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Abstract

Project Code: TRG5680010

Project Title: Studies of Holographic RG Flows and Related Topics

Investigator: Dr. Parinya Karndumri

E-mail Address: parinya.ka@hotmail.com

Project Period: 2 years

The project concerns with the studies of holographic RG flows and related topics
within the framework of gauged supergravities in various space-time dimensions. The
theories considered here are three-dimensional gauged supergravities with N=2,5,6,8,10
supersymmetries and the matter-coupled half-maximal gauged supergravities in six and
seven dimensions. The corresponding scalar potential for each theory is explicitly
computed, and the analysis of possible anti-de Sitter (AdS) vacua together with
holographic RG flow solutions is carried out. The results from the research project are
the discovery of new gauged supergravity theories in three and seven dimensions. In
particular, a new embedding of N=2 SO(4) gauged supergravity in seven dimensions in
eleven-dimensional supergravity is obtained. A large class of N=2 three-dimensional
gauged supergravities from wrapped D3-branes in type IIB string theory is discovered.
Among these results, novel supersymmetric AdS; backgrounds and supersymmetric RG
flows are identified within the half-maximal gauged supergravity with topological mass
term for the three-form field in the gravity multiplet. A class of supersymmetric RG flows,
describing supersymmetric deformations of N=(1,0) superconformal field theories
(SCFTs) in six dimensions and N=2 SCFTs in five dimensions, to non-conformal gauge
theories and lower dimensional SCFTs is given. The result also provides new AdS, and
AdS; solutions dual to certain SCFTs in three and four dimensions within the context of
gauged supergravities. All of the outcomes of this project will be useful in the research
involving embedding lower dimensional gauged supergravities in higher dimensions and

holographic studies of strongly coupled gauge theories in various dimensions.

Keywords: Gauged supergravity, AdS/CFT correspondence, Gauge/gravity

correspondence, Holographic RG flow
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1 Introduction

Gauged supergravity is a very useful tool in many areas of string theory such as flux
compactifications and the AdS/CFT correspondence (see [1] for a review). Due to these
applications, gauged supergravities in various dimensions as well as their Kaluza-Klein
(KK) dimensional reductions have been extensively explored. It is well known that lower-
dimensional gauged supergravities can be obtained from dimensional reductions of higher-
dimensional theories. Up to now, many examples have appeared and amongst them, [2,
3] and [5-8] are recognizable primary examples. In this paper, we are interested in
gauged supergravities in three dimensions in order to incorporate both the principle of
c-extremization and null-warped AdS3 solutions.



The complete classification of Chern-Simons gauged supergravities in three dimensions
has been given in [9]. Most theories constructed in this formulation have no known higher-
dimensional origin. The three-dimensional gauged supergravities obtainable from dimen-
sional reductions form a small part, with non-semisimple gauge groups, in this classifica-
tion [10]. Unlike in higher-dimensional analogues, only a few examples of three-dimensional
gauged supergravities, which play an important role in AdS3/CFTy correspondence, have
been obtained by dimensional reductions [11-13]. In this paper, we will extend this list
with more examples of gauged supergravities in three dimensions arising from wrapped
D3-branes in type IIB supergravity.

Recently, c-extremization for N' = (0,2) two-dimensional SCFT’s has been proposed
and various examples of gravity duals in five- and seven-dimensional gauged supergravities
exhibited [14, 15]. Recall that c-extremization is a procedure that allows one to single
out the correct U(1)g symmetry of the CFT from the mixing with other U(1) symme-
tries. Soon after, c-extremization was formulated purely in the context of the AdS3/CFTy
correspondence by explicitly showing that, in the presence of a gauged SO(2)r ~ U(1)g
R symmetry, the so-called T tensor of the three-dimensional gauged supergravity can be
extremized leading to the exact central charge and R symmetry [16]. This realization is
similar to how a-maximization of four-dimensional SCFT’s [17] can be encoded in five-
dimensional gauged supergravity [18] in the context of the AdS;/CFT, correspondence.!
Interestingly, in three dimensions, not only is the central charge reproduced, but the mo-
ment maps comprising the 7" tensor give information about the exact R symmetry. In this
work we will provide more details of the results quoted in [16] and also exhibit another
(related) example by considering twists of generic SCFT’s with Sasaki-Einstein duals.

In three dimensions, where a vector is dual to a scalar, the matter coupled super-
gravity theory can be formulated purely in terms of scalar fields resulting in a non-linear
sigma model coupled to supergravity. N’ = 2 supersymmetry in three dimensions requires
the scalar target manifold to be Kéahler. Gaugings of the theory are implemented by the
embedding tensor specifying the way in which the gauge group is embedded in the global
symmetry group. In general, the moment map of the embedding tensor, given by scalar
matrices V, determines the T' tensor which plays an important role in computing the scalar
potential and supersymmetry transformations. As a general result, NV = 2 supersymmetry
allows any proper subgroup of the symmetry to be gauged. Furthermore, there is a possi-
bility of other deformations through a holomorphic superpotential W. The scalar potential
generally gets contributions from both the 7" tensor and the superpotential. However, any
gauging of the R symmetry requires vanishing W.

The particular higher-dimensional theories we choose to reduce can all be motivated
from the perspective of ten dimensions. From either an analysis of the Killing spinor
equations [20], or by following wrapped D-brane intuition [21], it is known that supersym-
metric AdS3 solutions supported by the five-form RR flux of type IIB supergravity, or in
other words, those corresponding to wrapped D3-branes, have seven-dimensional internal
manifolds Y7 and bear some resemblance to Sasaki-Einstein metrics. More precisely, Y7

'A concrete realization is presented in [19].



can be expressed locally in terms of a natural U(1) fibration (the R symmetry) over a
six-dimensional Kéhler base that is subject to a single differential condition

1 -
OR = 5}22 — R;;RY, (1.1)

where R and R;; are, respectively, the Ricci scalar and Ricci tensor of the metric of the
Kéhler manifold. Through the supersymmetry conditions [20, 21], the Ricci scalar R is
related to an overall warp factor for the ten-dimensional space-time.

Of course the above equation can be simplified considerably by assuming that the
Kahler manifold is also Einstein, but in general, solutions with non-trivial warp factors can
be difficult to find. A search for IIB solutions tailored to this context can be found in [22],
where a solution originally found in [23] was recovered. The challenges here are reminis-
cent of generalisations of direct-product AdS,; and AdS5 solutions to warped products. To
support this observation, we recall that, for an Ansatz covering the most general supersym-
metric warped AdSs solutions of type IIB supergravity [24], the only warped geometry?
noted by the authors beyond the special case of Sasaki-Einstein was the Pilch-Warner solu-
tion [26]. On a more recent note, warped AdSy solutions of eleven-dimensional supergravity
generalising Sasaki-Einstein have been found [27, 28]. In the face of these difficulties, it is a
pleasant surprise to witness the ease at which supersymmetric solutions with warp factors
can be constructed in five-dimensional supergravity through twisted compactifications on a
constant curvature Riemann surface 3 of genus g and how the principle of c-extremization
accounts for the central charge and exact R symmetry of the dual N' = (0,2) SCFT [14, 15].

c-extremization aside, we can further motivate the study of three-dimensional gauged
supergravities through the continued interest in “null warped” AdSs space-times. Over the
last few years, we have witnessed a hive of activity surrounding warped AdSs space-times
and their field theory duals [29], primarily in Topologically Massive Gravity (TMG) [30, 31].
Indeed, the mere existence of these solutions and the fact that they are deformations of
AdS3 with SL(2,R) x U(1) isometry, raises very natural questions about the putative
dual CFT. Since relatively little is known about these theories, the common approach
is to extract information holographically from warped AdS3 solutions. To date, in three
dimensions, warped AdS3 solutions have cropped up in a host of diverse settings, including
of course, solutions [29, 32, 33] to TMG, solutions [34] to New Massive Gravity [35], Higher-
Spin Gravity [36], topologically gauged CFTs [37] and three-dimensional gravity with a
Chern-Simons (CS) Maxwell term [38], where the latter is embeddable in string theory.
As we shall see, within the last class of three-dimensional theories, one also finds gauged
supergravities.

Indeed, “null warped” AdSs are central to efforts to generalise AdS/CFT to a non-
relativistic setting, where holography may be applicable to condensed matter theory via
a class of Schrodinger space-times. Taking the catalyst from [39, 40], through fledgling
embeddings in string theory [41-44], various attempts have been made to provide a working
description of non-relativistic holography. On one hand, one may wish to start with a

2A class of solutions can be generated via TsT transformations [25] starting from AdSs x S°, but as the
transformation only acts on the internal S°, the final solution is not warped.



recognisable theory with Schrodinger symmetry, such as a non-relativistic limit [45, 46]
of ABJM [47], but holographic studies [48-50] fail to capture the required high degree of
supersymmetry. On the other hand, if one starts from gravity solutions with Schrédinger
symmetry, one may be more pragmatic and obtain an effective description of the dual non-
relativistic CFT, valid at large N and strong coupling [51].> Similar points of view were
also advocated in [55-57]. Whether the dual theory is a genuine CFT as proposed in [29],
or some warped CFT, is an open question drawing considerable attention.

The structure of the rest of this paper is as follows. In section 2, we present an overview
of our knowledge of supersymmetric AdSs geometries arising from wrapped D3-branes. In
section 2.2, we focus on geometries with a U(1) R symmetry dual to N = (0,2) SCFT’s and
present known examples preserving at least four supersymmetries, all of which will corre-
spond to the vacua of the gauged supergravities we discuss later. In section 3, we provide
more details of the KK reduction reported in [16]. In section 4.1, we present the three-
dimensional gauged supergravity corresponding to a twisted compactification of an N =1
SCFT with a generic Sasaki-Einstein dual. In section 4.2, we generalise the KK reduc-
tions discussed in [38] and identify the corresponding gauged supergravities. In section 5
we present some simple constructions of null-warped AdSs, or alternatively Schrédinger
geometries with dynamical exponent z = 2, before discussing some open avenues for future
study in section 6.

2 AdS; from wrapped D3-branes

2.1 Review of wrapped D3-branes

In this section we review supersymmetric AdSs geometries arising from D3-branes wrapping
calibrated two-cycles in manifolds with SU(2), SU(3) and SU(4) holonomy. To this end, we
follow the general ten-dimensional classification presented in [21] and later indicate where
particular explicit solutions fit into the bigger picture. The approach of [21] builds on
earlier work concerning wrapped Mb5-branes [59, 60] and M2-branes [61].

We recall that the general “wrapped-brane” strategy [59] involves first assuming that
AdS3 geometries start off as warped products of the form

dsy = L™ 'ds® (R) + ds* (M), (2.1)

where both the warp factor L and the metric on Mg are independent of the Minkowski
factor. Here the Minkowski space-time should be regarded as the unwrapped part of the D3-
brane, and as expected, the D3-branes source a self-dual RR five-form flux F5 = © + %10
invariant under the symmetries of the Minkowski factor.

For the particular geometries of interest to us, the metric and the flux for the geometry
may be expressed as [21]

ds?y = L7 1ds? (RM) + ds? (Myg) + Lds? (R8_2d> :
© =vol (RM) Ad (L7 Jaq) (2.2)

3Separately it has been argued [52, 53] that generic non-relativistic quantum field theories have a holo-
graphic description in terms of Horava gravity [54].
4See [58] for a recent discussion.



wrapped brane | manifold | supersymmetry | R symmetry
Kéhler 2-cycle CY, N = (4,4) SO(4) x U(1)
Kéahler 2-cycle CYs N =(2,2) U(1) x U(1)
Kéhler 2-cycle CY, N =(0,2) U(1)

Table 1. Wrapped D3-brane geometries and their supersymmetry.

where d = 2,3,4. In each case we require the existence of globally defined SU(d) struc-
tures, specified by everywhere non-zero forms Jog, {294 on Moy, The accompanying torsion
conditions follow from the SU(4) x R case of [62], with the conditions for smaller structure
groups being determined through decompositions of the form

Jadro = Jag + TN 212,

Qogra = Qog A <€2d+1 + i62d+2) . (23)

As explained in detail in [21], the supersymmetry conditions for AdSs space-times may
then be derived by introducing an AdSs radial coordinate r, writing the (unit radius) AdSs
metric in the form

ds? (AdSs) = e ?"ds* (RM!) + dr?, (2.4)

redefining the warp factor, L = e?"\, and performing a frame rotation of the form
A"2dr = sin 01 + cos 0, (2.5)

where 0 parametrises the frame-rotation, which is further assumed to be independent of the
AdSs radial coordinate, and 4,0 are respectively unit one-forms on Myy and the overall
transverse space.” Omitting various technicalities associated to this frame-rotation one ar-
rives at a simple but effective derivation of the supersymmetry conditions for various AdSs
space-times of type IIB supergravity. A summary of the outcome may be encapsulated in
table 1 which we reproduce from [21].

As can be seen from the above table, in each case the cycle being wrapped is the same,
but as the dimensionality of the Calabi-Yau n-fold (CY},) increases, the preserved super-
symmetry decreases. For D3-branes wrapping Kéhler two-cycles in C'Y> manifolds, one can
generically have SO(4) x U(1) R symmetry provided the radial direction (2.5) involves a
rotation. Upon analytic continuation, one recovers the half-BPS LLM solutions [63] with
isometry R xSO(4) x SO(4) x U(1), however there appear to be no known AdS3 space-times
in this class. On the contrary, when # = 0, i.e. when the radial direction is purely trans-
verse, one recovers the well known AdSs x S3 x CYs solution® with R symmetry SO(4). In
either case the supersymmetry is N' = (4,4).

®For SU(4) structure manifolds there is no transverse space so there = /2.

5Specialising to C'Ys = T* and performing T-dualities we arrive at the usual form of the D1-D5 near-
horizon sourced by three-form RR flux. We also remark that the geometry sourced by five-form flux and
three-form flux are also related via fermionic T-duality [64] as explained in [65].



For D3-branes wrapping Kéhler two-cycles in C'Y3, supersymmetry is reduced to N =
(2,2), while the associated R symmetry group is U(1) x U(1). Examples of these space-
times can be found in the literature [66, 67]. Finally, for D3-branes wrapping Kéhler two-
cycles in C'Yy the dual SCFTs preserve N' = (0,2) supersymmetry and the U(1) Killing
direction is dual to the R symmetry. A rich set of examples of these geometries exist in
the literature [14, 15, 22, 23, 67, 68]. In the notation of [21], the metric and flux may be
expressed as

ds?, = A\ 7tds? (AdS3) 4+ Ads? (Mg) + A7 (dy + B)?, (2.6)
© = vol (AdS3) A [d (A"%(dy + B)) —2A71J], (2.7)

where 0y, is the Killing vector dual to the R symmetry. The SU(3) structure manifold Mg
is subject to the the conditions [21]:

dJ =0, (2.8)
J2ANdB = §A2J3, (2.9)
dQ = 2i(dy + B) A Q2. (2.10)

The first condition implies that Mg is a Kéhler manifold, while the last condition simply
identifies the Ricci form R = 2dB.

2.2 D3-branes with N/ = (0,2) SCFTs duals

Now that we have covered AdSs space-times arising from D3-branes wrapping Kéhler two-
cycles in Calabi-Yau manifolds in a general manner, here we focus on the particular case
where the manifold is C'Y,. Since this case preserves the least amount of supersymmetry,
it includes geometries dual to two-dimensional SCFTs with N = (2,2) and N' = (4,4)
supersymmetry as special cases.

While the characterisation of wrapped D3-branes [21] presented in the previous section
offers a welcome sense of overview, henceforth we switch to the notation of [22], which is
itself based on the work of [20]. The generic AdS3 solutions corresponding to wrapped
D3-branes are then of the form [22],

1
ds? = L* [62Ad82 (AdS3) + 162’4 (dz + P)* 4 ¢ 24ds? (Mﬁ):| ,

Fy = LA VOl(Ang) A I:;J — éd (€4A (dZ + P))]
1 4 1
+ L [T ARz + P)+ 5w dR (2.11)

where L is an overall scale factor, *¢ refers to Hodge duality with respect to the metric of the
Kihler space, dP = R, with R being the Ricci form on Mg.” The warp factor is related to

"The Ricci form is defined by Rij = %RUMJM, where R;jj; is the Riemann tensor. Recall also that the
Ricci scalar R and the Ricci tensor R;; may be expressed in terms of the Ricci form as R = J i Ri; and
Rij = —J;"Ru;.



the Ricci scalar through 8¢ =44 = R, a relation that can be inferred from (2.9). The closure
of F5 leads to the differential condition on the curvature (1.1). Finally, to make direct
comparison with the previous incarnation of this solution (2.6), one can simply redefine

A=e 24 =2, P=2B, Q=¢7Q, (2.12)

where we have added a tilde to differentiate between complex forms. The five-form
fluxes (2.7) and (2.11) are related up to a factor of —4 and follow from the choice of nor-
malisation adopted in [20]. This point should be borne in mind when making comparisons.

Examples. To get better acquainted with the form of the general soution, we can con-
sider some supersymmetric solutions that will correspond later to the vacua of our gauged
supergravities. We begin with the well-known AdSs; x S3 x T* solution corresponding to
the near-horizon geometry of two intersecting D3-branes. Via T-duality it is related to the
D1-D5 near-horizon where the geometry is supported by a RR three-form.

To rewrite the solution in terms of the general description (2.11), we take

A =0,
dz 4+ P = (d¢3 — cos ¢1de2) ,
ds* (Mg) = ds* (T*) + i (d¢? + sin® ¢1de3) , (2.13)

where ¢; parametrise the coordinates on the S normalised to unit radius, the same radius
as the AdSs factor. Despite this solution fitting into the general ten-dimensional framework,
it preserves sixteen supercharges and is dual to a SCFT with A" = (4,4) supersymmetry.

Before illustrating the most general solution of [14, 15] in its ten-dimensional guise, we
can satisfy the required supersymmetry condition

a1+ az + a3 = —k, (2.14)

where & is the curvature of the Riemann surface 3, more simply through setting all the a;
equal, a; = %, and taking the Riemann surface to be a unit radius Hyperbolic space, k = —1.
This solution originally featured in [67]. With these simplifications the solution reads

3
4 1 N 2
ds? = 5ds? (AdSy) + 5ds? (H2) + Y dyi? + if (d%- +A) , (2.15)
i=1
32 4 >
Fs=(1 ~ 22 5ol (A 1(H?) — — vol (A 2 A (dpi+ A)
5= (1+%) | =g vol( dS3) A vol (H?) 57 Vol ( dsg)A;d(M,)A de; + :
where the p; are constrained so that Z?Zl u? = 1. Note now that all A; are equal,

A; = A, and dA = —1vol(H?). It is easy to determine the one-form K = fe*4(dz + P)
corresponding to the R symmetry direction

Kzg ng;uf <dtpi+fl)

, (2.16)




and check that it has the correct norm K? = €24 = 2 [20]. Taking into account the

factor of —4 in the definitions of the flux, and also setting L = 1, we then learn from
comparing (2.11) with (2.15) that

3
32 4 R
— ZZVol(H?) — — 2 i+ A) =2 2ARK). .
g1 VollH") — 5 ;:1 d(p;) A (dei + A) J+d(e*"K) (2.17)
One can then determine J
4 2 &
_ = 2 < 2 . A
J = g vol (H?) + ;:1: A (i) A (api+ A), (2.18)

which comes with the correct factor of vol(H?),

4 4
5 (M) = o ds? (1) [0+ i+ i+t (s = o)

+ 33 (der — des)® + pdid (des — dgs)?|, (2.19)

so that vol(Mg) = %J 3. Observe also that J is independent of K since p;dp; = 0 follows
from the fact that the p; are constrained. In addition, the final difference in angular
coordinates @9 — 3 can be written as a linear combination of the other two, so we only
have four directions separate from those along the H2. As a further consistency check, we
have confirmed that the Ricci scalar for Mg is R = 8¢~*4, in line with our expectations.

We can now repeat for general a; subject to the single constraint (2.14). This also
comprises the only example we discuss where the warp factor A is not a constant. In the
notation of [14, 15], the ten-dimensional solution is

3
ds? = A3 |2 ds? (AdSs) + €29ds? (zg)] +A72Y) X (du? + 7 (di + Ai)Q) . (2.20)
=1

3
_ 3f+2 i(v2,2 a; 2
Fy = (1+%)vol (Ang)/\;e f+2g [2){ (X2uZ-A) VOI(EQ)—Wd (,U«i)/\(dSO‘f'Ai)],
where
3
A= "X,  XiXpX3=1, (2.21)
=1

and as before the u; are constrained. The constrained scalars X; can be expressed in terms
of two scalars ¢; in the following way

1 2 1

X, = e*§<%<ﬂ1+\/§<ﬁ2)’ X, = e*g(%%*ﬁVJz)’ X5 = 6%501. (2‘22)



To give the full form of the solution one also needs to specify the values of the various
warp factors e/, e9 and scalars X; [14]:%

o 2 2 a1 X9 4+ a2 X1
= et = —————,
X1+ Xo+ X3 2
xyxpt = e tasma) oy e 02t as o) (2.23)

az (a1 + az — a3)’ as (a1 + a2 —az)
From the higher-dimensional perspective afforded to us here, the canonical R symmetry

corresponds with the Killing vector [15]

3
X,
Op =2y ——F——0,,. 2.24
P ; Xl + X2 T X3 Pi ( )
Again, one is in a position to determine the dual one-form
3
K =elA72 Y (dei+ Ay) (2.:25)

i=1

2

and confirm that it squares correctly K2 = ¢4 = Aze?f. Proceeding in the same fashion

as above, one can then determine J

3
1 S 3f (.2 O 53
=S e A i F A+ 2a; (205 + k) 2263 vol (2], (2.2
J i:14[ ai(Qai—i—n)e d (p7) A (dg; + A;) + a(a~|—/-£)HuZe vol (Zg) ], (2.26)

where we have adopted the notation of [15], namely

O = a% + a% + a% —2(a1az + aras + azasz) ,
Il = (*al + as + a3) (a1 —as + CL3) (a1 + a2 — ag) . (227)

The accompanying expression for the manifold Mg is

ds? (M) = Ae? 2 ds? () + € [Xfldu% + X5 hdpd + X5

X X
+ A p3 (XaDer — X1Dg2)? + “Zpiif (X3Dpr — XiDegs)?
X
+K1M%M§ (X3Dp2 — X2D<P3)2] ; (2.28)

where we have further defined Dyp; = dg; + A;. One can check it is consistent with
the expression for J and furthermore that one recovers the previous expressions upon
simplification, i.e. setting a; = %, k= —1.

These solutions will all be utilised later when we come to discuss three-dimensional
gauged supergravities with vacua corresponding to the above supersymmetric solutions. In
the next section, we begin by discussing an example of a generic reduction, in other words
one where the warp factor is not a constant, by providing further details of the reduction

and resulting three-dimensional N' = 2 supergravity initially reported in [16].

8The solutions with g = 1 were studied in [69], while for g = 0, g > 1, modulo issues related to the
range of the parameters, the solutions can be mapped to (4.6) of [70] through interchanging the scalars
¢1 <> —¢2 and redefining the parameters accordingly a; = —em;/(mi1 + ma + m3), where e = 1 for Xy = 52
and ¢ = —1 for $y; = H.



3 An example of a generic reduction

In this section we illustrate an example of a generic reduction, where we use the word
“generic” to draw a line between dimensional reductions with non-trivial warp factors
from the ten-dimensional perspective, and those that are direct products. Recall that,
in addition to the famous KK reductions based on spheres [2, 3, 5-8], which give rise
to maximal gauged supergravities in lower dimensions, generic KK reductions based on
gaugings of R symmetry groups, notably gaugings of U(1) R symmetry [71, 72] and SU(2)
R symmetry [73, 74] exist despite the internal space not being a sphere. This observation
leads to the natural conjecture [72] that gaugings of R symmetry groups are intimately
connected to the existence of consistent KK dimensional reductions. Here should be no
exception, so we expect that one can gauge the existing U(1) R symmetry present in (2.11)
and reduce to three dimensions.

However, in contrast to similar reductions to four and five dimensions, for instance [71,
72], here in addition to retaining the gauge field from the R symmetry gauging, we also
require an additional scalar so that the three-dimensional gauged supergravity fits into the
structure of N' = 2 gauged supergravity as laid out in [9]. More concretely, we require
an even number of scalars to constitute a Kahler scalar manifold. While the reduction we
discuss presently assumes additional structure for the Mg, i.e. the existence of a Riemann
surface, it would be interesting to identify truly generic reductions without having to specify
the internal six-dimensional Kéahler manifold.

Here we will present further details of the dimensional reduction from five-dimensional
U(1)? gauged supergravity to three-dimensional N' = 2 gauged supergravity reported
in [16]. While not being the most general reduction, from the ten-dimensional vantage
point it provides a neat example of a reduction where the warp factor, and the associated
Ricci scalar of the internal Mg, is not a constant. We also do not need to address the full
embedding of the three-dimensional theory in ten dimensions, since we can work with the
U(1)? gauged supergravity in five dimensions.

The bosonic sector of the action for five-dimensional U(1)? gauged supergravity can
be found in [75]. Tt arises as a consistent reduction from type IIB on S°; so it is directly

9

connected to ten dimensions” via the equations of motion, and corresponds to the special

case where only the SO(2)? Cartan subgroup of SO(6) is gauged. The action reads

2 3
1 1 o .
Ls=Rx1— §Zd4pi/\*d<pi—§ZXi F" N\ xF"
i=1 i=1
3
+4g° > X; ol +F A F? A A, (3.1)
i=1

9The bosonic sector also appears as a reduction from D = 11 supergravity [76] where it is based on
the existence of near-horizon black holes [77]. Interestingly, one can start from D = 11 and reduce to
D=4 U(l)4 gauged supergravity, which, for consistency, requires F* A F? = 0. Taking a near-horizon
limit prescribed in [77] one finds the bosonic sector of D = 5 U(1)® gauged supergravity, without such
a condition.

,10,



where ¢ is the gauge coupling and the constrained scalars X; we have defined earlier (2.22).
From varying the potential with respect to the scalars it is easy to see that there is only a
single supersymmetric AdSs vacuum at X; = 1.

As commented in [75], or by inspection from the equations of motion in appendix C,
one can consistently truncate the theory by setting first o = 0 implying that X; = X =
X5 /2 This truncation is consistent provided F! = F2?. Furthermore, one can take an
additional step and set 1 = 0 leading to minimal gauged supergravity in five dimensions.

Dimensional reduction. As it turns out, this dimensional reduction can be performed
consistently at the level of the action. Simply put, this means that we can adopt the
space-time metric Ansatz

ds? = e 19453 + 29ds*(3,) (3.2)
where ¥ is a constant curvature Riemann surface of genus g and we have used C' to denote
the scalar warp factor in five dimensions. In addition, we have orchestrated the warp factors
so that we arrive directly in Einstein frame in three dimensions.

The metric on the Riemann surface may be expressed as

ds? (8,) = e (de + dy2) , (3.3)

where the function h depends on the curvature s of the Riemann surface. It is respectively,
h=—log ((1+2%+4%)/2) (k =1), h =log(2m)/2 (k = 0) and h = —log(y) (k = —1),
depending on whether the genus is ¢ = 0,g = 1, or g > 1. In addition, one takes the
following Ansatz for the field strengths,

F'=G" —a;vol (%), (3.4)

where closure of F' ensures that a; are constants and G* is closed, G = dB".
In doing the reduction at the level of the action the following expression for the five-
dimensional Ricci scalar is useful

R+1=Rx31—6dC A*3dC + 2ke 5 %3 1. (3.5)

The resulting three-dimensional action in Einstein frame is

2 3
1 1 —2 i i
£B =R x3 1 — 6dC A x3dC — 3 -2_1 d; A *3dp; — 56’40 E_l X; 2GE A %3G

3
1
+ (Z [4g2e4CX;1 - 268%3)(;2} + 2/<;eGC> s1+ L0 (3.6)

where the topological term takes the form

£®

top =01 B*NG® +aaB* NG' + a3B' A G, (3.7)

We remark that the reduction and the resulting potential appeared previously in [78].
In appendix C, we have confirmed that it is indeed consistent.

— 11 —



Dualising the action. Now that we have the action, we would like to rewrite it in the
form of a three-dimensional non-linear sigma model coupled to supergravity so that we can
make contact with three-dimensional gauged supergravities in the literature [9]. We take
our first steps in that direction by dualising the gauge fields, or more appropriately, their
field strengths, and replacing them with scalars:

G' = X274« DY;,  DY; =dY; + azB% 4 ay B3,
G? = X2e74Y 4« DY,, DYy =dYs + a1 B® + a3BY,
G? = X274 4« DY;, DYz =dY3+ a1 B>+ ayBh. (3.8)

Through these redefinitions, we can recast the action (3.6) in the following form

2 3
1 1
3) — _ _ = . .~ 40 2n V- .
LY = Rx*x1—6dC A *dC 5 ;:1 dp; A xdep; 26 ;:1 X;DY; A xDY;

+ L% 4 @B A GP + 3B A G + 3B A G, (3.9)

where we have omitted the explicit form of the potential as it will play no immediate role.
We have also dropped all subscripts for Hodge duals on the understanding that we are
now confining our interest to three dimensions. Note that the Chern-Simons terms are
untouched and when we vary with respect to B® we recover the duality conditions (3.8),
so it should be clear that the equations of motion are the same and we have just rewritten
the action.

At this point, before blindly stumbling on, we will attempt to motivate the expected
gauged supergravity. Firstly, we know from the Killing spinor analysis in [15] that the AdSs3
solutions generically preserve four supersymmetries, meaning we are dealing with A/ = 2
supersymmetry in three dimensions. Indeed, for N' = 2, we have precisely an SO(2) R
symmetry group under which the gravitini transform and in this case the target space is a
Kahler manifold with the scalars pairing into complex conjugates. Naturally, a prerequisite
for a Kéahler manifold is that we have an even number of scalars, and we observe that after
dualising, this is indeed the case. So, we will now push ahead and identify some features
of the N' = 2 gauged supergravity.

To identify the scalar manifold it is good to diagonalise the scalars by redefining them
in the following way

1 1
Wi =2C+ —=p1 + —=y2,
1 %Wl \/5802
1 1
Wo =2C 4+ —p1 — —2,
2 \/5% \/5902
2
W3 =2C— — (3.10)

\/6()01 .

In terms of the original X; these new scalars are simply e"Vi = eQCXi_ L
With these redefinitions, the Kahler manifold now assumes the simple form

RO

1
scalar — 5 [dW’L /\ >i<dVVZ + 6_2WiD}/;' /\ *D}/Z} (311)

3
=1

2
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and we are in a position to identify it as [SU(1,1)/U(1)]?. The Kihler structure of the scalar
target space can be made fully explicit through the introduction of the Kéhler potential
of the form

3
K== log(Rz) (3.12)
i=1

where we have introduced complex coordinates z; = e"Vi +iY;. This means that the metric
for the manifold is g; = 0;0;K = ie_QWi, where 0; = 0,,,0; = 03,.

Having identified the scalar manifold and the Kéhler potential, we turn our attention to
the scalar potential. In the language of three-dimensional ' = 2 gauged supergravity [9],
the scalar potential is comprised of two components, a T' tensor and a superpotential W:

£8) = 872 — 8¢19,To.T + 8¢X|W |2 — 2¢% X D;W D; W, (3.13)

pot =

where the Kéahler covariant derivative is D;W = 0;W + ;KW and W is holomorphic, so

O;W = 9;W = 0. While W plays a natural role when eleven-dimensional supergravity is

reduced on S? x C'Y3 to three dimensions [11], whenever the R symmetry is gauged, consis-

tency demands that W = 0. Thus, to make contact with the literature, we face the simpler

task of identifying the correct 1" tensor and making sure that the potential is recovered.
After rewriting the scalars, the potential takes the more symmetric form

£(3)t _ 492 [e_Wl_WS e Wa—Ws | e_Wl_W2:| 4 2k W1-W2—-Ws
po

_ % [a? e 2WatWa) 4 2 o= 2WitWs) 4 2 =214 W2) | (3.14)

Note that in performing the reduction we have not been picky about supersymmetry and
a priori, neglecting the gauge coupling g, which can be set to one, the constants x and a;
are unrelated. However, setting g = 1 for simplicity, one can find the appropriate T' tensor

1 Wy W W W, —
T=——laje”V>™Ws 4 qpe M= Ws 4 gge™ Wﬂ +

1
1 = [e_Wl +e W2 45| (3.15)

2

and check that it reproduces the potential on the nose provided (2.14) is satisfied. This is
precisely the condition identified in [14, 15] for supersymmetry to be preserved. Though
it happens that the existence of what is commonly referred to as a “superpotential”, in
this case T, could conceivably be related to some fake supersymmetry structure for the
theory, the fact that we recover the supersymmetry condition is reassuring. In fact, in
appendix C.1 we reduce some of the Killing spinor equations and show that they also lead
to the same T' tensor. Thus, once the potential (and also T') is extremised, the Killing
spinor equations are satisfied.

Central charge and exact R symmetry. At this stage it should be obvious that
we have a potential with a supersymmetric critical point provided condition (2.14) holds.
Furthermore, once we extremise 7', we in turn extremise the potential and arrive at the
supersymmetric AdS3 vacuum. As discussed in [16], the extremization of the T" tensor offers
a natural supergravity counterpart for c-extremization [14, 15]. Recall that c-extremization
has been proposed for SCFTs with N/ = (0, 2) supersymmetry as a means to identify the

,13,



exact central charge and R symmetry where ambiguities exist due to the U(1) R symmetry
mixing with other global U(1) symmetries that may be present.
Like the trial c-function proposed in [14, 15], T is also quadratic and comes from
squaring the moment maps V'
T =2V'0,;V7, (3.16)

contracted with the embedding tensor ©;; [9], where the index i ranges over the various U(1)
symmetries, which for the immediate example, ¢ = 1,2, 3. In addition, since the embedding
tensor also appears in the Chern-Simons terms in the action, it also related to the 't
Hooft anomaly coefficients which appear in the trial e-function for c-extremization [14, 15].
Indeed, for the class of wrapped D3-brane geometries discussed in [14, 15] this can all be
made precise through the relations [16]

cr =3nndeT™t, R=2VT7'Q;, (3.17)

where cp is the exact central charge, R is the exact R symmetry, 0y, is related to the volume
of the Riemann surface, 7y, = 2w vol(Xy), d¢ is the dimension of the gauge group and Q;
denotes the charges corresponding to the U(1) currents.

All that remains to do is simply to identify the minimum of the potential by extremising
T. The critical point of T corresponds to the following values for the scalars:

Wi =1In . , Wy =1n G S
as +az — aq a1+ asz —az

(3.18)

W3 = In |: a1a2 :| .

ay +as —asg

Once written in terms of C, ¢ and ¢ or in terms of C' and X;, this precisely gives the
AdSs3 critical point of [14]. Then, slotting the critical value of T" into the (3.17), we arrive
at the exact central charge and R symmetry,

a1a2a
—127721\[271@2 2
2a; (2a;
R = W’ (3.20)

CR (3.19)

where we have made use of (2.27) to display the result. In deriving (3.19) we have used
the fact that the dimension of the gauge group at large N is dg = N2, while for (3.20) it
is good to use the fact that the moment map is V; = ie_Wi. The central charge and R
symmetry agree with those quoted in [14, 15] and reproduce the coefficients of the Killing
vector corresponding to the R symmetry (2.24).

4 Less generic reductions

Experience suggests that it is much easier to construct KK reduction Ansétze for direct
product solutions than those that are warped products. This should come as no surprise
since warped products are often more involved and consequently it may not be easy to iden-
tify a symmetry principle to guide the construction of a fitting Ansatz. For dimensional
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reductions from ten or eleven dimensions to five-dimensional gauged supergravities admit-
ting AdSs vacua, the restrictions are quite clear. Starting with coset reductions [5-8, 79, 80],
through generic Sasaki-Einstein reductions [81-84] to the more general cases, the richness
of the reduced theory gradually decreases until one is left with minimal gauged supergrav-
ity [71, 72]. For warped AdSs solutions, only reductions to minimal gauged supergravity
are known, with a notable exception being KK reductions [85] based on Y4 spaces [86, 87],
which when uplifted to eleven dimensions, the vacua correspond to warped solutions.

In this section we will discuss KK reductions to three dimensions confined to the
special case where the Kahler manifold is a product of Kéhler-Einstein spaces. As a direct
consequence, (1.1) simplifies to

R? = 2R;;R". (4.1)

A nice treatment of this special case can be found in [22] which we follow. We take the
internal Kahler manifold to be a product of a set of two-dimensional Kéahler-Einstein metrics

st ( E“) (4.2)

Since Mg now has constant curvature, it is easy to satisfy (4.1). The Ricci form for Mg
takes the form

3
R=> L, (4.3)
=1

where J; are the Kéahler forms of the constituent metrics and the constants [; are zero,
positive or negative depending on whether the metric is locally that on 72, S% or H?. We
also have the one-form connection P = ). P; with dP =}, 1;J;. Slotting (4.3) into (4.1)
we find a single constraint on the I;

lils + l1l3 4+ 1513 =0, (4.4)

and discover that the overall warp factor is determined,
1 1
K3

Finally, the expression for the five-form flux (2.11) simplifies and assumes the following form

F5 = (1 + *) L*vol (Ang) [Jl (lz + 13) + Jo (ll + lg) + J3 (ll + lg)] (4.6)

2 Z l;

We now can make some comments. Demanding that the ten-dimensional space-time
has the correct signature, we require R > 0 from (4.5). In the light of (4.4), this means
that the potential solutions are constrained to be either S% x T or S? x S% x H?. The first
option here corresponds to the famous intersecting D3-branes solution, while the second
case was considered in [67]. We note that when the K Egi) space is H?, it is a well-known
fact that one can quotient the space without breaking supersymmetry leading to a compact
Riemann surface with genus g > 1. The Ricci tensor for these solutions can be found in
appendix D.
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4.1 Twists of SCFTs with Sasaki-Einstein duals

In this section we will discuss KK reductions on the first class of products of Kéahler-
Einstein spaces by confining our attention to spaces with curvature, I; # 0. For simplicity,
we will take [1 =[5, and the requirement that the scalar curvature of the internal Mg be
positive (4.5) subject to (4.4) means that there is only one case, namely Mg = H? x K Ey,
where K Ey is a positively curved Kéhler-Einstein manifold.'® For concreteness, we take
(I1,12,13) = (2,2, —1) so that the H? is canonically normalised.

Our next task is to construct a ten-dimensional Ansatz. While we could begin from
scratch, we can incorporate some results from the literature as, in the end, a natural
question concerns how they may be related. So we opt to kill two birds with one stone by
simply reducing the IIB reduction on a generic Sasaki-Einstein five-manifold SE; [81-84]
further to three dimensions on a constant curvature Riemann surface (H?). We will follow
the notation of [82] and subsequent comments are in the context of that work.

To achieve our goal, we make two simplifications. Firstly, we truncate out the complex
two-form Lg, since as our internal space is now six-dimensional, a complex (2,0)-form,
Qg, is less natural. We can easily replace it with a field coupling to the complex (3,0)-
form Qg via the five-form flux, but this will simply give us an additional complex scalar.
More importantly, one can ask what is the fate of the complex scalars ¢ and y under
dimensional reduction. Recall that they feature prominently in embeddings of holographic
superconductors [88] (see also [89, 90]). However, since &, x couple to the graviphoton Aj,
it is not possible to twist A; in the usual way to produce a supersymmetric AdS3 vacuum
without truncating out £ and x. As such, we will have nothing to say about models
for holographic superconductivity here. Moreover, as the same fields support the non-
supersymmetric Romans’ vacuum in five dimensions, we do not expect to find an analogue
in three dimensions that follows from the reduction procedure.

The five-dimensional action in Einstein frame can be found in (3.10) of [82]. With the

above simplifications taken onboard, for completeness, we reproduce the kinetic term

28 8 4

£ = R vol; — AU A=dU = 2dU AxdV = 2dV A=dV = fe*da A xda (4.7)
- ld¢ A xd¢p — 20 VK AxKy — e WP H AxHy — e UG A %G

8(U+V)F2 A xFp — 6_%(U+V)K2 A xKo — %6%(2(]_‘/)_@5}[2 A xHo

CU-VI+0Gy A %Gy — 3e3 U0y A xHy — LesWUTVIToG, A5Gy,

wl

e

ol

(&

the scalar potential

£5), = [2ae80UHY) _4ed (04 _ =540+ ol (48)

10Suitable choices for K Ey4 include S? x %, CP? and del Pezzo dPy, k= 3,...,8.
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and the topological terms are given by the expression

ﬁgg; = —-A1NKo N Kgy — (dk‘ —2F — 2A1) A [ng A (dC — 201) + (db — 231) A dCQ}
+ A1 A (dk‘ — 2E1) VAN [(db — 231) ANdCT —dBy A (dC — 201)]
+ 241 ANdE1 N (db — 231) A (dc — 201) + A1 A (db — 231) A (dC — 201) A Fy

—4Cy NdB>. (49)

In turn, the above fields can be written in terms of various potentials and scalars in five
dimensions

G = dc—2C1) — adb + 2a By,

Hi = db— 2B,
Ki = dk — 2B, — 24,

Py = dAy,

Gy = dC — ad By,

Hy — By,

Ky = dE1 + % (db— 2B1) A (de — 201) (4.10)

thus ensuring the that ten-dimensional Bianchi identities (appendix A) for the fluxes hold.
In total we have 7 scalars U,V, k,b, c including the axion a and dilaton ¢, 4 one-form
potentials A, By, C1, E1 and 2 two-form potentials By, Cs.

Dimensional reduction. Having introduced the five-dimensional theory, we are in a
position to push ahead with the same reduction as section 3 to three dimensions on a
constant curvature Riemann surface ¥;. We consider the usual metric Ansatz'!

ds? = e719ds3 4 29ds® (), (4.11)

where warp factors have been chosen so that we end up in Einstein frame, and for the
moment, we will assume that we have a constant curvature Riemann surface and not
specify its curvature k. Supersymmetry will later dictate that x < 0. As for the rest of
the fields, the five-dimensional scalars reduce to three-dimensional scalars. The fact that
the field strengths Hy, G1 appear in the Einstein equation mean that we cannot twist with
respect to By and (] since such a twisting is inconsistent with the assumption that the
Riemann surface is constantly curved. This leaves A; and Fy, or their field strengths,
which we twist in the following way

Ky = —evol (%) + K2,
Fy = evol (3) + Fy, (4.12)

where tildes denote three-dimensional field strengths. e is dictated to be a constant through
Fy, = dA; and no twisting along K7 imposes the requirement that we twist Ky in the

"Here C without subscript will denote the scalar warp factor and Ci is a one-form.
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opposite way. This latter point is also in line with our expectation that one can fur-
ther truncate the theory to minimal gauged supergravity through K; = 0, Ko = —F5 in
five dimensions [82].

Since we are not twisting By, C1, the field strengths G1, H1, G2, Hy reduce directly to
three dimensions. On the contrary, we can consider a decomposition for the three-form
field strengths G'3, H3 on the condition that we respect the symmetries of ;. So we can

decompose

Cy = evol (X4) + Co, By = fvol (%) + By, (4.13)
leading to two new scalars e, f in the process. The corresponding field strengths can then
be written as

1
G3 = M; Avol (£g) + g vols, M, =de —adf + 7€ (de —2C) —adb + 2aB;),

1
Hj =N1/\V01(Eg)+hV013, Ny :df+§€ (db—2B1). (4.14)

One can check that this choice is consistent with the closure of the Bianchi identities.
The scalars g,h are, up to an integration constants Aj, s, set by the equations
of motion

g = _46—%(4U+V)—¢—8(J A1+ f)
h o= e 3(@UHVIT6=8C (o o — g (A1 + f)). (4.15)
We will normalise these so that A\; = 1.
We now reduce directly at the level of the action and take care to check in appendix E
that one gets the same result from reducing the equations of motion, thus guaranteeing the

consistency of the reduction. Dropping tildes, as only the three-dimensional fields remain,
the resulting kinetic terms are

2 4 1
L&) = Rvols —6dC/\>de—?8dU/\*dU—%dU/\*dV—ng/\*dV — 5¢*daAxda (4.16)

1
— —do¢ A xd¢p — 2e VK A kK — e UG A %Gy — e U H A xH,y

e3(AU+V)+9—4C y 1 A *Ml_%6§(4U+V)f¢f4CN1 ANy — e~ AUV A g

N~ N~

S U+V)HIC |y A *F2_%€§(2U7V)+¢+4CG2 NGy — %eg(szV)fmzxcHQ N wHy |
while those of the scalar potential take the form

ﬁx(i)t —4C [2%20 + 24ef§(7U+V) o 46§(75U+V) - 867%(4U+V)
Lo e (eg(U+V) n 2€—§(U+V)) — Bem HAUHV) 040 (1 4 )2

2
_Re BUURVIHOAC (1 o (1 ¢ f))Q] vols . (4.17)
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The topological term is then given by the expression

£®

top

—26A1/\KQ—4(1+€)A1/\dBl+4(1+f)A1/\d01

By A Ko+ 21 A [df A (de—2Cy)—de A (db—2B1)+ze (db—2B1) A (dc—201)}
ok de + %e(db - 231)) AdCy — <de + %e (de — 201)> A dBl] . (4.18)

Now is an opportune time to identify the supersymmetric AdSs vacuum. This can be
done by comparing directly with (6.9) of [22] (see also [23]). For concreteness we can take
KE4 = 5% x 82 to exhibit the explicit solution, but one can consider other choices. The
form of the space-time metric before rescaling is

2
ds* = L? [\%ds (AdSs3) + [ (d””;dy> *2[ Zl d6? + sin® 0;d¢?)

\)

1
Ve <d ——Zcos&dgbl) o (4.19)

where AdS3 is normalised to unit radius and all normalisations for the H?, parametrised by
(7,y), and two S?’s, parametrised by (6;, ¢;) are now explicit. We have also reintroduced an
overall scale factor L. We omit the five-form flux as it will not provide any new information
and it is enough to compare the ten-dimensional metrics.

To make meaningful comparison with the KK reduction Ansatz of [82], we need to
compare with the following space-time Ansatz

ds? = e 3 UUHV) [¢710062 4 €20ds? (S,)] + €2V ds® (KEy) + €2 (n+ A1)?,  (4.20)

where dn = 2J and the Kahler-Einstein metric g;; with positive curvature is normalised
so that R;; = 6g;;. To make the connection, we first rescale the K E, factor in (4.19) by a
factor of three, take L? =2/ (3\/§) and make the following identifications

d
(n+ 4y) = <dz — cos 01dg1 — cos Oadgy — ;) . (4.21)
The supersymmetric AdSs vacuum can then be identified
1
U=V =0, C:—ilog?), e=f=-1, (4.22)

where xk = —1, since the H? was normalised to unit radius, and € = —% follows from (4.21).
One can indeed check that this choice leads to a critical point of the potential and that the
AdS3 radius of the three-dimensional space-time is £ = %.

Further truncation & supergravity. In this subsection we consider the above action
with the three-form fluxes truncated out by setting b = ¢ = By = C1 = By = Cy = 0,
e = f = —1. Even from the ten-dimensional perspective, it is known that it is always
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consistent to perform this truncation to just the metric, fields in the five-form flux and the
axion and dilaton.'?

We now recast the simpler action in the more familiar language of three-dimensional
gauged supergravity. In part this will involve dualising the one-form potentials. To do so

we redefine the following fields

Koy = 3U+V)=40 , Dy, DY; = dYs + By
Fy= e 3UH)=4C Dy, DYy = dYs + Bs, (4.23)
while, at the same time, adding the following additional CS terms
LY = 2By NKy + By AFy. (4.24)

The covariant derivatives are chosen so that the equations of motion are still satisfied once

B; are integrated out. We can then redefine K;

1
K = §DY1, DY; = (dY; —4E; — 4A,), (4.25)
and finally introduce the following scalars
2 4
Wi = —4U, W2:§<U+V)—2C, Wgz—g <U+V)—2C. (4.26)

The scalar manifold is now [SU(1,1)/U(1)]*, which should be familiar from previous anal-
ysis, and the kinetic term for the action becomes

Liin = —%dw1 A xd Wy — %e2W1DY1 A*DY] — dWa A xdWs — 22DV, A xDYs
- %dw3 A *dWs3 — %eQW3DY3 A *DY3 — %dqﬁ A xd¢p — %e%da Axda. — (4.27)
We can thus introduce the complex coordinates
=e"itiy,, i=1,23  zm=e ®+ia, (4.28)
allowing us explicitly to write the Kéahler potential I as
K = —log (Rz1) — 2log (Rz2) — log (Rz3) — log (Rzy) . (4.29)

While we could have made this point earlier, it is now clear that the axion a and the
dilaton ¢ decouple completely and can be truncated out. They also do not feature in the
scalar potential.

In terms of the other scalars the potential takes the form

Lpot = |2ke2V2tWs 4 g W1 WatWs _ 4 2(WitWa) _ g 2(Wi+Wa) (4.30)

—%62 (€4W2 + 262(W2+W3)):| vols .

12T performing this truncation we remove the six scalars coming from the RR and NS three-form fluxes.
In general, it is possible to see that one always has an SU(1,1)/U(1) factor, but it is not clear if the remaining
twelve scalars constitute a Kéhler manifold. It is also possible that the vacuum spontaneously breaks N = 4
supersymmetry to A" = 2, for example [82] in five dimensions. We leave this point to future work.
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We can then work out the corresponding 7" tensor in terms of € and &,

€ € K
W2 _ Z Wt Ws _ Wit Wa | WitWs Y W (4.31)

T =
4 2 2e

We note that x and € are not independent and we require x = 3¢ so that the T tensor
reproduces the potential. Once they are identified in this way, and taking into account the
fact that kK < 0,€¢ < 0, one finds a vacuum at

1
Wy =0, Wy =Ws=—log(—¢)=U=V =0, C= ilog(—e). (4.32)
Setting € = —%, we arrive at the result quoted previously.

Central charge and R symmetry. In fact we have already discussed the central charge
for this case as it corresponds to a particular example in section 3, namely a; = %, Kk =—1,
thus ensuring that (2.14) is satisfied. However, to avoid the onerous task of rescaling
metrics and comparing solutions, we can simply recalculate the central charge using the
standard holographic prescription [91, 92]

3¢

BT TG0

(4.33)
where ¢ is the AdS3 radius and G®) the three-dimensional Newton’s constant. Using the
conventions of [14, 15] where G®) = 1/(4nxN?), one can check that the result agrees
with (3.19) when a; = 1.

It is also of interest here to ask about the R symmetry? The ten-dimensional origin
of our reduction makes it clear that there is only a single U(1) R symmetry, so there is no
ambiguity. However, without this insight, we can ask what the three-dimensional theory
can tell us about the R symmetry. Once we truncate out K, we have essentially two U(1)
symmetries and the moment maps V'’ associated to these can be worked out by comparing
the T tensor (3.16) with the CS term in the action. We find that the components of the

embedding tensor are ©o3 = 2¢, O = —2¢ and, for agreement, the moment maps are
2= Lo ys = Lows (4.34)
4 ’ 4 ’ ’

where ¢ = 2,3 label the U(1)’s associated to the gauge fields E; and A; respectively. We
can then extract the R symmetry

2 2
R= ng(l)z + gU(l)g , (4.35)
where we have again used indices to distinguish the U(1)’s. We can now compare to our
earlier result (3.20) by inserting a; = % and one arrives at the same numbers, up to a

relative sign. This relative sign can be traced to the relative sign in (4.12) and by simply
changing the sign of A; in ten dimensions, one can find perfect agreement.
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4.2 Intersecting D3-branes

In this section we discuss dimensional reductions to three dimensions for intersecting D3-
branes. Some of the work presented here will not be new and will recover the recent work
of [38]. Although we could approach this task directly from a ten-dimensional Ansatz, it
is handier to make use of an intermediate reduction to six dimensions on a Calabi-Yau
two-fold [93], details of which can be found in appendix F.

As such, we adopt the same strategy as [38], but an important distinction is that
we will not impose truncations directly in six dimensions and then reduce. Instead, we
will reduce directly so that we can unify the reductions presented in [38]. In addition,
we will make statements about the underlying gauged supergravity, an aspect that was
overlooked in [38]. Note that it is expected that the three-dimensional gauged supergravity
be a theory with A/ = 4 supersymmetry, so that the scalar manifold is a product of
quaternionic manifolds [9], but this falls outside of our scope here and we hope to address
this question in future work. Finally, we remark that these reductions are related to those
of [11] via T-duality and uplift, a point that is fleshed out in appendix B.

So the task now is to perform the reduction on S3, written as a Hopf-fibration, from the
six-dimensional theory presented in [93] to extract a three-dimensional gauged supergravity.
Strictly speaking we are then doing a reduction on the D1-D5 near-horizon or its S-dual F1-
NS5, so further T-dualities along C'Ys = T? x T? will be required to recover the intersecting
D3-brane vacuum discussed previously. We will come to this point in due course.

Dimensional reduction. Starting from the six-dimensional theory in appendix F, we

adopt the natural space-time Ansatz
1 1
dsg = e V"2V ds3 + 1eZUds2 (5?) + ZeZV (dz + P+ Ay), (4.36)

where U,V are warp factors and A; is a one-form with legs on the three-dimensional space-
time. Our Ansatz fits into the overarching description for supersymmetric AdS3 solutions
from wrapped D3-branes presented earlier with choice (l1,l2,13) = (0,0,4). In contrast
to [38], this means that P = — cosfd¢ so that dP = vol(S?) = 4J3. In addition, A = 0
follows from (4.5).

For the three-form fluxes, we consider the following Ansatz

1 1
F3 = GO5 (dz+P+A)ANJ3+GiAJ3+Go A 3 (dz + P+ Ay) + ge V=3V voly (4.37)
1
Hy=sina(dz+ P+ A) A Jy+ HiA s+ Hy A (de+ P+ Ar) + heSU =3V vols
where the Bianchi identities (see appendix A) determine the following:

Go =2 (cosa — sinaxy)

G1 =de— x1db—2(C; — x1B1) — (cosa — sinax) Ay,

Go = dC1 — x1d By,

Hy =db— 2By —sinaAq,

Hy = dB; . (4.38)
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Here x1 is the scalar axion of type IIB supergravity and we have introduced the constant
«, scalars b, ¢ and one-form potentials By, C]. The remaining scalars, ¢;, x; = 1,2, of the
six-dimensional theory simply descend to become three-dimensional scalars.

We now plug our Ansatz into the equations of motion of the six-dimensional the-
ory (F.3)—(F.9), the details of which can be found in appendix F. In the process one
determines the form for g, h:

g =2e" 917927V =2V (cosa + sinaye), (4.39)

h = 2e#17927V =2V [sin 0 — cos axa + (cos a + sin axs) x1] , (4.40)

where we have normalised the integration constants for later convenience.
One finds that the equations of motion all come from varying the following three-
dimensional action:
L® =B 4 2B 4 £ (4.41)

in pot top
where the kinetic term is

1 1 1
£¥ = Rvols — 5461 Axdgy — Z*dya Awdys — Sdea A xdey
1
- 5e2<f>2d><2 A xdys — 6dU A +dU — 4dU A «dV — 2dV A «dV
1 1 1
- §e_¢1_¢2_4UH1 AxHy — §e¢1_¢2_4UG1 NGy — 56_¢1_¢2+4UH2 A xHo

1 1
— 5eqﬁl—‘fﬁﬁ‘”f@ A *Go — §64U TV AxFy, (4.42)
and the scalar potential takes the form

LB _|ge—U—2vV _ o

—8U _ o p1+¢p2—8U—-4V
pot T 2e [

e sin o — cos vy 4 (cos o + sin axz) x1]2

_ e~ t1+¢2—8U—4V (cos o + sin aX2)2 — 9~ P1—$2—8U—4V 12
— 91— d2—8U—4V (cos a — sin ax1)2 vols . (4.43)

Finally, the topological term takes the simple form

£®

top = X2 (Hi NG — Gy N Hy) — (cosaCy +sinaBi) A Fy. (4.44)

When U =V =¢; = x; =c=b= Ay = By = C; = 0, the above scalar potential
has a critical point corresponding to either the D1-D5 near-horizon, its S-dual, or a one
parameter interpolating vacuum. We have chosen the integration constants so that an
SL(2,R) transformation, parametrised by the constant «,

Cy cosa —sin o Cy
4.4
(Bg) - (sina CcoS v ) (Bg) (4.45)

takes one from the vacuum supported by a RR three-form flux (« = 0) to the vacuum
supported by a NS three-form flux (a = 7). In each case the AdSs radius is unity. It is
known more generally that the effect of an SL(2,R) transformation is simply to rotate the
Killing spinors [94],'2 so supersymmetry is unaffected.

