six-
dimensional dilaton, except for the flow to the SUð2Þdiag
SYM, which is driven by vacuum expectation values of
dimension three operators. We have also identified physical
flows which have acceptable IR singularities from the
resulting solutions. Therefore, these solutions might be
useful in the study of strongly coupled N ¼ 2 SYM in five
dimensions. However, the identification of the dual five-
dimensional SYM corresponding to these solutions in the
IR is not clear. Accordingly, the precise physical interpre-
tation of these solutions needs to be clarified.
It is interesting to holographically compute various

characteristics of the 5D gauge theories such as the
Wilson loops, as done in [29]. It could be useful to do
this computation with the six-dimensional solutions given
here, similar to the four-dimensional gauge theories studied
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in [6,7]. The solutions found in this paper would hopefully
be useful in this aspect and for other holographic calcu-
lations. It will very interesting (if possible) to find a gravity
solution describing the enhancement of the global sym-
metry SOð2NfÞ ×Uð1Þ to the ENfþ1 fixed point in five
dimensions. In this aspect, the six-dimensional framework
considered here may not be able to accommodate this
solution since the symmetry enhancement is not seen at the
classical supergravity level, as remarked in [17].
It is not presently known how to embed the six-

dimensional Fð4Þ gauged supergravity coupled to n vector
multiplets to 10 or 11 dimensions, although the pure Fð4Þ
gauged supergravity and the theory coupled to 20 vector
multiplets are known to originate from massive type IIA
compactification on warped S4 and K3, respectively
[30,31]. The embedding of Fð4Þ gauged supergravity in

type IIB theory via the non-Abelian T duality has been
proposed recently in [32]. This might also provide another
mean to embed the six-dimensional gauged supergravity in
higher dimensions. It would be interesting to find such an
embedding, which in turn can be used to uplift the solutions
found here and in [20] to ten dimensions. This could pro-
vide some insight to the dynamics of D4/D8-brane system.
We hope to come back to these issues in future works.
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Abstract: We study N = 2 seven-dimensional gauged supergravity coupled to three

vector multiplets with SO(4) gauge group. The resulting gauged supergravity con-

tains 10 scalars consisting of the dilaton and 9 vector multiplet scalars parametrized by

SO(3, 3)/SO(3)×SO(3) coset manifold. The maximally supersymmetric AdS7 vacuum with

unbroken SO(4) symmetry is identified with a (1, 0) SCFT in six dimensions. We find one

new supersymmetric AdS7 critical point preserving SO(3)diag ⊂ SO(3) × SO(3) ∼ SO(4)

and study a holographic RG flow interpolating between the SO(4) and the new SO(3)

supersymmetric critical points. The RG flow is driven by a vacuum expectation value of

a dimension-four operator and describes a deformation of the UV (1, 0) SCFT to another

supersymmetric fixed point in the IR. In addition, a number of non-supersymmetric criti-

cal points are identified, and some of them are stable with all scalar masses above the BF

bound. RG flows to non-conformal N = (1, 0) Super Yang-Mills with SO(2) × SO(2) and

SO(2) symmetries are also investigated. Some of these flows have physically acceptable IR

singularities since the scalar potential is bounded above. These provide physical RG flows
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1 Introduction

The AdS/CFT correspondence has attracted a lot of attention during the past twenty

years. The original proposal in [1] discussed many examples in various dimensions. These

examples included the duality between M-theory on AdS7 × S4 and (2, 0) superconformal

field theory (SCFT) in six dimensions. The AdS7 × S4 geometry can arise from the near

horizon limit of M5-brane. In term of N = 4 seven-dimensional gauged supergravity with

SO(5) gauge group, the AdS7 geometry corresponds to the maximally supersymmetric

vacuum of the gauged supergravity, see for example [2].

In this paper, we will explore AdS7/CFT6 correspondence with sixteen supercharges.

The dual SCFT to the AdS7 background in this case would be (1, 0) six-dimensional SCFT.

Six-dimensional gauge theories with N = (1, 0) supersymmetry are interesting in many

aspects. In [3], it has been shown that the theories admit non-trivial RG fixed points.

Examples of these field theories also arise in string theory [4], see also a review in [5]. After

the AdS/CFT correspondence, a supergravity dual of a (1, 0) field theory with E8 global

symmetry has been proposed in [6]. The dual gravity background has been identified with

the orbifolds of AdS7 × S4 geometry in M-theory. The operator spectrum of the (1, 0)

six-dimensional SCFT has been matched with the Kaluza-Klein spectrum in [7, 8].

Like in lower dimensions, it is more convenient to study AdSd+1/CFTd correspondence

in the framework of (d+1)-dimensional gauged supergravity. A consistent reduction ansatz

can eventually be used to uplift the lower dimensional results to string/M theory in ten or

eleven dimensions. A suitable framework in the holographic study of the above (1, 0) field
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theories is the half-maximal gauged supergravity in seven dimensions coupled to n vector

multiplets. The supergravity theory has N = 2 or sixteen supercharges in exact agreement

with the number of supercharges in six-dimensional (1, 0) superconformal symmetry. This

has been proposed long time ago in [9]. With the pure gauged supergravity and critical

points found in [10] and [11], holographic RG flows to a non-supersymmetric IR fixed point

and to a non-conformal (1, 0) gauge theory have been studied in [12] and [13].

Pure N = 2 gauged supergravity in seven dimensions admit only two AdS7 vacua with

one being maximally supersymmetric and the other one being stable non-supersymmetric.

To obtain more AdS7 critical points, matter coupled supergravity theory is needed. This

has been constructed in [14] but without the topological mass term for the 3-form field

which is a dual of the 2-form field in the supergravity multipet. Without this term, the

scalar potential of the matter coupled gauged supergravity does not admit any critical

point but a domain wall as can be verified by looking at the scalar potential explicitly

given in [14]. Although mistakenly claimed in [15] that the topological mass term is not

possible, the theory indeed admits this term as shown in [16] in which the full Lagrangian

and supersymmetry transformations of this massive gauged supergravity have been given.

This provides the starting point for the present work.

In this paper, we are interested in the gauged supergravity with SO(4) gauge group.

This requires three vector multiplets since six gauge fields are needed in order to implement

the SO(4) gauging. The theory can be obtained from a truncation of the maximal N = 4

gauged supergravity [17]. In addition to the dilaton, there are extra nine scalars from

the vector multipets parametrized by SO(3, 3)/SO(3) × SO(3) ∼ SL(4,R)/SO(4) coset

manifold. We will explore the scalar potential of this theory in the presence of topological

mass term and identify some of its critical points. The critical points will correspond to

new IR fixed point of the (1, 0) SCFT identified with the maximally supersymmetric critical

point with SO(4) symmetry. We will also study RG flows between these critical points as

well as RG flows to non-conformal field theories.

The paper is organized as follow. We briefly review the matter coupled gauged su-

pergravity in seven dimensions and give relevant formulae which will be used throughout

the paper in section 2. Some critical points of seven-dimensional gauged supergravity

with SO(4) gauge group are explored in section 3. A number of supersymmetric and non-

supersymmetric critical points and the corresponding scalar masses will also be given in

this section. In section 4, we study supersymmetric deformations of the UV N = (1, 0)

SCFT to a new superconformal fixed point in the IR and to non-conformal SYM in six

dimensions. Both types of the solutions can be analytically obtained. The paper is closed

with some conclusions and comments on the results in section 5.

2 N = 2, SO(4) gauged supergravity in seven dimensions

We begin with a description of N = 2 gauged supergravity coupled to n vector multiplets.

All notations are the same as those of [16]. The gravity multiplet in seven-dimensional

N = 2 supersymmetry contains the following field content

gravity multiplet : (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ). (2.1)
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A vector multiplet has the field content (Aµ, λ
A, φi). Indices A,B label the doublet of

the USp(2)R ∼ SU(2)R R-symmetry. Curved and flat space-time indices are denoted by

µ, ν, . . . and m,n, . . ., respectively. Bµν and σ are a two-form and the dilaton fields. For

supergravity theory coupled to n vector multiplets, there are n copies of (Aµ, λ
A, φi)r

labeled by an index r = 1, . . . , n, and indices i, j = 1, 2, 3 label triplets of SU(2)R. The 3n

scalars φir are parametrized by SO(3, n)/SO(3)×SO(n) coset manifold. The corresponding

coset representative will be denoted by

L = (L i
I , L

r
I ), I = 1, . . . , n+ 3 . (2.2)

The inverse of L is given by L−1 = (LI
i, L

I
r) where LI

i = ηIJLJi and LI
r = ηIJLJr.

Indices i, j and r, s are raised and lowered by δij and δrs, respectively while the full SO(3, n)

indices I, J are raised and lowered by ηIJ = diag(−−−++ . . .+). There are some relations

involving components of L and are given by

ηIJ = −L i
I L

i
J + L r

I L
r
J , Li = LIi,

Li
IL

I
j = −δij , Li

IL
Ij = −δij . (2.3)

Gaugings are implemented by promoting a global symmetry G̃ ⊂ SO(3, n) to a gauge

symmetry. Consistency of the gauging imposes a condition on the G̃ structure con-

stants f K
IJ

f L
IK ηLJ + f L

JK ηLI = 0 (2.4)

meaning that ηIJ is invariant under the adjoint action of G̃. General semisimple gauge

groups take the form of G̃ ∼ G0 ×H ⊂ SO(3, n) with G0 being one of the six possibilities:

SO(3), SO(3, 1), SL(3,R), SO(2, 1), SO(2, 2) and SO(2, 2)×SO(2, 1) and H being compact

with dimH ≤ (n+ 3− dimG0).

In this paper, we are interested in the SO(4) gauged supergravity corresponding to

G0 = SO(3) and H = SO(3). To obtain AdS7 vacua, we need to consider the gauged

supergravity with a topological mass term for a 3-form potential. The 3-form field is a

dual of the 2-form Bµν . With all modifications to the Lagrangian and supersymmetry

transformations as given in [16], the bosonic Lagrangian involving only scalars and the

metric can be written as

e−1L =
1

2
R− 5

8
∂µσ∂

µσ − 1

2
PµirPµir − V (2.5)

where the scalar potential is given by

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ
2 C . (2.6)

The constant h characterizes the topological mass term. The quantities appearing in the

above equations are defined by

P ir
µ = LIr

(

δKI ∂µ + f K
IJ AJ

µ

)

Li
K , Crsif

K
IJ LI

rL
J
sLKi,

Cir =
1√
2
f K
IJ LI

jL
J
kLKrǫ

ijk, C = − 1√
2
f K
IJ LI

iL
J
jLKkǫ

ijk . (2.7)
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We also need fermionic supersymmetry transformations with all fields but scalars vanishing.

These are given by

δψµ = 2Dµǫ−
√
2

30
e−

σ
2Cγµǫ−

4

5
he2σγµǫ, (2.8)

δχ = −1

2
γµ∂µσǫ+

√
2

30
e−

σ
2Cǫ− 16

5
e2σhǫ, (2.9)

δλr = −iγµP ir
µ σ

iǫ− i√
2
e−

σ
2Cirσiǫ (2.10)

where SU(2)R indices on spinors are suppressed. σi are the usual Pauli matrices.

In the remaining of this section, we focus on n = 3 case with G̃ = SO(4) ∼ SO(3) ×
SO(3). The first SO(3) factor is identified with the SU(2)R R-symmetry. To give an explicit

parametrization of SO(3, 3)/SO(3)× SO(3) coset, we define thirty-six 6× 6 matrices

(eab)cd = δacδbd, a, b . . . = 1, . . . 6 . (2.11)

Non-compact generators of SO(3, 3) are identified as

Yir = ei,r+3 + er+3,i, r = 1, . . . , 3 . (2.12)

Accordingly, SO(3)× SO(3) generators can be written as

SO(3)R : Jij = eij − eji,

SO(3) : Jrs = ers − esr . (2.13)

In this case, the structure constants for the gauge group are given by

fIJK = (g1ǫijk, g2ǫrst) (2.14)

where g1 and g2 are coupling constants of SO(3)R and SO(3), respectively.

3 Critical points of N=2, SO(4) seven-dimensional gauged supergravity

In this section, we will compute the scalar potential of the SO(4) gauged supergravity and

study some of its critical points. Although complicated, it is possible to compute the scalar

potential for all of the ten scalars. However, the long expression would make any analysis

more difficult. Consequently, we will proceed by studying the scalar potential on a subset

of the ten scalars as originally proposed in [18]. In this approach, the scalar potential is

computed on a scalar submanifold which is invariant under some subgroup H0 of the full

gauge symmetry SO(4). This submanifold consists of all scalars which are singlet under the

unbroken subgroup H0. All critical points found on this submanifold are essentially critical

points of the potential on the full scalar manifold. This can be seen by expanding the full

potential to first order in scalar fluctuations which in turn contain both H0 singlets and H0

non-singlets. By a simple group theory argument, the non-singlet fluctuations cannot lead

to H0 singlets at first order. Their coefficients, variations of the potential with respect to

non-singlet scalars, must accordingly vanish. This proves to be more convenient and more

efficient. However, the truncation is consistent only when all relevant H0 singlet scalars

are included on the chosen submanifold. With only some of these singlets, the consistency

is not guaranteed.
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3.1 Critical points on SO(3)diag scalars

We begin with the most simplest case namely the potential on SO(3)diag ⊂ SO(3)× SO(3)

corresponding to the non-compact generator Ys = Y11+Y22+Y33. The coset representative

is then parametrized by

L = eφYs . (3.1)

The scalar potential is given by

V =
1

32
e−σ

[

(g21 + g22) (cosh(6φ)− 9 cosh(2φ))− 8g1g2 sinh
3(2φ)

+8
[

g22 − g21 + 64h2e5σ + 32e
5σ
2 h

(

g1 cosh
2 φ− g2 sinh

3 φ
)

]]

. (3.2)

Notice that there is no critical point when h = 0 as mentioned before. In this case, the

SO(4) supergravity admits a half-supersymmetric domain wall as a vacuum solution. For

φ = 0, the above potential is the potential of pure N = 2 gauged supergravity with SO(3)

gauge group studied in [10] and [11]. There are two critical points in the pure gauged

supergravity. One of them preserves all of the supersymmetry while the other completely

breaks supersymmetry. In our conventions, they are given by

σ =
2

5
ln
[

− g1
16h

]

and σ =
2

5
ln
[

− g1
8h

]

. (3.3)

It can be readily verified by using supersymmetry transformations of ψµ, χ and λr that the

first one is supersymmetric. We can bring the supersymmetric point to σ = 0 by choosing

g1 = −16h and find that the two critical points are now given by

σ = 0, V0 = −240h2

and σ =
2

5
ln 2, V0 = −160(2

3

5 )h2 (3.4)

where V0 denotes the value of the cosmological constant.

Although non-supersymmetric, the second critical point has been shown to be stable

in [11]. In the presence of matter scalars, this is however not the case. This can be seen

from the scalar masses given below.

SO(3)× SO(3) m2L2

(1,1) 12

(3,3) −12

The AdS7 radius L in our conventions is given by L =
√

−15
V0

= 1
4h . The (1,1) scalar

correspond to σ, and (3,3) is the nine scalars in SO(3, 3)/SO(3)× SO(3). The BF bound

in seven dimensions is m2L2 ≥ −9. Therefore, the non-supersymmetric critical point of

pure gauged supergravity is unstable in the matter coupled theory. This is very similar to

the six-dimensional N = (1, 1) gauged supergravity pointed out in [19].
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Scalar masses at the supersymmetric point are given in the table below.

SO(3)× SO(3) m2L2

(1,1) −8

(3,3) −8

In the dual (1, 0) SCFT, these scalars correspond to dimension-4 operators via the relation

m2L2 = ∆(∆− 6).

There is one non-trivial supersymmetric point at

σ = −1

5
ln

[

g22 − 256h2

g22

]

, φ =
1

2
ln

[

g2 − 16h

g2 + 16h

]

,

V0 = − 240g
8

5

2 h
2

(g22 − 256h2)
4

5

. (3.5)

At this point, scalar masses are computed as follow.

SO(3)diag m2L2 ∆

1 −8 4

1 40 10

3 0 6

5 16 8

In the table, we have decomposed all of the ten scalars in representations of the SO(3)diag
residual symmetry. This can be done by the following decomposition. Under SO(3)R ×
SO(3), the nine scalars transform as (3,3). They then transform as 3 × 3 = 1 + 3 + 5

under SO(3)diag. Notice that the 3 scalars are massless corresponding to Goldstone bosons

of the symmetry breaking SO(3)× SO(3) → SO(3)diag.

There is one non-supersymmetric critical point given by

σ =
1

5
ln

[

4g22
g22 − 256h2

]

, φ =
1

2
ln

[

g2 − 16h

g2 + 16h

]

,

V0 = − 160(2
3

5 )g
8

5

2 h
2

(g22 − 256h2)
4

5

. (3.6)

This critical point is stable as can be seen from the mass spectrum below.

SO(3)diag m2L2 ∆

1 12 3 +
√
21

1 36 3 + 3
√
5

3 0 6

5 0 6
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For g2 = g1, we also find another non-supersymmetric critical point given by

σ =
1

10

[√
2 ln 8 + 4 ln(1− 2−

√
2)
]

, φ = −1

2
ln 2, V0 = −246.675h2 . (3.7)

This critical point is however unstable. Scalar masses at this point are given below.

SO(3)diag m2L2

1 −4.278

1 16.059

3 0

5 −14.282

We can see that the mass of 5 scalars violates the BF bound.

3.2 Critical points on scalar manifold with smaller residual symmetry

To find other critical points, we can consider smaller residual symmetries. Breaking

SO(3)diag to SO(2)diag, we find that there are two singlets from SO(3, 3)/SO(3) × SO(3)

with the coset representative

L = eφ1(Y11+Y22)eφ2Y33 . (3.8)

This gives the scalar potential, with g1 = −16h,

V =
1

8
e−σ

[

2(g22 + 64h2(e5σ − 4))− 2(g22 + 256h2) cosh(2φ1)

−64he
5σ
2

(

16h cosh2 φ1 coshφ2 + g2 sinh
2 φ1 sinhφ2

)

+sinh2(2φ1)
[

(g22 + 256h2) cosh(2φ2) + 32g2h sinh(2φ2)
]]

. (3.9)

This potential does not admit any supersymmetric critical points unless φ1 = φ2 which is

the previously found SO(3)diag point. When φ1 = 0, the above scalar submanifold preserves

SO(2)× SO(2) symmetry, but there is no critical point except for φ2 = 0. We are not able

to obtain any new critical points from the above potential.

We now move to scalar fields invariant under SO(2)R ⊂ SO(3)R. There are three

singlets corresponding to Y11, Y12 and Y13. Denoting the associated scalars by φi, i = 1, 2, 3,

we find a simple potential

V = −1

2
g21e

−σ + 16h2e4σ + g1he
3

2
σ−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3) (3.10)

which does not admit any non-trivial critical points.

4 Supersymmetric RG flows

We now consider domain wall solutions interpolating between critical points identified in

the previous section. These solutions will generally have an interpretation in terms of
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RG flows in the dual field theories in six dimensions. We are mainly interested in su-

persymmetric RG flows which can be obtained from solving BPS equations coming from

supersymmetry variations of fermionic fields ψµ, χ and λr. A stable non-supersymmetric

AdS7 critical point also admits a well-defined dual CFT, but in most cases, finding the cor-

responding flow solutions requires a numerical analysis. Accordingly, we will not consider

non-supersymmetric flows in this paper.

4.1 An RG flow to a supersymmetric SO(3) fixed point

There is one supersymmetric AdS7 critical point with SO(3) symmetry. In this subsection,

we will find the domain wall solution interpolating between this point and the trivial critical

point at σ = φ = 0.

Using the standard domain wall metric

ds2 = e2A(r)dx21,5 + dr2 (4.1)

where dx21,5 is the flat metric in six-dimensional space-time and the projection condition

γrǫ = ǫ, we can derive the following BPS equations

φ′ =
1

8
e−

σ
2
−3φ(e4φ − 1)

(

g1 + g2 + e2φg1 − e2φg2

)

, (4.2)

σ′ =
1

20

[

e−
σ
2
−3φ

(

g2(e
2φ − 1)3 − g1(1 + e2φ)3

)

− 128he2σ
]

, (4.3)

A′ =
1

40
e−

σ
2
−3φ

[

g2(e
2φ − 1)3 − g1(1 + e2φ)3

]

+
4

5
he2σ (4.4)

where ′ denotes d
dr . The above equations do not involve δψr equation which will give the

Killing spinor condition on ǫ as usual. The above equations clearly admit two critical

points. To find the solution, we combine equations (4.2) and (4.3) to

dσ

dφ
=

2
[

g2(e
2φ − 1)3 − g1(1 + e2φ)3 − 128he

σ
2
+3φ

]

5(e4φ − 1) (g1 + g2 + (g1 − g2)e2φ)
(4.5)

whose solution is given by

σ =
2

5
ln

[

eφ
(

g1 + g2 + (g1 − g2)e
2φ
)

32h (12C1(e2φ − 1)− 1)

]

. (4.6)

In order for the solution to interpolate between the two critical points, we need to fix the

integration constant to be C1 =
(g1−g2)2

48g1g2
. We then find the solution for σ

σ =
2

5
ln

[

− g1g2e
φ

8h (g1 + g2 + (g2 − g1)e2φ)

]

. (4.7)

Introducing a new radial coordinate r̃ via dr̃
dr = e−

σ
2 , we can solve equation (4.2) and

find the solution for φ

g1g2r̃ = 2g1 tan
−1 eφ + 2

√

g22 − g21 tanh
−1

[

eφ
√

g2 − g1
g2 + g1

]

+ g2 ln

[

1− eφ

1 + eφ

]

(4.8)
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where we have neglected an additive integration constant to r̃. Taking the combina-

tion (4.4)+1
8× (4.3) and changing the variable from r to φ, we find

dA

dφ
+

1

8

dσ

dφ
=

g2(e
2φ − 1)3 − g1(1 + e2φ)3

4(e4φ − 1) (g1 + g2 + (g1 − g2)e2φ)
. (4.9)

The solution is easily found to be

A =
1

8

[

2φ− σ − 2 ln
(

2− 2e4φ
)

+ 2 ln
(

g1 + g2 + (g1 − g2)e
2φ
)]

. (4.10)

Near the UV point σ ∼ 0 and φ ∼ 0 with g1 = −16h, we find

σ ∼ φ ∼ e−16hr = e−
4r
L , L =

1

4h
(4.11)

since r̃ ∼ r near σ ∼ 0. The flow is then driven by vacuum expectation values (vev) of

relevant operators of dimension ∆ = 4. In the IR, we find that the solution behaves as

σ ∼ e−
4r
L , φ ∼ e

4r
L , L =

(g22 − 256h2)
2

5

4hg
4

5

2

. (4.12)

From this, we see that the operator dual to φ acquires an anomalous dimension and has

dimension 10 in the IR. This is consistent with the value of m2L2 given previously.

4.2 RG flows to non-conformal field theories

A supersymmetric flow to non-conformal field theory in pure gauged supergravity has been

studied in [13]. We will study similar solutions in the matter coupled gauged supergravity.

These solutions would be a generalization of the solution given in [13].

