บทคัดย่อ

โปรตีนจากรังไหม *Brombyx mori* ได้ถูกนำมาใช้งานทางด้าน Biomaterials เพื่อเป็นวัสดุที่สามารถ ใช้เป็นโครงสร้างชั่วคราว (Scaffolds) สำหรับเพาะเลี้ยงเซลล์ เนื่องจากมีคุณสมบัติในการย่อยสลายได้ตาม ธรรมชาติ (biodegradability) และ มีความเข้ากับได้ทางชีวภาพกับเซลล์ และเนื้อเยื่อในร่างกาย (bio compatibility) ของโปรตีนไหม นอกจากนี้โปรตีนไหมยังสามารถขึ้นรูปเป็นโครงสร้างชั่วคราวได้ด้วย หลากหลายวิธี รวมทั้งสามารถกำหนดคุณสมบัติที่ต้องการด้วยวิธีการจัดการ และขึ้นรูปได้ด้วย จึงทำให้มีนำ โปรตีนไหมมาศึกษาและประยุกต์ใช้งานทางด้าน tissue engineering อย่างไรก็ตาม โปรตีนไหมยังมีข้อเสีย อย่างหนึ่งคือ ขาดโปนตีนที่เป็นโมเลกุลยึดเกาะของเซลล์ จึงส่งผลให้เซลล์ยึดเกาะได้ไม่ดีเท่าที่ควร ดังนั้นใน การศึกษาครั้งนี้จึงทำการปรับปรุงคุณสมบัติของ scaffold ที่ทำจากโปรตีนไหม (fibroin และ sericin) ด้วย การเติม คอลลาเจนซึ่ง ในอัตราส่วนต่างๆ ได้แก่ 0, 3.61, 7.69, 14.89 และ 50% (w/w) ทำการขึ้นรูป scaffold ด้วยเทคนิค Freezing and drying หลังจากนั้น scaffold ที่ขึ้นรูปจากอัตราส่วนต่างๆของ คอลลา เจนและโปรตีนไหม จะถูกศึกษาโครงสร้าง (structure and morphology) ความแข็งแรง (compressive modulus) ความคงตัว (weight loss) การดูดซับน้ำ (water absorption) และความสามารถในการให้เซลล์ ยึดเกาะและเจริญเติบโต จากการศึกษาพบว่า การเติมคอลลาเจนลงใน scaffold ที่ทำจากโปรตีนไหมเพียง 7.69 และ14.89% (w/w) สามารถปรับปรุงคุณสมบัติของ scaffold ได้โดยเฉพาะอย่างยิ่ง คุณสมบัติที่ช่วยให้ เซลล์ยึดเกาะและเจริญเติบโตบน scaffold ได้ และการเติมคอลลาเจน 7.69 และ 14.89% (w/w) ส่งผลต่อ โครงสร้างรูพรุน โดยมีผลให้ลักษณะรูพรุนมีขนาดเล็กลง พนังรูบางขึ้น แต่มีความเป็นระเบียบมากขึ้น เมื่อ เทียบกับ scaffold ที่มีอัตราส่วนคอลลาเจน 0 และ 3.61 % โดยรูพรุนของ scaffold ที่มีคอลลาเจน 7.69 และ 14.89% มีเส้นผ่านศูนย์กลาง 144.09±25.97 และ 140.67±38.28 ไมโครเมตร ซึ่งเพียงพอต่อการจะให้ เซลล์สามารถเคลื่อนที่ (migrate) เข้าไปภายในได้ และยังมีพื้นที่ให้เซลล์ยึดเกาะได้ นอกจากนี้ยังพบว่า เมื่อ เติมคอลลาเจน 7.69 และ 14.89% ทำให้ scaffold มีความคงตัว และความสามารถในการดูดซับน้ำได้มาก ้ขึ้น แต่พบว่าความแข็งแรงลดลง เนื่องจากผนังของโครงสร้างรูพรุนบางลง อย่างไรก็ตามจากการศึกษาในครั้งนี้ ได้นำเสนอความเป็นไปได้ที่จะนำ scaffold ที่ขึ้นรูปจาก โปรตีนไหม และ คอลลาเจนไปพัฒนาต่อเพื่อใช้งาน ทางด้าน Tissue engineering

Abstract

Brombyx mori silk is a promising biomaterials which has been intensive studied for tissue engineering applications. As it offers its advantages of bio-degradability, tunable mechanical properties, versatile processing and bio compatibility. Silk, however, has a few cell signaling domains, so silk alone may be not sufficient to use as the scaffolds for tissue engineering. Here we demonstrated the improvement of silk scaffolds properties by incorporation of type I collagen. Collagen were blended into silk fibroin and sericin solution with varied % (w/w), ranging from 0, 3.61, 7.69, 14.89 and 50% (w/w), then the porous scaffolds were fabricated using freezing and drying technique. The Col/SF-SS scaffolds were investigated their porous structure, mechanical properties, stability, water absorption and ability to promote fibroblast proliferation. Interestingly, the small amount of collagen as 7.69 and 14.89% improved cell attachment and support proliferation of the silk based scaffolds. Both 7.69 and 14.89% col scaffolds exhibited the more organized and smaller pore sizes with thinner wall, compared to the higher silk content (0% and 3.61% col) scaffolds. The pore structure of 7.69 and 14.89% col scaffolds were approximately 144.09±25.97 and 140.67±38.28 in diameter. This could be sufficient to allow the fibroblast to migrate and still provided the surface area for cell attachment and proliferation. The stability and water absorption of these 7.69 and 14.89% col scaffolds was increased, although their compressive modulus were reduced. Therefore, this study demonstrated the effect of type I collagen on an improvement of the silk based scaffold properties, and also the possibly potential of the Col/SF-SS scaffolds in skin tissue engineering.

Keywords: Collagen/ fibroin/ sericin scaffold, biomaterials, skin tissue engineering