13Tn this immediate context, see [65].
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Ten-dimensional picture. As we have reached our three-dimensional theory through
the result of two steps, a reduction on a Calabi-Yau two-fold [93] and a further reduc-
tion generalising the recent work of [38], here we wish to pause to consider the higher-
dimensional picture. We would also like to recast the KK reduction Ansatz in terms of
the generic form of wrapped D3-branes. Specialising to CYs = T2 x T?, we can perform
two T-dualities along the second T leading to the following NS sector with the metric in
string frame:

1 1
asy = ettoren [cwavag gz () Lo e paa] g
+ e%(¢1*¢2)d82 (T12) + e*%(¢1*¢2)d52 (T22) ,

Hz = [2sinaJs + Ho] A = (dz + P+ A1) + Hy A J3 4+ he V=3V vol3, (4.47)

1
2
¢ = % (61 + ), (4.48)

where ¢ is the new ten-dimensional dilaton. Note that the three-form flux Hs is not affected
by the T-duality. The accompanying RR fluxes then take the form

1
Fy = |GoJo A J3 + gePr= 222UV 1 A J3] Ao (dz+ P+ Ar)+ eP1=02 U Qo ATy A T3

1
+Gi NI N3+ GQ/\JQ—€¢1_¢2_4U*G1/\J1 /\§(dZ+P—|—A1)

+ G0€¢1_¢2_8U_4V volg AJ1 + ge_GU_SV volg AJs ,

F3=dxy; AJo—dxs A Jp, (4.49)
where J; =vol(T%), Jo=vol(T%) and, as before, J3= 1 vol(S?) and there is no axion, F; =0.

Further truncations. Even if we dualise the gauge fields in the action (4.42), since we
have an odd number of scalars and N/ = 2 supergravity in three dimensions has a Kédhler
scalar manifold, one will need to truncate out some fields to find a gauged supergravity
description. In this subsection we consider some further truncations and make contact with
the work of [38] in the process.

Settinga=x; =c=A41=C1 =0, ¢1 = ¢po = ¢, U = =V, and finally employing the
following identification

Bi=A (4.50)

one can check that our action can be brought to the form of (4.7) of [38]:

L) = Rvols + (474 — 275 voly —d¢ A xdp — 4dU A +dU
1 1
— 56_2¢_4U Hi AxHp — 56—2¢+4U Hoy A Hy . (4.51)
Note we have set ¢ = 1 for simplicity, but this can be reinstated if one rescales the radius of
the Hopf-fibre S3 correctly. We have also retained the scalar field b, which one is required

to set to zero to make direct connection with [38].
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The reduction of [38], where the six-dimensional space-time is supported solely by RR
flux, involves setting ¢1 =—¢a=0¢, x;=b=a= B;=0. Making the further identifications

A~

Ci=-4, A =24, (4.52)
one arrives at
£8) = Rvols —d¢ A xd¢ — 6dU A +dU — 4dU A «dV — 2dV A *dV
Loy i P L ooprav s L augay
26 (dc+2 <A A))/\* (dc+2 (A A)) 26 FAxF 26 FAxF
+ [Se—GU 2V _ 9e=8U _ 9=26-8U~4V _ 9.2¢-8U —4‘/} voly +2A A F. (4.53)

Once one sets ¢ = 0 one can again confirm this is the same action as (4.17) of [38]. A
further truncation of action (¢ = 0 = A,U = —V') permits warped black string solutions,
the holographic interpretation of which was considered in [95].14

An obvious truncation not discussed in [38] is the truncation to just the NS sector. In
some sense this may be regarded as the S-dual of the truncation we have just discussed.
We can do this by setting a = 5, x; = c=C1 =0 and ¢1 = ¢2 = qg The resulting action is

LB = Rvols —dé A %dd — 6dU A *dU — 4dU A #dV — 2dV A *dV
1 o 1 o 1
— 56_2¢_4UH1 A xHp — 56_2¢+4UH2 A xHy — §64U+4VF2 N xFy

+ |8e76U=2V _ 978U _ 9em20-8U—4V _ 262¢_8U_4V} volg —B1 A Fy . (4.54)

Up to a rewriting, b = ¢, A; = 24, B; = —A, ¢ = —¢, this action is identical to (4.53).

Rewriting the supergravity. Here we identify the underlying gauged supergravities.
As a warm-up we consider the action (4.51), but make a conversion from the three-
dimensional Yang-Mills (YM) Lagrangian to a Chern-Simons Lagrangian following gen-
eral prescriptions given in [9] (see also [10, 96]). This procedure replaces every YM gauge
field with two gauge fields and a new scalar field. This allows us to trade the following
Yang-Mills term in the action

1
£ = —5¢ 2T Hy n < Hy (4.55)

with the terms 1
L& = —5¢* D A+DG + Hy A By, (4.56)

where DdN) = dd~> — By and we now have two gauge fields By, B, and an additional scalar (5
Varying with respect to B; we get

Hy+ eV « D¢ =0, (4.57)

which, on choosing the gauge ¢ = 0, we can integrate out By to recover the original
Lagrangian. The equation of motion following from varying B; now reads

dBy +2¢2*" W s« H =0, (4.58)

41t is easier to start with the action in [95] and use the EOM for A to find the form for the action above.
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which can be shown to be equivalent to that of the original Lagrangian once one im-
poses (4.57). The equation of motion for  is trivially satisfied through (4.57).
With these changes, the scalar kinetic term of the full Lagrangian (4.51) is given by

1 1 - -
L = —d¢ A xdg — 4dU A +dU — ¢ TV N Hy — ST UDG A DG (4.59)
where as before H; = db — 2B1. We redefine all of the scalars through
Yi=¢, Ya=b  Wi=¢-2U,  Wa=—¢—2U, (4.60)

so that the scalar kinetic term becomes
2
1
Lign = =5 O [AWi AxdW; + VDY, A +DY]] (4.61)
i=1
The corresponding scalar manifold is clearly [SU(1,1)/U(1)]? and the Kihler potential is
KK =—-75",1og(Rz;), where z; = e=Wi +4Y;. In terms of W;, the scalar potential becomes

ﬁgl)t _ [4€W1+W2 _ 262(W1+W2)] vols . (4.62)

The corresponding T tensor is found to be
1
T= 3 (eW1 +e2 - eW1+W2> (4.63)

with only one critical point at W, = W5 = 0. Here it is not immediately obvious that this
is the only option. Recall that for A/ = 2 gauged supergravity, when the R symmetry is
gauged, no holomorphic superpotential can appear [9]. Now when the R symmetry is not
gauged, as is the case here, one can consider replacing the 7' tensor with the free energy
F = —T + X2W. However, since e = e"17W2_ we can see that a problem arises with W
being holomorphic, so this does not appear to be an option.

We now move onto the second action that results from truncating out all the NS three-
form flux fields. Referring to (4.46), (4.49), this means that we set « = b = B; = x; = 0.
With this simplification, one further observes that it is consistent to set ¢1 = —¢o = ¢.
This is simply (4.53) with the scalar ¢ reinstated and A; and C; rewritten accordingly,
Ay =24, C, = —A.

We can now diagonalise the scalars by redefining them

Wi=—-¢—-2U,  We=¢—-2U,  Wz=-2U-2V, (4.64)
leading to canonically normalised kinetic terms:
3
1
L) = —2 " [AWi A#dW; + 2ViDY; A xDY] . (4.65)

24
=1

In the process we have redefined Y5 = ¢ so that DYy = dYs + 2(fl — A) and in addition
dualised the one-form potentials, A, A so that

F =24 4 Dy, DY; =dY; + By,
F=e =1 yDy;, DYs=dYs+ Bs. (4.66)
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As should be customary at this stage, we have to add a corresponding CS term so the new
topological term is
r®

top =2ANF+BIANF+BsA\F. (4.67)
Introducing complex coordinates in the usual fashion, z; = e~ + Y}, i = 1,2, 3, the
Kéhler potential for the scalar manifold is K = — ), log(Rz;).
In terms of our new scalars W;, the potential takes a simple form and is symmetric in

all the scalars W;:

Cr()i)t =2 [46W1+W2+W3 — 2WitWs) _ 2(Wi+W2) _ 62(W2+W3)} vols . (4.68)
A suitable choice for the corresponding 1" tensor is
T = _eWQ + 1<6W1+W2 o €W1+W3 + 6W2+W3) (4 69)
2 ’ ‘

though symmetry dictates that there are other choices and we can send W7 — Wy — W3 —
W1 to uncover the other options. Regardless of how we choose T', the critical point is located
at W; = 0. Since the R symmetry is gauged, we do not expect a holomorphic superpotential.

5 Null-warped AdSj; solutions

Recently, it has been noted that null-warped AdS3 solutions, or equivalently geometries
exhibiting Schrodinger symmetry with z = 2, can be found in three-dimensional theories
that arise as consistent reductions based on the D1-D5 (or its S-dual) near-horizon geome-
tries of type IIB supergravity [38]. In section 4.2, we identified the relevant theories in
the gauged supergravity literature and here we will discuss some of the solutions. Prior
to [38], it was noted that non-relativistic geometries with dynamical exponent z = 4 could
be found in an N = 2 gauged supergravity that is the consistent KK reduction of eleven-
dimensional supergravity on S? x C'Y3 [11].1> We will now address a natural question by
scanning the other gauged supergravities we have identified for non-relativistic solutions
with dynamical exponent z.

Before doing so, we recall some facts about Schrodinger solutions in three dimensions.
Starting from an AdS3 vacuum, solutions with dynamical exponent z arise as solutions to
Chern-Simons theories where the relevant equation is

d*3F+%F:O, (5.1)

with F' = dA and ¢ denotes the AdS3 radius. Taking the derivative of (5.1), we see that x
must be a constant. Adopting the usual form of the space-time Ansatz

d 2
ds? = ¢2 (—)\2rzdu2 + 2rdudv + 4:2> , (5.2)
the Einstein equation, through the components of the Ricci tensor:'6
2 A2 .
Ry =—7, Ryy = 7522 (z—1)r* 1, R__ =0, (5.3)

5 These were mistakenly labelled null-warped AdSs, but this label should be reserved solely for the z = 2
case in the literature.
16We have used the dreibein et = fr2du,e” = (72 (dv— $X°r""'du) ,e" = £ 5.
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determines the constant s in terms of the dynamical exponent, x = z. Observe here that
A is an arbitrary constant that can either be set to unity through rescaling the metric, or
when set to zero, one recovers the unwarped AdS3 vacuum.

Now the task of searching for new solutions becomes a very accessible goal; one simply
has to identify ¢ and compare the equations of motion of the theory with (5.1) to extract
k and thus z. For the gauged supergravity discussed in section 3, namely the theory given
by the action (3.6), the AdSs radius is

1 2aya0a3
2T e 7’

which in general depends on the parameters a;. For simplicity, we confine our search to

/ (5.4)

the case where G; = G, i.e. they are all equal. After changing frame to Einstein frame,
consistency of the three equations (C.5) then places constraints on a;:

2 2 2
{a1 Zagzag}, {al = as = 7a3}, {al = a3 = 7CL2}, {a2:a3:7a1}. (55)

Combining these with the condition for a supersymmetric vacuum (2.14), one reaches the
conclusion that good AdSs solutions exist only for ¥y = H 217 The two independent
choices we find are

111 T2 2
(a17a27a3) — <37 §7 3> 3 ((11,(12,@3) — <117 ﬁa 11) ) (56)

where one is free to consider various cyclic permutations of the latter. The first choice leads

to the non-integral value z = % with ¢ = %. The second choice does produce an integer,
8

namely z = 18 with £ = 55. Thus, within the limited scope of our search, we do not find
any null-warped AdSs (z = 2) solutions here.

Moving on, we can turn to the gauged supergravity corresponding to twisted com-
pactifications of N'= 1 SCFTs, namely (4.16). A particular case of this we have already
covered above. Referring the reader to equations (E.1) and (E.6), if one truncates consis-
tently to just K1, Ky and Fy, and regardless of how one further truncates to an equation
bearing resemblance to (5.1), one finds the dynamical exponent z = %. This should not
come as a surprise as once one truncates to these fields, the theory should correspond to
five-dimensional U(1)? theory where one identifies two of the gauge fields and truncates
out a scalar.

However, for the action (4.16), we do have other options. As we are considering a null
space-time, it is consistent to truncate to just the scalar ¢ and one-form ' with the various
other scalars taking their vacuum values. Obviously, this is not a consistent truncation in
general, but since we assume Go A *Go = G1 A *G1 = My A My = 0 in this case, we do
not have to worry about the consistency of equations such as (E.5), (E.7) and (E.8). Note
that M; is not independent and is related to G, M, = %Gl. This in turn means that, in

addition to the Einstein equation, we only have two flux equations
9
l

"One can compare the values of a; against figure 1 of [15].

d*xG1 =0, dxGy—-%xG1 =0, (5.7)
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where we have used / = % and e2¢ = % If we further truncate to set *G1 = —%Gg, then we
can find null-warped AdS3 solutions with z = 2. This allows us to determine ¢ which can
be set consistently to zero. In the notation of section 4.1, the solution may be expressed as

2 2 z7,2 dr?
ds* = 07 | —r*du” + 2rdudv + —5 |,
4p2
2
Cy = gﬁrdu, (5.8)

where we have rescaled Cy so that A = 1.

We can also consider deformations for AdS3 supported by the scalar b and one-form
Bj. This involves consistently truncating the action (4.16) to N1, H; and Hs and since this
may be regarded as the S-dual of the truncation presented immediately above, we recover
the same solution.

For some sense of completeness, we also touch upon the existence of solutions for the
theory arising from a dimensional reduction on S? x T* from ten dimensions presented
in section 4.2. Schrédinger solutions based on the D1-D5 near-horizon, or its S-dual F1-
NS5, have already been the focus of considerable attention in the literature. Not only
have solutions been constructed directly in ten dimensions [55], but examples in the three-
dimensional setting have also been identified in [38]. Though not mentioned in [38], an
S-duality transformation is all that is required to generate an example supported purely
by the NS sector provided one starts with the RR supported two-parameter family of [38].
Rather than take this path, we will work directly with our reduced theory and employ an
appropriate Ansatz. We will also make use of a further truncation.

Starting from the action in section 4.2, we take o = 5 and truncate out various fields
U=V =¢; =x; =a=c=Cy =0. This corresponds to setting the scalars to their AdSs
vacuum (¢ = 1) values and the choice of « is appropriate for a vacuum supported solely
by NS flux. Further truncating out A; leads to the condition *H; = Hj, leading to the
equations of motion:

d * H2 = —2H2 s
R,ul/ - _Qg/ux + HQ,upHQ,/p ) (59)

where we have used the fact that B; is null. Note that the CS equation is now in the
accustomed form (5.1), so we can be confident we have a null-warped solution. It is then
a straightforward exercise to provide the explicit form of the solution that satisfies these
equations of motion:

2

d
ds? = —r*du® + 2rdudv + L,
472

By =rdu. (5.10)

It would be interesting to see if any solutions can be generated through applying
TsT [25] transformations, such as those considered in [97].
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6 Outlook

Our primary motivation for this work stems from [16] where five-dimensional U(1)? gauged
supergravity was dimensionally reduced on a Riemann surface and the lower-dimensional
theory re-expressed in terms of the language of three-dimensional gauged supergravity [9].
As explained in section 3, the T' tensor presents a natural supergravity counterpart to the
quadratic trial function for the central charge presented in [14, 15] and it is a striking feature
that the T tensor, through the embedding tensor, knows about the exact R symmetry.
Without recourse to the higher-dimensional solution, this provides a natural way to identify
the exact central charge and R symmetry directly in three dimensions.

Since any solution to this particular three-dimensional gauged supergravity uplifts to
the U(1)? theory in five dimensions, which is itself a reduction of type IIB supergravity [75],
we have also taken the opportunity to step back and address consistent KK reductions to
three dimensions for wrapped D3-brane geometries. As reviewed in section 2, the origin of
supersymmetric AdSs geometries in type IIB can be traced to D3-branes wrapping Kéhler
two-cycles in Calabi-Yau manifolds, with CFTs of interest to c-extremization, namely those
with A/ = (0,2) supersymmetry, resulting when a two-cycle in a Calabi-Yau four-fold is
wrapped. All AdSs solutions of this form fall into the general classification of supersym-
metric geometries presented in [20] and at the heart of each supersymmetric geometry is a
six-dimensional Kéhler manifold Mg, satisfying the differential condition (1.1).

Not only does this condition appear in the flux equations of motion, but the Einstein
equation is satisfied through imposing this condition. This makes the task of finding a fully
generic KK reduction, in contrast to the case studied in section 3, where one assumes the
presence of a Riemann surface, an inviting problem. It is expected that one can gauge the
U(1) R symmetry and reduce to three dimensions in line with the conjecture of [72] that
gaugings of R symmetry groups always lead to consistent reductions to lower-dimensional
gauged supergravities. What is not clear at this moment is whether a truly “generic”
reduction - one working at the level of the supersymmetry conditions - on Mg exists, thus
mimicking general reductions to five dimensions discovered in [71, 72], or whether one needs
to specify more structure for the Mg. An added subtlety here is that since the reduced
theory is expected to fit into A/ = 2 gauged supergravity, it is not enough simply to retain a
gauge field coming from an R symmetry gauging and an extra degree of freedom is required.

Naturally enough, what we have discussed here just pertains to D3-branes and AdS3
vacua also arise in eleven-dimensional supergravity arising from wrapped Mb5-branes. It is
then fitting to consider KK reductions from eleven dimensions to three-dimensional gauged
supergravity. While supersymmetric AdSs solutions can be found by considering twists of
seven-dimensional supergravity [15, 98, 99], more general solutions are expected to fit into
the general classification of supersymmetric solutions presented in [59, 60]. A particular
case discussed in [15], namely seven-dimensional supergravity reduced on H? x H?, we have
already considered!® and we will report on M5-brane analogues in future work [100].

In addition to the c-extremization angle, another thread to our story concerns the
search for null-warped AdSs or Schrodinger (z = 2) solutions. While it is likely that we

81t corresponds to N = 2 supergravity with Kihler manifold [SU(1,1)/U(1)]*.
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have recovered some known solutions, and found solutions with more general z, we believe
that the solutions based on H? x K FE, internal geometries are new. What remains is to
check whether they preserve supersymmetry, and indeed the identification of the Killing
spinor equations for the reduced theories in sections 4.1 and 4.2 needs to be considered
if one is to discuss supersymmetric solutions. The reduction in section 3 aside, we have
simply focused on the bosonic sector and the equations of motion. It may also be interesting
to study families of Schrédinger solutions interpolating between the D1-D5 vacuum and
F1-NS5 vacuum directly in three dimensions. This would presumably overlap with the
higher-dimensional examples presented in [55]. It is expected that some supersymmetry
is preserved.

Combining the principle of c-extremization [14, 15], which can be understood in terms
of three-dimensional supergravity [16], and the fact that null-warped AdSs solutions clearly
exist, it is worth considering if c-extremization can be extended to warped AdSs. The most
immediate setting to address this question is the theory of section 3, however, as we have
seen, the simplest solutions appear to preclude solutions with z = 2. A more thorough
search for null-warped solutions is warranted. If they do not exist, one can imagine starting
from a more involved theory in five dimensions that includes the U(1)? gauged supergravity.
Evidently, the more involved reductions based on H? x KFE4 and S? x T* allow solutions,
so it can be expected that this question can be addressed in future work.

It would equally be interesting to look for a holographic analogue of c-extremization in
two dimensions.'® Starting from eleven dimensions, one can reduce to four dimensions [75]
retaining the Cartan subgroup U(1)* of the R symmetry group. Relevant solutions are
already known [70, 78], and the two-dimensional theory one gets from twisted compactifi-
cations on Riemann surfaces are likely to be in the literature, for example [101], and may
be related to BFSS matrix quantum mechanics [102]. At a quick glance, it looks like we
have some of the jigsaw pieces in place.

One of the potentially interesting avenues for future study is to explore the connection
between supersymmetric black holes in five dimensions and null-warped AdSs space-times.
For non-relativistic geometries with z = 4, it was noted in [11] that these geometries
naturally appear when one considers a general class of five-dimensional supersymmetric
black holes and strings and then reduces on an S2. The corresponding picture for the
known null-warped solutions can also be worked out. It would be interesting to extend
recent studies of the classical motion of strings in warped AdSs3 backgrounds [103] to
higher-dimensional black holes.

Finally, we are aware of string theory embeddings of holographic superconductors in
four and five dimensions [88-90], where an important element in the construction is the
presence of charged scalars that couple to the complex form of the internal Kéhler-Einstein
manifold. To date, there is no example of an embedding of the bottom-up model considered
in [104], though strong similarities between the supersymmetric geometries here and Sasaki-
Einstein manifolds suggest that this may be a good place to look. So far we have been
unable to find a consistent reduction based on Mg = S? x T* or Mg = H? x K E,, but one
could hope to address the problem perturbatively. Such an approach was adopted in [105].

19WWe are grateful to N. Halmagyi for suggesting this possibility.
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A Type IIB supergravity conventions

Our conventions for type IIB supergravity follow those of [82], which for completeness, we
reproduce here. Restricting ourselves to the bosonic sector of type IIB supergravity, the
field content consists of RR n-forms F,,), n =1,3,5, the NS form H 3, the dilaton ® and
the metric. The forms satisfy the Bianchi identities

dF(5)+F(3)/\H(3) =0, (A.1)
dF(g) + F(l) A H(3) =0, (A.2)
dFy) =0, (A.3)

which can be satisfied through the introduction of potentials C',,_1), B(s). In terms of these
potentials, the forms are F(5) = dC(4) — 0(2) A H(g), F(g) = dC(g) — C(O)H(g), F(l) = dC(O),
H3) = dB(). In addition to the self-duality condition on the five-form, *F5) = F(5), the
equations of motion take the form:

d(ecD*F(?))) —F(5)/\H(3) =0, (A5)
d (62(1) * F(l)) + €¢H(3) A *F(3) =0, (AG)
d (e*‘p * H(3)) — €¢)F(1) A *F(3) — F(3) A F(5) =0, (A?)
1 1

20 —-® o]
dxd® —e F(l)/\*F(l)+§€ H(g)/\*H(g) —56 F(3)/\*F(3) =0, (A.8)

1 1 1
Ryn = iaMC(O)GNC(O) + §8M<I>8N<I> + %FMPQRsFNPQRS

1

Ze_q) <H]V1[DQHNPQ - 1129MNHPQRHPQR> ;

1 1

Ze(b (FJ\fQFNPQ - 12QMNl*ﬂpc')Rl*ﬂPQB> . (A.9)
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B Connection between [11] and [38]

In this section we will discuss the connection between two dimensional reductions from
higher-dimensional supergravities to three-dimensional theories that have appeared in the
literature. Both theories admit supersymmetric Schrédinger solutions, however, for those
based on the D1-D5 near-horizon [38] the dynamical exponent z = 2 appears, while the
dynamical exponent quoted in [11] is z = 4.

Recall that these theories support AdS3 vacua whose higher-dimensional manifesta-
tions are AdS3 x S® x CY3 geometries of type IIB supergravity and AdS3 x S? x CY3
geometries of eleven-dimensional supergravity, respectively. Specialising to the case where
the Calabi-Yau three-fold is a direct product involving a torus 72, CY; = CY, x T2, it is a
well-known fact that the geometries are related via dimensional reduction and T-duality.
This raises a question about the difference in the quoted dynamical exponents. Here we
address that issue and show that a sub-truncation of [38] and [11] is common and that
amongst the z = 2 solutions presented in [38], one can also find a z = 4 solution.

We start by considering the KK reduction Ansatz from eleven-dimensions. The solution
appearing in [11] has a higher-dimensional manifestation of the form

dsty = e *Wds3 + e2ds? (S?) + ds? (CYa) + dat + dagf,
Gi = (a vol(S?%) + H3) A (Jey, + das A dag) | (B.1)

where we have consistently truncated out the fields f,V, By leaving just a scalar W and
one-form potential By, where Hy = dBy. Here (z5,26) label coordinates on the 72 and
« is a constant. Plugging this Ansatz into the equations of motion of eleven-dimensional
supergravity one finds [11]

d (€4W *3 Hg) = —2aH2 s <B2)
1

dx3 dW = 5eWHg A x3Ho + (6_6W — a26_8W) volg , (B.3)

and the Einstein equation which we omit.
Dimensional reduction on xg and T-duality on x5 leads to the following IIB KK re-

duction Ansatz
dsiy = e "Wds3 + eV ds® (S%) + ds? (CYa) + (dzs — arcos Ode + By)?, (B.4)
Fy = (14 #10) [a vol (S2) A Jo, + Jevs A HQ] A (des — acos0de + Bs)

where (0, ¢) parametrise the two-sphere S? and all other fields, including the dilaton
are zero.

At this point it is easier to compare with the ten-dimensional uplift [93] of the six-
dimensional Ansatz considered in [38] to get our bearings. After rescaling the metric to
make the transition to string frame, the ten-dimensional space-time may be written as

b1 4 P2 b1 P2
ds?y = e2 T2 dsi +e2 2ds*(CYa),

1 1
ds? = e U2 + 162(] ds* (S%) + 162‘/ (dip + cos 0dep + 2A4)? (B.5)
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where we have set the length-scale ¢ corresponding to the AdSs3 radius to unity for sim-
plicity. To compare the metrics we note that we require the following identifications:

1 1
b=dr=dr=-2V, M=ce’, =y, a=-5 By=4A (B

While this places us in the class of consistent reductions in section 4.2 of [38], the added
condition that the dilaton ¢ is zero tells us that the scalars ¢,V appearing in equations
(B.25) and (B.29) of [38] are zero. These equations together then tell us that the two gauge
fields appearing in [38] should be identified A = +A. For CY, = T*, the RR-sector is then
simply related via T-duality.

The choice A = A immediately leads to the condition F? = 0 through (B.25), however
there is another option. We can choose A = — A with the further relation

A= %e‘w xg F. (B.7)

With this relation one can then satisfy oneself that (B.27) and the U equation from (B.29)

of [38] can be identified with (B.2) and (B.3) above, meaning that this particular sub-
truncation of both reductions is the same.

Indeed, since the higher-dimensional AdSs solutions can be related via dimensional

reduction and T-duality, it is expected that the KK reductions are also related at some level.

C Details of reduction of D = 5 U(1)® gauged supergravity

Here we begin by recording the five-dimensional equations of motion one gets from varying
the action (3.1). The equations of motion for the gauge fields A;, i = 1,2, 3, are

d(X{?«F') = F2 A F?,
d(XQQ*F2) = F'NF?,
d(X5%+F%) = F' A F?, (C.1)
and those of the scalars are given by
1
d*dp; = - (X72FY AxFY 4+ X532 F2 A F? — 2X52F3 A+ F3)
2L (X7 + X5 —2X571) vols (C.2)
\fﬁ
d*dpy = ( X72FYAFY — X522 A+ F?) — g?2v2 (X7 — X571 vols .

Finally, the Einstein equation reads
1< 1< 1
= 9 Z 0upiOypi + B Z Xi_2 (F/ipF; P— GQMVFpZUFZpU>
j i=1

— uvy 92ZX ! (C?’)
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The reduction at the level of the equations of motion is most simply performed be first
reducing on the internal space, in this case a Riemann surface X;, and then rescaling the
external space-time to go to Einstein frame. Thus, here we consider the initial Ansatz for
the five-dimensional space-time

ds? = ds3 4 €29ds® (%), (C4)

where C' is a scalar warp factor depending on the coordinates of the three-dimensional
space-time.

To reduce the gauge field strengths we consider the Ansatz (3.4). The equations of
motion for the gauge fields now reduce as

d (XerQC *3 Gl) = — (a3G2 + a2G3) ,
d (X2—2€20 *3 GQ) = — (a3G1 + a1G3) ,
d (X52%e* %3 G®) = — (1G? + axG"). (C.5)

From the scalar equations of motion, we find
1
d (620 *3 dcpl) = %620 [Xlz (Gl A x3G + a%e_4c Volg) + X;Q <G2 A x3G?
+ ade ¢ v013> —2X32 (G A x3G® + a3e ¢ V013):|

(X X - 2X5t) vols,
1
d (620 *3 d<p2) = \ﬁew {Xl_z (Gl A 3Gl + a%e‘d‘o V013) — )(2_2 <G2 A x3G?

+ a2e 3¢ vol;;)] — 2/2¢%e%¢ (Xf1 - X;l) vols . (C.6)

The Einstein equation along the Riemann surface presents us with another scalar
equation of motion, this time for C:

3 3
1 2 1 . 4
—2C . __ —2 2 —4C i i po 2 -1
~ V,V'C — 20, A0"C + e K—QiZ;Xi (3%@ — 5 GG ) -39 Z;X :
(C.7)

where k is the curvature of the Riemann surface.

Finally, the Einstein equation in three dimensions may be written as

2 3
1 -2 ) i 1 ) i po
Ry = 2(V,V,C + 8,C0,C) + Z; upidupi + 5 Z; X; <GWGVP — S Gp G >
1 3
—AC v — —
— 69”,,; (afe™ X2 +8¢°X1). (C.8)
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The above equations can be shown to result from varying the action

2 3
1 1 ) )
3) _ 2C - ) T —2 i i
LY =e Rx3 1+ 2dC A x3dC QEldgo,/\*gd@Z QElXi G* A %3G
2 1
4 <Z [4g2e2CXi1 _ Qe—QCa?XiQ] + 2/<;> x3 1 4 ng), (C.9)
i=1

where the topological term is

£®

top = 1B* NG + aaB* NG' + a3B' AG*. (C.10)

Here B’ is the one-form potential for G*, G* = dB".

Now, to go to Einstein frame we just need to do a conformal transformation, g,, =
6*40@“,. This leads to the Einstein frame action (3.6) quoted in the text.

In checking the Einstein equation we have made use of the following Ricci tensor
components

Ry —2(V,V,.0 + 8,00, ,
[/‘ie

R,
Rin —2¢ vV, VHC — 20,C0"C] Sy , (C.11)

where p,r label space-time directions and m,n correspond to directions on the
Riemann surface.

C.1 Killing spinor equations

We would like to confirm that the 7' tensor (3.16) can be extracted directly from the
Killing spinor equations via reduction. In a related context, a similar calculation appeared
in [19] and in that context assisted the identification of a five-dimensional prepotential.
Our motivation here is the same.

We adopt the conventions for the Killing spinor equations in D =5 from (F.1) of [15]
(see also [66]), and in some sense, up to some additional fields, the calculation here is
almost identical to appendix F of [15]. We work with the natural vielbein

et = e 20k, % =elel, (C.12)

where p = 0,1, 2 label three-dimensional space-time directions and a = 3,4 denote direc-
tions along the Riemann surface. Our Ansatz for the flux follows from (3.4).
For the Killing spinor we make the choice

e=e%ten, (C.13)

where 3 is a constant we will fix later. We use the following decomposition of the five-
dimensional gamma matrices

M= pt ol V¥ =1®dt, V=1®0% (C.14)

As in [15], where one has ~y34€ = ie, following decomposition, we have o3n = 1.
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Inserting the Ansatz into the Killing spinor equations we arrive at

2515 = _’)/3M€208#C + i(Xz"Ys + %e—gcaiXi—l,M + é€4073“VX;1GLV> 6605 ®n,
L =1
l (C.15)
\/édx(l) = élg zz:Xi_l (64CGLV’)/MV — Qiaie_zc) — %X:;l (6406%1,7“” — 27ja36_20)
L2 =1
+ % (- X1 — X2 +2X3) — iﬁégcawolrw} e, (C.16)
\65)((2) = [;Xl_l (€4CG/1W’}/“V — 21'(116720) — éX{l (64CGI2W’y‘“’ — 27;CL2€72C)
+ % (— X1+ Xo) — ifeQCﬁuwgfy“] ePCewn. (C.17)

Note, in contrast to [15] where scalars with raised and lowered indices are employed,
here our X; are simply those in (2.22). As a consistency check, (C.15), (C.16), (C.17) agree
with (3.20) of [15] when G* = 0 and ¢; = ¢;(r),C = g(r).

Taking various linear combinations we can write

2

43615 + g\/éiéx(l) +2V2idx(9) = SN @1,
2

43515 + g\/émx(l) —2V2idx(2) = 0N @1,

4
4y38eps — g\/giéx(l) =N @ (C.18)

leading to the variations (constant 5 = —2)

S = p“aMW1+%X1_162CG}WPIW+€74C (2620X1—02X2_1—G3X3_1) £,

SN2 = p“aﬂwz—|—%X2_162CGZV/)“”+€_4C (2€QCX2—G1X1_1—G3X3_1) &,

SN\ = p“@qu+%Xf3620Gzyp‘“’+e_4C (QeQCXg—alel—angl) ¢. (C.19)

Dualising G as instructed in the text, the above equations can be condensed into a single
equation

SN =2E;% (p'D,2" — 20'T) (C.20)
which is the expected form for the Killing spinor equation for the spinor fields [9, 11] and
we see that the T" tensor (3.16) features. E;, a = 1,2,3, is the complex dreibein defined
through g; = E,;“E;,, where E;, = (E;*)*.

7

D Curvature for Kahler-Einstein space-times

Working in Einstein frame, we adopt the following Ansatz for the space-time

3
1 a
dsfy = €*4ds? (M) + 2V (dz 4+ P+ A1) + 724y e2Veds? (KES) . (D)
a=1
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where A is a constant overall factor, we have dropped the overall scale L appearing in (2.11)
and W, V., a = 1,2,3 denote scalar warp factors. Aj is a one-form living on the three-
dimensional space-time Ms3.

We adopt the natural orthonormal frame

1 . )
et =elet, e = AW 3 (dz+ P+ Ay), el = e AtVagl (D.2)
where u = 0,1, 2 label AdSs directions and i = 3,...,8 correspond to directions along the
internal Kéhler-Einstein spaces.

With constant A, the spin-connection for the metric may be written as

wh, = wh, - % W (R)he,

, 1 B 4
wlj — wzj . Ze3A—H/V 2vala(<]a)2jeza

1

wh = —e AW e — ZefAJrW(Fg)”pep,
wiu = e_AﬁuVaez,

. 1 o
w', = —Z€3A+W_2V“la(<]a)zj€]. (D.3)

Using the above spin-connection one can calculate the Ricci-form

3
= 1
Ry, =e 24 [RW—(VZ,V#WJra#W&,W)—Z 2(V,V, Vat0,Va0,Va) — geQWF2 i Fy f] :
a=1

1 i 3

R.. = éeﬁf““W D e el — e PV VW 4 0, WOMW) = 200 Y e 0,V
a=1 a=1
1
+ Ee—QA-&-ZWFQ PO’FQpJ7
- 3 -
1

Ry = Ryy = ¢ 24| =V, V'V =0, WOV =20,V Y 0"V, | +11e*4 721 — §z§e4A+2W—4V1,

- 3 _
1
Raz = Ray = e >4 | =V, V'V =0, W'V —20,V2 Y | 0"Va| +126" 2" — gl%e4A+2W_4V2,

3 -
1
Rss = Res = ¢ >4 | =V, VIV =0, WMV =20,V Y 0V, | +13e*4 72" — §z§e4A+2W—4V3,

L a=1 m

1
R,. - _EB—QW—Q(V1+V2+V3)VP (e3W+2(V1+V2+V3)F2pu) ’ (D.4)

where all other terms are zero.

E Details of reduction on H?2 x KE,

In this section we record equations of motion of the dimensionally reduced three-
dimensional theory. This will be useful for testing the consistency of the reduction. We

— 38 —



begin with the Bianchi identities. The Bianchi identities for the three-form fluxes F(3) and
H 3 are trivially satisfied using the expressions in the text. The Bianchi for F{5) is partially
satisfied, with the remaining equations being:

d (e—%<U+V>+4C « KQ) 4w Ky + e (Ko — Fy) — N1 AGy — Hy A M, =0,

1 1
d(e_SU*Kl)—|—§N1/\G2—§H2/\M1:0. (El)

The equations of motion for F{3) and H(sz) give respectively the equations
Q (BGUHVITOmAC L A ) — dhvoly +2Hy A Ky — 2H; A Ky =0,
d (e§(2U7V)+¢>+4C « Gg) _ e L G — ce s (AU+V)+¢-4C M,
+ gesWUHVITOH8C R, 4 oN A Ky 4+ 2073 UHVIHC I A sy =0,

d (e*‘w +0 4 G1> — Ny A Ky + ehvoly +e 3 UHIHC I A K¢y + 23U Hy A 5K = 0,
(E.2)

and
d (e%(4U+V)_¢_4C * Nl) +4gvols —2Gs A K1 4+ 2G1 N Ko — e%(4U+V)+¢_4Cda A xM; =0,
d (e%(QUfV)f¢+4C " H2) 4 U g, — ce 3 AUHV)—p—4C Ny + h€§(4U+V)f¢>+8CF2
—2M7 N Ky — 26_%(U+V)+4CG1 A %Ky — e3(@U=V)+é+4C g A xGo =0,
d (e*w*d) * H1> + M1 N K9 — egvols —e*%(UJrV)HCGQ AxKy — 278Gy A %K
— e WHda A %G1 = 0. (E.3)
The axion and dilaton equation are respectively
d ( 2 5 d a) 1 e3WUHV)+¢—4C Ny A My — o3 (AU+V)+¢+8C ghvols 43 QU-V)+o+4C Hy A %Gy
2e U A %Gy =0, (E.4)
and

1
dxdop — e2?da A xda + ie%(“”v)_‘lc [e‘¢N1 A xNy — e® My A * M,

- %e%(4U+V)+8C [6_¢h2 — e‘bgﬂ volg +%e§(2U_V)+4C [e_¢H2 A xHy — e?Go A %Gy

+e U [e_d’Hl AxHy —e®Gy A *Gl} =0. (E.5)
The equations of motion for Ay, U and V are
d (e%(U+V)+4C * Fg) — 2eKy — 8¢78Y 5 K| + ¢3(4UFV)H8C [e_¢hH2 + e¢gG2] =0, (E.6)
1
dxdU + 6_8UK1 N x K — ge%(4U+V)_4C [6_¢N1 A *xN1 + 6¢M1 A\ *Ml] (E?)

+ %e%(4U+V)+8C [e"?h? + e¢g2] vols —ée%(mj_v)'“lc [e_¢H2 A *Hy + e®Gy A e

+ 16_4U [e_¢H1 A xHy+e®Gy A *Gl] +e ¢ (—66_%(7U+V)+2e%(_5U+V)+4e_%(4U+V)) =0,

S
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1 1
dxdV — ge%@w*v)%c [67¢N1 A %Ny + e® M A *Ml] + ge%(4U+V)+BC [ef¢h2 + e‘z’gﬂ vols

; 8(U+V)+4CF A *xFy + ;e %(U+V)+4CK2 AsKy — 678UK1 AxK)

1y swyvy—sc

—ees 2

1
V013+26 e 3(U+V) V013+g€%(2U7V)+4C [67¢H2 /\*Hg +€¢G2 A *GQ]

1
. 1674U [e*¢H1 AxH, + e¢G1 A *G1] 4 e4C (7463(75U+V) + 467%(4U+V)> volg = 0. (Eg)

F Details of reduction on S? x T*

I1IB reduced on CY>. Here we briefly review the KK reduction Ansatz of type IIB on
a Calabi-Yau two-fold that featured in [93]. The KK Ansatz in Einstein frame is

ds?, = e%@ds% +e 27252 (CYs) ,
Fisy = vol (CY2) Adxa + €292 xg dxa, (F.1)

and all other fields of type IIB supergravity simply reduce to six dimensions. This Ansatz
thus leads to extra scalars in addition to the axion y; and dilaton ¢ of type IIB super-
gravity, one corresponding to a breathing mode ¢s, and another axion s coming from the
self-dual five-form flux. The six-dimensional action is

2 2
1 1
e lL=R— Z (06:)* = 562 (Oxi)? — Ee—m—mﬂg
i=1 i=1
1
— 7€¢1*¢2F32 — x2d B2 A dCy, (F2)

12
where Hs = dBy and F3 = dCy — x1dBy. Some sign changes relative to [93] follow from

the difference in conventions. The equations of motion are:

d (e¢1—¢2 %6 Fg) —dya AdBy = 0, (F.3)
d <€_¢1_¢2 *6 Hg) — P20y AxgEs + dya A F3 =0, (F.4)
d (e2¢1 %6 Xm) F e P24 By A x6Fy = 0, (F.5)
d (e2¢2 %6 dxg) —dBy AdCy = 0, (F.6)
d xg dp1 — €*?1dyy A xgdx1 + %e‘¢1_¢2H3 A xgHsz — %6¢1_¢2F3 A*xF3 =0, (F.7)
d xg dpy — €2P2dya A xgdy2 + %€_¢1_¢2H3 A *xgHz + %6¢1_¢2F3 AxEF3 =0, (F.8)
Ry = 122: (0400001 + 2 0,30, )
n 22 POy di L XiOv Xi
+ ie_qjl_@ <H3#p1sz3up1p2 - éguVH3p1p2p3H3plp2p3>
+ ie(ﬁl_@ (F3u91p2F3up1p2 - égqui’)plpzpsF?)plprS) . (F.9)
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Reduction to three dimensions. To reduce the above equations of motion to three

dimensions we substitute in our six-dimensional space-time Ansatz
ds? = ds? + iewds2 (%) + %ew (dz+ P+ Ay), (F.10)
and expressions for the three-form field strengths (4.37). From (F.3) and (F.4) we get
d <e¢1_¢2+2U+Vg — 2x2sin a) =0, (F.11)
d <e¢1—¢2+V—2U . G1> +dya A Hy =0, (F.12)
d <e¢1_¢2_v+2U * Gg) — 9ef1— P2V 2U G1+%ge¢1_¢2+2U+VFQ—dX2 ANHy =0, (F.13)
and
d (e*¢1*¢2+"+2Uh) — P10 VAU g4y L Godye = 0, (F.14)
d (e_¢1_¢2+V_QU * Hl) - e_¢1_¢2+v_2UdX1 A *xG1 —dxa NGy =0, (F.15)
d <6_¢1_¢2_V+2U * H2> —2e P12tV 2U ) 4 %h€_¢1_¢2+v+2UF2
— 9172 VI gy A %Gy +dy2 AGr = 0. (F.16)
We can now solve (F.11) and (F.14) to determine g and h

g = 2e~ 91127V =2 (co5 0 + sin arya) (F.17)
h = 2e91+927V=2U [gin o — cos arxa 4 (cos a + sin arxa) x1] - (F.18)

In the process we have chosen the integration constants for convenience.
From (F.5) and (F.6) we get the following two equations:

d (62¢1+2U+V * dX1> + {2 sin aGoe?t ~#2 72UV _ ghe¢1_¢2+2U+V] vols
410t V2U I A sy 4 e 02 VAU I A5Gy = 0 (F.19)
d (62¢1+2U+V * dxg) + [hGo — 2sinag|vols +Hi NGy — Gi AN Hy = 0. (F.20)

The final two scalar equations give
1
d (€2U+V % d¢>1) _ 62¢1+2U+del A xdy1 + §€—¢2_2U_V [4e_¢1 sin? a — e G%} vols

1 1
+ 567¢>272U+V [e*mﬂl/\*Hl —e¢1G1/\*G1}+§e*¢2+2U*V [e*‘bngA*Hg—e‘bl Gy N *Gg]

1
— 567¢2+2U+V {eid’l h? — ed’lgz} volg = 0, (F.21)

1
d (62U+V * d¢2) — €2¢2+2U+VdX2 A xdyxa + §€_¢2_2U_V [4€_¢1 sin o + e Gg} vols

1 1
+ §e_¢2_2U+V |:€_¢1H1/\*H1+€¢1G1/\*G1:| —|—§e_¢2+2U_V |:e_¢1H2/\*H2+€¢1G2/\*G2:|
- %e_¢2+2U+V [e_d“ h? + ed’lgﬂ vol3 = 0. (F.22)
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We now only have to work out the Einstein equation. Taking into account a change
in how we define scalars, namely W — V,V; — U, we can use the Ricci tensor appearing
n (D.4). We simply have to take note of the fact that the S? is normalised so that I; = 4,
in which case A = 0.

From the Einstein equation, we get the following equations:

2e2V =4 yolg —d AV — dV A #dV — 2dV A xdU + éeng A Iy (F.23)
= Be_@_gv_w (4€_¢1 sin? a + e¢1G(2)) + %6_(752 (e_¢1 h? + e¢lg2>] vols
+ 36_(172_2‘/ |:6_¢1H2/\*H2+6¢1G2/\*G2:| —ie_@_‘w [e_d)lHl A xHy+e* Gy A *Gl]
(4e72Y —2e*V 1) volg —d # AU — dU A *dV — 2dU A xdU (F.24)
= [i€—¢2—2V—4U (46_¢1 sin® o + e¢1G%> + %e“” <e_¢’1 h? + e¢1g2>] volg
1

1
— Ze_@_w [e_¢1H2A*H2+e¢1G2/\*G2}+Ze_¢2_4U [e_¢1H1 A xHy+e? Gy A *Gl}

1
58_2U_2Vd (63V+2U % F2) — 92sin ae—¢1—¢2—4U—V % H1 + G06¢1—¢2—4U—V % Gl

_ €—¢1—¢2—VhH2 _ e¢1—¢2—VgG2 ) (F.25)
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1 Introduction

Chern-Simons gauged supergravity in three dimensions has a very rich structure due to
the duality between scalars and vectors in three dimensions. There are many possible
gauge groups since there is no restriction on the number of vector fields that act as gauge
fields [1, 2], or equivalently, no restriction on the dimension of the gauge group provided
that it can be embedded in the global symmetry group and consistent with supersymmetry.
Any number of vector fields can be introduced via Chern-Simons terms which do not give
rise to extra degrees of freedom. The theory is also useful in the study of AdSs;/CFTs
correspondence, see for example [3] for a nice review.

To understand AdS3/CFTy correspondence in the context of string/M theory, the
embedding of three dimensional gauged supergravity in ten or eleven dimensions is required.
The usual procedure to obtain lower dimensional supergravities from higher dimensional
theories is the Kaluza-Klein (KK) dimensional reduction. The general U-duality covariant
formulation of three dimensional gauged supergravities is in the form of Chern-Simons
theory in which the gauge fields enter the Lagrangian through the Chern-Simons terms [4].
On the other hand, dimensional reductions result in Yang-Mills type gauged supergravity
in which gauge kinetic terms are in the form of conventional Yang-Mills terms. The known
class of Chern-Simons gauge groups that gives equivalent Yang-Mills type theory is of non-
semisimple type [5]. Any Yang-Mills type Lagrangian can be rewritten in the Chern-Simons
form by introducing two gauge fields and a compensating scalar for each Yang-Mills gauge
field. This makes non-semisimple gauge groups more interesting in finding effective theories
of string/M theory in three dimensions.



Some embeddings of three dimensional gauged supergravities into higher dimensions
have appeared so far. These examples include N = 2,4, 8,16 gauged supergravities from
reductions on spheres and Calabi-Yau manifold in [6-12] and recently various N = 2 the-
ories from wrapped D3-branes of [13]. In this paper, we will give another example of this
embedding namely N = 10 gauged supergravity with SO(5) x T'Y gauge group. Due to the
above mentioned equivalent between Chern-Simons and Yang-Mills type gauged supergrav-
ities, this should potentially describe N = 5 gauged supergravity in four dimensions with
gauged group SO(5) reduced on S!. The latter has been constructed in [14]. It has been
shown in [15] that the theory admits two AdSy critical points, an N = 5 supersymmetric
point with SO(5) gauge symmetry and a non-supersymmetric point with SO(3) residual
gauge symmetry. The theory has also been studied in the context of holographic super-
conductor in [16]. The non-supersymmetric critical point is perturbatively stable with all
mass-squares above the BF-bound.

Unlike the four dimensional analogue which has maximally supersymmetric AdSy
ground state, we will find that the reduced theory in three dimensions admits only a
%—BPS domain wall as a vacuum solution. This is in contrast to compact and non-compact
gaugings of the same theory studied in [17] that admits maximally supersymmetric AdSs
critical points. The loss of supersymmetry after S' reduction has been pointed out in the
context of non-semisimple gaugings in three dimensions in [10]. A general result on S?
reduction of AdS spaces has been given in [18]. There are many known 3-BPS domain
walls in higher dimensional gauged supergravities, see for example [19-24] as well as in
lower dimensions, see [25] and [26] for three- and two-dimensional solutions. These domain
walls are important in the context of the DW/QFT correspondence [27-29] which is a gen-
eralization to non-conformal field theories of the original AdS/CFT correspondence [30].
They are also useful in the study of domain wall/cosmology [31-33].

The paper is organized as follow. In section 2, we review the general structure of NV
extended gauged supergravities in three dimensions including all relevant formulae and
notations. The SO(5) x T' gauged supergravity and the associated domain wall solution
are discussed in section 3. We then discuss possible higher dimensional origin of the
resulting theory from S' dimensional reduction of N = 5 SO(5) gauged supergravity in
four dimensions. We finally give some conclusions and comments in section 5. All details
and explicit calculations are given in appendix A. In appendix B, we will explore possible
non-semisimple gauge groups of N = 9 gauged supergravity in three dimensions.

2 N = 10 gauged supergravity in three dimensions with non-semisimple
gauge groups

Before going to the detail of the construction, we briefly review the general structure
of three dimensional gauged supergravities and apply it to the construction of N = 10
gauged supergravity with non-semisimple gauge group SO(10) x T, We will keep the
number of supersymmetry to be N for conveniences and later set N = 10. In general,
the matter coupled supergravity in three dimensions is in the form of a non-linear sigma
model coupled to supergravity. For N > 4, supersymmetry demands that the scalar target



manifold must be a symmetric space of the form G/H in which G and H are the global
symmetry group and its maximal compact subgroup, respectively [34]. In particular, for
N > 8, supersymmetry determines the scalar manifold uniquely. In the present case of
N = 10, the scalar manifold is given by the coset space Fg_14)/SO(10) x U(1) which is a
32-dimensional Kahler manifold.

Coupling of the sigma model to N-extended supergravity requires the presence of N —1
almost complex structures f©, P = 2,..., N on the scalar manifold. The tensors f!’/ =
f[U], I,J=1,...,N, constructed by the relation

fiPr=—ft=or o= (2.1)

generate the SO(N) R-symmetry in a spinor representation under which scalar fields trans-
form. On symmetric scalar manifolds of the form G/H, the maximal compact subgroup
H = SO(N) x H' contains the R-symmetry SO(N) and another compact subgroup H' com-
muting with SO(N). In N = 10 theory, the group H' is simply U(1). The G-generators tM,
M =1,...,dimG, can be split into (T!/, X) generating, respectively, SO(N) x H' and
non-compact generators Y4 corresponding to dim G —dim H scalars. The global symmetry
group G is characterized by the following algebra

[TIJ’TKL] — _ypllE L], [TIJ’ YA] _ _%fIJ,ABYB7
[Xa,Xﬁ} — f0 X7, (X, V4] = ho Y B,
(Y4 Y5 = iff]BT” + écaﬂhﬂABXa. (2.2)
The tensors f!7 are related to SO(NN) gamma matrices, F,{x i in which A and A label spinor
and conjugate spinor representations, respectively, by
ffJ:—lr”:—l(rfrJ—rJrf). (2.3)

2 4

Copand f a'/ij are H' invariant tensor and H' structure constants, respectively. The H' group
is generated in the SO(IV) spinor representation by matrices hO‘BA. The coset manifold
whose coordinates are given by d = dim(G/H) scalar fields ¢*, i = 1, ..., d can be described
by a coset representative L. The usual formulae for a coset space are

- 1

L~ HML = 5le ST 1 yM xo pyM iy A (2.4)
1

Lol = 5@{ T L Qexe + ey (2.5)

which will be useful later on. eiA is the vielbein on the scalar manifold while QZ-I 7 and
Q¢ are SO(N) x H' composite connections. Scalar matrices V will be used to define the
moment maps below.

Gaugings of supergravities in various space-time dimensions are efficiently described
in a G-covariant way by the so-called embedding tensor formalism [1]. In essence, the

embedding tensor Oy ar is a symmetric gauge invariant tensor that acts as a projector from



the global symmetry group G to a particular gauge group. Gauge covariant derivatives
describing the minimal coupling of the gauge fields Aﬁ/‘ to other fields also involve the
embedding tensor. For example, the covariant derivative on scalar fields is given by

D¢’ = 9.0’ + gOpn AN XN (2.6)

where XV are Killing vectors generating isometries on the scalar manifold and ¢ is the
gauge coupling constant.

In order to define a viable gauging, the embedding tensor has to satisfy the so-called
quadratic constraint

Opef (MmOak =0, (2.7)

which is the requirement that the gauge generators © y vtV form a closed algebra, or
equivalently the gauge group is a proper subgroup of G. Furthermore, for supersymmetry
to be preserved in the gauging process, the embedding tensor needs to satisfy the projection
constraint

Pr,Orn = 0. (2.8)

This condition comes from supersymmetry, but it should be noted that the constraint in
this form is obtained by regarding the scalar manifold to be a symmetric space.

It is useful to introduce the T-tensor given by the moment map of the embedding
tensor by scalar matrices VM, obtained from (2.4),

Tas = VO 0 V5. (2.9)

The T-tensor transforms under the maximal compact subgroup H and consists of various

TIHKL LA T4B. Since fermions transform under H, the

components such as and
fermion couplings will be written in term of the T-tensor or linear combinations of its
components as we will see below. For any supersymmetric gauging, supersymmetry requires

only that the T-tensor satisfies the projection
PeT! KL =0 (2.10)

where H is the Riemann tensor-like representation of SO(N). In the case of symmetric
scalar manifolds which are of interest in this paper, this constraint can be lifted to the con-
straint on the embedding tensor given in (2.8) in which the G-representation Ry, branched
under SO(N), contains H representation of SO(N). Any subgroup of G whose embedding
tensor satisfies the above constraints is called admissible gauge group.

In general, gaugings need some modifications to the original ungauged Lagrangian by
fermionic mass-like terms and a scalar potential, at order ¢ and g2, respectively. Also,
the supersymmetry transformation rules need to be modified at order g. In what follow,
we will need the scalar potential and fermionic supersymmetry transformations. They are
written in terms of the A7 and AL/ tensors which are in turn constructed from various
components of the T-tensor

4 2
A — = pIMJM IJpMN.MN 911
! N —2 +(N—1)(N—2)5 ’ (2.11)
2 4 2
Al — 2pld % MUmpd)M §17 ¢KL mpKL (919
% N J+N(N—2)fJ m+N(N—1)(N—2) 175 m ( )



The scalar potential is simply given by

4 1
Vet <A{JA{J 1N JA§;]A§3’> | (2.13)

The metric g;; on the target manifold is related to the vielbein by g;; = e{‘e;‘. We also

note here that the quadratic constraint (2.7) can be written in terms of A!7 and AL/ as
, 1 ,
QALK pART _ Ny ALK pJE — Na” (2AFFAFE — NAFEALL) . (2.14)

The fermionic field content of the N extended supergravity in three dimensions consists
of N gravitini w/{ and d spin—% fields x*/. The latter is written in an overcomplete basis
and subject to the projection constraint

. 1 . . .
Xz] — N (5IJ5; o fIsz) X]J (2‘15)

giving rise to d independent y*! fields. The fermions x*/ can be redefined such that they
transform in a conjugate spinor representation of SO(N) via [4]

. 1 )
XA = Ne?FiAXZI‘ (2.16)

The corresponding supersymmetry transformations are as follow:

3y, = Dye’ + gA e’ (2.17)
, 1 . A A
5X21 — 5(51]1 _ fIJ)ZjWJEJ — gNAgIZEJ (218)

where only relevant terms are given and

Dy’ =0, + %wzb%b + 0,0Q17 ! + g@MNAﬁ’[VNUEJ ) (2.19)

Gauge groups of interest to us are non-semisimple groups of the form Gox T4™& The
translational symmetry T4 consists of dim G commuting generators which transform
as an adjoint representation under Gy. This type of gauge groups gives rise to the on-shell
equivalent Yang-Mills gauged supergravity coming from dimensional reductions of some
higher dimensional theory. The Gy x TH™& gauge group whose generators are respectively
J™and T™, m =1,...,dim G is characterized by the following algebra

[Jm, J = fmm gk [J™, T = fm TF, [T™,T"] =0 (2.20)

where f" are Gg structure constants. We will denote the Gg and TImE parts of the
gauge group by a and b, respectively. As shown in [5], the corresponding embedding tensor
consists of two parts, one with the coupling between a and b types O, and the other with
the coupling between b and b types Oyy,. The full embedding tensor can be written as

© = g10ab + 92601 (2.21)



with g1 and g2 being the coupling constants. Supersymmetry constraint (2.8) may impose
some relation on g; and go such that eventually there is only one coupling. Both ©,;, and
Opp are given by the Cartan-Killing form of G, 159, which is non-degenerate since Gy
is semisimple. The above information is sufficient for our discussion in this paper. The
interested readers are invited to consult [4] and [5] for more a detailed discussion about
three dimensional gauged supergravity with non-semisimple gauge groups.