4.2.1 Flows to SO(2) × SO(2), 6D Super Yang-Mills

We first consider SO(2)R singlets scalars. With γrǫ = ǫ, the BPS equations for these three

singlets, denoted by φi, i = 1, 2, 3, σ and A are given by

φ′1 =
1

2
e−

σ
2
−φ1g1(e

2φ1 − 1), (4.13)

φ′2 =
1

2
e−

σ
2
−φ2g1(e

2φ2 − 1), (4.14)

φ′3 =
1

2
e−

σ
2
−φ3g1(e

2φ3 − 1), (4.15)

σ′ = − 1

20
g1e

−σ
2
−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3)− 32

5
he2σ, (4.16)

A′ = − 1

40
g1e

−σ
2
−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3) +

4

5
he2σ . (4.17)

The above equations clearly admit only one critical point at φi = 0.
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For φ1 = φ2 = 0, the solution will preserve SO(2)R × SO(2) symmetry. This is easily

seen to be a consistent truncation. The solution to the above equations is given by

φ3 = ± ln

[

1 + eg1r̃+C1

1− eg1r̃+C1

]

,

σ =
2

5
φ3 −

2

5
ln

[

−16h

g1

[

4C2

(

e2φ3 − 1
)

− 1
]

]

,

A =
1

8

[

2φ3 − σ − 2 ln(e2φ3 − 1)
]

(4.18)

where as in the previous case r̃ is related to r via dr̃
dr = e−

σ
2 .

Near the UV point, the asymptotic behavior of φ3 and σ is given by

φ3 ∼ σ ∼ e−16hr, A ∼ 4hr ∼ r

L
. (4.19)

In the IR, we will consider φ3 > 0 and φ3 < 0, separately. For φ3 > 0, there is a

singularity when φ3 → ∞ as 16hr̃ ∼ C1. With C2 6= 0, we find

φ3 ∼ − ln(16hr̃ − C1), σ ∼ 2

5
ln(16hr̃ − C1),

A ∼ −1

8
(2φ3 + σ) =

1

5
ln(16hr̃ − C1) . (4.20)

As 16hr̃ ∼ C1, we find the relation between r and r̃ to be 16hr−C = 5
6(16hr̃−C1)

6

5 with

C being another integration constant. As expected from the general DW/QFT correspon-

dence [20–22], the metric in the IR takes the form of a domain wall

ds2 = (16hr − C)
1

3dx21,5 + dr2 (4.21)

where the multiplicative constant has been absorbed in the rescaling of the xµ coordinates.

Flows to non-conformal field theories usually encounter singularities in the IR. As can

be seen from the above metric, there is a singularity at 16hr ∼ C. The criterion for

determining whether a given singularity is physical or not has been given in [23]. The

condition rules out naked time-like singularities which are clearly unphysical. According to

the criterion of [23], the IR singularity in the solution is acceptable if the scalar potential

is bounded above. One way to understand this criterion has been given in [24] for four-

dimensional gauge theories. We will follow this argument and briefly discuss the meaning of

the criterion in [23] in the context of six-dimensional field theories. Near the IR singularity,

scalars φi, assumed to be canonical ones, and the metric warped factor A behave as

φi ∼ Bi ln(r − r0), A ∼ κ ln(r − r0) (4.22)

where we have chosen the integration constant so that the singularity occurs at r0. In the

IR, the bulk action for these scalars mainly contains the kinetic terms since the potential

is irrelevant. This is because the potential diverges logarithmically, but the kinetic terms

go like (r − r0)
−2. According to the AdS/CFT correspondence, the one point function or

the vacuum expectation value of operators Oi dual to φi is given by 〈Oi〉 = δS
δφi

. Using

S =
1

2

∫

d6xdre6A∂rφi∂
rφi, (4.23)
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we find

〈Oi〉 =
δS

δφi
∼ e6A∂rφi ∼ Bi(r − r0)

6κ−1 . (4.24)

We can see that 〈Oi〉 diverges for κ < 1
6 . We then expect that solutions with κ < 1

6 will

be excluded. In four dimensions, it has been shown that this is related to the fact that the

scalar potential becomes unbounded above. In the present case, we will see in the solutions

given below that this is the case namely all solutions with κ < 1
6 have V → ∞.

It can be checked by using the scalar potential given in (3.10) that as 16hr̃ ∼ C1, the

solution in (4.20) gives V → −∞. The solution is then physical and describes a supersym-

metric RG flow from (1, 0) SCFT to six-dimensional SYM with SO(2)× SO(2) symmetry.

For C2 = 0, the solution becomes

φ3 ∼ − ln(16hr̃ − C1), σ ∼ −2

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
3

4dx21,5 + dr2 . (4.25)

This is also physical since it leads to V → −∞.

For φ3 < 0 and 16hr̃ ∼ C1, the above solutions give, for any values of C2,

φ3 ∼ ln(16hr̃ − C1), σ ∼ 2

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
1

3dx21,5 + dr2 (4.26)

which give rise to V → −∞. This solution is then physically acceptable.

The solution with all φi 6= 0 turns out to be very difficult to find although the above

BPS equations suggest that φ1 = φ2 = φ3. Most probably, a numerical analysis might be

needed. Therefore, we will not further investigate this case.

4.2.2 Flows to SO(2), 6D Super Yang-Mills

As a final example, we consider RG flows to non-conformal theories from SO(2)diag singlet

scalars corresponding to Y11 + Y22 and Y33. The relevant BPS equations are given by

φ′1 =
1

8
e−

σ
2
−2φ1−φ2(e4φ1 − 1)

[

g1 + g2 + (g1 − g2)e
2φ2

]

, (4.27)

φ′2 =
1

8
e−

σ
2
−2φ1−φ2

[

g1(1 + e2φ1)2(e2φ2 − 1)− g2(1 + e2φ2)(e2φ1 − 1)2
]

, (4.28)

σ′ =
1

20
e−

σ
2
−2φ1−φ2

[

g2(e
2φ2 − 1)(e2φ1 − 1)2 − g1(1 + e2φ1)2(1 + e2φ2)

−128he
5σ
2
+2φ1+φ2

]

, (4.29)

A′ =
1

40
e−

σ
2
−2φ1−φ2

[

g2(e
2φ2 − 1)(e2φ1 − 1)2 − g1(1 + e2φ1)2(1 + e2φ2)

+32he
5σ
2
+2φ1+φ2

]

. (4.30)

These equations reduce to the SO(3)diag case when φ2 = φ1. If we set φ2 = 0, consistency

requires that φ1 = 0. For φ1 = 0, the solution has SO(2)R × SO(2) symmetry. This gives

rise to the same solution studied above.
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Since there are no interesting truncations, we now consider a solution to the above

equations with φ1, φ2 6= 0. Finding the solution for a general value of g2 turns out to be

difficult. However, for g2 = g1 = −16h, we can find an analytic solution. The first step in

finding this solution is to combine (4.27) and (4.28) into a single equation

dφ2
dφ1

=
1 + e4φ1 − 2e2φ1+φ2

1− e4φ1

(4.31)

which is solved by

φ2 = φ1 −
1

2
ln

[

8C2 − 1 + e4φ1

8C2

]

. (4.32)

Changing to a new radial coordinate r̃ via dr̃
dr = e−

σ
2
−φ2 , we obtain the solution to equa-

tion (4.27)

φ1 = ±1

2
ln

[

1 + eC1−16hr̃

1− eC1−16hr̃

]

. (4.33)

To find the solution for σ, we change to another new coordinate R via dR
dr = −e−σ

2
−φ2−2φ1 .

Equations (4.27), (4.28) and (4.29) can be combined to

5

2

dσ

dR
+ 2

dφ1
dR

+
dφ2
dR

= −16h
(

1− e
5

2
σ+2φ1+φ2

)

(4.34)

which gives

σ = −2

5

[

2φ1 + φ2 + ln
(

1− C3e
16hR

)]

. (4.35)

Combing (4.29) and (4.30), we find an equation for A as a function of R

dA

dR
− 1

2

dσ

dR
= −4e

5

2
σ+2φ1+φ2 (4.36)

whose solution, after using σ solution, is given by

A =
σ

2
+

1

4
ln
[

C3 − e−16hR
]

. (4.37)

As in the previous case, we separately consider the two possibilities for φ1 > 0 and φ1 < 0.

For φ1 > 0, we can find the relation between R and r̃ by using the relation dR
dr̃ =

−e−2φ1(r̃). This results in

8hR = 8hr̃ − ln
[

2(eC1 + e16hr̃)
]

. (4.38)

In term of r̃, the σ and A solutions become

σ = −2

5

[

2φ1 + φ2 + ln

[

1− C3e
16hr̃

4(eC1 + e16hr̃)2

]]

, (4.39)

A =
σ

2
+

1

4
ln
[

C3 − 4e−16hr̃(eC1 + e16hr̃)2
]

. (4.40)

Near the IR singularity at 16hr̃ ∼ C1, we have φ2 ∼ −φ1 for all values of C2. In

the IR, the solution behaves differently for C3 = 16eC1 and C3 6= 16eC1 . This is because
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the logarithmic term in (4.39) and (4.40) diverges, in this limit, when C3 = 16eC1 . For

C3 6= 16eC1 , we find

φ1 ∼ −φ2 ∼ −1

2
ln(16hr̃ − C1), σ ∼ −2

5
φ1 ∼

1

5
ln(16hr̃ − C1),

A ∼ σ

2
∼ 1

10
ln(16hr̃ − C1), ds2 = (16hr − C)

1

8dx21,5 + dr2 . (4.41)

This gives rise to V → ∞ which is physically unacceptable.

However, if C3 = 16eC1 , the solution becomes

σ ∼ −3

5
ln(16hr̃ − C1), A ∼ 1

5
ln(1hr̃ − C1),

ds2 = (16hr − C)
1

3dx21,5 + dr2 . (4.42)

This gives V → −∞, so this singularity is acceptable. We see that flows with φ1 > 0 are

physical provided that C3 = 16eC1 .

For φ1 < 0, the solution φ1 = −1
2 ln

[

1+eC1−16hr̃

1+eC1−16hr̃

]

gives

8hR = 8hr̃ − ln
[

2(eC1 − e16hr̃)
]

. (4.43)

Accordingly, the solutions for σ and A become

σ = −2

5

[

2φ1 + φ2 + ln

[

1− C3e
16hr̃

4(eC1 − e16hr̃)2

]]

, (4.44)

A =
σ

2
+

1

4
ln
[

C3 − 4e−16hr̃(eC1 − e16hr̃)2
]

. (4.45)

In this case, the logarithmic term in (4.45) diverges as 16hr̃ ∼ C1 when C3 = 0, but

the logarithmic term in (4.44) vanishes. When C3 6= 0, the situation is reversed. Unlike

the φ1 > 0 case, the value of C2 is important since there are two possibilities φ1 = ∓φ2
depending C2 =

1
8 or C2 6= 1

8 .

We begin with the first case with C2 =
1
8 and C3 = 0. The IR behavior of the solution

is given by

φ1 ∼ −φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 1

5
ln(16hr̃ − C1),

A ∼ 3

5
ln(16hr̃ − C1), 16hr − C =

5

3
(16hr̃ − C1)

3

5 . (4.46)

The metric becomes

ds2 = (16hr − C)2dx21,5 + dr2 . (4.47)

When C3 6= 0, the solution in the IR becomes

φ1 ∼ −φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 3

5
ln(16hr̃ − C1),

A ∼ 3

10
ln(16hr̃ − C1), ds2 = (16hr − C)

3

4dx21,5 + dr2 . (4.48)
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Both of them lead to V → −∞. Therefore, the solution with φ1 < 0 and C2 =
1
8 is physical

for all values of C3.

For C2 6= 1
8 , we find, with C3 = 0, the IR behavior of the solution

φ1 ∼ φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ −6

5
ln(16hr̃ − C1),

ds2 = (16hr − C)−
2

9dx21,5 + dr2, (4.49)

and, for C3 6= 0,

φ1 ∼ φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 1

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
1

8dx21,5 + dr2 . (4.50)

Both of them lead to V → ∞. We then conclude that flows with φ1 < 0 and C2 6= 1
8 are

not physical for any C3.

It could be very interesting to have interpretations of these results in terms of six-

dimensional gauge theories.

5 Conclusions

We have studied some critical points of N = 2, SO(4) gauged supergravity in seven dimen-

sions. We have found one new supersymmetric AdS7 critical point with SO(3) symmetry.

Recently, many new AdS7 ×M3 solutions have been identified in massive type IIA the-

ory [25]. It would be interesting to see weather the new supersymmetric AdS7 obtained

here could be related to the classification in [25]. We have also found a number of non-

supersymmetric AdS7 critical points and checked their stability by computing all of the

scalar masses. We have found that although the non-supersymmetric critical point origi-

nally found in pure gauged supergravity has been shown to be stable, it is unstable in the

presence of vector multiplet scalars. On the other hand, new stable non-supersymmetric

points are discovered here and should correspond to new non-trivial IR fixed points of the

(1, 0) SCFT.

An analytic RG flow solution interpolating between the SO(3) supersymmetric critical

point and the trivial point with SO(4) symmetry has also been given. To the best of

the author’s knowledge, this is the first example of holographic RG flows between two

supersymmetric fixed points of the (1, 0) field theory in six dimensions. We have further

studied supersymmetric flows to non-conformal field theories and identified the physical

flows. These would provide more general flow solutions than those considered in [12]

and [13] and could be useful in a holographic study of the dynamics of six-dimensional

gauge theories similar to the analysis of [26]. Finding a field theory interpretation of the

gravity solutions obtained in this paper is also interesting.

We end the paper with a short comment on a more general situation with n vector

multiplets. The (1, 0) field theory with E8 symmetry considered in [6] would need n =

248+ 3 vector multiplets. The resulting gauge group in this case is SO(4)×E8. The total
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3× (248+3) scalars, living on SO(3, 248+3)/SO(3)×SO(248+3) coset manifold, and the

dilaton transform as (3,3,1), (3,1,248) and (1,1,1) under SO(3)R×SO(3)×E8. We have

considered only (3,3,1) and (1,1,1) scalars which are E8 singlets. It is also interesting

to consider scalars in (3,1,248) representation. Our solutions given in this paper are of

course solutions of the theory with SO(4)×E8 gauge group by the group theory argument

of [18].
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1 Introduction

Gauged supergravities in various dimensions play an important role in both string com-

pactifications and in the AdS/CFT correspondence. In some cases, a consistent truncation

can be made in such a way that a lower dimensional gauged supergravity is obtained via

a dimensional reduction of a (gauged) supergravity in higher dimensions on spheres [1].

Embedding lower dimensional gauged supergravities is now of considerable interest since

this provides a method to uplift lower dimensional solutions to string/M theory.

It is known that sphere reductions of 10 or 11 dimensional supergravities give rise to

gauged supergravity in lower dimensions. Well-known examples of these consistent sphere

reductions include S7 and S4 reductions of eleven-dimensional supergravity and S5 reduc-

tion of type IIB theory giving rise to SO(8), SO(5) and SO(6) gauged supergravities in

four, seven and five dimensions, respectively [2–4]. According to the AdS/CFT correspon-

dence [5], seven-dimensional gauged supergravity is useful in the study of N = (2, 0) and

N = (1, 0) field theories in six dimensions [6–10]. The latter describe the dynamics of M5-

branes worldvolume in M-theory and are less-known on the field theory side. Therefore,

seven-dimensional gauged supergravity is expected to give some insight to six-dimensional

field theories via gauge/gravity correspondence.

In this paper, we are interested in obtaining N = 2 seven-dimensional gauged su-

pergravity with SO(4) gauged group and topological mass term. In seven dimensions, the

theory is obtained by coupling three vector multiplets to the pure SU(2) gauged supergrav-

ity constructed in [11]. This matter-coupled theory has been constructed in [12] and [13].

The SO(4) gauged supergravity has also been constructed in [14] by truncating the max-

imal N = 4 SO(5) gauged supergravity. All of these constructions have not included the

– 1 –
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topological mass term for the three-form field, and the resulting theory does not admit

AdS7 vacuum solutions. It has been shown in [15] that the topological mass term is pos-

sible. The massive gauged theory has been explored in [16] in which new AdS7 vacua and

the corresponding RG flow interpolating between these vacua have been given.

To give an interpretation to this solution in the string/M theory context, it is necessary

to embed this solution to 10 or 11 dimensions. The reduction ansatz of eleven-dimensional

supergravity giving rise to pure SU(2) gauged supergravity has been given in [17]. The

SO(4) gauged theory without topological mass term from a dimensional reduction of eleven-

and ten-dimensional supergravity has been given in [18] using the result of [19]. This result

is clearly not sufficient to uplift the solution in [16]. The dimensionally reduced theory

needs to include the topological mass term in order to admit AdS7 vacua. We will give an

extension to the result of [17, 18] by constructing SO(4) gauged theory including topological

mass term from a truncation of S4 reduction of eleven dimensional supergravity. This

provides an ansatz to uplift the 7-dimensional solutions of massive N = 2 SO(4) gauged

supergravity to eleven dimensions.

The paper is organized as follow. In section 2, we give relevant formulae for N = 2

SO(4) gauged supergravity in seven dimensions. The embedding of this theory in eleven

dimensions is obtained via a consistent truncation of the S4 reduction of eleven-dimensional

supergravity in section 3. We then use the resulting ansatz to uplift RG flow solutions from

the maximally supersymmetric AdS7 vacuum with SO(4) symmetry to non-conformal SYM

in section 4. We end the paper by giving some conclusions and comments in section 5.

2 SO(4) N = 2 gauged supergravity in seven dimensions

In this section, we give a description of SO(4) N = 2 gauged supergravity in seven dimen-

sions with topological mass term. All of the notations are the same as those in [15] to

which the reader is referred for further details.

The SO(4) gauged theory is obtained by coupling three vector multiplets to the N = 2

supergravity multiplet. The field contents are given respectively by

Supergravity multiplet : (eaµ, ψ
A
µ , A

i
µ, χ

A, Bµν , σ)

Vector multiplets : (Aµ, λ
A, φi)r (2.1)

where an index r = 1, 2, 3 labels the three vector multiplets. Curved and flat space-

time indices are denoted by µ, ν, . . . and a, b, . . ., respectively. Bµν and σ are a two-

form and the dilaton fields. The two-form field will be dualized to a three-form field

Cµνρ. Indices i, j = 1, 2, 3 label triplets of SU(2)R. The 9 scalars φir are parametrized

by SO(3, 3)/SO(3) × SO(3) ∼ SL(4,R)/SO(4) coset manifold. The corresponding coset

representative of SO(3, 3)/SO(3)× SO(3) will be denoted by

L = (L i
I , L

r
I ), I = 1, . . . , 6 . (2.2)

whose inverse is given by L−1 = (LI
i, L

I
r) where L

I
i = ηIJLJi and L

I
r = ηIJLJr. Indices

i, j and r, s are raised and lowered by δij and δrs, respectively while the full SO(3, 3) indices

I, J are raised and lowered by ηIJ = diag(−−−+++).

– 2 –
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The SO(4) ∼ SU(2)×SU(2) gauging is implemented by promoting the SU(2)×SU(2) ∼
SO(3)× SO(3) ⊂ SO(3, 3) to a gauge symmetry. The structure constants for the SU(2)×
SU(2) gauge group, which will appear in various quantities, are given by

fIJK = (g1ǫijk, g2ǫrst). (2.3)

To obtain SO(4) gauge group, we will later set g2 = g1. The bosonic Lagrangian can be

written in a form language as

L =
1

2
R ∗ I− 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) −

1

2
∗H(4) ∧H(4) −

5

8
∗ dσ ∧ dσ

−1

2
∗ P ir ∧ Pir +

1√
2
H(4) ∧ ω(3) − 4hH(4) ∧ C(3) − V ∗ I (2.4)

where the scalar potential is given by

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ
2 C . (2.5)

The constant h describes the topological mass term for the three-form C(3) with H(4) =

dC(3). The quantities appearing in the above Lagrangian are defined by

P ir
µ = LIr

(

δKI ∂µ + f K
IJ AJ

µ

)

Li
K , Crsi = f K

IJ LI
rL

J
sLKi,

Cir =
1√
2
f K
IJ LI

jL
J
kLKrǫ

ijk, C = − 1√
2
f K
IJ LI

iL
J
jLKkǫ

ijk,

aIJ = Li
ILiJ + Lr

ILrJ . (2.6)

The Chern-Simons three-form satisfying dω(3) = F I
(2) ∧ F I

(2) is given by

ω(3) = F I
(2) ∧AI

(1) −
1

6
f K
IJ AI

(1) ∧AJ
(1) ∧A(1)K (2.7)

with F I
(2) = dAI

(1) +
1
2f

I
JK AJ

(1) ∧AK
(1)

It is also useful to give the corresponding field equations

d
(

e−2σ ∗H(4)

)

+ 16hH(4) −
1√
2
F I
(2) ∧ F I

(2) = 0, (2.8)

5

4
d ∗ dσ − 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) + e−2σ ∗H(4) ∧H(4)

+

[

1

4

(

CirCir −
1

2
C2

)

+ 2
√
2he

3

2
σC − 64h2e4σ

]

ǫ(7) = 0 (2.9)

D(eσaIJ ∗ F I
(2)) +

1√
2
H(4) ∧ F J

(2) + ∗P irf K
IJ LI

rLiK = 0 (2.10)

D ∗ P ir − eσLi
IL

r
J ∗ F I

(2) ∧ F J
(2)

− ∗ I
[√

2e−σCjrC
rskǫijk + 4

√
2he

3σ
2 Cir

]

= 0 . (2.11)

The Yang-Mills equation (2.10) can be written in terms of Cir and Cirs by using the

relation

f K
IJ LI

rLiK = − 1

2
√
2
ǫijkCjrLk

J − CirsLsJ . (2.12)

– 3 –
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In obtaining the scalar equation (2.11), we have used the projections in the variations of

scalars as in [12]

δLi
I = Xi

rL
r
I +Xi

jL
j
I ,

δLr
I = XrsLsI +XriLiI (2.13)

which lead to

δC2 = 6
√
2CCirXir,

δ(CirCir) = 4
√
2CirC

rsjXk
sǫ

ijk − 2
√
2

3
CirCX

i
r . (2.14)

We finally give supersymmetry transformations for fermions with all fermionic fields

vanishing. These are given by

δψµ = 2Dµǫ−
√
2

30
e−

σ
2Cγµǫ−

1

240
√
2
e−σHρσλτ

(

γµγ
ρσλτ + 5γρσλτγµ

)

ǫ

− i

20
e

σ
2 F i

ρσσ
i (3γµγ

ρσ − 5γρσγµ) ǫ−
4

5
he2σγµǫ, (2.15)

δχ = −1

2
γµ∂µσǫ−

i

10
e

σ
2 F i

µνσ
iγµνǫ− 1

60
√
2
e−σHµνρσγ

µνρσǫ

+

√
2

30
e−

σ
2Cǫ− 16

5
e2σhǫ, (2.16)

δλr = −iγµP ir
µ σ

iǫ− 1

2
e

σ
2 F r

µνγ
µνǫ− i√

2
e−

σ
2Cirσiǫ (2.17)

where SU(2)R doublet indices A,B, . . . on spinors are suppressed. σi are the usual Pauli

matrices.