3 SO(5) x T'° gauged supergravity and %-BPS domain wall solution

In this section, we explicitly construct N = 10 gauged supergravity with SO(5) x T'? gauge
group. We begin with the scalar manifold Eg_14)/SO(10) x U(1) and use Eg generators
given in [35] and [36]. The non-compact form Eg_14 is constructed by using the “Weyl
unitarity trick”. We follow the same construction and notation as in [17] to which we refer
the readers for more details.

The 78 generators of Eg constructed in [36] are labeled by ¢;, i = 1,...,78. The SO(10)
R-symmetry is generated by ¢;, i = 1,...,21,30,...36,45,...,52,71,...,78 and ¢53. We
need to relabel these generators to the form of 77/ in our SO(N) covariant formalism.
This has already been done in [17], but we will repeat it in appendix A for convenience.
The group H' = U(1) is generated by ¢79 whose definition and that of és3 can be found in
appendix A.

The non-compact generators can be identified as

icayor forA=1,...,8
YA =4 icaas forA=9,...,16 . (3.1)
icargy for A=17,...,32

We can then use (2.2) to extract the tensors f!7 whose components are computed by
1
1J 1J A B
AB:—gTr([T YA YR (3.2)

Notice that the generators have normalizations Tr(T7/T!/) = —6 and Tr(YAY4) = 6, no
sum on I.J and A.

We now construct generators of the gauge group SO(5) x T'Y. This group is embedded
in USp(4,4) C Eg(—14). The maximal compact subgroup USp(4) x USp(4) C USp(4,4) is
identified as the SO(5) x SO(5) subgroup of the R-symmetry SO(10). Recall that the 32
scalars transform as 16" + 16~ under SO(10) x U(1). Under SO(5) x SO(5), the scalars
transform as

167 +16~ = (4,4)" +(4,4)" . (3.3)

We then identify SO(5) part of the gauge group as the diagonal subgroup SO(5)diag C
SO(5) x SO(5) under which scalars transform as

167 +16~ = (4x4)" + (4 x4)”
=(1+10+5"+(1+10+5)". (3.4)



In this decomposition, we see that there are two singlets under SO(5)giag. The adjoint
representation 101 and 10~ will be used to construct the translational generators of T1°.

The explicit form of the corresponding gauge generators are as follow. The SO(5)diag
generators are given by

JU = T 4 TSI i,j=1,...,5 (3.5)
while the T'9 generators are found to be
9 = TV — SIS Lyl d,j=1,...,5 (3.6)
where Y are given in appendix A.
The embedding tensor is of the form

© = g10ap + g26mp (3.7)
where ©,, and Oy}, are given by the Cartan-Killing form of SO(5). The supersymmetry

constraint requires go = 0 meaning that there is no coupling among T!° generators. This
is similar to N = 16 and N = 8 theories with SO(8) x T?® gauge group studied in [10, 25].
We are now in a position to study the scalar potential of the resulting gauged su-

pergravity. Following the technique of [37], we begin with scalar fields which are singlets
under the semisimple part of the gauge group, SO(5). They are given by 1% in (3.4) and
correspond to the non-compact generators

Yo = Y3 —Y5 — Yio + Yig + Yi7 — Yig + Yo7 + Yoo,

Yoo = Y4+ Ys+ Y11+ Yig+ Yoo — Yoz + Yog — V3. (3.8)
Accordingly, the coset representative is parametrized by

L = e*¥s1bYsz (3.9)

Using the formulae (A.4) and (A.5), we can compute A7 and AL/ by using a computer
program Mathematica. The scalar potential is computed to be

V= 66t (14 ) g2 (3.10)

where we have denoted ¢g; simply by g. The presence of the e® factor implies that the
potential has no critical point. We then expect the vacuum solution to be a domain wall.
To find a domain wall solution, we adopt the usual domain wall ansatz for the metric

ds® = 62Ad:z:il + dr?. (3.11)

The supersymmetry transformation of x*/, §x*/ = 0 from equation (2.18), gives the follow-
ing equations

Vel + %g(l — )b — o T=1,...,5, (3.12)

Vel — %g(l — )2t — o 1=6,...,10, (3.13)
g p2(atb)(1+¢*) s

a'yre —gwe =0, I=1,....5, (3.14)
L e2(a+b)(1+e4b) s

a' € —|—QWE =0, I1=6,...,10 (3.15)



where we have used ' to denote the derivative d% and qu/ = %Tr (L_lL’ YA). We will now
impose the projection conditions y,.e/ = —e/ for I =1,...,5and ¢/ = ¢/ for I =6,...,10.
¢! has two real components. The projectors then reduce the supersymmetry by a fraction
of % With these two projectors, we end up with two independent equations

1
V= 59(1 — ¢40)e2(a=b) (3.16)
. 62(a+b)(1+e4b)
a = —g—l T €8b (317)

The supersymmetry variation of the gravitini wl{, 5%{ = 0 from equation (2.17) after using
the above projectors, gives rise to
e =1, (3.18)
A =2g (1 + e4b) e2a=b) (3.19)
where we have used the spin connection wl’j’" =A 6Z with 4,0 =0, 1.

We see from (3.18) that supersymmetry demands b = 0. Equation (3.16) is now
trivially satisfied, and equation (3.17) becomes

d+e*g=0. (3.20)
The solution is easily obtained to be
1

a=—3 In (2gr 4+ C1) (3.21)

where (' is an integration constant. Substituting into equation (3.19) gives

4g

A =4ge®t = —F— 3.22
9e C1 + 2gr ( )

whose solution is, with another integration constant Cj,
A=Cy+2In(2gr +C4). (3.23)

As in other solutions of this type, the residual supersymmetry is generated by the
Killing spinors given by € = egegi, 1 =1,...,5 with the constant spinors 661 satisfying
Yreby = €. The full symmetry of this solution is 7SO(1,1) x SO(5) with the unbroken
N = (5,5) Poincare supersymmetry in notation of the dual two-dimensional field theory.

The two integration constants C7 and Cs can be set to zero by shifting the coordinate
r and rescaling the coordinates x#. We can also write down the solution in the form of

warped AdS3 by introducing the new coordinate p via p = —Kl% in term of which the
metric becomes ) )
1 dri,+d
ds® = 5 — 7. (3.24)
(49°p) p

We end this section by considering subgroups of SO(5) x T'Y namely SO(4) x T® and
(SO(3) x T3) x (SO(2) x T') ~ U(2) x T4 It can be checked that both of them are
not admissible.



3D fields | SO(5) representation | number of degrees of freedom

933 1 1

Gu3 1 1

o8 5 5

bi 5 5

Ayl 10 10

AY 10 10

Vi 5 10
1078 1 9
X'k 10 20

Table 1. Representations of three dimensional fields resulted from S! reduction of N = 5 gauged
supergravity in four dimensions.

4 Higher dimensional origin

In this section, we discuss higher dimensional origin of the SO(5) x T'Y N = 10 gauged
supergravity constructed in the previous section. By the general result of [5], this theory
is on-shell equivalent to the SO(5) Yang-Mills gauged supergravity which can be obtained
from S! reduction of N = 5 gauged supergravity in four dimensions with SO(5) gauge
group. The four dimensional theory has been constructed in [14] and can be obtained as
a truncation of the maximal N = 8 gauged supergravity. In the notation of [14], the field
content of this theory contains one graviton e, or garn, five gravitini wfw, eleven spin—%
fields x** and 578, ten scalars ¢’ and ¢; living in the coset space SU(5,1)/U(5) and ten
vector fields Aé\{[ being SO(5) gauge fields. Here, M, N = 0,1,2,3 and a,b = 0,1,2,3 are
four dimensional space-time and tangent space indices respectively while i, = 1,...,5 are
SU(5) indices except for Aé@ which transform in the adjoint representation of SO(5).

If we reduce this theory on S' along the 2? direction, we find the following fields
in three dimensions. The metric gy/n gives the non-dynamical three dimensional metric
guv, the graviphoton g,3 and a scalar gs3. The SO(5) gauge fields result in the three
dimensional gauge fields of the same gauge group Aff and ten scalars Aéj transforming in
the adjoint representation of SO(5). Finally, the ten scalars (¢, ¢;) obviously become the
three dimensional scalars.

A spinor in four dimensions give rise to two spinors in three dimensions. We then
obtain ten gravitini dﬁi from wfw and ten spin—% fields 14. There are additional 20 + 2
Spin—% fields from the reduction of y** and 578, respectively. In three dimensions, the
metric and gravitini do not have any dynamics. We then find 32 fernionic on-shell degrees
of freedom from (¥, x5, x“*). We can also dualize Aff and g,3 to 10 + 1 scalars. All
together, we end up with 32 scalars from (¢%, ¢;, g33, 9u3, Aff, Agj ). This is the same as in
N =10 gauged supergravity.

We give SO(5)gauge representations of the reduced fields in table 1 from which we
have omitted the non-dynamical fields g, and d)li. We have kept ¢' and ¢; separately

to emphasize their four dimensional origin. We now consider the representation of the 32



scalars in Eg(_14)/SO(10) x U(1) coset space under the SO(5) part of the gauge group.
Recall that under SO(10) x U(1), the scalars transform as 16" + 16~. Under SO(10) x
U(1) D SU(5) x U(1) x U(1) D SO(5) in which the U(1) is the U(1) subgroup of U(5) C
SO(10), we find

167 +16- — (1_5+ 53+ 10,1)—’— +(1.5+5_3+101)"
- (14+5+10)+ (1 +5+10) (4.1)

We find perfect agreement with table 1. Reference [38] is very useful in this decomposition.
In the formalism of [4], the fermions x4 transform as 10" + 10~ under SO(10) x U(1).
Similar decomposition gives 2 x (1 4+ 5 + 10) under SO(5) gauge group. This is again the
representations obtained from S! reduction shown in table 1. The result of [39] suggests
that three dimensional supergravity with Eg coset manifold can be obtained from dimen-
sional reduction on a torus, S! in the present case, of a supergravity theory with As coset
manifold in four dimensions. Reference [39] consider only maximally non-compact Eg and
other types Lie groups. The result here should provide an example of a non-maximally
non-compact Eg (Fg(_14)) coset obtained from a non-maximally non-compact A5 SU(5,1)
coset in four dimensions. Furthermore, the general formulae for toroidal reductions given
in the appendix of [39] should also be applicable in this case.

5 Conclusions and discussions

In this paper, we have constructed N = 10 SO(5) x T!0 gauged supergravity in three
dimensions. We have found that the resulting theory admits a %—BPS domain wall as
a vacuum solution. The solutions preserves N = (5,5) Poincare supersymmetry in two
dimensions with ten supercharges. The solution is similar to the domain wall from the
S7 compactification of type II string theory discussed in [40]. This solution is the vacuum
solution of the maximal N = 16 SO(8) x T?® gauged supergravity. The solution given here
provides an example of a domain wall in non-maximal gauged supergravity and might be
useful in the DW/QFT correspondence as well as its applications.

We have also discussed possible higher dimensional origin of this theory. This is given
by S! reduction of N = 5 SO(5) gauged supergravity in four dimensions. We have found
that the spectrum of the reduction matches with the constructed three dimensional gauged
supergravity. If the N = 5 four dimensional theory is reduced on S!/Zs, it could give rise
to N = 5 gauged supergravity in three dimensions. Indeed, the latter in general has scalar
manifold USp(4, k) /USp(4) x USp(k) [34]. We have seen that the SO(5)x T gauge group is
embedded in USp(4,4) C Eg(_14). We then expect that N =5 SO(5) gauged supergravity
in four dimensions reduced on S'/Zs should give N = 5 SO(5) x T gauged supergravity
in three dimensions with scalar manifold USp(4,4)/USp(4) x USp(4) containing 16 scalars.
It turns out that the latter theory admits SO(5) x T'? gauge group. The details will be
reported in subsequent work [41]. Unlike the N = 10 theory, the N = 5 truncation admits
maximally supersymmetric AdS3 vacuum solution. This truncation should be similar to
the case of N = 8 SO(8) x T?® gauged supergravity with SO(8,8)/SO(8) x SO(8) scalar
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manifold studied in [25]. This theory is a truncation of N = 16 SO(8) x T gauged
supergravity with scalar manifold Fgg)/SO(16).

Due to the similar structure as in the above examples, we would like to briefly discuss
the case of N = 12 gauged supergravity. The scalar manifold is the 64-dimensional quater-
nionic manifold E7_5)/SO(12) x SU(2). The gauge group should be SO(6) x T'® embedded
in SU(4,4) C E7(_5). The SO(6) is again identified as SO(6)qiag C SO(6)xSO(6) C SO(12).
The 64 scalars transform under SO(12) x SU(2) as (32, 2) and under SO(6) x SO(6) x SU(2)
as ((4,4)+ (4,4),2). Then, under the SO(6) part of the gauge group, we find the represen-
tation for scalars ((4 x 4+4 x 4),2) = (1 + 15+ 1+ 15,2). The non-compact generators
in the 15 should combine with SO(6) x SO(6) generators to form the T'® part of the gauge
group. The fermions transform as (32,2) under SO(12) x SU(2) and ((4,4) + (4,4),2)
under SO(6) x SO(6) x SU(2). Under SO(6), they transform as (10 + 6 + 10 + 6, 2).

We now consider S! reduction of N = 6 SO(6) gauged supergravity in four dimneions
which is also a truncation of N = 8 SO(8) gauged supergravity [42]. The bosonic fields
are (gMN,(;SAB,gZ)AB,AﬁB,AM) where the 30 scalars (¢42, ¢4p) live in the coset space
SO*(12)/U(6) and A,B = 1,...,6, see [42] for more detail. The fermionic fields are
given by (i, x4, xABY). After S reduction, the dynamical bosonic fields are given by
(9u3: 933, 4B dap, Ay, As, AﬁB, A4B) transforming as (1+1+15+15+1+1+15+15)
under SO(6) gauge group. After dualizing the vector fields, we end up with 64 scalars with
correct SO(6) representations as in N = 12 gauged supergravity. The reduced dynamical
fermionic fields are (14!, xAP¢, x4) transforming under SO(6) as 2 x (6 + 10 + 10 + 6)
which are indeed the same as those in N = 12 theory. The factor of 2 comes from the fact
that a four dimensional spinor gives two three dimensional spinors.

Finally, similar to the discussion in the N = 5 case, we expect that the S*/Zy reduction
should give N = 6 SO(6) x T'® gauged supergravity on three dimensions with scalar
manifold SU(4,4)/S(U(4) x U(4)) whose compact and non-compact gauge groups have been
explored in [43]. The possibility of non-semisimple gauge groups is under investigation [41].
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A Useful formulae and details

In this appendix, we give some details of N = 10 gauged supergravity with SO(5) x T
gauge group constructed in the main text. First of all, the SO(10) R-symmetry generators
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T!7 are explicitly given by

T12 = C1, T13 = —C2, T23 = C3, T34 = Cg,
T = ¢y, T% = —¢s,
T15 = Cv, T25 = —Cg, T35 = Cg, T45 = —C10,
T°0 = —cps, T' = e,
T = —cp, T = —cy, T = ¢y, T = ¢,
%" = —cn7, T4 = —cpo,
T = e, T = —cyy, T = —cyp, T™ = —cs,
T = ¢y, T% = —c3,
T* = —ca3, T = ca, T% = —css, T = —cy,
T% = —cq, T = ¢y,
TY = —cys, T% = cyr, T% = —cs0, T% = —cyg,
T = —csy, T = —cs1,
TR0 = o 7210 _ o T30 — oy 40 o)
51 = ¢z5,
7610 — oo 7710 = oo T80 oo TO0 _ g (A1)

where €53 and éyg are defined by [36]

1 VB . V3 1
Cs3 — 5053 + 7670 and Cro = —7053 + 5070 . (A.2)

Also, notice a typo in the sign of 7910 in [17].
The Y part of the translational generators T10 is constructed from the following
non-compact generators

Y2 = %(Yg—Y12+Y17+Y29+Y5—Y16+Y18_Y27)7
Yy = %(Y2+Y14+Y21—Y26—Y1+Y15—Y19_Y25)7
Yyl = %(Ygl—Y7—Y6—1/'30—Y9+Y10+Y20—Y24)7
Y = é(Y15—Y14+Y25—Y26—Y1—Y2+Y19+Y21)v
Yy — %(Y1+Y2+Y15—Y14+Y19+Y21—Yz5+Y26)7
P24 = 2 (Vig + Yo — Yan — Yar + ¥ — ¥ — Yo — Yau).
Y2 — %(Yg—Yl—Y25—Y%—Y14—Y15+Y19—Y21)7
Y34 = %(YS—YZI_YH_Y28+Y13_Y32+Y22+Y23)>
Y3 — %(Y18+Yl7—Y12—|—Y27—Y29—Y16—Y5—Y3),
Y4 — %(quLn—Yu*Y28*Y13+Y32*Y23+Y22)~ (A.3)
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This choice is of course not unique.

The scalar matrices for the moment maps are given by

. 1 .

Vit = —em(@ L),
. 1 .

vl = —gTr(L_lt”LTU),
. 1 .

VidA — 6Tr(L*lJ”LYA),

y 1 y
VA = éTr(L’lt”LYA) (A.4)
from which the T-tensor follows

g KL T
TIKEL — (V;j,IJvéL +fo’ V;J,KL>

TIA — (V;j,]JVéj,A _|_Véj,IJV;j,A> (A.5)

Using these together with (2.11), (2.12) and (2.13), we can find the tensors A{’ and AL/
as well as the scalar potential.

B Non-semisimple gauging of N = 9 gauged supergravity in three di-
mensions

We will consider N = 9 gauged supergravity in three dimensions. The corresponding
scalar manifold is given by the 16-dimensional Fy_sq)/SO(9) coset space. Some vacua of
the compact and non-compact gaugings of this theory have been studied in [44]. In this
appendix, we will explore the possibilities of non-semisimple gauge groups which are crucial
for embedding the theory in higher dimensions. Notice that the construction of Fg given
in [36] is based on the Fj group given in [35]. We can simply remove the last 26 matrices
¢, 1 =53,...,78 from Fg to get the group Fj generated by ¢;, i = 1,...,52 as has been
used in [44]. All 52 matrices are effectively 26 x 26 matrices since all elements in the last
row and last column are zero.

The SO(9) R-symmetry generators are T/ in (A.1) with I,.J = 1,...,9, and non-
compact generators are the first 16 generators of (3.1), Y4, A =1,...,16. In the case
of Fy4)/USp(6) x SU(2) which is a scalar manifold of N = 4 theory studied in [45],
SO(4) x T® can be gauged consistently with supersymmetry by the embedding of SO(4) x T
in SO(5,4) C Fyq). In the present case, the embedding of SO(3) x T? in USp(2,2) C
USp(4,2) x SU(2) C Fy(—90) should be possible.

To identify generators of this group, we first consider the SO(4) x TS subgroup of the
SO(5) x T in section 3. Obviously, the SO(4) part is generated by J¥, i,j = 1,...,4.
We then consider Y% with 4,5 = 1,...,4. It can be verified that by removing Yi7 to Yso
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form Y%, the resulting generators, see appendix A,

- 1
Y12=§(Y3—m+y5—m),
?B—l&ﬂuf—y Y
5 (Y2 + Y1 1+ Yis),
- 1
Y = o (Yio = ¥r = Y6 — Yoo — V),
- 1
Y23=§(Y1+Y2+Y15—Y14>,
- 1
Y24=5(Y10+Y9+Y6—Y7),
Y34—1(Y—Y—Y Y B.1
=5 (Y5 - Y 11+ Yi3) (B.1)

still transform in the adjoint representation of SO(4). It turns out that when combined
into t¥, the resulting generators do not commute. Therefore, it is not possible to find
SO(4) x TY subgroup of Fy(_20)- On the other hand, we can form two SU(2)+ subgroups
from these generators by introducing the self-dual and anti-self-dual SO(4) generators

JL = g1z 4 g34, J2 = g1 g, JE = gy g,
and
Jt =g — g, J2 =gt 4 g J2 =gt — g%,

12 34

- ’

t2 =13 2 3 =14 423, (B.3)
It can be readily verified that each set of generators forms SO(3) x T3 ~ SU(2) x T? algebra
but generators ¢t from the two sets do not commute with eachMo other. Although this
subgroup can be embedded in Fy o), it is not admissible namely it cannot be gauged in
a way that is consistent with supersymmetry. Embedding in higher dimensions aside, it
seems to be difficult (if possible) to find non-semisimple gaugings of the N = 9 theory.

References

[1] H. Nicolai and H. Samtleben, Mazimal gauged supergravity in three-dimensions,
Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

[2] H. Nicolai and H. Samtleben, N = 8 matter coupled AdSs supergravities,
Phys. Lett. B 514 (2001) 165 [hep-th/0106153] [INSPIRE].

[3] P. Kraus, Lectures on black holes and the AdSs/CFTy correspondence, Lect. Notes Phys.
755 (2008) 193 [hep-th/0609074] [INSPIRE].

[4] B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear
o-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] INSPIRE].

[5] H. Nicolai and H. Samtleben, Chern-Simons versus Yang-Mills gaugings in three-dimensions,
Nucl. Phys. B 668 (2003) 167 [hep-th/0303213] [InSPIRE].

— 14 —


http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://arxiv.org/abs/hep-th/0010076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010076
http://dx.doi.org/10.1016/S0370-2693(01)00779-1
http://arxiv.org/abs/hep-th/0106153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106153
http://arxiv.org/abs/hep-th/0609074
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609074
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.022
http://arxiv.org/abs/hep-th/0307006
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307006
http://dx.doi.org/10.1016/S0550-3213(03)00569-8
http://arxiv.org/abs/hep-th/0303213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303213

(6]

H. Lii, C.N. Pope and E. Sezgin, SU(2) reduction of siz-dimensional (1,0) supergravity,
Nucl. Phys. B 668 (2003) 237 [hep-th/0212323] [INSPIRE].

H. Li, C. Pope and E. Sezgin, Yang-Mills-Chern-Simons supergravity,
Class. Quant. Grav. 21 (2004) 2733 [hep-th/0305242] [INSPIRE].

E. Gava, P. Karndumri and K. Narain, 3D gauged supergravity from SU(2) reduction of
N =1 6D supergravity, JHEP 09 (2010) 028 [arXiv:1006.4997] [iINSPIRE].

E. O Colgain and H. Samtleben, 3D gauged supergravity from wrapped M5-branes with
AdS/CMT applications, JHEP 02 (2011) 031 [arXiv:1012.2145] [INSPIRE].

T. Fischbacher, H. Nicolai and H. Samtleben, Nonsemisimple and complex gaugings of
N =16 supergravity, Commun. Math. Phys. 249 (2004) 475 [hep-th/0306276] [INSPIRE].

O. Hohm and H. Samtleben, Effective actions for massive Kaluza-Klein states on
AdS3 x §% x S3, JHEP 05 (2005) 027 [hep-th/0503088] [INSPIRE].

H. Nicolai and H. Samtleben, Kaluza-Klein supergravity on AdSz x S*, JHEP 09 (2003) 036
[hep-th/0306202] [INSPIRE].

P. Karndumri and E.O. Colgéin, 3D supergravity from wrapped D3-branes,
JHEP 10 (2013) 094 [arXiv:1307.2086] [INSPIRE].

B. de Wit and H. Nicolai, Frtended supergravity with local SO(5) invariance,
Nucl. Phys. B 188 (1981) 98 [NSPIRE].

N.P. Warner, Some properties of the scalar potential in gauged supergravity theories,
Nucl. Phys. B 231 (1984) 250 [INSPIRE].

N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal holographic superconductors from
mazximal supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].

A. Chatrabhuti and P. Karndumri, Vacua of N = 10 three dimensional gauged supergravity,
Class. Quant. Grav. 28 (2011) 125027 [arXiv:1011.5355] INSPIRE].

H. Lii, C. Pope and P. Townsend, Domain walls from Anti-de Sitter space-time,
Phys. Lett. B 391 (1997) 39 [hep-th/9607164] [INSPIRE].

C.M. Hull, Domain wall and de Sitter solutions of gauged supergravity, JHEP 11 (2001) 061
[hep-th/0110048] [NSPIRE].

G.W. Gibbons and C.M. Hull, De Sitter space from warped supergravity solutions,
hep-th/0111072 [INSPIRE].

H. L, C.N. Pope, E. Sezgin and K.S. Stelle, Dilatonic p-brane solitons,
Phys. Lett. B 371 (1996) 46 [hep-th/9511203] [INSPIRE].

K. Behrndt, E. Bergshoeff, R. Halbersma and J.P. van der Schaar, On domain wall/QFT
dualities in various dimensions, Class. Quant. Grav. 16 (1999) 3517 [hep-th/9907006]
[INSPIRE].

E. Bergshoeff, M. Nielsen and D. Roest, The domain walls of gauged mazimal supergravities
and their M-theory origin, JHEP 07 (2004) 006 [hep-th/0404100] INSPIRE].

E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric domain walls,
Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].

P. Karndumri, Domain walls in three dimensional gauged supergravity, JHEP 10 (2012) 001
[arXiv:1207.1027] [INSPIRE].

T. Ortiz and H. Samtleben, SO(9) supergravity in two dimensions, JHEP 01 (2013) 183
[arXiv:1210.4266] [INSPIRE].

,15,


http://dx.doi.org/10.1016/S0550-3213(03)00534-0
http://arxiv.org/abs/hep-th/0212323
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212323
http://dx.doi.org/10.1088/0264-9381/21/11/015
http://arxiv.org/abs/hep-th/0305242
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305242
http://dx.doi.org/10.1007/JHEP09(2010)028
http://arxiv.org/abs/1006.4997
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4997
http://dx.doi.org/10.1007/JHEP02(2011)031
http://arxiv.org/abs/1012.2145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2145
http://dx.doi.org/10.1007/s00220-004-1081-z
http://arxiv.org/abs/hep-th/0306276
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306276
http://dx.doi.org/10.1088/1126-6708/2005/05/027
http://arxiv.org/abs/hep-th/0503088
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503088
http://dx.doi.org/10.1088/1126-6708/2003/09/036
http://arxiv.org/abs/hep-th/0306202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306202
http://dx.doi.org/10.1007/JHEP10(2013)094
http://arxiv.org/abs/1307.2086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2086
http://dx.doi.org/10.1016/0550-3213(81)90107-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B188,98
http://dx.doi.org/10.1016/0550-3213(84)90286-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B231,250
http://dx.doi.org/10.1007/JHEP03(2012)064
http://arxiv.org/abs/1110.3454
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3454
http://dx.doi.org/10.1088/0264-9381/28/12/125027
http://arxiv.org/abs/1011.5355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5355
http://dx.doi.org/10.1016/S0370-2693(96)01443-8
http://arxiv.org/abs/hep-th/9607164
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607164
http://dx.doi.org/10.1088/1126-6708/2001/11/061
http://arxiv.org/abs/hep-th/0110048
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110048
http://arxiv.org/abs/hep-th/0111072
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111072
http://dx.doi.org/10.1016/0370-2693(95)01595-7
http://arxiv.org/abs/hep-th/9511203
http://inspirehep.net/search?p=find+EPRINT+hep-th/9511203
http://dx.doi.org/10.1088/0264-9381/16/11/306
http://arxiv.org/abs/hep-th/9907006
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907006
http://dx.doi.org/10.1088/1126-6708/2004/07/006
http://arxiv.org/abs/hep-th/0404100
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404100
http://dx.doi.org/10.1103/PhysRevD.86.085043
http://arxiv.org/abs/1206.5697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5697
http://dx.doi.org/10.1007/JHEP10(2012)001
http://arxiv.org/abs/1207.1027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1027
http://dx.doi.org/10.1007/JHEP01(2013)183
http://arxiv.org/abs/1210.4266
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.4266

[27]
28]
[29]

[30]

H. Boounstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence,
JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].

T. Gherghetta and Y. Oz, Supergravity, nonconformal field theories and brane worlds,
Phys. Rev. D 65 (2002) 046001 [hep-th/0106255] [INSPIRE].

I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes,
JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].

J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]
[INSPIRE].

K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies,
Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

K. Skenderis and P.K. Townsend, Hamilton-Jacobi method for curved domain walls and
cosmologies, Phys. Rev. D 74 (2006) 125008 [hep-th/0609056] [INSPIRE].

K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence
in AdS/dS supergravity, JHEP 08 (2007) 036 [arXiv:0704.3918| [INSPIRE].

B. de Wit, A. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear o-models,
Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].

F. Bernardoni et al., Mapping the geometry of the Fy group, Adv. Theor. Math. Phys. 12
(2008) 889 [arXiv:0705.3978].

F. Bernardoni, S.L. Cacciatori, B.L. Cerchiai and A. Scotti, Mapping the geometry of the Fg
group, J. Math. Phys. 49 (2008) 012107 [arXiv:0710.0356] [INSPIRE].

N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity,
Phys. Lett. B 128 (1983) 169 [INSPIRE].

R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].

E. Cremmer, B. Julia, H. Lii and C. Pope, Higher dimensional origin of D = 3 coset
symmetries, hep~th/9909099 [INSPIRE].

J.F. Morales and H. Samtleben, Supergravity duals of matrix string theory,

JHEP 08 (2002) 042 [hep-th/0206247] [INSPIRE].

A. Chatrabhuti, P. Karndumri and B. Ngamwatthanakul, New gauged supergravities in three
dimensions with N = 5,6 supersymmetry and holography, to appear.

L. Andrianopoli, R. D’Auria, S. Ferrara, P. Grassi and M. Trigiante, Exceptional N = 6 and
N =2 AdSy supergravity and zero-center modules, JHEP 04 (2009) 074 [arXiv:0810.1214]
[INSPIRE].

A. Chatrabhuti, P. Karndumri and B. Ngamwatthanakul, 3D N = 6 gauged supergravity:
admissible gauge groups, vacua and RG flows, JHEP 07 (2012) 057 [arXiv:1202.1043]
[INSPIRE].

A. Chatrabhuti and P. Karndumri, Vacua and RG flows in N =9 three dimensional gauged
supergravity, JHEP 10 (2010) 098 [arXiv:1007.5438] InSPIRE].

P. Karndumri, Gaugings of N = 4 three dimensional gauged supergravity with exceptional
coset manifolds, JHEP 08 (2012) 007 [arXiv:1206.2150] INSPIRE].

,16,


http://dx.doi.org/10.1088/1126-6708/1999/01/003
http://arxiv.org/abs/hep-th/9807137
http://inspirehep.net/search?p=find+EPRINT+hep-th/9807137
http://dx.doi.org/10.1103/PhysRevD.65.046001
http://arxiv.org/abs/hep-th/0106255
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106255
http://dx.doi.org/10.1088/1126-6708/2008/09/094
http://arxiv.org/abs/0807.3324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3324
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1103/PhysRevLett.96.191301
http://arxiv.org/abs/hep-th/0602260
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602260
http://dx.doi.org/10.1103/PhysRevD.74.125008
http://arxiv.org/abs/hep-th/0609056
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609056
http://dx.doi.org/10.1088/1126-6708/2007/08/036
http://arxiv.org/abs/0704.3918
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3918
http://dx.doi.org/10.1016/0550-3213(93)90195-U
http://arxiv.org/abs/hep-th/9208074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9208074
http://arxiv.org/abs/0705.3978
http://dx.doi.org/10.1063/1.2830522
http://arxiv.org/abs/0710.0356
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0356
http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B128,169
http://dx.doi.org/10.1016/0370-1573(81)90092-2
http://inspirehep.net/search?p=find+J+Phys.Rep.,79,1
http://arxiv.org/abs/hep-th/9909099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9909099
http://dx.doi.org/10.1088/1126-6708/2002/08/042
http://arxiv.org/abs/hep-th/0206247
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206247
http://dx.doi.org/10.1088/1126-6708/2009/04/074
http://arxiv.org/abs/0810.1214
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1214
http://dx.doi.org/10.1007/JHEP07(2012)057
http://arxiv.org/abs/1202.1043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1043
http://dx.doi.org/10.1007/JHEP10(2010)098
http://arxiv.org/abs/1007.5438
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5438
http://dx.doi.org/10.1007/JHEP08(2012)007
http://arxiv.org/abs/1206.2150
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2150

PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: December 23, 2013
ACCEPTED: January 13, 2014
PUBLISHED: January 29, 201}

New N = 5,6, 3D gauged supergravities and
holography

Auttakit Chatrabhuti,*? Parinya Karndumri®® and Boonpithak Ngamwatthanakul®

@String Theory and Supergravity Group, Department of Physics,
Faculty of Science, Chulalongkorn University,
254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand

b Thailand Center of Excellence in Physics, CHE, Ministry of Education,
Bangkok 10400, Thailand
E-mail: auttakit@sc.chula.ac.th, parinya.ka@hotmail.com,
boonpithak@gmail.com

ABSTRACT: We study N = 5 gauged supergravity in three dimensions with compact,
non-compact and non-semisimple gauge groups. The theory under consideration is of
Chern-Simons type with USp(4, k) /USp(4) x USp(k) scalar manifold. We classify pos-
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1 Introduction

The duality between scalars and vectors together with the non-propagating nature of super-
gravity fields in three dimensions make three dimensional gauged supergravity substantially
differs from its higher dimensional analogue. On one hand, only matter-coupled supergrav-
ity has propagating degrees of freedom in terms of scalars and spin—% fields. Accordingly,
the matter-coupled theory takes the form of a supersymmetric non-linear sigma model cou-
pled to supergravity. On the other hand, recasting vectors to scalars, making the U-duality
symmetry manifest, seems to create a trouble in any attempt to gauge the theory since the
vector fields accompanying for the gauging are missing.

Special to three dimensions, vector fields can enter the gauged Lagrangian via Chern-
Simons (CS) terms as opposed to the conventional Yang-Mills (YM) kinetic terms. Since
CS terms do not lead to additional degrees of freedom, any number of gauge fields, or equiv-
alently the dimension of the gauge group, can be introduced provided that the gauge group
is a proper subgroup of the global symmetry group and consistent with supersymmetry.
This gives rise to a very rich structure of gauged supergravity in three dimensions [1-5].

Additionally, the Chern-Simons form of gauged supergravity raises another difficulty
namely the embedding of the resulting gauged theory in higher dimensions. This is due to
the fact that all theories obtained from conventional dimensional reductions are of Yang-
Mills form. It has been, however, shown that Yang-Mills gauged supergravity is on-shell
equivalent to Chern-Simons gauged theory with a non-semisimple gauge group [6]. Up to
now, there are many attempts to embed three dimensional gauged supergravity in higher
dimensions and in string/M theory. These results would give rise to new string theory
backgrounds with fluxes as well as new D-brane configurations [7]. However, it has been
pointed out recently in [8] that there might exist supersymmetric string backgrounds which
are not captured by gauged supergravities.

The rich structure and embedding in string/M theory aside, gauged supergravity proves
to be a very useful tool in the AdS/CFT correspondence [9]. AdS3/CFT; correspondence
can provide more insight not only to the AdS/CFT correspondence, including its general-
izations such as the Domain Wall/Quantum Field Theory (DW/QFT) correspondence, but
also to black hole physics [10, 11]. In holographic RG flows, AdSs vacua and domain walls
interpolating between them interpreted as RG flows in the dual two dimensional field theo-
ries are of particular interest, see [12] for a thorough review. The deformations of a strongly
coupled field theory can be understood in this framework. Some gauged supergravities do
not admit a maximally supersymmetric AdSs but a half-supersymmetric domain wall as
a vacuum solution. This class of gauged supergravities will be useful in the context of the
DW/QFT correspondence [13-15].

In this work, we further explore the structure of gauged supergravity in three di-
mensions with N = 5,6 supersymmetry. We begin with a study of compact and non-
compact gaugings of the N = 5 theory with scalar manifolds USp(4,2)/USp(4) x USp(2)
and USp(4,4)/USp(4) x USp(4). We will identify some supersymmetric AdSs critical points
and study the associated RG flow solutions. This could be useful in AdS3/CF T4 correspon-
dence although the embedding in higher dimensions is presently not known. The result is



similar to supersymmetric RG flows studied in [16-19] and in higher dimensions such as
recent solutions of new maximal gauged supergravity in four dimensions given in [20].

We then move to non-semisimple gaugings of the N = 5 theory containing 16 scalars
encoded in USp(4,4)/USp(4) x USp(4) coset manifold with SO(5) x T'9 gauge group. The
gauge group is embedded in the global symmetry group USp(4,4). According to [6], the
resulting theory is equivalent to SO(5) YM gauged supergravity. The latter might be
obtained by a reduction of N = 5, SO(5) gauged supergravity in four dimensions on S'/Zs
as pointed out in [21]. The theory may also be embedded in N = 10, SO(5) x T'? gauged
supergravity via the embedding of the global symmetry group USp(4,4) C Eg(_14)- The
theory admits a maximally supersymmetric AdSs vacuum and provides another example
of three dimensional gauged supergravities with known higher dimensional origin.

We finally turn to non-semisimple gauging of N = 6 theory with SU(4,4)/S(U(4) x
U(4)) scalar manifold. The global symmetry SU(4,4) contains an SO(6) x T'® subgroup
that can be consistently gauged. Similar to N = 5 theory, this theory is equivalent to
SO(6) YM gauged supergravity and could be obtained by an S'/Zs reduction of N = 6
gauged supergravity in four dimensions. Unlike N = 5 theory, the theory admits only a
half-supersymmetric domain wall as a vacuum solution.

The paper is organized as follow. We give the construction of N = 5 theory in sec-
tion 2. Relevant information and related formulae for general gauged supergravity in three
dimensions are collected in appendix A. Vacua of compact and non-compact gauge groups
are given in section 3 and 4, respectively. Section 5 deals with some examples of RG flows
between critical points previously identified. Non-semisimple gaugings of N =5 and N = 6
theories are constructed in sections 6 and 7, respectively. The maximally supersymmetric
AdS3 of N =5 theory and a %—BPS domain wall of the N = 6 theory are explicitly given
in these sections. We end the paper with some conclusions and discussions. Appendices B
and C contain the explicit form of the relevant generators used in the main text as well as
the scalar potential for SO(4) x USp(2) gauging in N = 5 theory.

2 N = 5 gauged supergravity in three dimensions

In N = 5 three dimensional gauged supergravity, scalar fields are described in term of
USp(4,k)/USp(4) x USp(k) coset manifold with dimensionality 4k. The R-symmetry is
given by USp(4) ~ SO(5)r. All admissible gauge groups are embedded in the global
symmetry group USp(4, k). In this paper, we will consider only the k = 2 and k = 4 cases.

We first introduce USp(4, k) generators constructed from a compact group USp(4 + k)
via the Weyl unitarity trick. In order to make contact with the N = 6 theory with global
symmetry group SU(4, k) studied in section 7, we will construct the USp(4 + k) generators
by figuring out the USp(4 + k) subgroup of SU(4 + k), directly. The latter is generated by
the well-known generalized Gell-Mann matrices given in, for example, [22]. We will denote
USp(4 + k) generators by J; given explicitly in appendix B. The SO(5)r R-symmetry
generators, labeled by a pair of anti-symmetric indices 7'/ = —T7!, can be identified as



follow

1 1 1
T2 =~ (J3— Jg), T8 = —— (J1+ J4), T = —(J—Js),
5 (J3 — Je) 7 (J1+ Ja) 7 (J2 —J5)
1 1 1
T3 — — (Js+Jg), T = — (Jy+ Js), T = — (1 — ),
7 (J3+ Jo) 7 (J2+ Js) 7 (J1— Ja)
T = —Js, T% = o, T% = Js,
™ = J;. (2.1)
The non-compact generators Y4 are identified by
V! =iJu, Y? =iy, V3 =iy, Yt =iy,
Y? =iJis, YO =iJy, Y7 = i, V® =iy,
V9 = iJos, Y10 = o, Y =iy, Y12 =iy,
Y13 = iJy, Y = i, Y15 =iJs, Y10 = iJs. (2.2)

For k = 2 case with 8 scalars, the associated non-compact generators are given by the first
8 generators, YA with A=1,...,8.

Admissible gauge groups are completely characterized by the symmetric gauge invari-
ant embedding tensor Oy, M,N = 1,...,dimG. Viable gaugings are defined by the
embedding tensor satisfying two constraints. The first constraint is quadratic in © and
given by

Ope e (MOnc =0 (2.3)

ensuring that a given gauge group Gy is a proper subgroup of G. The other constraint due
to supersymmetry takes the form of a projection condition

P!/ =0 (2.4)

TIJKL

where the T-tensor is given by the moment map of the embedding tensor

TIIEL — M IJ@MNVNKL' (2.5)

The H denotes the Riemann tensor-like representation of SO(N)g. For symmetric scalar
manifolds of the form G/H, the V maps can be obtained from the coset representative, see
appendix A, and the constraint can be written in the form

Pr,Orn = 0. (2.6)

The representation Ry of G contains the H representation of SO(NV)g.
We are now in a position to study gaugings of N = 5 supergravity. We will treat
compact and non-compact gauge groups separately.



3 Compact gauge groups

In this section, we explore N = 5 gauged supergravity with compact gauge groups. The
gauge groups are subgroup of USp(4) x USp(k) and takes the form SO(p) x SO(5 — p) x
USp(k), p = 5,4,3.

The SO(p) x SO(5 — p) part is embedded in SO(5)r as 5 — (p,1) + (1,5 — p). The
corresponding embedding tensor is identified in [5] and takes the form

OrskL = 061" + S Er) (3.1)
where »
=1 4, Coe=T (3.2)
—€5U, I>p

The full embedding tensor for SO(p) x SO(5 — p) x USp(k) is given by

O = 91050(p)xS0(5-p) T 92OUSP(K) (3-3)

with two independent coupling constants. Oygpy() is given by the Killing form of USp(k).
Together with the explicit form of the coset representative, the scalar potential is completely
determined by the embedding tensor.

3.1 The kK = 2 case

In this case, the theory contains 8 scalars parametrized by USp(4,2)/USp(4) x USp(2)
coset space. The full 8-dimensional manifold can be conveniently parametrized by the
Euler angles of SO(5) x USp(2) ~ USp(4) x USp(2). The details of the parametrization
can be found in [23], and the application to SU(n,m)/S(U(n) x U(m)) coset can be found
in [19)].

3.1.1 SO(5) x USp(2) gauging

With USp(4) x USp(2) Euler angles, the full USp(4,2)/USp(4) x USp(2) coset can be
parametrized by the coset representative

L — e(lle ea2X2 6(13)(—3 e(l4J7ea5J8 6a6J9 €a7J156bY7 (34)

where X;’s are defined by

1 1 1
X, = E(h —Ju), Xo = E(JQ — J12), X3 = E(J?, — J13). (3.5)
The resulting scalar potential is
1
V= 5 (64 (95 — 1297 + 4g192) cosh b — 107697 — 1809192 — 4595

—4 (5291 + 20g192 + 593) cosh(2b) + (2g1 + g2)* cosh(4b)] . (3.6)



b Vo unbroken unbroken
SUSY gauge symmetry

I 0 —64g% (5,0) SO(5) x USp(2)
_ — 6492 2

I | cosh™? [g;lfgﬂ O ) (4,0) | USp(2) x USp(2)
_ 6492 (3 2

I | cosh™ [ggggﬂ ~Slate) | (1,0) | USp(2) x USp(2)

Table 1. Critical points of SO(5) x USp(2) gauging.

Note that the scalar fields associated to the gauge generators do not appear in the potential
due to gauge invariance. We find some critical points as shown in table 1. Vj is the value
of the potential at each critical point. Unbroken supersymmetry is denoted by (n_,ny)
where n_ and n, correspond to the number of supersymmetry in the dual two dimensional
CFT. In three dimensional language, they correspond to the numbers of negative and
positive eigenvalues of A{’ tensor. As reviewed in appendix A, these eigenvalues, +a,

2

satisfy Vo = —4a“. Since, in our convention, the AdSs radius is given by L = ﬁ, we

1
2[al

The maximally supersymmetric critical point at L = I preserves the full gauge sym-

also have a relation L =

metry. The two non-trivial critical points preserve USp(2) x USp(2) symmetry. We also
give the A; tensors at each critical point:

Aﬁ” = —4g115x5,

4 _
Agn) = diag <a,a,a,a, 791(91 92)) )

291 + go
. —491(391 + 92)
A = gia ,0,8,8, ————===] . 3.7
1 5 (8.8.8.8 =5 (3.7)
where
—4 —4g1(5
o g1(91 +92)7 _ —491(591 + 92) ' (3.8)
291 + g2 291 + go
The scalar mass spectrum at the trivial critical point is given in the table below.
m2L? | SO(5) x USp(2)
_% (47 2)
All scalars have the same mass m2L? = —% with L being the AdSs radius at this crit-

ical point. The full symmetry of the background corresponds to Osp(5/2,R) x Sp(2,R)
superconformal group. Notice that in finding critical points with constant scalars we can
use the gauge symmetry and the composite USp(4) x USp(k) symmetry to fix the scalar
parametrization as, for example, in the Euler angle parametrization. In determining scalar
masses, we need to compute scalar fluctuations to quadratic order. In this case, only the
the composite USp(4) x USp(k) symmetry can be used since the vector fields are set to



zero, see the discussion in [24]. The scalar masses must accordingly be computed in the
so-called unitary gauge with the coset representative

8
L=]]e . (3.9)
=1

The mass spectrum at (4,0) critical point is shown below.

m2L? USp(2) x USp(2)

92(291+3g2)
2(9141-92)22 (1’ 1)
0 (2,2) +(1,3)

And, scalar masses at (1,0) critical point are as follow.

m2L? USp(2) x USp(2)
(491+g2)(10g1+3g2)
. (321-%92)12 : (1’ 1)
0 (2,2) +(1,3)

Notice that there are seven massless Goldstone bosons corresponding to the symmetry
breaking SO(5) x USp(2) — USp(2) x USp(2).

3.1.2 SO(4) x USp(2) gauging

We still use the same parametrization as in the previous case. The potential in this case
turns out to be much more complicated although it dose not depend on a;, az and az. We
give its explicit form in appendix C. The trivial critical point has N = (4, 1) supersymmetry
and preserves the full SO(4) x USp(2) symmetry. The A; tensor and scalar masses at this
point are given below.

AV = _4gdiag (1,1,1,1,-1) (3.10)

m2L? | SO(4) x USp(2) ~ SU(2) x SU(2) x USp(2)
(2,1,2) +(1,2,2)

N[Y]

The corresponding superconformal symmetry is Osp(4]2, R) x Osp(1|2,R).

Other critical points with a4 = a5 = ag = a7 = 0 are shown in table 2. Critical points
IT and III preserve only USp(2)giag X USp(2) subgroup of SO(4) x USp(2). The USP(2)diag
is a diagonal subgroup of one factor in USp(2) x USp(2) ~ SO(4) and the USp(2) factor in
the gauge group and is generated by Ji + Ji1,J2 + Ji2 and Js + Ji3. Critical point II has
(4,1) supersymmetry with the A; tensor

A _ _4g1(91 + 92)

- diag (1,1,1,1, —1). 3.11
! 291 + g2 ( ) (3:-11)



b Vo unbroken unbroken
SUSY gauge symmetry

I 0 —64g% (4,1) SO(4) x USp(2)
_ _ 6492 2

I | cosh! [321 fgﬂ O ) (4,1) | USp(2) x USp(2)
_ 6492 (3 2

I | cosh™ [ggggﬂ ~late) | (0,0) | USp(2) x USp(2)

Table 2. Critical points of SO(4) x USp(2) gauging.

The scalar mass spectrum is given in the table below.

m2L? USp(2) x USp(2)
0 (1,3)
92(291+3g2)
ot (1,1)
9192(91+2g2)
a (gliggz);(?gligz) (2,2)

Critical point III is non-supersymmetric with scalar masses given by

m*L’ USp(2) x USp(2)
0 (1,3)
(491+92)(10g1+3g2)
: (3;14—92;2 : (1,1)
91(491+92)(591+292)
N 22913—95(3911;]2)22 (2,2)

We can now check its stability by comparing the above scalar masses with the
Breitenlohner-Freedman bound m?L? > —1. At this critical point, the value of b is real for
g1 >0 and go > —2g; or g1 <0 and go < —2g;. For definiteness, we will consider the first
possibility. The mass of the singlet scalar satisfies the BF bound for g; > 0 and g2 > —3¢1
while the mass of (2,2) scalars requires go > 0.21432¢; for g; > 0 to satisfy to BF bound.
Therefore, critical point III is stable for g; > 0 and go > 0.21432¢;.

Note that both critical points II and III contain three massless scalars which are
responsible for the symmetry breaking SO(4) x USp(2) — USp(2) x USp(2).

3.1.3 SO(3) x SO(2) x USp(2) gauging

Computing the scalar potential on the full 8-dimensional manifold turns out to be very
complicated even with the Euler angle parametrization (3.4). In order to make things
more tractable, we employ the technique introduced in [25] and consider a submanifold of
USp(4,2)/USp(4) x USp(2) invariant under U(1)gi,g symmetry generated by T2 + T45.
There are four singlets under this symmetry corresponding to the non-compact generators

1 1

X; = — (Y +v9), Xo=—=(Y?+Y¥),

X3 =—(Y1-Y3), Xy=—=Y"-Y%). (3.12)

S-S
S|



al Vo unbroken unbroken
SUSY gauge symmetry
I 0 —64g% (3,2) | SO(3) x SO(2) x USp(2)
| i [92‘891‘43291(45”1‘92)} ~Sotlamel | (2,0) U(1) x U(1)
2
I | iin [92+891—4vg291(491+92>} _649%@;1;92)2 (1,2) U(1) x U(1)

Table 3. Critical points of SO(3) x SO(2) x USp(2) gauging.

The coset representative can be parametrized by

L = e X192X2003 %5 gasXa, (3.13)
The resulting potential is given by

V= % [3 + cosh a; cosh as cosh az cosh as] [—2 (512¢7 + 19g3)
+ (999% - 10249%) cosh a1 cosh ag cosh as cosh ay + 3¢5 cosh(2ay)
x (cosh a; cosh ay cosh az cosh ay) — 2 — 125 cosh? a; [cosh(2az)
+2 cosh? as (cosh(2as) + 2 cosh® ag cosh(2a4))] + 295 cosh® a
x cosh as cosh az (3 (cosh(2az) + 2 cosh? as cosh(2a3)) cosh ay

+4 cosh? ap cosh? ag cosh(3a4))] . (3.14)

We find critical points as shown in table 3. We have given only the value of a; since, at
all critical points, the four scalars are related by as = a1 and as = a4 = 0. As usual,
when all scalars vanish, we have a maximally supersymmetric point with N = (3,2) and
SO(3) x SO(2) x USp(2) symmetry. The corresponding A; tensor is

AD = _4g,diag (1,1,1,-1,-1). (3.15)

This background leads to the superconformal symmetry Osp(3|2,R) x Osp(2|2,R). The
scalar masses at this point are shown below.

m2L? | SO(2) x SO(3) x USp(2)
(1,2,2) + (—1,2,2)

[

The other two critical points preserve U(1) x U(1) symmetry. The corresponding A; tensor
at these points is given by

Agn) = = dlag (047 «, 57 _57 _/8) )
A = diag (v,7, -0, 6,0) (3.16)



where

o = da1(91 — g2) 5= _4g91(g92 — 391)
92 7 g2 ’
_ 491391 + 92) 5= do1(g1 + o)

3.17
92 g2 ( )

With some normalization of the U(1) charges, the scalar mass spectra can be computed
as shown in the tables below. The original four singlets under U(1)qjag correspond to one
massless and three massive modes in the tables. The U(1)qgiag is given by a combination of

the two U(1)’s in the unbroken symmetry U(1) x U(1). Therefore, the (0, £4) and (+4,0)
modes, which are singlets under one of the two U(1)’s, will not be invariant under U(1)giag-

e (2,0) point:

m2[2 U(1) x U(1)
0 (0,4) + (0,—4) + (4,0) + (—4,0) + (0,0)
W (0,0)
7% (—=2,-2) +(2,2)
e (1,2) point:
m2L2 U(1) x U(1)
0 (0,4) + (0, —4) + (4,0) + (—4,0) 4 (0,0)
Wﬁ#ﬂ (0,0)
200 2) (—2,-2) + (2,2)

3.2 The kK = 4 case

We now consider a bigger scalar manifold W%’L(@' Compact gauge groups in this

case are SO(5) x USp(4), SO(4) x USp(4) and SO(3) x SO(2) x USp(4). Analyzing the
potential on the full 16-dimensional manifold would be very complicated. We then choose
a particular submanifold invariant under a certain subgroup of the gauge group and study
the potential on this restricted scalar manifold as in the SO(3) x SO(2) x USp(2) gauge
group of the previous case. The procedure is parallel to that of the & = 2 case, so we
will omit some irrelevant details particularly the explicit form of the A; tensor at each
critical point.

3.2.1 SO(5) x USp(4) gauging

We use the parametrization of a submanifold invariant under USp(2) C USp(4). There
are eight singlets under this USp(2) symmetry corresponding to non-compact generators
of USp(4,2) € USp(4,4). With the Euler angle parametrization, we can write the coset

representative as
% % V. 8
I — X1 ,02X2 03 X3 aa Ky jas Ka jas K3 jar Ky bY (3.18)

,10,



b Vo unbroken unbroken
SUSY | gauge symmetry

I 0 —644? (5,0) | SO(5) x USp(4)
-1 [ga—2 6497 (91+92)° 3
I | cosh™! [g=20] | —Sglotal | (4 ) USp(2)
2 2
I | cosh™ |G| | _S4iCata | (1) USp(2)*

Table 4. Critical points of SO(5) x USp(4) gauging.

where
X—L(J Ji1) X—L(J J12) X—L(J J13)
1= 5= Ju), 2= 505 = ), 3= 500~ Jis),
K1 = Ja1, Ko = Jss, K3 = Js3, Ky = Js. (3.19)

The scalar potential turns out to be same as in (3.6). The critical points are shown in
table 4. The critical points have the same structure as in the k& = 2 case but with bigger
residual symmetry. The scalar mass spectra at each critical point are given in the tables
below.

e (5,0) point:

m2L? | SO(5) x USp(4)

-3 (4,4)
e (4,0) point:
m?L? USp(2) x USp(2) x USp(2)
0 (2,2,1) + (1,2,2) + (1,3,1)
nlaiig) (11,1
_ 49%4+(g819f;22 )+239% (2,1,2)
e (1,0) point:
m2L? USp(2) x USp(2) x USp(2)
0 (2,2,1) +(1,2,2) 4 (1,3,1)
et (111
e 212

Notice that the number of massless Goldstone bosons agrees with the corresponding sym-
metry breaking in each case.

— 11 —



b Vo unbroken unbroken
SUSY | gauge symmetry

I 0 —64g? (4,1) SO(4) x USp(4)
- - 6497 (91+92)°

I | cosh™! [g=2m) | _Sgloal | (g ) USp(2)?
- 6497 (3 2

I | cosh™ |G| | SfBate” | (o,q) USp(2)?

Table 5. Critical points of SO(4) x USp(4) gauging.

3.2.2 SO(4) x USp(4) gauging

With the same coset representative, we find the same potential as shown in (C.1). The
critical points with different unbroken symmetry are shown in table 5. The scalar mass
spectra are given below.

e (4,1) point:

m2L? | SO(4) x USp(2) ~ SU(2) x SU(2) x USp(4)

-3 (2,1,4) + (1,2,4)
e (4,1) point:
m2L? USp(2) x USp(2) x USp(2)
0 (1,2,2) + (1,3,1)
92(291+3g2)
2(91-11-92)22 (1’ 1, 1)
9192(91+292)
o (g1ig22)21(291i92) (2,1,2)
(291+92)(291+392)
T e (2,2,1)

e Non-supersymmetric point:

m2L? USp(2) x USp(2) x USp(2)
0 (1,2,2)+(1,3,1)
ek (1.1.1)
S0yl ) 2,12
3 5
TR | e

This critical point is stable for g; > 0 and g2 > 0.21432¢;.