3 Seven dimensional N = 2 gauged supergravity from eleven dimensions

We now construct a reduction ansatz for embedding SO(4) N = 2 gauged supergravity

mentioned in the previous section in eleven dimensions. The ansatz will be obtained from

a consistent truncation of the S4 reduction of eleven-dimensional supergravity giving rise

to the maximal N = 4 SO(5) gauged supergravity in seven dimensions. To obtain the

topological mass term, we will impose the so-called odd-dimensional self-duality as in [17].

3.1 N = 4 SO(5) gauged supergravity from seven dimensions

To set up the notations and make the paper self-contained, we briefly repeat the S4 re-

duction of eleven-dimensional supergravity [3, 20]. We will work in the notations of [19]

and deal mainly with bosonic fields. The field content of eleven-dimensional supergravity

consists of the graviton ĝMN , gravitino ψ̂M and a four-form field F̂(4). Eleven-dimensional

space-time indices are denoted by M,N = 0, 1, . . . , 10.

The S4 reduction is characterized by the following ansatz

dŝ211 = ∆
1

3ds27 +
1

g2
∆− 2

3T−1
ij DµiDµj , (3.1)
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F̂(4) =
1

4!
ǫi1...i5

[

4

g3
∆−2µmµnT i1mDT i2n ∧Dµi3 ∧Dµi4 ∧Dµi5

+
6

g2
∆−1T i5jµjF i1i2

(2) ∧Dµi3 ∧Dµi4 − 1

g3
∆−2Uµi1Dµi2 ∧ . . . ∧Dµi5

]

−Tij ∗ Si
(3)µ

j +
1

g
Si
(3) ∧Dµi (3.2)

where the quantities appearing in the above equations are defined by

U = 2TijTjkµ
iµk −∆Tii, ∆ = Tijµ

iµj , µiµi = 1,

F ij
(2) = dAij

(1) + gAik
(1) ∧A

kj
(1), Dµi = dµi + gAij

(1)µ
j ,

DTij = dTij + gAik
(1)Tkj + gAjk

(1)Tik . (3.3)

The symmetric matrix Tij , i, j = 1, . . . , 5 with unit determinant parametrize the

SL(5,R)/SO(5) coset manifold.

The bosonic field content of N = 4 gauged supergravity is given by the metric gµν ,

ten vectors Aij
(1) = A

[ij]
(1) gauging the SO(5) gauge group, five three-form fields Si

(3) and

four-teen scalars Tij . The corresponding field equations are given by

D(Tij ∗ Sj
(3)) = F ij

(2) ∧ S
j
(3), (3.4)

H i
(4) = gTij ∗ Sj

(3) +
1

8
ǫij1...j4F

j1j2
(2) ∧ F j3j4

(2) , (3.5)

D(T−1
ik T−1

jl ∗ F ij
(2)) = −2gT−1

i[k ∗DTl]i −
1

2g
ǫi1i2i3klF

i1i2
(2) ∧H i3

(4)

+
3

2g
δj1j2j3j4i1i2kl

F i1i2
(2) ∧ F j1j2

(2) ∧ F j3j4
(2) − Sk

(3) ∧ Sl
(3), (3.6)

D(T−1
ik ∗DTkj) = 2g2 (2TikTkj − TkkTij) ǫ(7) + T−1

im T−1
kl ∗ Fml

(2) ∧ F
kj
(2)

+Tjk ∗ Sk
(3) ∧ Si

(3) −
1

5
δij

[

2g2
(

2TklTkl − (Tkk)
2
)

ǫ(7)

+T−1
nmT

−1
kl ∗ Fml

(2) ∧ F kn
(2) + Tkl ∗ Sk

(3) ∧ Sl
(3)

]

(3.7)

where

H i
(4) = DSi

(3) = dSi
(3) + gAij

(1) ∧ S
j
(3) . (3.8)

All of these equation can be obtained from the Lagrangian

L7 = R ∗ I− 1

4
T−1
ij ∗DTjk ∧ T−1

kl DTli −
1

4
T−1
ik T−1

jl ∗ F ij
(2) ∧ F

kl
(2) −

1

4
Tij ∗ Si

(3) ∧ S
j
(3)

+
1

2g
Si
(3) ∧H i

(4) −
1

8g
ǫij1...j4S

i
(3) ∧ F

j1j2
(2) ∧ F j3j4

(2) +
1

g
Ω(7) − V ∗ I (3.9)

where Ω(7) is the Chern-Simens three-form whose explicit form can be found in [22]. The

scalar potential for Tij is given by

V = g2
(

TijTij −
1

2
(Tii)

2

)

. (3.10)
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We have not given Einstein equation since we will not consider Einstein equation in

this paper. The consistency of the full truncation, including the Einstein equation, to

N = 2 SO(4) gauged supergravity is guaranteed from the consistency of the S4 reduction.

For completeness, we also repeat supersymmetry transformations of fermionic fields ψµ

and λî. Indices î, ĵ = 1, . . . , 5 are vector indices of the composite SO(5)c symmetry. Addi-

tionally, both ψµ and λî transform as a spinor under SO(5)c with the condition Γîλî = 0,

but we have omitted the SO(5)c spinor indices to make the following expressions more com-

pact. The SO(5)c gamma matrices will be denoted by Γî. The associated supersymmetry

transformations are given by [22]

δψµ = Dµǫ−
1

20
gTî̂iγµǫ−

1

40
√
2

(

γ νρ
µ − 8δνµγ

ρ
)

F îĵ
νρΓîĵǫ

− 1

60

(

γ νρσ
µ − 9

2
δνµγ

ρσ

)

SîνρσΓ
îǫ, (3.11)

δλî =
1

16
√
2
γµν

(

Γk̂l̂Γî −
1

5
ΓîΓk̂l̂

)

F k̂l̂
µνǫ+

1

2
γµΓĵPµîĵǫ

− 1

120
γµνρ

(

Γ ĵ

î
− 4δĵ

î

)

Sĵµνρǫ+
1

2
g

(

Tîĵ −
1

5
Tk̂k̂δîĵ

)

Γĵǫ (3.12)

where

F îĵ
(2) = Π î

i Π
ĵ
j F

ij
(2), Tîĵ = (Π−1) i

î
(Π−1) j

ĵ
δij ,

Dǫ = dǫ+
1

4
ωabγ

abǫ+
1

4
QîĵΓ

îĵǫ, T ij = (Π−1) i
î
(Π−1) j

ĵ
δîĵ ,

P(̂iĵ) +Q[̂iĵ] = (Π−1) i
î

(

δji d+ gA j
(1)i

)

Π k̂
j δĵk̂, S(3)̂i = (Π−1) i

î
S(3)i (3.13)

with Π î
i being the SL(5,R)/SO(5) coset representative.

3.2 SO(4) N = 2 gauged supergravity from S4 reduction

We now truncate the N = 4 gauged supergravity to N = 2 theory with topological mass

term for the three-form field and SO(4) gauge group. In this process, the gauge group SO(5)

is broken to SO(4). We will split the index i as (α, 5) with α = 1, . . . , 4. Furthermore,

we will set T5α, S
α and F 5α to zero. The S4 coordinates µi will be chosen to be µi =

(cos ξµα, sin ξ) in which µα satisfy µαµα = 1. Similar to µi, µα are coordinates on S3. The

scalar truncation is given by Tij = (Tαβ , T55) = (XT̃αβ , X
−4) with T̃αβ being unimodular.

The scalar field X will be related to the N = 2 dilaton.

With these truncations, the three-form field equations (3.4) and (3.5) become

D(X−4 ∗ S5
(3)) = 0 (3.14)

dS5
(3) = gX−4 ∗ S5

(3) +
1

8
ǫαβγδF

αβ
(2) ∧ F

γδ
(2) . (3.15)

We have used ǫ5αβγδ = ǫαβγδ. From (3.14), we see that the four-form X−4 ∗ S5
(3) is closed.

We will denote it by

X−4 ∗ S5
(3) = −F(4) = −dC(3) (3.16)
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or

S5
(3) = X4 ∗ F(4) . (3.17)

To satisfy equation (3.15), we impose the odd-dimensional self-duality condition

S5
(3) = −gC(3) + ω(3) (3.18)

or

X4 ∗ F(4) = −gC(3) + ω(3) (3.19)

where ω(3), satisfying dω(3) =
1
8ǫαβγδF

αβ
(2) ∧ F

γδ
(2), is the Chern-Simons term given by

ω(3) =
1

8
ǫαβγδ

(

Fαβ
(2) ∧A

γδ
(1) −

1

3
gAαβ

(1) ∧A
γκ
(1) ∧A

κδ
(1)

)

. (3.20)

Equations for Sα
(3) are trivially satisfied.

For the Yang-Mills equations, it can be verified that setting F 5α
(2) = 0 satisfies their

field equations. For Fαβ
(2) , we find

D
(

X−2T̃−1
αγ T̃

−1
βδ ∗ F γδ

(2)

)

= −2gT̃−1
γ[α ∗DT̃β]γ +

1

2
ǫαβγδF

γδ
(2) ∧ F(4) (3.21)

where we have used the odd-dimensional self-duality condition.

We then consider scalar equations. Equations for T5α are trivially satisfied while the

T55 equation gives rise to the dilaton eqiation

d(X−1 ∗ dX) =
1

5
X4 ∗ F(4) ∧ F(4) −

1

20
X−2T̃−1

αβ T̃
−1
γδ ∗ F βδ

(2) ∧ F
αγ
(2)

− 1

10
g2

[

4X−8 − 3X−3T̃αα − 2X2

(

T̃αβT̃αβ − 1

2
(T̃αα)

2

)]

ǫ(7). (3.22)

For Tij = Tαβ , we find

D(T̃−1
αγ ∗DT̃γβ) + δαβd(X

−1 ∗ dX) = X−2T̃−1
αγ T̃

−1
δκ ∗ F γκ

(2) ∧ F
δβ
(2)

+2g2
[

X2
(

2T̃αγ T̃γβ − T̃γγ T̃αβ

)

−X−3T̃αβ

]

ǫ(7)

+δαβ

[

1

5
X4 ∗ F(4) ∧ F(4) −

1

5
X−2T̃−1

γδ T̃
−1
κλ ∗ F δλ

(2) ∧ F
κγ
(2)

−2

5
g2

[

2X2

(

T̃γδT̃γδ −
1

2
(T̃γγ)

2

)

+X−8 − 2X−3T̃γγ

]

ǫ(7)

]

. (3.23)

We can now use the X equation (3.22) and end up with

D(T̃−1
αγ ∗DT̃γβ) = 2g2

[

2X2

(

T̃αγ T̃γβ − 1

2
T̃γγ T̃αβ

)

−X−3T̃αβ

]

ǫ(7)

+X−2T̃−1
αγ T̃

−1
δκ ∗ F γκ

(2) ∧ F
δβ
(2) + δαβ

[{

5

2
g2X2

(

T̃γδT̃γδ −
1

2
(T̃γγ)

2

)

+
1

2
g2X−3T̃γγ

}

ǫ(7) −
1

4
X−2T̃−1

γδ T̃
−1
κλ ∗ F δλ

(2) ∧ F
κγ
(2)

]

(3.24)
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With all of the above truncations, we find the following ansatz for the metric and the

four-form field

dŝ211 = ∆
1

3ds27 +
2

g2
∆− 2

3X3
[

X cos2 ξ +X−4 sin2 ξT̃−1
αβ µ

αµβ
]

dξ2

− 1

g2
∆− 2

3X−1T̃−1
αβ sin ξµαdξDµβ +

1

2g2
∆− 2

3X−1T̃−1
αβ cos2 ξDµαDµβ, (3.25)

F̂(4) = F(4) sin ξ +
1

g
X4 cos ξ ∗ F(4) ∧ dξ +

1

g3
∆−2U cos5 ξdξ ∧ ǫ(3)

+
1

3!g3
ǫαβγδ∆

−2X−3 sin ξ cos4 ξµκ
[

5T̃ακX−1dX +DT̃ακ
]

∧Dµβ ∧Dµγ ∧Dµδ

+
1

2g3
ǫαβγδ∆

−2 cos3 ξµκµλ
[

cos2 ξX2T̃ακDT̃ βλ − sin2 ξX−3δβλDT̃ακ

−5 sin2 ξT̃ακX−4δβλdX
]

∧Dµγ ∧Dµδ ∧ dξ + 1

2g2
cos ξǫαβγδ ×

×
[

1

2
cos ξ sin ξX−4Dµγ−

(

X−4 sin2 ξµγ+X2 cos2 ξT̃ γκµκ
)

dξ

]

∧Fαβ
(2) ∧Dµ

δ (3.26)

where

U = sin2 ξ
(

X−8 −X−3T̃αα

)

+ cos2 ξµαµβ
(

2X2T̃αγ T̃γβ −X2T̃αβT̃γγ −X−3T̃αβ

)

ǫ(3) =
1

3!
ǫαβγδµ

αDµβ ∧Dµγ ∧Dµδ . (3.27)

All of the above equations reduce to the pure N = 2 gauged supergravity with SU(2)

gauge group for T̃αβ = δαβ after using various relations given in [21]. Note that for

T̃αβ = δαβ , equation (3.24) gives

∗ Fαγ
(2) ∧ F

γβ
(2) =

1

4
δαβ ∗ F γδ

(2) ∧ F
δγ
(2) (3.28)

which means that the SO(4) gauge fields Aαβ
(1) must be truncated to those of SU(2) satisfying

Fαβ
(2) = ±1

2ǫαβγδF
γδ
(2). This is expected since there are only three vector fields in the pure

gauged supergravity which only admit SU(2) gauging.

The above equations can be obtained from the Lagrangian

L7 = R ∗ I− 1

4
X−2T̃−1

αγ T̃
−1
βδ ∗ Fαβ

(2) ∧ F
γδ
(2) −

1

4
T̃−1
αβ ∗DT̃βγ ∧ T̃−1

γδ DT̃δα

−1

2
X4 ∗ F(4) ∧ F(4) +

1

8
ǫαβγδC(3) ∧ Fαβ

(2) ∧ F
γδ
(2) − 5X−2 ∗ dX ∧ dX

−1

2
gF(4) ∧ C(3) − V ∗ I (3.29)

where the scalar potential is given by

V =
1

2
g2

[

X−8 − 2X−3T̃αα + 2X2

(

T̃αβT̃αβ − 1

2
T̃ 2
αα

)]

. (3.30)

For T̃αβ = δαβ, we find T̃αα = T̃αβT̃αβ = 4. The above potential becomes

V =
1

2
g2

(

X−8 − 8X−3 − 8X2
)

(3.31)
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which is exactly the same as that given in [17] up to a redefinition of the coupling constant g.

We can also check another truncation namely to U(1)×U(1) gauged supergravity. To

preserve SO(2)× SO(2) symmetry, we take the scalar matrix to be

T̃αβ =

















e
φ1
√

2

e
φ1
√

2

e
− φ1

√

2

e
− φ1

√

2

















(3.32)

and define X = e
− φ2

√

10 . The potential (3.30) becomes

V =
1

2
g2

[

e
8φ2
√

10 − 8e
− 2φ2

√

10 − 4e
3φ2
√

10

(

e
φ1
√

2 + e
− φ1

√

2

)]

(3.33)

which takes the same form as that given in [23]. Finally, it should be remarked that the

three-form field equation coming from the Lagrangian (3.29) needs to be supplemented

with the odd-dimensional self-duality condition as in the pure SU(2) gauged supergravity

discussed in [17].

The nine scalars, parametrized by T̃αβ , in the dimensionally reduced theory are encoded

in the SL(4,R)/SO(4) coset manifold. Therefore, in order to compare the result with

gauged N = 2 SO(4) supergravity given in the previous section, we need to use the relation

between SL(4,R)/SO(4) and SO(3, 3)/SO(3)×SO(3) coset manifolds. This is given in [15].

For the details of this mapping, the reader is referred to [15]. We will only give the

SO(3, 3)/SO(3)× SO(3) coset representative LA
I = (Li

I , L
r
I) and that of SL(4,R)/SO(4),

Vα
R with R = 1, . . . , 4,

LA
I =

1

4
Γαβ
I ηARSVR

αVS
β (3.34)

where ΓI and ηA are chirally projected SO(3, 3) gamma matrices.

It can be shown that the scalar potential can be written as

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ
2 C

=
1

8
e−σ

(

TαβTαβ − 1

2
T 2
αα

)

+ 2Tααhe
3σ
2 + 16h2e4σ (3.35)

This form is similar to the potential (3.30) if T̃αβ is identified with Tαβ . Note that Tαβ and

C, Cir contain the gauge coupling g1 and g2. In order to compare the Lagrangian of the

two theories, we need to multiply the Lagrangian (2.4) by two and separate the coupling

constants g1 and g2 from the structure constants fIJK = (g1ǫijk, g2ǫrst). With these, the

two scalar potentials are exactly the same if we identify

g2 = g1 = −16h = −2g . (3.36)

We also need to redefine the following fields in the Lagrangian (2.4):

H(4) →
F(4)√

2
, C(3) →

C(3)√
2
,
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F I =
1

4
ΓI
αβF

αβ
(2) or Fαβ

(2) = −1

2
ǫαβγδΓI

γδF
I

X = e−
σ
2 . (3.37)

By using (3.34), it can also be checked that

T̃−1
αγ T̃

−1
βδ =

1

4
ΓI
αβΓ

J
γδ

(

Li
ILiJ + Lr

ILrJ

)

. (3.38)

The field equations from the two theories also match.

We now move to supersymmetry transformations of fermions. The maximal N = 4

theory contains the gravitini ψµ and the spin-12 fields λî. The latter is decomposed into

(λR, λ5). The SO(5)c Γî gamma matrices are accordingly decomposed as Γî = (ΓR,Γ5).

Γ5 = Γ1Γ2Γ3Γ4 acts as the chirality matrix of SO(4). Following [18], we make the truncation

ǫ− = ψ−
µ = λ−5 = λ+α = 0 . (3.39)

ǫ± satisfy Γ5ǫ± = ±ǫ± with ǫ = ǫ++ ǫ−. We will now drop ± superscript from ǫ, λ and ψµ.

In accordance with the bosonic truncation T ij = (Tαβ , T 55) = (XT̃αβ , X−4), we trun-

cate the SL(5,R)/SO(5) coset representative as Π î
i = (Π R

α ,Π 5̂
5 ). With the identification

Π R
α = X− 1

2V R
α and Π 5̂

5 = X2, we can write T̃αβ in term of SL(4,R)/SO(4) coset repre-

sentative V R
α as

T̃αβ = (V−1) α
R (V−1) β

S δ
RS and T̃RS = (V−1) α

R (V−1) β
S δαβ . (3.40)

We then find that equations (3.11) and (3.12) become

δψµ = Dµǫ−
1

20
g(XT̃RR +X−4)γµǫ−

1

40
√
2
X−1

(

γ νρ
µ − 8δνµγ

ρ
)

ΓRSF
RS
νρ ǫ

− 1

60
X−2

(

γ νρσ
µ − 9

2
δνµγ

ρσ

)

S5
νρσǫ, (3.41)

δλR =
1

4
γµΓRX

−1∂µXǫ+
1

2
ΓSγµPRSǫ+

1

16
√
2
X−1γµν

(

ΓSTΓR − 1

5
ΓRΓST

)

FST
µν ǫ

− 1

10
gX−4ΓRǫ−

1

2
gX

(

T̃RS − 1

5
T̃TT δRS

)

ΓSǫ− 1

120
X−2γµνρΓRS

5
µνρǫ . (3.42)

The constraint Γîλî = 0 imposes the condition λ+5 = −ΓRλ−R. Therefore, the indepen-

dent fields will be ψµ and λR. This is the reason for excluding δλ5 in the above equations.

We then identify ΓRλR with χ and λ̂R = λR − 1
4ΓRΓ

SλS with λr in (2.17). Note that λ̂R
has only three independent components due to the condition ΓRλ̂R = 0.

With these and the odd-dimensional self-duality, we end up with, after some gamma

matrix algebra,

δψµ = Dµǫ−
1

20
gXT̃γµǫ−

1

40
√
2
X−1

(

γ νρ
µ − 8δνµγ

ρ
)

ΓRSF
RS
νρ ǫ

− 1

20
gX−4γµǫ−

1

480
X2

(

3γ νρστ
µ − 8δνµγ

ρστ
)

Fνρστ ǫ, (3.43)
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δχ = X−1γµ∂µXǫ−
2

5
gX−4ǫ+

1

10
gXT̃RRǫ

− 1

120
X2γµνρσFµνρσǫ−

1

20
√
2
X−1γµνΓRSF

RS
µν ǫ, (3.44)

δλ̂R = −1

2
γµΓSPµRSǫ−

1

8
gXT̃SSΓRǫ+

1

2
gXT̃RSΓ

Sǫ

− 1

8
√
2
X−1γµνΓS

(

FRS
µν +

1

2
ǫRSTUF

TU
µν

)

ǫ . (3.45)

In the above equations, we have used the following definitions

PRS = (V−1)α(R

(

δβαd+ gA β
(1)α

)

V T
β δS)T ,

QRS = (V−1)α[R

(

δβαd+ gA β
(1)α

)

V T
β δS]T ,

Dǫ = dǫ+
1

4
ωabγ

ab +
1

4
QRSΓ

RS . (3.46)

Notice that with our convention for Γ5ǫ = ǫ, ΓRS is anti-self dual. The field strength

FRS
(2) appearing in (3.43) and (3.44) must be accordingly anti-self dual. This should be

identified with the SU(2) field strength F i
(2) in (2.15) and (2.16). On the other hand, the

self dual part of FRS
(2) appears in (3.45) and should be identified with F r

(2) in (2.17).

In more detail, after using gamma matrix identities such as γµγ
νρ = γ νρ

µ +2δ
[ν
µ γρ], we

can rewrite equation (2.15) as

δψµ = 2Dµǫ−
√
2

30
e−

σ
2Cγµǫ−

1

120
√
2
e−σHρσλτ

(

3γ ρσλτ
µ − 8δρµγ

σλτ
)

ǫ

− i

10
e

σ
2 F i

ρσσ
i
(

γ ρσ
µ − 8δρµγ

σ
)

ǫ− 4

5
he2σγµǫ . (3.47)

Using the relation C = − 3
2
√
2
g1T̃ given in [15] with the relation g2 = g1 = −2g and iden-

tifying FRSΓ
RS = 2

√
2iF iσi, we find that equation (3.43) matches with (3.47). Similarly,

equation (3.44) matches with (2.16). Note that in order to match the gravitino variation,

we need to multiply (3.43) by two.

Comparing (2.17) and (3.45) is more complicated since various terms are not related

to each other in a simple way. For example, we should write the anti-self dual part of ΓRS

in terms of the anti-self dual t’ Hooft symbols η̄iRS and Pauli matrices σi

Γ
(−)
RS = iσiη̄iRS (3.48)

and similarly for the self dual part

Γ
(+)
RS = iσrηrRS . (3.49)

Accordingly, we should identify

F i =
1

2
η̄iRSF

RS and F r =
1

2
ηrRS

(

FRS
µν +

1

2
ǫRSTUF

TU
µν

)

. (3.50)

Equation (3.45) should then match with (2.17), but we refrain from giving the full detail

here due to the complicated algebra.
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4 Embedding seven-dimensional RG flow to eleven dimensions

In this section, we will use the reduction ansatz obtained in the previous section to uplift

some seven-dimensional solutions. The dimensional reduction gives rise to the condition

g2 = g1. This makes the supersymmetric AdS7 critical point with SO(3)diag symmetry

found in [16] disappears. Accordingly, the flow solution given in [16] cannot be uplifted

to eleven dimensions with the present reduction ansatz. However, to give examples of the

uplifted solutions, we will study other solutions in the case of g2 = g1.