3.2.3 SO(3) x SO(2) x USp(4) gauging

In this case, we use the parametrization of L as in (3.13). The four scalars correspond to
four singlets of USp(2) x U(1)giag. The potential is the same as (3.14) with the critical
points shown in table 6. The scalar mass spectra are given in the following tables.

— 12 —



al Vo unbroken unbroken
SUSY gauge symmetry
I 0 —64g% (3,2) | SO(3) x SO(2) x USp(4)
11 %ln |:92—891—4wg/291(491—92):| _64g%(i]}13792)2 (2’ 0) U(l) > U(l) > USp(?)
1| §In [92+8914,g/291(491+92)] _649?(gg1§+92)2 (1,2) U(1) x U(1) x USp(2)

Table 6. Critical points of SO(3) x SO(2) x USp(4) gauging.

e (3,2) point:

e (2,0) point:

m2L? | SO(3) x USp(4)

(2,4) + (2,4)

|

m2L?

U(1) x U(1) x USp(2)

0

(4,0,1) + (—4,0,1) + (0,4,1) + (0,—4,1) + (0,0,1)
+(1,-1,2) + (—1,1,2)

3297 —32g19g2+6932

(91—92)? (0,0,1)
_W (-2,-2,1) + (2,2,1)
_W (—1,-1,2) +(1,1,2)

e (1,2) point:
m2L2 U(1) x U(1) x USp(2)
0 (4,0,1) + (=4,0,1) + (0,4,1) + (0,—4,1) + (0,0,1)

+(1,-1,2) + (-1,1,2)

W?ﬁ#ﬁ (0,0,1)
_% (—2,-2,1) +(2,2,1)
_% (—1,-1,2) +(1,1,2)

That critical points in the k& = 4 case are similar to those in the k = 2 case should be
related to the fact that the theory with USp(4,2)/USp(4) x USp(2) scalar manifold can be
embedded in the theory with USp(4,4)/USp(4) x USp(4) scalar manifold. We have studied
the potential on scalars which are singlets under USp(2).
parametrized by non-compact directions of USp(4,2) C USp(4,4), the global symmetry

,13,
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group of k = 2 case. This might explain the fact that this particular parametrization gives
rise to the same potential as in the k = 2 case. Turning on more scalars would give more
interesting structures.

4 Non-compact gauge groups

In this section, we classify admissible non-compact gauge groups. We will consider the
k =2 and k = 4 cases separately as in the previous section.

4.1 The kK = 2 case

In this case, there is only one non-compact subgroup of USp(4,2) namely USp(2,2). The
USp(4, 2) itself can be gauged with the embedding tensor given by its Killing form, but the
corresponding potential will become a cosmological constant. The subgroup of USp(4, 2)
that can be gauged is USp(2) x USp(2,2) C USp(4,2). The embedding tensor reads

O = g1Oysp(2) + 920Usp(2,2) (4.1)

where g1 and gy are two independent coupling constants. Oygpy(22) and Oygpy(2) are given
by the Killing forms of USp(2,2) and USp(2), respectively.

Generally, scalar fields corresponding to non-compact directions in the gauge group
will drop out from the potential. Therefore, we do not need to include them in the
coset representative. The remaining four scalars correspond to non-compact directions
of another USp(2,2) in USp(4,2) and can be parametrized by the coset representative of
USp(2,2)/USp(2) x USp(2). We can use Euler angles of USp(2) x USp(2) to parametrize

the coset representative as
7
I = eale 6a2X26a3X36bY (42)

where X; are given in (3.5). We find the following potential

1 .
VvV = o [8(g1 — g2 + (g1 + g2) cosh(b))? sinh? b

— (391 + 11g2 + 4(g1 — g2) cosh b + (g1 + g2) cosh(2b))?] . (4.3)

Some of the critical points are shown in table 7. The A; tensor at each supersymmetric
critical point is given by
I .
Ag ) = (gl + 92)dlag (_17 _17 _1a _17 1) 5

ALY — aiog (5.5, 22021,

g1+ g2
11 . 92(2g1 + 392
Ag ) = dlag </Y7 Y, — ( )> (44)
g1+ g2
where @ ) @ 542)
92291 + g2 92(291 + 992
g1+ g2 g1+ 92

— 14 —



b Vo unbroken unbroken
SUSY gauge symmetry
I 0 —4(g1 + g2)? (4,1) USp(2)?
— 192(2 2
I | cosh™! ( ) g (4,0) | USp(2) x USp(2)
_ 49%(291+3g2)°
III | cosh™ (—%) e (1,0) | USp(2) x USp(2)
1Y In(2 + v/3) —1(27¢% + 549192 +1993) | (0,0) | USp(2) x USp(2)

Critical point I preserves N = (4,1) supersymmetry. The gauge group is broken down
to its maximal compact subgroup USp(2)3. In this symmetry breaking, the four mass-
less Goldstone bosons correspond to scalars associated to non-compact generators of
the gauge group. The full symmetry at this point gives the superconformal symmetry
Osp(4/2,R) x Osp(1]2,R) since the supercharges transform under USp(2) x USp(2) C

SO(b)R as (2,2) +(1,1).
Scalar mass spectra at all critical points are given below.

e (4,1) point:

e (4,0) point:

e (1,0) point:

Table 7. Critical points of USp(2) x USp(2,2) gauging.

e Non-supersymmetric point:

m?2L? USp(2) x USp(2) x USp(2)
0 (1,2,2)
91(g1+292)
B 291192)22 (2,1,2)
m2L? USp(2) x USp(2)
0 (2,2) +(1,3)
491(391+92)
Cortan)? (1,1)
m2L? USp(2) x USp(2)
0 (2,2)+(1,3)
4(g1+292) (39145
SO i (1,1)
m2L? USp(2) x USp(2)
0 (2,2)+(1,3)
12(3g1+92) (391 +592)
e A
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At non-trivial critical points, there are additional three massless scalars which are respon-
sible for USp(2) x USp(2) — USpP(2)diag symmetry breaking. The non-supersymmetric
critical point is stable for go > %(2\/210 —45)g1.

4.2 The kK = 4 case

There are three possible non-compact subgroups of USp(4,4); USp(2,2) x USp(2,2),
USp(2) x USp(4,2) and USp(2) x USp(2) x USp(2,2). Only USp(2,2) x USp(2,2) can
be gauged with the following embedding tensor

O = 91Ousp(2,2) + 92OUsp(2,2) - (4.6)

There are two independent coupling constants g1 and g, and Oygp(2,2) is given by the

USp(2,2) 2
USp(Q)XUSp(2)>

coset space with the two USp(2,2) factors different from those appearing in the gauge

Killing form of USp(2,2). The relevant 8 scalars can be parametrized by (

group. With the FEuler angle parametrization, the coset representative reads

I = eale ea2X2 60,3X3 €b1Y76a4X4 ea5X5 6(16X6 €b2Y16 (47)
where
Xi = — ) X (Jo — Jua), X3 = —— (Jy — Jig),
1= —=(J1 = J11), 2= —F=(J2 — J12 3= —F=(J3 — J13
V2 \f V2
1 1
Xy = —7=(Ja— Ja2), X5 = 7(J5 — Jas), X = —(JG — Jog).  (4.8)

The scalar potential is given by

1
V= 16 [(g1 4+ 92)(6 + cosh(2b1)) — (4(g1 — g2) cosh by + 4(g2 — g1) cosh bo
+(g1 + g2) cosh(2b2))? + 8(g1 — g2 + (91 + g2) cosh(by1))? sinh? by

+8(g2 — g1 + (g1 + g2) cosh by)? sinh? bg] ) (4.9)

We find some critical points for by = 0 as shown in table 8. Scalar masses at all critical
points are given below.

e (4,1) point:

m2L? USp(2) x USp(2) x USp(2) x USp(2)
0 (1,2,2,1)+(2,1,1,2)
92(291+92)
_W (17 27 11 2)
91(91+292)
_W (27 17 27 1)

,16,



b1 Vo unbroken unbroken

SUSY | gauge symmetry
I 0 —4(g1 + g2)? (4,1) USp(2)*
I | cosh! (k) 10 Co g (4,0) USp(2)3
III | cosh™! (%) —W (1,0) USp(2)*
IV cosh™12 —1(27g7 + 549192 +19¢3) | (0,0) USp(2)?

Table 8. Critical points of USp(2,2) x USp(2,2) gauging.

e (4,0) point:

e (1,0) point:

m2L? USp(2) x USp(2) x USp(2)
0 (2,2,1)+(2,1,2) +(3,1,1)
491(391+g2)
@o1+9:)7 (1,1,1)
(91+92)(391+92)
_ 1 (299214-9921)2 g2 ( ; 2)
m2L? USp(2) x USp(2) x USp(2)
0 (2,2,1) +(2,1,2) +(3,1,1)
4(3g3+11g1g2+10g3)
1(291+392)2 2 (17 17 1)
3(g3+49192+393)
- 1291+3g2)2 = (17 27 2)

e Non-supersymmetry point:

At the trivial critical point, the SO(5) g R-symmetry is broken to SU(2) x SU(2)
USp(2). The N = 5 supercharges transform under this subgroup as (2,2) + (1,1). This
gives rise to Osp(4]2,R) x Osp(1|2,R

272 USp(2) x USp(2) x USp(2)
0 (2a271) ( ’2)+(3’1’1)
12(3g1+92) (3g1+592) (1,1,1)
2797 +549192+1993 :
_ 2495(391+92) (1,2,2)
2797 +549192+1993 ,

the non-supersymmetric point is stable for go > %(2\/210 —45)g;.

5 RG flow solutions

Given some AdSs critical points form the previous sections, we now consider domain wall
solutions interpolating between these critical points. The solutions can be interpreted as

,17,
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RG flows describing a perturbed UV CFT flowing to another CFT in the IR. Since the
structure of critical points in both £ = 2 and k = 4 cases is similar, we will consider only
the flows in & = 2 case to simplify the algebra. The study of holographic RG flows is
very similar to those in other gauged supergravities in three dimensions [16-19]. In this
paper, we will give only examples of RG flows in compact SO(5) x USp(2) and non-compact
USp(2,2) x USp(2) gauge groups.

We are interested only in supersymmetric flows connecting two supersymmetric critical
points. The solution can be found by solving BPS equations arising from supersymmetry
transformations of fermions 511},5 and 0x* which, for convenience, we will repeat them here
from [5]

57/);{ Duel + QA{J'Y/LGJa

. 1 . A A
5Xz[ _ 5(51‘]1 o fIJ)ZjWJEJ—gNAgIZEJ (5'1)

where Duel = (8u + %wl‘j’ya) e! for vanishing vector fields.
We now employ the standard domain wall ansatz for the metric

ds?® = eZA(T)dxil + dr?. (5.2)

In order to preserve Poincare symmetry in two dimensions, all fields involving in the flow
can only depend on the radial coordinate r identified with an energy scale in the dual field
theory. BPS equations give rise to first order flow equations describing the dependence of
active scalars on r. It can be verified that setting some of the scalars to zero satisfies their
flow equations. We can then neglect all scalars that vanish at both UV and IR points.

5.1 An RG flow between (5,0) and (4,0) CFT’s in SO(5) X USp(2) gauging

The flow involves only one active scalar parametrized by the coset representative
L=l (5.3)

The BPS equation from dx* = 0 gives rise to the flow equation

db
= [291 — g2 + (291 + g2) cosh b] sinh b (5.4)

where we have used the projection condition ~v,e! = €. It is clearly seen from the above
1 g2—2q1

o1 tgn This equation

equation that there are two critical points at b = 0 and b = cosh™
can be solved for r as a function of b, and the solution is given by

1

T =
89192

b
4¢1 In cosh 5 (291 4+ g2) In[2g91 — g2 + (291 + g2) cosh b]
.. b
+2g5 In sinh 3| (5.5)

The integration constant has been neglected since we can shift the coordinate r to remove it.
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The variation 5¢IIL = 0 gives another equation for A(r)

dA 1
=1 [4g2 coshb — 2291 — 3g2 — 8g1 cosh b
—2g; cosh(2b) — g2 cosh(2b)] (5.6)

or, in term of b,

dA _ [22g1 + 392 + (891 — 4g2) cosh b + (291 + g2) cosh(2b)] cschb
db 891 — 492 + 4(2¢91 + g2) cosh b ’

This equation is readily solved and gives A as a function of b

! b
A= . (91 + g2)In[291 — g2 + (291 + g2) cosh b] — (2¢1 + g2) In cosh 5

b
—2g9 In sinh 2| (5.8)

The additive integration constant can be absorbed by scaling %! coordinates. It can be
verified that equation di! = 0 gives the Killing spinors of the unbroken supersymmetry
el =e? €} as usual, with constant spinors €} satisfying v} = €l
Linearizing equation (5.5) near the UV point b ~ 0, we find
1

 8lgi]’
We have set g1 < 0 to identify » — oo as the UV point. The above behavior indicates

b(r) ~ T = ¢, Lyy (5.9)

that from a general result, see for example [12], the flow is driven by a relevant operator

of dimension A = %

Near the IR point, we find

8 s T
b(T) ~e 2511?(]2 = 6(91+9922>LIR.7 Ligr = —M
8¢1(g1 + g2)

The reality condition for big requires g2 > —2g; for g1 < 0. From the above equation, we
392+292
g1+g2 °

given before.

> 0. (5.10)

find gfjgl > 0, so in the IR the operator becomes irrelevant with dimension Ag =
This value of Arg precisely gives the correct mass square mzL%R = %

The ratio of the central charges is computed to be

L %
cov _ Luv _ JVorr _ 91+ 92 o1 (5.11)
car  Lir Vouv 291+ 92

satisfying the holographic c-theorem for g < 0 and gy > —2g;.

5.2 An RG flow between (5,0) and (1,0) CFT’s in SO(5) x USp(2) gauging

We then study another RG flow interpolating between (5,0) and (1,0) critical points. The
coset representative is sill given by (5.3). Similar to the previous case, we obtain the
following flow equations

db

o= [691 + g2 — (291 + g2) cosh b] sinh b,

dA 1

= [3g2 — 1091 — 4(6g1 + g2) cosh b + (291 + g2) cosh(2b)] . (5.12)
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The first equation gives a solution

1 b
' 891(4g1 + g2) g1 5 (291 + g2) In [(291 + g2)

b
—691 — g2] — 2(4g1 + g2) Insinh 1k (5.13)

We can rewrite the second equation of (5.12) as

dA _ [10g1 — 3g2 + 4(6g1 + g2) cosh b — (291 + g2) cosh(2b)] cschb
db 4(2g1 + g2) cosh b — 4(6g1 + g2)

(5.14)
whose solution can be found to be

- m (391 + g2) In ((291 + g2) cosh b — 6g1 — g2)

b b
—(2¢91 + g2) In cosh i 2(4g1 + g2) Insinh 1k (5.15)

The fluctuation around b = 0 behaves as

__r 1
b(r) ~ €' = e v, Lyy = o . (5.16)
8|91
As in the previous case, we have chosen g; < 0 to make the UV point corresponds to
r — oo. From the above equation, the flow is again driven by a relevant operator of
dimension Ayy = % Near the IR point, b(r) becomes

_ 891491 +92)r (491 +g2)r 2
b(’l") ~ e 291+92 = eB91t92) LR | Lig = _&.
891(391 + g2)

(5.17)

We can verify that by is real for g3 < 0 and g < —2g;, the operator becomes irrelevant

10914392

in the IR with dimension A = 301490

. The ratio of the central charges is given by

cuv _ 391+ g2 -
CIR 201+ 92

1, for g1 <0 and g2 < —2¢; . (5.18)

5.3 An RG flow between (4, 1) and (4,0) CFT’s in USp(2) x USp(2, 2) gauging

We next consider RG flows between critical points of non-compact USp(2) x USp(2,2)
gauge group. We will not give a non-supersymmetric flow to critical point IV in table 7 in
this paper. It can be studied in the same procedure as [26] and [27]. Like in the compact
case, it is consistent to truncate the full scalar manifold to a single scalar parametrized by

L=, (5.19)
The variation 6y = 0 gives
db .
i (91 — g2+ (91 + g2) cosh b) sinh b (5.20)
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which is solved by the solution

1 b b
r = 10105 [292 Insinh 3 + 2¢g1 In cosh 3
— (91 +92) In[g1 — g2 + (91 + g2) cosh b]] : (5.21)
The equation from 51/1;; = 0 reads
dA 4 b . .4 b
i -2 [gz + g1 cosh B + g9 sinh 2] . (5.22)

The solution for A as a function of b can be found as in the previous cases. The result is
given by

1 b

A= 7 [(291 +92)Ing1 — g2 + (91 + g2) cosh b] — 4gy Incosh 5
b

—2(g1 + g2) Insinh 1k (5.23)

Near the UV point, the b solution becomes

gir 1
b(r) ~ e?97" = elortalluv | Lyy=—— . 5.24
) 2(91 + 92) (5:24)
brr is real for g1 < 0 and g9 > —¢g;. With this range, —gﬂﬁgQ < 1. The flow is then
driven by a relevant operator of dimension A = % < 2. At the IR point, we find the
asymptotic behavior
— 291927 2dan g1+ g2
b(r) ~e 91te = eRoutllr Lirp=—"—""— (5.25)
2|91(291 + g2)|
corresponding to an irrelevant operator of dimension A = P g?%f o2 T 2.
Finally, the ratio of the central charges is given by

cov _ 191291 + g2)| (5.26)

CIR (91 + g2)?
5.4 An RG flow between (4, 1) and (1,0) CFT’s in USp(2) x USp(2, 2) gauging

As a final flow solution, we quickly investigate a solution interpolating between (4,1) and
(1,0) critical points. The flow equations are given by

db

i [91 + 392 + (g1 + g2) cosh b] sinh b, (5.27)
dA 1

- =1 [391 — 5g2 + 4(g1 + 3g2) cosh b + (g1 + g2) cosh(2b)] . (5.28)
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The corresponding solutions take the form

1
= (g1 +g2)In[g1 + 392 + (g1 + go) coshb
T 193001 T 209) [(91 g2)In[g1 + 392 + (91 + g2) ]
b b
+2g2 In sinh 5 2(g1 + 2g2) In cosh 2] , (5.29)
A= 1 (29 +39)In g1 + 392 + (g1 + go) cosh ]
= 2(91 +292) g1 g2)1n |g1 g2 g1 T g2) COs

b b
—4(g1 + 2g2) In cosh 5 2(g1 + g2) Insinh 2] . (5.30)

The fluctuations near the UV and IR points are given by

(g1+2g2)r
b(T) ~ 6—2(g1+292)r _ 64<gfingEUv7 Lyy = _¥’ (5_31)
2(g1 + 92)
4g9/( 2g9)r 2992(91+2g2)7
b(T) e 929911++9292 _ e‘glfﬁgf}rggggﬁLlR’ LIR _ (91 + 92) (532)

21291 + 392)|

We have chosen a particular range of g; and g namely g1 < 0 and —% < go < —g; for

which g1 + g2 < 0. The flow is driven by a relevant operator of dimension A = %. In
the TR, the operator becomes irrelevant with dimension A = ‘2;%92 + 2.
The ratio of the central charges for this flow is
c 291 + 3
wv _ l91(291 +362) (5.33)

IR (91 + 92)°
6 N =5, S0(5) x T'® gauged supergravity

In this section, we consider non-semisimple gauge groups in the form of Gg x TdmGo
in which Gy is a semisimple group. Td™G0 constitutes a translational symmetry with
dim Gy commuting generators transforming in the adjoint representation of Gy. We
consider the k = 4 case with USp(4,4) global symmetry that admits a non-semisimple
subgroup SO(5) x T,

A general embedding of Gy x T4 G0 group is described by the embedding tensor of
the form [6]

O = ¢10ab + 926 - (6.1)

We have used the notation of [6] in denoting the semisimple and translational parts by a
and b, respectively. The absence of aa coupling plays a key role in the equivalence of this
theory and the Yang-Mills gauged supergravity with Gy gauge group.

The next task is to identify SO(5) x T'? generators. The semisimple SO(5) is identified
with the diagonal subgroup of SO(5) x SO(5) ~ USp(4) x USp(4) C USp(4,4). The
corresponding generators are given by

JU =T LT =125, (6.2)

T are the SO(5) R-symmetry generators, and T% are generators of USp(4). The trans-
lational generators are constructed from a combination of T% — T% and non-compact
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generators. The 16 scalars transform as (4,4) under SO(5) x SO(5). They accordingly
transform as 1 + 5 4+ 10 under SO(5)qgiag. Scalars in the 10 representation will be part of
the T19 generators which are given by

t9 =T Ty i,j=1,2,...,5. (6.3)

The explicit form of 7% and Y% is given in appendix B.

In the present case, supersymmetry allows for any value of g1 and go. Therefore, the
embedding tensor contains two independent coupling constants. We begin with the scalar
potential computed on the SO(5)giag singlet scalar. The above decomposition gives one
singlet under this SO(5). We end up with a simple coset representative

L= et (6.4)

This results in the potential
V = —64g1e 73 (3e%gy + 2g3) . (6.5)
The existence of a maximally supersymmetric critical point at L = I requires go = —g;.

This is the same as in N = 4,8 gauged supergravities [28, 29]. With this condition and g;
denoted by g, the potential becomes

V = —64¢%e 3 (3¢* — 2). (6.6)

Clearly, the only one critical point is given by a = 0 with V5 = —64¢%> and N = (5,0)
supersymmetry. This critical point is a minimum of the potential as can be seen
from figure 1. The vacuum is very similar to the AdSs vacuum found in N = 16,
SO(4) x SO(4) x (T'2, T34) gauged supergravity studied in [30]. The singlet has a positive
mass square m2L? = 3 as expected for a minimum point. In the dual CFT with supercon-
formal symmetry Osp(5/2,R) x Sp(2,R), this scalar corresponds to an irrelevant operator
of dimension A = 3. The full scalar masses are given below.

m2L? | SO(5)
3 1
3 5
0 10

The ten massless scalars accompany for the symmetry breaking SO(5) x T!? — SO(5)
at the vacuum.

To find other critical points, we reduce the residual symmetry of the scalar submanifold
to SO(3) € SO(5) under which the 16 scalars transform as (2+2) x (2+2) =4 x (1+ 3).
There are four singlets which can be parametrized by the coset representative

4 7 9 16
L = e Y ga2¥" gas¥™ paaY ™0 (6.7)

The resulting potential turns out to be very complicated. We, therefore, will not attempt
to do the analysis of this potential in the present work.
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Figure 1. The scalar potential of N = 5, SO(5) x T'Y gauged supergravity for SO(5) singlet scalar
with g = 1.

7 N =6, SO(6) x T'® gauged supergravity

In this section, we consider non-semisimple gauge groups of N = 6 theory. Compact and
non-compact gauge groups in this theory together with their vacua and holographic RG
flows have been studied in [19].

We are interested in N = 6 gauged supergravity with 1 SUMA) _ sealar manifold.

Most of our conventions here are parallel to those used in [1%54.1) X%ife)) global symmetry
SU(4,4) contains a non-semisimple subgroup SO(6) x T'°. Similar to N = 5 theory, the
SO(6) part is given by the diagonal subgroup of SO(6) x SO(6) ~ SU(4) xSU(4) C SU(4,4).
The 32 scalars transform as (4,4) + (4,4) under SU(4) x SU(4). Under SO(6)diag, they

transform as
(4x4)+(4x4)=1+15+1+ 15. (7.1)

The adjoint representations 15’s will be used to construct the translational generators T,
The full SO(6) x T'® generators are given in appendix B.

The embedding tensor is still given by (6.1), but in this case, the linear constraint
Pr,© = 0 requires go = 0 similar to N = 16, 10,8 theories [3, 21, 31]. The above decom-
position gives two singlet scalars under SO(6) part of the gauge group. They correspond
to non-compact generators

1 .

}/;1 _ §(Y1+Y11+Y21+Y31>, (72)
1

}/52 — 5(y2+yl2+yz2+y32).

Accordingly, the coset representative can be parametrized by

I — V2b1Ye1 V2022 (7.3)

where we have chosen a particular normalization for later convenience. The potential is,
with g = g1, given by

V = —224¢% (cosh by cosh by — sinh by)? . (7.4)
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The above potential does not admit any critical points, so the vacuum should be a
half-supersymmetric domain wall. In the rest of this section, we will find this domain
wall solution.

The supersymmetry transformations (51&/5 and 0x" together with the domain wall
ansatz (5.2) give rise to the following BPS equations

b, = 8gsechbs sinh by, (7.5)
by = —8g (cosh by — cosh by sinh by) ,
A" = —16g (cosh by cosh by — sinh by)

where ’ denotes dir. Equation (7.5) is readily solved by setting by = 0. Equation (7.6)

now becomes

by = —8ge 2. (7.8)
The solution is given by
by = In (—8gr + c1) (7.9)
where ¢; is an integration constant. With by = 0 and by given by (7.9), equation (7.7)
becomes 16
e — 7.10
c1 — 8gr ( )
whose solution is easily found to be
A=2In(-8gr+c1)+ c2 (7.11)

with another integration constant cs. The two integration constants are not relevant be-
cause we can shift the coordinate r rescale %! to remove them. As in other domain wall
solutions, the metric can be written in the form of a warped AdS3 as

1 dxz? | + dp?
ds? = L1 (7.12)
(89)*p? p?

where p = —@.

8 Conclusions and discussions

In this paper, we have classified compact and non-compact gauge groups of N = 5 gauged
supergravity in three dimensions with USp(4,2)/USp(4) x USp(2) and USp(4,4)/USp(4) x
USp(4) scalar manifolds. We have also identified a number of supersymmetric AdSs vacua
in each gauging and studied some examples of supersymmetric RG flows interpolating
between these vacua in both compact and non-compact gauge groups. All of the solutions
can be analytically found, and the flows describe deformations by relevant operators. They
would be useful to the study of AdS3;/CFTs correspondence such as the computation of
correlation functions in the dual field theory similar to that studied in [32].

Among our main results, we have constructed N = 5, SO(5) x T'? gauged supergravity.
The theory is equivalent to N = 5 Yang-Mills gauged supergravity and could be obtained
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from S'/Zy reduction of N = 5 gauged supergravity in four dimensions as pointed out
in [21]. The theory admits a maximally supersymmetric AdSs vacuum which should be
dual to a superconformal field theory with Osp(5|2,R) x Sp(2, R) superconformal symmetry.
We have also given all of the scalar masses at this vacuum. It is interesting to further
study the scalar potential of this theory in order to find other critical points as well as
the associated RG flow solutions. This could give some insight to the deformations in the
dual CFT.

Similar construction has then been extended to N = 6 gauged supergravity with
SU(4,4)/S(U(4) x U(4)) scalar manifold. The resulting theory is N = 6 gauged super-
gravity with SO(6) x T'® gauge group. Like N = 5 theory, this is equivalent to SO(6)
Yang-Mills gauged supergravity and should be obtained from S'/Zs reduction of N = 6
gauged supergravity in four dimensions. This has also been pointed out in [21] in which
the spectrum of the S! reduction of four dimensional N = 6 gauged supergravity has been
given. The theory admits a half-supersymmetric domain wall vacuum rather than a maxi-
mally supersymmetric AdSs. We have also given the domain wall solution. This solution
provides another example of domain walls in three dimensional gauged supergravity similar
to the solutions of [21, 31] and might be useful in the study of DW/QFT correspondence.

The above non-semisimple gaugings are of importance for embedding the theories in
higher dimensions. With the full embedding at hand, any solutions in a three dimensional
framework, which are usually easier to find than higher dimensional ones, can be uplifted
to string/M theory in which a full geometrical interpretation can be made. Other attempts
to embed Chern-Simons gauged supergravities in three dimensions can be found in [28—
30, 33-35]. In many cases, the precise reduction ansatz from ten or eleven dimensions
remains to be done.

Acknowledgments

This work is partially supported by Thailand Center of Excellence in Physics through the
ThEP/CU/2-RE3/12 project. P. Karndumri is also supported by Chulalongkorn University
through Ratchadapisek Sompote Endowment Fund under grant GDNS57-003-23-002 and
The Thailand Research Fund (TRF) under grant TRG5680010.

A Useful formulae

For conveniences, we collect useful formulae used throughout this paper. The detailed
discussion can be found in [5]. All of our discussions involve symmetric scalar manifolds of
the form G/H. The G generators are denoted by tM = (T1/ T Y4) in which T!7 and
T are SO(N) x H' generators and Y4 are non-compact generators. In the present cases,
we have H' = USp(k) for N =5 and H' = U(k) for N = 6 theories, respectively. SO(N)
is the R-symmetry.

The coset manifold, consisting of d scalars ¢, i = 1,...,d = dim (G/H), can be
described by a coset representative L transforming by left- and right-multiplications of G
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and H. Some useful relations are given by

1
L~ WML = 5vM”T” +yM e My A (A1)
1
Lol = §Q;”T“ + QYT 4 ey A, (A.2)
The first relation gives scalar matrices V used in defining a moment map while the second

gives SO(N) x H' composite connections, @7’ and Q®, and the vielbein on the manifold
G/H, ef‘. Accordingly, the metric on the scalar manifold is defined by

gij = ei'eléap, i,j,ALB=1,...,d. (A.3)

The embedding tensor determines the fermionic mass-like terms and the scalar poten-
tial via the T-tensor defined by

Tas = VO V5. (A.4)

In the above equation, A and B label SO(N) x H’ representations.

The A}’ and Ag;] tensors appearing in the fermionic supersymmetry transformations
and the scalar potential are given in terms of linear combinations of various components
of Ty by the following relations

4 2
Al — TIM,JM §1/TMN,MN
N TNV —2) ’
2 4 M(I 2
Al — Ll 2 MUmpa)M §1J FKL mpKL (A &
S A (S m NN DN =) me (A-D)

The finJ tensor can be constructed from SO(/N) gamma matrices or from the SO(N) gen-

erators in a spinor representation. In the present case, it is given in a flat basis by
A5 = 2T (YR [T v4)). (A.6)

The scalar potential can be computed from

4

V:N

1 .
<A{JA{J - 2N9”A§;]A£3’> | (A7)

We end this section by noting the condition for unbroken supersymmetry. The associated

Killing spinors correspond to the eigenvectors of A{J with eigenvalues +4/ —%.

B Relevant generators

In this appendix, we give generators of various groups used throughout the paper.
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B.1 N =5 theory

Ji’s are USp(8) generators written in terms of generalized Gell-Mann matrices \; generating

the SU(8) group. They are explicitly given by

A1
J1 = NGk

1A13
Jy = Wa

) i\
Jio= — % - M%,
Jig = — ?}254 1%2'/\35,

2\ i\
Jie = 1\216 - 1\227,
Jig = % - %,
Joz = @62},
Jos = M% M%,
Jog = M% M%,
3 = M% i)\%>
J3a = — Z/\% - i/\%,

The USp(6) generators needed for constructing USp(4

21 generators.

The SO(5) x
T + T in which
. 1
T2 = — (J13 — Jos),
\/5( 13 24)
- 1
T = — (i3 + Jos)
\/ﬁ( 13 24)
T45 - J317
T35 J32

1A\9
J2:ﬁa

P14
J5=W,

i\ i\
*k:ff;+ff’
Jllzl\)}%g7
J14=M%+M%7
J17=M%+M%,
Joo = —MTN—M%,
J23=M\/E;»2,

Jos = —M%+M%,
Jag = —M% M%’
J32 = —M% M$7
J35 = —i)\%—i)\%,

™ -7 (Ji1 + J22),

~ 1

T = — (12 + Jog)
7 (Ji2 + Ja3)

T = —Js3,

Generators Y% in T'0 are given by

vy Zi(J16 — J30),

=i(J16 + J30),
i(J17 + Ja2s),
i(Jig + Jag).

Y45 )
Y35

1

Y13 = —i(Jig + Jag),
yH4 :i(J15 + J29>,
Y = —i(Jig + Jar),
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i\

J3=7;>
Jo = s Mj,
V6 V3

i\ i\
J9=;—;1,
lezl\)gla
Jis = —M% M%7
Jig = —M% i)\%v
Jo1 = —M%—Mﬁ
Jos = —\/Ei)\4s+\/gi>\63,

i\ i\
J27=‘/\236—.)\2m»

i i
J30=€)—§7
J33=%—%,
hw:-%%-%? (B.1)

,2) are given by the first

T10 generators are constructed as follow. The SO(5)diag is generated by

T8 = — (Ji2 — Jo3),
\[
Ry
\/5( 11 — J22)
T% = —Jsg,
(B.2)
Y2 =i(Ji5 + Joo),
Y =i(Jyy — Jog),
2 —i(Joy — J34),
(B.3)



B.2 N = 6 theory

For conveniences, we repeat non-compact generators of SU(4,4) in terms of generalized
Gell-Mann matrices, A\;, i = 1,...,63, given in [19]

1
ECA+15’ Azl,,g
1
—7=CA+16, A= 97 sy 16
v4 = \? (B.4)
—=CA+19, A= 17, . ,24
V2
1
Caios,  A=25,...,32
V2
The SO(6)r R—symmetry generators are identified to be
1 _ 1 — 1
T = *03 + — 2\/» f C15, T3 = —5(02 + C14), T3 = 5(01 — 013)
- 1 1 _ 1 _
T34 = 503 — \/» f015, T14 = 5(61 + 613), T35 = — (CG + Cg)
_ 1 1 _ 1 - 1
56 36 24
\/gcs + \/6615, 2(07 + c10), 2( 9 — C14)
_ 1 _ 1 _ 1
T45 = 5(07 — ClO) T46 = 5(09 — CG), T15 = 5(04 — 011)
_ 1 _ 1 _ 1
T16 = 5(65 — 612), T25 = 5(65 + 012), T26 = —5(04 + 011) (B.5)
where ¢; = —i)\;.
The SO(6) x T° generators are given by
SO(6) : Jéj:Tij—l—fij, ,j=1,...,6
TV g =T9 TV 4y¥ (B.6)
where
= 1 3 3 1
TV =i | ——Xag — 1/ —=A35 — \/ =g + —=Xe3 | ,
l( T 24 50735 848+ﬁ63>
= 1 3 3 1
T3 =i | —=Xas — 1/ =\ g — —=Ae3 |
l( T 24 50 35 + g8 N 63)
1 1 2 1
T56—l<)\ + ——=A35 — —— Mg — —=\ )
= 24 /15 35 eIl 48 Ne 63
~ 7 ~ 7 ~ 7
T = 3 (A3a + Ae2) T = —5 (A33 — Aé1) T = —3 (A33 4+ A61)
= 7 = 7
T* = 5 (A62 — A34), ™ = 5 (As8 — \a7) ™ = 5 (As9 — Aaa),
~ 7 = 7 = 7
T = ) (A15 + Xeo0) , % = 3 (A16 + As7) T =~ ()\60 — A5)
= 7 = 1
T% = 5 (Mg + As9) s T% = 3 (Aa7 + Asg) T = 5 ()\46 - Xs7)  (B.7)
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and

Y2 = % (A27 — A16 + Ao — Ass) v = % (As5 = A1g + Aoz — Aao)

Y6 = % (As5 — A16 — A27 + Aao0) Y= é (Asa = Arg + A26 — M) ,

Y3 = % (As3 — A1s — A2 + A\a2) v = % (s + Ao + Aaz + As3)

v = % (A19 — A26 — Aaz + Asa) Y= % (Aso — A2 + Az0 — Azo)

Y15 = % (A31 — A20 — Az6 + As1) 5 Y= % (A21 + As2 — A7 — As2)

Y = % (A22 4+ A29 + Azg + Aag) yio = % (A21 = A2 = a7 + As2)

Y2 — % (A20 + Az1 + Aze + As1) Y0 = % (Aso — A2z — Aso + As)

Y46 = % (A29 — A2z + Azg — Agg) - (B.8)

C Scalar potential for SO(4) x USp(2) gauging

The scalar potential for compact gauge group SO(4) x USp(2) is given by

b 1
V = 2¢3(3 + cosh b) s.mh6 1—691g2 [68 4+ 4 cos(2a4) + 2 cos(2(as — as))

+4 cos(2as) + 2 cos(2(a4 +as)) +2cos(2(as — ag)) + cos(2(as — as — ag))
+2cos(2(as — ag)) + cos(2(aq + a5 — ag)) + 4 cos(2ag) + 2 cos(2(as + ag))
+cos(2(as — as + ag)) + 2 cos(2(as + ag)) + cos(2(as + a5 + ag))

432 cos? a4 cos? a5 cos® ag cos(2az)] (3 + coshb) sinh® g

b
—4q3 [cos2 as cos? ag cos® ay cosh? 3 (3 + cosh b)? sin?(2ay4)

2 2

. b
a4 sin® as + 64 cos? ay cos? as cosh? 3

b
+64 cos® ay cosh? 3 sin

. . b . .
x sin? a4 sin? ag + 64 cos? a4 cos® as cos? ag cosh? 3 sin? ay sin® ar

1
—l—m [51 + 259 cos(2a4) + 4(—17 4 63 cos(2a4)) cosh b + (17 + cos(2a4))
b

b
x cosh(2b)+16 cos? ay cos(2as) sinh? 3 + 32 cos® ay cos? a5 cos(2a6) sinh* 5
2 2 2 4 b 21 4 2 2
+64 cos” ay cos” az cos” ag cos(2az) sinh 2] + B [—4 COS™ a4 COs” a5 CcOS” ag

2 2

. . b . . b
x cos® a7 sin? as sinh® — — 4 cos* ay cos* as cos? ag cos® az sin? ag sinh® 3

. . b . . .
—4 cos* ay cos? as cos? ag cos? ay sin? a7 sinh® 5 4 s1n2(2a4) sin? a5 sinh? b
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2 2

—16 cos” a4 cos” as sin? ay sin®

2

ag sinh? b — 16 cos? a4 cos? as cos” ag sin? a4

1 b 3b]?
x sin? a7 sinh? b — 6 cos? a5 cos? ag cos® a7 sin?(2a4) |7 sinh 5 + 3sinh B

1

~ 1096 [16 cos? ay [008(2a5) + 2cos? as (cos(2a6) + 2 cos? ag cos(2a7))}

b b
x cosh B sinh? B + 2[63 cos(2a4) + 17 coshb — 17] sinh b

+ cos(2ay) sinh(2b)] 2” . (C.1)
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1 Introduction

AdS3/CFTy correspondence is interesting in various aspects. Unlike in higher dimensional
cases, much more insight to the AdS/CFT correspondence [1] is expected since both grav-
ity and field theory sides are well under control. It is also useful in the study of black
hole entropy, see for example [2] and [3]. Until now, various gravity backgrounds imple-
menting AdS3/CFTy correspondence have been proposed. Some of them are obtained
from Kaluza-Klein dimensional reductions of higher dimensional supergravities on spheres
or other internal manifolds. The other are constructed directly within the three dimen-
sional framework of Chern-Simons gauged supergravity, but, in some cases particularly for
compact and non-compact gauge groups, higher dimensional origins are still mysterious.
One of the most interesting backgrounds for AdS3/CFTy correspondence is string
theory on AdS3 x S x 83 x S'. The background is half-supersymmetric and dual to large
N = (4,4) SCFT in two dimensions, see [4] for a classification of N = 4 SCFT in two
dimensions. In string theory, this arises as a near horizon limit of the double D1-D5 brane
system [5-7]. The Kaluza-Klein spectrum for small S* radius has been computed in [8].
Apart from the non-propagating supergravity multiplet in three dimensions, the spectrum



contains massive multiplets of various spins. The full symmetry of AdSs x S3 x S is
D'(2,1;a) x D'(2,1; a) whose bosonic subgroup is SO(2,2) x SO(4) x SO(4) corresponding
to the isometry of AdSs x S3 x S3, respectively. Additionally, the holography of large
N = 4 SCFT has recently been studied in the context of higher spin AdSs dual [9].

Like in higher dimensions, it would be useful to have an effective theory in three
dimensions that describes the above S x S% dimensional reduction. The AdS3 x S3 x S3
background will become an AdSs vacuum preserving sixteen supercharges and SO(4) x
SO(4) gauge symmetry, which is the isometry of S% x S3. This can be achieved by a
gauged matter-coupled supergravity in three dimensions [10-12]. The gauge group should
contain the SO(4) x SO(4) factor. The natural construction should be the N = 8 gauged
supergravity since the number of supersymmetry is exactly the same as that of the AdS3 x
53 % 83 background. A theory describing supergravity coupled to massive spin—% multiplets
has been studied in [13] in which some critical points and a holographic RG flow have been
discussed. The resulting theory is in the form of N = 8 gauged supergravity with compact
SO(4) x SO(4) gauge group and SO(8,1)/SO(8) x SO(n) scalar manifold.

When coupled to massive spin-1 multiplets, the theory needs to accompany for
massive vector fields. For a theory coupled to two spin-1 multiplets, the corresponding
gauge group is a non-semisimple group (SO(4) x SO(4)) x T!2. Tt has been argued that
the effective theory is the N = 8 gauged supergravity with SO(8,8)/SO(8) x SO(8)
scalar manifold [14]. The gauging is a straightforward extension of the SO(4) x T
gauging of [15] in which the effective theory of six-dimensional supergravity reduced on
AdS3 x S3 has been given. Some supersymmetric vacua of the (SO(4) x SO(4)) x T!?
gauged theory have already been identified in [16]. All of these vacua are related to the
maximally supersymmetric vacuum by marginal deformations. The theory with only the
SO(4) x SO(4) semisimple part of the gauge group being gauged has been study in [17],
and the solution corresponding to a marginal deformation from N = (4,4) to N = (3,3)
SCFT, describing a D5-brane reconnection, has been explicitly given.

In this paper, we will reexamine the full (SO(4) x SO(4)) x T'? gauging and look for
other deformations apart from the marginal ones. This could be relevant for AdSs/CFTs
correspondence and black hole physics. The holographic study of the conformal symme-
try D'(2,1;a) is not only useful in the context of AdS3/CFTy correspondence but also
in AdSy/CFT; correspondence. This is because the symmetry D'(2,1;a) also arises in
superconformal quantum mechanics [18-20]. The isometry of AdSs is SO(2,1) which is a
subgroup of the AdS3 isometry SO(2,2) ~ SO(2,1) x SO(2,1). Accordingly, the super-
conformal symmetry in one dimension contains only a single D!(2,1; ). The holographic
study of AdSy/CFT; correspondence directly from two dimensional gauged supergravity
has not been performed extensively. This is in part due to the lack of gauged supergravities
in two dimensions. Until now, only the maximal gauged supergravity and its truncation
have appeared [21, 22]. Since AdSs can be obtained by dimensional reduction of AdSs3 on
S! via a very-near-horizon limit [23, 24], the results obtained here might be useful in the
study of deformations in D'(2, 1; ) superconformal mechanics.

The paper is organized as follow. In section 2, we will give a brief review of N = 8,
(SO(4) x SO(4)) x T'2 gauged supergravity along with some relations to the N = (4, 4)



SCFET. Section 3 deals with a description of new critical points, and the stability condition
for some of them is verified. In section 4, we study possible supersymmetric flows to non-
conformal field theories and %—BPS domain walls. We also comment on some numerical RG
flow solutions describing deformations of the N = (4,4) SCFT to other CFTs in the IR.
We end the paper by giving some conclusions and discussions in section 5. The appendices
summarize necessary ingredients needed in the construction of N = 8 theory and relevant
formulae including the explicit form of some scalar potentials.

2 N =8, (SO(4) xSO(4)) x T'? gauged supergravity in three dimensions

We now review the construction of N = 8 gauged supergravity with (SO(4) x SO(4)) x T2
gauge group. The theory has partially been studied before in [16]. We will explore the
scalar potential of this theory in more details. Rather than follow the parametrization
of SO(8,8)/SO(8) x SO(8) coset manifold as in [16], we will use the parametrization
similar to that of [25]. In this parametrization, it is more convenient to determine the
residual gauge symmetry while the parametrization used in [16] gives a simple action of
the translation generators T'? on scalar fields.

It has been argued in [14] that this theory is an effective theory of ten dimensional
supergravity on AdSs x S% x S x S!, or nine dimensional supergravity on AdSs x S3 x S3
for small S' radius, and describes the coupling of two massive spin-1 multiplets, contain-
ing twelve vectors, to the non-propagating supergravity multiplet of the reduction. All
together, the resulting theory is N = 8 gauged supergravity with the scalar manifold
SO(8,8)/SO(8) x SO(8) and (SO(4) x SO(4)) x T'2 gauge group.

The whole construction is similar to that given in [16] and [25]. We will work in the
SO(8) R-symmetry covariant formulation of [12] with some relevant formulae and details
explicitly given in appendix A. We first introduce the basis for a GL(16,R) matrices

(€mn)pg = OmpOng, m,n,p,q=1,...,16. (2.1)
The compact generators of SO(8, 8) are then given by

80(8)(1): J{J:€J]—€[J, I,JZl,...,&
SO(8)? : J5S = egi8r48 — Crig.sis rs=1,...,8. (2.2)

The non-compact generators corresponding to 64 scalars are identified as
YKTZEK,T+8+€T+8,K> Knr=1,...,8. (2.3)

In the formulation of [12], scalars transform as a spinor under SO(8)r R-symmetry. It
can be easily seen from the above equation that Y7 transform as a vector under SO(8)r
identified with SO(8)()) with generators J{/. We define the following SO(8)r generators

in a spinor representation by
7o
Tl = (2.4)
0 0



constructed from the 8 x 8 SO(8) gamma matrices I'!. We have defined
1
P = —2 (P () =17 (2.5)

with the 8 x 8 gamma matrices I'! are given in appendix A.
The gauge group (SO(4) x SO(4)) x T'? is embedded in SO(8,8) as follow. We first
form a diagonal subgroup of SO(8) x SO(8) with generators

SO®)ding:  JWP=JP 1+ BB AB=1,...,8. (2.6)
The SO(4) x SO(4) part is generated by
SO4)* - jib = Je,
SO(4)™ jab = gotabta abab=1,....4. (2.7)

The “hat” indices refer to SO(4)~. We now construct the translational generators T?® as
in [25]
48 = JPP — JtP 4y PA —y AP (2.8)

and identify T2 ~ T¢ x TO generators as
(9o =gab @b —gatdbH b G b=1,...,4. (2.9)

The gauge group is embedded in SO(8,8) with a specific form of the embedding
tensor. As shown in [26], there is no coupling among the SO(4)*. The gauging is very
similar to the SO(4) x T® gauged supergravity constructed in [15] with two factors of
SO(4) x TS. The embedding tensor is simply given by two copies of that given in [15].
We end up with two independent coupling constants

0= 91@1 + 92@2 . (2.10)

where O 2 describe the embedding of each SO(4) x TS factor of the full gauge group.
We should note that supersymmetry allows for four independent couplings namely
between the moment maps g} (V(j$), V(#?), gh(V(#?), V(EY)), gh(V(i§h), V(tg?) and
g, (V(t%%), V(%)) in the T-tensor, see [15] and [16]. We have used a shorthand notation
for VMA. However, the requirement that the theory admits a maximally supersymmetric
vacuum at the origin of the scalar manifold imposes two conditions on the original four
couplings. In more detail, the two conditions require g5 = —g¢} and gj = —gj. After
rename the relevant couplings, we end up with the embedding tensor

Ouabed = glfjbcd + 9266:1363 . (211)

This embedding tensor together with the formulae in appendix A and an explicit
parametrization of the coset representative of SO(8,8)/SO(8) x SO(8) can be used to
compute the scalar potential. We will analyze the resulting potential on submanifolds of
SO(8,8)/SO(8) x SO(8) invariant under some subgroups of SO(4) x SO(4) in the next

section.



Before looking at the critical points, we give a review of the relation between
(SO(4) x SO(4)) x T'2, N = 8 gauged supergravity and N = (4,4) SCFT. The semisimple
part of the gauge group SO(4)t x SO(4)~ corresponds to the isometry of S3 x S3.
Together with the usual SO(2,2) isometry of AdSs, they constitute the bosonic subgroup
SO(2,1), x SU(2)] x SU(2); x SO(2,1)g x SU(2)% x SU(2) of the superconformal
group D'(2,1;a) x D'(2,1; a) via the isomorphisms SO(2,2) ~ SO(2, 1) x SO(2,1) and
SO(4)* ~ SU(2)F x SU(2)%. The a parameter is identified with the ratio of the coupling
constant g = «g;. For positive «, the theory describes the dimensional reduction of
nine dimensional supergravity on S% x §3. For negative «, it may possibly describe the
reduction on S3 x H3 where H? is a hyperbolic space in three dimensions.

The translational part T'? of the gauge group describes twelve massive vector
fields [26]. The massive vector fields will show up in the vacuum of the theory via twelve
massless scalars in the adjoint representation of SO(4) x SO(4). These are Goldstone bosons
for the T'2 symmetry since the vacuum is invariant only under SO(4)™ x SO(4)~ not the
full gauge group. We will see this when we compute the mass spectrum of scalar fields.

3 Some critical points of N = 8, (SO(4) x SO(4)) x T'? gauged super-
gravity

We now look for critical points of the N = 8 gauged supergravity constructed in the
previous section. Analyzing the scalar potential on the full 64-dimensional scalar manifold
SO(8,8)/SO(8) x SO(8) is beyond our reach with the present-time computer. We then
employ an effective method given in [27] to find some interesting critical points on a
submanifold invariant under some subgroup of the gauge group. A group theoretical
argument guarantees that the corresponding critical points are critical points of the scalar
potential on the full scalar manifold. Even on these truncated manifolds, the explicit form
of the potential is still very complicated. Therefore, in most cases, we refrain from giving
the full expression for the potential.

At the trivial critical point with all scalars vanishing, the full gauge group (SO(4) x
SO(4)) x T12 is broken down to its maximal compact subgroup SO(4) x SO(4) corresponding
to the isometry of S% x S3. The 64 scalars transform under SO(8) x SO(8) C SO(8, 8) as
(8,8). Then, under the SO(4)" x SO(4)™ C SO(8)diag, they transform as

8x8=[(4",1")+ (1 ,47)] x [(47,17) +(17,47)]
= (]_+ + 6" + 9+’ ]_+) + (1—7 1~ +6" + 9—) 4 (4+’4—) + (4—’44-)' (31)

We can further decompose the above representations into SU(2)} x SU(2)% x SU(2); x
SU(2) representations labeled by (¢1,¢%; ¢}, () as follow:

8x8=(1,1;1,1)+(1,3;1,1) + (3,1;1,1) +(3,3;1,1)
+(1,1;1,1) +(1,1;1,3) + (1,1;3,1) + (1, 1; 3, 3)
( )-

)+
+(2,2:2,2) + (2,2;2,2



Iy I e Sty oy
e | (0,1:0,1) | (0,1:5,3) | (0,1;0,0)
getl | (1 4:01) | (3550 | (3.50,0
225l 1(0,050,1) | (0,0:3,%) | (0,0,0,0)

Table 1. The massive spin-1 multiplet (0, 1;0, 1)s.

I 1 _3+a 24a
hL 14+ 2(1+a) Tra
e | (L,0:1,0) | (1,0;3,5) | (1,0;0,0
1+ 272
s [ 3550 | 3,553 | (3,500
2o 1 (0,0;1,0) | (0,0;1,2) | (0,0,0,0)

Table 2. The massive spin-1 multiplet (1,0;1,0)s.

SO(4)* x SO(4)~ m2L2
491(291+92)
(1,1) (g1+92)?
(6,1) 0
4
(9,1) - (Ec/lgﬁgg§>2)
492(2g2+91
(1,1) (91+92)?
(1,6) 0
__4q19
(17 9) , ) (‘921_’}922)2 )
95—29192—9
91 —49192—4g
(4,4) 1(91+92)2 :

Table 3. The mass spectrum of the trivial critical point.

The result precisely agrees with the representation content obtained from the AdSs3 x
53 x 83 reduction [8]. For conveniences, we also repeat the massive spin-1 supermultiplets
(0,1;0,1)s and (1,0;1,0)s of the AdS3 x S x S3 reduction in table 1 and 2.

We can now compute the scalar potential by using the formulae in appendix A. After
expanding the potential around L = I, we find the scalar mass spectrum at the maximally

supersymmetric vacuum as shown in table 3. The AdSs radius is given by L = —24—

)
and the value of the potential at this point is Vo = —64(g1 + g2)?. Using the rel\z/lgn
m2L? = A(A —2) and A = hy + hg, we can verify that the mass spectrum agrees with
the values of hr and hy, in table 1 and 2. As mentioned before, there are twelve massless
Goldstone bosons transforming in the adjoint representation (1,6)4(6, 1) of SO(4) xSO(4).

Note also that there is a Minkowski vacuum at g3 = —g; or a = —1.



3.1 Critical points on the SO(4)giag invariant manifold

We first consider scalars which are singlets under the diagonal subgroup SO(4)diag C
SO(4) x SO(4). To obtain representations of the scalars under this subgroup, we take
a tensor product in the last line of (3.1). We find that there are four singlets, two from the
obvious ones (17 x 11,17 x 17) and the other two from the product (47 x 47,4~ x 47).
They correspond to the following non-compact generators

f/l :Y11+Y22+Y33+Y44, %:Y55+Y66—’—Y77—|—Y887
}73 :Y51+Y62+Y73+Y84, 1}4:1/15_’_}/26_’_}/37_’_1/48' (33)

The coset representative is accordingly parametrized by

L = emV1gazV2gaa¥agaa¥s (3.4)

Apart from the trivial critical point at a; = ao = a3 = a4 = 0, we find the following
critical points.

e A non-supersymmetric AdSs is given by a1 = %ln 7W and as = a3 = a4 = 0.

The cosmological constant is

Vo =—32 g7 + 495 — 69192 + (492 — g1)\/91(g1 — 493)} : (3.5)

a1 is real for g1 > 0 and ¢go < 0, and the critical point is AdS3, Vi < 0, for g; > 0 and

go < — ‘/izﬂgl. An equivalent critical point is given by ao # 0 and a1 = a3 =a4 =0

but with g1 <> go. For later reference, we will call this critical point P;.

e Another non supersymmetric critical point is at aqy = ln% V:?;zz with ¢go =
%(\/ 13 — 2) gy and Vy = —% (43 + 13V 13) g7. In this case, only a specific value

of o gives a critical point. The residual gauge symmetry in this case is SO(4)qiag-
We will label this critical point as Ps.

The full scalar potential for the four scalars is given in appendix B.

We now analyze the scalar masses at the above critical points to check their stability.
For critical point Py, it is useful to classify the 64 scalars according to their represen-
tations under the residual symmetry SO(4) x SO(4). The result is shown in table 4.
Similar to the trivial critical point, there are 12 massless scalars corresponding to the
broken T'? symmetry. The stability bound, or BF bound m?L? > —1, is satisfied by

1 1 2

For critical point P», we can compute all scalar masses as shown in table 5. It is
easily seen that all masses satisfy the BF bound. There are 18 massless Goldstone bosons
corresponding to the symmetry breaking (SO(4) x SO(4)) x T2 — SO(4).

We end this subsection by noting an interesting result discovered in [17] but with a
compact gauge group SO(4) x SO(4). This solution describes a marginal deformation of
N = (4,4) SCFT to N = (3,3) SCFT and has an interpretation in term of a reconnection
of D5-branes in the double D1-D5 system. The solution is also encoded in our present



SO(4)* x SO(4)" m2L?

(1,1) 1299
g2+4/91(91—492)
16924209192 —692+2(g1+292)+/ 91 (91 —492)
B g97—4g192—493
4g2+14g192—3g7+(492—g1)\/ 91 (91 —4g2)
2(g?—49192—493)
397 —30g192+1295+3(391 —492) 1/ 91 (91 —49g2)
2(g93—4g192—493)
0

89192

93 —69192+(292—91)\/ 91 (91 —4g2)
492(292+91)
(91+92)2

)
)
)
) 0
)
)
)

497 —249192—895+4(91—92)1/91 (91 —492)
91—4g192—495
4g3+14g192—393 +(492—g1)\/ 91 (91 —4g2)
2(97—49192—93)
B 1292 —30g192+39%+(991—12g2)+/ g1 (91 —49g2)

2(g2—4g9192—93)

Table 4. The scalar mass spectrum of the SO(4) x SO(4) critical point P;.