4.1 Uplifting AdS7 solutions

We now further truncate the nine scalars given by T̃αβ to one scalar invariant under

SO(3)diag ⊂ SO(3)×SO(3) ∼ SO(4). This scalar sector has already been studied in [16]. We

will give more solutions in this section. Under SO(3)diag, the nine scalars transform as 1+

3+5. There is only one singlet. It can be checked that the SO(3)diag singlet correspond to

VR
α =















e
φ

2

e
φ

2

e
φ

2

e−
3φ

2















or T̃αβ =















eφ

eφ

eφ

e−3φ















. (4.1)

T̃αβ can be written more compactly as T̃αβ = (δabe
φ, e−3φ) for a, b = 1, 2, 3. By using (3.34)

and the explicit form of ΓI and ηA given in [15], it is easy to verify that this V precisely

gives the SO(3, 3)/SO(3)× SO(3) coset representative L used in [16].

Using this and the relation X = e−
σ
2 , we find the scalar potential

V =
1

2
g2e−σ

[

e5σ+e−6φ − 6e−2φ − 3e2φ − 2e
5

2
σ−3φ

(

1 + 3e4φ
)]

. (4.2)

This potential admits two AdS7 critical points given by

σ = φ = 0, V0 = −480h2 (4.3)

σ = − 1

10
ln 2, φ = −1

4
ln 2, V0 = −160× 2

3

5h2 (4.4)

where we have used g = 8h or equivalently g1 = −16h as given in [16]. By using the BPS

equations given in [16], which are repeated below, we see that the second critical point is

non-supersymmetric. Scalar masses at this critical point can be computed to be

SO(3)diag m2L2

1 −12

1 12

3 0

5 −12

– 12 –
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where the AdS7 radius is given by L =
√

− 15
V0
. The three massless scalars are the expected

Goldstone bosons corresponding to the symmetry breaking of SO(4) to SO(3). One of the 1

and 5 scalars have masses below the BF boundm2L2 = −9, so this critical point is unstable.

The first critical point is the trivial point preserving all supersymmetries and the full

SO(4) gauge symmetry. The scalar masses can be found in [16]. We will now uplift this

AdS7 vacuum to eleven dimensions. We begin with the coordinates µα = (cosψµ̂a, sinψ)

in which µ̂aµ̂a = 1. Since σ = φ = 0, we then find ∆ = 1 and

ds211 = e
2r

LUV dx21,5 + dr2 +
1

32h2

[

dξ2 +
1

4
cos2 ξ

(

dψ2 + cos2 ψdΩ2
2

)

]

(4.5)

F̂(4) = − 3

256h3
cos5 ξdξ ∧ ǫ(3) (4.6)

where dΩ2
2 is the metric on the two-sphere. The eleven dimensional geometry is given by

AdS7×S4. Turning on the dilaton σ would deform the four-sphere but leave the S3 inside

invariant. If φ, σ 6= 0, the metric would be further deformed in such a way that the S2 part

described by dΩ2
2 is invariant. The unbroken symmetry in this case is the SO(3) isometry

of this S2 identified with the unbroken SO(3)diag. The SO(3) critical point is however

unstable. Therefore, we will not consider AdS7 solution with SO(3) symmetry.

4.2 Uplifting RG flows to non-conformal SO(3) super Yang-Mills

To give more examples, we will study RG flow solutions to non-conformal Super Yang-Mills

theories in the IR. We will work in the theory of section 2. With g2 = g1 and the standard

domain wall metric ansatz ds27 = eA(r)dx21,5+dr
2, the BPS equations taken from [16] become

φ′ = −4e−
σ
2
−3φ

(

e4φ − 1
)

h, (4.7)

σ′ =
8

5
e−

σ
2
−3φ

(

1 + 3e4φ − 4e
5

2
σ+3φ

)

h, (4.8)

A′ =
4

5
e−

σ
2
−3φ

(

1 + 3e4φ + e
5

2
σ+3φ

)

(4.9)

in which d
dr is denoted by ′. After changing to the new coordinate r̃ given by dr̃

dr = e−
σ
2 ,

we find the solution

16hr̃ = ln

[

1 + eφ

1− eφ

]

− 2 tan−1 φ+ C1, (4.10)

σ =
2

5

[

φ− ln
[

1 + 12C2 − 12C2e
4φ
]]

, (4.11)

A =
1

4

[

φ− 2 ln(1− e4φ)
]

− 1

8
σ . (4.12)

The solution interpolates between an AdS7 in the UV, r̃ ∼ r → ∞, and a domain wall in

the IR, 4hr̃ → C̃, for a constant C̃.

At the UV, the solution becomes

σ ∼ φ ∼ e−16hr ∼ e
− 4r

LUV , A ∼ 4hr ∼ r

LUV
. (4.13)

The eleven-dimensional metric is given by (4.5).
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In the IR, we find that φ blows up as

φ ∼ − ln(4hr̃ − C̃) (4.14)

for a constant C̃. The behaviour of σ depends on the value of the integration constant C2.

For C2 = 0, we find

σ ∼ −2

5
ln(4hr̃ − C̃) ∼ −1

2
ln(4hr − C) (4.15)

where we have used the relation between r̃ and r in the IR limit with C being another

integration constant. The seven-dimensional metric is given by

ds27 = (4hr − C)2dx21,5 + dr2 . (4.16)

For C2 6= 0, the solution becomes

σ ∼ 6

5
ln(4hr̃ − C̃) ∼ 3

4
ln(4hr − C),

ds27 = (4hr − C)
3

4dx21,5 + dr2 . (4.17)

Both cases give V → −∞, so the solution is physical by the criterion of [24].

We now look at the eleven-dimensional geometry. For C2 = 0 and C2 6= 0, the eleven

dimensional metric is given respectively by

ds211 =
(

1− sin2 ξ cos2 ψ
)− 1

3

[

(

14

3
hρ

)2

dx21,5 + dρ2

]

+
1

32h2
(

1− sin2 ξ cos2 ψ
)− 2

3 ×

×
[

(

14

3
hρ

)− 27

7

sin2 ξ cos2 ψdξ2 +
1

4
sin ξ sin(2ψ)

(

14

3
hρ

)− 1

2

dψdξ

+
1

4

(

14

3
hρ

)− 20

7

dψ2 +
1

4
cos2 ψ

(

14

3
hρ

) 10

7

dΩ2
2

]

, (4.18)

ds211 = (cos ξ cosψ)−
2

3

[

(

14

3
hρ

) 13

14

dx21,5 + dρ2

]

+
1

32h2
(cos ξ cosψ)−

4

3 ×

×
[

(

14

3
hρ

) 17

14
(

1− sin2 ξ cos2 ψ
)

dξ2 − 1

4
sin ξ sin(2ψ)

(

14

3
hρ

) 7

4

dξdψ

+
1

4
cos2 ξ

(

14

3
hρ

) 10

7
(

sin2 ψdψ2 + cos2 ψdΩ2
2

)

]

(4.19)

where
(

14
3 hρ

)
6

7 = 4hr − C.

As expected, when turning on φ and σ, the warped factors involve coordinates (ξ, ψ).

The S4 is then deformed leaving the S2 intact. If only σ 6= 0, the S3 part of the internal

metric would be invariant as pointed in [17]. The deformation with only φ 6= 0 is not

possible since the BPS equation for σ would imply φ = 0 as pointed out in [16].
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5 Conclusions

In this paper, we have constructed N = 2 SO(4) gauged supergravity in seven dimen-

sions with topological mass term. The resulting theory admit AdS7 vacua and could be

useful in the context of the AdS/CFT correspondence. The resulting reduction ansatz

has been found by truncating the S4 reduction leading to N = 4 SO(5) gauged super-

gravity and can be used to uplift seven-dimensional solutions to eleven dimensions. We

have also constructed new seven-dimensional RG flow solutions and uplifted the resulting

solutions to eleven dimensions. The flows can be interpreted as deformations of the UV

N = (1, 0) SCFT in six dimensions with SO(4) symmetry to non-conformal SYM with

SO(3)diag symmetry. These deformations are driven by vacuum expectation values of di-

mension 4 operators. Additionally, the result of this paper can be used to uplift flows to

SO(2) non-conformal gauge theories studied in [16] for g2 = g1.

However, the RG flow between two supersymmetric AdS7 critical points recently found

in [16] cannot be uplifted by using the reduction ansatz constructed here. It would be inter-

esting to find an embedding of this solution in 10 or 11 dimensions. It is also interesting to

extend the reduction ansatz given here to non-compact gauge groups SO(3, 1) and SO(2, 2).

The internal manifold should involve hyperbolic spaces H3,1 and H2,2, respectively. Other

possible non-compact gauge groups are SL(3,R), SO(2, 1) and SO(2, 2)×SO(2, 1). It would

be very interesting to find higher dimensional origins for these gauge groups as well. Finally,

more insight to six-dimensional gauge theories might be gained from studying these seven-

dimensional gauged supergravities via AdS7/CFT6 correspondence. We hope to come back

to these issues in future works.
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Abstract: Half-maximal gauged supergravity in seven dimensions coupled to n vector

multiplets contains n+3 vectors and 3n+1 scalars parametrized by R+×SO(3, n)/SO(3)×
SO(n) coset manifold. The two-form field in the gravity multiplet can be dualized to a three-

form field which admits a topological mass term. Possible non-compact gauge groups take

the form of G0×H ⊂ SO(3, n) with a compact group H. G0 is one of the five possibilities;

SO(3, 1), SL(3,R), SO(2, 2), SO(2, 1) and SO(2, 2) × SO(2, 1). We investigate all of these

possible non-compact gauge groups and classify their vacua. Unlike the gauged supergravity

without a topological mass term, there are new supersymmetric AdS7 vacua in the SO(3, 1)

and SL(3,R) gaugings. These correspond to new N = (1, 0) superconformal field theories

(SCFT) in six dimensions. Additionally, we find a class of AdS5 × S2 and AdS5 × H2

backgrounds with SO(2) and SO(2)×SO(2) symmetries. These should correspond to N = 1

SCFTs in four dimensions obtained from twisted compactifications of six-dimensional field

theories on S2 or H2. We also study RG flows from six-dimensional N = (1, 0) SCFT to

N = 1 SCFT in four dimensions and RG flows from a four-dimensional N = 1 SCFT to a

six-dimensional SYM in the IR. The former are driven by a vacuum expectation value of

a dimension-four operator dual to the supergravity dilaton while the latter are driven by

vacuum expectation values of marginal operators.
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1 Introduction

Gauged supergravities play an important role in string/M theory compactification and

gauge/gravity correspondence. Generally, a gauge supergravity theory admits many types

of gauge groups namely compact, non-compact and non-semisimple groups, and differ-

ent types of gauge groups give rise to different vacuum structures. Gauged supergravity

theories may be accordingly classified into two categories by the vacua they admit. AdS

supergravities are theories admitting a maximally supersymmetric AdS space as a vacuum

solution while those with a half-maximally supersymmetric domain wall vacuum are called

domain-wall supergravities. The former is useful in the context of the AdS/CFT corre-

spondence [1], and the latter is relevant in the DW/QFT correspondence [2, 3].

The study of N = (1, 0) superconformal field theories (SCFT) in the context of

AdS7/CFT6 correspondence has originally done by orbifolding the AdS7 × S4 geometry
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of M-theory giving rise to the gravity dual of N = (2, 0) SCFT [4–6]. And, recently, many

AdS7 solutions to type IIA string theory have been identified in [7]. These backgrounds

are dual to N = (1, 0) SCFTs in six dimensions, and the holographic study of these SCFTs

has been given in [8]. Furthermore, a number of N = (1, 0) SCFTs in six dimensions have

been found and classified in the context of F-theory in [9]. It would be desirable to have

a description of these SCFT in terms of the gravity solutions to seven-dimensional gauged

supergravity. However, it has been pointed out in [10] that AdS7 solutions found in [7]

cannot be obtained from seven-dimensional gauged supergravity.

In the framework of seven-dimensional gauged supergravity, there are only a few re-

sults in the holography of N = (1, 0) SCFTs. It has been proposed in [11] that the

N = (1, 0) SCFTs arising in the M5-brane world-volume theories should be described by

N = 2 seven-dimensional gauged supergravity and its matter-coupled version. A non-

supersymmetric holographic RG flow within pure N = 2 gauged supergravity has been

studied in [12], and recently, new supersymmetric AdS7 critical points and holographic RG

flows between these critical points have been explored in [13]. The gauged supergravity

considered in [13] is the N = 2 gauged supergravity coupled to three vector multiplets

resulting in SO(4) ∼ SU(2)× SU(2) gauge group with two coupling constants for the two

SU(2)’s. When these couplings are equal, the theory can be embedded in eleven dimensions

by using the reduction ansatz recently obtained in [14].

To find more supersymmetric AdS7 backgrounds, in this paper, we will consider the

N = 2 gauged supergravity in seven dimensions coupled to a number of vector multiplets

with non-compact gauge groups. The gauged supergravity is obtained from coupling pure

N = 2 supergravity constructed in [15] to vector multiplets [16]. Furthermore, the two-

form field in the supergravity multiplet can be dualized to a three-form field [17]. It turns

out to be possible to add a topological mass term to this three-form field resulting in a

gauged supergravity with a massive three-form field [18]. The latter differs considerably

from the theory without topological mass in the sense that it is possible to have maximally

supersymmetric AdS7 backgrounds.

We will see that there are new AdS7 critical points for non-compact gauging of the

N = 2 supergravity with topological mass term. These provide more examples of AdS7

solutions with sixteen supercharges. We will also find that some non-compact gauge groups

admit AdS5 × S2 and AdS5 ×H2 geometries as a background solution. In the context of

twisted field theories, these solutions should describe a six-dimensional SCFT wrapped on

a two-dimensional Riemann surface. In the IR, the six-dimensional SCFT would flow to

another SCFT in four dimensions. These results give new AdS5 backgrounds dual to N = 1

four-dimensional SCFTs.

The holographic study of twisted field theories has originally been applied to N = 4

SYM [19]. Until now, the method has been applied to other dimensions, see for example [20–

23]. In [23], AdS5 solutions from a truncation of the maximal N = 4 gauged supergravity

in seven dimensions have been found. These AdS5 geometries correspond to a class of

N = 1 SCFTs in four dimensions obtained from M5-branes wrapped on complex curves.

In this paper, we will give more examples of these N = 1 SCFTs by finding new AdS5

geometries with eight supercharges in the half-maximal N = 2 gauged supergravity. We
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also give some examples of RG flows from six-dimensional SCFTs to these four-dimensional

SCFTs. Furthermore, we find an RG flow from a four-dimensional N = 1 SCFT in the UV

to a six-dimensional N = (1, 0) SYM in the IR. This flow gives another example of the

flows considered in [24] in which the flows from N = 4 SYM to six-dimensional N = (2, 0)

SCFT and N = 2∗ theory to five dimensional N = 2 SCFT have been studied.

The paper is organized as follow. In section 2, we describe N = 2 gauged supergravity

in seven dimensions to set up the notation and discuss all possible non-compact gauge

groups. These gauge groups will be studied in detail in section 3, 4, 5 and 6 in which

possible vacua and RG flow solutions will be given. In section 7, we give a summary of the

results and some conclusions.

2 Seven-dimensional N = 2 gauged supergravity coupled to n vector

multiplets

In this section, we give a description of the matter-coupled minimal N = 2 gauged super-

gravity in seven dimensions with topological mass term. All of the notations are the same

as those in [18] to which the reader is referred to for further details.

A general matter-coupled theory is constructed by coupling n vector multiplets to pure

N = 2 supergravity constructed in [15]. The supergravity multiplet (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ)

consists of the graviton, two gravitini, three vectors, two spin-1
2 fields, a two-form field and

a real scalar, the dilaton. The only matter mutiplet is the vector multiplet (Aµ, λ
A, φi)

consisting of a vector field, two gauginos and three scalars. We use the convention that

curved and flat space-time indices are denoted by µ, ν, . . . and m,n, . . ., respectively. Spinor

fields, ψAµ , χA, λA, and the supersymmetry parameter εA are symplectic-Majorana spinors

transforming as doublets of the R-symmetry USp(2)R ∼ SU(2)R. From now on, the SU(2)R

doublet indices A,B = 1, 2 will be dropped. Indices i, j = 1, 2, 3 label triplets of SU(2)R.

The supergravity theory coupled to n vector multiplets has SO(3, n) global symmetry.

The n vector multiplets will be labelled by an index r = 1, . . . n. There are then n + 3

vector fields in total. Accordingly, only a subgroup G of the global symmetry SO(3, n) of

dimension dimG ≤ n + 3 can be gauged. Possible gauge groups with structure constants

f K
IJ and gauge algebra

[TI , TJ ] = f K
IJ TK (2.1)

can be gauged provided that the SO(3, n) Killing form ηIJ , I, J = 1, . . . n+ 3, is invariant

under G

f L
IK ηLJ + f L

JK ηLI = 0 . (2.2)

Since ηIJ has only three negative eigenvalues, any gauge group can have three or less

compact generators or three or less non-compact generators. It follows from (2.2) that

the part of ηIJ corresponding to each simple subgroup Gα of G must be a multiple of the

Gα Killing form. Therefore, possible non-compact gauge groups take the form of G0 ×H
with a compact group H ⊂ SO(3,n) of dimension dimH ≤ (n + 3 − dimG0) [18]. The

G0 factor can only be one of the five possibilities: SO(3, 1), SL(3,R), SO(2, 1), SO(2, 2) ∼
SO(2, 1)× SO(2, 1) and SO(2, 2)× SO(2, 1).
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Apart from the dilaton σ which is a singlet under the gauge group, there are 3n

scalar fields φir parametrized by SO(3, n)/SO(3) × SO(n) coset manifold. The associated

coset representative L = (L i
I , L

r
I ) transforms under the global SO(3, n) and the local

SO(3) × SO(n) by left and right multiplications, respectively. Its inverse is denoted by

L−1 = (LIi, L
I
r) with the relations LIi = ηIJLJi and LIr = ηIJLJr.

The two-form field Bµν can be dualized to a three-form field Cµνρ which admits a

topological mass term
h

36
εµ1...µ7Hµ1...µ4Cµ5...µ7 (2.3)

where the four-form field strength is defined by Hµνρσ = 4∂[µCνρσ].

The bosonic Lagrangian of the N = 2 massive-gauged supergravity is then given by

e−1L =
1

2
R− 1

4
eσaIJF

I
µνF

Jµν − 1

48
e−2σHµνρσH

µνρσ − 5

8
∂µσ∂

µσ − 1

2
P irµ P

µ
ir

− 1

144
√

2
e−1εµ1...µ7Hµ1...µ4ωµ5...µ7 +

1

36
he−1εµ1...µ7Hµ1...µ4Cµ5...µ7 − V

(2.4)

where the scalar potential is given by

V =
1

4
e−σ

(
CirCir −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3σ
2 C . (2.5)

The Chern-Simons term is defined by

ωµνρ = 3ηIJF
I
[µνA

J
ρ] − f

K
IJ AIµ ∧AJν ∧AρK (2.6)

with F Iµν = 2∂[µA
I
ν] + f I

JK AJµA
K
ν .

We are going to find supersymmetric bosonic background solutions, so the supersym-

metry transformations of fermions are needed. Since, in the following analysis, we will set

Cµνρ = 0, we will accordingly give the supersymmetry transformations with all fermions

and the three-form field vanishing. These are given by

δψµ = 2Dµε−
√

2

30
e−

σ
2Cγµε−

i

20
e
σ
2 F iρσσ

i (3γµγ
ρσ − 5γρσγµ) ε− 4

5
he2σγµε, (2.7)

δχ = −1

2
γµ∂µσε−

i

10
e
σ
2 F iµνσ

iγµνε+

√
2

30
e−

σ
2Cε− 16

5
e2σhε, (2.8)

δλr = −iγµP irµ σiε−
1

2
e
σ
2 F rµνγ

µνε− i√
2
e−

σ
2Cirσiε . (2.9)

The covariant derivative of ε is defined by

Dµε = ∂µε+
1

4
ωabµ γab +

i

4
σiεijkQµjk (2.10)

where γa are space-time gamma matrices.
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The quantities appearing in the Lagrangian and the supersymmetry transformations

are defined by

P irµ = LIr
(
δKI ∂µ + f K

IJ AJµ

)
LiK , Qijµ = LIj

(
δKI ∂µ + f K

IJ AJµ

)
LiK ,

Cir =
1√
2
f K
IJ LIjL

J
kLKrε

ijk, C = − 1√
2
f K
IJ LIiL

J
jLKkε

ijk,

Crsi = f K
IJ LIrL

J
sLKi, aIJ = Li ILiJ + LrILrJ ,

F iµν = L i
I F

I , F rµν = L r
I F

I . (2.11)

In the following sections, we will study all possible non-compact gauge groups G0

without the compact H factor. This is a consistent truncation since all scalar fields we

retain are H singlets. All of the solutions found here are automatically solutions of the

gauged supergravity with G0×H gauge group according to the result of Schur’s lemma as

originally discussed in [25].

Before going to the computation, we will give a general parametrization of the

SO(3,n)/SO(3) × SO(n) coset. We first introduce (n + 3)2 basis elements of a general

(n+ 3)× (n+ 3) matrix as follow

(eIJ)KL = δIKδJL . (2.12)

The composite SO(3)× SO(n) generators are given by

SO(3) : J
(1)
ij = eji − eij , i, j = 1, 2, 3,

SO(n) : J (2)
rs = es+3,r+3 − er+3,s+3, r, s = 1, . . . , n . (2.13)

The non-compact generators corresponding to the 3n scalars are given by

Y ir = ei,r+3 + er+3,i . (2.14)

The coset representative in each case will be given by an exponential of the relevant Y ir

generators.

3 SO(3, 1) gauge group

The minimal scalar coset for embedding SO(3, 1) gauge group is SO(3, 3)/SO(3)× SO(3).

We will choose the gauge structure constants to be

fIJK = −g(εijk, εrsi), i, j, r, s = 1, 2, 3 (3.1)

from which we find f K
IJ = ηKLfIJL with ηIJ = (−1,−1,−1, 1, 1, 1). Together with

the dilaton σ, there are ten scalars in this case. At the vacuum, the full SO(3, 1) gauge

symmetry is broken down to its the maximal compact subgroup SO(3). The ten scalars

transform as 1 + 1 + 3 + 5 with the first singlet being the dilaton.
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Critical point σ V0 L

I 0 −240h2 1
4h

II 2
5 ln 2 −160(2

3
5 )h2

√
3

2(2
4
5 )h

Table 1. Supersymmetric and non-supersymmetric AdS7 critical points in SO(3, 1) gauging.

SO(3)diag m2L2 ∆

1 −8 4

1 40 10

3 0 6

5 16 8

Table 2. Scalar masses at the supersymmetric AdS7 critical point in SO(3, 1) gauging.

3.1 AdS7 critical points

We now investigate the vacuum structure of the N = 2 gauged supergravity with SO(3, 1)

gauge group. We simplify the task by restricting the potential to the two SO(3) ⊂ SO(3, 1)

singlet scalars. This truncation is consistent in the sense that all critical points found on

this restricted scalar manifold are automatically critical points of the potential computed

on the full scalar manifold as pointed out in [25].

The scalar potential on these SO(3) singlets is given by

V =
1

16
e−σ−6φ

[(
1 + 8e2φ + 3e4φ − 32e6φ + 3e8φ + 8e10φ + e12φ

)
g2

−32e
5
2
σ+3φ

(
1 + e2φ + e4φ + e6φ

)
gh+ 256h2e5σ+6φ

]
. (3.2)

The scalar φ is an SO(3) singlet coming from SO(3, 3)/SO(3) × SO(3). It can be easily

checked that this potential admits two critical points at φ = 0 and

σ =
2

5
ln

g

16h
, and σ =

2

5
ln

g

8h
. (3.3)

As in the SO(4) gauging studied in [13], the second critical point is non-supersymmetric

as can be checked by computing the supersymmetry transformations of fermions. We

will shift the dilaton field so that the supersymmetric AdS7 occurs at σ = 0. This is

effectively achieved by setting g = 16h. The gauge group SO(3, 1) is broken down to its

maximal compact subgroup SO(3), so the two critical points have SO(3) symmetry. At

these critical points, the values of the cosmological constant (V0) and the AdS7 radius (L)

are given in table 1.

In our convention, the relation between V0 and L is given by L =
√
− 15
V0

. We can

compute scalar masses at the trivial critical point, σ = 0, as shown in the table 2.

In the table, we have given the representations under the unbroken SO(3) ⊂ SO(3, 1)

symmetry. The conformal dimension ∆ of the dual operators in the six-dimensional SCFT

is also given. The three scalars in the 3 representation correspondence to the Goldstone

bosons in the symmetry breaking SO(3, 1) to SO(3). These scalars correspond to marginal

– 6 –
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SO(3) m2L2 ∆

1 12 3 +
√

21

1 36 3(1 +
√

5)

3 0 6

5 0 6

Table 3. Scalar masses at the non-supersymmetric AdS7 critical point in SO(3, 1) gauging.

operators of dimension six. From the table, we see that only the operator dual to the

dilaton is relevant. The other are either marginal or irrelevant.

Unlike in the SO(4) gauging in which the non-supersymmetric AdS7 is unstable, we

find that, in SO(3, 1) gauging, it is indeed stable as can be seen from the scalar masses

given in table 3. From the table, we see that the operator dual to σ becomes irrelevant at

this critical point. We then expect that there should be an RG flow driven by this operator

from the N = 2 supersymmetric fixed point to this CFT. The gravity solution would

involve the metric gµν and σ. Since the flow is non-supersymmetric, the flow solution has

to be found by solving the full second-order field equations. In general, these equations do

not admit an analytic solution. We will not go into the detail of this flow here and will not

give the corresponding numerical flow solution. A similar study in the case of pure N = 2

SU(2) gauged supergravity can be found in [12].

3.2 AdS5 critical points

We now look for a vacuum solution of the form AdS5 × S2. In this case, an abelian gauge

field is turned on. There are six gauge fields AI , I = 1, . . . , 6, of SO(3, 1) in which the first

three gauge fields are those of the compact subgroup SO(3). We will choose the non-zero

gauge field to be A3. The seven-dimensional metric is given by

ds2 = e2f(r)dx2
1,3 + dr2 + e2g(r)(dθ2 + sin2 dφ2) (3.4)

where dx2
1,3 is the flat metric on the four-dimensional Minkowski space. The ansatz for the

gauge field is given by

A3 = a cos θdφ, F 3 = −a sin θdθ ∧ dφ . (3.5)

From the metric, we can compute the following spin connections

ωφ̂
θ̂

= e−g(r) cot θeφ̂, ωφ̂r̂ = g(r)′eφ̂,

ωθ̂r̂ = g(r)′eθ̂, ωµ̂r̂ = f ′eµ̂ . (3.6)

From SO(3, 3)/SO(3)×SO(3) coset, there are three singlets under this SO(2) ⊂ SO(3).

One of them is the SO(3) singlet mentioned before. The other two come from 3 and 5

representations of SO(3) with the former being one of the three Goldstone bosons. We can

then set up relevant BPS equations by computing the supersymmetry transformations of

ψµ, χ and λr. We will not give δψr = 0 equation here. This will give rise to the equation

for the Killing spinors as a function of r.

– 7 –
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We then impose the projections

γrε = ε and iγ θ̂φ̂σ3ε = ε (3.7)

where hatted indices are tangent space indices. By imposing the twist condition

ag = 1, (3.8)

we find that equation δψθ = 0 is the same as δψφ = 0. The Killing spinors are then given

by constant spinors on S2. Equations δψµ, µ = 0, 1, 2, 3 lead to a single equation for f(r).

With all these, we find the following set of the BPS equations

φ′1 =
e−

σ
2
−2φ1+2φ2−φ3

(
1 + e2φ3

) (
e2φ3 − 1

)
g

2 (1 + e4φ2)
, (3.9)

φ′2 = 0, (3.10)

φ′3 = −1

4
e−

σ
2
−2φ1−φ3−2g(r)

[
2aeσ+2φ1

(
e2φ3 − 1

)
−e2g(r)

(
2e2φ1 + e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3 − 1

)
g
]
, (3.11)

σ′ =
1

10
e−

σ
2
−2φ1−φ3−2g(r)

[
2aeσ+2φ1

(
1 + e2φ3

)
+ 64he

5
2
σ+2φ1+φ3+2g(r)

− e2g(r)
(

1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3
)
g
]
, (3.12)

g(r)′ = −2

5
ae

σ
2
−φ3−2g(r)

(
1 + e2φ3

)
+

4

5
he2σ

+
1

20
e−

σ
2
−2φ1−φ3

(
1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3

)
g, (3.13)

f ′ =
1

10
ae

σ
2
−φ3−2g(r)

(
1 + e2φ3

)
+

4

5
he2σ

+
1

20
e−

σ
2
−2φ1−φ3

(
1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3

)
g (3.14)

where φi, i = 1, 2, 3 are the three singlets from SO(3, 3)/SO(3)× SO(3). The ′ denotes d
dr .

To avoid the confusion with the gauge coupling g, we have explicitly written the S2 warp

factor as g(r).

φ2, being one of the Goldstone bosons, disappears entirely from the scalar potential

which, for these SO(2) singlets, is given by

V =
1

16
e−σ−4φ1−2φ3

[(
1 + 2e4φ1 + e4φ3 + 2e4(φ1+φ3) − 16e4φ1+2φ3 + e8φ1+4φ3

)
g2

+32ghe
5σ
2

+2φ1+φ3
(

1− 2e2φ1 − e4φ1 − e2φ3 − 2e2(φ1+φ3) + e4φ1+2φ3
)

+256h2e5σ+4φ1+2φ3
]
. (3.15)

When φ3 = φ1, this reduces to the SO(3) invariant potential (3.2). Equation (3.10) implies

that φ2 is a constant. We will choose φ2 = 0 from now on in order to be consistent with

the supersymmetric AdS7 critical point.
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The AdS5 × S2 geometry is characterized by the fixed point solution of g(r)′ = φ′i =

σ′ = 0. From the above equations, there is a solution only for φi = 0 and

σ =
2

5
ln

g

12h
, g(r) = −1

2
ln

g

3a
+

1

5
ln

g

12h
. (3.16)

Near this fixed point with g = 16h, we find f ∼
(

512
9

) 2
5 hr. Therefore, the AdS5 radius is

given by LAdS5 = 1
h

(
9

512

) 2
5 . At this fixed point, the projection γrε = ε is not needed, so the

number of unbroken supercharges is eight. According to the AdS/CFT correspondence, we

will identify this AdS5 solution with an N = 1 SCFT in four dimensions.

3.3 RG flows from 6D N = (1, 0) SCFT to 4D N = 1 SCFT

The existence of AdS5×S2 geometry indicates that the N = (1, 0) SCFT in six dimensions

corresponding to AdS7 critical point can undergo an RG flow to a four-dimensional N = 1

SCFT. We begin the study of this RG flow solution by rewriting the BPS equations for

φi = 0

σ′ =
2

5
e−

σ
2

(
aeσ−2g(r) + g − 16he

5σ
2

)
, (3.17)

g(r)′ =
1

5
e−

σ
2

(
g − 4aeσ−2g(r) + 4he

5σ
2

)
, (3.18)

f ′ =
1

5
e−

σ
2

(
g + aeσ−2g(r) + 4he

5σ
2

)
. (3.19)

Near the IR AdS5 fixed point, we find

σ ∼ g(r) ∼ e
(
√

7−1) r
LAdS5 ,

f ∼ r

LAdS5

. (3.20)

We then conclude that the operators dual to σ and g(r) become irrelevant in four dimensions

with dimension ∆ = 3 +
√

7. We are not able to find an analytic solution to the above

equations. We therefore give an example of numerical solutions in figure 1.

At the IR fixed point, the value of σ does not depend on a, but different values of a

give rise to different solutions for g(r). In figure 1, we have given some examples of the

g(r) solutions with three different values of a, a = 1, 2, 3 with g = 16h and h = 1. From

the solutions, we see that, at large r, g(r) ∼ r and σ ∼ 0. Furthermore, as g(r) ∼ r →∞,

we find f(r) ∼ g(r) ∼ r. The UV geometry is AdS7 corresponding to the six-dimensional

N = (1, 0) SCFT. The behavior of σ near the UV point is given by

σ ∼ e
− 4r
LAdS7 (3.21)

which indicates that the flow is driven by a VEV of a dimension-four operator.

3.4 AdS5 ×H2 geometry

We now consider a fixed point of the form AdS5×H2 with H2 being a genus g > 1 Riemann

surface. In this case, we take the metric ansatz to be

ds2 = e2f(r)dx2
1,3 + dr2 +

e2g(r)

y2
(dx2 + dy2). (3.22)
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(a) A solution for σ.
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(b) Solutions for g(r).

Figure 1. RG flow solutions from N = (1, 0) SCFT in six dimensions to four-dimensional N = 1

SCFT with the g(r) solution given for three different values of a; a = 1 (red),a = 2 (green), a = 3

(blue).

The SO(2) gauge field is then given by

A =
a

y
dx, F =

a

y2
dx ∧ dy . (3.23)

The spin connections computed from the above metric are given by

ωx̂r̂ = g(r)′ex̂, ωŷr̂ = g(r)′eŷ, ωx̂ŷ = −e−g(r)ex̂ . (3.24)

The twisted condition is still given by ga = 1. The BPS equations change by some signs,

and it is still true that the AdS5 is possible only for φi = 0. The BPS equations, for φi = 0,

are then given by

σ′ =
2

5
e−

σ
2

(
−aeσ−2g(r) + g − 16he

5σ
2

)
, (3.25)

g(r)′ =
1

5
e−

σ
2

(
g + 4aeσ−2g(r) + 4he

5σ
2

)
, (3.26)

f ′ =
1

5
e−

σ
2

(
g − aeσ−2g(r) + 4he

5σ
2

)
. (3.27)

The fixed point conditions σ′ = g(r)′ = 0 have the solution

σ =
2

5
ln

g

12h
, g(r) = −1

2
ln
[
− g

3a

]
+

1

5
ln

g

12h
. (3.28)

In this case, there is no real solution for g(r) since the twisted condition requires that

g must have the same sign as a. Therefore, we conclude that there is no supersymmetric

AdS5 ×H2 solution for SO(3, 1) gauging.

4 SL(3,R) gauge group

In this section, we consider the SL(3,R) gauge group. The minimal scalar manifold to

accommodate this eight-dimensional gauge group is SO(3, 5)/SO(3)×SO(5). The structure

constants can be obtained from the generators TI = (iλ2, iλ5, iλ7, λ1, λ3, λ4, λ6, λ8) with

I = 1, . . . , 8. λi are the usual Gell-mann matrices.
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SO(3) m2L2 ∆

1 −8 4

3 112 14

5 0 6

7 72 12

Table 4. Scalar masses at the supersymmetric AdS7 critical point in SL(3,R) gauging.

SO(3) m2L2 ∆

1 12 3 +
√

21

3 96 3 +
√

105

5 0 6

7 36 3(1 +
√

5)

Table 5. Scalar masses at the non-supersymmetric AdS7 critical point in SL(3,R) gauging.

Under SL(3,R), the adjoint representation of SO(3, 5) decomposes as

28→ 8 + 10 + 10′ .

At the vacuum, the SL(3,R) symmetry is broken down to SO(3) with the embedding 3→ 3.

Therefore, under SO(3), the 28 of SO(3, 5) further decomposes as

28→ 3 + 5 + 3 + 7 + 3 + 7 .

The fifteen scalars transform under SO(3) as 3+5+7. The other representations 3+3+7

combine into the adjoint representation of the composite local SO(3)× SO(5) symmetry.

4.1 AdS7 critical points

By computing the scalar potential, we find that there are two AdS7 critical points with

SO(3) symmetry as in the SO(3, 1) gauging for vanishing vector multiplet scalars. One

of them is supersymmetric, and the other one is non-supersymmetric. We will similarly

set g = 16h to bring the supersymmetric AdS7 to σ = 0. The characteristics of these

two critical points are the same as in SO(3, 1) gauging, so we will not repeat them here.

However, scalar masses at these two critical point are different and are given in table 4

and 5.

As in the previous case, the SO(3) singlet is the dilaton. In this case, there are five Gold-

stone bosons from the SL(3,R) → SO(3) symmetry breaking. The non-supersymmetric

AdS7 is stable as in the SO(3, 1) gauging and can be interpreted as a unitary six-dimensional

CFT. We then expect that there should be an RG flow from the supersymmetric AdS7 to

the non-supersymmetric one. As in the previous case, the flow is driven by a VEV of the

operator dual to the dilaton σ. In the IR, the operator becomes irrelevant with dimension

∆ = 3 +
√

21.
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4.2 AdS5 critical points

We now study possible AdS5 fixed points. We will turn on a gauge field of SO(2) which is

a subgroup of the compact subgroup SO(3) ⊂ SL(3,R). Among the fifteen scalars, there

are three singlets under this SO(2), and we will denote them by φi, i = 1, 2, 3. Each of the

three SO(3) representations, 3 + 5 + 7, gives one SO(2) singlet.

We again use the metric ansatz (3.4) and the gauge field A3 = a cos θdφ. With the

twisted condition ga = 1 and the projectors γrε = ε and iγ θ̂φ̂σ3ε = ε, we obtain a system of

complicated BPS equations. Since these equations might be useful for other applications,

we explicitly give them here

φ′1 =

√
3ge
−σ

2
−2φ1− 2√

3φ3

(
e4φ1 − 1

) (
e4φ2 − 1

)(
e

4φ3√
3 − 1

)
4 (1 + e4φ2)

, (4.1)

φ′2 =

√
3

4
ge
−σ

2
−2φ2− 2φ3√

3

(
1 + e4φ2

)(
e

4φ3√
3 − 1

)
, (4.2)

φ′3 =
1

16
e
−σ

2
−2φ1−2φ2− 2φ3√

3
−2g(r)

[
4
√

3aeσ+2φ1+2φ2

(
1− e

4φ3√
3

)
+geg(r)

(
3e

4φ1+4φ2+
4φ3√

3 + 3e
4φ2+

4φ3√
3 − 4

√
3e

2φ1+2φ2+
4φ3√

3 − 3e
4φ1+

4φ3√
3 − 3e

4φ3√
3

+3e4(φ1+φ2) + 4
√

3e2(φ1+φ2) + 3e4φ2 − 3e4φ1 − 3
)]
, (4.3)

σ′ =
1

20
e
−σ

2
−2φ1−2φ2− 2φ3√

3
−2g(r)

[
4aeσ+2(φ1+φ2)

(
1 + e

4φ3√
3 + 128he

5σ
2

+2φ1+2φ2+
2φ3√

3
+2g(r)

)
ge2g(r)

(√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2) −
√

3e
4φ3√

3

−
√

3e
4φ1+

4φ3√
3 − 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

)]
, (4.4)

g(r)′ = −2

5
ae

σ
2
− 2φ3√

3
−2g(r)

(
1 + e

4φ3√
3

)
+

4

5
he2σ

− 1

40
ge
−σ

2
−2φ1−2φ2− 2φ3√

3

[√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2)

−
√

3e
4φ3√

3

(
1 + e4φ1

)
− 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

]
, (4.5)

f ′ =
1

10
ae

σ
2
− 2φ3√

3
−2g(r)

(
1 + e

4φ3√
3

)
+

4

5
he2σ

− 1

40
ge
−σ

2
−2φ1−2φ2− 2φ3√

3

[√
3
(

1 + e4φ1
)
−
√

3e4φ2 − 4e2(φ1+φ2) −
√

3e4(φ1+φ2)

−
√

3e
4φ3√

3

(
1 + e4φ1

)
− 4e

2φ1+2φ2+
4φ3√

3 +
√

3e
4φ2+

4φ3√
3 +
√

3e
4φ1+4φ2+

4φ3√
3

]
. (4.6)

It can be easily verified that the first three equations have a fixed point solution only when

φi = 0 for all i = 1, 2, 3. The remaining equations then reduce to the same form as in the

SO(3, 1) case. The RG flow solutions can also be studied in a similar manner, and we will

not repeat it here.
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As a final remark, we note here that similar to the previous case, it is not possible to

have an AdS5 ×H2 solution.

5 SO(2, 2) gauge group

Unlike the previous two cases, this gauging does not admit a maximally supersymmetric

AdS7. The vacuum is rather a half-supersymmetric domain wall. This is not unexpected

since the minimal superconformal algebra in six dimensions has SU(2)R R-symmetry, but

the vacuum of this gauging has only SO(2)×SO(2) symmetry. The minimal scalar manifold

for embedding this gauge group is SO(3, 3)/SO(3)× SO(3). The embedding of SO(2, 2) in

SO(3, 3) is given by the following structure constants

f K
IJ = (g1ε̄ij̄l̄η

k̄l̄, g2εr̄s̄t̄η
q̄t̄) (5.1)

with ī = 1, 2, 6, r̄ = 3, 4, 5, ηīj̄ = (−1,−1, 1) and ηr̄s̄ = (−1, 1, 1).

5.1 Domain wall solutions

The vacuum of this gauging will have SO(2) × SO(2) symmetry. Among the nine scalars

from SO(3, 3)/SO(3)× SO(3), there is one SO(2)× SO(2) singlet which will be denoted by

φ. The scalar potential for SO(2)× SO(2) singlet scalars is given by

V =
1

2
g1e
−σ + 4g1he

3σ
2

(
e−φ − eφ

)
+ 16h2e4σ . (5.2)

It can be checked that this potential does not admit any critical points unless h = g1 = 0.

The vacuum is then a domain wall.

To study the domain wall solution, we write down the associated BPS equations by

setting all the fields but the metric and scalars to zero. The metric is given by the domain

wall ansatz

ds2 = e2A(r)dx2
1,5 + dr2 . (5.3)

With the projection γrε = ε, the relevant BPS equations read

φ′ = −1

2
g1e
−σ

2
−φ
(

1 + e2φ
)
, (5.4)

σ′ =
1

5
e−

σ
2
−φ
[
g1

(
e2φ − 1

)
− 32he

5σ
2

+φ
]
, (5.5)

A′ =
1

10
e−

σ
2
−φ
[
g1

(
e2φ − 1

)
+ 8he

5σ
2

+φ
]
. (5.6)

By changing the radial coordinate from r to r̃ with the relation dr̃
dr = e−

σ
2 , it is not difficult

to find the solutions for φ, σ and A. These are given by

φ = ln

[
tan

C1 − g1r̃

2

]
, (5.7)

σ =
2

5
φ− 2

5
ln

[
16h

g1

(
4C2(1 + e2φ)− 1

)]
, (5.8)

A =
1

5
φ− 1

4
ln(1 + e2φ) +

1

20
ln
[
1− 4C2

(
1 + e2φ

)]
(5.9)
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where C1 and C2 are integration constants. We have omitted the additive constant to

A since this can be removed by rescaling dx2
1,5 coordinates. According to the general

DW/QFT correspondence, this solution should be dual to a non-conformal N = (1, 0)

gauge theory in six dimensions. As r̃ → C1
g1

, the two scalars are logarithmically divergent.

After changing the coordinate from r̃ back to r, we find the behavior of φ and σ as r̃ ∼ C1
g1

,

which is equivalent to r ∼ C
g1

,

φ ∼ 5

6
ln

[
C − g1r

2

]
, σ ∼ 1

3
ln

[
C − g1r

2

]
(5.10)

where C is a new integration constant coming from solving for r̃ in term of r. After rescaling

dx2
1,5 coordinates, the metric in this limit is given by

ds2 = (C − g1r)
1
3dx2

1,5 + dr2 . (5.11)

5.2 AdS5 critical points

We now look for a vacuum solution of the form AdS5 × S2. In this case, there are two

abelian SO(2) gauge groups. The corresponding gauge fields are denoted by

A3 = a sin θdφ, A6 = b sin θdφ . (5.12)

The metric is still given by (3.4). In order to find the BPS equations, we impose the

projectors γrε = ε and iγ θ̂φ̂σ3ε = ε. The twisted condition is now given by

g1b = 1 . (5.13)

Proceed as in the previous cases but with one more gauge field, we find the following

BPS equations

φ′ =
1

2
e−

σ
2
−φ−2g(r)

[
aeσ

(
1− e2φ

)
−
(

1 + e2φ
)(

beσ + e2g(r)g1

)]
, (5.14)

σ′ =
1

5
e−

σ
2
−φ−2g(r)

[
(a− b)eσ + (a+ b)eσ+2φ

+e2g(r)
[(
e2φ − 1

)
g1 − 32he

5σ
2

+φ
]]
, (5.15)

g(r)′ =
1

10
e−

σ
2
−φ−2g(r)

[
e2g(r)

[(
e2φ − 1

)
g1 + 8he

5σ
2

+φ
]

+4(b− a)eσ − 4(a+ b)eσ+2φ
]
, (5.16)

f ′ =
1

10
e−

σ
2
−φ−2g(r)

[
e2g(r)

[(
e2φ − 1

)
g1 + 8he

5σ
2

+φ
]

+(a− b)eσ + (a+ b)eσ+2φ
]

(5.17)

where φ is the SO(2)× SO(2) singlet scalar from SO(3, 3)/SO(3)× SO(3).
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The equations φ′ = σ′ = g(r)′ = 0 admit a fixed point solution given by

φ =
1

2
ln

[√
4b2 − 3a2 − a

2(a+ b)

]
,

σ =
1

5
ln

 a2g2
1

(√
4b2 − 3a2 − a

)
32(a+ b)h2

(
2b− 3a+

√
4b2 − 3a2

)
 ,

g(r) =
1

10
ln

(a+ b)4
(
a− 2b+

√
4b2 − 3a2

)5 (
3a− 2b−

√
4b2 − 3a2

)3

1024a3g3
1h

2
(
a−
√

4b2 − 3a2
)4

 . (5.18)

It can be checked that the solution exists for g1 < 0 and a < 0 with b > −a or g1 < 0

with a > 0 and b > a. This in turn implies that g1 and b always have opposite sign in

contradiction with the twisted condition g1b = 1. Therefore, the SO(2, 2) gauging does not

admit AdS5 × S2 geometry.