SO(4) m2L?
13.6358, 6.0931, 3.3703, 3.1180

O(><18)
2§9<7\/ﬁ - 12)(><9)7 2i9<5\/ﬁ_ 21)(><9)7
5 (8 +5v13) (x0), 5k (19v/13 — 74) (x9)

Table 5. The scalar mass spectrum of the SO(4) critical point P, for go = V%_le.

framework. In this case, we must set go = g1, or equivalently setting o = 1 in order to get
massless (marginal) scalars preserving the SO(4) diagonal subgroup of SO(4) x SO(4).
Follow [17], we further truncate the four scalars to two via

as = ay, as = —as. (3.6)

This is a consistent truncation for go = g1 since it corresponds to a fixed point of an inner
automorphism that leaves the embedding tensor invariant [17]. We find a critical point at

e =1 4+ /1—e2m, V= —2560] (3.7)
with the corresponding A; tensor given by

AlY = diag (—891, —841, —891, 891,801, 81, —8g1\/de—2a1 — 3 8gy\/de—2a1 — 3) . (38)

We can see that as long as a1 # 0, the N = (4,4) supersymmetry is broken to N = (3, 3).
We refer the reader to [17] for the full discussion of this vacuum.



3.2 Critical points on the SO(2)gdiag X SO(2)diag invariant manifold

We now proceed to consider a smaller residual symmetry SO(2)giag X SO(2)diag C SO(4)diag-
Under SO(2) x SO(2), the SO(4) fundamental representation 4 decomposes according to
4 — (2,1) + (1,2). Substituting this decomposition for 47 and 4~ in (3.1) and taking
the product to form a diagonal subgroup, we find that there are sixteen singlets given by
the non-compact generators

Vi=Y"4+v®2 Y=Y¥4y"  Va=yP4Y® v =Yy
Vs =YV 1 y26 Vs = V37 1 y48 Yy = Y5l 4 y62 Yy =V 1 y8
Vo=Y2 V2 §,=v3_vy8 9,=Y%_vy® §,=78_y8
3713:}/16_1/257 3714:}/38_1/477 1715:}/52_1/617 1716:}/74_1/83. (3.9)

The coset representative can be parametrized by

16
L=]]e". (3.10)
=1

Unlike the previous case, the scalar potential is so complicated that it is not possible to
make the full analysis. However, with some ansatz, we find one non-trivial critical point at

1 -6 3692 — 12 — 392
a1 =as = —In2, a3:—a4:§1n92 91+\/ 91 J192 92,

292
Vo = 64(8¢7 — g3)- (3.11)

as and a4 are real for gy > 0 and go > —6¢;. In this range, we find V5 < 0 if
g2 < —24/2g1. Therefore, it is possible to have an AdSs critical point. The residual sym-
metry is SO(4) x SO(2) x SO(2). We will denote this critical point by Ps for later reference.

The stability of this critical point can be verified from the scalar mass spectrum given
in table 6 in which «; are eigenvalues of the submatrix

—80g7 x1

2 2
g 29

S 2 9 Tl -2 =2 (3.12)
8 _ 3 3
91 9% 295 _ 95
T2 T3 7%

with the following elements

1 = 2v2g (691 + g2 — \/369% — 129192 — 39%)

and To = 2V/2g <691 + g2+ \/36g% — 129192 — 3g%> . (3.13)

Their numerical values can be obtained upon specifying the values of ¢g; and gs.

For all but (1,1,1) and (1,1,2) scalars, the masses are above the BF bound for
—6g1 < g2 < —2v/2g1. The mass squares of (1,1,1) scalars are above the BF bound for
—6g1 < g2 < —4.47¢g;. For (1,1,2) scalars, the mass squares are above the BF bound



SO(4) x SO(2) x SO(2) m2L?
(4,2,1) 6093 —14g192+93+(691—3g2) /3693 — 129192 —393
P 1697 —2g5
(4,1,2) _ 6097 —249192+93+(3g2—691)+/ 3697 —129192—3g5
> 169? —2g5
(4,2,1) 12497 —3¢3+(g2+691)+/3697 —129192—393
> 1697293
(4,1,2) 12497 393 —(g2+691)1/3697 —12g192—393
T 1697 —295
(1 2 1) 692-+24g1 92— 7297 4+2(g92—691)/ 3697 —12g1 g2 — 392
b ) 892—92
1 2
(1,1 2) 6932-+24g1 92— 7297 —2(g92—6g1)/ 3697 —12g1 g2 — 393
T 897 g5
48¢g
91,1 1
( PR ) ggfgg%
(6,1,1) 0
2 x (1,2,2) 0
2 x (1,1,1) 0
(1,1,1) a1, ag, a3

Table 6. The scalar mass spectrum of the SO(4) x SO(2) x SO(2) critical point Ps.

for —6g; < g2 < X with X being the first root of p(X) = 1088¢g] — 3843 X + 352¢2 X2 —
1449 X3 — 37X% = 0. This can be translated to the value of a by setting X = ag;. The
equation p(X) = 0 gives the value of @« = —5.93479. The stability is obtained in the
range —6g1 < go < —5.93479¢g; which is very narrow. Notice that for go = —6g1, we find
az = a4 = 0, and the symmetry is enhanced to SO(4) x SO(4). It can be checked that this
critical point indeed becomes critical point P; with go = —6¢;.

3.3 Critical points on the SU(2)j—: x SU(2); invariant manifold

One interesting deformation of N = (4,4) SCFT is the chiral supersymmetry breaking
(4,4) — (4,0). The realization of this breaking in the D1-D5 system has been studied
in [28]. Another gravity dual of N = (4,0) SCFT from string theory has been studied
in [29], and the marginal perturbation driving N = (4,4) SCFT to the N = (4,0) SCFT
has been identified in [30]. This supersymmetry breaking is not possible in the compact
SO(4) x SO(4) gauging of [13] since there are no scalars which are singlets under a non-
trivial subgroup of SO(4) x SO(4) in order to become the R-symmetry of N = (4,0).

This is however possible in the present gauging. According to (3.2), we see that there
are eight singlets under SU(2)} x SU(2); given by

(1,1;1,1) + (1,1;1,1) 4+ (1,3;1,1) + (1,1;1, 3). (3.14)

They correspond to the following non-compact generators

V=Y py2 oy iy Vo= Y2y y3_ys
Yo=Yy _y3 _y2 vy Vi—yY oyt y® _y32

Vs = Y5 4 y60 L yTT 4 yS8, Vo = v _ y65 4 yTs _ysT,

Vo = YT YT _y 68 | y86 Vo= v _y®5 Ly _yT6 (3.15)
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We can parametrize the coset representative accordingly

L = €b1Y1 eang ea3Y3 ea4Y4eb5Y5 €a6Y6€a7Y7€a8Yg (316)

in which b; and bs denote the SO(4) x SO(4) singlets. We find one non-supersymmetric
AdSs critical point characterized by

4y — cosh~! \/91 + v 91(g1 —492)

4g1
Vo = —32 [9? +4g5 — 69192 + (492 — 91)V g1(91 — 492)} : (3.17)
The cosmological constant is the same as P, but the residual gauge symmetry is just
SO(4)~ x SU(2)} x U(1)} in which U(1)}, € SU(2)%.
3.4 Critical points on the SU(2)rgiag invariant manifold

We further reduce the residual symmetry to SU(2)rqiag C SU(2)F x SU(2);. Under
SO(4)diag, we already know that the 64 scalars transform as four copies of 1+6+9. We can
then further truncate to SU(2) 1diag and find sixteen singlets given by four copies of (1,1)+
(1,3) under SU(2) Ldiag X SU(2) Rdiag- They can be parametrized by the coset representative

16
L=]]e (3.18)
=1

in which the non-compact generators are defined by

1 1

yl _ 5 (Y15 + Y26 + Y37 + Y48) ’ y2 — 5 (Ylﬁ Y25 + Y38 Y47) ,
1 1

yg _ 5 (Y17 o Y35 _ Y28 + Y46) ’ y4 — 5 (YIS Y45 + Y27 Y36) ,
1 1

y5 _ 5 (Y51 + Y62 + Y73 + Y84) ’ y6 _ 5 (Y52 o Yﬁl + Y74 o Y83) ,
1 1

y7 _ 5 (Y53 o Y71 . Y64 + Y82) ’ y8 _ 5 (Y54 Y81 + Y63 Y72) ,
1 1

yg _ 5 (Yll + Y22 + Y33 + Y44) ’ le _ 5 (Y12 - Y21 + Y34 Y48) ,
1 1

yll — 5 (Y13 Y31 Y24 + Y42) ’ y12 _ 5 (Y14 Y41 + Y23 Y32) ,
1 1

y13 _ 5 (Y55 + Y66 + Y77 + YSS) ’ y14 _ 5 (Y56 Y65 + Y78 Y87) ,
1 1

y15 _ 5 (Y57 Y75 Y68 + Y86) ’ y16 _ 5 (Y58 _ Y85 + Y67 . Y76) ) (319)

From a very complicated potential, we find one non-supersymmetric AdSs critical
point given by

V92— V33
ag =In F———,
V92 + /391
Vo = —8(469 + 131V13)g? (3.20)

g2 = (2+V13)g1,

which is invariant under SU(2) x U(1) symmetry.

— 11 —



Apart from P, P, and P3, we have not given the complete mass spectra for other
AdS3 critical points since the computation is much more involved. A partial check shows
that at least the scalar masses for the singlets in each sector satisfy the BF bound. It
could happen that some other scalars might have masses violating the bound. However,
similar to the three stable critical points studied above, it is likely that the other critical
points are stable for some values of a or g1 2.

4 Deformations of the N = (4,4) SCFT

In this section, we will study supersymmetric flows of the maximally supersymmetric
SO(4) x SO(4) critical point in the UV to non-conformal field theories in the IR and half-
supersymmetric domain walls. At the end of this section, we will discuss some RG flow solu-
tions interpolating between the UV N = (4,4) SCFT and some of the non-supersymmetric

critical points identified in the previous section.

4.1 Supersymmetric deformations

We begin with supersymmetric solutions which can be obtained by finding solutions of
the associated BPS equations. We have not found any supersymmetric critical point apart
from the trivial one at L = I, so we only expect to find flow solutions to non-conformal field
theories. In these flows, the solutions interpolate between the UV point at which all scalars
vanish and the IR with infinite values of scalar vev’s [31]. Since supersymmetric solutions
are of interest here, we need the supersymmetry transformations of fermions which in the
present case are given by the non-propagating gravitini wﬁ and the spin—% fields x*!. Their
supersymmetry transformations are given by, see [12] for more details and conventions,

ovp, = Dpe’ + g AT e’ (4.1)

i

X = (M1 — 1) Pele! — gN AT e (4.2)

1
2
These equations will be used to find supersymmetric solutions in the next subsections.

4.1.1 A supersymmetric flow to SO(4) x SO(4) non-conformal field theory

We first look for a simple solution preserving SO(4) x SO(4) symmetry. Accordingly, only
a; and ag in equation (3.4) are turned on in order to preserve the full SO(4) x SO(4). Using
the standard domain wall ansatz for the metric

ds? = ezAdxil + dr? (4.3)
with A depending only on the radial coordinate r, we find the BPS equations

ay + 8g1e°™ (62‘“ -1) =0, (4.4)
a’2 + 89262a2 (€2a2 - 1) =0,
A+ 8 [gleQ‘“ (62‘“ - 2) + 9262“2 (62“2 — 2)] =0

where we have imposed the projector v,.e! = —e/, I =2,4,5,8 and v,¢/ =€/, I =1,3,6,7.
The’ denotes the r-derivative. The resulting solution is then half-supersymmetric with N =

— 12 —



(4,4) Poincare supersymmetry in the dual two dimensional field theory. Equations (4.4)
and (4.5) can be solved for a; and as as an implicit function of r. The result is

1

i T [e7 +1n (1 —e 2], (4.7)
1 _
r=cy— 1695 e 292 4 In (1—e 2“2)] (4.8)

with integration constants ¢; and ¢y. Equation (4.6) can immediately be integrated to give
A as a function of a; and as. The result is

1 1
A=2(a; + a2) — 3 In(1 — e?91) — B In(1 — e2%2). (4.9)

In the UV, the dual field theory is conformal with a1 = ao = 0. Near this point, the
_ 291 T _ 292 T
scalars behave as a; ~ e 1691" = ¢ 91t92 Zuv and ag ~ e 1692" = ¢~ 91t92 Zuv . We see that
1 T

a;2 — 0 as 7 — oo. In this limit, we find A" ~ 8(g1 + ¢2) = T Or A~ T which gives

the maximally supersymmetric AdSs.

As aj,a9 — oo, we find r — constant as it should. Near aj,as — 0o, equations (4.7)
and (4.8) give a1 ~ —11n(32¢17) and as ~ —In(32gor). From equation (4.9), we find
A=xaj+tas = —% In [(327’)291 gg]. Accordingly, the metric becomes a domain wall in the IR

ds* dazil +dr?. (4.10)

1
- 32r\/9102
The full bosonic symmetry is ISO(1,1) x SO(4) x SO(4) corresponding to non-comformal
field theory with N = (4,4) supersymmetry.

However, flows of this type generally involve singularities. Various types of possible
singularities have been classified in [32]. According to the result of [32], physical singu-
larities are the ones at which the scalar potential is bounded from above. However, with
the solution given above, the potential becomes infinite in this case. Therefore, the cor-
responding flow solution is not physically acceptable by the criterion of [32]. Since the
framework we have used could be uplifted to ten dimensions via S3 x S3 x S! reduction,
it is interesting to investigate whether this singularity is resolved in the full string theory.

4.1.2 A half-supersymmetric domain wall

We then look for a more general supersymmetric solution. The scalar sector of interest
here is the SU(2); x SU(2); invariant one given in (3.16). We first relabel the scalars
(a2, as, aq, ag, a7, ag) to (ba, bs, by, bg, bz, bg) in order to work with a uniform notation.

We begin with the BPS equations given by 6x* =0

v, = —16gleb1 (ebl — sechbgsechbgsechb4) , (4.11)
by = —16gleb1 (ebl cosh by — sechbgsechb4) sinh by, (4.12)
by = —16g; cosh by sinh byelt (ebl cosh by cosh b3 — sechb4> , (4.13)
b, = —16g; cosh by cosh bz sinh bye (ebl cosh by cosh bs cosh by — 1) , (4.14)

,13,
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b = —16g2€" <eb5 — sechb6sechb7sechb8) , (4.15)
b, = —16gs sinh bge? (eb5 cosh bg — sechb7sechb8> : (4.16)
b, = —16gs cosh bg sinh brebs (eb5 cosh bg cosh by — sechbg) , (4.17)

(4.18)

bg = —16gs cosh bg cosh b7 sinh b8€b5 (eb5 cosh bg cosh by cosh bg — 1) .

where we have used the projection conditions v,/ = —e!, I = 2,4,5,8 and ¢! = €,
1 =1,3,6,7 as in the previous case. The gravitino variation (Mﬁ, w=0,1, gives

A = —8q e cosh by cosh b3 cosh by (ebl cosh by cosh b3 cosh by — 2)
—8¢oe” cosh bg cosh b7 cosh bg (eb5 cosh bg cosh by cosh bg — 2) ) (4.19)

From these equations, we see that apart from the maximally supersymmetric point at
b; =0,i=1,...,8, there is a flat direction of the potential given by

e~ = cosh by cosh bg cosh by, e~ = cosh bg cosh b7 cosh bg (4.20)
which leads to Vo = —64(g1 + g2)%. Equation (4.19) gives A’ = 8(g1 +g2) or A = 8(g1+g2)7
which is the AdS3 solution with radius L = m. It can also be verified that the full

(4,4) supersymmetry is preserved. This should correspond to a marginal deformation of
the N = (4,4) SCFT. There are no other supersymmetric critical points in this sector.
Therefore, the flow breaking supersymmetry from (4,4) to (4,0) is not possible.

However, there is a half-supersymmetric domain wall solution similar to the dilatonic
p-brane solutions of N =1, D =7 and N = 2, D = 6 gauged supergravities studied in [33].
It is remarkable that the full set of the above equations admits an analytic solution. The
strategy to find the solution is as follow. We first determine by 34 as functions of b; and
similarly determine b7 g as functions of bs. by and b5 are determined as functions of r
and can be solved explicitly. From (4.11) and (4.12), we find

db
—2 — coshbysinh by (4.21)
dby

which can be solved for by as a function of by giving rise to

by = coth~te~b2721 (4.22)
Using (4.11) and (4.13) together with b2 solution from (4.22), we find

dbs sinh(2b3)

—_—_— = 4.23
dby  2(1 — e2brtder) ( )
whose solution is given by
eb1+2ca
by = tanh ™! ————— . (4.24)
V1 = e2bitder
Combining (4.11) and (4.14) and substituting for by and b3 solutions give
dby B cosh by sinh by (4.25)

db, _(64‘31 +efe2)ebr — 17

— 14 —



We then find the solution for by

eb1+2c3
by = tanh™! : (4.26)
\/1 _ €2b1 (6461 + 6462)
With solutions for by, b3 and by, equation (4.11) becomes
b, = 16ge <\/1 — b1 (eder + edez 4 edes) — eb1> : (4.27)

This can be solved for by as an implicit function of . The solution is

r o= . [26_blm+ In [6_21’1 ((,81 — 1)t — 1 42 \/qezl”)H

3291
“+constant (4.28)

where 81 = e*1 + ee2 4 ¢los,

We can solve (4.15) to (4.18) by the same procedure. The resulting solutions are

given by
1 betd ebs+2cs
bg = tanh ' e’stc4, by = tanh ™! ————— |
A /1 _ 6265+4C4
bg = tanh~! i
g — tan

\/1 _ €b5 (6484 + 6485)7
1
= [2e7V/T= Boe®s 4 1n [ ™% (B — 1)e — 1+ 267V/1 = Bye?s ) ||
92
+constant (4.29)

where /82 = 6464 + 6405 + 6466,
After substituting all of the b; solutions for i = 2,3,4,6,7,8 in (4.19), we obtain

A — 161 - 8ge20t n 16g2e?s - 8goe2ls
B V1 — Bre2br 1 — fe?n /1 — [Boe?bs 1 — Boe?s

whose solution in terms of b; and by is readily found by a direct integration using (4.11)

(4.30)

and (4.15) including the solutions for the other b;’s. The resulting solution is given by

1 e 1 ebs
A=by+bs+-tanh ! ——S 4 “gannt S ] [17 le]
1+ 05 + 5 an . /8162171 + 5 an = ﬁ2€2b5 n Bie
11—+ 51)62’)1} ~In [1 - ﬁQeQbS} ~In [1 1+ ﬁQ)e%S] . (4.31)

As by,bs; — 0, other scalars do not vanish for finite ¢;. We then find that the solution
will not have an interpretation in terms of the usual holographic RG flows. The solution
is rather of the 1-brane soliton type, see [33] for a general discussion of (D — 2)-brane
solitons in D dimensions. It can also be verified that the 81! = 0 condition precisely gives
the Killing spinors for the unbroken supersymmetry e/ = e 66 with the constant spinor 66

satisfying %e(l) = —e{), I =2,4,58and 'yTeé = 66, 1=1,3,6,7.

,15,



4.2 Non-supersymmetric deformations

We now briefly discuss non-supersymmetric RG flow solutions interpolating between the
N = (4,4) SCFT in the UV and some critical points found in the previous section. The
solutions are essentially non-supersymmetric since they connect a supersymmetric to a
non-supersymmetric critical point. Finding the corresponding solutions involve solving
the full second order field equations for both the scalars and the metric in contrast to
solving the first order BPS equations in the supersymmetric case. Although there are
some examples of analytic supersymmetric flow solutions in three dimensions, in general,
analytic solutions with many active scalars, even for the supersymmetric case, can be
very difficult to find. Therefore, we will not expect to find any analytic solutions in the
non-supersymmetric case but rather look for numerical flow solutions.

In all cases, the interpolating solutions generally exist and can be obtained by a similar
procedure used in [34]. In solving the second-order field equations for scalars and the
metric function, two types of asymptotic behavior of scalars arise near the UV fixed point.
One of them corresponds to a deformation by turning on a dual operator while the other
corresponds to a vacuum expectation value (vev). The second-order equations lead to an
ambiguity between these two possibilities. One way to solve this ambiguity is to recast the
second-order field equations into a first-order form by introducing the generating function
W [35, 36]. Like supersymmetric solutions obtained from first-order BPS equations, only
one possibility is singled out from these new first-order equations.

In the present case, numerical analyses show that non-supersymmetric flows to P, and
Ps are driven by turning on relevant operators. These describe true deformations of the UV
SCFT rather than vev deformations. The flow to P53 involves four active scalars and is more
difficult to find. However, the flow is expected to be driven by a scalar transforming as (1,1)
under SO(4) x SO(4) at the UV point. From the value of g; and g2 in the stability range, it
can be checked that only the deformation dual to this scalar is relevant. The deformations
corresponding to the remaining active scalars are given by vacuum expectation values of

irrelevant operators since these scalars have positive mass squares.

5 Conclusions and discussions

In this paper, we have studied N = 8 gauged supergravity in three dimensions with a
non-semisimple gauge group (SO(4) x SO(4)) x T'2. The ratio of the coupling constants
of the two SO(4)’s is given by a parameter «. For positive a, the theory describes an
effective theory of ten dimensional supergravity reduced on S3 x S3 x S'. For negative a,
on the other hand, the theory may describe a similar reduction on S3 x H? x S! in which
H? is a three-dimensional hyperbolic space. With a = —1, the cosmological constant is
zero. This solution should describe a ten dimensional background Mz x S3 x H3 x 1
where M3 is the three-dimensional Minkowski space.

We have studied the scalar potential and found a number of non-supersymmetric
AdSj3 critical points. The trivial critical point with maximal supersymmetry is identified
with the dual large N = (4,4) SCFT in two dimensions. We have explicitly checked
the stability of some non-supersymmetric critical points by computing the full scalar
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mass spectra at these critical points. They are perturbatively stable for some values of «
parameter in the sense that all scalar masses are above the BF bound. It is also interesting
to see whether other critical points are stable or not. We have investigated RG flows,
interpolating between the large N = (4,4) SCFT in the UV and non-supersymmetric IR
fixed points with SO(4) x SO(4), SO(4) x SO(2) x SO(2) and SO(4) symmetries, and also
commented on the operators driving these flows.

Another result of this paper is half-supersymmetric domain wall solutions to N = 8
gauged supergravity. For the domain wall preserving SO(4) x SO(4) symmetry, the solution
describes an RG flow from N = (4,4) SCFT in the UV to a non-conformal N = (4, 4) field
theory in the IR. The solution has however a bad singularity according to the criterion
of [32]. For the solution preserving SU(2) x SU(2) symmetry, the holographic interpretation
is not clear. In the point of view of a (D — 2)-brane soliton, the solution should describe
a l-brane soliton in three dimensions according to the general discussion in [33]. When
uplifted to ten dimensions, the solution might describe some configuration of D1-branes.
Hopefully, the solutions obtained in this paper might be useful in string/M theory context,
black hole physics and the AdS/CFT correspondence. The uplifted solution of the non-
conformal flow preserving SO(4) x SO(4) symmetry is also necessary for the resolution of
its singularity if the full ten-dimensional solution turns out to be non-singular.

Finally, the chiral supersymmetry breaking (4,4) — (4,0) found in [28] cannot be im-
plemented in the framework of N = 8 gauged supergravity studied here. It would probably
require a larger theory of N = 16 gauged supergravity with (SO(4) x SO(4)) x (T'2,T3%)
gauge group studied in [14]. It would be very interesting to find the flow solution of [28]
explicitly in the three dimensional framework. We hope to come back to these issues in
future research.
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A Useful formulae and details

For completeness, we include a short review of gauged supergravity in three dimensions
in the formulation of [12]. The theory is a gauged version of a supersymmetric non-linear
sigma model coupled to non-propagating supergravity fields. N-extended supersymmetry
requires the presence of N — 1 almost complex structures f, P =2,..., N on the scalar
manifold. The tensors fI/ = fl/] generating the SO(N) R-symmetry in a spinor rep-
resentation under which scalar fields transform, play an important role. In the case of
symmetric scalar manifolds of the form G/SO(N) x H’, they can be written in terms of
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SO(N) gamma matrices. In our case, we use the 16 x 16 Dirac gamma matrices of SO(8)

I
i <(F(1))T Fo ) _ (A1)

The 8 x 8 gamma matrices are explicitly given by

[N =04®04 R 04, 'y =01 ®03® 04,
I's =04 ®01® 03, Iy =03®004®01,
I's =01 ®02® oy, I'g =04 ® 01 ® 09,
't =00 ®04®o01, I's=01®01 ®0y (A.2)

where

B 10 B 01
o1 ) 727 \10)
03 = <(1) _01), o4 = (_01[1)> (A.3)

According to our normalization, we find
wnns = —Tr(Ys [TV Yicr]). (A.4)

Generally, the d = dim(G/H) scalar fields ¢, i = 1,...,d can be described by a coset
representative L. The useful formulae for a coset space are
1
L~ WML = 5vM, ST M xo ppM iy A (A.5)
1
Lol = 5@{ I L Qexe + ety (A.6)
where ef, Q!7 and Q% are the vielbein on the coset manifold and SO(N) x H' composite
connections, respectively. X®’s denote the H' generators.

Any gauging can be described by a symmetric and gauge invariant embedding tensor
satisfying the so-called quadratic constraint

Opef* (MmOak =0, (A7)

and the projection constraint
Pr,Omn =0. (A.8)

The first condition ensures that the gauge symmetry forms a proper symmetry algebra
while the second condition guarantees the consistency with supersymmetry.

The T-tensor given by the moment map of the embedding tensor by scalar matrices
VM, . obtained from (A.5), is defined by

Tas = VMO V5. (A.9)
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Only the components TT/KL and T174 are relevant for computing the scalar potential.

With our SO(8, 8) generators, we obtain the following )V maps

yebls _%Tr(L—lJbeIJ)’ yabLs _ _%TT(L—ltiszIJ)’

yebKr _ %Tr(L—ljizbyKT% yabKr _ %TT(L—lt({,byKT%

Vi%u _ _%TI(LAJSETIJ)? Vgi;,m _ —%Tr(L’ltgi’T”),

VAT = ST(L Y, VAT = STE YR (A0)

where we have followed the convention of calling the semisimple part SO(4) x SO(4) and
the nilpotent part T'? ~ T x T® as A and B types, respectively. We then compute the
T-tensor components

IJKL _ ab,1.J~ycd, KL ab,1.J~ycd, KL ab,1.J~ycd, KL

T =0 (VAI Ver Ve Vi = Vel Ve ) €abed

ab,IJ~,eéd, KL ab,IJ~,éd, KL ab,I1J~,éd, KL
oo (Vs Vet VeV VRV e (A

b,IJ~cd, K b,I.J~cd, K b,I.J~cd, K

TR = gy (VEETVRT VRV - VETVET) o
ab,1.J~ed,Kr ab,1.J~ed,Kr ab,1.J~ed,Kr

The scalar potential can be computed by using the formula

4 1 .
Vet (A{JA{J _ 2NgwAggAgg) (A13)

in which the metric g;; is related to the vielbein by g;; = efej‘. The A; and Ay tensors
appearing in the gauged Lagrangian as fermionic mass-like terms are given by

4 2
Al — = pIMJM s/ TMN,MN A4
! N -2 +(N—1)(N—2) ’ (A.14)
2 4 2
Al — Zpld 2 MUmpg)M §TJ FKL mpKL (A 4
=Nt oy s T TR o g T (A19)

Finally, we repeat the condition for supersymmetric critical points. The residual
supersymmetry is generated by the eigenvectors of the Al tensor with eigenvalues equal

to i\/% .
B Explicit forms of the scalar potential
For SO(4)giag invariant scalars, the potential is given by

V = 4¢54 g2 cosh?(az — a4) cosh?(as + ay) [5 cosh[2(a; — 2a3)] + 8 cosh(4a3)
+5 cosh[2(a1 + 2a3)] — 4 cosh(2ay) (7 + 2 cosh(2a3) cosh(2a4)) + 2 cosh(4as) X
(cosha; — 3sinha;)? — 6 (cosh(4as) — 4 cosh(2as3) cosh(2a4) — 6) sinh(2a;)
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+4e52 g2 cosh?(az — a4) cosh? (a3 + ay) [5 cosh[2(as — 2a3)] — 8 cosh(4as3)
+5 cosh[2(ag + 2a3)] — 4 cosh(2a2) (7 + 2 cosh(2a3) cosh(2a4)) + 2 cosh(4ayg) X
(sinh ay — 3 cosh ag)? — 6 (cosh(4asz) — 4 cosh(2a3) cosh(2a4) — 6) sinh(2az)

et taz+6(astas) o) o) 86 cosh(ay + ag) — 64 cosh(ay — az) cosh(2as) 4 cosh(2a3)x
cosh(6ay) (cosha; — 3sinh ay) (3 cosh ag — sinh ag) 4+ 16 cosh ag cosh(4ag) sinh ay

+ cosh(2ay) [—64 cosh(a1 — az) + cosh(6as3) (3 cosha; — sinhay) x

(coshag — 3sinh ag) + 2 cosh(2as) (37 cosh(a; + az) — 19sinh(a; + az))]

—66sinh(a; + az) + 2 cosh(4ay) [8 cosh ag sinh a; + cosh(4as) (sinh(a; + a2)
—3cosh(a; + a2))] + [25 cosh(a; + az) — 27 cosh ag sinh a; + 2 cosh(4as) x

(3cosha; —sinhay) (coshas — 3sinh ag) — 35 cosh a; sinh as] sinh(2a3) sinh(2a4)

+2 (sinh(a; + a2) — 3cosh(a; + a2)) sinh(4as) sinh(4a4) + sinh(2a3) sinh(6a4) x
(3coshay — sinh as) (cosha; — 3sinhay)]. (B.1)

The potential for SU(2)} x SU(2); invariant scalars is given by, in notation of section 4,
2
V =128 g%e%1 cosh? by cosh? b3 cosh? by (ebl cosh by cosh b cosh by — 1>
2
—I—QS €255 cosh? bg cosh? by cosh? bg (eb5 cosh bg cosh by cosh bg — 1) ] . (B.2)
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We study gravity duals of the minimal N = 2 super Yang-Mills gauge theories in five dimensions using
the matter coupled F(4) gauged supergravity in six dimensions. The F(4) gauged supergravity coupled to
n vector multiplets contains 4n + 1 scalar fields, parametrized by R* x SO(4,n)/S0O(4) x SO(n) coset
manifold. Maximally supersymmetric vacua of the gauged supergravity with SU(2) x G gauge group, with
G being an n-dimensional subgroup of SO(n), correspond to five-dimensional superconformal field
theories (SCFTs) with SU(2); R symmetry and G global symmetry. Deformations of the UV SCFTs
for G=SU(2) and G =U(2) ~SU(2) x U(1) symmetries that lead to nonconformal N =2 super
Yang-Mills with various unbroken global symmetries are studied holographically.

DOI: 10.1103/PhysRevD.90.086009

I. INTRODUCTION

Much insight to strongly coupled gauge theories can be
gained from studying their gravity duals via the AdS/CFT
correspondence [1] and its generalization to nonconformal
field theories [2—4]. One consequence of the AdS/CFT
correspondence which has been extensively studied is
holographic RG flows. These flows describe deformations
of an UV conformal field theory (CFT) to another con-
formal fixed point or to a nonconformal field theory in the
IR. On the gravity side, an RG flow in the dual field theory
is described by an asymptotically anti—de Sitter (AdS)
solution which becomes AdS space in a certain limit
corresponding to the UV CFT. The gravity solutions
interpolate between this AdS space and another AdS space
in the case of flows to some IR fixed points. For flows to
nonconformal field theories, gravity solutions in the IR will
take the form of a domain wall [5]. Furthermore, in flows
between CFTs, bulk scalar fields take finite constant values
at both conformal fixed points while in flows to non-
conformal theories, they are usually logarithmically
divergent.

The above argument leads to gravity duals of various
supersymmetric gauge theories in four dimensions, and
many important characteristics of the gauge theories such
as gaugino condensates and confinements can be success-
fully described by gravity solutions of five-dimensional
gauged supergravity; see, for example, [6—8]. On the other
hand, holographic duals of higher dimensional gauge
theories have not much been explored in the literature.
In this paper, we will carry out a similar study for N = 2
supersymmetric Yang-Mills (SYM) gauge theories in five
dimensions using six-dimensional F(4) gauged supergrav-
ity. This should provide the five-dimensional analogue of
the four-dimensional results in [6-8].

“parinya.ka@hotmail.com
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Five-dimensional field theories are interesting in their
own right. It has been discovered in [9-11] that five-
dimensional gauge theories admit nontrivial fixed points
with enhanced global symmetry. The five-dimensional
(5D) field theory describes the dynamics of the D4/DS§-
brane system whose near horizon limit gives rise to AdSg
geometry [12]. At the fixed points, the SO(2N) x U(1)
global symmetry of the gauge theory with N, < 8 flavors
is enhanced to Ey 1. Eg7s are the usual exceptional
groups and other groups are defined by E; = SU(2),
E,=8SUQ2)xU(1), E3=SU(3) xSU(2), E, = SU(5),
and E5 = SO(10) [9]. This symmetry enhancement in the
case of SU(2) gauge theories has also been shown to
appear in the superconformal indices [13].

By using AdS¢/CFTs correspondence, it has been
proposed in [14] that five-dimensional superconformal
field theories with global symmetry G should correspond
to AdSg vacua of the matter coupled F(4) gauged super-
gravity in the six-dimensional bulk with the SU(2), x G
gauge group. The SU(2), R symmetry is gauged by three
of the four vector fields in the supergravity multiplet, while
the G part of the gauge group is gauged by the vectors in
the vector multiplets. The dual field theory has been
identified with a singleton field theory on the boundary.
A number of papers on gauge/gravity correspondence
involving 5D gauge theories and the generalization to
quiver gauge theories from the ten-dimensional point of
view have appeared in [15-17]. RG flows between 5D
quiver gauge theories with N, =0 have been studied
recently in [18] in the ten-dimensional context. Holo-
graphic RG flows within the framework of F(4) gauged
supergravity have also been studied in [19] and [20]. In
this paper, we will give another example of flow solutions
to 5D nonconformal gauge theories in the framework
of six-dimensional gauged supergravity. As in lower
dimensions, this should be more convenient to work
with than the ten-dimensional computation and could

© 2014 American Physical Society
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provide a useful tool in the holographic study of N = 2
5D SYM.

Furthermore, the study of gravity duals of 5D gauge
theories is not only important in AdS4/CFT5 correspon-
dence but is also useful in the context of AdS;/CFTg
correspondence [21,22]. This originates from the proposal
that the less understood N = (2,0) gauge theory in six
dimensions could be defined in term of 5D SYM.
Furthermore, it has been shown that SD superconformal
field theory (SCFT) could be an IR fixed point of N = 2*
gauge theory in four dimensions [23]. Therefore, having
gravity duals of 5D SYM could be very useful in under-
standing the dynamics of M5-branes and gauge theories in
other dimensions as well.

The paper is organized as follows. In Sec. II, we review
relevant information about matter coupled F(4) gauged
supergravity in six dimensions and formulas used
throughout the paper. Holographic RG flows to non-
conformal field theories from the UV fixed point identi-
fied with the maximally supersymmetric AdS¢ critical
points will be given in Secs. III and IV. All of the solutions
can be analytically obtained and would be more useful
than the numerical solutions given in some other cases.
We end the paper by giving some conclusions and com-
ments in Sec. V.

II. MATTER COUPLED F(4) GAUGED
SUPERGRAVITY AND THE DUAL
N =2 SUPER YANG-MILLS THEORY

We begin with a brief review of the matter coupled F(4)
gauged supergravity in six dimensions. The theory is an
extension of the pure F(4) gauged supergravity, con-
structed a long time ago in [24], by coupling n vector
multiplets to the N = (1,1) supergravity multiplet. The
resulting theory is elegantly constructed by using the
superspace approach in [25-27]. In the present work, we
will need only supersymmetry transformations of fermions
and the bosonic Lagrangian involving the metric and
scalars. Most of the notations and conventions are the
same as those given in [25] and [26] but with the metric
signature (— + + + ++).

In half-maximal N = (1,1) supersymmetry, the field
content of the supergravity multiplet is given by

(et wit A%, B,,.x" o),

where ed, y*, and w7 denote the graviton, the spin-1/2
field, and the gravitini, respectively. Both y* and v are
eight-component pseudo-Majorana spinors with indices A,
B =1, 2 referring to the fundamental representation of the
SU(2)g ~USp(2)g R symmetry. The remaining fields are
given by the dilaton o, four vectors A%, a =0, 1,2,3,and a
two-form field B,,, .
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A vector multiplet has component fields

(Aﬂ’ AA? ¢rx>

Each multiplet will be labeled by anindex I = 1, ..., n. The
4n scalars ¢ are described by a symmetric quaternionic
manifold SO(4,n)/SO(4) x SO(n). The dilaton ¢ can also
be regarded as living in the coset space R™ ~ O(1,1). Asin
[25], it is convenient to decompose the « index into o =
(0,7) in which r =1, 2, 3. The SU(2); R symmetry is
identified with the diagonal subgroup of SU(2) x SU(2)~
SO(4) C SO(4) x SO(n). A general compact gauge group
is then given by SU(2) x G with dimG = n.

The 4n scalars living in the SO(4,n)/SO(4) x SO(n)
coset can be parametrized by the coset representative
LAy, A, X=0,....3+n. Using the index splitting
a = (0,r), we can split Ly into (L*,,L",) and further
to (LA, L*,,L*)). The vielbein of the SO(4,n)/SO(4) x
SO(n) coset P! can be obtained from the left-invariant
1-form of SO(4,n)

Qhy = (L™HAR VLT, VLA; = dLs — fgATL s,

(1)
via
Pl = (PIO’PIr) = (QIOvQIr)- (2)

The structure constants of the full gauge group SU(2)z x G
are denoted by 1z, which can be split into €,, and C;,x
for SU(2), and G, respectively. The direct product struc-
ture of the gauge group SU(2); X G leads to two coupling
constants, g; and g,, which, in the above equation, are
encoded in fAps.

In this paper, we are interested in n = 3,4 cases with
gauge groups SU(2), x SU(2) and SU(2)g x SU(2)x
U(1). To describe SO(4,n)/SO(4) x SO(n), we introduce
basis elements of (4 + n) x (4 + n) matrices by

(€Y).,, = 6,04, w,x,y,z=1,...,n+4. (3)
The SO(4), SU(2)z, and noncompact generators of
SO(4,n) are accordingly given by

SO(4): Jo = ehriatl _ putlpsl,

SU(2)R Jrs — es+1,r+l _ er+l,s+l’

Yal — ea+],l+4 + el+4,a+l,

a,f=0,1,2,3,
r,s =1,2,3,
I=1,...n. (4)

Gaugings lead to fermionic mass—like terms and the
scalar potential in the Lagrangian, as well as some
modifications to the supersymmetry transformations at first
order in the coupling constants. We will give only infor-
mation relevant to the study of supersymmetric RG flows
and refer the reader to [25] and [26] for more details and

086009-2



GRAVITY DUALS OF 5D N =2 SYM THEORY FROM ...

complete formulas. The bosonic Lagrangian for the metric
and scalar fields is given by [26]

1 1
L= ZeR — ed,00'c — ZePlaﬂPI“” —eV, (5)

where ¢ = ,/—g. The scalar kinetic term is written in term

of P[* = PI*0,¢', i = 1, ..., 4n. For completeness, we also
give the explicit form of the scalar potential
o1 1
V= —¢? 36A +4BB_4_1(C .Cr, +4D',D},)
2 ,—6c —20 2 i
—m-e N()() + me gALOO —2B LOi R (6)

where N is the 00 component of the scalar matrix defined
by

Nyz = LY (L™ )gs + LY(L™) e = LA(L™Y) s (7)

Various quantities appearing in the scalar potential and in
the supersymmetry transformations given below are
defined as follows:

A=e"K,y, B' = €7*K ¢, (8)
C; = etrSKrIS’ Dlt = KOIt’ (9)

where

Ky = gi€mnLl! (L7, LY + g2 Cpy L' (L71)LE,
K0 = gi€mal' (L), LG + g2Cryx L' (L7, L,
Koo = gi€mnl (L7, LY + g2Cpy L' (L7Y)LE,
Kore = gr€mnL'o(L7)" L} + g2Cpyx Lo (L7"),LE.
(10)

Finally, the supersymmetry transformations of y*, 1%, and
yi involving only scalars and the metric are given by

1
SWua = D,eq — 5 (Ae® + 6me™(L™") g0 )€any €®

1
- 5 (Bie” = 2me (L) ) e (1)

1 1
Oya = Eyﬂau"eABeB + 2% [Ae” — 18me™ (L") glespe®

1
-3 [Bie” + 6me™ (L") ]y" o'y g€®, (12)

5’12 = Piiyﬂaﬂ(ﬁidrABeB + P6i777”ay¢i€AB€B

— (2iy’D!, + C))e°c", ye® — 2me3(L~1)! jy e 5P,

(13)
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where ¢'C are Pauli matrices and €,5 = —ep,. The space-

time gamma matrices y¢, with a being tangent space
indices, satisfy

{r. v’} =29,
and y7 = Yo'y,
We now give a short description of the UV SCFT which
is identified with the AdSq vacuum preserving 16 super-
charges. At this vacuum, all scalars vanish, and the full
gauge group SU(2)x x G is preserved. The bulk fields in
the supergravity multiplet are dual to the operators in the
energy-momentum tensor supermultiplet in the five-
dimensional field theory, while the bulk vector multiplets
correspond to the global current supermultiplets. The full
spectrum of all supergravity fields can be found in [25] and
[26]. SU(2)y singlet scalars in the adjoint representation of
G are dual to operators of dimension four corresponding to
the highest components of the global current supermultip-
lets. These scalars give supersymmetry preserving defor-
mations, as discussed in [14]. On the other hand, the dilaton
and SU(2), triplet scalars are dual to operators of dimen-
sion three and correspond to supersymmetry breaking
deformations.

@ = diag(-1,1,1,1,1,1),  (14)

III. RG FLOWS FROM SU(2), x SU(2) SCFT

We begin with the simplest possibility with n =3
and the SU(2), x SU(2) gauge group. The gravity
theory consists of 13 scalars parametrized by O(1,1) x
S0(4,3)/S0(4) x SO(3) coset space. We are interested
in SU(2), singlet scalars which are given by ¢ and an
additional three scalars from SO(4,3)/SO(4) x SO(3).
The latter correspond to the noncompact generators Y,
Y1,, and Yy3. The coset representative is accordingly
written as

L = e p02Y 12003715 (15)
The space-time metric is the standard domain wall ansatz
ds?* = A0 dx? , + dr?, (16)

in which five-dimensional Poincaré symmetry is manifest.
From now on, the six-dimensional space-time indices will
be split as (u, r) with u =0, ..., 4.

Using (11), (12), and (13), we find the following
Bogomol’nyi-Prasad-Sommerfeld (BPS) equations:

sinh a
= 2eom—— 17
@ e-m cosh a, cosh a; (17)
cosha; sinha
= 2eTom— 2 18
= e-m cosh by (18)
a;' = —2e3°m cosh a, cosh a, sinh a;, (19)
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1
o =- 3 [e°g1 — 3e™3*m cosh a, cosh a, cosh as], (20)
/ 1 -3
A = 3 [e?g; + e“mcosha; cosha, coshas],  (21)
where / denotes % and we have used the projection

y'e* = €A, The presence of y’ in 51, does not impose
any condition on e since it appears as an overall factor in
all of the BPS equations obtained from 62} = 0. That the
bulk gravity solution preserves eight supercharges is to be
expected because the minimal SYM in five dimensions has
eight supercharges. The equation for the warp factor A(r) is
obtained from 8y}, u = 0, 1, 2, 3, 4. The ¢ = 0 equation
would give the dependence of the Killing spinors on the r
coordinate as in other cases. We now look at solutions of
interest.

A. Flow to SU(2), x U(1) SYM

We first study the solution that breaks the SU(2) global
symmetry to U(1). This corresponds to turning on only a3
and o. The latter is of course a singlet of the full gauge
group SU(2)x x SU(2). With a; = a, =0, Egs. (17) and
(18) are trivially satisfied, and Egs. (19), (20), and (21)
become

ay’ = —2e **msinh a;, (22)
1
o — 5 (=g1e® +3e > mcoshay), (23)
1
Al — 5 (g1e° + e°mcoshay). (24)

We can solve Eq. (22) by introducing a new radial
coordinate 7 such that 4 = ¢~3°. We then find the solution
for as,

1 —2mr+C
as = + 1n|: te :| .

T— o (25)

This form is very similar to the solution studied in [6] for
the four-dimensional (4D) SYM. C; is an integration
constant. There are two possibilities for the two signs.
Combining Egs. (22) and (23) gives an equation for j—;,

do 1

o (e4"glcscha3 —3mcothas), (26)
as m

whose solution is given by

B lln g1(3coshaz — cosh(3a3) + 18C,sinh’az)
Ty 6m '

(27)

with C, being another integration constant.
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After changing to the 7 coordinate and using the aj
solution, we find that the combination of (24) and (23)
becomes, with ' now being <,

2m<e4n1?+62C1)
A/ + 0/ = W . (28)

The solution to this equation can be readily found to be

A=2mi+1In(1 —eC72"") £ In (1 4 72" — g,
(29)

where we have neglected the additive integration constant
to A by absorbing it into the rescaling of the x* coordinates.
To identify the maximally supersymmetric vacuum at ¢ =
az = 0 with the N = 2 SCFT, we have to set g; = 3m. In
the above solutions, we have not done this in order to keep
the solutions in a generic form. Note also that if we try to
truncate ¢ out by setting ¢ = 0, Eq. (23) will imply a3 = 0.
Therefore, to obtain a nontrivial solution, we must keep o
nonvanishing.

An RG flow to a nonconformal field theory with only the
dilaton ¢ in pure F(4) gauged supergravity has been
studied in [19]. The resulting solution is interpreted as
the analogue of the Coulomb branch flow. We now have a
more general flow solution in the case of matter coupled
F(4) gauged supergravity. As r — o0, o, az > 0, we see
that 7 ~ r — oco. In this limit, we obtain the maximally
supersymmetric AdSg background with A ~2mr =7,
where the AdSg radius in the UV is given by L = ﬁ
According to the AdS/CFT correspondence, this is iden-
tified with the UV SCFT with SU(2), x SU(2) SCFT in
five dimensions. From the above solutions, the behavior of
o and a3 near the UV point with g; = 3m is readily seen
to be

r 3r

ay~e M = i, c~ay~e M =e1.  (30)

We see that a3 corresponds to a deformation by a relevant
operator of dimension A =4 while ¢ describes a defor-
mation by a vacuum expectation value of operator of
dimension A = 3.

There is an issue of singularities in the IR which are
typical in flows to nonconformal field theories. Physical
and unphysical singularities can be classified by using
the criterion given in [28]. From the solution, we see that
as is singular when 7 — QC—n‘1 We now consider the case
with a3 > 0 and az < 0 separately. For a3 > 0, we find
az; = —In(2mr — Cy) +1In2, as 2m7 ~ C; and

3
(2 :Zln (Zm?— Cl)

1

+3(9C, +2)(2mF — Cy)* + -+ -]. (31)
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The warp factor A near 7 — 2% is given by

A=In(2mr-C) —o. (32)

For C, =3, we find that

1 5
JN—Zln(2m7—C1), ANZln(2m?—C1). (33)
We can find the relation between 7 and r in this limit by
using j—: = ¢73. The relation is given by

2mr — C = 4(2m7 — C,)*, (34)
where C is a new integration constant. The metric becomes
ds* = (2mr — C)"dxi , + dr?, (35)

where we have absorbed the multiplicative constant to the
scaling of x* coordinates. According to the domain-wall/
quantum field theory correspondence, this background is
dual to a nonconformal SYM theory in five dimensions.
To determine whether the singularity in the solution is
acceptable or not, we check the scalar potential on the solution.
With a; = a, = 0 and g; = 3m, the potential is given by

V = e7%m?[cosh(2a3) — 12¢*° coshaz — 9¢%°].  (36)

Itcan be verified that V — —oo as as, 6 — o0. The singularity
is then physical according to the criterion of [28]. Foraz < 0,
itcan be easily checked that the singularity is acceptable for the
choice C; = — % which leads to

- 1 -
as ~In(2mr — Cy), J—Zln(2mr—C1),

ds* = (2mr — C)"dx3 , + dr’. (37)

On the other hand, if C # + 3 for ay ~ +=In(2m7 — C)),
respectively, the solution is asymptotic to

3
a3~:|:1n(2m7’—C1), 6~Zln(2m7’—C1),

ds> = (2mr — C)fsdx? , + dr?, (38)

where we have used the relation (2mF—C,)% =
3 (2mr — C), near 7 ~ <L, with a constant C. The singu-
larity in this case is, however, not acceptable since V — oo.

It is useful to comment on the IR singularities. Following
the discussion in [5], the criterion of [28] is related to the
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fact that the divergence in a vacuum expectation value of an
operator O dual to a canonical scalar ¢ is excluded. In the
IR, the scalar bulk action is given by S ~ [ €3 (9¢)? since
the potential is irrelevant due to the divergence of the scalar.
The expectation value of O is then given by

(O~ G~ 0~ (=)™ (39)

where we have used the asymptotic behavior ¢ ~ ¢ In(r —
rg) and A ~kIn(r — ry). The singularity occurs at r = ry.
We see that (O) diverges when k < % In the present case,
the physical flow has k = 5 while the unphysical one has
K= % This is consistent with the finiteness of the expect-
ation value of the dual operator.

B. Flow to SU(2), SYM

If the other scalars, a; and a,, are nonvanishing, the
solution will break the SU(2) global symmetry completely.
It is now more difficult to solve all five BPS equations, but
it turns out that these equations admit analytic solutions.

To obtain the solution, we consider A, o, a;, and a, as
functions of a;. Combining Eqgs. (18) and (19), we find

@ B tanh a, (40)

day  sinhascoshas’

This is easily solved by

2a;+Cy _ ,C + \/(1 + e2a3>2 + €2C1(62a3 _ 1)
1+62a3

= sinh™! (¢ tanh a3). (41)

e

Clzzln

Similarly, by solving Egs. (17) and (19), we obtain

€2 sinh a,
V1 =X + (1 + ¢%7) cosh(2a3)

a, = sinh™!

(42)
Using the a; and a, solutions and the new radial coordinate

7, we find the solution for as:

L [€2€2 +2e*C — 2 + dtanh? (2mF — C5)
2 +2%C1 4 22

1
az = :lzicosh‘ .
(43)

We can similarly solve for ¢ as a function of a;. The
solution is given by

1 - - - ~ - - -
o=7In [3m(A* + B?)*csch®as(36A%C,4(A* + B?)*sinh®az(A* cosh(2a3) + B?)

~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~
—2(3A% + B> — 2A% cosh(2as))(A? cosh(2a3) + B*)*/?)] - ;I [1296A*C2g, (A? + B?)*(A? cosh(2a3) + B?)

—4g,csch®ay(A* cosh(4as) + A* + A%(B? — 3A%) cosh(2a5) — 3A%B% — B*)?]. (44)
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We have defined two new  constants, A=
V242620 122G and B = V2 — 2261 — 2%, for con-
venience.

Finally, adding (20) to (21) and changing the variable
from r to a;, we find a simple equation for A:

dA do

L2 L2 coth 4
da3 da3 cotids, ( 5)

whose solution is
A = —o —In(sinh a3). (46)

Near the UV point, we find r~7 — oo, a; ~a,~
ay~e7f, and 6~ e L. The solution for A then gives
A~2mr=1. The flow is again driven by turning on
operators of dimension four corresponding to a;,3; and a
vacuum expectation value (VEV) of a dimension three
operator dual to o.

It can be checked by expanding (43) that a; - +oo as
2mr — C‘, where we have collectively denoted all constant
terms from the expansion by C. The behavior of a5 near this

point is az ~ +1In(2m7 — C). Although a; blows up when

2m7 ~ C, a; and a, remain finite, with a, ~ sinh™ ¢! and

e©2

a, ~ sinh™! Similar to the previous case, the

V2420261 )
criterion of [28] requires C4 = + 5 (;%fgzy for the singu-

larity to be physical. This is true for both a; <0 and
az > 0. We find that

1 .
az ~+In(2mr - C), GN—Zln(Zm?—C),

ds?> = (2mr — C)"dx3 | + dr*. (47)

It can be readily verified that there always exist the values
of C; and C, at which this behavior gives V — —oo0.

ForC, # + %, the solution near 2m7 ~ C becomes

~ 3 3 - =
as ~+1In(2mr — C), o~ =743 zzln(Zmr—C),

ds* = (2mr — C)%dxf4 +dr?. (48)

This solution is not physical, as it can be checked that V —
oo for all values of C; and C,.

C. Flow to SU(2)4,, SYM

In this subsection, we will look at an RG flow with
SU(2) giag ~ (SU(2)g X SU(2))4iae singlet scalars. Some
nonsupersymmetric AdSg vacua and holographic RG flows
interpolating between these critical points and the max-
imally supersymmetric AdS¢ have been studied in [20]. In
this work, we will give a supersymmetric flow to a
nonconformal field theory.

diag
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There is only one singlet scalar under SU(2),, from

50(4.3)
SO(#)xS0(3)
can be written as

diag
; see the details in [20]. The coset representative

L = @Yo +Yn+Ys) (49)

The supersymmetry transformations of w7}, y*, and 2} give
the following BPS equations:

a' = —e°sinh(2a)(g; cosha — g, sinha),  (50)

1
o = 56_3”[317’! + e*(gysinh*a — g;cosh’a)], (51)

1
Al = 5 e73%[m + e*(g,cosh®a — gysinh’a)].  (52)

Note that for nonsinglet scalars of SU(2)g, the SU(2)
coupling g, appears.

In order to solve the above equations, we will treat ¢ and
A as functions of a:

do  3me™ — gjcosh®a + gysinh’a
da  2sinh(2a)(g; cosha — g, sinha)’

(53)

which can be solved by

oo lln 6m cosh(2a) + C, si-nh(2a) . (54)
4 2g, cosha — 2g, sinh a

We can check that as a - 0 and g, =3m, 6 > 0 as
expected for the UV point. This is the case for any value
of Cy. To solve for a from Eq. (50), it is convenient to
define a new coordinate 7 via e® = Z—i. In this case only is 7
defined by ¢° = 4L In all other cases, we have ™3 = 4.

With this new variable, we can solve for 7 as a function

of a. The resulting solution is given by

29197 = g In coth% —2gtan™! [tanh g}
tanh 4 —
+2y/g7 - g3tan”! [9‘292] . (59)
7_ 2
VII— 9

where we have neglected the additive integration constant.
Taking the combination (51) —3x (52) with (50), we can
rewrite the equation for A as

do _dA g sinha+ g,(1 —cosha)
&322 .
da da

56
gy cosha — g, sinha (56)

The solution is readily obtained to be

1
A= 3 [6 + Insinh(2a) + In(g; cosha — g, sinha)].  (57)
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From the above solutions, we can find the behavior of
a, o, and A near the UV point, a =06 =0. In this
limit, 7~r— 00, we find a~o~e o = et and
A ~2mr = 1. This indicates that the flow is driven by
vacuum expectation values of operators of dimension three.
This is to be expected since it has been pointed out in [20]
that the flow driven by turning on the operators dual to ¢
and a corresponds to a nonsupersymmetric flow to a
nonsupersymmetric IR fixed point. In the IR, there are a
number of possibilities, depending on the values of g, and
the integration constant Cy, since these lead to different IR
behaviors of a and o.

We begin with the g, = g; case and consider the solution
for large |a|. For a < 0, we find by expanding the solution

in (55) that a diverges as a~%1n(gl?—C). As in the
previous case, we have collectively denoted all of the

constants by C. When C, = 6m, the solutions for ¢ and A
become

1 .= 7 -
U~Zln(glr—C), A~%ln(g1r—C),

ds> = (3mr — C)¥dx} , + dr. (58)

This leads to V — —oo, which is acceptable.
For C; # 6m, we find different behavior:

1 . = 1 -
GN—EIH(QIV—C), ANEIH(glr—C),

ds* = (g,r — C)l_zv%dx%’4 +dr?, (59)

which gives V — oo, as expected since in this case k < %
For a > 0, we find that a ~ —In(g,; 7 — C). There are two
possibilities for C; = —6m and C; # —6m which give,

respectively,

1 ~ 13 -
GNzln(gl;—C>, ANEln(gﬁ—C),
ds> = (gr — C)¥dx} , + dr?, (60)
and
3 - = 3 . =
O'N—Zln(glr—C), A~Zln(glr—C),
ds® = (g;r — C)idx} , + dr*. (61)

Both of them give V — —oco. We then conclude that for
g» = ¢y, all flows with a > 0 are physical, but flows with
a < 0 are physical only for C| = 6m.