However, there exists an AdS5 ×H2 geometry. In this case, we have the metric (3.22)

with the gauge fields given by

A3 =
a

y
dx, A6 =

b

y
dx . (5.19)

The twisted condition is still given by g1b = 1. The BPS equations are given

by (5.14), (5.15), (5.16) and (5.17) but with (a, b) replaced by (−a,−b). The values of scalar

fields at the AdS5 fixed point solution are real for g1 < 0 and a < 0 with b < a in compatible

with the twisted condition. Furthermore, it is not possible to have an AdS5 fixed point with

a = ±b. This rules out the possibility of AdS5 fixed point with SO(2)diag ⊂ SO(2)× SO(2)

symmetry. For a = 0, only one SO(2) gauge field turned on, it can also be checked that the

AdS5 fixed point does not exist. The b = 0 case is not possible since this is not consistent

with the twisted condition with finite g1.

5.3 RG flows from N = 1 4D SCFT to 6D N = (1, 0) SYM

According to the AdS/CFT correspondence, the existence of AdS5 fixed point implies a

dual N = 1 SCFT in four dimensions. Near this AdS5 critical point, the linearized BPS

equations give

φ ∼ σ ∼ g(r) ∼ e−
4r
L (5.20)

where L is the AdS5 radius. We see that the AdS5 should appear in the UV identified with

r → ∞. This UV SCFT in four dimensions undergoes an RG flow to a six-dimensional

N = (1, 0) SYM corresponding to the domain wall solution given by equations (5.7), (5.8)

and (5.9). In the IR, the warped factors behave as f(r) ∼ g(r) ∼ ln(C − g1r)
1
3 while the

behavior of the scalars σ and φ is given in (5.10). The flow is then driven by vacuum

expectations value of marginal operators dual to φ, σ and g(r). We give an example

of numerical flow solutions to the BPS equations in figure 2. This solution is found for

particular values of a = −1, b = −2, g = −1
2 and h = 1 which give

φ = −0.4171, σ = −1.6095, g(r) = −0.2214 (5.21)

at the AdS5 fixed point.
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(a) A solution for φ.
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(b) A solution for σ.
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(c) A solution for g(r).

Figure 2. An RG flow solution from N = 1 SCFT in four dimensions to six-dimensional N = (1, 0)

SYM.

As usual in flows to non-conformal field theories, the domain wall geometry in the IR

is singular. We have checked that the domain wall solution given in equation (5.10) gives

rise to a good singularity according to the criterion of [26]. Given the behavior of σ and φ

in (5.10), we find that the scalar potential is bounded above V → −∞. Therefore, the IR

domain wall corresponds to a physical gauge theory in six dimensions.

6 SO(2, 1) and SO(2, 2) × SO(2, 1) gauge groups

In this section, we consider the last two possible non-compact gauge groups SO(2, 1) and

SO(2, 2)× SO(2, 1). We will see that both of them admit a vacuum solution in the form of

a domain wall.

6.1 Vacua of SO(2, 1) gauging

In this case, the minimal scalar manifold is given by SO(3, 1)/SO(3). There are three scalars

in this manifold. The structure constants of the SO(2, 1) gauge group can be chosen to be

fIJK = (gε̄ij̄k̄, 0), ī = 1, 2, 4 . (6.1)

This corresponds to choosing the SO(2, 1) generators to be (T41, T42, T12) from the SO(3, 1)

generators (Tij , T4i), i, j = 1, 2, 3.

The scalar potential does not have any critical points. Therefore, we expect that the

vacuum is a domain wall. Using the domain wall ansatz for the metric and the projector

γrε = ε, we find the BPS equations for all of the four scalars

φ′1 = −
e−

σ
2
−φ1

(
e2φ1 − 1

) (
e2φ3 − 1

)
g

2 (1 + e2φ3)
, (6.2)

φ′2 = −
e−

σ
2
−φ2

(
e2φ2 − 1

) (
e2φ3 − 1

)
g

2 (1 + e2φ3)
, (6.3)

φ′3 = −1

2
e−

σ
2
−φ3

(
1 + e2φ3

)
g, (6.4)

σ′ =
1

20
e−

σ
2
−φ1−φ2−φ3

(
1 + e2φ1

)(
1 + e2φ2

)(
e2φ3−1

)
g − 32

5
he2σ, (6.5)

A′ =
1

40
e−

σ
2
−φ1−φ2−φ3

(
1 + e2φ1

)(
1 + e2φ2

)(
e2φ3−1

)
g +

4

5
he2σ . (6.6)

In these equations, φi, i = 1, 2, 3 are scalars in SO(3, 1)/SO(3).
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It is difficult to find an exact solution with all scalars non-vanishing. On the other

hand, a numerical solution could be obtained by the same procedure as in the previous

sections. Since analytic solutions might be more interesting, we consider only a domain

wall solution preserving SO(2) ⊂ SO(2, 1) symmetry. Among these φi’s, φ3 is an SO(2)

singlet. It turns out that on this scalar submanifold the solution is the same as that given

in (5.7), (5.8) and (5.9) with φ replaced by φ3.

6.2 Vacua of SO(2, 2)× SO(2, 1) gauging

The last gauge group to be considered is SO(2, 2)×SO(2, 1) ∼ SO(2, 1)×SO(2, 1)×SO(2, 1).

The minimal scalar manifold in this case is SO(3, 6)/SO(3) × SO(6) with the embedding

of SO(2, 2)× SO(2, 1) in SO(3, 6) given by the following structure constants

f K
IJ = (g1ε̄ij̄k̄η

k̄l̄, g2εr̄s̄t̄η
t̄q̄, g3ε̃ij̃k̃η

k̃l̃), ī = 1, 4, 5, r̄ = 2, 6, 7, ĩ = 3, 8, 9 . (6.7)

The Killing metrics are given by ηīj̄ = (−1, 1, 1), ηr̄s̄ = (−1, 1, 1) and ηĩj̃ = (−1, 1, 1), and

g1, g2 and g3 are gauge couplings of the three SO(2, 1) factors.

Apart from the dilaton, there are no scalars which are singlet under the maximal

compact subgroup SO(2) × SO(2) × SO(2). However, it can be shown that the potential

does not have any critical points for gi, h 6= 0. A simple domain wall solution can be

obtained by solving the BPS equations for σ and the metric. There might be other solutions

with non-vanishing scalars from SO(3, 6)/SO(3) × SO(6), but we have not found any of

them. Therefore, we will restrict ourselves to the domain wall with only σ and the metric

non-vanishing. Using the projector γrε = ε as usual, we find the following BPS equations

σ′ = −32

5
e2σh, (6.8)

A′ = =
4

5
e2σh . (6.9)

These equations can be readily solved for the solution

σ = −1

2
ln

[
64hr

5
+ C

]
, (6.10)

A =
1

16
ln

[
64hr

5
+ C

]
(6.11)

where C is an integration constant. The seven-dimensional metric is given by

ds2 = (64hr + 5C)
1
8dx2

1,5 + dr2 (6.12)

where we have rescaled the dx2
1,5 coordinates by 1

5 .

For h = 0, there is a Minkowski vacuum with V0 = 0. All scalar masses at this critical

point are given in table 6. The SO(2)3 singlet is the dilaton which is massless while the other

six massless scalars are Goldstone bosons of the symmetry breaking SO(2, 1)3 → SO(2)3.
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m2 SO(2)× SO(2)× SO(2) representation

0 (1,1,1)

0 (1,1,2) + (1,2,1) + (2,1,1)

g2
1 2× (2,1,1)

g2
2 2× (1,2,1)

g2
3 2× (1,1,2)

Table 6. Scalar masses at the supersymmetric Minkowski vacuum in SO(2, 2)× SO(2, 1) gauging.

7 Conclusions

We have studied N = 2 gauged supergravity in seven dimensions with non-compact gauge

groups. In SO(3, 1) and SL(3,R) gaugings, we have found new supersymmetric AdS7

critical points. These should correspond to new N = (1, 0) SCFTs in six dimensions.

We have also found that there exist AdS5 × S2 solutions to these gaugings. The solutions

preserve eight supercharges and should be dual to some N = 1 four-dimensional SCFT with

SO(2) ∼ U(1) global symmetry identified with the R-symmetry. We have then studied RG

flows from the six-dimensional N = (1, 0) SCFT to the N = 1 SCFT in four dimensions

and argued that the flow is driven by a vacuum expectation value of a dimension-four

operator dual to the supergravity dilaton. A numerical solution for an example of these

flows has also been given. In addition, we have shown that both of the gauge groups admit

a stable non-supersymmetric AdS7 solution which should be interpreted as a unitary CFT.

This is not the case for the compact SO(4) gauging studied in [13] in which the non-

supersymmetric critical point has been shown to be unstable.

In the SO(2, 2) gauging, we have given a domain wall vacuum solution preserving half

of the supersymmetry. According to the DW/QFT correspondence, this is expected to be

dual to a non-conformal SYM in six dimensions. This SO(2, 2) gauging does not admit

an AdS5 × S2 solution but an AdS5 × H2 geometry with eight supercharges. The latter

corresponds to an N = 1 SCFT in four dimensions with SO(2)× SO(2) global symmetry.

It is likely that the a-maximization [27–29] is needed in order to identify the correct U(1)R

symmetry out of the SO(2)×SO(2) symmetry. We have studied an RG flow from this SCFT

to a non-conformal SYM in six dimensions, dual to the seven-dimensional domain wall, and

argued that the flow is driven by vacuum expectation values of marginal operators. We

have also investigated SO(2, 1) and SO(2, 2) × SO(2, 1) gaugings. Both of them admit a

half-supersymmetric domain wall as a vacuum solution. For vanishing topological mass,

the SO(2, 2)× SO(2, 1) gauging admits a seven-dimensional Minkowski vacuum preserving

all of the supersymmetry and SO(2)× SO(2)× SO(2) symmetry.

Due to the existence of new supersymmetric AdS7 critical points, the results of this

paper might be useful in AdS7/CFT6 correspondence within the framework of seven-

dimensional gauged supergravity. The new AdS5 backgrounds could be of interest in the

context of AdS5/CFT4 correspondence. RG flows across dimensions described by gravity

solutions connecting these geometries would provide additional examples of flows in twisted

field theories. It is also interesting, if possible, to identify these AdS5 critical points with

the known four-dimensional SCFTs.
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Until now, only the embedding of the SO(4) gauging of N = 2 supergravity coupled

to three vector multiplets in eleven-dimensional supergravity has been given [14]. The

embedding of non-compact gauge groups in ten or eleven dimensions in the presence of

topological mass term is presently not known. It would be of particular interest to find

such an embedding so that the results reported here would be given an interpretation in

terms of brane configurations in string/M theory.
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1. Introduction

Six-dimensional superconformal field theories (SCFTs) are interesting in various as-

pects. In the context of M-theory, these SCFTs arise as a worldvolume theory of

M5-branes in the near horizon limit. The correspondence between a six-dimensional

N = (2, 0) SCFT and M-theory on AdS7 × S4 is one of the examples given in the

AdS/CFT correspondence originally proposed in [1]. This AdS7/CFT6 correspondence

has been explored in great details both from the M-theory point of view and the effec-

tive N = 4 SO(5) gauged supergravity in seven dimensions.

In this paper, we are interested in the half-maximal N = (1, 0) SCFTs in six di-

mensions. It has been shown in [2] that N = (1, 0) field theory possesses a non-trivial

fixed point, and recently many N = (1, 0) SCFTs have been classified in [3, 4] and

[5]. The holographic study of this N = (1, 0) theory has mainly been investigated by

orbifolding the AdS7×S4 geometry of eleven-dimensional supergravity, see for example

[6, 7, 8]. Recently, many new AdS7 geometries from massive type IIA string theory

have been found in [9], and the dual SCFTs of these AdS7 vacua have been studied in

[10].

We are particularly interested in studying N = (1, 0) SCFTs within the framework

of seven-dimensional gauged supergravity. These SCFTs should be dual to AdS7 solu-

tions of N = 2 gauged supergravity in seven dimensions [11]. Pure N = 2 gauged super-

gravity with SU(2) gauge group admits both supersymmetric and non-supersymmetric

AdS7 vacua [12]. The two vacua can be interpreted as a supersymmetric and a non-

supersymmetric CFT, respectively. A domain wall solution interpolating between these

vacua has been studied in [13]. This solution describes a non-supersymmetric deforma-

tion of the UV N = (1, 0) SCFT to another non-supersymmetric CFT in the IR.

When coupled to vector multiplets, the N = 2 gauged supergravity with many pos-

sible gauge groups can be obtained [14, 15, 16]. Although the resulting matter-coupled

theory can support only a half-supersymmetric domain wall vacuum, supersymmetric

AdS7 vacua are possible if a topological mass term for the 3-form field, dual to the 2-

form field in the gravity multiplet, is introduced. These supersymmetric AdS7 critical

points with SO(4) and SO(3) symmetries together with analytic RG flows interpolat-

ing between them have been studied in [17] in the case of SO(4) gauge group. And

recently, AdS7 vacua including compactifications to AdS5 of non-compact gauge groups

have been explored in [18]. The latter type of solutions generally describe twisted com-

pactifications of N = (1, 0) six-dimensional field theories to four dimensions.

In this paper, we are interested in holographic description of twisted compacti-

fications of N = (1, 0) SCFTs on two-manifolds Σ2 = (S2, H2) and three-manifold

Σ3 = (S3, H3). The corresponding gravity solutions will take the form of AdS5 × Σ2

– 1 –



and AdS4 × Σ3, respectively. The dual field theories will be SCFTs in four or three

dimensions. Gravity solutions interpolating between above mentioned AdS7 vacua and

these AdS5 or AdS4 geometries will describe RG flows from N = (1, 0) SCFTs to lower

dimensional SCFTs. Previously, this type of solutions has mainly been studied within

the framework of the maximal N = 4 gauged supergravity. The solutions provide

gravity duals of twisted compactifications of the N = (2, 0) SCFTs. A number of these

AdS5 solutions together with the uplift to eleven-dimensional supergravity by using the

reduction ansatz given in [19] and [20] have been studied previously in [21, 22, 23, 24].

In addition, compactifications of N = (1, 0) SCFT has recently been explored from the

point of view of massive type IIA theory in [25].

We will give another new solution to this class from N = 2 SO(4) gauged su-

pergravity. It has been pointed out in [22] that the AdS5 × S2 solution preserving

SO(2) × SO(2) symmetry and N = 2 supersymmetry in five dimensions, eight super-

charges, cannot be obtained from pure minimal N = 2 gauged supergravity. We will

show that this solution is a solution of N = 2 SO(4) gauged supergravity obtained

from coupling pure N = 2 gauged supergravity to three vector multiplets. We will

additionally give new AdS5 ×H2 solutions which are different from those given in [22]

and [23] in the sense that the two SU(2) gauge couplings are different, and the residual

symmetry is only the diagonal subgroup of SO(2) × SO(2). This case is not a trun-

cation of the N = 4 SO(5) gauged supergravity, and the embedding of these solutions

in higher dimensions are presently unknown. We will also study holographic RG flow

solutions interpolating between AdS7 vacua and these AdS5 fixed points. The solutions

describe deformations of N = (1, 0) SCFTs in six dimensions to the IR N = 1 SCFT

in four dimensions.

On AdS4 solutions from seven-dimensional gauged supergravity, a class of AdS4 ×
H3 and AdS4×S3 solutions have been obtained in [26]. A number of extensive studies

of these solutions in terms of wrapped M5-branes on various supersymmetric cycles in

special holonomy manifolds have been given in [27, 28, 29]. In particular, the solution

studied in [29] has been obtained from the maximal gauged supergravity and preserves

N = 2 superconformal symmetry in three dimensions. In this work, we will look for

AdS4 solutions in the N = 2 SO(4) gauged supergravity preserving only four super-

charges. The corresponding solutions should then correspond to some N = 1 SCFTs

in three dimensions. We will show that there exist AdS4×S3 and AdS4×H3 solutions

in this SO(4) gauged supergravity with four supercharges when the two SU(2) gauge

couplings are different. For equal SU(2) gauge couplings, only AdS4 × H3 solutions

exist and can be uplifted to eleven dimensions using the reduction ansatz given in [30].

The paper is organized as follow. In section 2, relevant information onN = 2 SO(4)

gauged supergravity in seven dimensions and supersymmetric AdS7 critical points are

– 2 –



reviewed. AdS5 × S2 and AdS5 × H2 solutions together with holographic RG flows

from AdS7 critical points to these AdS5 fixed points will be given in section 3. We

present AdS4 × S3 and AdS4 × H3 solutions in section 4 and give the embedding of

some AdS5 ×Σ2 and AdS4 ×Σ3 solutions in eleven dimensions in section 5. We finally

give some comments and conclusions in section 6.

2. Seven-dimensional N = 2 SO(4) gauged supergravity and

AdS7 critical points

In this section, we give a description of the SO(4) N = 2 gauged supergravity in seven

dimensions and the associated supersymmetric AdS7 critical points. These critical

points preserve N = 2 supersymmetry in seven dimensions and correspond to six-

dimensional N = (1, 0) SCFTs. All of the notations used throughout the paper are the

same as those in [16] and [17].

2.1 SO(4) gauged supergravity

The SO(4) N = 2 gauged supergravity in seven dimensions is constructed by gaug-

ing the half-maximal N = 2 supergravity coupled to three vector multiplets. The

supergravity multiplet (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ) consists of the graviton, two gravitini,

three vectors, two spin-1
2
fields, a two-form field and the dilaton. We will use the con-

vention that curved and flat space-time indices are denoted by µ, ν, . . . and m,n, . . .,

respectively. Each vector multiplet (Aµ, λ
A, ϕi) contains a vector field, two gaugi-

nos and three scalars. The bosonic field content of the matter coupled supergrav-

ity then consists of the graviton, six vectors and ten scalars parametrized by the

R+ × SO(3, 3)/SO(3) × SO(3) ∼ R+ × SL(4,R)/SO(4) coset manifold. In the fol-

lowing, we will consider the supergravity theory in which the two-form field Bµν is

dualized to a three-form field Cµνρ. The latter admits a topological mass term, so the

resulting gauged supergravity admits an AdS7 vacuum.

The SO(4) gauged supergravity is obtained by gauging the SO(4) ∼ SO(3)×SO(3)
subgroup of the global symmetry group SO(3, 3). One of the SO(3) in the gauge group

SO(3) × SO(3) is the SO(3)R ∼ USp(2)R ∼ SU(2)R R-symmetry. All spinor fields,

including the supersymmetry parameter ϵA, are symplectic-Majorana spinors trans-

forming as doublets of the SU(2)R R-symmetry. From now on, the SU(2)R douplet

indices A,B = 1, 2 will not be shown explicitly. The SU(2)R triplets are labeled by

indices i, j = 1, 2, 3 while indices r, s = 1, 2, 3 are the triplet indices of the other SO(3)

in SO(3)R × SO(3).

The 9 scalar fields in the SO(3, 3)/SO(3) × SO(3) coset are parametrized by the

coset representative L = (L i
I , L

r
I ) which transforms under the global SO(3, 3) and
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the local composite SO(3)×SO(3) by left and right multiplications, respectively. The

inverse of L is denoted by L−1 = (LIi, L
I
r) satisfying the relations LIi = ηIJLJi and

LIr = ηIJLJr.

The bosonic Lagrangian of the N = 2 gauged supergravity is given by

e−1L =
1

2
R− 1

4
eσaIJF

I
µνF

Jµν − 1

48
e−2σHµνρσH

µνρσ − 5

8
∂µσ∂

µσ − 1

2
P ir
µ P

µ
ir

− 1

144
√
2
e−1ϵµ1...µ7Hµ1...µ4ωµ5...µ7 +

1

36
he−1ϵµ1...µ7Hµ1...µ4Cµ5...µ7 − V

(2.1)

where the scalar potential and the Chern-Simons term are given by

V =
1

4
e−σ

(
CirCir −

1

9
C2

)
+ 16h2e4σ − 4

√
2

3
he

3σ
2 C, (2.2)

ωµνρ = 3ηIJF
I
[µνA

J
ρ] − f K

IJ AIµ ∧ AJν ∧ AρK (2.3)

with the gauge field strength defined by F I
µν = 2∂[µA

I
ν] + f I

JK AJµA
K
ν . The structure

constants f K
IJ of the gauge group include the gauge coupling associated to each simple

factor in a general gauge group G0 ⊂ SO(3, 3).

We are mainly interested in supersymmetric solutions. Therefore, the supersym-

metry transformations of fermions are necessary. However, we will not consider bosonic

solutions with the three-form field turned on. We will accordingly set Cµνρ = 0 through-

out. The fermionic supersymmetry transformations, with all fermions and the three-

form field vanishing, are given by

δψµ = 2Dµϵ−
√
2

30
e−

σ
2Cγµϵ−

i

20
e

σ
2F i

ρσσ
i (3γµγ

ρσ − 5γρσγµ) ϵ−
4

5
he2σγµϵ, (2.4)

δχ = −1

2
γµ∂µσϵ−

i

10
e

σ
2F i

µνσ
iγµνϵ+

√
2

30
e−

σ
2Cϵ− 16

5
e2σhϵ, (2.5)

δλr = −iγµP ir
µ σ

iϵ− 1

2
e

σ
2F r

µνγ
µνϵ− i√

2
e−

σ
2Cirσiϵ . (2.6)

Various quantities appearing in the Lagrangian and supersymmetry transforma-

tions are defined by the following relations

Dµϵ = ∂µϵ+
1

4
ωmnµ γmn +

i

4
σiϵijkQµjk,

P ir
µ = LIr

(
δKI ∂µ + f K

IJ AJµ
)
LiK , Qij

µ = LIj
(
δKI ∂µ + f K

IJ AJµ
)
LiK ,

Cir =
1√
2
f K
IJ LIjL

J
kLKrϵ

ijk, C = − 1√
2
f K
IJ LIiL

J
jLKkϵ

ijk,

Crsi = f K
IJ LIrL

J
sLKi, aIJ = Li ILiJ + LrILrJ ,

F i
µν = L i

I F
I , F r

µν = L r
I F

I (2.7)
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where γm are space-time gamma matrices satisfying {γm, γn} = 2ηmn with ηmn =

diag(−1, 1, 1, 1, 1, 1, 1).

2.2 Supersymmetric AdS7 critical points

We will now briefly review supersymmetric AdS7 critical points found in [17]. There

are two critical points preserving the full N = 2 supersymmetry in seven dimensions.

The two critical points however have different symmetries namely one critical point, at

which all scalars vanishing, preserves the full SO(4) gauge symmetry while the other

is only invariant under the diagonal subgroup SO(3)diag ⊂ SO(3)× SO(3).

For SO(3)× SO(3) gauge group, the gauge structure constants can be written as

[16]

fIJK = (g1ϵijk,−g2ϵrst). (2.8)

Before discussing the detail of the two critical points, we give an explicit parametriza-

tion of the SO(3, 3)/SO(3) × SO(3) coset as follow. With the 36 basis elements of a

general 6× 6 matrix

(eIJ)KL = δIKδJL, I, J, . . . = 1, . . . , 6 (2.9)

the generators of the composite SO(3)× SO(3) symmetry are given by

SO(3)R : J
(1)
ij = eji − eij, i, j = 1, 2, 3,

SO(3) : J (2)
rs = es+3,r+3 − er+3,s+3, r, s = 1, 2, 3 . (2.10)

The non-compact generators corresponding to 9 scalars take the form of

Y ir = ei,r+3 + er+3,i . (2.11)

Accordingly, the coset representative can be obtained by an exponentiation of the ap-

propriate Y ir generators. Y ir generators and the 9 scalars transform as (3,3) under

the SO(3)× SO(3) local symmetry.

The supersymmetric AdS7 critical points preserve at least SO(3) symmetry. There-

fore, we will consider only the coset representative invariant under SO(3) symmetry.

The dilaton σ is an SO(3) × SO(3) singlet. From the 9 scalars in SO(3, 3)/SO(3) ×
SO(3), there is one SO(3)diag singlet from the decomposition 3× 3 → 1+ 3+ 5. The

singlet corresponds to the non-compact generator

Ys = Y 11 + Y 22 + Y 33 . (2.12)

The coset representative is then given by

L = eϕYs . (2.13)
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The scalar potential for the dilaton σ and the SO(3)diag singlet scalar ϕ can be straight-

forwardly computed. Its explicit form reads [17]

V =
1

32
e−σ

[
(g21 + g22) (cosh(6ϕ)− 9 cosh(2ϕ)) + 8g1g2 sinh

3(2ϕ)

+8
[
g22 − g21 + 64h2e5σ + 32e

5σ
2 h

(
g1 cosh

2 ϕ+ g2 sinh
3 ϕ

)]]
. (2.14)

There are two supersymmetric AdS7 vacua given by

SO(4)− critical point : σ = ϕ = 0, V0 = −240h2, (2.15)

SO(3)− critical point : σ = −1

5
ln

[
g22 − 256h2

g22

]
,

ϕ =
1

2
ln

[
g2 + 16h

g2 − 16h

]
, V0 = − 240g

8
5
2 h

2

(g22 − 256h2)
4
5

(2.16)

where we have chosen g1 = −16h in order to make the SO(4) critical point occurs at

σ = 0. This is achieved by shifting σ. The value of the cosmological constant has been

denoted by V0.

The two critical points correspond to N = (1, 0) SCFTs in six dimensions with

SO(4) and SO(3) symmetries, respectively. An RG flow solution interpolating between

these two critical points has already been studied in [17]. In the next sections, we will

study supersymmetric RG flows from these SCFTs to other SCFTs in four and three

dimensions providing holographic descriptions of twisted compactifications of these

N = (1, 0) SCFTs.

3. Flows to N = 1 SCFTs in four dimensions

In this section, we look for solutions of the form AdS5 × S2 or AdS5 ×H2 in which S2

and H2 are a two-sphere and a two-dimensional hyperbolic space, respectively.

In the case of S2, we take the seven-dimensional metric to be

ds27 = e2F (r)dx21,3 + dr2 + e2G(r)(dθ2 + sin2 dϕ2) (3.1)

with dx21,3 being the flat metric on the four-dimensional spacetime. By using the vielbein

eµ̂ = eFdxµ, er̂ = dr,

eθ̂ = eGdθ, eϕ̂ = eG sin θdϕ, (3.2)

we can compute the following spin connections

ωϕ̂
θ̂
= e−G cot θeϕ̂, ωϕ̂r̂ = G′eϕ̂,

ωθ̂r̂ = G′eθ̂, ωµ̂r̂ = F ′eµ̂ . (3.3)
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where ′ denotes the r-derivative. Hatted indices are tangent space indices.

In the case of H2, we take the matric to be

ds27 = e2F (r)dx21,3 + dr2 +
e2G(r)

y2
(dx2 + dy2). (3.4)

With the vielbein

eµ̂ = eFdxµ, er̂ = dr,

ex̂ =
eG

y
dx, eŷ =

eG

y
dy, (3.5)

the spin connections are found to be

ωx̂r̂ = G′ex̂, ωŷr̂ = G′eŷ,

ωµ̂r̂ = F ′eµ̂, ωx̂ŷ = −e−G(r)ex̂ . (3.6)

3.1 AdS5 solutions with SO(2)× SO(2) symmetry

We now construct the BPS equations from the supersymmetry transformations of

fermions. We first consider the S2 case. In order to preserve supersymmetry, we

make a twist by turning on the SO(2) × SO(2) ⊂ SO(4) gauge fields, among the six

gauge fields AI ,

A3 = a cos θdϕ and A6 = b cos θdϕ (3.7)

such that the spin connections on S2 is cancelled by these gauge connections. The

Killing spinor corresponding to the unbroken supersymmetry is then a constant spinor

on S2.

We begin with the solutions preserving the full SO(2) × SO(2) residual gauge

symmetry generated by J
(1)
12 and J

(2)
12 . Scalars which are singlet under SO(2)× SO(2)

are the dilaton and the scalar corresponding to the SO(3, 3) non-compact generators

Y 33. We will denote this scalar by Φ. By considering the variation of the gravitino along

S2 directions, we find that the cancellation between the spin and gauge connections

imposes the twist condition

ag1 = 1 . (3.8)

Using the projection conditions

γrϵ = ϵ, and iσ3γ θ̂ϕ̂ϵ = ϵ, (3.9)
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we find the following BPS equations

Φ′ =
1

2
e−

σ
2
−Φ−2G

[
e2Gg1(e

2Φ − 1)− aeσ(e2Φ − 1)− beσ(e2Φ + 1)
]
, (3.10)

σ′ =
1

5
e−

σ
2
−Φ−2G

[
eσ

[
a− b+ (a+ b)e2Φ

]
− e2G

(
g1 + g1e

2Φ + 32he
5σ
2
+Φ

)]
, (3.11)

G′ = − 1

10
e−

σ
2
−Φ−2G

[
4eσ

[
a− b+ (a+ b)e2Φ

]
+ e2G

(
g1 + g1e

2Φ − 8he
5σ
2
+Φ

)]
, (3.12)

F ′ =
1

10
e−

σ
2
−Φ−2G

[
eσ

[
a− b+ (a+ b)e2Φ

]
− e2G

(
g1 + g1e

2Φ − 8he
5σ
2
+Φ

)]
. (3.13)

In the H2 case, we choose the gauge fields to be

A3 =
a

y
dx and A6 =

b

y
dx (3.14)

which can be verified that the spin connection ωx̂ŷ in (3.6) is cancelled by virtue of the

twist condition (3.8) and the projection conditions

γrϵ = ϵ and iσ3γx̂ŷϵ = ϵ . (3.15)

By an analogous computation, we find a similar set of BPS equations as in (3.10),

(3.11), (3.12) and (3.13) with (a, b) replaced by (−a,−b).
At large r, solutions to the above BPS equations should approach the SO(4) AdS7

critical point with Φ ∼ σ ∼ 0 and F ∼ G ∼ r. This is the UV (1, 0) SCFT. As

r → −∞, we look for the solution of the form AdS5 × S2 or AdS5 × H2 such that

ϕ′ = σ′ = G′ = 0 and F ′ = constant. We find that there is an AdS5 solution given by

Φ =
1

2
ln

[
b±

√
4a2 − 3b2

2(a+ b)

]
,

σ =
1

5
ln

[
g21b

2(b±
√
4a2 − 3b2)

32(a+ b)h2(3b− 2a±
√
4a2 − 3b2)

]
,

G =
1

10
ln

[
b2(a+ b)4(b±

√
4a2 − 3b2)(2a− 3b∓

√
4a2 − 3b2)3

32g31h
2(2a+ b∓

√
4a2 − 3b2)5

]
,

LAdS5 =

[
(a+ b)2(2a− 3b±

√
4a2 − 3b2)4

b4g41h(b∓
√
4a2 − 3b2)2

] 1
5

. (3.16)

This solution is given for Σ2 = S2. The solution in the H2 case is given similarly by

flipping the signs of a and b.

It should be noted that, in this fixed point solution with SO(2)×SO(2) symmetry,
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the coupling g2 does not appear. The solution can then be taken as a solution of the

gauged supergravity with g2 = g1. Therefore, the solution can be uplifted to eleven

dimensions by using the reduction ansatz in [30]. This will be done in section 5. The

uplifted solution is however not new since similar solutions have been found previously

in [22, 23], and supergravity solutions interpolating between AdS7 and AdS5 × S2 or

AdS5 ×H2 have also been investigated. The solutions have an interpretation in terms

of RG flows from the UV SCFT in six dimensions to four-dimensional SCFTs with

SO(2)× SO(2) symmetry.

Note also that, in this case, it is not possible to find an RG flow from the SO(3)

AdS7 point to any of these four-dimensional SCFTs since this AdS7 critical point is

not accessible from the BPS equations given above.

3.2 AdS5 solutions with SO(2) symmetry

We now consider AdS5 solutions with SO(2) symmetry. We will study two possibilities

namely the SO(2)diag ⊂ SO(2)× SO(2) ⊂ SO(3)× SO(3) and SO(2)R ⊂ SO(3)R.

3.2.1 Flows with SO(2)diag symmetry

We begin with the SO(2)diag symmetry generated by J
(1)
12 + J

(2)
12 . Among the 9 scalars

in SO(3, 3)/SO(3)× SO(3), there are three singlets under SO(2)diag corresponding to

the following decomposition of SO(3)× SO(3) representations under SO(2)diag

3× 3 = (2+ 1)× (2+ 1) = 1+ 1+ 2+ 2+ 2+ 1 . (3.17)

The three singlets correspond to the non-compact generators

Y 11 + Y 22, Y 33, Y 12 − Y 21 . (3.18)

The coset representative describing these singlets can be written as

L = eΦ1(Y 11+Y 22)eΦ2Y 33

eΦ3(Y 12−Y 21) . (3.19)

Since we have not found any AdS5 × S2 solution, we will give only the result for

the H2 case. The SO(2)diag gauge field can be obtained from the SO(2)×SO(2) gauge
fields in (3.7) with the condition that

bg2 = ag1 . (3.20)

As in the previous case, the twist imposes the condition g1a = 1 which in the present

case also implies g2b = 1.
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Using the projection conditions (3.15), we find the following BPS equations

Φ′
1 =

1

8
e−

σ
2
−2Φ1−Φ2(e4Φ1 − 1)

[
g1 − g2 + (g1 + g2)e

2Φ2
]
, (3.21)

Φ′
2 =

1

16g2
e−

σ
2

[
8g1a

[
g1 − g2 + (g1 + g2)e

Φ2
]

+g2
[
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)

[
g2 − g1 + (g1 + g2)e

2Φ2
]

+4(g1 − g2)e
Φ2 − (g1 + g2)e

−Φ2
]]
, (3.22)

Φ′
3 =

1

8
e−

σ
2
−Φ2−2Φ3(e4Φ3 − 1)

[
g1 − g2 + (g1 + g2)e

2Φ2
]
, (3.23)

σ′ =
1

40g2
e−

σ
2
−2Φ1−Φ2−2Φ3

[
8aeσ+2Φ1+2Φ3−2G

[
g1 − g2 − (g1 + g2)e

2Φ2
]

−g2
[
g1(1 + e2Φ2)(1 + e4Φ1 + e4Φ3 + 4e2Φ1+2Φ3 + e4Φ1+4Φ3)

+g2(e
2Φ2 − 1)(1 + e4Φ1 + e4Φ3 − 4e2Φ1+2Φ3 + e4Φ1+4Φ3)

+256he
5σ
2
+2Φ1+Φ2+2Φ3

]]
, (3.24)

G′ =
1

20
e−

σ
2

[
16he

5σ
2 − g1(e

Φ2 + e−Φ2) + g2(e
Φ2 − e−Φ2)

−1

4
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)[g1 − g2 + (g1 + g2)e

2Φ2 ]

+
8a

g2
eσ−Φ2−2G[g2 − g1 + (g1 − g2)e

2Φ2 ]

]
, (3.25)

F ′ =
1

20
e−

σ
2

[
16he

5σ
2 − g1(e

Φ2 + e−Φ2) + g2(e
Φ2 − e−Φ2)

−1

4
e−2Φ1−Φ2−2Φ3(1 + e4Φ1)(1 + e4Φ3)[g1 − g2 + (g1 + g2)e

2Φ2 ]

−2a

g2
eσ−Φ2−2G[g2 − g1 + (g1 − g2)e

2Φ2 ]

]
. (3.26)

In this case, there are a number of possible AdS5 fixed point solutions, and it is possible

to have a solution interpolating between the SO(3) AdS7 critical points and the AdS5

in the IR. We will investigate each of them in the following discussion.

We first look at the AdS5 × H2 critical point with g2 = g1 since this can be

uplifted to eleven dimensions. When g2 = g1, the fixed point solution exists only for

Φ1 = Φ3 = 0, and the corresponding solution is given by

Φ2 = −1

2
ln 2, σ =

1

5
ln 2,

G =
3

5
ln 2− 1

2
ln
[g1
a

]
, LAdS5 =

1

2
12
5 h

(3.27)

The AdS5 solution preserves eight supercharges corresponding toN = 1 superconformal

field theory in four dimensions with SO(2) symmetry. A flow solution interpolating
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Figure 1: RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional

N = 1 SCFT with SO(2)diag symmetry for g1 = g2.

between this AdS5 × H2 fixed point and the SO(4) AdS7 given in (2.15) for h = 1 is

shown in Figure 1.

It should be noted here that this fixed point can be obtained from the SO(2)×SO(2)
fixed points given in the previous section by setting the parameter b = a. It can be

readily verified that, for b = a, solution in (3.16) is valid only for the upper sign and

Σ2 = H2. The resulting solution is precisely that given in (3.27).

We now move to solutions with g2 ̸= g1. The solution given in (3.27) is a special

case of a more general solution, with Φ1 = Φ3 = 0 and g2 ̸= g1, which is given by

Φ2 =
1

2
ln

[
g1 ±

√
4g22 − 3g21

2(g1 + g2)

]
, Φ1 = Φ3 = 0,

σ =
1

5

[
1024h2(

√
g22 − 192h2 ∓ 8h)

(g2 − 16h)(g2 + 24h∓
√
g22 − 192h2)

]
,

G =
1

10
ln

[
a5(g2 − 16h)4(

√
g22 − 192h2 ∓ 8h)(g2 + 24h∓

√
g22 − 192h2)3

1024g52h
3(g2 − 8h∓

√
g22 − 192h2)5

]
,

LAdS5 =
1

2

[
(g2 − 16h)2(g2 + 24h∓

√
g22 − 192h2)4

2h9(8h∓
√
g22 − 192h2)

] 1
5

(3.28)

where we have used the relation g1 = −16h in the solutions for σ and G to simplify the

expressions. An example of the corresponding flow solutions from the UV N = (1, 0)

SO(4) SCFT to this critical point, with g2 = −2g1 and h = 1, is given in Figure 2.

In all of the above solutions, it is not possible to have a flow from the SO(3) AdS7

critical point (2.16). To find this type of flows, we look for AdS5 fixed points with
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Figure 2: RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional

N = 1 SCFT with SO(2)diag symmetry for g1 ̸= g2.

Φ3 = 0 but Φ1 ̸= 0 and Φ2 ̸= 0. In this case, the AdS5 ×H2 solution is given by

Φ2 =
1

2
ln

[
g2 − g1
g2 + g1

]
, Φ1 = ±Φ2,

σ =
1

5
ln

[
g21g

2
2

144h2(g22 − g21)

]
, G =

1

2
ln

[
2

4
5 (3

3
5 )a(g22 − 256h2)

4
5

g
8
5
2 g1

]
,

LAdS5 =
3

4
5 (g22 − 256h2)

2
5

2
18
5 g

4
5
2 h

. (3.29)

Note that at the values of Φ1 and Φ2 are the same as the SO(3) AdS7 point. In

equation (2.16), we have

Φ1 = Φ2 =
1

2
ln

[
g2 − g1
g2 + g1

]
≡ Φ0 . (3.30)

Actually, there are two equivalent values of Φ1 namely either Φ1 = Φ0 or Φ1 = −Φ0.

The two choices are equivalent in the sense that they give rise to the same value of the

cosmological constant and the same scalar masses. The difference between the two is

the generators of SO(3) under which the SO(3) singlet scalar ϕ in (2.16) is invariant.

For Φ1 = Φ0, we have Φ1 = Φ2 which is invariant under the SO(3) generated by

J
(1)
ij +J

(2)
ij . The alternative value of Φ1 = −Φ0 gives Φ1 = −Φ2 which is invariant under

SO(3) generators J
(1)
12 + J

(2)
12 , J

(1)
13 − J

(2)
13 and J

(1)
23 − J

(2)
23 . This difference does not affect

the result discussed here since, in both cases, the residual SO(2)diag is still generated

by J
(1)
12 + J

(2)
12 .

The flow from SO(3) N = (1, 0) SCFT would be driven only by the dilaton σ which

has different values at the SO(3) AdS7 and the AdS5 fixed points. This is expected

since at SO(3) AdS7 critical point only σ corresponds to relevant operators, see the

scalar masses in [17].
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We now consider RG flows from N = (1, 0) SCFTs in six dimensions to four-

dimensional SCFTs identified with the critical point (3.29). In order to give some

explicit examples, we choose particular values of the two couplings g1 and g2. In the

following solutions, we will set g2 = −2g1 and h = 1. With these, the IR AdS5 ×H2 is

given by

Φ1 = Φ2 =
1

2
ln 3 ≈ 0.5493, σ =

1

5
ln

[
64

27

]
≈ 0.1726,

G =
1

10
ln

[
37

244

]
≈ −2.2808 . (3.31)

The SO(4) UV point (2.15) is given by

Φ1 = Φ2 = σ = 0 (3.32)

while the SO(3) AdS7 point (2.16) occurs at

σ =
1

5
ln

4

3
≈ 0.0575, Φ2 = Φ1 =

1

2
ln 3 ≈ 0.5493 . (3.33)

We have chosen Φ1 = Φ2 at the IR fixed points for definiteness.

There exist an RG flow from the SO(4) N = (1, 0) SCFT in the UV to the N = 1

four-dimensional SCFT in the IR as shown in Figure 3. With a particular boundary

condition, we can find an RG flow from the SO(4) AdS7 to the SO(3) AdS7 critical

points and then to the AdS5 critical point as shown in Figure 4. This solution is similar

to the flow from SO(6) AdS5 to Khavaev-Pilch-Warner (KPW) AdS5 critical point and

continue to a two-dimensional N = (2, 0) SCFT in [31].

3.2.2 Flows with SO(2)R symmetry

We then move on and briefly look at the SO(2)R symmetry. There are three singlet

scalars from the SO(3, 3)/SO(3)× SO(3) coset. These scalars will be denoted by Φ1,

Φ2 and Φ3 corresponding to the non-compact generators Y31, Y32 and Y33, respectively.

In this case, the gauge field corresponding the SO(2)R generator is given by

A3 = a cos θdϕ . (3.34)

By using the same procedure, we find that, in order to have a fixed point, all of the Φi’s

must vanish, and only AdS5 × H2 solutions exist. The solution again preserves eight

supercharges corresponding to N = 1 superconformal symmetry in four dimensions.

The fixed point solution is given by

σ =
2

5
ln

4

3
, G =

1

5
ln

4

3
− 1

2
ln
g1
3a
, F =

16h

9
2
5

r (3.35)
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Figure 3: An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to four-

dimensional N = 1 SCFT with SO(2)diag symmetry.

There exist RG flows from the SO(4) N = (1, 0) SCFT to these four-dimensional

SCFTs. The BPS equations describing theses flows are given by

σ′ =
2

5
e−

σ
2

(
aeσ−2G − g1 − 16he

5σ
2

)
, (3.36)

G′ =
1

5
e−

σ
2

(
4he

5σ
2 − g1 − 4aeσ−2G

)
, (3.37)

F ′ =
1

5
e−

σ
2

(
4he

5σ
2 − g1 + aeσ−2G

)
. (3.38)

Examples of the solutions with some values of the parameter a are shown in Figure 5.

This critical point is also a solution of pure N = 2 gauged supergravity studied in [21].

4. Flows to N = 1 SCFTs in three dimensions

In this section, we look for AdS4 vacua of the form AdS4×S3 or AdS4×H3 with S3 and

H3 being a three-sphere and a three-dimensional hyperbolic space, respectively. These

– 14 –
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Figure 4: An RG flow from SO(4) N = (1, 0) SCFT to SO(3) N = (1, 0) SCFT in six

dimensions and then to N = 1 four-dimensional SCFT with SO(2)diag symmetry.
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(a) Φ solution
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Σ

(b) σ solution

Figure 5: RG flows from SO(4) N = (1, 0) SCFT in six dimensions to four-dimensional

N = 1 SCFT with SO(2)R symmetry for a = 1, 5, 10 (red, green, blue).

solutions will correspond to some SCFTs in three dimensions. In order to identify these

AdS4 vacua with the IR fixed points of the six-dimensional SCFTs corresponding to

both of the AdS7 vacua given in (2.15) and (2.16), we consider the scalars which are

singlets under SO(3)diag subgroup of the full SO(4) gauge group. The relevant scalar

from the SO(3, 3)/SO(3)×SO(3) coset is the one corresponding to the generator (2.12)
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with the coset representative given in (2.13).

In the S3 case, we will take the metric ansatz to be

ds27 = e2Fdx21,2 + dr2 + e2G
[
dψ2 + sin2 ψ(dθ2 + sin2 θdϕ2)

]
. (4.1)

From the above metric, we find the spin connections

ωµ̂r̂ = F ′eµ̂, ωψ̂r̂ = G′eψ̂, ωθ̂r̂ = G′eθ̂,

ωϕ̂r̂ = G′eϕ̂, ωϕ̂
θ̂
= e−G

cot θ

sinψ
eϕ̂,

ωϕ̂
ψ̂
= e−G cotψeϕ̂, ωθ̂

ψ̂
= e−G cotψeθ̂ (4.2)

which accordingly suggest to turn on the following SO(3)diag gauge fields

A1 =
g2
g1
A4 = a cosψdθ,

A2 =
g2
g1
A5 = a cos θdϕ,

A3 =
g2
g1
A6 = a cosψ sin θdϕ . (4.3)

Note that at the beginning, the parameter a of each gauge field needs not be equal.

However, the twist condition

ag1 = 1 (4.4)

requires that all of the parameters in front of Ai must be equal. The corresponding

field strengths are, after using (4.4),

F 1 = −ae−2Geψ̂ ∧ eθ̂,
F 2 = −ae−2Geθ̂ ∧ eϕ̂,
F 3 = −ae−2Geψ̂ ∧ eϕ̂ . (4.5)

To set up the BPS equations, we impose the projection conditions

γrϵ = ϵ, iσ1γθ̂ψ̂ϵ = ϵ, iσ2γϕ̂θ̂ϵ = ϵ, iσ3γϕ̂ψ̂ϵ = ϵ . (4.6)

For the H3 case, we take the metric to be

ds27 = e2Fdx21,2 + dr2 +
e2G

y2
(dx2 + dy2 + dz2) (4.7)

with the spin connections given by

ωẑr̂ = G′eẑ, ωŷr̂ = G′eŷ, ωx̂r̂ = G′ex̂,

ωx̂ŷ = −e−Gex̂, ωẑŷ = −e−Geẑ, ωµ̂r̂ = F ′eµ̂ . (4.8)
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We then turn on the following gauge fields, to cancel the above spin connections on

H3,

A1 =
a

y
dx, A2 = 0, A3 =

a

y
dz (4.9)

with Ai+3 = g1
g2
Ai, i = 1, 2, 3. These gauge fields then become SO(3)diag gauge fields.