We now move to the g; # g, case and quickly look at the
a > 0 and a < 0 flows separately. With a > 0, the solution
becomes
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1 -
ar~ —gln (91 = g2)7 = C],

1 -
o~ —Eln [(91 - gz)r - C],
ds* = [(g) — g2)7 — CIfdx? , + dr?, (62)

for C; # —6m, and

1 . 1 -
an~ —gln (g1 —g2)7 = C], GNZIH [(91 — g2)7 = C],

ds® = [(g) — g2)7 — C¥dx? , + dr?, (63)

for C; = —6m. The former is unphysical, but the latter is
physical provided that —(5 + 4v/2)m < g, < (4v/2 = 5)m.
Finally, for a < 0, we find the IR behavior

1 - -
a~§ln[(91 +g,)7 = CJ, UN—EIH [(91 + 92)7 = C],
ds® = [(gy + g)F — ClFdx2, + dr?, (64)

for C; # 6m, and

1 - ~
a~§ln [(g1 + 92)7 = C], GNZIH [(91 + g2)7 = C],
ds* = [(g1 + 2)7 = ClFdx +dr?, (63)

for C; = 6m. Similar to the previous case, only the second
possibility is physical, provided that (5—4v2)m <
¢ < (5+4v2)m. In summary, for g, # g;, flows with
a > 0 and a < 0 are physical for C; = —6m and C; = 6m,
respectively, for some appropriate values of g,.

IV. RG FLOWS FROM SU(2), x U(2) SCFT

To give more examples, we consider F(4) gauged
supergravity coupled to four vector multiplets with the
SU(2)g x SU(2) x U(1) gauge group. There are 16 scalars
parametrized by the SO(4,4)/SO(4) x SO(4) coset.
We will focus on SU(2), singlet scalars which are the
highest components of the global symmetry multiplet and
correspond to supersymmetry preserving deformations.
Together with the dilaton o, there are five SU(2), singlet
scalars. The coset representative can be written as

L = e®Y1 a0V pa3Y13 pa4Y 14 (66)

Using the projector y"e* = €4, we can derive the following
BPS equations:

. 2me=3? sinh a, (67)
al = -
cosha, coshas coshay’

, 2me~3 sinh a, cosh a,

a, = —

, 68
cosh as cosh ay (68)
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. 2me™3? cosh a,; cosh a, sinh a;
as = — ’ (69)
coshay

a,’ = —2me~3? cosh a, cosh a, cosh ay sinhay,  (70)

1
o = 5 [3me=3° cosh a, cosh a, cosh a; cosh ay — ge°],

(71)

1
A = 3 [me=3? cosh a, cosh a, cosh a; cosh ay + g, 7).
(72)

We are interested in the RG flows with the symmetry
breaking patterns U(2) — SU(2), U(2) —» U(1) x U(1),
and U(2) - U(1) and the completely broken U(2). The
procedure is essentially the same as in the previous section,
so we will neglect some details and simply give the
solutions.

A. Flow to SU(2), x SU(2) SYM

In order to preserve SU(2) C SU(2) x U(1), only ay is
allowed to be nonvanishing. The above equations reduce to
three simple equations:

a, = —2me~?sinh ay, (73)
! -3
ol = 3 (3me™? coshay — g,€7), (74)
I 1 -3
A= 3 (me™? coshay + g,€°). (75)

d—;:

By introducing a new radial coordinate 7 via 4. e 3% asin

the previous section, we find the solutions

1+ e—2m?+C1
a, = +1In [W s
1 n g1 (3 cosh ay — cosh(3a,) + 18C,sinh’ay)
c=—- ,
4 6m
A=2mi+1In(1—eS72") 4 In(1+ 972" — 5.
(76)
Near the UV point, a4, o, and A behave as
a, ~ e 2, o~ e omr A ~2mr. (77)

Similar to the previous solutions, we find that the IR
singularity at 7 ~ 2% is physical for a4 ~ £ In(2mr — Cy)
if we choose C, = ié. In both cases, the IR metric is
given by

PHYSICAL REVIEW D 90, 086009 (2014)
ds* = (2mr — C)"dxi , + dr’. (78)

Other choices of C, lead to unacceptable singularities.

B. Flow to SU(2), x U(1) x U(1) SYM

In this subsection, we will give the solution for the
flow to SYM with SU(2), x U(1)? symmetry. To find
this solution, we set a; = a, = a4, = 0. The BPS equa-
tions, which are similar to those in the previous sub-
section, give the following solutions, in terms of the 7
coordinate:

1+e—2m7+C1
as = +1In |:71 — e—zm;‘JrCl s
o —lln g1(3 cosh as — cosh(3a3) + 18C,sinh’as)
4 6m ’

A =2mF+In(1=e72") +1n (14 eC72") —0.
(79)

Near the UV point, we find a3 ~ e, ¢ ~ e ", and
A~2mr. In the IR, 7 - %, the physical solution with
C, = +3 is given by

1
a4~:|:1n(2m7’—C1), 6~—Zln(2m7’—C1),

ds? = (2mr — C)"0dx? , + dr’. (80)

C. Flow to SU(2)z x U(1) SYM

We then consider the flow that breaks SU(2) x U(1)
global symmetry to U(1). In this case, we turn on both
az and a4. This leads to more complicated equations due
to the coupling between a, and a;. We will regard a, as
a new variable and find that the solutions for a3, o, and A
are given by

az = sinh~![e“ tanh ay),

91

c=——In
4 {6\/§m
—2coshay[(1 + €2¢1) cosh(2ay)

[72C28inh3a4(1 + ezc])

— 2 7] \/ 2+ 2e2CItanh2a4}} .
A = —0 — Insinh ay. (81)

The solution of a, in terms of 7 is given by

SR R \/1 + cosh(2ay) + 2¢%€ sinh2a4_

3 (82)

m

At the UV point, we find the expected behavior

azy~e M, g~e S and A~2mr. In the IR, we
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consider the behavior of the solutions as a; — oo. In this

limit, the a4 solution becomes a, ~—In(2mr — C) for
some constant C. We find that the requirement for the

IR singularity to be acceptable is given by C, = § /146",
The behavior of as, o, and A is given by

1 ~
az ~ sinh~!eCr, o~ —Zln(2m7 -0),

A~§ln(2m?— C). (83)

a;y = sinh™! (e tanh ay),

PHYSICAL REVIEW D 90, 086009 (2014)

With the relation 2mr — C = 4(2m¥ — C)3, the metric in
the IR then takes the form of a domain wall

ds* = (2mr — C)Vdx3 , + dr’. (84)

D. Flow to SU(2); SYM

We now quickly look at the flow breaking the U(2)
symmetry completely. Finding the solution in this case
amounts to solving all of the six BPS equations. This,
however, turns out not to be difficult. The resulting
solutions for a;, o, and A are given by

o e®>sinhay
a, = sinh )
V1= + (1 4 €%1) cosh(2ay,)
o e® sinhay
a; = sinh ,
V2 =262 — 20 (242620 + €2©) cosh(2ay)

1 1
6= Zln [96\/§m\/4 +a? - azsech2a4} - Zln [g, (2304(a* + 4)Cysinh3ay \/0(2 +4 — a’sech’a,

— V2sechay(3a* + (a® + 4)2 cosh(4ay) 4+ 1602—4(a* + 6a* + 8) cosh(2ay) — 48))} ,

A = —o — Insinh ay,
| {8tanh2(2m7 - Cs)+a* - 4}
as = —cosh 5 ,
a” +4

2

where @ = V4?01 +2¢2C + 26, At the UV fixed point,
the solutions become

2mr —6mr

01.2’3,4 ~e N A~2mr. (86)

1[4t
144\ 72

to obtain a physical solution. The solution is then
given by

in order

In the IR, we have to set C, =

a, ~—In(2mir - C), az ~ sinh~'e€1,

G
. h_l e
a, ~ sinh™ ——,
V2 + 22
c
. e-3
a, ~ sinh™!

VA4 + 420 £ 220

1 5 N
o~ =7@mi=C).  A~ZIn2mi-C).

ds? = (2mr — C)0dx? , + dr?. (87)
All of the flows given above are driven by turning on

operators of dimension four and a VEV of a dimension
three operator.

(85)

V. CONCLUSIONS

We have studied various holographic RG flows from
matter coupled F(4) gauged supergravity. These flows
describe deformations of the UV N = 2 SCFTs with SU(2)
and SU(2) x U(1) global symmetries in five dimensions to
nonconformal N =2 SYM theories in the IR. We have
explored various symmetry breaking patterns and inter-
preted the solutions as RG flows driven by turning on
operators of dimension four in a vacuum with nonzero
VEV of a dimension three operator dual to the six-
dimensional dilaton, except for the flow to the SU(2)gi,,
SYM, which is driven by vacuum expectation values of
dimension three operators. We have also identified physical
flows which have acceptable IR singularities from the
resulting solutions. Therefore, these solutions might be
useful in the study of strongly coupled N = 2 SYM in five
dimensions. However, the identification of the dual five-
dimensional SYM corresponding to these solutions in the
IR is not clear. Accordingly, the precise physical interpre-
tation of these solutions needs to be clarified.

It is interesting to holographically compute various
characteristics of the 5D gauge theories such as the
Wilson loops, as done in [29]. It could be useful to do
this computation with the six-dimensional solutions given
here, similar to the four-dimensional gauge theories studied
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in [6,7]. The solutions found in this paper would hopefully
be useful in this aspect and for other holographic calcu-
lations. It will very interesting (if possible) to find a gravity
solution describing the enhancement of the global sym-
metry SO(2Ny) x U(1) to the Ey,,, fixed point in five
dimensions. In this aspect, the six-dimensional framework
considered here may not be able to accommodate this
solution since the symmetry enhancement is not seen at the
classical supergravity level, as remarked in [17].

It is not presently known how to embed the six-
dimensional F(4) gauged supergravity coupled to n vector
multiplets to 10 or 11 dimensions, although the pure F(4)
gauged supergravity and the theory coupled to 20 vector
multiplets are known to originate from massive type IIA
compactification on warped S$* and K3, respectively
[30,31]. The embedding of F(4) gauged supergravity in

PHYSICAL REVIEW D 90, 086009 (2014)

type IIB theory via the non-Abelian T duality has been
proposed recently in [32]. This might also provide another
mean to embed the six-dimensional gauged supergravity in
higher dimensions. It would be interesting to find such an
embedding, which in turn can be used to uplift the solutions
found here and in [20] to ten dimensions. This could pro-
vide some insight to the dynamics of D4/D8-brane system.
We hope to come back to these issues in future works.
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ABSTRACT: We study N = 2 seven-dimensional gauged supergravity coupled to three
vector multiplets with SO(4) gauge group. The resulting gauged supergravity con-
tains 10 scalars consisting of the dilaton and 9 vector multiplet scalars parametrized by
SO(3,3)/S0O(3) xSO(3) coset manifold. The maximally supersymmetric AdS7 vacuum with
unbroken SO(4) symmetry is identified with a (1,0) SCFT in six dimensions. We find one
new supersymmetric AdSy critical point preserving SO(3)giag C SO(3) x SO(3) ~ SO(4)
and study a holographic RG flow interpolating between the SO(4) and the new SO(3)
supersymmetric critical points. The RG flow is driven by a vacuum expectation value of
a dimension-four operator and describes a deformation of the UV (1,0) SCFT to another
supersymmetric fixed point in the IR. In addition, a number of non-supersymmetric criti-
cal points are identified, and some of them are stable with all scalar masses above the BF
bound. RG flows to non-conformal N = (1,0) Super Yang-Mills with SO(2) x SO(2) and
SO(2) symmetries are also investigated. Some of these flows have physically acceptable IR
singularities since the scalar potential is bounded above. These provide physical RG flows
from (1,0) SCFT to non-conformal field theories in six dimensions.
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1 Introduction

The AdS/CFT correspondence has attracted a lot of attention during the past twenty
years. The original proposal in [1] discussed many examples in various dimensions. These
examples included the duality between M-theory on AdS; x S* and (2,0) superconformal
field theory (SCFT) in six dimensions. The AdS7 x S geometry can arise from the near
horizon limit of M5-brane. In term of N = 4 seven-dimensional gauged supergravity with
SO(5) gauge group, the AdS; geometry corresponds to the maximally supersymmetric
vacuum of the gauged supergravity, see for example [2].

In this paper, we will explore AdS;/CFTg correspondence with sixteen supercharges.
The dual SCFT to the AdS7 background in this case would be (1, 0) six-dimensional SCFT.
Six-dimensional gauge theories with N = (1,0) supersymmetry are interesting in many
aspects. In [3], it has been shown that the theories admit non-trivial RG fixed points.
Examples of these field theories also arise in string theory [4], see also a review in [5]. After
the AdS/CFT correspondence, a supergravity dual of a (1,0) field theory with Eg global
symmetry has been proposed in [6]. The dual gravity background has been identified with
the orbifolds of AdS; x S* geometry in M-theory. The operator spectrum of the (1,0)
six-dimensional SCFT has been matched with the Kaluza-Klein spectrum in [7, 8].

Like in lower dimensions, it is more convenient to study AdS;.1/CFTy correspondence
in the framework of (d+1)-dimensional gauged supergravity. A consistent reduction ansatz
can eventually be used to uplift the lower dimensional results to string/M theory in ten or
eleven dimensions. A suitable framework in the holographic study of the above (1,0) field



theories is the half-maximal gauged supergravity in seven dimensions coupled to n vector
multiplets. The supergravity theory has N = 2 or sixteen supercharges in exact agreement
with the number of supercharges in six-dimensional (1,0) superconformal symmetry. This
has been proposed long time ago in [9]. With the pure gauged supergravity and critical
points found in [10] and [11], holographic RG flows to a non-supersymmetric IR fixed point
and to a non-conformal (1,0) gauge theory have been studied in [12] and [13].

Pure N = 2 gauged supergravity in seven dimensions admit only two AdS7 vacua with
one being maximally supersymmetric and the other one being stable non-supersymmetric.
To obtain more AdS7 critical points, matter coupled supergravity theory is needed. This
has been constructed in [14] but without the topological mass term for the 3-form field
which is a dual of the 2-form field in the supergravity multipet. Without this term, the
scalar potential of the matter coupled gauged supergravity does not admit any critical
point but a domain wall as can be verified by looking at the scalar potential explicitly
given in [14]. Although mistakenly claimed in [15] that the topological mass term is not
possible, the theory indeed admits this term as shown in [16] in which the full Lagrangian
and supersymmetry transformations of this massive gauged supergravity have been given.
This provides the starting point for the present work.

In this paper, we are interested in the gauged supergravity with SO(4) gauge group.
This requires three vector multiplets since six gauge fields are needed in order to implement
the SO(4) gauging. The theory can be obtained from a truncation of the maximal N = 4
gauged supergravity [17]. In addition to the dilaton, there are extra nine scalars from
the vector multipets parametrized by SO(3,3)/SO(3) x SO(3) ~ SL(4,R)/SO(4) coset
manifold. We will explore the scalar potential of this theory in the presence of topological
mass term and identify some of its critical points. The critical points will correspond to
new IR fixed point of the (1,0) SCFT identified with the maximally supersymmetric critical
point with SO(4) symmetry. We will also study RG flows between these critical points as
well as RG flows to non-conformal field theories.

The paper is organized as follow. We briefly review the matter coupled gauged su-
pergravity in seven dimensions and give relevant formulae which will be used throughout
the paper in section 2. Some critical points of seven-dimensional gauged supergravity
with SO(4) gauge group are explored in section 3. A number of supersymmetric and non-
supersymmetric critical points and the corresponding scalar masses will also be given in
this section. In section 4, we study supersymmetric deformations of the UV N = (1,0)
SCFT to a new superconformal fixed point in the IR and to non-conformal SYM in six
dimensions. Both types of the solutions can be analytically obtained. The paper is closed
with some conclusions and comments on the results in section 5.

2 N =2, S0O(4) gauged supergravity in seven dimensions

We begin with a description of N = 2 gauged supergravity coupled to n vector multiplets.
All notations are the same as those of [16]. The gravity multiplet in seven-dimensional
N = 2 supersymmetry contains the following field content

gravity multiplet : (ep’s @Z};‘, AL, Y4, By, 0). (2.1)



A vector multiplet has the field content (A4,, M, ¢"). Indices A, B label the doublet of
the USp(2)g ~ SU(2)g R-symmetry. Curved and flat space-time indices are denoted by
i, v, ... and m,n,..., respectively. B, and o are a two-form and the dilaton fields. For
supergravity theory coupled to n vector multiplets, there are n copies of (AM,AA,qﬁi)T
labeled by an index r = 1,...,n, and indices 7, j = 1,2, 3 label triplets of SU(2)g. The 3n
scalars ¢ are parametrized by SO(3,7)/SO(3) x SO(n) coset manifold. The corresponding
coset representative will be denoted by

L=(L/L), I=1,....n+3. (2.2)

The inverse of L is given by L= = (L!, L!)) where LI, = n!/Lj;; and L, = n'/L,,.
Indices i, j and r, s are raised and lowered by d;; and d,, respectively while the full SO(3,n)
indices I, J are raised and lowered by nr; = diag(———++4...4). There are some relations
involving components of L and are given by

nrg=—-L;/'L';+L;"Ly, L' =Ly,
L' L = o, L, L = 6%, (2.3)
Gaugings are implemented by promoting a global symmetry G C SO(3,n) to a gauge
symmetry. Consistency of the gauging imposes a condition on the G structure con-
stants f;; K

frie"nes + fy"ner = 0 (2.4)

meaning that 77; is invariant under the adjoint action of G. General semisimple gauge
groups take the form of G ~ Gy x H C SO(3,n) with Gy being one of the six possibilities:
SO(3), SO(3,1), SL(3,R), SO(2,1), SO(2,2) and SO(2,2) x SO(2,1) and H being compact
with dimH < (n + 3 — dimG)).

In this paper, we are interested in the SO(4) gauged supergravity corresponding to
Go = SO(3) and H = SO(3). To obtain AdS7 vacua, we need to consider the gauged
supergravity with a topological mass term for a 3-form potential. The 3-form field is a
dual of the 2-form B,,. With all modifications to the Lagrangian and supersymmetry
transformations as given in [16], the bosonic Lagrangian involving only scalars and the
metric can be written as

1 ) 1_..
e'L= 3R~ 20,00"0 — JP"" By~ V (2.5)

where the scalar potential is given by

1 . 1 4/2 o
V=g’ (C”’C’ir - 902> + 16h%e17 — {heBZC’. (2.6)

The constant h characterizes the topological mass term. The quantities appearing in the
above equations are defined by

P = L (850, + f1; K A]) L', Crsifry " L'\ L7 Lici,
1 . 1 i
Cir = —=f1s KLIjLJkLKTGUk, C=—-——7Iu KLIiLJjLKkE”k' (2.7)

V2 V2



We also need fermionic supersymmetry transformations with all fields but scalars vanishing.
These are given by

2 o 4
0y = 2D,e — \?ge_2C"yue — ghe%vﬂe, (2.8)
1 2 o 16
ox = —5’7“8“0'6 + \3/(;6206 = ge%he, (2.9)
oA = —i'y“PZTaie L em50 e (2.10)

V2

where SU(2)y indices on spinors are suppressed. ¢* are the usual Pauli matrices.

In the remaining of this section, we focus on n = 3 case with G = SO(4) ~ SO(3) x
SO(3). The first SO(3) factor is identified with the SU(2)z R-symmetry. To give an explicit
parametrization of SO(3,3)/SO(3) x SO(3) coset, we define thirty-six 6 x 6 matrices

(eab)ed = OacObds a,b...=1,...6. (2.11)
Non-compact generators of SO(3,3) are identified as
Yir = €ir+3 + €r43,, r=1,...,3. (2.12)
Accordingly, SO(3) x SO(3) generators can be written as
SO3)R : Jij = eij — €ji,
SO(3) : Jrs = €rg — Cap . (2.13)
In this case, the structure constants for the gauge group are given by

frox = (91€ijk: G2€rst) (2.14)
where g; and g9 are coupling constants of SO(3)gr and SO(3), respectively.

3 Critical points of N =2, SO(4) seven-dimensional gauged supergravity

In this section, we will compute the scalar potential of the SO(4) gauged supergravity and
study some of its critical points. Although complicated, it is possible to compute the scalar
potential for all of the ten scalars. However, the long expression would make any analysis
more difficult. Consequently, we will proceed by studying the scalar potential on a subset
of the ten scalars as originally proposed in [18]. In this approach, the scalar potential is
computed on a scalar submanifold which is invariant under some subgroup Hg of the full
gauge symmetry SO(4). This submanifold consists of all scalars which are singlet under the
unbroken subgroup Hy. All critical points found on this submanifold are essentially critical
points of the potential on the full scalar manifold. This can be seen by expanding the full
potential to first order in scalar fluctuations which in turn contain both Hy singlets and Hy
non-singlets. By a simple group theory argument, the non-singlet fluctuations cannot lead
to Hy singlets at first order. Their coefficients, variations of the potential with respect to
non-singlet scalars, must accordingly vanish. This proves to be more convenient and more
efficient. However, the truncation is consistent only when all relevant Hy singlet scalars
are included on the chosen submanifold. With only some of these singlets, the consistency
is not guaranteed.



3.1 Critical points on SO(3)giag scalars

We begin with the most simplest case namely the potential on SO(3)4iag C SO(3) x SO(3)
corresponding to the non-compact generator Ys = Y11 4 Yoo + Y33. The coset representative
is then parametrized by

L =e% . (3.1)
The scalar potential is given by

1

V=3

e [(9% + 93) (cosh(66) — 9 cosh(26)) — 8192 sinh (26)
+8 {g% — g3 4 64h%e% + 325 h (91 cosh? ¢ — gy sinh? qb)” . (3.2)

Notice that there is no critical point when h = 0 as mentioned before. In this case, the
SO(4) supergravity admits a half-supersymmetric domain wall as a vacuum solution. For
¢ = 0, the above potential is the potential of pure N = 2 gauged supergravity with SO(3)
gauge group studied in [10] and [11]. There are two critical points in the pure gauged
supergravity. One of them preserves all of the supersymmetry while the other completely
breaks supersymmetry. In our conventions, they are given by

o= 2ln [_1967111} and o= %ln [_é%] . (3.3)

It can be readily verified by using supersymmetry transformations of 1/,,, x and A" that the
first one is supersymmetric. We can bring the supersymmetric point to o = 0 by choosing
g1 = —16h and find that the two critical points are now given by

o=0, Vo = —240h°

and o=-In2, Vo = —160(25)A2 (3.4)

where Vj denotes the value of the cosmological constant.

Although non-supersymmetric, the second critical point has been shown to be stable
n [11]. In the presence of matter scalars, this is however not the case. This can be seen
from the scalar masses given below.

SO(3) x SO(3) | m?L?

(1,1) 12
(3,3) ~12

The AdS; radius L in our conventions is given by L = \/¥t5 = ﬁ. The (1,1) scalar
correspond to o, and (3,3) is the nine scalars in SO(3,3)/SO(3) x SO(3). The BF bound
in seven dimensions is m?L? > —9. Therefore, the non-supersymmetric critical point of
pure gauged supergravity is unstable in the matter coupled theory. This is very similar to
the six-dimensional N = (1, 1) gauged supergravity pointed out in [19].



Scalar masses at the supersymmetric point are given in the table below.

SO(3) x SO(3) | m?L?

(1,1) -8
(3,3) -8

In the dual (1,0) SCFT, these scalars correspond to dimension-4 operators via the relation
m2L? = A(A - 6).
There is one non-trivial supersymmetric point at

1. [g3 — 256h? 1. [go—16h
o=—-In|Z—— ]|, ¢p=—In|=—0>|,
5 g3 2" | g2+ 16h
8
240g; h?
Vo = —%. (3.5)

(g3 — 256h2)3

At this point, scalar masses are computed as follow.

SO(3)diag m2L? | A
1 —8 4
1 40 10
3 0 6
5 16 8

In the table, we have decomposed all of the ten scalars in representations of the SO(3)giag
residual symmetry. This can be done by the following decomposition. Under SO(3)gr X
SO(3), the nine scalars transform as (3,3). They then transform as 3 x3 =1+3+5
under SO(3)giag. Notice that the 3 scalars are massless corresponding to Goldstone bosons
of the symmetry breaking SO(3) x SO(3) = SO(3)diag-

There is one non-supersymmetric critical point given by

1 493 1. [g2—16h
oc=_—In|5—2 |, ¢p=—=In|Z—|,
5 | g3 — 256h2 27 | g2+ 16h

3 38

160(25 ) g3 h?

(g3 — 256h2)5

This critical point is stable as can be seen from the mass spectrum below.

SO(3)diag | m*L? A
1 12 | 3++21
1 36 | 3+3V5
3 0 6
5 6




For go = g1, we also find another non-supersymmetric critical point given by
=1 V2In8 4 4In(1 —27V?%)|, ¢=-5mm2  Vo=—246.675h". (3.7)

This critical point is however unstable. Scalar masses at this point are given below.

SO(3)diag m2L?
1 —4.278
1 16.059
3 0
5 —14.282

We can see that the mass of 5 scalars violates the BF bound.

3.2 Critical points on scalar manifold with smaller residual symmetry

To find other critical points, we can consider smaller residual symmetries. Breaking
SO(3)diag t0 SO(2)diag, wWe find that there are two singlets from SO(3,3)/SO(3) x SO(3)

with the coset representative
I = eP1(Y114Y22) h2Y33 (3.8)

This gives the scalar potential, with g; = —16h,
V= ée*" [2(g5 + 64Rh% (" — 4)) — 2(g3 + 256h%) cosh(2¢1)
—64he’s (16h cosh? ¢y cosh ¢ + g sinh? ¢; sinh <Z>2)
+sinh?(2¢1) [(g5 + 256h2) cosh(2¢2) + 32g2h sinh(2¢2)]] - (3.9)

This potential does not admit any supersymmetric critical points unless ¢; = ¢o which is
the previously found SO(3)giag point. When ¢y = 0, the above scalar submanifold preserves
SO(2) x SO(2) symmetry, but there is no critical point except for ¢o = 0. We are not able
to obtain any new critical points from the above potential.

We now move to scalar fields invariant under SO(2)r C SO(3)r. There are three
singlets corresponding to Y71, Y12 and Y73. Denoting the associated scalars by ¢;, 7 = 1,2, 3,
we find a simple potential

1
V=gt +16h%" + grhe2? 91702831 4 201)(1 4 202)(1 4 €2%3)  (3.10)

which does not admit any non-trivial critical points.

4 Supersymmetric RG flows

We now consider domain wall solutions interpolating between critical points identified in
the previous section. These solutions will generally have an interpretation in terms of



RG flows in the dual field theories in six dimensions. We are mainly interested in su-
persymmetric RG flows which can be obtained from solving BPS equations coming from
supersymmetry variations of fermionic fields 1, x and A". A stable non-supersymmetric
AdS7 critical point also admits a well-defined dual CF'T, but in most cases, finding the cor-
responding flow solutions requires a numerical analysis. Accordingly, we will not consider

non-supersymmetric flows in this paper.

4.1 An RG flow to a supersymmetric SO(3) fixed point

There is one supersymmetric AdS7 critical point with SO(3) symmetry. In this subsection,
we will find the domain wall solution interpolating between this point and the trivial critical
point at 0 = ¢ = 0.

Using the standard domain wall metric

ds? = 2A) 42 . 4 dr? 4.1
1,5

where da:ig) is the flat metric in six-dimensional space-time and the projection condition
~v-€ = €, we can derive the following BPS equations

1 _o

o = §€7573¢(64¢ _1) (91 ¥ gy + €2, — 62¢92> ’ (4.2)
11 .

o' = oo 757 (e — 1P - a1+ €)?) — 128he? | (4.3)
1 _o 4

A = 4*06_5_3‘1) [92(€2¢ —1)° - (1 + 6%)3} + 3h620 (4.4)

where ’ denotes d%' The above equations do not involve dv,. equation which will give the
Killing spinor condition on € as usual. The above equations clearly admit two critical
points. To find the solution, we combine equations (4.2) and (4.3) to

do _* [92(6% —1)° = gi1(1+e*?)* — 128he%+3ﬂ

Y 4.5
T [ R S ) )
whose solution is given by
9 [e? ~ go)e
o2y |0+t (91— 2)e) (4.6)
5 320 (1201 (e2? — 1) — 1)

In order for the solution to interpolate between the two critical points, we need to fix the

)2 )
integration constant to be C7 = %. We then find the solution for o

2 [ g192€? ]
oc=—-In|— 5 | -
5 8h (g1 + g2 + (g2 — g1)e??)

(4.7)

ar _ _—
%—6

w[Q

Introducing a new radial coordinate 7 via , we can solve equation (4.2) and

find the solution for ¢

- 1—e?
i =2gytan" " e? + 24/ g2 — g? tanh ™! [ed’, 9291 4 gy n {} 4.8
9192 g 92— 9 g2 + a1 92 1+ e? (4.8)



where we have neglected an additive integration constant to 7. Taking the combina-
tion (4.4)—1—%>< (4.3) and changing the variable from 7 to ¢, we find

dA ldo  ga(e® —1)° — gu(1+¢2)? o)

dp = 8dp  4(e*® —1) (g1 + g2 + (91 — g2)e??) '

The solution is easily found to be
1
A= 3 20 —0 —2In (2 — 2€4¢) +2In <g1 + g2+ (g1 — 92)€2¢>:| . (4.10)
Near the UV point o ~ 0 and ¢ ~ 0 with g; = —16h, we find
S U R (4.11)
’ 4h

since 7 ~ 1 near o ~ 0. The flow is then driven by vacuum expectation values (vev) of
relevant operators of dimension A = 4. In the IR, we find that the solution behaves as

4r ar (g% — 256h2)%

o~e L, o~er, L= 1 (4.12)
4dhg3

From this, we see that the operator dual to ¢ acquires an anomalous dimension and has
dimension 10 in the IR. This is consistent with the value of m2L? given previously.
4.2 RG flows to non-conformal field theories

A supersymmetric flow to non-conformal field theory in pure gauged supergravity has been
studied in [13]. We will study similar solutions in the matter coupled gauged supergravity.
These solutions would be a generalization of the solution given in [13].

4.2.1 Flows to SO(2) x SO(2), 6D Super Yang-Mills

We first consider SO(2)r singlets scalars. With v,e = ¢, the BPS equations for these three
singlets, denoted by ¢;, i = 1,2,3, o and A are given by

1

o) = 56_%_¢1gl(e2¢1 - 1), (4.13)
oy = %e_%_@gl(ew2 - 1), (4.14)
o = som T g (e 1), (4.15)
o' = — s e ETOTEI (L L (14 (14 ) - e, (416)
Al = —%Ogle*%*m*@*%(l +e21) (1 4 €292)(1 + €2%3) + %he%. (4.17)

The above equations clearly admit only one critical point at ¢; = 0.



For ¢1 = ¢2 = 0, the solution will preserve SO(2)r x SO(2) symmetry. This is easily
seen to be a consistent truncation. The solution to the above equations is given by

1+ 69177-‘,-01
¢3 = :l:h’l |:1_6g11;+01 )

o= 26— 2m [_ff [4cy (20 —1) - 1}] ,

A= é [2¢3 — o —2In(eX — 1)] (4.18)
dr __
dr _

Near the UV point, the asymptotic behavior of ¢35 and o is given by

. . ~ . . _g
where as in the previous case 7 is related to r via e 2.

In the IR, we will consider ¢3 > 0 and ¢3 < 0, separately. For ¢3 > 0, there is a
singularity when ¢3 — oo as 16h7 ~ C7. With Cy # 0, we find

65 ~ — In(16h7 — Cy), UN%mwm—og
1 1
A~ —§(2¢3 + O') = g ln(16h17 — Cl) . (420)

As 16h7 ~ C4, we find the relation between r and 7 to be 16hr — C' = 2(16h# — C’l)g with
C being another integration constant. As expected from the general DW/QFT correspon-
dence [20-22], the metric in the IR takes the form of a domain wall

ds® = (16hr — C)3da} 5 + dr’ (4.21)

where the multiplicative constant has been absorbed in the rescaling of the x* coordinates.
Flows to non-conformal field theories usually encounter singularities in the IR. As can
be seen from the above metric, there is a singularity at 16hr ~ C. The criterion for
determining whether a given singularity is physical or not has been given in [23]. The
condition rules out naked time-like singularities which are clearly unphysical. According to
the criterion of [23], the IR singularity in the solution is acceptable if the scalar potential
is bounded above. One way to understand this criterion has been given in [24] for four-
dimensional gauge theories. We will follow this argument and briefly discuss the meaning of
the criterion in [23] in the context of six-dimensional field theories. Near the IR singularity,
scalars ¢;, assumed to be canonical ones, and the metric warped factor A behave as

¢i ~ B;In(r —rg), A~ kln(r —ro) (4.22)

where we have chosen the integration constant so that the singularity occurs at ro. In the
IR, the bulk action for these scalars mainly contains the kinetic terms since the potential
is irrelevant. This is because the potential diverges logarithmically, but the kinetic terms
go like (r — 79) 2. According to the AdS/CFT correspondence, the one point function or

the vacuum expectation value of operators O; dual to ¢; is given by (O;) = (?Tf. Using
1
5= / Exdred0,$:0" 6, (4.23)

,10,



we find

08 - -
<Oz> = w ~ 66A8T¢i ~ BZ'(T — 7'0)6'{ ! . (4.24)

We can see that (O;) diverges for k < %. We then expect that solutions with x < % will
be excluded. In four dimensions, it has been shown that this is related to the fact that the
scalar potential becomes unbounded above. In the present case, we will see in the solutions
given below that this is the case namely all solutions with x < % have V' — oc.

It can be checked by using the scalar potential given in (3.10) that as 16h7 ~ Cy, the
solution in (4.20) gives V' — —oo. The solution is then physical and describes a supersym-
metric RG flow from (1,0) SCFT to six-dimensional SYM with SO(2) x SO(2) symmetry.

For C5 = 0, the solution becomes

2
gZ53 ~ — ln(16hf - Cl), g~ —5 ln(lﬁhf - Cl),

ds®> = (16hr — C)%da:%ﬁ +dr?. (4.25)

This is also physical since it leads to V' — —o0.
For ¢35 < 0 and 16h7 ~ C1, the above solutions give, for any values of Cs,

2
¢3 ~ ln(16hf - Cl), g~ gln(16hf - Cl),

ds® = (16hr — C)3da? 5 + dr? (4.26)

which give rise to V' — —oo. This solution is then physically acceptable.

The solution with all ¢; # 0 turns out to be very difficult to find although the above
BPS equations suggest that ¢1 = ¢2 = ¢3. Most probably, a numerical analysis might be
needed. Therefore, we will not further investigate this case.

4.2.2 Flows to SO(2), 6D Super Yang-Mills

As a final example, we consider RG flows to non-conformal theories from SO(2)giag singlet
scalars corresponding to Y11 + Yoo and Y33. The relevant BPS equations are given by

o1 = ée—%—2¢1—¢2(64¢1 -1 [91 +92+ (01 — g2)€”| | (4.27)
P = ée—%—%—@ [gl(l +e291)2(e292 — 1) — go(1 + €%92) (1 — 1)2] , (4.28)
o = 2—10@*%72‘2517‘1’2 [g2(62¢2 —1)(e*?t —1)? — g1 (1 + €291)%(1 + €2%2)

—128he%"+2¢1+¢2} . (4.29)
A= 4—1()6‘%‘2¢1‘¢2 [92(62” —1)(e¥ —1)% — i (1+ €*1)*(1 4 €22)

+32h6570+2¢1+¢2] o (4.30)

These equations reduce to the SO(3)giag case when ¢o = ¢1. If we set ¢ = 0, consistency
requires that ¢; = 0. For ¢; = 0, the solution has SO(2)r x SO(2) symmetry. This gives
rise to the same solution studied above.

— 11 —



Since there are no interesting truncations, we now consider a solution to the above
equations with ¢1,¢2 # 0. Finding the solution for a general value of gy turns out to be
difficult. However, for go = g1 = —16h, we can find an analytic solution. The first step in
finding this solution is to combine (4.27) and (4.28) into a single equation

dos 1+ edP1 _ 9201+ ¢2

= 4.31
doy 1 — et ( s )
which is solved by
1 8Cy — 1+ etdr
=¢p1—-In|———~~——|. 4.32
$2=¢1—5In [ 3G, (4.32)

Changing to a new radial coordinate 7 via
tion (4.27)

% — 7272 we obtain the solution to equa-

1 1+ 601—1677/?
To find the solution for o, we change to another new coordinate R via % = —e 3927201

Equations (4.27), (4.28) and (4.29) can be combined to

5 do do doo o 2o+2¢1+¢2
sar tran tan = (1 ) (4.34)

which gives

2
o= [2¢1 +¢o+1n (1 - cgel%Rﬂ . (4.35)
Combing (4.29) and (4.30), we find an equation for A as a function of R
dA 1 dU o §U+2¢1+¢2

whose solution, after using o solution, is given by

o 1 __—16hR
A= 24—4111 |:Cg e } (4.37)

As in the previous case, we separately consider the two possibilities for ¢y > 0 and ¢; < 0.

For ¢1 > 0, we can find the relation between R and 7 by using the relation % =

—e~2¢1(7) | This results in
8hR = 8h — In [2(601 + 616}”’)} . (4.38)

In term of 7, the ¢ and A solutions become

9 Cyel6h

g = —5 |:2¢1 + ¢2 + In |:1 — m ) (439)
1 _ .

A= % +4In [03 _ gem 1607 (L1 elﬁmﬂ . (4.40)

Near the IR singularity at 16h7 ~ C7, we have ¢9 ~ —¢1 for all values of Cy. In
the IR, the solution behaves differently for C5 = 16e“" and Cs # 16e“1. This is because

— 12 —



the logarithmic term in (4.39) and (4.40) diverges, in this limit, when C3 = 16e“. For
Cs # 16e“1, we find

1 2 1
D1~ —o ~ —§ln(16hf - 1), o~ —5¢1 ~ In(16h7 — C1),
1
A~ g ~ 15 In(16h7 = C1), ds® = (16hr — C)3da? 5 + dr?. (4.41)

This gives rise to V' — oo which is physically unacceptable.
However, if C = 16e°", the solution becomes

3 1
o~ fgln(16h7’701), A~ 5ln(1hffC'1),
ds® = (16hr — C)5da? 5+ dr?. (4.42)
This gives V' — —o0, so this singularity is acceptable. We see that flows with ¢; > 0 are

physical provided that C3 = 16e°1. )
For ¢y < 0, the solution ¢; = —%In [%} gives

8hR = 8hF — In [2(601 - elﬁh’*)} . (4.43)

Accordingly, the solutions for ¢ and A become

2 03616}”:
1 - ~
A= % + 1 In |:Cg — 4e 6RO 616}”)2} . (4.45)

In this case, the logarithmic term in (4.45) diverges as 16h7 ~ C; when C3 = 0, but
the logarithmic term in (4.44) vanishes. When C3 # 0, the situation is reversed. Unlike
the ¢1 > 0 case, the value of Cy is important since there are two possibilities ¢1 = F¢o
depending Cy = % or Cy # %.

We begin with the first case with Cy = % and C3 = 0. The IR behavior of the solution
is given by

1 1
P1 ~ —pg ~ 3 In(16h7 — C1), o~ In(16h7 — C1),
A~ gln(mhf —Cy), 16hr — C = g(mhf — )3 (4.46)
The metric becomes
ds®> = (16hr — C)deig, + dr?. (4.47)
When Cj # 0, the solution in the IR becomes
1 _ 3 _
P ~ —pg ~ 5 In(16h7 — C1), o~ In(16h7 — C1),
A~ % In(16h7 — C4), ds®> = (16hr — C)%dxi5 + dr?. (4.48)

,13,



Both of them lead to V' — —oo. Therefore, the solution with ¢; < 0 and Cy = % is physical
for all values of Cj.
For Cs # %, we find, with C5 = 0, the IR behavior of the solution

1 6
b1 ~ P ~ 5ln(16h77—C’1), o~ _gln(16hf—01),
ds* = (16hr — )~ vdat 5 +dr”, (4.49)
and, for C3 # 0,
1 - 1 3
¢1 ~ ¢z ~ S I(16h7 = C1), o~ ZIn(16h7 — C1),
ds* = (16hr — C)3da? 5 + dr?. (4.50)

Both of them lead to V' — oco. We then conclude that flows with ¢1 < 0 and Cy # % are
not physical for any Cs.

It could be very interesting to have interpretations of these results in terms of six-
dimensional gauge theories.

5 Conclusions

We have studied some critical points of N = 2, SO(4) gauged supergravity in seven dimen-
sions. We have found one new supersymmetric AdS7 critical point with SO(3) symmetry.
Recently, many new AdS7 x Ms solutions have been identified in massive type ITA the-
ory [25]. It would be interesting to see weather the new supersymmetric AdS7 obtained
here could be related to the classification in [25]. We have also found a number of non-
supersymmetric AdSy critical points and checked their stability by computing all of the
scalar masses. We have found that although the non-supersymmetric critical point origi-
nally found in pure gauged supergravity has been shown to be stable, it is unstable in the
presence of vector multiplet scalars. On the other hand, new stable non-supersymmetric
points are discovered here and should correspond to new non-trivial IR fixed points of the
(1,0) SCFT.

An analytic RG flow solution interpolating between the SO(3) supersymmetric critical
point and the trivial point with SO(4) symmetry has also been given. To the best of
the author’s knowledge, this is the first example of holographic RG flows between two
supersymmetric fixed points of the (1,0) field theory in six dimensions. We have further
studied supersymmetric flows to non-conformal field theories and identified the physical
flows. These would provide more general flow solutions than those considered in [12]
and [13] and could be useful in a holographic study of the dynamics of six-dimensional
gauge theories similar to the analysis of [26]. Finding a field theory interpretation of the
gravity solutions obtained in this paper is also interesting.

We end the paper with a short comment on a more general situation with n vector
multiplets. The (1,0) field theory with Eg symmetry considered in [6] would need n =
248 + 3 vector multiplets. The resulting gauge group in this case is SO(4) x Eg. The total
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3 x (248 4+ 3) scalars, living on SO(3,248 +3)/SO(3) x SO(248 + 3) coset manifold, and the
dilaton transform as (3,3,1), (3,1,248) and (1,1, 1) under SO(3)r x SO(3) x Es. We have
considered only (3,3,1) and (1,1, 1) scalars which are Fg singlets. It is also interesting
to consider scalars in (3, 1,248) representation. Our solutions given in this paper are of
course solutions of the theory with SO(4) x Eg gauge group by the group theory argument
of [18].
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1 Introduction

Gauged supergravities in various dimensions play an important role in both string com-
pactifications and in the AdS/CFT correspondence. In some cases, a consistent truncation
can be made in such a way that a lower dimensional gauged supergravity is obtained via
a dimensional reduction of a (gauged) supergravity in higher dimensions on spheres [1].
Embedding lower dimensional gauged supergravities is now of considerable interest since
this provides a method to uplift lower dimensional solutions to string/M theory.

It is known that sphere reductions of 10 or 11 dimensional supergravities give rise to
gauged supergravity in lower dimensions. Well-known examples of these consistent sphere
reductions include S7 and S* reductions of eleven-dimensional supergravity and S° reduc-
tion of type IIB theory giving rise to SO(8), SO(5) and SO(6) gauged supergravities in
four, seven and five dimensions, respectively [2-4]. According to the AdS/CFT correspon-
dence [5], seven-dimensional gauged supergravity is useful in the study of N = (2,0) and
N = (1,0) field theories in six dimensions [6-10]. The latter describe the dynamics of M5-
branes worldvolume in M-theory and are less-known on the field theory side. Therefore,
seven-dimensional gauged supergravity is expected to give some insight to six-dimensional
field theories via gauge/gravity correspondence.

In this paper, we are interested in obtaining N = 2 seven-dimensional gauged su-
pergravity with SO(4) gauged group and topological mass term. In seven dimensions, the
theory is obtained by coupling three vector multiplets to the pure SU(2) gauged supergrav-
ity constructed in [11]. This matter-coupled theory has been constructed in [12] and [13].
The SO(4) gauged supergravity has also been constructed in [14] by truncating the max-
imal N = 4 SO(5) gauged supergravity. All of these constructions have not included the



topological mass term for the three-form field, and the resulting theory does not admit
AdS; vacuum solutions. It has been shown in [15] that the topological mass term is pos-
sible. The massive gauged theory has been explored in [16] in which new AdS; vacua and
the corresponding RG flow interpolating between these vacua have been given.

To give an interpretation to this solution in the string/M theory context, it is necessary
to embed this solution to 10 or 11 dimensions. The reduction ansatz of eleven-dimensional
supergravity giving rise to pure SU(2) gauged supergravity has been given in [17]. The
SO(4) gauged theory without topological mass term from a dimensional reduction of eleven-
and ten-dimensional supergravity has been given in [18] using the result of [19]. This result
is clearly not sufficient to uplift the solution in [16]. The dimensionally reduced theory
needs to include the topological mass term in order to admit AdS7 vacua. We will give an
extension to the result of [17, 18] by constructing SO(4) gauged theory including topological
mass term from a truncation of S* reduction of eleven dimensional supergravity. This
provides an ansatz to uplift the 7-dimensional solutions of massive N = 2 SO(4) gauged
supergravity to eleven dimensions.

The paper is organized as follow. In section 2, we give relevant formulae for N = 2
SO(4) gauged supergravity in seven dimensions. The embedding of this theory in eleven
dimensions is obtained via a consistent truncation of the S* reduction of eleven-dimensional
supergravity in section 3. We then use the resulting ansatz to uplift RG flow solutions from
the maximally supersymmetric AdS7 vacuum with SO(4) symmetry to non-conformal SYM
in section 4. We end the paper by giving some conclusions and comments in section 5.

2 SO(4) N = 2 gauged supergravity in seven dimensions

In this section, we give a description of SO(4) N = 2 gauged supergravity in seven dimen-
sions with topological mass term. All of the notations are the same as those in [15] to
which the reader is referred for further details.

The SO(4) gauged theory is obtained by coupling three vector multiplets to the N = 2
supergravity multiplet. The field contents are given respectively by

Supergravity multiplet : (6;371/};?, AL, Y4, By, o)
Vector multiplets : (A, A, )" (2.1)
where an index r = 1,2,3 labels the three vector multiplets. Curved and flat space-
time indices are denoted by p,v,... and a,b,..., respectively. B,, and o are a two-

form and the dilaton fields. The two-form field will be dualized to a three-form field
Cuvp- Indices 4,7 = 1,2,3 label triplets of SU(2)g. The 9 scalars ¢ are parametrized
by SO(3,3)/SO(3) x SO(3) ~ SL(4,R)/SO(4) coset manifold. The corresponding coset
representative of SO(3,3)/SO(3) x SO(3) will be denoted by

L=(L/ L), I=1,...,6. (2.2)

whose inverse is given by L~! = (L1, L1) where L!, = n!/L;; and L!, = n'/L,. Indices
i, j and r, s are raised and lowered by d;; and d,, respectively while the full SO(3, 3) indices
I,J are raised and lowered by n;; = diag(— — — + ++).



The SO(4) ~ SU(2) x SU(2) gauging is implemented by promoting the SU(2) x SU(2) ~
SO(3) x SO(3) € SO(3,3) to a gauge symmetry. The structure constants for the SU(2) x
SU(2) gauge group, which will appear in various quantities, are given by

frir = (91€ijk, ga€rst)- (2.3)

To obtain SO(4) gauge group, we will later set go = g1. The bosonic Lagrangian can be

written in a form language as

1 1, 1 5
L= 5R>|<]I—§e aU*F(IQ)/\Fé)—i*HM)/\H(ZL)—é*da/\da

1 » 1
——x P APy + —Hy ANwy—4hHy AN Cigy —V ox1 2.4
> 3 Hw N @ N Ce) (2.4)
where the scalar potential is given by
1 - 1 42 30
Vi=ge’ (C’"C’ir - 902> + 16h2e7 — theﬁc. (2.5)

The constant h describes the topological mass term for the three-form C3) with Hy) =
dC3). The quantities appearing in the above Lagrangian are defined by

pir = v (5{< Oy + fr) KA,{) Ly, Croi = f1, KL LY Ly,
1 Kyl 7J ijk 1 Kyl vJ ijk
Cor = ﬁfu L5 L7 Lrere™, ©= _ﬁfIJ L L% Lrcre”,
ary = LiILZ'J + L' Ly. (2.6)

The Chern-Simons three-form satisfying dwz) = F (12) AN F (12) is given by

1
W) = F(Iz) A A{1) - éfIJKA{l) A A{I) NAK (2.7)
with Flyy = dA{)) + 5f 5" Al A Af

It is also useful to give the corresponding field equations

d (e « Hy)) + 16hH 4 — \}EF{Q) NFly =0, (2.8)
Zd x do — %e"au * F(IQ) A Fé) +e % Hyy N Hy)
- [i (C“"CZ-T = ;02> +2/2he?7C — 64h264"] en =0 (2.9)
D(e%ary * Fjy) + \}iH(4) NFppy +#P" fr; KL Lig = 0 (2.10)
Dx P —e"L' Ly % Fly A Fh
I [\/ﬁe—"cﬁcm’“eijk + 4\/5]163760”} ~0. (2.11)

The Yang-Mills equation (2.10) can be written in terms of C* and C* by using the
relation 1
frg KL Lig = —ﬁeijkcﬂﬁj —C"5L;. (2.12)



In obtaining the scalar equation (2.11), we have used the projections in the variations of
scalars as in [12]

0L'y = X' L")+ X', 17,

SL'y = X" Lyr + X" Ly (2.13)
which lead to

5C? = 6V20C7 X,
2v2
3

We finally give supersymmetry transformations for fermions with all fermionic fields

3(C"Cyr) = 4V2C;,CT XK, IF — 220 CX (2.14)

r-

vanishing. These are given by

2 o 1
0ty = 2Dye — ie_ac’hﬁ — We_aHpo')\T (’Y;L’YWM + 57’)‘7)‘77“) €

30 2
—%G%Fggai By =577 y,) € — %he%'yuﬁ, (2.15)
ox = —%7"8”06 — %e%Fﬁyai'y“”e — 601\/56_01{/114)07“”/)06
—I—\?)/(?G_ZCE — ?egahe, (2.16)
oA = —i’y”Pffaie — %e%F/jvae — \jiegC’"aie (2.17)
where SU(2)g doublet indices A, B, ... on spinors are suppressed. ¢ are the usual Pauli

matrices.

3 Seven dimensional N = 2 gauged supergravity from eleven dimensions

We now construct a reduction ansatz for embedding SO(4) N = 2 gauged supergravity
mentioned in the previous section in eleven dimensions. The ansatz will be obtained from
a consistent truncation of the S* reduction of eleven-dimensional supergravity giving rise
to the maximal N = 4 SO(5) gauged supergravity in seven dimensions. To obtain the
topological mass term, we will impose the so-called odd-dimensional self-duality as in [17].

3.1 N =4 SO(5) gauged supergravity from seven dimensions

To set up the notations and make the paper self-contained, we briefly repeat the S* re-
duction of eleven-dimensional supergravity [3, 20]. We will work in the notations of [19]
and deal mainly with bosonic fields. The field content of eleven-dimensional supergravity
consists of the graviton §sy, gravitino @ZA) m and a four-form field F(4). Eleven-dimensional
space-time indices are denoted by M, N =0,1,...,10.

The S* reduction is characterized by the following ansatz

1 o
g2, = Asds2 + ?A%Tlglpwpm, (3.1)



. 1 4 : . A : .
Flay = péiis | g AW a" T DI A Dy \ D A D

+£A_1Ti5jqui1i2 A Du'® A Dp't — iA_2U;ﬁ‘1D,ul‘2 A...A\NDu®
g2 (2) g°
1 .

where the quantities appearing in the above equations are defined by

U=2TTyu'n’ — ATy, A =Tyu's, Pt =1,
Fg) = dAZ(]l) + gA[) A A(f), Dy’ = du' + gAE]l),u],
DT; = dTy; + gAf Tiy + g AL} T (3.3)
The symmetric matrix T;;, 4,7 = 1,...,5 with unit determinant parametrize the

SL(5,R)/SO(5) coset manifold.

The bosonic field content of N = 4 gauged supergravity is given by the metric g,
ten vectors Aé{) = A%lj)] gauging the SO(5) gauge group, five three-form fields SZS) and
four-teen scalars Tj;. The corresponding field equations are given by

D(Tyj % Sl3)) = F3) A Sly), (3.4)
Hiyy = gy Sy + et 0 Flg A I, (3.5)
DT F)) = —20T5) « DTy = 5o Fi 1 HE
+2?;5§;gj,g‘;j4 Figiz p Fjs n Fjsit — Sy A Sty (3.6)
D(Ty' « DTyy) = 29° (2T Thy — TeeTig) €ay + Tt Tyt 5 F3) A F(3)
T Sty A Sty = 505 [26 (2TiaTia = (Tia?)
AT T % Fl3) A FlY 4 Tra + Sfgy) A Ség)} (3.7)
where
H{yy = DSy = dS(s) + gA{) A Sy . (3.8)
All of these equation can be obtained from the Lagrangian
Lr= Rel— ST« DT AT DTy — ~T T 5 F9 A FY, — 270 w5 A S
47 J ki 4 ik Tl (2) (2 479" (3)
+21gsg'3) NHip — ;g%ﬂ Say N L2 AFRI + ;9(7) — Vsl (3.9)

where €)(7) is the Chern-Simens three-form whose explicit form can be found in [22]. The
scalar potential for Tj; is given by

1

V=g (TT - 2(E-)2)- (3.10)



We have not given Einstein equation since we will not consider Einstein equation in
this paper. The consistency of the full truncation, including the Einstein equation, to
N =2 SO(4) gauged supergravity is guaranteed from the consistency of the S* reduction.

For completeness, we also repeat supersymmetry transformations of fermionic fields 1,
and A;. Indices i,7 =1,...,5 are vector indices of the composite SO(5). symmetry. Addi-
tionally, both ¢, and X; transform as a spinor under SO(5). with the condition F%)\% =0,
but we have omitted the SO(5), spinor indices to make the following expressions more com-
pact. The SO(5), gamma matrices will be denoted by T%. The associated supersymmetry
transformations are given by [22]

1 1 14 v 7,
dthy = Dye— %gTﬁ’yue — m (’Vu P _ 85 ) F,ji,l“we
1 vVpo 9 v lo}
. (’m L > ST (3.11)
L il ’
5)\; = 16\/5’}/“ <FIQZAF 5F2Fkl> F €+ ’Yl FJP
! WP( 453) S 4t T _Lp s )i (3.12)
20"\ jup® T 99 5 kRO ‘
where
R =0, T = () 1) /80,
1 1 ioie) .. . - il
De = de + Zwawabe + ZQ%JT”E, TY = (H_l)%’(H_l)j,J&”,
-1y i (si j k -1y i
Py + Qpz = (7Y, (5gd + gA(l)Z.]> 146, Sy = (171, Sy, (3.13)

with Hi% being the SL(5,R)/SO(5) coset representative.

3.2 SO(4) N = 2 gauged supergravity from S* reduction

We now truncate the N = 4 gauged supergravity to N = 2 theory with topological mass
term for the three-form field and SO(4) gauge group. In this process, the gauge group SO(5)
is broken to SO(4). We will split the index i as («,5) with aw = 1,...,4. Furthermore,
we will set Tsq, S and F®* to zero. The S* coordinates p’ will be chosen to be p’ =
(cos pu®,sin€) in which pu® satisfy p®p® = 1. Similar to p?, u® are coordinates on S3. The
scalar truncation is given by T;; = (Thg, T55) = (Xfag, X—4) with Taﬁ being unimodular.
The scalar field X will be related to the N = 2 dilaton.
With these truncations, the three-form field equations (3.4) and (3.5) become

D(X ™% S0y) =0 (3.14)

1
Sy = gX xSy + eaMF( 5 NE

7 - (3.15)

We have used €508y5 = €apys- From (3.14), we see that the four-form X4« 5(53) is closed.
We will denote it by
X4y SE)S) = —F(4) = —dC(3) (3.16)



or

Sy = X' x Flyy . (3.17)

To satisfy equation (3.15), we impose the odd-dimensional self-duality condition
5(53) = —gC(g) + w(3) (3.18)

or
X* % Fyy = —gC3) + w) (3.19)

where w(3), satisfying dw(s) = g€agrsF, (02"? A F&‘;, is the Chern-Simons term given by

1 B a4 _ Lo qaB \ qvm A gn
W(3) = gCaps (Fg) NAL — ggAE"l) NAL A A(l)) : (3.20)

Equations for S(Dé) are trivially satisfied.
For the Yang-Mills equations, it can be verified that setting F(E’Zo)‘ = 0 satisfies their

field equations. For F(Oé’gj , we find

% 0 A Flay (3.21)

—2F—1—1 5 =1 - 1
D (XTI T3« ) = =297« DTy, + Seapns B
where we have used the odd-dimensional self-duality condition.
We then consider scalar equations. Equations for T5, are trivially satisfied while the

Ts5 equation gives rise to the dilaton eqiation

1 1 .
-1 4 —2—1p—1 5o «
dX ™ dX) = =X s Fay A Flyy — 5o X 2T T« B A FG)

| ) o L

For T;; = Ti,3, we find
D(T) % DTyp) + dapd(X ™" % dX) = X 2T M5!« Fls A Fy)
+292 [X2 <2Ta7j—'75 — T’y'yfaﬂ) — X_gfaﬁ] €(7)

1 4 1 —2p—1p—1 oA
+dag [5X * Flay NFay = g XTI T+ Figy A EG)

2 S - -
—gg2 [2){2 (TA,(;TW; - 2(Tw)2> + X8 —2X 3Tw] 6(7)] . (3.23)
We can now use the X equation (3.22) and end up with
DTt s DTg) = 262 |2X2 (T Tys — S0 Tos ) — X 3T
oy B 9 ayfyB T 5yt af | €(7)
—2F—1G—1 , vk A 0B 5 9vo (s 7 L= 2
+X Ta'y T(s,g * F(g) A F(g) + 5046 59 X2\ ThsThs — i(T’W)

1

1 . L
+292X_3T,w} € 4X—2T;51TK;1 x Fiy A F""Y] (3.24)

(2)



With all of the above truncations, we find the following ansatz for the metric and the
four-form field

2
&%, = A3ds2 + g—ZA—%X3 Xcos2 €+ X tsin2 €T ;m,ﬂ dg>
1 ~ 1 ~
_?AigxilTa_ﬁl sin {ud¢Dp” + @AngflTa_ﬂl cos? EDp Dy, (3.25)
. 1 1
Foy = Fu Sin§+*X4COSf>I<F4 AdE + —=A2U cos® £dE N €3
(4) (4) (4) 7 (3)

1 - -
CaprsA2X 3 sin € cost € [STC“’”X‘ldX n DTC“‘} A D A DY A Dy

+3v 3

1 . . -
2 5 3€apys A 2 cos® et pt [cos2 EXATr DTPY — sin? X —36PA DT"

) 1
5 sin gTa"X_‘*cSﬁ)‘dX} A D" A Dy’ A dE + 55 c0s Eeasys X
g

1 N
X {2 cosEsinéX 4DpY — (X*4 sin? €7 + X2 cos? fTW,u”) dﬁ} /\f*ﬁ(‘)éf/\Du‘S (3.26)

U = sin?¢ <X_8 — X_3Taa) + cos? ﬁua,uﬂ <2X2TMTW3 — XQTQBTW — X_?’Ta/g)
1
€@) = gicapel “Dup’ AN DY A Dpl . (3.27)

All of the above equations reduce to the pure N = 2 gauged supergravity with SU(2)
gauge group for Tag = 0qp after using various relations given in [21]. Note that for
Tag = 0qp, equation (3.24) gives

1
et B8 _ & &
* F(J A Fé) = 150‘5 * F&) A F(J) (3.28)

which means that the SO(4) gauge fields A?f; must be truncated to those of SU(2) satisfying
Fy

2)
gauged supergravity which only admit SU(2) gauging.

= j:%eag,ygFé(;. This is expected since there are only three vector fields in the pure

The above equations can be obtained from the Lagrangian

1 2 1 B 5 1~—1 - F—1 1y
L7 R*]I—ZX TMTM*F(Q)/\F(”’) 4Taﬂ*DT57/\T75DT5a

1
—5X4 * Flay N Fay + geapysCiay A Fly) N Fy) —5X 2% dX ndX

1
—igF(ZL) A 0(3) — VI (3.29)
where the scalar potential is given by
1 - - . 1~
V= 592 X 82X 3T, +2X2 <Ta6Taﬂ — QTO%QH . (3.30)

For Tag = 0q3, we find Toe = Taﬁfa/g = 4. The above potential becomes

1
V= 592 (X% —8X 7% —8X?) (3.31)



which is exactly the same as that given in [17] up to a redefinition of the coupling constant g.
We can also check another truncation namely to U(1) x U(1) gauged supergravity. To
preserve SO(2) x SO(2) symmetry, we take the scalar matrix to be

91
ev2
91
~ ev?2
T = 6y (3.32)
e V2
_9
e V2
_ %2
and define X = e~ vi0. The potential (3.30) becomes
1 o[ 82 200 80 (@1 &
V:§g evio —8e V10 —4eVi0 (eVZ +e V2 (3.33)

which takes the same form as that given in [23]. Finally, it should be remarked that the
three-form field equation coming from the Lagrangian (3.29) needs to be supplemented
with the odd-dimensional self-duality condition as in the pure SU(2) gauged supergravity
discussed in [17].

The nine scalars, parametrized by T, of in the dimensionally reduced theory are encoded
in the SL(4,R)/SO(4) coset manifold. Therefore, in order to compare the result with
gauged N = 2 SO(4) supergravity given in the previous section, we need to use the relation
between SL(4,R)/SO(4) and SO(3,3)/SO(3) x SO(3) coset manifolds. This is given in [15].
For the details of this mapping, the reader is referred to [15]. We will only give the
SO(3,3)/SO(3) x SO(3) coset representative L4 = (L?,, L";) and that of SL(4,R)/SO(4),

Ve with R=1,...,4,
1 o
LA = Zr,%gsvfgvsﬁ (3.34)

where T'T and 1 are chirally projected SO(3,3) gamma matrices.
It can be shown that the scalar potential can be written as

1 : 1 42 a0
V=2 (C"C; — =C?) 4 16h%e* — ihe%C
4 9 3
1 1 -
= ge—" (TaﬁTaﬁ — 2T§a> 4 9Thahes + 16h2e% (3.35)

This form is similar to the potential (3.30) if Ta[g is identified with T;,5. Note that T;,3 and
C, C' contain the gauge coupling g; and ¢s. In order to compare the Lagrangian of the
two theories, we need to multiply the Lagrangian (2.4) by two and separate the coupling
constants g1 and go from the structure constants fryx = (g1€ijk, g2€rst). With these, the
two scalar potentials are exactly the same if we identify

g2 =g1=—-16h=—2g. (3.36)

We also need to redefine the following fields in the Lagrangian (2.4):

)
Hgy — —2, Cgy) = —2
=5 )



1 1
I _ 1 B 8 _ oI 1
Fl = ZFQBF(‘;) or  Fy= —ieaﬁv rlsF
X=¢73. (3.37)
By using (3.34), it can also be checked that
1 )
T T = 4r1 sUs (L' Lig + L' Lyy) - (3.38)

The field equations from the two theories also match.

We now move to supersymmetry transformations of fermions. The maximal N = 4
theory contains the gravitini v, and the spin—% fields A;. The latter is decomposed into
(AR, As5). The SO(5). I gamma matrices are accordingly decomposed as I = (DR, T3).
[ = IIT213T acts as the chirality matrix of SO(4). Following [18], we make the truncation

T=¢, =X =M =0. (3.39)

+ satisfy I'°et = +et with e = e +€¢~. We will now drop + superscript from €, A and Yy
In accordance with the bosonic truncation T% = (T, T55) (XT*8, X—4), we trun-
cate the SL(5 R)/SO(5) coset representative as 11, i = = (TR, 11;°). With the identification
= 2V R and I 5 = X2, we can write To‘ﬁ in term of SL(4,R)/SO(4) coset repre-
sentative VaR

TP = (Vg e and  Tre=(VHEV )S0as.  (340)

We then find that equations (3.11) and (3.12) become

1 - _ 1 _
51/}M = DME — %9<XTRR + X 4)')/u6 — mX 1 (")/#Vp — 85Z’)/p) FRSFVRpSE
1 9., 5
—%X < Yo OO — 5% > SVW (3.41)
SAp = lWPRX—la Xe+ 1rsfyﬂPRse + LX—WW TR — 1I‘RFST F3T¢
4 : 16v/2 5 i
- 1~ 1
——gX Tre — —gX (Trs — =Trrdps | e — — X ~24HPT S5 3.42
109 RE 9 < RS 5 TT RS> € 120 Y uvp€ ( )
The constraint F%A% = 0 imposes the condition /\; = —FR)\]}. Therefore, the indepen-

dent fields will be 1), and Ag. This is the reason for excluding 65 in the above equations.
We then identify TEAg with x and \g = A\g — %I‘RFSAS with A" in (2.17). Note that R
has only three independent components due to the condition I'BA\p = 0.

With these and the odd-dimensional self-duality, we end up with, after some gamma
matrix algebra,

1 ~ 1 _
oty = Dye— %gXTVMe — WX ! (’y#”p — 85Zyp) FRSF,ﬁSe
1 — oT oT
—509% dyue — MX2 (37,7777 — 86%7"") Fypore, (3.43)
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2 1 -
ox = X_lfyuauXe — ZgX Ye+ —gXTrpe

5 10
| } 1w
—@XQ’)’M pUF,uz/poe _ mX 1,}//L FRSFlﬁSea (344)
) 1 L= 1
1 B 1
_ﬁX 1’Y'LWFS <F£s + QERSTUFZ/U> €. (345)

In the above equations, we have used the following definitions
PRS = (V_l)?R <(5§d + gA(l)a6> V/@Tés)T,

Qns = V7 )ig (02d+ 94,7 ) Vi osyr,

1 1
De = de + Zwaw“b +4Q RS (3.46)
Notice that with our convention for I'’¢ = ¢, ['rg is anti-self dual. The field strength

Fg)s appearing in (3.43) and (3.44) must be accordingly anti-self dual. This should be

identified with the SU(2) field strength F(Zé) in (2.15) and (2.16). On the other hand, the

self dual part of I’ (1;59 appears in (3.45) and should be identified with F, (’”2) in (2.17).

In more detail, after using gamma matrix identities such as v,v"? = ~,”” + 2(52’7"}, we
can rewrite equation (2.15) as

V2 . I
(51/1“ = 2D/.L6 — %e 2 C’YMG — me UHPO-)\T (3,7Mp0')\7' — 865’)/0.)\7-) €
o 4
—f—OeEFpZUUZ (’ylf"’ —80077) € — ghe%yue. (3.47)

Using the relation C' = —%glf given in [15] with the relation g2 = g1 = —2¢ and iden-
tifying FprsT'®S = 21/2iFio’, we find that equation (3.43) matches with (3.47). Similarly,
equation (3.44) matches with (2.16). Note that in order to match the gravitino variation,
we need to multiply (3.43) by two.

Comparing (2.17) and (3.45) is more complicated since various terms are not related
to each other in a simple way. For example, we should write the anti-self dual part of I'gg
in terms of the anti-self dual t’ Hooft symbols 773%5 and Pauli matrices o

) = io'nins (3.48)
and similarly for the self dual part
Fg:g) = 10" RS - (3.49)
Accordingly, we should identify
1 1 1
F' = 577ZRSFRS and P = Jilgg (F,f;s + QeRSTUF,}{;U> . (3.50)

Equation (3.45) should then match with (2.17), but we refrain from giving the full detail
here due to the complicated algebra.

— 11 —



4 Embedding seven-dimensional RG flow to eleven dimensions

In this section, we will use the reduction ansatz obtained in the previous section to uplift
some seven-dimensional solutions. The dimensional reduction gives rise to the condition
g2 = g1 This makes the supersymmetric AdS7 critical point with SO(3)giag symmetry
found in [16] disappears. Accordingly, the flow solution given in [16] cannot be uplifted
to eleven dimensions with the present reduction ansatz. However, to give examples of the
uplifted solutions, we will study other solutions in the case of go = ¢;.

4.1 Uplifting AdS7 solutions

We now further truncate the nine scalars given by Taﬁ to one scalar invariant under
SO(3)diag C SO(3)xSO(3) ~ SO(4). This scalar sector has already been studied in [16]. We
will give more solutions in this section. Under SO(3)giag, the nine scalars transform as 1 +
3+ 5. There is only one singlet. It can be checked that the SO(3)giag singlet correspond to

¢
ez e®

)
€2 €¢
or =
® apf
2 e¢

~
|

(4.1)

e 2 e3¢

Tag can be written more compactly as Tag = (dape?, e73?) for a,b = 1,2, 3. By using (3.34)
and the explicit form of T and 74 given in [15], it is easy to verify that this V precisely
gives the SO(3,3)/SO(3) x SO(3) coset representative L used in [16].

Using this and the relation X = e_%, we find the scalar potential

vV = %ng*" e5a+e—6¢ —Ge 29 _ 3e2¢ 2@307% (1 + 364¢>] . (4.2)

This potential admits two AdS7 critical points given by

o=¢=0, Vo = —480h* (4.3)
1 1
oc=——In2, ¢=—-In2, Vo = —160 x 25h2 (4.4)
10 4
where we have used g = 8h or equivalently g = —16h as given in [16]. By using the BPS

equations given in [16], which are repeated below, we see that the second critical point is
non-supersymmetric. Scalar masses at this critical point can be computed to be

SO(3)diag | m*L?
1 —12
1 12
3 0
5 —12

— 12 —



where the AdS7 radius is given by L = \/i The three massless scalars are the expected
Goldstone bosons corresponding to the symmetry breaking of SO(4) to SO(3). One of the 1
and 5 scalars have masses below the BF bound m?L? = —9, so this critical point is unstable.

The first critical point is the trivial point preserving all supersymmetries and the full
SO(4) gauge symmetry. The scalar masses can be found in [16]. We will now uplift this
AdS7 vacuum to eleven dimensions. We begin with the coordinates pu® = (cos ¥ a®,sin)
in which *4® = 1. Since 0 = ¢ = 0, we then find A =1 and

1
ds?, = eTuv da:l 5t dr? + de? + = 7 608 2¢ (dyp? + cos® d3) (4.5)

32h2

3
F(4) = T cos’ EdEN €(3) (4.6)

where d€)3 is the metric on the two-sphere. The eleven dimensional geometry is given by
AdS7 x S*. Turning on the dilaton o would deform the four-sphere but leave the S inside
invariant. If ¢, o # 0, the metric would be further deformed in such a way that the S? part
described by d3 is invariant. The unbroken symmetry in this case is the SO(3) isometry
of this S? identified with the unbroken SO(3)diag. The SO(3) critical point is however
unstable. Therefore, we will not consider AdS7 solution with SO(3) symmetry.

4.2 Uplifting RG flows to non-conformal SO(3) super Yang-Mills

To give more examples, we will study RG flow solutions to non-conformal Super Yang-Mills
theories in the IR. We will work in the theory of section 2. With g5 = ¢g; and the standard
domain wall metric ansatz ds? = eA(’")d:cig)—i—er, the BPS equations taken from [16] become

¢ = —de"53¢ (e4¢> - 1) h, (4.7)
8 _o

o = 56_5_3¢ (1 + 3¢t — 4egg+3¢> h, (4.8)
4

A = 56 2730 (1 + 3¢9 4 620+3¢> (4.9)

in which % is denoted by ’. After changing to the new coordinate 7 given by % —e 3,
we find the solution

]
16h7 = In EjLeJ —2tan”" ¢ + C1, (4.10)
— €
. % [0 - [1+120, - 1205¢%] ], (4.11)
_ L _any] 1
A=7 [¢ 20n(1 — e )} S0 (4.12)

The solution interpolates between an AdS7 in the UV, 7 ~ r — oo, and a domain wall in
the IR, 4hi* — C, for a constant C.
At the UV, the solution becomes

__4r
o~ ¢~ e LT Tuy A~ dhr ~ —— (4.13)
Lyv

The eleven-dimensional metric is given by (4.5).

,13,



In the IR, we find that ¢ blows up as

¢~ —1In(4dhr — C) (4.14)

for a constant C'. The behaviour of ¢ depends on the value of the integration constant Cs.
For Cy = 0, we find

o~ —§ In(4hi — C) ~ —% In(4hr — C) (4.15)

where we have used the relation between 7 and 7 in the IR limit with C' being another

integration constant. The seven-dimensional metric is given by
ds3 = (4hr — C)?dai 5 + dr”. (4.16)
For Cy # 0, the solution becomes
6 S 3
o~z In(4hi — C) ~ 1 In(4hr — C),
ds? = (4hr — C)3da? 5 +dr? . (4.17)

Both cases give V' — —o0, so the solution is physical by the criterion of [24].
We now look at the eleven-dimensional geometry. For Co = 0 and Cy # 0, the eleven

dimensional metric is given respectively by

_1 /14, \? _2
dst, = (1 — sin? ¢ cos? w) 3 [(3hp) dxi5 +dp?| + 5972 (1 — sin? € cos? @Z)) 3 x
1
14 T 1 14 o2
X [<3hp> sin? € cos? Yd€? + 1 sin € sin(2v)) <3hp> dipd§
1/14, \" 7 1 14\ 7
= 24 cos?p | = 03 4.1
+4(3hp> dw+4cosw(3hp) s |, (4.18)
14\
_2 _4
ds?, = (cos&costp) 3 [<3hp) dx%,5 +dp*| + 397,2 (cos&costh) 3 X
14\ 1 14 \i
X <3hp> (1 — sin? £ cos? w) de? — 1 sin € sin(2v)) <3hp> d&dap
1 14\ 7
+7 cos? & (3hp) (sin® dyp® + cos? T/JdQ%)] (4.19)

where (%hp)% =4hr — C.

As expected, when turning on ¢ and o, the warped factors involve coordinates (£, ).
The S* is then deformed leaving the S? intact. If only o # 0, the S3 part of the internal
metric would be invariant as pointed in [17]. The deformation with only ¢ # 0 is not
possible since the BPS equation for ¢ would imply ¢ = 0 as pointed out in [16].

— 14 —



5 Conclusions

In this paper, we have constructed N = 2 SO(4) gauged supergravity in seven dimen-
sions with topological mass term. The resulting theory admit AdS7 vacua and could be
useful in the context of the AdS/CFT correspondence. The resulting reduction ansatz
has been found by truncating the S* reduction leading to N = 4 SO(5) gauged super-
gravity and can be used to uplift seven-dimensional solutions to eleven dimensions. We
have also constructed new seven-dimensional RG flow solutions and uplifted the resulting
solutions to eleven dimensions. The flows can be interpreted as deformations of the UV
N = (1,0) SCFT in six dimensions with SO(4) symmetry to non-conformal SYM with
SO(3)diag symmetry. These deformations are driven by vacuum expectation values of di-
mension 4 operators. Additionally, the result of this paper can be used to uplift flows to
SO(2) non-conformal gauge theories studied in [16] for g2 = g;.

However, the RG flow between two supersymmetric AdS7 critical points recently found
in [16] cannot be uplifted by using the reduction ansatz constructed here. It would be inter-
esting to find an embedding of this solution in 10 or 11 dimensions. It is also interesting to
extend the reduction ansatz given here to non-compact gauge groups SO(3, 1) and SO(2, 2).
The internal manifold should involve hyperbolic spaces H*' and H??2, respectively. Other
possible non-compact gauge groups are SL(3,R), SO(2,1) and SO(2,2) xSO(2,1). It would
be very interesting to find higher dimensional origins for these gauge groups as well. Finally,
more insight to six-dimensional gauge theories might be gained from studying these seven-
dimensional gauged supergravities via AdS7/CFTg correspondence. We hope to come back
to these issues in future works.
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1 Introduction

Gauged supergravities play an important role in string/M theory compactification and
gauge/gravity correspondence. Generally, a gauge supergravity theory admits many types
of gauge groups namely compact, non-compact and non-semisimple groups, and differ-
ent types of gauge groups give rise to different vacuum structures. Gauged supergravity
theories may be accordingly classified into two categories by the vacua they admit. AdS
supergravities are theories admitting a maximally supersymmetric AdS space as a vacuum
solution while those with a half-maximally supersymmetric domain wall vacuum are called
domain-wall supergravities. The former is useful in the context of the AdS/CFT corre-
spondence [1], and the latter is relevant in the DW/QFT correspondence [2, 3].

The study of N = (1,0) superconformal field theories (SCFT) in the context of
AdS;/CFTg correspondence has originally done by orbifolding the AdS; x S* geometry



of M-theory giving rise to the gravity dual of N = (2,0) SCFT [4-6]. And, recently, many
AdS7 solutions to type ITA string theory have been identified in [7]. These backgrounds
are dual to N = (1,0) SCFTs in six dimensions, and the holographic study of these SCFTs
has been given in [8]. Furthermore, a number of N = (1,0) SCFTs in six dimensions have
been found and classified in the context of F-theory in [9]. It would be desirable to have
a description of these SCF'T in terms of the gravity solutions to seven-dimensional gauged
supergravity. However, it has been pointed out in [10] that AdS7 solutions found in [7]
cannot be obtained from seven-dimensional gauged supergravity.

In the framework of seven-dimensional gauged supergravity, there are only a few re-
sults in the holography of N = (1,0) SCFTs. It has been proposed in [11] that the
N = (1,0) SCFTs arising in the M5-brane world-volume theories should be described by
N = 2 seven-dimensional gauged supergravity and its matter-coupled version. A non-
supersymmetric holographic RG flow within pure N = 2 gauged supergravity has been
studied in [12], and recently, new supersymmetric AdS7 critical points and holographic RG
flows between these critical points have been explored in [13]. The gauged supergravity
considered in [13] is the N = 2 gauged supergravity coupled to three vector multiplets
resulting in SO(4) ~ SU(2) x SU(2) gauge group with two coupling constants for the two
SU(2)’s. When these couplings are equal, the theory can be embedded in eleven dimensions
by using the reduction ansatz recently obtained in [14].

To find more supersymmetric AdS7 backgrounds, in this paper, we will consider the
N = 2 gauged supergravity in seven dimensions coupled to a number of vector multiplets
with non-compact gauge groups. The gauged supergravity is obtained from coupling pure
N = 2 supergravity constructed in [15] to vector multiplets [16]. Furthermore, the two-
form field in the supergravity multiplet can be dualized to a three-form field [17]. It turns
out to be possible to add a topological mass term to this three-form field resulting in a
gauged supergravity with a massive three-form field [18]. The latter differs considerably
from the theory without topological mass in the sense that it is possible to have maximally
supersymmetric AdS7 backgrounds.

We will see that there are new AdS7 critical points for non-compact gauging of the
N = 2 supergravity with topological mass term. These provide more examples of AdS7
solutions with sixteen supercharges. We will also find that some non-compact gauge groups
admit AdSs x S? and AdSs x H? geometries as a background solution. In the context of
twisted field theories, these solutions should describe a six-dimensional SCFT wrapped on
a two-dimensional Riemann surface. In the IR, the six-dimensional SCFT would flow to
another SCFT in four dimensions. These results give new AdS5 backgrounds dual to N = 1
four-dimensional SCFTs.

The holographic study of twisted field theories has originally been applied to N = 4
SYM [19]. Until now, the method has been applied to other dimensions, see for example [20—
23]. In [23], AdS5 solutions from a truncation of the maximal N = 4 gauged supergravity
in seven dimensions have been found. These AdSs geometries correspond to a class of
N =1 SCFTs in four dimensions obtained from Mb5-branes wrapped on complex curves.
In this paper, we will give more examples of these N = 1 SCFTs by finding new AdS5
geometries with eight supercharges in the half-maximal N = 2 gauged supergravity. We



also give some examples of RG flows from six-dimensional SCFT's to these four-dimensional
SCFEFTs. Furthermore, we find an RG flow from a four-dimensional N = 1 SCFT in the UV
to a six-dimensional N = (1,0) SYM in the IR. This flow gives another example of the
flows considered in [24] in which the flows from N =4 SYM to six-dimensional N = (2,0)
SCFT and N = 2* theory to five dimensional N = 2 SCFT have been studied.

The paper is organized as follow. In section 2, we describe N = 2 gauged supergravity
in seven dimensions to set up the notation and discuss all possible non-compact gauge
groups. These gauge groups will be studied in detail in section 3, 4, 5 and 6 in which
possible vacua and RG flow solutions will be given. In section 7, we give a summary of the
results and some conclusions.

2 Seven-dimensional N = 2 gauged supergravity coupled to n vector
multiplets

In this section, we give a description of the matter-coupled minimal N = 2 gauged super-
gravity in seven dimensions with topological mass term. All of the notations are the same
as those in [18] to which the reader is referred to for further details.

A general matter-coupled theory is constructed by coupling n vector multiplets to pure
N = 2 supergravity constructed in [15]. The supergravity multiplet (e}’, ﬁ‘, AL, x4, By, o)
consists of the graviton, two gravitini, three vectors, two Spin-% fields, a two-form field and
a real scalar, the dilaton. The only matter mutiplet is the vector multiplet (A, A oY)
consisting of a vector field, two gauginos and three scalars. We use the convention that
curved and flat space-time indices are denoted by u, v, ... and m,n, ..., respectively. Spinor

A are symplectic-Majorana spinors

fields, w;:‘, x4, M, and the supersymmetry parameter e
transforming as doublets of the R-symmetry USp(2)g ~ SU(2)gr. From now on, the SU(2)r
doublet indices A, B = 1,2 will be dropped. Indices i,j = 1,2,3 label triplets of SU(2)g.

The supergravity theory coupled to n vector multiplets has SO(3,n) global symmetry.
The n vector multiplets will be labelled by an index » = 1,...n. There are then n + 3
vector fields in total. Accordingly, only a subgroup G of the global symmetry SO(3,n) of
dimension dim G < n + 3 can be gauged. Possible gauge groups with structure constants
I JK and gauge algebra

[TI’TJ] = f[JKTK (2-1)

can be gauged provided that the SO(3,n) Killing form n;y, I,J = 1,...n + 3, is invariant
under G

fri"ney + fydner =0. (2.2)

Since 77y has only three negative eigenvalues, any gauge group can have three or less
compact generators or three or less non-compact generators. It follows from (2.2) that
the part of 1y corresponding to each simple subgroup G, of G must be a multiple of the
G, Killing form. Therefore, possible non-compact gauge groups take the form of Gy x H
with a compact group H C SO(3,n) of dimension dim H < (n + 3 — dim Gy) [18]. The
Gy factor can only be one of the five possibilities: SO(3,1), SL(3,R), SO(2,1), SO(2,2) ~
SO(2,1) x SO(2,1) and SO(2,2) x SO(2,1).



Apart from the dilaton ¢ which is a singlet under the gauge group, there are 3n
scalar fields ¢ parametrized by SO(3,1n)/SO(3) x SO(n) coset manifold. The associated
coset representative L = (L;%,L;") transforms under the global SO(3,n) and the local
SO(3) x SO(n) by left and right multiplications, respectively. Its inverse is denoted by
LY = (L1,  L1)) with the relations LI, = n!/L;; and L1, = n!/L,,.

The two-form field B,, can be dualized to a three-form field C,,, which admits a
topological mass term

h
366M1 M Hy s Cs.opir (2.3)

where the four-form field strength is defined by H e = 40),C, po)-
The bosonic Lagrangian of the N = 2 massive-gauged supergravity is then given by

e 1L = %R — ie"af gL I — 418 T2 [ po HMPT — Za“gawa — ;P;[P“
_1441\[ et PTHpy  paWps..pr + %h et M Hyy s Cpsopir =V
(2.4)
where the scalar potential is given by
V= ie—ff <c““cw - ;cﬁ> + 16h2e — 4\3/§h6350. (2.5)
The Chern-Simons term is defined by
Wuvp = 307, A — [ AL N AT A Ak (2.6)

with Fl, = 20, AL + £, A AL,

We are going to find supersymmetric bosonic background solutions, so the supersym-
metry transformations of fermions are needed. Since, in the following analysis, we will set
Cuvp = 0, we will accordingly give the supersymmetry transformations with all fermions
and the three-form field vanishing. These are given by

2 _o o 4
0, = 2D€e — \Sgezc”y“e — ;—OefF,ﬁJU’ By’ = 597 y,) € — ghe%'yue, (2.7)

1 ] , 2 _o 16
ox = —57“8 o€ — 1L()62FZ o'yHe + £€_2Ce - ge%he, (2.8)
| e
N = —irf'Pjo'e - iefF;l,’y“"e — \L@e*fcwale. (2.9)
The covariant derivative of € is defined by
1 i _ijk
D€ = 0,e+ 4“’# Yab + 40 €1 Q ik (2.10)

where v are space-time gamma matrices.



The quantities appearing in the Lagrangian and the supersymmetry transformations
are defined by

Py =L ((ﬁ{é’u + frs KA}D L'y, Q=LY (5f<3u + 1 KA,{) L'y,
1 1
Ci — =
r \/i \/i
Crsi = frg "L\ L' Lxi,  ary=L'1Lij+ L[ Lyj,
Fj, = L/F',  F,, =L/ F". (2.11)

Kl 7J ik Kl pJ ik
fry P L L Lipe?™,  C'= frg 7 LL Lige®™,

In the following sections, we will study all possible non-compact gauge groups Gg
without the compact H factor. This is a consistent truncation since all scalar fields we
retain are H singlets. All of the solutions found here are automatically solutions of the
gauged supergravity with Gy x H gauge group according to the result of Schur’s lemma as
originally discussed in [25].

Before going to the computation, we will give a general parametrization of the
SO(3,1n)/SO(3) x SO(n) coset. We first introduce (n 4 3)? basis elements of a general
(n+ 3) X (n + 3) matrix as follow

(ers)kr = 01K 0L - (2.12)
The composite SO(3) x SO(n) generators are given by

SOB):  JY =eji—ey,  ij=1,23,

SO(n) : Jg) = €543,4+3 — €r43,543, rs=1,....,n. (2.13)
The non-compact generators corresponding to the 3n scalars are given by
Yy = €ir+3 t €ry3 - (214)

The coset representative in each case will be given by an exponential of the relevant Y
generators.

3 SO(3,1) gauge group

The minimal scalar coset for embedding SO(3, 1) gauge group is SO(3,3)/SO(3) x SO(3).
We will choose the gauge structure constants to be

fIJK - _g(eijka ETSi)v ’i,j,T, s = 17273 (31)

from which we find f;;, & = %L fr; with !/ = (-1,-1,-1,1,1,1). Together with
the dilaton o, there are ten scalars in this case. At the vacuum, the full SO(3,1) gauge
symmetry is broken down to its the maximal compact subgroup SO(3). The ten scalars
transform as 1 + 1 + 3 + 5 with the first singlet being the dilaton.



Critical point o Vo L
I 0 —240h? oD
11 2102 | —160(28)h2 | 3

51 (22) 2(25)h

Table 1. Supersymmetric and non-supersymmetric AdSy critical points in SO(3,1) gauging.

SO(3)diag | m2L% | A
1 -8 | 4
1 40 |10
3 0 6
5 16 | 8

Table 2. Scalar masses at the supersymmetric AdS7 critical point in SO(3,1) gauging.

3.1 AdS; critical points

We now investigate the vacuum structure of the N = 2 gauged supergravity with SO(3,1)
gauge group. We simplify the task by restricting the potential to the two SO(3) € SO(3,1)
singlet scalars. This truncation is consistent in the sense that all critical points found on
this restricted scalar manifold are automatically critical points of the potential computed
on the full scalar manifold as pointed out in [25].

The scalar potential on these SO(3) singlets is given by

1
V= Ee‘“_&ﬁ [(1 + 8¢%? 4 3¢%? — 3259 4 3e3 1 8109 4 612(75) g°

3230439 (1 +e2 4 et 4 e6¢) gh+ 256h2e50+6ﬂ . (3.2)

The scalar ¢ is an SO(3) singlet coming from SO(3,3)/SO(3) x SO(3). It can be easily
checked that this potential admits two critical points at ¢ = 0 and
2. g 2.9

U:gln]-67h, and 0'2511187]7/ (33)

As in the SO(4) gauging studied in [13], the second critical point is non-supersymmetric
as can be checked by computing the supersymmetry transformations of fermions. We
will shift the dilaton field so that the supersymmetric AdS7 occurs at ¢ = 0. This is
effectively achieved by setting g = 16h. The gauge group SO(3,1) is broken down to its
maximal compact subgroup SO(3), so the two critical points have SO(3) symmetry. At
these critical points, the values of the cosmological constant (V) and the AdS7 radius (L)
are given in table 1.

In our convention, the relation between V;; and L is given by L = \/—7‘17? We can
compute scalar masses at the trivial critical point, o = 0, as shown in the table 2.

In the table, we have given the representations under the unbroken SO(3) C SO(3,1)
symmetry. The conformal dimension A of the dual operators in the six-dimensional SCE'T
is also given. The three scalars in the 3 representation correspondence to the Goldstone

bosons in the symmetry breaking SO(3,1) to SO(3). These scalars correspond to marginal



SO(3) | m2L? A
1 12 | 3++21
1 36 | 3(1+5)
3 0 6
5 0 6

Table 3. Scalar masses at the non-supersymmetric AdS7 critical point in SO(3,1) gauging.

operators of dimension six. From the table, we see that only the operator dual to the
dilaton is relevant. The other are either marginal or irrelevant.

Unlike in the SO(4) gauging in which the non-supersymmetric AdS7 is unstable, we
find that, in SO(3,1) gauging, it is indeed stable as can be seen from the scalar masses
given in table 3. From the table, we see that the operator dual to ¢ becomes irrelevant at
this critical point. We then expect that there should be an RG flow driven by this operator
from the N = 2 supersymmetric fixed point to this CFT. The gravity solution would
involve the metric g, and o. Since the flow is non-supersymmetric, the flow solution has
to be found by solving the full second-order field equations. In general, these equations do
not admit an analytic solution. We will not go into the detail of this flow here and will not
give the corresponding numerical flow solution. A similar study in the case of pure N = 2
SU(2) gauged supergravity can be found in [12].

3.2 AdSs critical points

We now look for a vacuum solution of the form AdSs x S2. In this case, an abelian gauge
field is turned on. There are six gauge fields A’, I =1,...,6, of SO(3, 1) in which the first
three gauge fields are those of the compact subgroup SO(3). We will choose the non-zero
gauge field to be A3. The seven-dimensional metric is given by

ds? = le(r)dx%,g, + dr? + €29 (d0? + sin? d¢?) (3.4)

where dxig is the flat metric on the four-dimensional Minkowski space. The ansatz for the
gauge field is given by

A% = acosfde, F3 = —asinfdf A do. (3.5)

From the metric, we can compute the following spin connections

w(bé = e 90 cot 9e?, w‘bf =g(r)e?,
wé,; = g(r)'e’, (,uﬂ?2 = flel (3.6)

From SO(3,3)/SO(3) x SO(3) coset, there are three singlets under this SO(2) C SO(3).
One of them is the SO(3) singlet mentioned before. The other two come from 3 and 5
representations of SO(3) with the former being one of the three Goldstone bosons. We can
then set up relevant BPS equations by computing the supersymmetry transformations of
Yy, x and A". We will not give 61, = 0 equation here. This will give rise to the equation
for the Killing spinors as a function of r.



We then impose the projections

YrE=¢€ and ivéd’ Se=¢ (3.7)
where hatted indices are tangent space indices. By imposing the twist condition
ag =1, (3.8)

we find that equation d1)g = 0 is the same as d1)4 = 0. The Killing spinors are then given
by constant spinors on S2. Equations §¢,,, u = 0,1,2,3 lead to a single equation for f(r).
With all these, we find the following set of the BPS equations

e~ 3 201+2¢2—¢3 (1 + 62453) (62¢3 _ 1) g

- 3.9
¢1 2 (1 + €4¢2) ) ( )
5 =0, (3.10)
1 .
¢ = —167572%7%729(” [Qae‘”%’l (€2¢3 - 1)
() (26200 4 11— 200 9e20r+0) 4 A 20 1) g (3.11)
o = Tloe—g—wl—%—zg(r) [2ae”+2¢1 (1 + 62¢3) 1 G4he 3o t201+65+29(r)
_ e29(r) (1 _9e2b1 _ A1 _ 205 _ 9 2d1+¢s) 4 64¢1+2¢3) g} . (3.12)
g(r) = _§a€%—¢3—29(r) (1 + €2¢3> + %heg"
L 520165 (1 _ 00201 _ AGL _ 205 _ 9 2(61+68) | e4¢1+2¢3) g, (3.13)
20 »o
1 . 4
f = Toaea—qss—zg(r) (1 4 €2¢>3) i gheza
+2i067%72¢1*¢>3 (1 _ 9201 _ b1 _ 203 _ 9 2(d1+¢3) + e4¢1+2¢>3) g (3.14)

where ¢;, i = 1,2,3 are the three singlets from SO(3,3)/SO(3) x SO(3). The ’ denotes .
To avoid the confusion with the gauge couplin we have explicitly written the S? war
gaug ping g, P y P

factor as g(r).

¢2, being one of the Goldstone bosons, disappears entirely from the scalar potential
which, for these SO(2) singlets, is given by

vV = i6—0—4¢1—2¢>3 [(1 4 2e101 4 o193 4 9pA(d1103) _ 1gedd1t20s 4 68¢>1+4¢3> g2

16
+329h6570+2¢1+¢3 <1 — 9201 _ b1 _ 203 _ 9,2(¢1+¢s) | 64¢1+2¢>3>

+256h265“+4¢1+2¢3} . (3.15)

When ¢35 = ¢1, this reduces to the SO(3) invariant potential (3.2). Equation (3.10) implies
that ¢9 is a constant. We will choose ¢2 = 0 from now on in order to be consistent with
the supersymmetric AdS7 critical point.



The AdSs x S? geometry is characterized by the fixed point solution of g(r)’ = ¢, =
o’ = 0. From the above equations, there is a solution only for ¢; = 0 and

2. g 1.9 1 g
(7—5lr112h7 g(r) = 21n3a+51n12h. (3.16)

2
Near this fixed point with g = 16h, we find f ~ (5%)2)5 hr. Therefore, the AdSs radius is

2
given by L aqs, = % (5%) 5. At this fixed point, the projection v,.e = € is not needed, so the
number of unbroken supercharges is eight. According to the AdS/CFT correspondence, we
will identify this AdSs solution with an NV =1 SCFT in four dimensions.

3.3 RG flows from 6D N = (1,0) SCFT to 4D N =1 SCFT

The existence of AdS5 x S? geometry indicates that the N = (1,0) SCFT in six dimensions
corresponding to AdSy critical point can undergo an RG flow to a four-dimensional N =1
SCFT. We begin the study of this RG flow solution by rewriting the BPS equations for

¢ =0

2 o ag
o = 5675 (ae”ng(T) +9- 16h657> , (3.17)
/ 1 o o—2g(r) g
g(r) = ze® (g — 4ae? 9" 4 4he2 ) , (3.18)
1 e 50
f = ge_f (g + ae” 29" 4 4h67> . (3.19)
Near the IR AdSs5 fixed point, we find
7T—1)———
g ~ g(’f’) ~ 6(\[ )LAdSS ,
r
~ . 3.20
L aas; (3.20)

We then conclude that the operators dual to o and g(r) become irrelevant in four dimensions
with dimension A = 3 + /7. We are not able to find an analytic solution to the above
equations. We therefore give an example of numerical solutions in figure 1.

At the IR fixed point, the value of ¢ does not depend on a, but different values of a
give rise to different solutions for g(r). In figure 1, we have given some examples of the
g(r) solutions with three different values of a, a = 1,2,3 with g = 16h and h = 1. From
the solutions, we see that, at large r, g(r) ~ r and o ~ 0. Furthermore, as g(r) ~ r — oo,
we find f(r) ~ g(r) ~ r. The UV geometry is AdS7 corresponding to the six-dimensional
N = (1,0) SCFT. The behavior of ¢ near the UV point is given by

__ 4r

o~ e FAdsy (3.21)

which indicates that the flow is driven by a VEV of a dimension-four operator.

3.4 AdSs; x H?> geometry

We now consider a fixed point of the form AdSs x H? with H? being a genus g > 1 Riemann
surface. In this case, we take the metric ansatz to be
e29(r)

2 (dz? + dy?). (3.22)

ds* = le(T)d:cig + dr® +



\ 0.02 - 20+
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(a) A solution for o. (b) Solutions for g(r).

Figure 1. RG flow solutions from N = (1,0) SCFT in six dimensions to four-dimensional N =1

SCFT with the g(r) solution given for three different values of a; a = 1 (red),a = 2 (green), a = 3
(blue).

The SO(2) gauge field is then given by
A= Edm, F = %dw Ndy. (3.23)
Yy Y

The spin connections computed from the above metric are given by

;0

w? = g(r)e?, wgf =g(r)'eY, wig = — 9N (3.24)

The twisted condition is still given by ga = 1. The BPS equations change by some signs,
and it is still true that the AdSs is possible only for ¢; = 0. The BPS equations, for ¢; = 0,
are then given by

2 ., .
o' =z} ( 7290 4 g 16he57), (3.25)
]. o 50
o) = ceF <g+4aea 29(r) 4 4h67) , (3.26)
1 .
J'= e 5( s 29”+4he2). (3.27)

The fixed point conditions o/ = g(r)" = 0 have the solution

a:gln—, g(r)=—=In _|_,] Toh

12h 2 3a (3.28)

2 g 1 [ g ] 1 g

In this case, there is no real solution for g(r) since the twisted condition requires that

g must have the same sign as a. Therefore, we conclude that there is no supersymmetric
AdSs x H? solution for SO(3,1) gauging.

4 SL(3,R) gauge group

In this section, we consider the SL(3,R) gauge group. The minimal scalar manifold to
accommodate this eight-dimensional gauge group is SO(3,5)/SO(3) x SO(5). The structure
constants can be obtained from the generators 17 = (i\a,iAs5,i\7, A1, A3, A4, Ag, Ag) with
I=1,...,8. ) are the usual Gell-mann matrices.
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SO@3) | m?2L? | A
1 -8 | 4
3 112 | 14
5 0 6
7 72 |12

Table 4. Scalar masses at the supersymmetric AdS7 critical point in SL(3,R) gauging.

SO(3) | m2L? A
1 12 3421
3 96 | 34105
5 0 6
7 36 | 3(1+5)

Table 5. Scalar masses at the non-supersymmetric AdS7 critical point in SL(3,R) gauging.

Under SL(3,R), the adjoint representation of SO(3,5) decomposes as
28 - 8+10+10".

At the vacuum, the SL(3,R) symmetry is broken down to SO(3) with the embedding 3 — 3.
Therefore, under SO(3), the 28 of SO(3,5) further decomposes as

28 +3+5+3+7+3+7.

The fifteen scalars transform under SO(3) as 3+ 5+ 7. The other representations 3+3+7
combine into the adjoint representation of the composite local SO(3) x SO(5) symmetry.

4.1 AdS; critical points

By computing the scalar potential, we find that there are two AdS7 critical points with
SO(3) symmetry as in the SO(3,1) gauging for vanishing vector multiplet scalars. One
of them is supersymmetric, and the other one is non-supersymmetric. We will similarly
set ¢ = 16h to bring the supersymmetric AdS; to ¢ = 0. The characteristics of these
two critical points are the same as in SO(3,1) gauging, so we will not repeat them here.
However, scalar masses at these two critical point are different and are given in table 4
and 5.

As in the previous case, the SO(3) singlet is the dilaton. In this case, there are five Gold-
stone bosons from the SL(3,R) — SO(3) symmetry breaking. The non-supersymmetric
AdS7 is stable as in the SO(3, 1) gauging and can be interpreted as a unitary six-dimensional
CFT. We then expect that there should be an RG flow from the supersymmetric AdS7 to
the non-supersymmetric one. As in the previous case, the flow is driven by a VEV of the
operator dual to the dilaton ¢. In the IR, the operator becomes irrelevant with dimension

A =3 ++/21.

- 11 -



4.2 AdSs critical points

We now study possible AdS5 fixed points. We will turn on a gauge field of SO(2) which is
a subgroup of the compact subgroup SO(3) C SL(3,R). Among the fifteen scalars, there
are three singlets under this SO(2), and we will denote them by ¢;, i = 1,2, 3. Each of the
three SO(3) representations, 3 + 5 + 7, gives one SO(2) singlet.

We again use the metric ansatz (3.4) and the gauge field A% = acosfd$. With the
twisted condition ga = 1 and the projectors v,.¢ = € and mé‘i’a?)e = ¢, we obtain a system of
complicated BPS equations. Since these equations might be useful for other applications,
we explicitly give them here

—$ 21— 75 (4 4¢ 5
V/3ge \/§¢3(e 1—1)(6 2—1) evi —1
(A
¢1 - 4(1+64¢2) ) (41)
3 . 20 4¢3

¢ = \4/9@ 572020 (1+e4¢2> (eﬁf’ - 1), (4.2)
¢g _ ie—%—2¢1—2¢2_%—29(7) |:4\/§a€0'+2¢1+2¢2 <1 . 6%)

16

4¢3 4¢3

4¢ 4¢ 49
_|_g€9(7“) <3e4¢1+4¢2+\/§’ +3e4¢2+7§’ . 4\/§€2¢1+2¢2+7§’ . 3e4¢1+ Vs _ 30 s

1364(01402) | 4\ /3o2(b1+602) | goddn _ goddr _ 3)} , (4.3)
o = ie_%_2¢1—2¢2—%_29(7') [4aeg+2(¢1+¢2) <1 +e f + 128he 5 +2¢1+2¢2+ +29( ))
20

4¢3

ge29(™) <\/§ (1 + 64¢1) — V32 _ 42014 02) _ |\ [3401+02) _ |\ f3.s
4¢- 4¢ 4¢- 4¢-
_\/§B4¢1+Tg . 462¢1+2¢2+T§ + \/§B4¢Q+Tg + \/§G4¢1+4¢2+‘/§>:| ’ (4.4)

2 o _2¢3 4¢3 4
g(r)/:_gaeg \/§ 29()(1+€‘/§)+5h620

_ige_%_2¢1—2¢2_% |:\/§ (1 +64¢1) _ \/§€4¢2 _ ¢)1+¢2 fe ¢1+¢2
40

¢ 40 44, 16

1 g_243_ 40 4

= TanQ v <1+e\/§) +gh620

_4710967%*2%*2@*% [\/§ (1 + e4¢1> _ \/§e4¢2 _ 462(¢1+¢2) - \/364(¢1+¢2)
49; 4¢; 4¢

—\/36753 (1 +e4¢>1) _de 261 +2¢2+ 223 f + \[64¢2+7§ + \/§G4¢1+4¢2+\/§:| ' (4.6)

It can be easily verified that the first three equations have a fixed point solution only when
¢; = 0 for all ¢ = 1,2,3. The remaining equations then reduce to the same form as in the
SO(3,1) case. The RG flow solutions can also be studied in a similar manner, and we will
not repeat it here.
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As a final remark, we note here that similar to the previous case, it is not possible to
have an AdSs x H? solution.

5 SO(2,2) gauge group

Unlike the previous two cases, this gauging does not admit a maximally supersymmetric
AdS7. The vacuum is rather a half-supersymmetric domain wall. This is not unexpected
since the minimal superconformal algebra in six dimensions has SU(2)r R-symmetry, but
the vacuum of this gauging has only SO(2) x SO(2) symmetry. The minimal scalar manifold
for embedding this gauge group is SO(3,3)/SO(3) x SO(3). The embedding of SO(2,2) in
SO(3,3) is given by the following structure constants

fry K= (glézjmkl,gzefgmﬁ) (5.1)
with 1 = 1,2,6, 7 = 3,4, 5, n; = (=1,-1,1) and nms = (—1,1,1).

5.1 Domain wall solutions

The vacuum of this gauging will have SO(2) x SO(2) symmetry. Among the nine scalars
from SO(3,3)/SO(3) x SO(3), there is one SO(2) x SO(2) singlet which will be denoted by
¢. The scalar potential for SO(2) x SO(2) singlet scalars is given by

1 30
V= 5916_0 + 4glh637 (6_¢ — e¢> + 16h2ee . (5.2)

It can be checked that this potential does not admit any critical points unless h = g; = 0.
The vacuum is then a domain wall.

To study the domain wall solution, we write down the associated BPS equations by
setting all the fields but the metric and scalars to zero. The metric is given by the domain
wall ansatz

ds? = eQA(T)dx%é +dr?. (5.3)
With the projection ~.€ = €, the relevant BPS equations read
& = —%gle_%_‘z’ (1+¢*), (5.4)
o — ée—%—qﬁ [gl (e% - 1) -~ 32he57”+¢] , (5.5)
Al = %e—%—qﬁ [gl <62¢ - 1) - 8h6570+¢] . (5.6)

By changing the radial coordinate from r to 7 with the relation % = e~ 7, it is not difficult
to find the solutions for ¢, o and A. These are given by

¢ =1In [tan 01_2911 ) (5.7)
2 2 T[16h
1.1 1

A=z In(1 + e2%) + Tk [1 — AC, (1 + ewﬂ (5.9)
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where C7 and Cs are integration constants. We have omitted the additive constant to
A since this can be removed by rescaling dxig) coordinates. According to the general
DW/QFT correspondence, this solution should be dual to a non-conformal N = (1,0)
gauge theory in six dimensions. As 7 — %, the two scalars are logarithmically divergent.
After changing the coordinate from 7 back to r, we find the behavior of ¢ and o as 7 ~ %,

which is equivalent to r ~ ng,

5 [C’ - glr} 7 1 [C’ - glr} (5.10)

o~ =3 SR

where C'is a new integration constant coming from solving for 7 in term of . After rescaling
dazig) coordinates, the metric in this limit is given by

ds®> = (C — glr)%d$%5 + dr?. (5.11)

5.2 AdSj5 critical points

We now look for a vacuum solution of the form AdSs x S?. In this case, there are two
abelian SO(2) gauge groups. The corresponding gauge fields are denoted by

A3 =asinfdg,  A® = bsinfde. (5.12)

The metric is still given by (3.4). In order to find the BPS equations, we impose the
projectors € = € and i7’?03¢ = e. The twisted condition is now given by

gib=1. (5.13)

Proceed as in the previous cases but with one more gauge field, we find the following
BPS equations

¢ = %e*%*‘b*?g(r) {ae” (1 - €2¢) — (1 + €2¢) (be” + e2g(r)g1)} , (5.14)
o = %e_%_(b_Qg(’") [(a —b)e” + (a4 b)e? T
+¢29() [<62¢ — 1) g1 — 32h6570+¢H , (5.15)
g(r) = %Oe*%*‘ﬁﬁg(’") [625’(7") [(€2¢ — 1) g1+ 8h6570+¢]
+4(b—a)e’ —4(a+ b)e"”d’] , (5.16)
= %Oe—g—qs—zg(r) [ezg(r) Kew _ 1) g+ 8he%°'+¢]
H(a—b)e’ + (a+ b)e"“ﬂ (5.17)

where ¢ is the SO(2) x SO(2) singlet scalar from SO(3,3)/SO(3) x SO(3).
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The equations ¢’ = ¢’ = g(r)’ = 0 admit a fixed point solution given by

6= lln VA2 — 3a?2 —a
2 2(a+0) ’

a2g? (m_ a)
32(a + b)h? (2b —3a+ sz)

1 (a+b)4<a—2b+\/m>5<3a—26—\/M)S

g(r) = 1 In

1 (5.18)
1024a3 g3 h? (a —V4b? — 3(12)

It can be checked that the solution exists for g1 < 0 and a < 0 with b > —a or g; <0
with @ > 0 and b > a. This in turn implies that g; and b always have opposite sign in
contradiction with the twisted condition ¢g1b = 1. Therefore, the SO(2,2) gauging does not
admit AdSs x S? geometry.

However, there exists an AdSs x H? geometry. In this case, we have the metric (3.22)
with the gauge fields given by

b
A3 =%y, A8 =24z, (5.19)
Y Y

The twisted condition is still given by ¢16 = 1. The BPS equations are given
by (5.14), (5.15), (5.16) and (5.17) but with (a, b) replaced by (—a, —b). The values of scalar
fields at the AdS}5 fixed point solution are real for g1 < 0 and a < 0 with b < a in compatible
with the twisted condition. Furthermore, it is not possible to have an AdSs fixed point with
a = +b. This rules out the possibility of AdSs fixed point with SO(2)qiag C SO(2) x SO(2)
symmetry. For a = 0, only one SO(2) gauge field turned on, it can also be checked that the
AdS5 fixed point does not exist. The b = 0 case is not possible since this is not consistent
with the twisted condition with finite g;.

5.3 RG flows from N =1 4D SCFT to 6D N = (1,0) SYM

According to the AdS/CFT correspondence, the existence of AdSs fixed point implies a
dual N = 1 SCFT in four dimensions. Near this AdSs critical point, the linearized BPS
equations give

pr~o~g(r)~ e T (5.20)
where L is the AdSs radius. We see that the AdSs should appear in the UV identified with
r — o0o. This UV SCFT in four dimensions undergoes an RG flow to a six-dimensional
N = (1,0) SYM corresponding to the domain wall solution given by equations (5.7), (5.8)
and (5.9). In the IR, the warped factors behave as f(r) ~ g(r) ~ In(C — glr)% while the
behavior of the scalars o and ¢ is given in (5.10). The flow is then driven by vacuum
expectations value of marginal operators dual to ¢, o and g(r). We give an example
of numerical flow solutions to the BPS equations in figure 2. This solution is found for
particular values of a = —1, b= -2, g = —% and h = 1 which give

¢ =-04171, o=-16095  g(r)=—0.2214 (5.21)
at the AdSs fixed point.
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(a) A solution for ¢. (b) A solution for o. (c) A solution for g(r).

Figure 2. An RG flow solution from N = 1 SCFT in four dimensions to six-dimensional N = (1, 0)
SYM.

As usual in flows to non-conformal field theories, the domain wall geometry in the IR
is singular. We have checked that the domain wall solution given in equation (5.10) gives
rise to a good singularity according to the criterion of [26]. Given the behavior of o and ¢
in (5.10), we find that the scalar potential is bounded above V' — —oo. Therefore, the IR
domain wall corresponds to a physical gauge theory in six dimensions.

6 SO(2,1) and SO(2,2) x SO(2,1) gauge groups

In this section, we consider the last two possible non-compact gauge groups SO(2,1) and
SO(2,2) x SO(2,1). We will see that both of them admit a vacuum solution in the form of

a domain wall.

6.1 Vacua of SO(2,1) gauging

In this case, the minimal scalar manifold is given by SO(3,1)/SO(3). There are three scalars
in this manifold. The structure constants of the SO(2, 1) gauge group can be chosen to be

fIJK = (geij}_wo)) E: 17274' (61)

This corresponds to choosing the SO(2, 1) generators to be (T41, Ta2, T12) from the SO(3,1)
generators (T3, Tu;), 4,5 = 1,2,3.

The scalar potential does not have any critical points. Therefore, we expect that the
vacuum is a domain wall. Using the domain wall ansatz for the metric and the projector
vr€ = €, we find the BPS equations for all of the four scalars

,_ (@ 1) (P -1y 6.2
== 2 (1+ e23) ’ o
& e (1) (- 1)g (6.3)

2 2 (1 + e293) ’ '

1 o
A —56_5_% <1 + e2¢3) 9s (64)
s 27106*%*%*@*4’3 (1 +e2¢1) (1 N 62¢>2) (ezwl) - i;he%, (6.5)
A — %e,%,@,mﬂpg <1 + 62¢1> (1 + 62¢2) (62¢3*1) g+ %h@QU, (6.6)

In these equations, ¢;, i = 1,2,3 are scalars in SO(3,1)/SO(3).
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It is difficult to find an exact solution with all scalars non-vanishing. On the other
hand, a numerical solution could be obtained by the same procedure as in the previous
sections. Since analytic solutions might be more interesting, we consider only a domain
wall solution preserving SO(2) C SO(2,1) symmetry. Among these ¢;’s, ¢3 is an SO(2)
singlet. It turns out that on this scalar submanifold the solution is the same as that given
in (5.7), (5.8) and (5.9) with ¢ replaced by ¢s.