We will also impose the projection conditions

γrϵ = ϵ, iσ1γx̂ŷϵ = −ϵ, iσ2γx̂ẑϵ = −ϵ, iσ3γẑŷϵ = −ϵ . (4.10)

The twist condition is still given by (4.4).

In both cases, the last projector in (4.6) and (4.10) is not independent from the

second and the third ones, so the fixed point solution will preserve four supercharges

corresponding to N = 1 superconformal symmetry in three dimensions.

With all of the above conditions, we find the following BPS equations, for the H3

case,

ϕ′ = − 1

8g2
e−

σ
2
−3ϕ−2G

[
e2G(e4ϕ − 1)g2 − 4aeσ+2ϕ

] [
g1 − g2 + (g1 + g2)e

2ϕ
]
, (4.11)

σ′ = − 1

20
e−

σ
2
−3ϕ−2G

[
12a

g2
eσ+2ϕ

[
(e2ϕ − 1)g1 + (1 + e2ϕ)g2

]
+e2Gg2

[
g2(e

2ϕ − 1)3 + g1(e
2ϕ + 1)3 + 128he

5σ
2
+3ϕ

]]
, (4.12)

G′ =
1

40
e−

σ
2
−3ϕ−2G

[
28a

g2
eσ+2ϕ

[
(e2ϕ − 1)g1 + (1 + e2ϕ)g2

]
−e2Gg2

[
g2(e

2ϕ − 1)3 + g1(e
2ϕ + 1)3 − 32he

5σ
2
+3ϕ

]]
, (4.13)

F ′ = − 1

40
e−

σ
2
−3ϕ−2G

[
12a

g2
eσ+2ϕ

[
(e2ϕ − 1)g1 + (1 + e2ϕ)g2

]
+e2Gg2

[
g2(e

2ϕ − 1)3 + g1(e
2ϕ + 1)3 − 32he

5σ
2
+3ϕ

]]
. (4.14)

The corresponding equations for the S3 case are similar with a replaced by −a.
We now look for a fixed point solution at whichG′ = ϕ′ = σ′ = 0 and F ′ = constant.

For g2 = g1, only AdS4 ×H3 solutions exist and are given by

ϕ =
1

4
ln 2, σ =

3

10
ln 2,

G =
1

10
ln

[
64a5

g31h
2

]
, LAdS5 =

1

2
13
5 h

. (4.15)
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This solution can be uplifted to eleven dimensions using the ansatz of [30].

When g2 ̸= g1, we also find AdS4 ×H3 solutions

ϕ =
1

2
ln

[
g2 − g1
g2 + g1

]
, σ =

1

5
ln

[
g21g

2
2

100h2(g22 − g21)

]
,

G =
1

2
ln

[
5a(g22 − g21)

g1g22

]
+

1

5
ln

[
−g1g2

10h
√
g22 − g21

]
,

LAdS4 =
1

2
6
5h

[
25h2(g22 − g21)

g21g
2
2

] 2
5

. (4.16)

This solution can be connected to both AdS7 critical points in (2.15) and (2.16) by

some RG flows.

In this g2 ̸= g1 case, there can be both AdS4 × S3 and AdS4 ×H3 solutions. The

solution however takes a more complicated form depending on the values of g1 and g2.

The AdS4 ×H3 and AdS4 × S3 solutions are given respectively by

G =
1

2
ln

[
4aeσ+2ϕ0

g2(e4ϕ0 − 1)

]
, (4.17)

σ =
2

5
ln

[
e−3ϕ0

[
g2(1− e6ϕ0)− g1(e

6ϕ0 + 1)
]

32h

]
(4.18)

and

G =
1

2
ln

[
4aeσ+2ϕ0

g2(1− e4ϕ0)

]
, (4.19)

σ =
2

5
ln

[
e−3ϕ0

[
g2(1− e6ϕ0)− g1(e

6ϕ0 + 1)
]

32h

]
. (4.20)

In both cases, the scalar ϕ0 is a solution to the equation

g1(1− 2e2ϕ0 − 2e4ϕ0 + e6ϕ0)− g2(1 + 2e2ϕ0 − 2e4ϕ0 − e6ϕ0) = 0 . (4.21)

The explicit form of ϕ0 can be obtained but will not be given here due to its

complexity. There are many possible solutions for ϕ0 depending on the values of g1, g2
and a. An example of AdS4 × S3 solutions is, for g2 =

1
2
g1, given by

ϕ = −0.9158, σ = 0.5493, G = 0.4116 +
1

2
ln

[
a

g1

]
. (4.22)

One of the AdS4 ×H3 solutions is, for g2 =
1
2
g1, given by

ϕ = 0.2706, σ = 0.2351, G = 1.0936 +
1

2
ln

[
a

g1

]
. (4.23)
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Numerical solutions for RG flows from the UV N = (1, 0) SCFTs in six dimensions

to these three-dimensional N = 1 SCFTs can be found in the same way as those given

in the previous section. And, with suitable boundary conditions, the flow from SO(4)

AdS7 point to the SO(3) AdS7 point and then to AdS4 × S3 or AdS4 ×H3 in the case

of g2 ̸= g1 should be similarly obtained. We will however not give these solutions here.

5. Uplifting the solutions to eleven dimensions

In this section, we will uplift some of the AdS5 and AdS4 solutions found in the previous

sections to eleven dimensions using a reduction ansatz given in [30]. Only solutions with

equal SU(2) gauge couplings, g2 = g1, can be uplifted by this ansatz. Therefore, we

will consider only this case in the remaining of this section.

The reduction ansatz given in [30] is naturally written in terms of SL(4,R)/SO(4)
scalar manifold rather than the SO(3, 3)/SO(3)×SO(3) we have considered throughout

the previous sections. It is then useful to change the parametrization of scalars from

the SO(3, 3)/SO(3)×SO(3) to SL(4,R)/SO(4) cosets. For convenience, we will repeat
the supersymmetry transformations of fermions with the three-form field and fermions

vanishing

δψµ = Dµϵ−
1

20
gXT̃γµϵ−

1

20
X−4γµϵ

+
1

40
√
2
X−1

(
γ νρ
µ − 8δνµγ

ρ
)
ΓRSF

RS
νρ ϵ, (5.1)

δχ = −X−1γµ∂µXϵ−
2

5
gX−4ϵ+

1

10
gXT̃ − 1

20
√
2
X−1γµνΓRSF

RS
µν ϵ, (5.2)

δλ̂R = −1

2
γµΓSPµRSϵ−

1

8
gXT̃ΓRϵ+

1

2
gXT̃RSΓ

Sϵ

− 1

8
√
2
X−1γµνΓS

(
FRS
µν +

1

2
ϵRSTUF

TU
µν

)
ϵ (5.3)

where

PRS = (V−1)α(R

(
δβαd+ gA β

(1)α

)
V T
β δS)T ,

QRS = (V−1)α[R

(
δβαd+ gA β

(1)α

)
V T
β δS]T ,

Dϵ = dϵ+
1

4
ωabγ

ab +
1

4
QRSΓ

RS

T̃RS = (V−1) α
R (V−1) β

S δαβ, T̃ = T̃RSδ
RS . (5.4)

In the above equations, VRα denotes the SL(4,R)/SO(4) coset representative.
For the explicit form of the eleven-dimensional metric and the four-form field in-
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cluding the notations used in the above equations, we refer the reader to [30]. We now

consider the AdS5 and AdS4 solutions separately.

5.1 Uplifting the AdS5 solutions

For AdS5 solutions, the seven-dimensional metric is given by (3.1) and (3.4). We will

restrict ourselves to AdS5 fixed points with SO(2) × SO(2) symmetry. The non-zero

gauge fields are Aαβ = (A12, A34) whose explicit form is given by

A12 = a cos θdϕ and A34 = b cos θdϕ . (5.5)

The U(1)×U(1) singlet scalar from SL(4,R)/SO(4) coset is parametrized by the coset

representative

VRα = diag(e
Φ
2 , e

Φ
2 , e−

Φ
2 , e−

Φ
2 ) (5.6)

from which the T̃RS = diag(e−Φ, e−Φ, eΦ, eΦ) follows. Note that the parameter a and b

here are different from those in section 3 since the gauge fields Ai and Ar correspond

respectively to the anti-self-dual and self-dual parts of the SO(4) gauge fields Aαβ.

Using the above supersymmetry transformations and imposing the projection con-

ditions γr̂ϵ = ϵ and γ θ̂ϕ̂Γ12ϵ = ϵ, we obtain the BPS equations

X−1X ′ − 2

5
gX−4 +

1

5
gX(eΦ + e−Φ) +

1

5
√
2
X−1e−2G(aeΦ − be−Φ) = 0, (5.7)

−Φ′ − gX(eΦ − e−Φ) +
1√
2
X−1e−2G(aeΦ + be−Φ) = 0, (5.8)

F ′ − 1

5
gX(eΦ + e−Φ)− 1

10
gX−4 − 1

10
√
2
X−1e−2G(aeΦ − be−Φ) = 0, (5.9)

G′ − 1

5
gX(eΦ + e−Φ)− 1

10
gX−4 +

4

5
√
2
X−1e−2G(aeΦ − be−Φ) = 0 . (5.10)

In the above equations, we have used Γ34ϵ = −Γ12ϵ which follows from the condition

Γ1234ϵ = ϵ. The latter is part of the truncation from the maximal SO(5) gauged

supergravity to the half-maximal SO(4) gauged supergravity studied in [30]. We have

also used the twist condition given by

g(a− b) + 1 = 0 . (5.11)

which comes from the requirement that the gauge connection cancels the spin connec-

tion. Note that this condition differs from (3.8) since the gauge fields are different.

In condition (3.8), the SU(2)R gauge fields are given by the AI with I = 1, 2, 3, and

the SO(2)R ⊂ SU(2)R gauge field has been chosen to be A3. On the other hand,

the condition (5.11) involves A12 − A34 corresponding to the SO(2)R subgroup of the
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SU(2)R R-Symmetry for which the corresponding gauge fields are identified with the

anti-self-dual part of the SO(4) gauge fields Aαβ in the convention of [30].

For large r, the solution should approachX = 1, Φ = 0 and F ∼ G ∼ r giving AdS7

background with SO(4) symmetry. This corresponds to the UV N = (1, 0) SCFT in

six dimensions. In the IR with the boundary condition F ∼ r and G,Φ, σ ∼ constant,

there is a class of solutions given by

Φ =
1

2
ln

[
a+ b±

√
a2 + ab+ b2

a

]
,

G =
1

2
ln

[
a
(
a+ 2b±

√
a2 + ab+ b2

)
√
2gX2

(
b±

√
a2 + ab+ b2

)] ,
X10 =

a
(
a+ 2b±

√
a2 + ab+ b2

)2
4(a+ b)2

(
a+ b±

√
a2 + ab+ b2

) ,
LAdS5 =

a2
1
5

g

[
a+ 2b±

√
a2 + ab+ b2

(a+ b)2
(
a+ b±

√
a2 + ab+ b2

)] 2
5

. (5.12)

This gives AdS5 × S2 background preserving U(1) × U(1) symmetry and eight super-

charges since only the projector γ θ̂ϕ̂Γ12ϵ = ϵ is needed at the fixed point. Therefore,

this solution corresponds to N = 1 SCFT in four dimensions. This solution is the same

as in [22] with the identification (m1,m2) → (−b, a) up to some field redefinitions. So,

we conclude that the AdS5×Σ2 solutions found in [22] is a solution of the N = 2 SO(4)

gauged supergravity.

For the H2 case, the above analysis can be repeated in a similar manner. The re-

sulting BPS equations are, as expected, given by (5.7), (5.8), (5.9) and (5.10) with (a, b)

replaced by (−a,−b). It can also be verified that for both AdS5 × S2 and AdS5 ×H2

solutions given in (5.12), solutions with the positive sign are valid for g > 0 and a > 0

while solutions with the negative sign are valid for g < 0 and a < 0.

It should also be noted that we can truncate the above BPS equations to those

of SO(2)R symmetry, generated by the anti-selfdual gauge field A12 − A34, by setting

b = −a. Since the twist condition in this case becomes 2ga = −1 which implies that

ga < 0, only the AdS5 × H2 exists. This precisely agrees with the result of section

3.2.2. The corresponding solution is given by

X =

(
3

4

) 1
5

, G = −1

2
ln

[
− g

2
3
103

3
5a

]
, LAdS5 =

3
4
5

2
3
5 g
. (5.13)

The AdS5×H2 with SO(2)diag symmetry found in section 3.2.1 for g2 = g1 can also

be uplifted using the formulae given here by truncating the SO(2)× SO(2) symmetry
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to SO(2)diag as remarked previously in section 3.2.1. The SO(2)diag corresponds to the

gauge field A12 since the A3 and A6, in section 3.2, are related to the anti-self-dual,
1
2
(A12 − A34), and self-dual, 1

2
(A12 + A34), fields, respectively. So, the SO(2)diag gauge

field is given by A12. As in section 3.2, only solutions with the upper sign in the solution

(5.12) and AdS5 ×H2 are possible. The result is given by

Φ =
1

2
ln 2, X10 =

1

8
, G =

1

2
ln

[
−a2

11
10

g

]
. (5.14)

This is consistent with the twist condition (5.11) which, for b = 0, becomes ga = −1.

We now move to the uplift of these AdS5 solutions. Both AdS5×S2 and AdS5×H2

solutions can be uplifted in a similar way. For definiteness, we will only give the

uplifted AdS5 × S2 solution. Using the reduction ansatz given in [30], we find the

eleven-dimensional metric

ds211 = ∆
1
3

[
e

2r
LAdS5 dx21,3 + dr2 + e2G0(dθ2 + sin2 θdϕ2)

]
+
2

g
∆− 2

3X3
0

[
X0 cos

2 ξ +X−4
0 sin2 ξ

(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)]
dξ2

+
1

2g2
∆− 2

3X−1
0 cos2 ξ

[
e−Φ0

[
cos2 ψdϕ2 + sin2 ψ(dα− ag cos θdϕ)2

]
+ eΦ0

[
cos2 ψdϕ2 + sin2 ψ(dβ − bg cos θdϕ)2

]]
− 1

2g2
∆− 2

3X−1
0 sin ξ sin(2ψ)

(
e−Φ0 − eΦ0

)
dξdψ (5.15)

where we have used the coordinates µα, satisfying µαµα = 1, as follow

µ1 = sinψ cosα, µ2 = sinψ sinα,

µ3 = cosψ cos β, µ4 = cosψ sin β . (5.16)

The quantities X0, Φ0 and G0 are the values of the corresponding fields at the fixed

point (5.12). The quantity ∆ is defined by

∆ = X−4 sin2 ξ +XT̃αµ
αµβ cos2 ξ (5.17)

which, in the present case, gives

∆ = X0 cos
2 ξ

(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)
+X−4

0 sin2 ξ . (5.18)
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The 4-form field, at the fixed point, is given by

F̂(4) =
1

g3
U∆−2 cos3 ξdξ ∧ ϵ(3) +

a

g2
cos θ cos ξ

[
sin ξ cos ξ sinψ cosψX−4

0 dψ

cos2 ψ
(
X−4

0 sin2 ξ + eΦ0X2
0 cos

2 ξ
)
dξ
]
∧ dβ ∧ dθ ∧ dϕ

− b

g2
sin θ cos ξ

[
sin ξ cos ξ sinψ cosψX−4

0 dψ

−
(
X−4

0 sin2 ξ +X2
0 cos

2 ξe−Φ0
)
sin2 ψdξ

]
∧ dα ∧ dθ ∧ dϕ (5.19)

where

U = sin2 ξ
[
X−8

0 − 2X−3
0

(
eΦ0 + e−Φ0

)]
− cos2 ξ

[
2X2

0 +X−3
0

(
e−Φ0 sin2 ψ + eΦ0 cos2 ψ

)]
. (5.20)

The uplifted solutions for some particular values of a and b have already been given in

[23].

5.2 Uplifting the AdS4 solutions

We now consider the embedding of the AdS4 × H3 solution given in (4.15) in eleven

dimensions. The SL(4,R)/SO(4) coset representative, invariant under SO(3)diag, is

given by

VRα = (δabe
ϕ
2 , e−

3ϕ
2 ) (5.21)

which gives T̃RS = (δabe
−ϕ, e3ϕ). We have split the α index as follow α = (a, 4),

a = 1, 2, 3.

To set up the associated BPS equations, we use the seven-dimensional metric (4.7)

and the following gauge fields

A12 =
a

y
dz, A31 = 0, A23 =

a

y
dx . (5.22)

The twist condition is given by ga = 1. We will also impose the projection conditions

Γ23γx̂ŷϵ = −ϵ, Γ13γẑx̂ϵ = −ϵ, Γ12γẑŷϵ = −ϵ, Γr̂ϵ = ϵ . (5.23)

With all of the above conditions, we obtain the following BPS equations

−ϕ′ +
1

2
gX(e−ϕ − e3ϕ) +

√
2aX−1eϕ−2G = 0, (5.24)

−X−1X ′ − 2

5
gX−4 +

1

10
gX(3e−ϕ + e3ϕ) +

3

5
√
2
aX−1eϕ−2G = 0, (5.25)

G′ − 1

10
gX(3e−ϕ + e3ϕ)− 1

10
gX−4 +

7

5
√
2
aX−1eϕ−2G = 0, (5.26)

F ′ − 1

10
gX(3e−ϕ + e3ϕ)− 1

10
gX−4 − 3

5
√
2
aX−1eϕ−2G = 0 . (5.27)
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These equations admit a fixed point solution

ϕ0 =
1

4
ln

11

3
, X20

0 =
11(33)

212
,

G0 =
1

10
ln

[
3(112)

2
√
2

]
− 1

2
ln
[g
a

]
, LAdS4 =

1

g

(
11(33)

27

) 1
5

. (5.28)

The parametrization of the µα coordinates can be chosen to be

µα = (cosΨµ̂a, sinΨ) (5.29)

with µ̂a satisfying µ̂aµ̂a = 1. The SO(3)diag symmetry corresponds to the gauge fields

Aab. In the following, we accordingly set A4a = 0 for a = 1, 2, 3 and find that

Dµa = cosΨDµ̂a − sinΨµ̂adΨ, Dµ4 = cosΨdΨ (5.30)

where

Dµ̂a = dµ̂a + gAabµ̂b . (5.31)

With all these results, the eleven-dimensional metric is given by

ds211 = ∆
1
3

[
e

r
LAdS4 dx21,2 + dr2 +

e2G0

y2
[
dx2 + dy2 + dz2

]]
+

2

g2
∆− 2

3X3
0

[
X0 cos

2 ξ +X−4
0 sin2 ξ

(
cos2Ψeϕ0 + sin2Ψe−3ϕ0

)]
dξ2

+
1

2g2
∆− 2

3X−1
0 cos2 ξ

[
cos2 Ψeϕ0Dµ̂aDµ̂a +

(
sin2Ψeϕ0 + cos2Ψe−3ϕ0

)
dΨ2

]
− 1

g2
∆− 2

3X−1
0 sin ξ

(
e−3ϕ0 − eϕ0

)
sinΨ cosΨdΨdξ . (5.32)

The S2 coordinates µ̂a can be parametrized by

µ̂1 = sin β cosα, µ̂2 = sin β sinα, µ̂3 = cos β . (5.33)

The warped factor ∆ is given by

∆ = X2
0e

−ϕ0 cos2 ξ cos2 Ψ+X−4
0 sin2 ξ +X0e

3ϕ0 sin2Ψcos2 ξ . (5.34)

The four-form field on the AdS4 ×H3 background can be written as

F̂(4) =
1

g3
U cos3 ξ cos2 Ψdξ ∧ dΨ ∧ ϵ(2)

+
1

2g2
cos ξϵabc

[
µ̂c

[
X−4

0 sin2 ξ(sin2 Ψ− cos2Ψ)

+X2
0 (e

3ϕ0 sin2Ψ− e−ϕ0 cos2Ψ)
]
dξ ∧ F ab ∧ dΨ

−
[
(X−4

0 sin2 ξ +X2
0 cos

2 ξe3ϕ0) sinΨ cosΨdξ

+X−4
0 cos ξ sin ξ cos2 ΨdΨ

]
∧ F ab ∧Dµ̂c

]
(5.35)
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where

ϵ(2) =
1

2
ϵabcµ̂

aDµ̂b ∧Dµ̂c,

U = cos2 ξ
[
X2

0

[
e6ϕ0 sin2Ψ− e−2ϕ0 cos2Ψ− e2ϕ0(2 sin2Ψ+ 1)

]
−X−3

0 (e−ϕ0 cos2Ψ+ e3ϕ0 sin2 Ψ)
]

+sin2 ξX−3
0 (X−5

0 − 3e−ϕ0 − e3ϕ0). (5.36)

6. Conclusions

We have studied AdS5 × Σ2 and AdS4 × Σ3 solutions of N = 2 gauged supergravity

in seven dimensions with SO(4) gauge group. We have found that there exist both

AdS5×S2 and AdS5×H2 solutions with the gauge fields for SO(2)×SO(2) turned on.

With SO(2)R or SO(2)diag gauge fields, only AdS5 × H2 solution is possible. This is

consistent with the results given in [21] and [23]. We recover AdS5×S2 and AdS5×H2

solutions studied in [22] and [23] with SO(2)× SO(2) symmetry. In the case of equal

SU(2) gauge couplings, the solutions can be uplifted to eleven dimensions, and the

uplifted solutions have explicitly given.

We have also considered RG flow solutions interpolating between supersymmetric

AdS7 critical points in the UV and these AdS5 solutions in the IR. In the case of

SO(2)diag symmetry, there exist flow solutions from SO(4) AdS7 critical point to AdS5

as well as flows from SO(4) AdS7 to SO(3) AdS7 and then continue to AdS5 fixed

points similar to the flows from four-dimensional SCFTs to two-dimensional N = (2, 0)

SCFTs studied in [31]. Other results of this paper are a number of new AdS4×S3 and

AdS4 ×H3 solutions for unequal SU(2) gauge couplings. With equal SU(2) couplings,

only AdS4 × H3 geometry is possible, and the resulting solutions can be uplifted to

eleven dimensions.

The results obtained in this paper should be relevant in the holographic study

of N = (1, 0) SCFTs in six dimensions. These would also provide new AdS5 and

AdS4 solutions, corresponding to new SCFTs in four and three dimensions, within the

framework of seven-dimensional gauged supergravity. The embedding of the solutions

in the case of unequal SU(2) gauge couplings (if possible) would be interesting to

explore. It would also be interesting to compare the AdS5 and AdS4 solutions obtained

here and the solutions found recently in [32, 33] in the context of massive type IIA

theory. Finally, it is of particular interest to find an interpretation of all these solutions

in terms of wrapped M5-branes on Σ2 and Σ3. Along this line, it would also be useful

to find an implication of the AdS4 solutions in terms of the M2-brane worldvolume

theories.
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