6.2 Vacua of SO(2,2) x SO(2,1) gauging

The last gauge group to be considered is SO(2,2) xSO(2,1) ~ SO(2,1)xSO(2,1)xSO(2,1).
The minimal scalar manifold in this case is SO(3,6)/SO(3) x SO(6) with the embedding
of SO(2,2) x SO(2,1) in SO(3,6) given by the following structure constants

El_a 92675577&]7936231277%1)7 i= 1,4,5, 7=2,6,7, ; =3,8,9. (67)

fr & = (e
The Killing metrics are given by n;; = (=1,1,1), s = (—=1,1,1) and M5 = (—=1,1,1), and
g1, g2 and g3 are gauge couplings of the three SO(2,1) factors.

Apart from the dilaton, there are no scalars which are singlet under the maximal
compact subgroup SO(2) x SO(2) x SO(2). However, it can be shown that the potential
does not have any critical points for g;,h # 0. A simple domain wall solution can be
obtained by solving the BPS equations for ¢ and the metric. There might be other solutions
with non-vanishing scalars from SO(3,6)/SO(3) x SO(6), but we have not found any of
them. Therefore, we will restrict ourselves to the domain wall with only o and the metric
non-vanishing. Using the projector 7, = € as usual, we find the following BPS equations

2
d:—%&%, (6.8)
/ 420

A::geh. (6.9)

These equations can be readily solved for the solution

1 64hr
o= —an [ E —I—C] , (6.10)
1 64hr
A_mm[5+4 (6.11)

where C' is an integration constant. The seven-dimensional metric is given by
2 1.2 2
ds® = (64hr + 5C)sdxy 5 + dr (6.12)

where we have rescaled the dx%75 coordinates by %

For h = 0, there is a Minkowski vacuum with Vy = 0. All scalar masses at this critical
point are given in table 6. The SO(2)? singlet is the dilaton which is massless while the other
six massless scalars are Goldstone bosons of the symmetry breaking SO(2,1)% — SO(2)3.
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m? | SO(2) x SO(2) x SO(2) representation
0 (1,1,1)

0 (1,1,2)+(1 2,1) +(2,1,1)

o «(2,1,1)

i «(1,2,1)

y «(1,1,2)

Table 6. Scalar masses at the supersymmetric Minkowski vacuum in SO(2,2) x SO(2,1) gauging,.

7 Conclusions

We have studied N = 2 gauged supergravity in seven dimensions with non-compact gauge
groups. In SO(3,1) and SL(3,R) gaugings, we have found new supersymmetric AdS7
critical points. These should correspond to new N = (1,0) SCFTs in six dimensions.
We have also found that there exist AdSs x S? solutions to these gaugings. The solutions
preserve eight supercharges and should be dual to some N = 1 four-dimensional SCFT with
SO(2) ~ U(1) global symmetry identified with the R-symmetry. We have then studied RG
flows from the six-dimensional N = (1,0) SCFT to the N = 1 SCFT in four dimensions
and argued that the flow is driven by a vacuum expectation value of a dimension-four
operator dual to the supergravity dilaton. A numerical solution for an example of these
flows has also been given. In addition, we have shown that both of the gauge groups admit
a stable non-supersymmetric AdS7 solution which should be interpreted as a unitary CFT.
This is not the case for the compact SO(4) gauging studied in [13] in which the non-
supersymmetric critical point has been shown to be unstable.

In the SO(2,2) gauging, we have given a domain wall vacuum solution preserving half
of the supersymmetry. According to the DW/QFT correspondence, this is expected to be
dual to a non-conformal SYM in six dimensions. This SO(2,2) gauging does not admit
an AdSs x S? solution but an AdSs x H? geometry with eight supercharges. The latter
corresponds to an N =1 SCFT in four dimensions with SO(2) x SO(2) global symmetry.
It is likely that the a-maximization [27-29] is needed in order to identify the correct U(1)r
symmetry out of the SO(2) xSO(2) symmetry. We have studied an RG flow from this SCFT
to a non-conformal SYM in six dimensions, dual to the seven-dimensional domain wall, and
argued that the flow is driven by vacuum expectation values of marginal operators. We
have also investigated SO(2,1) and SO(2,2) x SO(2,1) gaugings. Both of them admit a
half-supersymmetric domain wall as a vacuum solution. For vanishing topological mass,
the SO(2,2) x SO(2,1) gauging admits a seven-dimensional Minkowski vacuum preserving
all of the supersymmetry and SO(2) x SO(2) x SO(2) symmetry.

Due to the existence of new supersymmetric AdSy critical points, the results of this
paper might be useful in AdS7/CFT¢ correspondence within the framework of seven-
dimensional gauged supergravity. The new AdSs backgrounds could be of interest in the
context of AdS;/CFTy correspondence. RG flows across dimensions described by gravity
solutions connecting these geometries would provide additional examples of flows in twisted
field theories. It is also interesting, if possible, to identify these AdSs critical points with
the known four-dimensional SCFTs.
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Until now, only the embedding of the SO(4) gauging of N = 2 supergravity coupled
to three vector multiplets in eleven-dimensional supergravity has been given [14]. The
embedding of non-compact gauge groups in ten or eleven dimensions in the presence of
topological mass term is presently not known. It would be of particular interest to find
such an embedding so that the results reported here would be given an interpretation in
terms of brane configurations in string/M theory.
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ABSTRACT: We study AdS; x ¥ and AdS, x 33 solutions of N = 2, SO(4) gauged
supergravity in seven dimensions with Y53 being S*3 or H*3. The SO(4) gauged
supergravity is obtained from coupling three vector multiplets to the pure N = 2, SU(2)
gauged supergravity. With a topological mass term for the 3-form field, the SO(4) ~
SU(2) x SU(2) gauged supergravity admits two supersymmetric AdS; critical points,
with SO(4) and SO(3) symmetries, provided that the two SU(2) gauge couplings are
different. These vacua correspond to N = (1,0) superconformal field theories (SCFTSs)
in six dimensions. In the case of ¥y, we find a class of AdSsxS? and AdS5x H? solutions
preserving eight supercharges and SO(2) x SO(2) symmetry, but only AdSs x H?
solutions exist for SO(2) symmetry. These should correspond to some N = 1 four-
dimensional SCFTs. We also give RG flow solutions from the N = (1,0) SCFTs in
six dimensions to these four-dimensional fixed points including a two-step flow from
the SO(4) N = (1,0) SCFT to the SO(3) N = (1,0) SCFT that eventually flows to
the N = 1 SCFT in four dimensions. For AdS, x X3, we find a class of AdSs x S®
and AdS, x H? solutions with four supercharges, corresponding to N = 1 SCFTs in
three dimensions. When the two SU(2) gauge couplings are equal, only AdS, x H? are
possible. The uplifted solutions for equal SU(2) gauge couplings to eleven dimensions
are also given.

KeEYyworDs: [AdS-CE'T correspondence, Gauge/Gravity Correspondence and
bupergravity Modeld.
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1. Introduction

Six-dimensional superconformal field theories (SCFTs) are interesting in various as-
pects. In the context of M-theory, these SCFTs arise as a worldvolume theory of
Mb5-branes in the near horizon limit. The correspondence between a six-dimensional
N = (2,0) SCFT and M-theory on AdS; x S* is one of the examples given in the
AdS/CFT correspondence originally proposed in [M]. This AdS;/CFT¢ correspondence
has been explored in great details both from the M-theory point of view and the effec-
tive N =4 SO(5) gauged supergravity in seven dimensions.

In this paper, we are interested in the half-maximal N = (1,0) SCFTs in six di-
mensions. It has been shown in [B] that N = (1,0) field theory possesses a non-trivial
fixed point, and recently many N = (1,0) SCFTs have been classified in [B, @] and
[H). The holographic study of this N = (1,0) theory has mainly been investigated by
orbifolding the AdS; x S* geometry of eleven-dimensional supergravity, see for example
B, @, B]. Recently, many new AdS; geometries from massive type ITA string theory
have been found in [@], and the dual SCFTs of these AdS; vacua have been studied in

We are particularly interested in studying N = (1,0) SCFTs within the framework
of seven-dimensional gauged supergravity. These SCFTs should be dual to AdS7 solu-
tions of N = 2 gauged supergravity in seven dimensions [[]. Pure N = 2 gauged super-
gravity with SU(2) gauge group admits both supersymmetric and non-supersymmetric
AdS7 vacua [[@]. The two vacua can be interpreted as a supersymmetric and a non-
supersymmetric CFT, respectively. A domain wall solution interpolating between these
vacua has been studied in [[3]. This solution describes a non-supersymmetric deforma-
tion of the UV N = (1,0) SCFT to another non-supersymmetric CFT in the IR.

When coupled to vector multiplets, the N = 2 gauged supergravity with many pos-
sible gauge groups can be obtained [[@, [3E, [@]. Although the resulting matter-coupled
theory can support only a half-supersymmetric domain wall vacuum, supersymmetric
AdS; vacua are possible if a topological mass term for the 3-form field, dual to the 2-
form field in the gravity multiplet, is introduced. These supersymmetric AdS7 critical
points with SO(4) and SO(3) symmetries together with analytic RG flows interpolat-
ing between them have been studied in [[d] in the case of SO(4) gauge group. And
recently, AdS7 vacua including compactifications to Ad.Ss of non-compact gauge groups
have been explored in [I¥]. The latter type of solutions generally describe twisted com-
pactifications of N = (1,0) six-dimensional field theories to four dimensions.

In this paper, we are interested in holographic description of twisted compacti-
fications of N = (1,0) SCFTs on two-manifolds ¥y = (S?, H?) and three-manifold
Y3 = (83, H3). The corresponding gravity solutions will take the form of AdSs x ¥,



and AdS, x X3, respectively. The dual field theories will be SCEFTs in four or three
dimensions. Gravity solutions interpolating between above mentioned AdS; vacua and
these AdSs or AdSy geometries will describe RG flows from N = (1,0) SCFTs to lower
dimensional SCFTs. Previously, this type of solutions has mainly been studied within
the framework of the maximal N = 4 gauged supergravity. The solutions provide
gravity duals of twisted compactifications of the N = (2,0) SCFTs. A number of these
AdS5 solutions together with the uplift to eleven-dimensional supergravity by using the
reduction ansatz given in [[M] and [P0] have been studied previously in [E0, P2, P3, £4)].
In addition, compactifications of N = (1,0) SCFT has recently been explored from the
point of view of massive type IIA theory in [E3].

We will give another new solution to this class from N = 2 SO(4) gauged su-
pergravity. It has been pointed out in [Z2] that the AdSs; x S? solution preserving
SO(2) x SO(2) symmetry and N = 2 supersymmetry in five dimensions, eight super-
charges, cannot be obtained from pure minimal N = 2 gauged supergravity. We will
show that this solution is a solution of N = 2 SO(4) gauged supergravity obtained
from coupling pure N = 2 gauged supergravity to three vector multiplets. We will
additionally give new AdSs x H? solutions which are different from those given in [22]
and [23] in the sense that the two SU(2) gauge couplings are different, and the residual
symmetry is only the diagonal subgroup of SO(2) x SO(2). This case is not a trun-
cation of the N =4 SO(5) gauged supergravity, and the embedding of these solutions
in higher dimensions are presently unknown. We will also study holographic RG flow
solutions interpolating between AdS; vacua and these AdSs fixed points. The solutions
describe deformations of N = (1,0) SCFTs in six dimensions to the IR N =1 SCFT
in four dimensions.

On AdS, solutions from seven-dimensional gauged supergravity, a class of AdSy x
H? and AdS, x S? solutions have been obtained in [Z0]. A number of extensive studies
of these solutions in terms of wrapped Mb5-branes on various supersymmetric cycles in
special holonomy manifolds have been given in [E4, B8, 2Z9]. In particular, the solution
studied in [Z9] has been obtained from the maximal gauged supergravity and preserves
N = 2 superconformal symmetry in three dimensions. In this work, we will look for
AdS, solutions in the N = 2 SO(4) gauged supergravity preserving only four super-
charges. The corresponding solutions should then correspond to some N = 1 SCFTs
in three dimensions. We will show that there exist AdS, x S® and AdS, x H? solutions
in this SO(4) gauged supergravity with four supercharges when the two SU(2) gauge
couplings are different. For equal SU(2) gauge couplings, only AdS,; x H? solutions
exist and can be uplifted to eleven dimensions using the reduction ansatz given in [BO].

The paper is organized as follow. In section B, relevant information on N = 2 SO(4)
gauged supergravity in seven dimensions and supersymmetric AdS; critical points are



reviewed. AdSs x S? and AdSs x H? solutions together with holographic RG flows
from AdS; critical points to these AdSs fixed points will be given in section B. We
present AdS,; x S® and AdS,; x H? solutions in section B and give the embedding of
some AdSs x Yo and AdS4 x X3 solutions in eleven dimensions in section B. We finally
give some comments and conclusions in section B.

2. Seven-dimensional N = 2 SO(4) gauged supergravity and
AdS7 critical points

In this section, we give a description of the SO(4) N = 2 gauged supergravity in seven
dimensions and the associated supersymmetric AdS7 critical points. These critical
points preserve N = 2 supersymmetry in seven dimensions and correspond to six-
dimensional N = (1,0) SCFTs. All of the notations used throughout the paper are the
same as those in [[@] and [[3].

2.1 SO(4) gauged supergravity

The SO(4) N = 2 gauged supergravity in seven dimensions is constructed by gaug-
ing the half-maximal N = 2 supergravity coupled to three vector multiplets. The
supergravity multiplet (ef},l/zf, AL, x*, By, 0) consists of the graviton, two gravitini,
three vectors, two spin—% fields, a two-form field and the dilaton. We will use the con-
vention that curved and flat space-time indices are denoted by u,v,... and m,n,.. .,
respectively. Each vector multiplet (AN,)\A,¢i) contains a vector field, two gaugi-
nos and three scalars. The bosonic field content of the matter coupled supergrav-
ity then consists of the graviton, six vectors and ten scalars parametrized by the
R* x SO(3,3)/SO(3) x SO(3) ~ R" x SL(4,R)/SO(4) coset manifold. In the fol-
lowing, we will consider the supergravity theory in which the two-form field B, is
dualized to a three-form field C,,. The latter admits a topological mass term, so the
resulting gauged supergravity admits an AdS; vacuum.

The SO(4) gauged supergravity is obtained by gauging the SO(4) ~ SO(3)x SO(3)
subgroup of the global symmetry group SO(3,3). One of the SO(3) in the gauge group
SO(3) x SO(3) is the SO3)gr ~ USp(2)g ~ SU(2)g R-symmetry. All spinor fields,
including the supersymmetry parameter e
forming as doublets of the SU(2)gr R-symmetry. From now on, the SU(2)g douplet
indices A, B = 1,2 will not be shown explicitly. The SU(2)g triplets are labeled by
indices 7, j = 1,2, 3 while indices 7, s = 1,2, 3 are the triplet indices of the other SO(3)
in SO(3)r x SO(3).

The 9 scalar fields in the SO(3,3)/5S0(3) x SO(3) coset are parametrized by the
coset representative L = (L,', L;") which transforms under the global SO(3,3) and

, are symplectic-Majorana spinors trans-



the local composite SO(3) x SO(3) by left and right multiplications, respectively. The

inverse of L is denoted by L~! = (L!,, L' ) satisfying the relations L, = n!/L;; and

LIr — nIJLJr-
The bosonic Lagrangian of the N = 2 gauged supergravity is given by
— 1 1 o v 1 —20 vpo b 1 ir
e L = SR e aps FlF — i % Hypo H*P7 — gOn0d'o = SF, P
1 1
_144\/— e et P H s Wz + %he fetn- M Hpy s Cigoppr =V
(2.1)
where the scalar potential and the Chern-Simons term are given by
1 , 1 4V2 | 50
V = Ze—” (O“’Oir — —02> + 16h%e' — T\/_he?’zo, (2.2)
K AT J
Wypvp = 377[JF[“V o] fIJ A A A A ApK (23)

with the gauge field strength defined by F, = 28[“141{] + frx"AJ A, The structure
constants f;; & of the gauge group include the gauge coupling associated to each simple
factor in a general gauge group Gy C SO(3,3).

We are mainly interested in supersymmetric solutions. Therefore, the supersym-
metry transformations of fermions are necessary. However, we will not consider bosonic
solutions with the three-form field turned on. We will accordingly set C),,,, = 0 through-
out. The fermionic supersymmetry transformations, with all fermions and the three-
form field vanishing, are given by

\/5 -2 i E ) o o 4 o
o1, = 2D,e — 30 ¢ 2Cyue — 2—062 ot (37,07 — 57" u) € — gh@Q e,  (2.4)

]_ ) o . . 2 a 16
oy = —57“3“06 — f—oefF;l,UWWG + %6206 - 3620}157 (2.5)
. . 1 fed . g 3 3
ON' = —iy'Plo'e = Sef Fj e - %m@“’ale. (2.6)

Various quantities appearing in the Lagrangian and supersymmetry transforma-
tions are defined by the following relations

_D € = 8 €+ Wmn’}/mn + _O-lEZJkQ/ij)

44 4
B = L (070t f1y " AN Lyes Q= LY (5704 s “47) L'k
1 . 1 -
Cir = —5f1y "L L Licye™, C = ——=fr; "L'L7 Liye™,

V2 V2
Crsi = f15 KLI,«LJSLK@ ary = Li[LiJ +L";L,,,

F.,=L'F', F, =LF (2.7)
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where 7™ are space-time gamma matrices satisfying {y™, 4"} = 29™" with ™" =
diag(—1,1,1,1,1,1,1).

2.2 Supersymmetric AdS; critical points

We will now briefly review supersymmetric AdS; critical points found in [[d]. There
are two critical points preserving the full N = 2 supersymmetry in seven dimensions.
The two critical points however have different symmetries namely one critical point, at
which all scalars vanishing, preserves the full SO(4) gauge symmetry while the other
is only invariant under the diagonal subgroup SO(3)giag C SO(3) x SO(3).

For SO(3) x SO(3) gauge group, the gauge structure constants can be written as
[ixa]

frix = (91€ijk, —Gacrst)- (2.8)

Before discussing the detail of the two critical points, we give an explicit parametriza-
tion of the SO(3,3)/S0O(3) x SO(3) coset as follow. With the 36 basis elements of a
general 6 x 6 matrix

(ers)xr = 0rx0J1, I,J,...=1,...,6 (2.9)
the generators of the composite SO(3) x SO(3) symmetry are given by
SOB)r: I =ei—ey,  0,j=1,2.3
SO(3) : J? = e 3,43 — €ri3443,  T,5=1,23. (2.10)
The non-compact generators corresponding to 9 scalars take the form of
Y7 = €43+ i3 (2.11)

Accordingly, the coset representative can be obtained by an exponentiation of the ap-
propriate Y generators. Y generators and the 9 scalars transform as (3,3) under
the SO(3) x SO(3) local symmetry.

The supersymmetric AdS7 critical points preserve at least SO(3) symmetry. There-
fore, we will consider only the coset representative invariant under SO(3) symmetry.

The dilaton o is an SO(3) x SO(3) singlet. From the 9 scalars in SO(3,3)/SO(3) x
SO(3), there is one SO(3)giag singlet from the decomposition 3 x 3 —+ 1+ 3 + 5. The
singlet corresponds to the non-compact generator

Y, =YY" 4+ y?24y3, (2.12)
The coset representative is then given by

L =es. (2.13)



The scalar potential for the dilaton o and the SO(3)g4iag singlet scalar ¢ can be straight-
forwardly computed. Its explicit form reads [

1
V= ﬁew [(gf + ¢2) (cosh(6¢) — 9 cosh(2¢)) + 8g1 g, sinh®(2¢)
+8 [95 — g% + 641267 + 325 I (g) cosh® ¢ + g, sinh® gzﬁ)” . (2.14)
There are two supersymmetric AdS; vacua given by
SO(4) — critical point © 0 =¢=0, Vo =—240h* (2.15)
1 2 _ 95642
SO(3) — critical point : c=—=1In w 7
5 92
8
1 16h 24005 h2
2 192 — 16h (g2 — 256h2)?

where we have chosen g; = —16h in order to make the SO(4) critical point occurs at
o = 0. This is achieved by shifting . The value of the cosmological constant has been
denoted by V.

The two critical points correspond to N = (1,0) SCFTs in six dimensions with
SO(4) and SO(3) symmetries, respectively. An RG flow solution interpolating between
these two critical points has already been studied in [[4]. In the next sections, we will
study supersymmetric RG flows from these SCFTs to other SCFTs in four and three
dimensions providing holographic descriptions of twisted compactifications of these
N = (1,0) SCFTs.

3. Flows to N =1 SCFTs in four dimensions

In this section, we look for solutions of the form AdSs x S? or AdSs x H? in which S?
and H? are a two-sphere and a two-dimensional hyperbolic space, respectively.
In the case of S?, we take the seven-dimensional metric to be

ds? = " da? ;4 dr® + 290 (df? + sin? dg?) (3.1)

with dm%3 being the flat metric on the four-dimensional spacetime. By using the vielbein

el = ef'da*, e" = dr,
! = e4do, e? = % sin 0dg, (3.2)
we can compute the following spin connections
cuq;é = ¢ % cot Oe?, w‘{} = G'e?,
wéf =G wh, = F'el. (3.3)



where ' denotes the r-derivative. Hatted indices are tangent space indices.
In the case of H?, we take the matric to be

2G(r)

ds2 = eQF(’")d:ri3 +dr? + %(d:ﬁ + dy?). (3.4)
With the vielbein
el = el'dz”, e’ =dr,
G G
et =" dr, ="y, (3.5)
)
the spin connections are found to be
w“%f _ G/efc’ wgf _ G/eg,
wh = F'el, w®; = —e G (3.6)

3.1 AdS; solutions with SO(2) x SO(2) symmetry

We now construct the BPS equations from the supersymmetry transformations of
fermions. We first consider the S? case. In order to preserve supersymmetry, we
make a twist by turning on the SO(2) x SO(2) C SO(4) gauge fields, among the six
gauge fields A7,

A® = acosOde and A% = bcosOde (3.7)

such that the spin connections on S? is cancelled by these gauge connections. The
Killing spinor corresponding to the unbroken supersymmetry is then a constant spinor
on S2.

We begin with the solutions preserving the full SO(2) x SO(2) residual gauge
symmetry generated by JS) and Jl(?. Scalars which are singlet under SO(2) x SO(2)
are the dilaton and the scalar corresponding to the SO(3,3) non-compact generators
Y33, We will denote this scalar by ®. By considering the variation of the gravitino along
S? directions, we find that the cancellation between the spin and gauge connections
imposes the twist condition

Using the projection conditions

V€ = €, and iasvé‘%e =€, (3.9)



we find the following BPS equations

o = %e—;—¢—2G [€2%g1(e2® —1) — ae”(*® — 1) — be” (2 +1)] (3.10)
o = %e‘g_‘b—m [e” l[a—b+ (a+ b)em} — e <91 + g1e*® + 32h6570+¢>i| . (3.11)
G = —%Oegcbm [46" l[a—b+ (a+ b)em] + e2¢ (91 + gi1e*® — 8h€570+q>>} , (3.12)
P = %@—;’—MG 7 [a= b+ (at0)e?] = e (g 4+ gue™ —she¥ )| (3.13)

In the H? case, we choose the gauge fields to be

b

A% =%y and AS = Zdw (3.14)
Y Y

which can be verified that the spin connection w® in (B@) is cancelled by virtue of the

twist condition (B3) and the projection conditions

V€ =€ and io3ye =e. (3.15)

By an analogous computation, we find a similar set of BPS equations as in (B10),
(B1), (B12) and (B13) with (a,b) replaced by (—a, —b).

At large r, solutions to the above BPS equations should approach the SO(4) AdS;
critical point with & ~ ¢ ~ 0 and FF ~ G ~ r. This is the UV (1,0) SCFT. As
r — —o00, we look for the solution of the form AdSs x S? or AdSs x H? such that
¢’ =0 =G =0 and F’ = constant. We find that there is an AdS5 solution given by

1 b+ v4a? — 3b?
®=—1In ,
2 2(a+b)

1

ot { gib%(b £ V4a? — 302) }
5 132(a+b)h2(3b — 2a + V/4a2 — 302) |’

1 [bz(a + )4 (b + V4a? — 3b?)(2a — 3b F V4a® — 3b2)3}
—1In ,
10 32g3h%(2a + b F V4a? — 3b%)5

1
(a+ b)*(2a — 3b £+ V4a? — 31)2)4] 5
bigth(b F V4a? — 3b?)2 '

This solution is given for 3, = S2. The solution in the H? case is given similarly by

G —

L aas, = { (3.16)

flipping the signs of a and b.
It should be noted that, in this fixed point solution with SO(2) x SO(2) symmetry,



the coupling g, does not appear. The solution can then be taken as a solution of the
gauged supergravity with go = ¢g;. Therefore, the solution can be uplifted to eleven
dimensions by using the reduction ansatz in [B0]. This will be done in section B. The
uplifted solution is however not new since similar solutions have been found previously
in [22, 23], and supergravity solutions interpolating between AdS; and AdSs x S? or
AdSs x H? have also been investigated. The solutions have an interpretation in terms
of RG flows from the UV SCFT in six dimensions to four-dimensional SCFTs with
SO(2) x SO(2) symmetry.

Note also that, in this case, it is not possible to find an RG flow from the SO(3)
AdS; point to any of these four-dimensional SCFTs since this AdS; critical point is
not accessible from the BPS equations given above.

3.2 AdSs solutions with SO(2) symmetry

We now consider AdSs solutions with SO(2) symmetry. We will study two possibilities
namely the SO(2)giag C SO(2) x SO(2) C SO(3) x SO(3) and SO(2)r C SO(3)r.

3.2.1 Flows with SO(2)giag symmetry

We begin with the SO(2)gi,, symmetry generated by Jl(;) + Jl(g). Among the 9 scalars
in SO(3,3)/SO(3) x SO(3), there are three singlets under SO(2)g4iag corresponding to
the following decomposition of SO(3) x SO(3) representations under SO(2)giag

3x3=2+1)x(2+1)=1+1+2+2+2+1. (3.17)
The three singlets correspond to the non-compact generators
YU 4y Y3, yi2 _y2l (3.18)
The coset representative describing these singlets can be written as

L = P77 oy (@Y (3.19)

Since we have not found any AdSs x S? solution, we will give only the result for
the H? case. The SO(2)4ig gauge field can be obtained from the SO(2) x SO(2) gauge
fields in (B) with the condition that

bga = ags . (3.20)

As in the previous case, the twist imposes the condition gya = 1 which in the present
case also implies gob = 1.



Using the projection conditions (BTH), we find the following BPS equations

1 -
P = §6—5—2<I>1—<I>2(€4¢>1 —1) [g1 — g2+ (g1 + g2)€**?] (3.21)
1 -
)= ——e 2 [8gra g — g2+ (1 + 92)6%}
1692
+92 [672(1)17(1)272(1)3(1 + €4CD1)<1 + 64@3) [92 _ 91 + (91 +gz>€2¢‘2:|
+4(g1 — g2)e™ — (g1 + g2)e” ], (3.22)
1 o o
By = ge B —1) [g1 — g0 + (91 + )] (3.23)
1 o
O_I — 4Og2 67572(?17‘1)272(1)3 |:8a60'+2<1>1+2¢'3720 |:g1 _ 92 _ (91 + g2)€2(b2i|

— g2 [g1(1 + €P) (1 + €' + '3 4 4e”P12%s 4 AP 71Ds)

+g2(62@2 o 1)(1 + 64@1 + 64(133 - 462<1>1+2¢’3 + e4<1>1+4@3)

+256h6%"+2<1>1+<1>2+2<1>3” ’ (3.24)
1 g (o
G = 2—06_5 [16he57 —gi(e® 4+ e72) 4 go(e®? — e7™2)
1
1L (s — o+ (014 02)e™)
Sa
#5020 ) (3.25)
2
1 s 50
F' = 2—06_5 16hez — g1(e®2 + e %2) + go(e®? — ™ ®2)
1
_16_%1_%_2%(1 + )1+ ") g1 — g2 + (g1 + g2)e”®]
2a
2y, gt (0 )] (3.26)
2

In this case, there are a number of possible AdS5 fixed point solutions, and it is possible
to have a solution interpolating between the SO(3) AdS; critical points and the AdS;
in the IR. We will investigate each of them in the following discussion.

We first look at the AdSs; x H? critical point with go = ¢; since this can be
uplifted to eleven dimensions. When gy = g, the fixed point solution exists only for
$; = &3 = 0, and the corresponding solution is given by

1 1
®y=——In2,0=-1In2,
2 5
3 1 g1 1
— 22— 21 [—] Loags, — —a— 27
G 5 n 2 n a s AdSs %h (3 )

The AdSs5 solution preserves eight supercharges corresponding to N = 1 superconformal
field theory in four dimensions with SO(2) symmetry. A flow solution interpolating

— 10 —



4 ) 2 R 2 2 4

(a) @2 solution (b) o solution (c) G solution

Figure 1: RG flows from SO(4) N = (1,0) SCFT in six dimensions to four-dimensional
N =1 SCFT with SO(2)g4iae symmetry for g; = go.

between this AdSs x H? fixed point and the SO(4) AdS; given in (EI3) for h = 1 is
shown in Figure M.

It should be noted here that this fixed point can be obtained from the SO(2)x.SO(2)
fixed points given in the previous section by setting the parameter b = a. It can be
readily verified that, for b = a, solution in (BdH) is valid only for the upper sign and
¥, = H?2. The resulting solution is precisely that given in (B=Z2).

We now move to solutions with go # ¢1. The solution given in (B=27) is a special
case of a more general solution, with ®; = &3 = 0 and g, # ¢1, which is given by

(DQ = In

N | —

2(g91 + 92)

1 [ 1024h2(\/g2 — 19252 F 8h) ]
=5 ,

g1 £ /493 — 39?] P,

go — 16h) (g2 + 24h F /g% — 192h2
1 5(gs — 16h)"(v/g2 — 19212 F 8h)(ga + 24h F /g2 — 19202)?
G=—In
10 1024¢5h3(go — 8h F \/g2 — 192h2)5

Ad%s 9 2h9(8h ¥ /g2 — 19212) '

where we have used the relation gy = —16h in the solutions for ¢ and G to simplify the
expressions. An example of the corresponding flow solutions from the UV N = (1,0)
SO(4) SCFT to this critical point, with go = —2¢; and h = 1, is given in Figure D.

In all of the above solutions, it is not possible to have a flow from the SO(3) AdS;
critical point (E8). To find this type of flows, we look for AdSs fixed points with

- 11 -
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-4 -3 -2 -1 -1 2 4

(a) @2 solution o solution ) G solution

Figure 2: RG flows from SO(4) N = (1,0) SCFT in six dimensions to four-dimensional
N =1 SCFT with SO(2)g4iae symmetry for g; # go.

®5; =0 but ®; # 0 and P, # 0. In this case, the AdSs x H? solution is given by

(DQ = 11 |:g2 g1:| y (I)l == j:(I)27
2 g2 + g1
> 11 [ 9192 ] G- lln 25(33)a(g2 — 256h?)3
35 (g2 — 256h%)3
Lags, = (g2 : )¢ (3.29)

Note that at the values of ®; and ®, are the same as the SO(3) AdS; point. In
equation (Z13), we have

1 g2 — 0
b, =Py =—-1In = . 3.30
' ‘2 {92 + 91] ’ ( )
Actually, there are two equivalent values of ®; namely either ®; = &y or &; = —d,,.

The two choices are equivalent in the sense that they give rise to the same value of the
cosmological constant and the same scalar masses. The difference between the two is
the generators of SO(3) under which the SO(3) singlet scalar ¢ in (EZ13) is invariant.
For ®; = ®j, we have ®; = ®, which is invariant under the SO(3) generated by
Ji(jl) + Ji(f). The alternative value of &; = —® gives &; = —P, which is invariant under
SO(3) generators Jlg) + Jl(g), Jl(é) — Jl(? and JQ%) — JQ(?. This difference does not affect
the result discussed here since, in both cases, the residual SO(2)giag is still generated
by J3) + J2.

The flow from SO(3) N = (1,0) SCFT would be driven only by the dilaton ¢ which
has different values at the SO(3) AdS; and the AdSs fixed points. This is expected
since at SO(3) AdS; critical point only o corresponds to relevant operators, see the
scalar masses in [[7].

- 12 —



We now consider RG flows from N = (1,0) SCFTs in six dimensions to four-
dimensional SCFTs identified with the critical point (B229). In order to give some
explicit examples, we choose particular values of the two couplings ¢g; and g,. In the
following solutions, we will set g = —2¢; and h = 1. With these, the IR AdSs x H? is
given by

1 1. [6
P =Py=;l3~05493,  o=_In {—] ~ 0.1726,
G= L[]~ 20508 (3.31)
= 10 n 24 ~ . . .

The SO(4) UV point (Z13) is given by
(I)l = (I)Q =0c=0 (332)

while the SO(3) AdS; point (E18) occurs at
1.4 1
o= R In 3 ~ 0.0575, Dy =Py = 3 In3 ~ 0.5493. (3.33)

We have chosen ®; = ®, at the IR fixed points for definiteness.

There exist an RG flow from the SO(4) N = (1,0) SCFT in the UV to the N =1
four-dimensional SCFT in the IR as shown in Figure B. With a particular boundary
condition, we can find an RG flow from the SO(4) AdS; to the SO(3) AdS; critical
points and then to the AdSj5 critical point as shown in Figure B. This solution is similar
to the flow from SO(6) AdSs to Khavaev-Pilch-Warner (KPW) AdSj critical point and
continue to a two-dimensional N = (2,0) SCFT in [E.

3.2.2 Flows with SO(2)r symmetry

We then move on and briefly look at the SO(2)g symmetry. There are three singlet

scalars from the SO(3,3)/50(3) x SO(3) coset. These scalars will be denoted by @y,

®, and P53 corresponding to the non-compact generators Y31, Y3 and Yjss, respectively.
In this case, the gauge field corresponding the SO(2)g generator is given by

A® = acosfde . (3.34)

By using the same procedure, we find that, in order to have a fixed point, all of the ®;’s
must vanish, and only AdSs x H? solutions exist. The solution again preserves eight
supercharges corresponding to N = 1 superconformal symmetry in four dimensions.
The fixed point solution is given by

2 4 1.4 1 16h
oc=—-In-, Gz—ln———lnﬁ, F = 62
5 3 5 3 2 3da 03

r (3.35)

— 13 —
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01r 0.1f

-4 -3 -2 -1 -4 -3 -2 -1

(a) @1 solution (b) ®2 solution

G o
30+

251
20
151

10,

/

. . . r
-4 -2 2 4

(c) G solution (d) o solution

Figure 3: An RG flow from SO(4) N = (1,0) SCFT in six dimensions to four-
dimensional N =1 SCFT with SO(2)qiag Symmetry.

There exist RG flows from the SO(4) N = (1,0) SCFT to these four-dimensional
SCFTs. The BPS equations describing theses flows are given by

2 g (o

o = £’ (ae"’zG — g1 — 16h657> : (3.36)
1 o ag

G = 36_5 <4h657 — g — 4ae”‘2G> : (3.37)
1 g ag

Fl=cef (4h657 g+ aeHG> . (3.38)

Examples of the solutions with some values of the parameter a are shown in Figure B.
This critical point is also a solution of pure N = 2 gauged supergravity studied in [E1].

4. Flows to N =1 SCFTs in three dimensions

In this section, we look for AdS, vacua of the form AdS, x S? or AdS, x H? with S and
H? being a three-sphere and a three-dimensional hyperbolic space, respectively. These

— 14 —



(b) @4 solution

— 2 2 4 '
(c) G solution (d) o solution

Figure 4: An RG flow from SO(4) N = (1,0) SCFT to SO(3) N = (1,0) SCFT in six
dimensions and then to N = 1 four-dimensional SCFT with SO(2)giae symmetry.

G
351 -

3L

251

. .
i -2 2 4

(a) @ solution (b) o solution

Figure 5: RG flows from SO(4) N = (1,0) SCFT in six dimensions to four-dimensional
N =1 SCFT with SO(2)g symmetry for a = 1, 5,10 (red, green, blue).

solutions will correspond to some SCFTs in three dimensions. In order to identify these
AdSy vacua with the IR fixed points of the six-dimensional SCFTs corresponding to
both of the AdS; vacua given in (E13) and (EZI8), we consider the scalars which are
singlets under SO(3)qiag subgroup of the full SO(4) gauge group. The relevant scalar
from the SO(3,3)/S0(3) x SO(3) coset is the one corresponding to the generator (213)
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with the coset representative given in (Z13).
In the S? case, we will take the metric ansatz to be

ds3 = e*'da? , + dr® + €9 [dy”® + sin® ¢ (d6? + sin® 6d¢?) ] . (4.1)

From the above metric, we find the spin connections

wh = F'ef, w?, = G'e?, W= Gle
3 3 3 cotf ;
w¢; = G/e¢, W = e G2 e¢,
4 sin
w% = e % cot ye?, w% = e % cot e’ (4.2)

which accordingly suggest to turn on the following SO(3)gi., gauge fields

Al = P2 p0 acosdo,

g1

A2 = P2 45 — g cos Odo,
g1

A3 = P2 46 acossinfde . (4.3)
g1

Note that at the beginning, the parameter a of each gauge field needs not be equal.
However, the twist condition
ag; = 1 (4.4)

requires that all of the parameters in front of A* must be equal. The corresponding
field strengths are, after using (£4),

F' = —qe 20e¥ A ee,
F? = —qe 26 A e?,
F3 = —ae %Y Ne?. (4.5)

To set up the BPS equations, we impose the projection conditions
V€ = €, 2'017@1[}6 =€, iaZ%Bée =€, icr3'y(%e =e€. (4.6)

For the H? case, we take the metric to be

26
e
ds? = *dx? , +dr® + ?(dﬂcz +dy? + d2?) (4.7)
with the spin connections given by
W', = G'ée?, w‘ﬁf =G, Wt = Ge,
wi“ﬁ = —e Yt wég = —e Y6, wh, = F'el. (4.8)
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We then turn on the following gauge fields, to cancel the above spin connections on
HS

Y

A =C%ar A2=0, A*=Y4: (4.9)
Yy Yy

with A3 = %Ai, i =1,2,3. These gauge fields then become SO(3)qing gauge fields.
We will also impose the projection conditions

V€ = €, ialfnge = —¢, 102556 = —e€, 2'0372@6 = —¢. (4.10)

The twist condition is still given by (E=4).

In both cases, the last projector in (E8) and (M) is not independent from the
second and the third ones, so the fixed point solution will preserve four supercharges
corresponding to N = 1 superconformal symmetry in three dimensions.

With all of the above conditions, we find the following BPS equations, for the H?
case,

I o gy o
¢ = —8—926 273026 [ezG(e4¢ —1)gy — 4dae +2¢} [91 — g2+ (g1 + 92)6%] , (4.11)
1 5 12
o = o §3¢-2G [_aea+2¢ [(62¢ _ 1)91 + (1 + €2¢)92}
20 92
+e%C g, [g2(62¢ — 1P+ qu(e* + 1) + 128h6570+3¢” ; (4.12)
1 . 28a
G = Eg*i*&i’*m {_€o+2¢ [(62¢ —Dg+ 1+ ew)gz]
g2
—e2Gg, [gz(e2¢ — 1%+ gi(e* +1)% - 32h6%+3¢“ : (4.13)
1 - 12a
Fl = e 8700720 { e [(€* = gy + (14 €)gs]
0 92
+e%¢ g, [92(62¢ — 1%+ gi(e* +1)° - 32h6576+3¢ﬂ : (4.14)

The corresponding equations for the S3 case are similar with a replaced by —a.
We now look for a fixed point solution at which G’ = ¢/ = ¢/ = 0 and F’ = constant.
For g = g1, only AdS, x H? solutions exist and are given by

1
¢:—ln2 :iln2

64a®
G = { ] L agss =

—_

(4.15)

s

>

3h2

\V)
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This solution can be uplifted to eleven dimensions using the ansatz of [BO].
When g, # g1, we also find AdS,; x H? solutions

1 92— g1 1 9%9%
¢ ! [92 +91] ’ ’ b ! [100}12(9% - 9%) ’

2
2 _ 2 —
o %m {5a(92 gl)] +éln[ 9192 ]

9193 10h\/g3 — ¢?
1 [25h%(g5 — 9%)} ;
Lags, = . 4.16
Adss = o8y { 9393 (4.16)

This solution can be connected to both AdS; critical points in (Z3) and (EI8) by
some RG flows.

In this g # g1 case, there can be both AdSy x S and AdS; x H? solutions. The
solution however takes a more complicated form depending on the values of g; and g-.
The AdS,; x H3 and AdS, x S? solutions are given respectively by

1 4ae’ 20
G=-In|l—F— 4.17
3 ] 1
2 e [go(1 =€) — gi (e + 1)]
=-1 4.18
7750 [ 32h (4.18)
and
1 4aeo+2%0
G=-In|——— 4.19
2 [92(1 - 64%)] ’ (419
2 —3d0 1 — 8% — 660 1 1
g 2y | el ) —gile ) (4.20)
5 32h
In both cases, the scalar ¢, is a solution to the equation
g1(1 —2e%%0 — 2¢90 4 £590) _ gy (1 4 2290 — 2¢%P0 — 590) = . (4.21)

The explicit form of ¢g can be obtained but will not be given here due to its
complexity. There are many possible solutions for ¢y depending on the values of g;, go
and a. An example of AdS, x S? solutions is, for g, = %gl, given by

1
6= 09158, 0 =05493,  G=04116+1n {3] . (4.22)
g1
One of the AdS, x H? solutions is, for g, = %gl, given by
1
¢ = 0.2706, o =0.2351, G = 1.0936 + 3 In {ﬁ} ) (4.23)
(51
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Numerical solutions for RG flows from the UV N = (1,0) SCFTs in six dimensions
to these three-dimensional N = 1 SCFTs can be found in the same way as those given
in the previous section. And, with suitable boundary conditions, the flow from SO(4)
AdS7 point to the SO(3) AdS; point and then to AdS,; x S or AdSy x H? in the case
of go # g1 should be similarly obtained. We will however not give these solutions here.

5. Uplifting the solutions to eleven dimensions

In this section, we will uplift some of the AdS5 and AdS, solutions found in the previous
sections to eleven dimensions using a reduction ansatz given in [B0]. Only solutions with
equal SU(2) gauge couplings, go = g1, can be uplifted by this ansatz. Therefore, we
will consider only this case in the remaining of this section.

The reduction ansatz given in [B0] is naturally written in terms of SL(4,R)/SO(4)
scalar manifold rather than the SO(3,3)/S0(3) x SO(3) we have considered throughout
the previous sections. It is then useful to change the parametrization of scalars from
the SO(3,3)/50(3) x SO(3) to SL(4,R)/SO(4) cosets. For convenience, we will repeat
the supersymmetry transformations of fermions with the three-form field and fermions

vanishing
0, = D,e — igXTfyue — iX_A"yue
20 20
L x Y (1,77 — 88477 Trs Fue, (5.1)

40v/2

2
Sy = X1 Xe — 2oX~tet LoXT -
X 70 Xe—cgX e+ 159 gof

i 1 1 1
SA\g = _57“1_‘5]3“1{36 — ggXTFRE + EQXTRSF €

1
—— X'yl FRES 4 2 FTv 5.3
8\/_ Y ( nv + QERSTU puv € ( )

——= X' Fie, (5.2)

where
— -1\ B B T
Prs = (V)in (024 + 94,7 ) Vi Ssyr
Qns = V7 )iw (054 + 94,,),”) Vi"osir,
1 1
De = de + Zwab’Yab + ZQRSFRS
Trs = (V) (V) bas, T = Tpso™. (5.4)

In the above equations, V% denotes the SL(4,R)/SO(4) coset representative.
For the explicit form of the eleven-dimensional metric and the four-form field in-
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cluding the notations used in the above equations, we refer the reader to [B]. We now
consider the AdS; and AdS, solutions separately.

5.1 Uplifting the AdSs solutions

For AdSs solutions, the seven-dimensional metric is given by (Bdl) and (B2). We will
restrict ourselves to AdSs fixed points with SO(2) x SO(2) symmetry. The non-zero
gauge fields are A%® = (A2 A**) whose explicit form is given by

A% =aqacosfdyp  and A = bcosde. (5.5)

The U(1) x U(1) singlet scalar from SL(4,R)/SO(4) coset is parametrized by the coset
representative

2
2
, €

2 2 2
2 2

VE = diag(e?, e e 2) (5.6)

from which the Try = diag(e=®,e7®, e®, e?) follows. Note that the parameter a and b
here are different from those in section B since the gauge fields A* and A" correspond
respectively to the anti-self-dual and self-dual parts of the SO(4) gauge fields A%

Using the above supersymmetry transformations and imposing the projection con-
ditions y;€ = € and vé‘ﬁflge = €, we obtain the BPS equations

2 1 1
XX — 59X_4 - 5gX(€<b +e ®) + EX_le_zG(ae(I’ —be™®) =0, (5.7)

—' —gX(e® —e )+ =X ae® +be™?) =0, (5.8)

V2

1 1 1
Fl— —gX(e®+e ) — —gX - ——X "1 (ae® —be®) =0, (5.9
1 4
G — 3gX(eq) +e ) — l—ogX_4 + 5—\/§X_16_2G(ae<b —be ®)=0. (5.10)
In the above equations, we have used I'sye = —I'19¢ which follows from the condition

['j934¢ = €. The latter is part of the truncation from the maximal SO(5) gauged
supergravity to the half-maximal SO(4) gauged supergravity studied in [BD]. We have
also used the twist condition given by

gla—b)+1=0. (5.11)

which comes from the requirement that the gauge connection cancels the spin connec-
tion. Note that this condition differs from (BR) since the gauge fields are different.
In condition (BX), the SU(2)r gauge fields are given by the Al with [ = 1,2,3, and
the SO(2)gr C SU(2)g gauge field has been chosen to be A3. On the other hand,
the condition (ED) involves A'? — A34 corresponding to the SO(2)g subgroup of the
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SU(2)g R-Symmetry for which the corresponding gauge fields are identified with the
anti-self-dual part of the SO(4) gauge fields A%’ in the convention of [BD].

For large r, the solution should approach X =1, ® =0 and F' ~ G ~ r giving AdS7
background with SO(4) symmetry. This corresponds to the UV N = (1,0) SCFT in
six dimensions. In the IR with the boundary condition F' ~ r and G, ®, o ~ constant,
there is a class of solutions given by

1 _a+bi\/a2+ab+62
(b: §ln
a

Y

1 _a(a+2b:|:\/a2+ab—|—62)
G=-In
2 _\/§gX2 (b:l:\/a2+ab+b2)
a(a+2bi\/a2+ab+b2)2
4(a+0b)?(a+bE Va2 +ab+b?)

I _a2% a+2b++va?+ ab+ b2
Mg @+ b)? (a+ btV ab+ 17

This gives AdSs x S? background preserving U(1) x U(1) symmetry and eight super-

?

XlO —

(5.12)

charges since only the projector 'yé‘Z’Flge = € is needed at the fixed point. Therefore,
this solution corresponds to N = 1 SCF'T in four dimensions. This solution is the same
as in [Z2] with the identification (my,ms) — (—b, a) up to some field redefinitions. So,
we conclude that the AdS5 x ¥ solutions found in [E2] is a solution of the N = 2 SO(4)
gauged supergravity.

For the H? case, the above analysis can be repeated in a similar manner. The re-
sulting BPS equations are, as expected, given by (B72), (B3), (B9) and (E0) with (a, b)
replaced by (—a, —b). It can also be verified that for both AdS; x S? and AdSs x H*
solutions given in (B3), solutions with the positive sign are valid for ¢ > 0 and a > 0
while solutions with the negative sign are valid for ¢ < 0 and a < 0.

It should also be noted that we can truncate the above BPS equations to those
of SO(2)r symmetry, generated by the anti-selfdual gauge field A2 — A3 by setting
b = —a. Since the twist condition in this case becomes 2ga = —1 which implies that
ga < 0, only the AdSs x H? exists. This precisely agrees with the result of section
B, The corresponding solution is given by

1
3\° 1 g 3
x=(2), G=—m|- . Lags, = 4. 5.13
<4) 2 [ 213032(1} A4 Q%g ( )
The AdSs x H? with SO(2)giag symmetry found in section B2 for go = g1 can also
be uplifted using the formulae given here by truncating the SO(2) x SO(2) symmetry
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to SO(2)diag as remarked previously in section BZ. The SO(2)g4iag corresponds to the
gauge field A'? since the A% and A®, in section B3, are related to the anti-self-dual,
$(A2 — A% and self-dual, (A" 4 A3), fields, respectively. So, the SO(2)qiag gauge
field is given by A'2. As in section B3, only solutions with the upper sign in the solution
(512) and AdSs x H? are possible. The result is given by

1 1 1 21
®=-ln2, X°=_, G=_-In|-2"]. (5.14)
2 8 P q

This is consistent with the twist condition (BEc) which, for b = 0, becomes ga = —1.

We now move to the uplift of these AdSs solutions. Both AdSs x S? and AdSs x H?
solutions can be uplifted in a similar way. For definiteness, we will only give the
uplifted AdSs x S? solution. Using the reduction ansatz given in [BO], we find the
eleven-dimensional metric

1 2r
ds}, = A3 |e"adss dmifi + dr® + e290(df* + sin? 0d¢?)
2
FOATIXG [Xocos® 4 X sin € (¢ sin o+ e cos® )| de?

1
+55 A5 X cos? € [ [cos? pdg? + sin® (da — ag cos 0do)?]

249>
+ ePo [0082 Ydg? + sin® 9 (dB — bg cos Hdgb)QH
—%qu—% o " sin&sin(2¢) (e — e®) dédy (5.15)

where we have used the coordinates p®, satisfying u*u® = 1, as follow

p! = siny cosa, u? =sinysin o,
©? = coscos 3, pt = costsin 3. (5.16)

The quantities Xy, ®g and G are the values of the corresponding fields at the fixed
point (B12). The quantity A is defined by

A= X"*sin? € + XToupP cos® € (5.17)
which, in the present case, gives

A = Xcos* ¢ (6_‘I>O sin? ¢ 4 e®° cos? 1[)) + X *sin? €. (5.18)
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The 4-form field, at the fixed point, is given by
Fuy = g—lgUA_2 cos® EdE N €3) + % cosf cos & [Sinfcos ¢ sine) cos X tdap

cos® ¥ (Xg ' sin® € + e X cos® &) d§] AdB A dO A do

—g—b2 sin f cos € [Sin € cos € sin ) cos Y X, *dap

— (Xg*sin® € + Xg cos® Ee™®0) sin® Yd€] A do A d A dop (5.19)
where

U =sin*¢ [Xy® —2X,7° (e* + e )]
—cos® & [2X5 + X5 (e7®sin® o + €™ cos? ¥) ] . (5.20)

The uplifted solutions for some particular values of a and b have already been given in
[23].
5.2 Uplifting the AdS, solutions

We now consider the embedding of the AdSy x H? solution given in (EIH) in eleven
dimensions. The SL(4,R)/SO(4) coset representative, invariant under SO(3)giag, 18
given by

o 30

VE = (dpez,e 2) (5.21)
which gives Ths = (dape™?,€%?).  We have split the o index as follow a = (a,4),
a=1,2,3.
To set up the associated BPS equations, we use the seven-dimensional metric (E=2)
and the following gauge fields

A2 = gdz, A=, AB= gd:c. (5.22)
The twist condition is given by ga = 1. We will also impose the projection conditions
FQg’}Q@gG = —€, Flg’}/ggACG = —€, Flg"}/ggﬁ = —€, F,ﬁE = €. (523)
With all of the above conditions, we obtain the following BPS equations
1
—¢' + EgX(e_‘f’ — %) +V2aX e’ = 0, (5.24)
2 1 3
XX — ggX*‘l - l—OgX(3e*¢ +e3) + 5—\/5(1)(*16@5*26' =0, (5.25)
1 1 7
G — —gX(3e ?+e*) — —gX '+ —=aX e’ =0 5.26
(B0 %) = JaX e oax e . (520)
1 1 3
F'— —gX(3e?+e%) — —gX - —aX 1" =0. 5.27
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These equations admit a fixed point solution

111 b 11(3)
1
1 [311)] 1. 1y 1 /11(3%)\ 7
Go = —1 _ H Lags, = = [ —22) " 5.28
’ 10n{2\/§} 2" la AT g U (5.28)

The parametrization of the u® coordinates can be chosen to be
p = (cos Wi, sin W) (5.29)

with ¢ satisfying 4a®* = 1. The SO(3)qiag symmetry corresponds to the gauge fields
A% In the following, we accordingly set A% =0 for a = 1,2, 3 and find that

Du® = cos WD — sin U°dW, Dyt = cos Wd¥ (5.30)
where
Dj® = djp® + gA™ab . (5.31)
With all these results, the eleven-dimensional metric is given by
1 —— 6200
ds%l = A3 |elads, d;piz + d?“2 —+ y2 [d:L‘2 + dy2 + dZQ]

2 2
+—2A—§X§’ [XO cos? € + Xy tsin?¢ (cos2 Te® + sin? \116_3%)} de?
g

1
—|—FA_§ o teos? ¢ [cos2 Ve DD + (sin2 We? 4 cos? \I/e_3¢°) d\IIQ]
g

1
——ZA_%X()_l sing (e — e™) sin U cos UdWd¢ . (5.32)
9

The S? coordinates i can be parametrized by
it = sin B cos a, f1? = sin Bsin a, f1* = cos 3. (5.33)
The warped factor A is given by
A= XZe ?cos?€cos® U+ Xt sin? € + X sin? W cos® € . (5.34)
The four-form field on the AdS; x H? background can be written as

1
Fuy = U cos® € cos® WdE A dW A ey
9
1
+2—g2 cos Eeape [1° [ X * sin® €(sin® ¥ — cos® )
+X5 (% sin® U — e cos® W) | dé A F*° A\ d¥
— [(X0_4 sin € + X2 cos® £*%) sin W cos Wd¢
+X; ! cos€sin € cos® WdW]| A F A Djif] (5.35)
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where

1 ~a Ty ~c
€2) = §€abc/vb DﬂbADM )

U = cos® & [Xg [e°7sin® U — e72% cos® ¥ — €*™(2sin® U 4 1)]
— Xy (7% cos® U + €* sin® U)]
+sin? EX3 (X0 — e % — 3%), (5.36)

6. Conclusions

We have studied AdSs x Y5 and AdS; x X3 solutions of N = 2 gauged supergravity
in seven dimensions with SO(4) gauge group. We have found that there exist both
AdSs x S? and AdSs x H? solutions with the gauge fields for SO(2) x SO(2) turned on.
With SO(2)g or SO(2)4iag gauge fields, only AdSs x H? solution is possible. This is
consistent with the results given in [ZI] and [Z3]. We recover AdSs x S? and AdSs x H*
solutions studied in [Z2] and [23] with SO(2) x SO(2) symmetry. In the case of equal
SU(2) gauge couplings, the solutions can be uplifted to eleven dimensions, and the
uplifted solutions have explicitly given.

We have also considered RG flow solutions interpolating between supersymmetric
AdS; critical points in the UV and these AdSs solutions in the IR. In the case of
SO(2)giag symmetry, there exist flow solutions from SO(4) AdS; critical point to AdSs
as well as flows from SO(4) AdS; to SO(3) AdS; and then continue to AdSs fixed
points similar to the flows from four-dimensional SCFT's to two-dimensional N = (2,0)
SCFTs studied in [B1]. Other results of this paper are a number of new AdSy x S* and
AdSy x H? solutions for unequal SU(2) gauge couplings. With equal SU(2) couplings,
only AdS; x H?® geometry is possible, and the resulting solutions can be uplifted to
eleven dimensions.

The results obtained in this paper should be relevant in the holographic study
of N = (1,0) SCFTs in six dimensions. These would also provide new AdS; and
AdS, solutions, corresponding to new SCFTs in four and three dimensions, within the
framework of seven-dimensional gauged supergravity. The embedding of the solutions
in the case of unequal SU(2) gauge couplings (if possible) would be interesting to
explore. It would also be interesting to compare the AdSs and AdSy solutions obtained
here and the solutions found recently in [B2, B3] in the context of massive type ITA
theory. Finally, it is of particular interest to find an interpretation of all these solutions
in terms of wrapped Mb-branes on Y5 and 3. Along this line, it would also be useful
to find an implication of the AdS, solutions in terms of the M2-brane worldvolume
theories.
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